
Gateway Guide
OpenIG 3.1

Paul Bryan
Mark Craig

Jamie Nelson
Guillaume Sauthier

ForgeRock AS
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2011-2017 ForgeRock AS.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, http://fontawesome.io.

This Font Software is licensed under the SIL Open Font License, Version 1.1. This license is available with a FAQ at: http://scripts.sil.org/OFL

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
http://fontawesome.io
http://scripts.sil.org/OFL

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. iii

Table of Contents
Preface ... vi

1. Who Should Use this Guide .. vi
2. Formatting Conventions ... vi
3. Accessing Documentation Online ... vii
4. Using the ForgeRock.org Site .. vii

1. Understanding OpenIG .. 1
1.1. About OpenIG ... 1
1.2. The Exchange ... 2
1.3. The Configuration .. 2
1.4. Routing ... 5
1.5. Filters, Handlers, & Chains .. 5
1.6. Comments in OpenIG Configuration Files ... 8
1.7. Where To Go From Here .. 9

2. Getting Started ... 11
2.1. Before You Begin ... 11
2.2. Install OpenIG .. 11
2.3. Install an Application to Protect ... 12
2.4. Configure OpenIG ... 13
2.5. Configure the Network ... 15
2.6. Try It Out ... 16

3. Installation in Detail .. 19
3.1. Configuring Deployment Containers ... 19
3.2. Preparing the Network ... 25
3.3. Installing OpenIG ... 25
3.4. Preparing For Load Balancing & Failover ... 28
3.5. Configuring OpenIG For HTTPS (Client-Side) ... 30
3.6. Setting Up Keys For JWT Encryption .. 32

4. Getting Login Credentials From Data Sources ... 34
4.1. Before You Start ... 34
4.2. Login With Credentials From a File .. 34
4.3. Login With Credentials From a Database .. 37

5. Getting Login Credentials From OpenAM .. 42
5.1. Detailed Flow ... 42
5.2. Setup Summary .. 43
5.3. Setup Details .. 43
5.4. Trying It Out .. 48

6. OpenIG as a SAML 2.0 Service Provider ... 49
6.1. About SAML 2.0 Federation ... 49
6.2. Installation Overview .. 50
6.3. Configuration File Overview ... 50
6.4. Configuring the Federation Handler ... 51
6.5. Example Settings .. 52
6.6. Identity Provider Metadata ... 53
6.7. Preparing to Try OpenIG as a SAML 2.0 Service Provider 53

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. iv

6.8. Configuring OpenAM .. 54
6.9. Configuring OpenIG For Federation ... 54
6.10. Trying It Out .. 57

7. OpenIG as an OAuth 2.0 Resource Server ... 59
7.1. About OpenIG as an OAuth 2.0 Resource Server ... 59
7.2. Preparing the Tutorial .. 60
7.3. Setting Up OpenAM as an Authorization Server ... 61
7.4. Configuring OpenIG as a Resource Server .. 61
7.5. Trying It Out .. 63

8. OpenIG as an OAuth 2.0 Client ... 66
8.1. About OpenIG as an OAuth 2.0 Client .. 66
8.2. About OpenIG as an OpenID Connect 1.0 Relying Party 66
8.3. Preparing the Tutorial .. 67
8.4. Setting Up OpenAM as an OpenID Provider ... 68
8.5. Configuring OpenIG as a Relying Party .. 69
8.6. Trying It Out .. 71

9. Configuring Routes .. 72
9.1. Before You Start ... 72
9.2. Configuring the Router ... 72
9.3. Configuring Additional Routes .. 73
9.4. Trying it Out .. 74
9.5. Locking Down Route Configurations ... 75

10. Configuration Templates .. 77
10.1. Proxy & Capture ... 77
10.2. Simple Login Form ... 78
10.3. Login Form With Cookie From Login Page ... 79
10.4. Login Form With Extract Filter & Cookie Filter .. 80
10.5. Login Which Requires a Hidden Value From the Login Page 82
10.6. HTTP & HTTPS Application .. 84
10.7. OpenAM Integration With Headers ... 85
10.8. Microsoft Online Outlook Web Access .. 86

11. Extending OpenIG ... 89
11.1. About Scripting .. 89
11.2. Scripting Dispatch .. 90
11.3. Scripting HTTP Basic Authentication .. 92
11.4. Scripting LDAP Authentication ... 94
11.5. Scripting SQL Queries .. 96
11.6. About Developing Custom Extensions ... 99
11.7. Key Extension Points .. 99
11.8. Implementing a Filter ... 100
11.9. Implementing a Handler ... 100
11.10. Heap Object Configuration ... 100
11.11. Sample Filter .. 101
11.12. Building Customizations .. 104
11.13. Embedding Customizations in OpenIG .. 105

12. OpenIG Audit Framework .. 107
13. Troubleshooting ... 110

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. v

13.1. Object not found in heap .. 110
13.2. Extra or missing character / invalid JSON ... 110
13.3. The values in the flat file are incorrect ... 111
13.4. Problem accessing URL .. 111
13.5. StaticResponseHandler results in a blank page ... 111
13.6. OpenIG is not logging users in ... 112
13.7. Read timed out error when sending a request .. 112
13.8. OpenIG does not use new route configuration ... 112
13.9. Make OpenIG skip a route .. 113

A. SAML 2.0 & Multiple Applications .. 115
A.1. Before You Start .. 115
A.2. Preparing the Network ... 115
A.3. Preparing the SAML 2.0 Service Provider Configurations 116
A.4. Importing Service Provider Configurations Into OpenAM 126
A.5. Preparing Configurations in OpenIG ... 127
A.6. Trying It Out .. 134

Index ... 135

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. vi

Preface
This guide shows you how to install and configure OpenIG, a high-performance reverse proxy server
with specialized session management and credential replay functionality.

1. Who Should Use this Guide
This guide is written for access management designers and administrators who develop, build,
deploy, and maintain OpenIG deployments for their organizations. This guide covers the tasks you
might perform once or repeat throughout the life cycle of an OpenIG release.

You do not need to be an expert to learn something from this guide, though a background in HTTP,
access management web applications can help. You do need some background in managing services
on your operating systems and in your application servers. You can nevertheless get started with this
guide, and then learn more as you go along.

2. Formatting Conventions
Most examples in the documentation are created in GNU/Linux or Mac OS X operating environments.
If distinctions are necessary between operating environments, examples are labeled with the
operating environment name in parentheses. To avoid repetition file system directory names are
often given only in UNIX format as in /path/to/server, even if the text applies to C:\path\to\server as
well.

Absolute path names usually begin with the placeholder /path/to/. This path might translate to /opt/,
C:\Program Files\, or somewhere else on your system.

Command-line, terminal sessions are formatted as follows:
$ echo $JAVA_HOME
/path/to/jdk

Command output is sometimes formatted for narrower, more readable output even though formatting
parameters are not shown in the command.

Program listings are formatted as follows:
class Test {
 public static void main(String [] args) {
 System.out.println("This is a program listing.");
 }
}

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. vii

3. Accessing Documentation Online
ForgeRock publishes comprehensive documentation online:

• The ForgeRock Knowledge Base offers a large and increasing number of up-to-date, practical
articles that help you deploy and manage ForgeRock software.

While many articles are visible to community members, ForgeRock customers have access to much
more, including advanced information for customers using ForgeRock software in a mission-critical
capacity.

• ForgeRock product documentation, such as this document, aims to be technically accurate and
complete with respect to the software documented. It is visible to everyone and covers all product
features and examples of how to use them.

4. Using the ForgeRock.org Site
The ForgeRock.org site has links to source code for ForgeRock open source software, as well as links
to the ForgeRock forums and technical blogs.

If you are a ForgeRock customer, raise a support ticket instead of using the forums. ForgeRock
support professionals will get in touch to help you.

https://backstage.forgerock.com/knowledge/kb
https://forgerock.org

Understanding OpenIG
About OpenIG

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 1

Chapter 1

Understanding OpenIG
This chapter introduces OpenIG, briefly covering essential concepts.

1.1. About OpenIG
Most organizations have valuable existing services that they cannot easily integrate into newer
architectures. Often, however, they also cannot change the existing services. Without a gateway to
bridge the gap, some client applications cannot communicate with these existing services.

Figure 1.1. Missing Gateway

OpenIG works as an HTTP gateway, also known as a reverse proxy. You deploy OpenIG on the
network so that it intercepts both client requests and also server responses.

Figure 1.2. OpenIG Deployed

Clients then exchange with protected servers through OpenIG. This means that without touching
either clients or servers, you can configure OpenIG to add new capabilities to existing services.

http://en.wikipedia.org/wiki/Reverse_proxy

Understanding OpenIG
The Exchange

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 2

The list that follows names some of what you can add by using OpenIG.

• Access management integration

• Application & API security

• Credential replay

• OAuth 2.0 support

• OpenID Connect 1.0 support

• Network traffic control

• Proxy with request & response capture

• Request & response rewriting

• SAML 2.0 federation support

• Single sign-on

OpenIG supports these capabilities as out-of-the-box configuration options. Once you understand the
essential concepts covered in this chapter, try the demonstrations in this guide to see for yourself
how to add these features by using OpenIG.

1.2. The Exchange
OpenIG handles HTTP requests and responses with a wrapper called the exchange.

The OpenIG exchange encapsulates HTTP requests and responses that pass through OpenIG, as
well as the principal associated with the request, the session context associated with the client,
and any other state information needed. OpenIG makes it easy to access arbitrary state information
through the exchange so that you can use it throughout the duration of the exchange, even when the
exchange calls for interaction with additional services.

In addition, OpenIG includes information in the exchange about the client that made the incoming
request, such as the client host, port, and IP address, and also the user-agent description, the login
of the user making the request, and the X.509 certificates presented by the client when these are
available as part of the request.

1.3. The Configuration
OpenIG represents its configuration in JSON format, which is store in flat files.1 You configure
OpenIG by editing the JSON flat files.
1 OpenIG also uses additional file formats for SAML 2.0, but the primary configuration files are in JSON format.

Understanding OpenIG
The Configuration

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 3

After installation, you add at least one configuration file. Each configuration file holds a JSON object.
At minimum, the JSON object specifies a "handler" to deal with the exchange.

The following very simple configuration routes exchanges to be handled according to separate route
configurations.

{
 "handler": {
 "type": "Router"
 }
}

The "handler" indicates which object OpenIG invokes first. A handler is an object responsible for
producing a response to a request, therefore every route must call a handler.

Notice in this case that the "handler" field takes an object as its value. This is an inline declaration. If
you only use the object once where it is declared, then it makes sense to use an inline declaration.

To change the definition of an object defined by default or when you need to declare an object once
and use it multiple times, you declare object definitions in the "heap", and then reference the objects
by "name". You can also use this technique instead of inline declarations.

The following example declares an identical "Router" object as above and references it by its name.

{
 "handler": "My Router",
 "heap": [
 {
 "name": "My Router",
 "type": "Router"
 }
]
}

Notice that the "heap" takes an array. As the "heap" holds configuration objects all at the same level,
you can impose any hierarchy or order that you like when referencing objects. Yet, when you declare
all objects in the "heap" and reference them by name, neither hierarchy nor ordering are obvious
from the structure of the configuration file alone.

Each configuration object has a "type", a "name", and an optional "config".

• The "type" must be the type name of the configuration object.2

As you see in the rest of this guide and in the Reference, OpenIG defines many types for different
purposes.

2 For built-in objects, you can use the short name alias. If the object has no alias, use the fully qualified class name of the Java
class implementing the object.

Understanding OpenIG
The Configuration

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 4

• The "name" takes a string that is unique in the list of objects.

You can omit this field when declaring objects inline.

• The contents of the "config" object depend on the "type".

When all the configuration settings for the type are optional, the "config" field is also optional, as
in this example. If all configuration settings are optional, then omitting the "config" field, or setting
the "config" field to an empty object, "config": {}, or setting "config": null all signify that the object
uses default settings.

The configuration can specify additional objects as well. For example, you can configure an
"HttpClient" that OpenIG uses to connect to servers. The following "HttpClient" configuration uses
defaults for all settings, except "hostnameVerifier", which it configures to verify host names in SSL
certificates in the same way as most browsers.

{
 "name": "HttpClient",
 "type": "HttpClient",
 "config": {
 "hostnameVerifier": "BROWSER_COMPATIBLE"
 }
}

Decorators are additional heap objects that let you extend what another object can do. For
example, a "CaptureDecorator" enables filters and handlers to log requests and responses. A
"TimerDecorator" logs processing times. You decorate the configuration of other objects with the
names of decorators as field names. OpenIG defines both a "CaptureDecorator" named "capture" and
also a "TimerDecorator" named "timer" by default. You can therefore log requests, responses, and
processing times by adding decorations as shown in the following example.

{
 "handler": {
 "type": "Router",
 "capture": ["request", "response"],
 "timer": true
 }
}

In addition to decorators, OpenIG also creates other utility objects with default settings, including
"HttpClient", "LogSink", and "TemporaryStorage". You can reference these objects by name without
configuring them unless you need to override the default configurations.

Routes, mentioned here and described in more detail in Section 1.4, "Routing", inherit settings
from their parent configurations. This means that you can configure global objects in the "heap" of
the base configuration for example, and then reference the objects by name in any other OpenIG
configuration.

Understanding OpenIG
Routing

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 5

1.4. Routing
OpenIG routing lets you use multiple configuration files. Routing also lets OpenIG reload
configurations that you change at runtime without restarting OpenIG.

You can use routing where OpenIG protects multiple services, or multiple different endpoints of
the same service. You can also use routing when handling an exchange involves multiple steps,
for example because you must redirect the client to authenticate with an identity provider before
accessing the service.

A router, as shown in Section 1.3, "The Configuration", takes responsibility for managing the routes
used, periodically reloading changed routes unless configured to load them only at startup.

Notice in the example that the router does not specify any routes. Instead, routes optionally specify
their own "condition". If a route "condition" is true, then the route handles the exchange.

The following example specifies a condition that is true when the incoming request path is /login.

"condition": "${matches(exchange.request.uri.path, '^/login')}"

If the route has no "condition", or if the value of the condition is null, then the route matches any
exchange. Furthermore, OpenIG orders routes lexicographically by name.

You can use these features to have both optional and default routes. For example, you could name
your routes to check conditions in order: 01-login.json, 02-protected.json, 99-default.json. Alternatively,
you can name routes using the "name" property on the route.

A router configuration can specify where to look for route files. As a "Router" is a kind of "handler",
routes can have routers, too.

1.5. Filters, Handlers, & Chains
Routing only delegates exchange handling. It does not actually deal with exchanges. To deal with an
exchange, you chain together filters and handlers.

• A handler either delegates to another handler, or it produces a response.

One way of producing a response is to send a request to and receive a response from an external
service. In this case, OpenIG acts as a client of the service, often on behalf of the client whose
request initiated the exchange.

Another way of producing a response is to build a response either statically or based on something
in the exchange. In this case, OpenIG plays the role of server, generating a response to return to
the client.

Understanding OpenIG
Filters, Handlers, & Chains

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 6

• A filter transforms something in the exchange.

A filter can leave the exchange unchanged. Alternatively a filter can even replace the request or the
response, for example generating a static request that replaces the client request. Other filters only
add or change some of the data in the exchange.

• A chain takes a list of filters and one handler. (The list of filters can be empty.)

Like a router, a chain itself is technically a handler. You can therefore place a chain anywhere in
the configuration that you can place a handler.

The chain dispatches processing to the filters in order, and then to the handler.

Initially the filters process the incoming exchange, with each filter handing off to the next filter
and finally the handler. Then after the handler produces the response, the filters process the
outgoing exchange on its way to the client. The same filter can process the incoming request and
the outgoing response. Many filters, however, either process the request or the response.

The following diagram shows the flow inside a chain that has a request filter transforming the
request, a response filter transforming the response, and a handler sending a request to a service
to get a response. Notice how the flow traverses the filters in reverse order when the outgoing
exchange comes back from the handler.

Figure 1.3. Flow Inside a Chain

Understanding OpenIG
Filters, Handlers, & Chains

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 7

The following route configuration demonstrates the flow, but without an external service.

{
 "handler": {
 "type": "Chain",
 "comment": "Base configuration defines the capture decorator",
 "config": {
 "filters": [
 {
 "type": "HeaderFilter",
 "comment": "Same header on all requests",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "X-MyHeaderFilter": [
 "Added by HeaderFilter to request"
]
 }
 }
 },
 {
 "type": "HeaderFilter",
 "comment": "Remove X-Powered-By from response",
 "capture": "response",
 "config": {
 "messageType": "RESPONSE",
 "remove": [
 "X-Powered-By"
]
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "comment": "Same response to all requests",
 "capture": "request",
 "config": {
 "status": 200,
 "reason": "OK",
 "headers": {
 "X-Powered-By": [
 "OpenIG"
]
 },
 "entity": "<html><p>Hello, World!</p></html>"
 }
 }
 }
 }
}

When the "Chain" gets the request, it processes the exchange as follows.

1. The first "HeaderFilter" adds a header to the incoming request.

2. The second "HeaderFilter" deals with responses, so it simply passes the exchange to the handler.

Understanding OpenIG
Comments in OpenIG Configuration Files

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 8

3. The "StaticResponseHandler" captures (logs) the request.

4. The "StaticResponseHandler" itself produces a response having an entity body and a header.

5. The second "HeaderFilter" captures (logs) the response.

6. The second "HeaderFilter" removes the header added to the response.

7. The first "HeaderFilter" deals with requests, so it simply passes the outgoing exchange back to
OpenIG.

Suppose this chain configuration is the only route active for the request. In that case, the flow
produces the following.

Original request from user-agent
GET / HTTP/1.1
Host: www.example.com:8080
Accept: */*

Captured incoming request (inside OpenIG exchange)
GET / HTTP/1.1
X-MyHeaderFilter: Added by HeaderFilter to request
Accept: */*
Host: www.example.com:8080

Captured outgoing response (inside OpenIG exchange)
HTTP/1.1 200 OK
Content-Length: 33
X-Powered-By: OpenIG

<html><p>Hello, World!</p></html>

Final response to user-agent
HTTP/1.1 200 OK
Content-Length: 33

<html><p>Hello, World!</p></html>

1.6. Comments in OpenIG Configuration Files
JSON does not specify a notation for comments.

However, when OpenIG does not recognize a JSON field name, it ignores the field. This makes it
possible to use comments in configuration files.

To make your configuration files easier to read, use the following conventions when commenting.

"comment"

Use the "comment" fields to add text comments.

Understanding OpenIG
Where To Go From Here

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 9

The following "CaptureDecorator" configuration includes a text comment.

{
 "name": "capture",
 "type": "CaptureDecorator",
 "comment": "Write request and response information to the LogSink",
 "config": {
 "captureEntity": true
 }
}

"_field-name"

Use an underscore (_) to comment a field temporarily.

The following "CaptureDecorator" configuration has "captureEntity": true commented out. As a
result, it uses the default setting ("captureEntity": false).

{
 "name": "capture",
 "type": "CaptureDecorator",
 "config": {
 "_captureEntity": true
 }
}

1.7. Where To Go From Here
Now that you understand the essential concepts, start using OpenIG with the help of the following
chapters.

Getting Started

This chapter shows you how to get OpenIG up and running quickly.

Installation in Detail

This chapter covers more advanced installation procedures.

Getting Login Credentials From Data Sources

This chapter shows you how to configure OpenIG to look up credentials in external sources, such
as a file or a database.

Getting Login Credentials From OpenAM

This chapter walks you through an OpenAM integration with OpenAM's password capture and
replay feature.

Understanding OpenIG
Where To Go From Here

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 10

OpenIG as a SAML 2.0 Service Provider

This chapter shows how to configure OpenIG as a SAML 2.0 Identity Provider.

OpenIG as an OAuth 2.0 Resource Server

This chapter explains how OpenIG acts as an OAuth 2.0 Resource Server, and follows with a
tutorial that shows you how to use OpenIG as a resource server.

OpenIG as an OAuth 2.0 Client

This chapter explains how OpenIG acts as an OAuth 2.0 client or OpenID Connect 1.0 relying
party, and follows with a tutorial that shows you how to use OpenIG as an OpenID Connect 1.0
relying party.

Configuring Routes

This chapter shows how to configure OpenIG to allow dynamic configuration changes and route
to multiple applications.

Configuration Templates

This chapter provides sample OpenIG configuration files for common use cases.

ForgeRock can also help you succeed in your projects involving OpenIG. You can purchase OpenIG
support subscriptions and training courses from ForgeRock and from consulting partners around the
world and in your area. To contact ForgeRock, send mail to info@forgerock.com. To find a partner in
your area, see http://forgerock.com/partners/find-a-partner/.

mailto:info@forgerock.com
http://forgerock.com/partners/find-a-partner/

Getting Started
Before You Begin

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 11

Chapter 2

Getting Started

This chapter provides instructions to get OpenIG up and running on Jetty, configured to serve as
reverse proxy to a minimal HTTP server for use when following along with the documentation. This
allows you to quickly see how OpenIG works, and provides hands on experience with a few key
features. For more general installation and configuration instructions, start with the chapter on
Installation in Detail.

2.1. Before You Begin
Make sure you have a supported Java Development Kit installed. For details, see the Release Notes
section, JDK Version in the Release Notes.

2.2. Install OpenIG
You install OpenIG in the root context of a web application container. In this chapter, you use Jetty
server as the web application container.

To perform initial installation, follow these steps.

1. Download and unzip a supported version of Jetty server.

Supported versions are listed in the Release Notes section, Web Application Containers in the
Release Notes.

2. Download the OpenIG war file.

3. Deploy OpenIG in the root context.

Copy the OpenIG war file as root.war to the /path/to/jetty/webapps/.

$ cp OpenIG-3.1.0.war /path/to/jetty/webapps/root.war

Jetty automatically deploys OpenIG in the root context on startup.

4. Start Jetty in the background:

http://forgerock.com/download-stack/

Getting Started
Install an Application to Protect

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 12

$ /path/to/jetty/bin/jetty.sh start

Or start Jetty in the foreground:

$ cd /path/to/jetty/
$ java -jar start.jar

5. Verify that you can see the OpenIG welcome page at http://localhost:8080.

When you start OpenIG without a configuration, requests to OpenIG default to a welcome page
with a link to the documentation.

6. Stop Jetty in the background:

$ /path/to/jetty/bin/jetty.sh stop

Or stop Jetty in the foreground by entering Ctrl+C in the terminal where Jetty is running.

2.3. Install an Application to Protect
Now that OpenIG is installed, set up a sample application to protect.

Follow these steps.

1. Download and run the minimal HTTP server .jar to use as the application to protect.

$ java -jar openig-doc-samples-3.1.0-jar-with-dependencies.jar
Jun 11, 2014 4:32:42 PM org.forgerock.openig.doc.SampleServer runServer
INFO: Starting HTTP server on port 8081
Jun 11, 2014 4:32:42 PM org.glassfish.grizzly.http.server.NetworkListener start
INFO: Started listener bound to [0.0.0.0:8081]
Jun 11, 2014 4:32:42 PM org.glassfish.grizzly.http.server.HttpServer start
INFO: [HttpServer] Started.
Jun 11, 2014 4:32:42 PM org.forgerock.openig.doc.SampleServer runServer
INFO: Press Ctrl+C to stop the server.

By default, this server listens on port 8081. If that port is not free, specify another port.

http://localhost:8080
http://maven.forgerock.org/repo/releases/org/forgerock/openig/openig-doc-samples/3.1.0/openig-doc-samples-3.1.0-jar-with-dependencies.jar

Getting Started
Configure OpenIG

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 13

$ java -jar openig-doc-samples-3.1.0-jar-with-dependencies.jar 8888
Jun 11, 2014 4:33:04 PM org.forgerock.openig.doc.SampleServer runServer
INFO: Starting HTTP server on port 8888
Jun 11, 2014 4:33:04 PM org.glassfish.grizzly.http.server.NetworkListener start
INFO: Started listener bound to [0.0.0.0:8888]
Jun 11, 2014 4:33:04 PM org.glassfish.grizzly.http.server.HttpServer start
INFO: [HttpServer] Started.
Jun 11, 2014 4:33:04 PM org.forgerock.openig.doc.SampleServer runServer
INFO: Press Ctrl+C to stop the server.

2. Now access the minimal HTTP server through a browser at http://localhost:8081.

Login with username demo, password changeit. You should see a page that includes the username,
demo, and some information about your browser request.

2.4. Configure OpenIG
Now that you have installed both OpenIG and also a sample application to protect, and configure
OpenIG.

Follow these steps to configure OpenIG to proxy traffic to the sample application.

1. Prepare the OpenIG configuration.

Add the following base configuration file as $HOME/.openig/config/config.json. By default, OpenIG
looks for config.json in the $HOME/.openig/config directory.

{
 "handler": {
 "type": "Router",
 "audit": "global",
 "capture": "all"
 },
 "heap": [
 {
 "name": "LogSink",
 "type": "ConsoleLogSink",
 "config": {
 "level": "DEBUG"
 }
 },
 {
 "name": "JwtSession",
 "type": "JwtSession"
 },
 {
 "name": "ClientHandler",
 "type": "ClientHandler"
 },
 {

http://localhost:8081

Getting Started
Configure OpenIG

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 14

 "name": "capture",
 "type": "CaptureDecorator",
 "config": {
 "captureEntity": true,
 "_captureExchange": true
 }
 }
],
 "baseURI": "http://www.example.com:8081"
}

$ mkdir -p $HOME/.openig/config
$ vi $HOME/.openig/config/config.json

On Windows, the configuration files belong in %appdata%\OpenIG\config. To locate the %appdata% folder
for your version of Windows, open Windows Explorer, type %appdata% as the file path, and press
Enter. You must create the %appdata%\OpenIG\config folder, and then copy the configuration files.

If you adapt this base configuration for production use, make sure to adjust the log level, and to
deactivate the "CaptureDecorator" that generates several log message lines for each request and
response. Also consider editing the router based on recommendations in the section, Locking
Down Route Configurations.

2. Add the following default route configuration file as $HOME/.openig/config/routes/99-default.json.
By default, the Router defined in the base configuration file looks for routes in the $HOME/.openig/
config/routes directory.

{
 "handler": "ClientHandler"
}

$ mkdir $HOME/.openig/config/routes
$ vi $HOME/.openig/config/routes/99-default.json

On Windows, the file name should be %appdata%\OpenIG\config\routes\99-default.json.

3. Start Jetty in the background:

$ /path/to/jetty/bin/jetty.sh start

Or start Jetty in the foreground:

Getting Started
Configure the Network

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 15

$ cd /path/to/jetty/
$ java -jar start.jar

2.5. Configure the Network
So far you have deployed OpenIG in the root context of Jetty on port 8080. Since OpenIG is a reverse
proxy you must make sure that all traffic from your browser to the protected application goes through
OpenIG. In other words, the network must be configured so that the browser goes to OpenIG instead
of going directly to the protected application.

Although if you followed the installation steps you are running both OpenIG and the minimal HTTP
server on the same host as your browser (probably your laptop or desktop), keep in mind that
network configuration is an important deployment step. To encourage you to keep this in mind, the
sample configuration for this chapter expects the minimal HTTP server to be running on www.example
.com, rather than localhost.

The quickest way to configure the network locally is to add an entry to your /etc/hosts file on UNIX
systems or %SystemRoot%\system32\drivers\etc\hosts on Windows. See the Wikipedia entry, Hosts (file),
for more information on host files. If you are indeed running all servers in this chapter on the same
host, add the following entry to the hosts file.
127.0.0.1 www.example.com

If you are running the browser and OpenIG on separate hosts, add the IP address of the host running
OpenIG to the hosts file on the system running the browser, where the host name matches that of
protected application. For example, if OpenIG is running on a host with IP address 192.168.0.15:
192.168.0.15 www.example.com

If OpenIG is on a different host from the protected application, also make sure that the host name of
the protected application resolves correctly for requests from OpenIG to the application.

Tip

Some browsers cache IP address resolutions, even after clearing all browsing data. Restart the browser after
changing the IP addresses of named hosts.

The simplest way to make sure you have configured your DNS or host settings properly for remote systems
is to stop OpenIG and then to make sure you cannot reach the target application with the host name and port
number of OpenIG. If you can still reach it, double check your host settings.

http://en.wikipedia.org/wiki/Hosts_(file)

Getting Started
Try It Out

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 16

Also make sure name resolution is configured to check host files before DNS. This configuration can be found in
/etc/nsswitch.conf for most UNIX systems. Make sure files is listed before dns.

2.6. Try It Out
http://www.example.com:8080/ should take you to the home page of the minimal HTTP server.

What just happened?

When your browser goes to http://www.example.com:8080/, it is actually connecting to OpenIG deployed
in Jetty. OpenIG proxies all traffic it receives to the protected application at http://www.example
.com:8080/, and returns responses from the application to your browser. It does this based on the
configuration that you set up.

Consider the base configuration file first, config.json. The base configuration file specifies a router
handler named "Router". OpenIG calls this handler when it receives an incoming request. In addition,
it uses the "LogSink" to log debug messages to the console. Alternatively, to send log messages to a
file you can use a "FileLogSink" in the Reference, rather than a "ConsoleLogSink".

The "baseURI" setting in turn changes the request URI to point the request to the sample application
to protect. The "Router" captures the request on the way in, and captures the response on the way
out.

The "Router" routes processing to separate route configurations.

For now the only route available is the the default route you added, 99-default.json. The default
route calls a "ClientHandler" with the default configuration. This "ClientHandler" simply proxies
the request to and the response from the sample application to protect without changing either the
request or the response. Therefore, the browser request is sent unchanged to the sample application
and the response from the sample application is returned unchanged to your browser.

Now change the OpenIG configuration to log you in automatically with hard-coded credentials.

1. Add a route to automatically log you in as username demo, password password.

Add the following route configuration file as $HOME/.openig/config/routes/01-static.json.

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://www.example.com:8081",
 "form": {

http://www.example.com:8080/

Getting Started
Try It Out

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 17

 "username": [
 "demo"
],
 "password": [
 "changeit"
]
 }
 }
 }
],
 "handler": "ClientHandler"
 }
 },
 "condition": "${matches(exchange.request.uri.path, '^/static')}"
}

On Windows, the file name should be %appdata%\OpenIG\config\routes\01-static.json.

2. Access the new route, http://www.example.com:8080/static.

This time, OpenIG logs you in automatically.

Also view the information logged about requests and responses, which shows up in the Jetty log.

What's happening behind the scenes?

With the original configuration, OpenIG does not change requests or responses, but only proxies
requests and responses, and captures request and response information.

After you change the configuration, OpenIG continues to capture request and response data. When
your request does not goes to the default route, but instead goes to /static, then the condition on the
new route you added matches the request. OpenIG therefore uses the new route you added.

Using the route configuration in 01-static.json, OpenIG replaces your browser's original HTTP GET
request with an HTTP POST login request containing credentials to authenticate. As a result, instead
of the home page with a login form, OpenIG logs you in directly, and the application responds with
the page you see after logging in. OpenIG then returns this response to your browser.

The following sequence diagram shows the steps.

http://www.example.com:8080/static

Getting Started
Try It Out

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 18

Figure 2.1.

1. The browser host makes a DNS request for the IP address of the HTTP server host, www.example.com.

2. DNS responds with the address for OpenIG.

3. Browser sends a request to the HTTP server.

4. OpenIG replaces the request with an HTTP POST request, including the login form with hard-
coded credentials.

5. HTTP server validates the credentials, and responds with the profile page.

6. OpenIG passes the response back to the browser.

Installation in Detail
Configuring Deployment Containers

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 19

Chapter 3

Installation in Detail
This chapter covers more advanced installation procedures.

• Make sure you have a supported Java version installed.

See the Release Notes section, JDK Version in the Release Notes, for details.

• Prepare a deployment container.

For details, see Section 3.1, "Configuring Deployment Containers".

• Prepare the network to use OpenIG as a reverse proxy.

For details, see Section 3.2, "Preparing the Network".

• Download, deploy, and configure OpenIG.

For details, see Section 3.3, "Installing OpenIG".

3.1. Configuring Deployment Containers
This section provides installation and configuration tips that you need to run OpenIG in supported
containers.

For the full list of supported containers, see the Release Notes section, Web Application Containers in
the Release Notes.

For further information on advanced configuration for a particular container, see the container
documentation.

3.1.1. About Securing Connections

OpenIG is often deployed to replay credentials or other security information. In a real world
deployment, that information must be communicated over a secure connection using HTTPS,
meaning in effect HTTP over encrypted Transport Layer Security (TLS). Never send real credentials,
bearer tokens, or other security information unprotected over HTTP.

When OpenIG is acting as a server, the web application container where OpenIG runs is responsible
for setting up TLS connections with client applications that connect to OpenIG. For details, see

Installation in Detail
About Securing Connections

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 20

Section 3.1.3.2, "Configuring Jetty For HTTPS (Server-Side)" or Section 3.1.2.2, "Configuring Tomcat
For HTTPS (Server-Side)".

When OpenIG is acting as a client, the HttpClient in the Reference configuration sets up TLS
connections from OpenIG to other servers. For details, see Section 3.5, "Configuring OpenIG For
HTTPS (Client-Side)".

TLS depends on the use of digital certificates (public keys). In typical use of TLS, the client
authenticates the server by its X.509 digital certificate as the first step to establishing
communication. Once trust is established, then the client and server can set up a symmetric key to
encrypt communications.

In order for the client to trust the server certificate, the client needs first to trust the certificate of
the party who signed the server's certificate. This means that either the client has a trusted copy of
the signer's certificate, or the client has a trusted copy of the certificate of the party who signed the
signer's certificate.

Certificate Authorities (CAs) are trusted signers with well-known certificates. Browsers generally
ship with many well-known CA certificates. Java distributions also ship with many well-known CA
certificates. Getting a certificate signed by a well-known CA generally costs money.

It is also possible for you to self-sign certificates. The trade off is that although you do not have to
pay any money, the certificate is not trusted by any clients until they have a copy. Whereas it is often
enough to install a certificate signed by a well-known CA in the server key store as the basis of trust
for HTTPS connections, self-signed certificates must also be installed in all clients.

Like self-signed certificates, the signing certificates of less well-known CAs are also unlikely to be
found in the default trust store. You might therefore need to install those signing certificates on the
client side as well.

This guide describes how to install self-signed certificates, which are certainly fine for trying out the
software and okay for deployments where you manage all clients that access OpenIG. If you need a
well-known CA signed certificate instead, see the documentation for your container for details on
requesting a CA signature and installing the CA signed certificate.

Once certificates are properly installed to allow client-server trust, also consider the cipher suites
configured for use. The cipher suite used determines the security settings for the communication.
Initial TLS negotiations bring the client and server to agreement on which cipher suite to use.
Basically the client and server share their preferred cipher suites to compare and to choose. If you
therefore have a preference concerning the cipher suites to use, you must set up your container to
use only your preferred cipher suites. Otherwise the container is likely to inherit the list of cipher
suites from the underlying Java environment.

The Java Secure Socket Extension (JSSE), part of the Java environment, provides security services
that OpenIG uses to secure connections. You can set security and system properties to configure the
JSSE. For a list of properties you can use to customize the JSSE in Oracle Java, see the Customization
section of the JSSE Reference Guide.

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html#Customization

Installation in Detail
Configuring Apache Tomcat For OpenIG

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 21

3.1.2. Configuring Apache Tomcat For OpenIG

This section describes essential Apache Tomcat configuration that you need in order to run OpenIG.

Download and install a supported version of Apache Tomcat from http://tomcat.apache.org/.

Configure Tomcat to use the same protocol as the application you are protecting with OpenIG. If the
protected application is on a remote system, configure Tomcat to use the same port as well. If your
application listens on both an HTTP and an HTTPS port, then you must configure Tomcat to do so as
well.

To configure Tomcat to use an HTTP port other than 8080, modify the defaults in /path/to/tomcat/conf/
server.xml. Search for the default value of 8080 and replace it with the new port number.

3.1.2.1. Configuring Tomcat Cookie Domains

If you use OpenIG for more than a single protected application and the protected applications are
on different hosts, then you must configure Tomcat to set domain cookies. To do this, add a session
cookie domain context element that specifies the domain to /path/to/conf/Catalina/server/root.xml, as in
the following example.

<Context sessionCookieDomain=".example.com" />

Restart Tomcat to read the configuration changes.

3.1.2.2. Configuring Tomcat For HTTPS (Server-Side)

To get Tomcat up quickly on an SSL port add an entry similar to the following in /path/to/tomcat/conf/
server.xml.

<Connector
 port="8443"
 protocol="HTTP/1.1"
 SSLEnabled="true"
 maxThreads="150"
 scheme="https"
 secure="true"
 address="127.0.0.1"
 clientAuth="false"
 sslProtocol="TLS"
 keystoreFile="/path/to/tomcat/conf/keystore"
 keystorePass="password"
/>

Also create a key store holding a self-signed certificate.

http://tomcat.apache.org/

Installation in Detail
Configuring Apache Tomcat For OpenIG

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 22

$ keytool \
 -genkey \
 -alias tomcat \
 -keyalg RSA \
 -keystore /path/to/tomcat/conf/keystore \
 -storepass password \
 -keypass password \
 -dname "CN=openig.example.com,O=Example Corp,C=FR"

Notice the key store file location and the key store password both match the configuration. By
default, Tomcat looks for a certificate with alias tomcat.

Restart Tomcat to read the configuration changes.

Browsers generally do not trust self-signed certificates. To work with a certificate signed instead by a
trusted CA, see the Apache Tomcat documentation on configuring HTTPS.

3.1.2.3. Configuring Tomcat to Access MySQL Over JNDI

If OpenIG accesses an SQL database, then you must configure Apache Tomcat to access the database
over JNDI. To do so, you must add the driver jar for the database, set up a JNDI data source, and set
up a reference to that data source.

The following steps are for MySQL Connector/J.

1. Download the MySQL JDBC Driver Connector/J from http://dev.mysql.com/downloads/connector/j.

2. Copy the driver .jar to /path/to/tomcat/lib/ so that it is on Tomcat's class path.

3. Add a JNDI data source for your MySQL server and database in /path/to/tomcat/conf/context.xml.

<Resource
 name="jdbc/forgerock"
 auth="Container"
 type="javax.sql.DataSource"
 maxActive="100"
 maxIdle="30"
 maxWait="10000"
 username="mysqladmin"
 password="password"
 driverClassName="com.mysql.jdbc.Driver"
 url="jdbc:mysql://localhost:3306/databasename"
/>

4. Add a resource reference to the data source in /path/to/tomcat/conf/web.xml.

<resource-ref>
 <description>MySQL Connection</description>

http://dev.mysql.com/downloads/connector/j

Installation in Detail
Configuring Jetty For OpenIG

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 23

 <res-ref-name>jdbc/forgerock</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

5. Restart Tomcat to read the configuration changes.

3.1.3. Configuring Jetty For OpenIG
This section describes essential Jetty configuration that you need in order to run OpenIG.

Download and install a supported version of Jetty from http://download.eclipse.org/jetty/.

Configure Jetty to use the same protocol as the application you are protecting with OpenIG. If the
protected application is on a remote system, configure Jetty to use the same port as well. If your
application listens on both an HTTP and an HTTPS port, then you must configure Jetty to do so as
well.

To configure Jetty to use an HTTP port other than 8080, modify the defaults in /path/to/jetty/etc/
jetty.xml. Search for the default value of 8080 and replace it with the new port number.

3.1.3.1. Configuring Jetty Cookie Domains
If you use OpenIG for more than a single protected application and the protected applications are on
different hosts, then you must configure Jetty to set domain cookies. To do this, add a session domain
handler element that specifies the domain to /path/to/jetty/etc/jetty.xml, as in the following example.

<Get name="sessionHandler">
 <Get name="sessionManager">
 <Set name="sessionDomain">.example.com</Set>
 </Get>
</Get>

Restart Jetty to read the configuration changes.

3.1.3.2. Configuring Jetty For HTTPS (Server-Side)
To get Jetty up quickly on an SSL port, follow the steps in this section.

These steps involve replacing the built-in key store with your own.

1. If you have not done so already, remove the built-in key store.

$ rm /path/to/jetty/etc/keystore

http://download.eclipse.org/jetty/

Installation in Detail
Configuring Jetty For OpenIG

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 24

2. Generate a new key pair with self-signed certificate in the key store.

$ keytool \
 -genkey \
 -alias jetty \
 -keyalg RSA \
 -keystore /path/to/jetty/etc/keystore \
 -storepass password \
 -keypass password \
 -dname "CN=openig.example.com,O=Example Corp,C=FR"

3. Find the obfuscated form of the password.

$ java \
 -cp /path/to/jetty/lib/jetty-util-*.jar \
 org.eclipse.jetty.util.security.Password \
 password
password
OBF:1v2j1uum1xtv1zej1zer1xtn1uvk1v1v
MD5:5f4dcc3b5aa765d61d8327deb882cf99

4. Edit the SSL Context Factory entry in the Jetty configuration file, /path/to/jetty/etc/jetty-ssl.xml.

<New id="sslContextFactory" class="org.eclipse.jetty.http.ssl.SslContextFactory">
 <Set name="KeyStore"><Property name="jetty.home" default="." />/etc/keystore</Set>
 <Set name="KeyStorePassword">OBF:1v2j1uum1xtv1zej1zer1xtn1uvk1v1v</Set>
 <Set name="KeyManagerPassword">OBF:1v2j1uum1xtv1zej1zer1xtn1uvk1v1v</Set>
 <Set name="TrustStore"><Property name="jetty.home" default="." />/etc/keystore</Set>
 <Set name="TrustStorePassword">OBF:1v2j1uum1xtv1zej1zer1xtn1uvk1v1v</Set>
</New>

5. Uncomment the line specifying that configuration file in /path/to/jetty/start.ini.

etc/jetty-ssl.xml

6. Restart Jetty.

7. Browse https://www.example.com:8443.

You should see a warning in the browser that the (self-signed) certificate is not recognized.

3.1.3.3. Configuring Jetty to Access MySQL Over JNDI

If OpenIG accesses an SQL database, then you must configure Jetty to access the database over
JNDI. To do so, you must add the driver jar for the database, set up a JNDI data source, and set up a
reference to that data source.

https://www.example.com:8443

Installation in Detail
Preparing the Network

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 25

The following steps are for MySQL Connector/J.

1. Download the MySQL JDBC Driver Connector/J from http://dev.mysql.com/downloads/connector/j.

2. Copy the driver .jar to /path/to/jetty/lib/jndi/ so that it is on Jetty's class path.

3. Add a JNDI data source for your MySQL server and database in /path/to/jetty/etc/jetty.xml.

<New id="jdbc/forgerock" class="org.eclipse.jetty.plus.jndi.Resource">
 <Arg></Arg>
 <Arg>jdbc/forgerock</Arg>
 <Arg>
 <New class="com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource">
 <Set name="Url">jdbc:mysql://localhost:3306/databasename</Set>
 <Set name="User">mysqladmin</Set>
 <Set name="Password">password</Set>
 </New>
 </Arg>
</New>

4. Add a resource reference to the data source in /path/to/jetty/etc/webdefault.xml.

<resource-ref>
 <description>MySQL Connection</description>
 <res-ref-name>jdbc/forgerock</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

5. Restart Jetty to read the configuration changes.

3.2. Preparing the Network
In order for OpenIG to function as a reverse proxy, browsers attempting to access the protected
application must go through OpenIG instead.

Modify DNS or host file settings so that the host name of the protected application resolves to the IP
address of OpenIG on the system where the browser runs.

Restart the browser after making this change.

3.3. Installing OpenIG
Follow these steps to install OpenIG.

http://dev.mysql.com/downloads/connector/j

Installation in Detail
Installing OpenIG

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 26

1. Download the OpenIG .war file.

Browse to https://backstage.forgerock.com/downloads to download the software.

2. Deploy the OpenIG war file to the root context of the web application container.

OpenIG must be deployed to the root context, not below.

3. Prepare your OpenIG configuration files.

By default, OpenIG files are located under $HOME/.openig on Linux, Mac OS X, and UNIX systems,
and %appdata%\OpenIG on Windows systems. OpenIG uses the following file system directories.

$HOME/.openig/config
%appdata%\OpenIG\config

OpenIG configuration files, where the main configuration file is config.json.

$HOME/.openig/config/routes
%appdata%\OpenIG\config\routes

OpenIG route configuration files.

See the chapter, Configuring Routes, for more information.

$HOME/.openig/SAML
%appdata%\OpenIG\SAML

OpenIG SAML 2.0 configuration files.

See the chapter, Using OpenIG Federation, for more information.

$HOME/.openig/scripts/groovy
%appdata%\OpenIG\scripts\groovy

OpenIG script files, for Groovy scripted filters and handlers.

See the chapter, Extending OpenIG, for more information.

$HOME/.openig/tmp
%appdata%\OpenIG\tmp

OpenIG temporary files.

This location can be used for temporary storage.

You can change $HOME/.openig (or %appdata%\OpenIG) from the default location in the following ways.

• Unpack the OpenIG war file, and edit the WEB-INF/web.xml application descriptor to set the openig
-base initialization parameter to the full path to the base location for OpenIG files, as in the
following example.

https://backstage.forgerock.com/downloads

Installation in Detail
Installing OpenIG

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 27

 <servlet>
 <servlet-name>GatewayServlet</servlet-name>
 <servlet-class>org.forgerock.openig.servlet.GatewayServlet</servlet-class>
 <init-param>
 <param-name>openig-base</param-name>
 <param-value>/path/to/openig</param-value>
 </init-param>
 </servlet>

• Set the OPENIG_BASE environment variable to the full path to the base location for OpenIG files.

On Linux, Mac OS X, and UNIX using Bash
$ export OPENIG_BASE=/path/to/openig

On Windows
C:>set OPENIG_BASE=c:\path\to\openig

• Set the openig.base Java system property to the full path to the base location for OpenIG files
when starting the web application container where OpenIG runs, as in the following example
that starts Jetty server in the foreground.

$ java -Dopenig.base=/path/to/openig -jar start.jar

If you have not yet prepared configuration files, then start with the configuration from the
chapter on Getting Started.

Copy the template to $HOME/.openig/config/config.json. Replace the "baseURI" of the
"DispatchHandler" with that of the protected application.

On Windows, copy the template to %appdata%\OpenIG\config\config.json. To locate the %appdata% folder
for your version of Windows, open Windows Explorer, type %appdata% as the file path, and press
Enter. You must create the %appdata%\OpenIG\config folder, and then add the configuration file.

4. Start the web container where OpenIG is deployed.

5. Browse to the protected application.

OpenIG should now proxy all traffic to the application.

6. Make sure the browser is going through OpenIG.

Verify this in one of the following ways.

• a. Stop the OpenIG web container.

Installation in Detail
Preparing For Load Balancing & Failover

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 28

b. Verify that you cannot browse to the protected application.

c. Start the OpenIG web container.

d. Verify that you can now browse to the protected application again.

• Check the LogSink to see that traffic is going through OpenIG.

The default ConsoleLogSink is the deployment container log.

3.4. Preparing For Load Balancing & Failover
For a high scale or highly available deployment, you can prepare a pool of OpenIG servers with nearly
identical configurations, and then load balance requests across the pool, routing around any servers
that become unavailable. Load balancing allows the service to handle more load.

Before you spread requests across multiple servers, however, you must determine what to do with
state information that OpenIG saves in the exchange, or retrieves locally from the OpenIG server
system. If information is retrieved locally, then also consider setting up failover so that if one server
becomes unavailable, another server in the pool can take its place. The benefit of failover is that a
server failure can be invisible to client applications.

OpenIG can save state information in the exchange in several ways.

• Handlers including a SamlFederationHandler in the Reference or a custom ScriptableHandler in
the Reference can store information in the exchange. Most handlers depend on information in the
exchange, some of which is first stored by OpenIG.

• Filters including those having types AssignmentFilter in the Reference, HeaderFilter in the
Reference, OAuth2ClientFilter in the Reference, OAuth2ResourceServerFilter in the Reference,
ScriptableFilter in the Reference, SqlAttributesFilter in the Reference, and StaticRequestFilter
in the Reference can store information in the exchange. Most filters depend on information in the
exchange, some of which is first stored by OpenIG.

OpenIG can also retrieve information locally in several ways.

• Filters and handlers including FileAttributesFilter in the Reference, ScriptableFilter in the
Reference, ScriptableHandler in the Reference, and SqlAttributesFilter in the Reference can
depend on local system files or container configuration.

By default the exchange data resides in memory in the container where OpenIG runs. This includes
the default session implementation, which is backed by the HttpSession that the container handles.
You can opt to store session data on the user-agent instead, however. For details and to consider
whether your data fits, see JwtSession in the Reference. When you use the JwtSession implementation,
be sure to share the encryption keys across all servers, so that any server can read session cookies
from any other.

Installation in Detail
Preparing For Load Balancing & Failover

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 29

If your data does not fit in an HTTP cookie, for example because when encrypted it is larger than
4 KB, consider storing a reference in the cookie, and then retrieve the data by using another filter.
OpenIG logs warning messages if the JwtSession cookie is too large. Using a reference can also work
when a server becomes unavailable, and the load balancer must fail requests over to another server
in the pool.

If some data attached to an exchange must be stored on the server side, then you have additional
configuration steps to perform for session stickiness and for session replication. Session stickiness
means that the load balancer sends all requests from the same client session to the same server.
Session stickiness helps to ensure that a client request goes to the server holding the original session
data. Session replication involves writing session data either to other servers or to a data store,
so that if one server goes down, other servers can read the session data and continue processing.
Session replication helps when one server fails, allowing another server to take its place without
having to start the session over again. If you set up session stickiness but not session replication,
when a server crashes the client session information for that server is lost, and the client must start
again with a new session.

How you configure session stickiness and session replication depends on your load balancer and on
your container.

Apache Tomcat can help with session stickiness, and a Tomcat cluster can handle session replication.

• If you choose to use the Apache Tomcat connector (mod_jk) on your web server to perform load
balancing, then see the LoadBalancer HowTo for details.

Notice in that HowTo that you configure the jvmRoute attribute in the Tomcat server configuration, /
path/to/tomcat/conf/server.xml, to identify the server. The connector can use this identifier to achieve
session stickiness.

• A Tomcat cluster configuration can handle session replication. When setting up a cluster
configuration, the ClusterManager defines the session replication implementation.

Jetty has provisions for session stickiness, and also for session replication through clustering.

• Jetty's persistent session mechanism appends a node ID to the session ID, in the same way Tomcat
appends the jvmRoute value to the session cookie. This can be useful for session stickiness if your
load balancer examines the session ID.

• Session Clustering with a Database describes how to configure Jetty to persist sessions over JDBC,
allowing session replication.

Unless it is set up to be highly available, the database can be a single point of failure in this case.

• Session Clustering with MongoDB describes how to configure Jetty to persist sessions in MongoDB,
allowing session replication.

The Jetty documentation recommends this implementation when session data is seldom written but
often read.

http://tomcat.apache.org/connectors-doc/
http://tomcat.apache.org/connectors-doc/generic_howto/loadbalancers.html
http://tomcat.apache.org/tomcat-7.0-doc/config/cluster.html
http://tomcat.apache.org/tomcat-7.0-doc/config/cluster-manager.html
http://www.eclipse.org/jetty/documentation/current/session-clustering-jdbc.html
http://www.eclipse.org/jetty/documentation/current/session-clustering-mongodb.html

Installation in Detail
Configuring OpenIG For HTTPS (Client-Side)

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 30

3.5. Configuring OpenIG For HTTPS (Client-Side)
For OpenIG to connect to a server securely over HTTPS, OpenIG must be able to trust the server.
The default settings rely on the Java environment trust store to trust server certificates. The Java
environment default trust store includes public key signing certificates from many well-known
Certificate Authorities (CAs). If all servers present certificates signed by these CAs, then you have
nothing to configure.

If however the server certificates are self-signed or signed by a CA whose certificate is not trusted
out of the box, then you can configure a KeyStore in the Reference, TrustManager in the Reference,
and optionally a KeyManager in the Reference to reference when configuring an HttpClient in the
Reference to enable OpenIG to trust servers when acting as a client.

The KeyStore holds the servers' certificates or the CA signing certificate. The TrustManager allows
OpenIG to handle the certificates in the KeyStore when deciding whether to trust a server certificate.
The optional KeyManager allows OpenIG to present its certificate from the key store when the
server must authenticate OpenIG as client. The HttpClient references whatever TrustManager and
KeyManager you configure.

You can configure each of these either globally for the OpenIG server, of locally for a particular
ClientHandler configuration.

The Java KeyStore holds the peer servers' public key certificates (and optionally the OpenIG
certificate and private key). For example, suppose you have a certificate file, ca.crt, that holds
the trusted signer's certificate of the CA who signed the server certificates of the servers in your
deployment. In that case, you could import the certificate into a Java Key Store file, /path/to/
keystore.jks.

$ keytool \
 -import \
 -trustcacerts \
 -keystore /path/to/keystore \
 -file ca.crt \
 -alias ca-cert \
 -storepass changeit

You could then configure the following "KeyStore" for OpenIG that holds the trusted certificate.
Notice that the "url" field takes an expression that evaluates to a URL, starting with a scheme such as
file://.

{
 "name": "MyKeyStore",
 "type": "KeyStore",
 "config": {
 "url": "file:///path/to/keystore",
 "password": "changeit"
 }
}

Installation in Detail
Configuring OpenIG For HTTPS (Client-Side)

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 31

The TrustManager handles the certificates in the KeyStore when deciding whether to trust the server
certificate. The TrustManager references your KeyStore.

{
 "name": "MyTrustManager",
 "type": "TrustManager",
 "config": {
 "keystore": "MyKeyStore"
 }
}

The HttpClient configuration has the following security settings.

"trustManager"

This references your TrustManager.

Recall that you must configure this when your server certificates are not trusted out of the box.

"hostnameVerifier"

This defines how the HttpClient verifies host names in server certificates.

By default, host name verification is turned off.

"keyManager"

This references your optional KeyManager.

Configure this if servers request that OpenIG present its certificate as part of mutual
authentication.

In that case, generate a key pair for OpenIG, and have the certificate signed by a well-known
CA. See the keytool documentation for instructions. You can use a different key store for the
KeyManager than you use for the TrustManager.

The following HttpClient configuration references "MyTrustManager" and sets browser-compatible
host name verification.

{
 "name": "HttpClient",
 "type": "HttpClient",
 "config": {
 "hostnameVerifier": "BROWSER_COMPATIBLE",
 "trustManager": "MyTrustManager"
 }
}

Installation in Detail
Setting Up Keys For JWT Encryption

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 32

3.6. Setting Up Keys For JWT Encryption
You can use JwtSession in the Reference to configure OpenIG to store session information in JWT
cookies on the user-agent, rather than storing the information in the container where OpenIG runs.

In order to encrypt the JWTs, OpenIG needs cryptographic keys. OpenIG can generate its own key
pair in memory, but that key pair disappears on restart and cannot be shared across OpenIG servers.

Alternatively, OpenIG can use keys from a key store. The following steps describe how to prepare the
key store for JWT encryption.

1. Generate the key pair in a new key store file by using the Java keytool command.

The following command generates a Java Key Store format file, /path/to/keystore.jks, holding
a key pair with alias jwe-key. Notice that both the key store and the private key have the same
password.

$ keytool \
 -genkey \
 -alias jwe-key \
 -keyalg rsa \
 -keystore /path/to/keystore.jks \
 -storepass changeit \
 -keypass changeit \
 -dname "CN=www.example.com,O=Example Corp"

2. Add a KeyStore in the Reference to your configuration that references the key store file.

{
 "name": "MyKeyStore",
 "type": "KeyStore",
 "config": {
 "url": "file:///path/to/keystore.jks",
 "password": "changeit"
 }
}

3. Add a JwtSession to your configuration that references your KeyStore.

{
 "name": "MyJwtSession",
 "type": "JwtSession",
 "config": {
 "keystore": "MyKeyStore",
 "alias": "jwe-key",
 "password": "changeit",
 "cookieName": "OpenIG"
 }
}

Installation in Detail
Setting Up Keys For JWT Encryption

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 33

4. Specify your JwtSession object in the top-level configuration, or in the route configuration.

"session": "MyJwtSession"

Getting Login Credentials From Data Sources
Before You Start

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 34

Chapter 4

Getting Login Credentials From Data Sources

In the chapter on Getting Started, you learned how to configure OpenIG to proxy traffic and capture
request and response data. You also learned how to configure OpenIG to use a static request to log in
with hard-coded credentials.

This chapter shows you how OpenIG can look up credentials in external sources. For example,
OpenIG can look up credentials in a file or in a relational database.

4.1. Before You Start
Before you start this tutorial, prepare OpenIG and the minimal HTTP server as you did for the
chapter on Getting Started.

OpenIG should be running in Jetty, configured to access the minimal HTTP server as described in that
chapter.

4.2. Login With Credentials From a File
This sample shows you how to configure OpenIG to get credentials from a file.

The sample uses a comma-separated value file, userfile.

username,password,fullname,email
george,costanza,George Costanza,george@example.com
kramer,newman,Kramer,kramer@example.com
bjensen,hifalutin,Babs Jensen,bjensen@example.com
demo,changeit,Demo User,demo@example.com
kvaughan,bribery,Kirsten Vaughan,kvaughan@example.com
scarter,sprain,Sam Carter,scarter@example.com

OpenIG looks up the user credentials based on the user's email address. OpenIG relies for this on a
FileAttributesFilter configuration object.

Follow these steps to set up login with credentials from a file.

1. Add the user file on your system.

Getting Login Credentials From Data Sources
Login With Credentials From a File

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 35

$ vi /tmp/userfile
$ cat /tmp/userfile
username,password,fullname,email
george,costanza,George Costanza,george@example.com
kramer,newman,Kramer,kramer@example.com
bjensen,hifalutin,Babs Jensen,bjensen@example.com
demo,changeit,Demo User,demo@example.com
kvaughan,bribery,Kirsten Vaughan,kvaughan@example.com
scarter,sprain,Sam Carter,scarter@example.com

On Windows systems, use an appropriate path such as C:\Temp\userfile.

2. Add a new route to the OpenIG configuration to use the FileAttributesFilter configuration object.

To add the route, add the following route configuration file as $HOME/.openig/config/routes/02-
file.json.

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "FileAttributesFilter",
 "config": {
 "target": "${exchange.credentials}",
 "file": "/tmp/userfile",
 "key": "email",
 "value": "george@example.com"
 }
 },
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://www.example.com:8081",
 "form": {
 "username": [
 "${exchange.credentials.username}"
],
 "password": [
 "${exchange.credentials.password}"
]
 }
 }
 }
],
 "handler": "ClientHandler"
 }
 },
 "condition": "${matches(exchange.request.uri.path, '^/file')}"
}

Getting Login Credentials From Data Sources
Login With Credentials From a File

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 36

On Windows, the file name should be %appdata%\OpenIG\config\routes\02-file.json.

Notice the following features of the new route.

• The "FileAttributesFilter" specifies the file to access, the key and value to look up to retrieve the
user's record, and where the exchange stores the search results.

• The "StaticRequestFilter" filter retrieves the username and password from the exchange and
replaces your browser's original HTTP GET request with an HTTP POST login request that
contains the credentials to authenticate.

• The route matches requests to /file.

3. On Windows systems, edit the path name to the user file.

Now browse to http://www.example.com:8080/file.

If everything is configured correctly, OpenIG logs you in as George.

What's happening behind the scenes?

Figure 4.1.

OpenIG intercepts your browser's HTTP GET request. The request matches the new route
configuration. The OpenIG "FileAttributesFilter" looks up credentials in a file, and stores
the credentials it finds in the exchange. OpenIG then calls the next filter in the chain,
"StaticRequestFilter", passing the exchange object that now holds the credentials. The
"StaticRequestFilter" filter pulls the credentials out of the exchange, builds the login form, and
performs the HTTP POST request to the HTTP server. The HTTP server validates the credentials,
and responds with a profile page. OpenIG then passes the response from the HTTP server to your
browser.

http://www.example.com:8080/file

Getting Login Credentials From Data Sources
Login With Credentials From a Database

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 37

4.3. Login With Credentials From a Database
This sample shows you how to configure OpenIG to get credentials from H2. This sample was
developed with Jetty and with H2 1.4.178.

Although this sample uses H2, OpenIG also works with other database software. OpenIG relies on the
application server where it runs to connect to the database. Configuring OpenIG to retrieve data from
a database is therefore a question of configuring the application server to connect to the database,
and configuring OpenIG to choose the appropriate data source, and to send the appropriate SQL
request to the database. As a result, the OpenIG configuration depends more on the data structure
than on any particular database drivers or connection configuration.

Procedure 4.1. Preparing the Database

Follow these steps to prepare the database.

1. On the system where OpenIG runs, download and unpack H2 database.

2. Start H2.

$ sh /path/to/h2/bin/h2.sh

H2 starts, listening on port 8082, and opens a browser console page.

3. In the browser console page, select Generic H2 (Server) under Saved Settings. This sets the
Driver Class, org.h2.Driver, the JDBC URL, jdbc:h2:tcp://localhost/~/test, the User Name, sa.

In the Password field, type password.

Then click Connect to access the console.

4. Run a statement to create a users table based on the user file from Section 4.2, "Login With
Credentials From a File".

If you have not created the user file on your system, put the following content in /tmp/userfile.

username,password,fullname,email
george,costanza,George Costanza,george@example.com
kramer,newman,Kramer,kramer@example.com
bjensen,hifalutin,Babs Jensen,bjensen@example.com
demo,changeit,Demo User,demo@example.com
kvaughan,bribery,Kirsten Vaughan,kvaughan@example.com
scarter,sprain,Sam Carter,scarter@example.com

Then create the users table through the H2 console:

http://h2database.com

Getting Login Credentials From Data Sources
Login With Credentials From a Database

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 38

DROP TABLE IF EXISTS USERS;
CREATE TABLE USERS AS SELECT * FROM CSVREAD('/tmp/userfile');

On success, the table should contain the same users as the file. You can check this by running
SELECT * FROM users; in the H2 console.

Procedure 4.2. Preparing Jetty's Connection to the Database

Follow these steps to enable Jetty to connect to the database.

1. Configure Jetty for JNDI as described in the Jetty documentation on Configuring JNDI.

For the version of Jetty used in this sample, stop Jetty and add the following lines to /path/to/
jetty/start.ini.

===
Enable JNDI

OPTIONS=jndi

===
Enable additional webapp environment configurators

OPTIONS=plus
etc/jetty-plus.xml

2. Copy the H2 library to the classpath for Jetty.

$ cp /path/to/h2/bin/h2-*.jar /path/to/jetty/lib/ext/

3. Define a JNDI resource for H2 in /path/to/jetty/etc/jetty.xml.

<New id="jdbc/forgerock" class="org.eclipse.jetty.plus.jndi.Resource">
 <Arg></Arg>
 <Arg>jdbc/forgerock</Arg>
 <Arg>
 <New class="org.h2.jdbcx.JdbcDataSource">
 <Set name="Url">jdbc:h2:tcp://localhost/~/test</Set>
 <Set name="User">sa</Set>
 <Set name="Password">password</Set>
 </New>
 </Arg>
</New>

4. Add a resource reference to the data source in /path/to/jetty/etc/webdefault.xml.

http://www.eclipse.org/jetty/documentation/current/jndi.html

Getting Login Credentials From Data Sources
Login With Credentials From a Database

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 39

<resource-ref>
 <res-ref-name>jdbc/forgerock</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

5. Restart Jetty to take the configuration changes into account.

Procedure 4.3. Preparing the OpenIG Configuration

Add a new route to the OpenIG configuration to look up credentials in the database.

• To add the route, add the following route configuration file as $HOME/.openig/config/routes/03-
sql.json.

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "SqlAttributesFilter",
 "config": {
 "dataSource": "java:comp/env/jdbc/forgerock",
 "preparedStatement":
 "SELECT username, password FROM users WHERE email = ?;",
 "parameters": [
 "george@example.com"
],
 "target": "${exchange.credentials}"
 }
 },
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://www.example.com:8081",
 "form": {
 "username": [
 "${exchange.credentials.USERNAME}"
],
 "password": [
 "${exchange.credentials.PASSWORD}"
]
 }
 }
 }
],
 "handler": "ClientHandler"
 }
 },

Getting Login Credentials From Data Sources
Login With Credentials From a Database

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 40

 "condition": "${matches(exchange.request.uri.path, '^/sql')}"
}

On Windows, the file name should be %appdata%\OpenIG\config\routes\03-sql.json.

Notice the following features of the new route.

• The "SqlAttributesFilter" specifies the data source to access, a prepared statement to look up
the user's record, a parameter to pass into the statement, and where the exchange stores the
search results.

• The "StaticRequestFilter" retrieves the username and password from the exchange and
replaces your browser's original HTTP GET request with an HTTP POST login request that
contains the credentials to authenticate.

Notice that the request is for username, password, and that H2 returns the fields as USERNAME and
PASSWORD. The configuration reflects this difference.

• The route matches requests to /sql.

Procedure 4.4. To Try Logging In With Credentials From a Database

With H2, Jetty, and OpenIG correctly configured, you can try it out.

• Access the new route, http://www.example.com:8080/sql.

OpenIG logs you in automatically as George.

What's happening behind the scenes?

Figure 4.2.

http://www.example.com:8080/sql

Getting Login Credentials From Data Sources
Login With Credentials From a Database

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 41

OpenIG intercepts your browser's HTTP GET request. The request matches the new route
configuration. The OpenIG "SqlAttributesFilter" looks up credentials in H2, and stores the credentials
it finds in the exchange. OpenIG then calls the next filter in the chain, "StaticRequestFilter", passing
the exchange object that now holds the credentials. The "StaticRequestFilter" filter pulls the
credentials out of the exchange, builds the login form, and performs the HTTP POST request to the
HTTP server. The HTTP server validates the credentials, and responds with a profile page. OpenIG
then passes the response from the HTTP server to your browser.

Getting Login Credentials From OpenAM
Detailed Flow

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 42

Chapter 5

Getting Login Credentials From OpenAM

This chapter walks you through an OpenAM integration with OpenAM's password capture and replay
feature. This feature of OpenAM is typically used to integrate with Microsoft Outlook Web Access
(OWA) or SharePoint by capturing the password during OpenAM authentication, encrypting it,
and adding to the session, which is later decrypted and used for Basic Authentication to OWA or
SharePoint. This tutorial shows how you can configure OpenIG to use the user name and password
from the OpenAM Authentication to log the user an application. This is also how you would achieve
OWA or SharePoint integration.

5.1. Detailed Flow
The figure below illustrates the flow of requests for a user who is not yet logged in to OpenAM
accessing a protected application. After successful authentication, the user is logged into the
application with the username and password from the OpenAM login session.

1. The user sends a browser request to access a protected application.

2. The OpenAM policy agent protecting OpenIG intercepts the request.

3. The policy agent redirects the browser to OpenAM.

Getting Login Credentials From OpenAM
Setup Summary

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 43

4. OpenAM authenticates the user, capturing the login credentials, storing the password in
encrypted form in the user's session.

5. After authentication, OpenAM redirects the browser...

6. ...back to the protected application.

7. The OpenAM policy agent protecting OpenIG intercepts the request, validates the user session
with OpenAM (not shown here), adds the username and encrypted password to headers in the
request, and passes the request to OpenIG.

8. OpenIG retrieves the credentials from the headers, and uses the username and decrypted
password to replace the request with an HTTP POST of the login form.

9. The application validates the login credentials, and sends a response back to OpenIG.

10. OpenIG passes the response from the application back to the user's browser.

5.2. Setup Summary
This tutorial calls for you to set up several different software components.

• OpenAM is installed on http://openam.example.com:8088/openam.

• Download and run the minimal HTTP server .jar to use as the application to protect.

The openig-doc-samples-3.1.0-jar-with-dependencies.jar application listens at http://www.example
.com:8081. The minimal HTTP server is run with the java -jar openig-doc-samples-3.1.0-jar-with-
dependencies.jar command, as described in the chapter on Getting Started.

• OpenIG is deployed in Jetty as described in the chapter on Getting Started. OpenIG listens at http:/
/www.example.com:8080.

• OpenIG is protected by an OpenAM Java EE policy agent also deployed in Jetty. The policy agent is
configured to add username and encrypted password headers to the HTTP requests.

5.3. Setup Details
In this section, it is assumed that you are familiar with the components involved. For OpenAM
documentation, see https://backstage.forgerock.com/docs/am.

5.3.1. Setting Up OpenAM Server

Install and configure OpenAM on http://openam.example.com:8088/openam with the default configuration. If
you use a different configuration, make sure you substitute in the tutorial accordingly.

http://maven.forgerock.org/repo/releases/org/forgerock/openig/openig-doc-samples/3.1.0/openig-doc-samples-3.1.0-jar-with-dependencies.jar
https://backstage.forgerock.com/docs/am

Getting Login Credentials From OpenAM
Preparing the Policy Agent Profile

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 44

Create a sample user Subject in the top level realm with username george and password costanza. Test
that you can login to OpenAM with this username and password.

5.3.2. Preparing the Policy Agent Profile

Create the Java EE agent profile in the top level realm with the following settings:

• Server URL: http://openam.example.com:8088/openam

• Agent URL: http://www.example.com:8080/agentapp

Edit the policy agent profile to add these settings, making sure to save your work when you finish.

• On the Global settings tab page under General, change the Agent Filter Mode from ALL to SSO_ONLY.

• On the Application tab page under Session Attributes Processing, change the Session Attribute
Fetch Mode from NONE to HTTP_HEADER.

• Also on the Application tab page under Session Attributes Processing, add UserToken=username and
sunIdentityUserPassword=password to the Session Attribute Mapping list.

5.3.3. Configuring Password Capture

Configure password capture in OpenAM as follows.

• In the OpenAM console under Access Control > / (Top Level Realm) > Authentication, click All Core
Settings, and then add com.sun.identity.authentication.spi.ReplayPasswd to the Authentication Post
Processing Classes.

• Run OpenAM's com.sun.identity.common.DESGenKey command to generate a shared key for the
OpenAM Authentication plugin and for OpenIG.

To run this command using the java command, you must add OpenAM .jar file libraries to the Java
class path. The library names depend on the version of OpenAM that you use.

• When using OpenAM 12.0.0, the libraries are forgerock-util-1.3.5.jar openam-core-12.0.0.jar, and
openam-shared-12.0.0.jar.

As an example, if OpenAM 12.0.0 is installed in Apache Tomcat under /openam you would run the
command java -classpath /path/to/tomcat/webapps/openam/WEB-INF/lib/forgerock-util-1.3.5.jar:/
path/to/tomcat/webapps/openam/WEB-INF/lib/openam-core-12.0.0.jar:/path/to/tomcat/webapps/
openam/WEB-INF/lib/openam-shared-12.0.0.jar com.sun.identity.common.DESGenKey.

• When using OpenAM 11.0.0 for example, the libraries are forgerock-util-1.1.0.jar openam-
core-11.0.0.jar, and openam-shared-11.0.0.jar.

As an example, if OpenAM 11.0.0 is installed in Apache Tomcat under /openam you would run the
command java -classpath /path/to/tomcat/webapps/openam/WEB-INF/lib/forgerock-util-1.1.0.jar:/

Getting Login Credentials From OpenAM
Installing OpenIG

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 45

path/to/tomcat/webapps/openam/WEB-INF/lib/openam-core-11.0.0.jar:/path/to/tomcat/webapps/
openam/WEB-INF/lib/openam-shared-11.0.0.jar com.sun.identity.common.DESGenKey.

• When using OpenAM 10 and earlier, the libraries are amserver.jar and opensso-sharedlib.jar.

As an example, if OpenAM 10 is installed in Apache Tomcat under /openam you would
run the command java -classpath /path/to/tomcat/webapps/openam/WEB-INF/lib/
amserver.jar:/path/to/tomcat/webapps/openam/WEB-INF/lib/opensso-sharedlib.jar
com.sun.identity.common.DESGenKey.

The output of the command shows the generated key, as in the following example for OpenAM
11.0.0.

$ cd /path/to/tomcat/webapps/openam/WEB-INF/lib
$ java -classpath \
 forgerock-util-1.1.0.jar:openam-core-11.0.0.jar:openam-shared-11.0.0.jar \
 com.sun.identity.common.DESGenKey
Key ==> ipvvZF2Mj0k

• In the OpenAM console under Configuration > Servers and Sites, click on the server name link, go
to the Advanced tab and add com.sun.am.replaypasswd.key with the value of the key generated in the
previous step.

Restart the OpenAM server after adding the Advanced property for the change to take effect.

5.3.4. Installing OpenIG

Install OpenIG in Jetty and run the minimal HTTP server as described in the chapter on Getting
Started.

When you finish, OpenIG should be running in Jetty, configured to access the minimal HTTP server as
described in that chapter.

The initial OpenIG configuration file should look like the one used to proxy requests through to
the HTTP server and to capture request and response data, as you used in the chapter on Getting
Started.

To test your setup, access the HTTP server home page through OpenIG at http://
www.example.com:8080. Login as username george, password costanza. You should see a page showing
the username and some information about the request.

5.3.5. Installing the Policy Agent

Install the OpenAM Java EE policy agent alongside OpenIG in Jetty, listening at http://www.example
.com:8080, using the following hints.

• Jetty Server Config Directory : /path/to/jetty/etc

http://www.example.com:8080
http://www.example.com:8080

Getting Login Credentials From OpenAM
Configuring OpenIG

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 46

• Jetty installation directory. : /path/to/jetty

• OpenAM server URL : http://openam.example.com:8088/openam

• Agent URL : http://www.example.com:8080/agentapp

• After copying agentapp.war into /path/to/jetty/webapps/, also add the following filter configuration to /
path/to/jetty/etc/webdefault.xml.

<filter>
 <filter-name>Agent</filter-name>
 <display-name>Agent</display-name>
 <description>OpenAM Policy Agent Filter</description>
 <filter-class>com.sun.identity.agents.filter.AmAgentFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>Agent</filter-name>
 <url-pattern>/replay</url-pattern>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>ERROR</dispatcher>
</filter-mapping>

To test the configuration, start Jetty, and then browse to http://www.example.com:8080/replay. You
should be redirected to OpenAM for authentication.

Do not log in, however. You have not yet configured a route to handle requests to /replay.

5.3.6. Configuring OpenIG

Add a new route to the OpenIG configuration to handle OpenAM password capture & replay.

To add the route, add the following route configuration file as $HOME/.openig/config/routes/04-
replay.json.

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "CryptoHeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "operation": "DECRYPT",
 "algorithm": "DES/ECB/NoPadding",
 "key": "DESKEY",
 "keyType": "DES",

http://www.example.com:8080/replay

Getting Login Credentials From OpenAM
Configuring OpenIG

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 47

 "charSet": "utf-8",
 "headers": [
 "password"
]
 }
 },
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://www.example.com:8081",
 "form": {
 "username": [
 "${exchange.request.headers['username'][0]}"
],
 "password": [
 "${exchange.request.headers['password'][0]}"
]
 }
 }
 },
 {
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "remove": [
 "password",
 "username"
]
 }
 }
],
 "handler": "ClientHandler"
 }
 },
 "condition": "${matches(exchange.request.uri.path, '^/replay')}"
}

On Windows, the file name should be %appdata%\OpenIG\config\routes\04-replay.json.

Change DESKEY to the actual key value that you generated in Section 5.3.3, "Configuring Password
Capture".

Notice the following features of the new route.

• The "CryptoHeaderFilter" decrypts the password that OpenAM captured and encrypted, and that
the OpenAM policy agent included in the headers for the request.

The resulting "CryptoHeaderFilter" should look something like this, but using the "key" value that
you generated:

Getting Login Credentials From OpenAM
Trying It Out

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 48

{
 "type": "CryptoHeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "operation": "DECRYPT",
 "algorithm": "DES/ECB/NoPadding",
 "key": "ipvvZF2Mj0k",
 "keyType": "DES",
 "charSet": "utf-8",
 "headers": [
 "password"
]
 }
}

• The "StaticRequestFilter" retrieves the username and password from the exchange and replaces
your browser's original HTTP GET request with an HTTP POST login request that contains the
credentials to authenticate.

• The "HeaderFilter" removes the username and password headers before continuing to process the
exchange.

• The route matches requests to /replay.

5.4. Trying It Out
Log out of OpenAM if you are logged in already.

Access the new route, http://www.example.com:8080/replay.

If you are not already logged into OpenAM you should be redirected to the OpenAM login page. Login
with username george, password costanza. After login you should be redirected back to the application.

http://www.example.com:8080/replay

OpenIG as a SAML 2.0 Service Provider
About SAML 2.0 Federation

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 49

Chapter 6

OpenIG as a SAML 2.0 Service Provider
This chapter has two aims. First, it aims to help you understand how OpenIG works as a SAML
2.0 service provider, and what that entails in terms of setup and configuration. Second, it aims to
show you how to configure OpenIG as a SAML 2.0 federation service provider, logging users in to a
protected application with information from a SAML assertion.

6.1. About SAML 2.0 Federation
The Federation component of OpenIG is a standards based authentication service used by OpenIG
to validate a user and retrieve key attributes of the user in order to log them in to applications that
OpenIG protects. The Federation component implements Security Assertion Markup Language 2.0.

Security Assertion Markup Language (SAML) 2.0 is a standard for exchanging security information
across organizational boundaries. SAML 2.0 enables web single sign-on (SSO), for example, where
the service managing the user's identity does not necessarily belong to the same organization and
does not necessarily use the same software as the service that the user wants to access.

In SAML 2.0, the service managing the user's identity is called the Identity Provider (IDP). The
service that the user wants to access is called the Service Provider (SP). Provider organizations
agree on the security information they want to exchange, and then they mutually configure access
to each others' services, so that the SAML 2.0 federation capability is ready for use. The group of
providers sets up a circle of trust, which is a list of services participating in the federation. In order to
be able to configure access to services in the circle of trust, the providers share SAML 2.0 metadata
describing their services in an XML format defined by the SAML 2.0 standard.

OpenIG plays the role of SAML 2.0 SP. You must therefore configure OpenIG as SP to access IDP
services in order for the Federation component to be operational.

For SAML 2.0 web SSO, the user authenticates with the IDP. This can start either with the user
visiting the IDP site and logging in, or with the user visiting the SP site and being directed to the IDP
to log in. On successful authentication, the IDP sends an assertion statement about the authentication
to the SP. This assertion statement attests which user the IDP authenticated, when the authentication
succeeded, how long the assertion is valid, and so forth. It can optionally contain attribute values for
the user who authenticated. (OpenIG can then, for example, use the attribute values to log a user into
a protected application.) The assertion can optionally be signed and encrypted.

There are two ways that the OpenIG federation component can be invoked:

1. IDP initiated SSO, where the remote Identity Provider sends an unsolicited authentication
statement to OpenIG

OpenIG as a SAML 2.0 Service Provider
Installation Overview

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 50

2. SP initiated SSO, where OpenIG calls the Federation component to initiate federated SSO with
the Identity Provider

In both cases, the job of the Federation component is to validate the user and to pass the required
attributes to OpenIG so that it can log the user into protected applications.

6.2. Installation Overview
This section summarizes the steps needed to prepare OpenIG to act as a SAML 2.0 SP for your target
application.

• Install the OpenIG war file.

• Configure OpenIG to proxy successfully, and even log a user in, to the target application. Getting
this to work before configuring Federation makes the process much simpler to troubleshoot if
anything goes wrong.

• Add Federation configuration to the OpenIG configuration.

• Include the assertion mapping, redirect URI, and any optional configuration settings you choose in
the Federation configuration.

• Export the Identity Provider metadata from the remote IDP, or use the metadata from an OpenAM-
generated Fedlet. (An OpenAM Fedlet is a small web application that can act as SP.)

• Import OpenIG metadata to your Identity Provider.

If you intend to protect multiple service provider applications first read this chapter and work
through the samples. Then consider the explanation in the appendix, SAML 2.0 & Multiple
Applications.

6.3. Configuration File Overview
You configure the Federation component by modifying both the OpenIG config.json file and also by
including Federation-specific XML files with the configuration.

The location of configuration information depends on the operating system where OpenIG runs, and
on the user who runs the application server where OpenIG runs.

• On UNIX, Linux, and similar systems, where this user's home directory is referred to as $HOME, by
default the Federation component looks in $HOME/.openig/config for config.json and in $HOME/.openig/
SAML for the Federation XML configuration.

• On Windows, by default the Federation component looks in %appdata%\OpenIG\config, and in %appdata
%\OpenIG\SAML. To locate the %appdata% folder for your version of Windows, open Windows Explorer,
type %appdata% as the file path, and press Enter. You must create the %appdata%\OpenIG\config and
%appdata%\OpenIG\SAML folders, and then copy the configuration files into the folders.

OpenIG as a SAML 2.0 Service Provider
Configuring the Federation Handler

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 51

The following is a description of the files:

$HOME/.openig/config/config.json

This is the core configuration file for OpenIG, where you configure a SamlFederationHandler in
the Reference. If this file uses a Router in the Reference, you can configure the handler in a route
file.

You must configure both the OpenIG core configuration, and also the XML files specific to the
Federation component. The reason there are two sets of configuration files is that the Federation
component includes a federation library from OpenAM.

In order to configure the Federation component you must tag swap the XML files. If you are
familiar with the workflow in the OpenAM console you can instead generate a Fedlet and directly
copy the configuration files into $HOME/.openig/SAML.

$HOME/.openig/SAML/FederationConfig.properties

Advanced features of the federation library from OpenAM. The defaults suffice in most
deployments.

$HOME/.openig/SAML/fedlet.cot

Circle of trust for OpenIG and the Identity Provider.

$HOME/.openig/SAML/idp.xml

This metadata file is generated by the Identity Provider. You must copy the generated metadata
file into the configuration directory.

$HOME/.openig/SAML/idp-extended.xml

Standard metadata extensions generated by the Identity Provider.

$HOME/.openig/SAML/sp.xml
$HOME/.openig/SAML/sp-extended.xml

These are the standard metadata and metadata extensions for the OpenIG Federation component.

6.4. Configuring the Federation Handler
The simplest way to configure the Federation component is to use the OpenAM task wizard to
generate a Fedlet, and then copy the Fedlet configuration files to the correct locations. If you
use the Fedlet configuration files, simply unpack Fedlet.war and copy all the files listed above into
$HOME/.openig/SAML. You do not have to modify the files to do basic IDP and SP initiated SSO with
OpenIG. When generating a Fedlet, know that the sample config.json templates uses /saml as the URI
so your Fedlet end point should be specified as protocol://host.domain:port/saml.

OpenIG as a SAML 2.0 Service Provider
Example Settings

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 52

If you do not use the Fedlet wizard, edit the configuration files for the unconfigured Fedlet, and then
copy the Fedlet configuration files to the $HOME/.openig/SAML directory. You must still nevertheless get
the metadata from the IDP, and then copy it to idp.xml in the same directory.

Once you have the Fedlet configuration files set up, add the SamlFederationHandler in the Reference
object to the OpenIG configuration.

6.5. Example Settings
Application myportal requires a form with username and password for login. The username for myportal
is the mail attribute at the user's Identity Provider. The password for myportal is the mailPassword
attribute at the Identity Provider.

The incoming SAML2 assertion sent by the Identity Provider contains the mail and mailPassword
attributes. The Federation component validates the incoming assertion, sets the session attributes
username and password to the values of mail and mailPassword from the assertion attributes, and redirects
the user to /myportal/login. A "LoginRequest" filter then retrieves the credentials and creates the form
to log the user in to myportal.

The "SamlFederationHandler" configuration object looks like this:

{
 "name": "SamlFederationHandler",
 "type": "org.forgerock.openig.saml.SamlFederationHandler",
 "config": {
 "assertionMapping": {
 "username": "mail",
 "password": "mailPassword"
 },
 "redirectURI": "/myportal/login",
 "logoutURI": "/myportal/logout"
 }
}

The "LoginRequest" configuration object looks like this:

OpenIG as a SAML 2.0 Service Provider
Identity Provider Metadata

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 53

{
 "name": "LoginRequest",
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "https://www.myportal.com/myportal/login",
 "form": {
 "username": [
 "${exchange.session.username}"
],
 "password": [
 "${exchange.session.password}"
]
 }
 }
}

6.6. Identity Provider Metadata
The Identity Provider metadata must be copied to the $HOME/.openig/SAML/idp.xml directory. See the
documentation for your Identity Provider for instructions on how to get the metadata.

To export Identity Provider metadata from OpenAM, either save the response from the appropriate
end point, such as http://openam.example.com:8088/openam/saml2/jsp/exportmetadata.jsp, or run an ssoadm
command such as the following:

$ ssoadm \
 export-entity \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --entityid http://openam.example.com:8088/openam \
 --meta-data-file /tmp/idp.xml

6.7. Preparing to Try OpenIG as a SAML 2.0 Service Provider
The following sections in this chapter are a tutorial on setting up OpenAM to send a SAML 2.0
assertion to OpenIG containing user credentials, and OpenIG to validate the assertion and use the
credentials to log the user in to the protected application.

Before you start this tutorial, prepare OpenIG and the minimal HTTP server as you did for the
chapter on Getting Started.

OpenIG should be running in Jetty, configured to access the minimal HTTP server as described in that
chapter.

OpenIG as a SAML 2.0 Service Provider
Configuring OpenAM

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 54

The initial OpenIG configuration file should look like the one used to proxy requests through to
the HTTP server and to capture request and response data, as you used in the chapter on Getting
Started.

To test your setup, access the HTTP server home page through OpenIG at http://
www.example.com:8080. Login as username george, password costanza. You should see a page showing
the username and some information about the request.

In this tutorial, it is assumed that you are familiar with SAML 2.0 federation and with the components
involved, including OpenAM. For OpenAM documentation, see https://backstage.forgerock.com/docs/
am.

6.8. Configuring OpenAM
Install and configure OpenAM on http://openam.example.com:8088/openam with the default configuration. If
you use a different configuration, make sure you substitute in the tutorial accordingly.

Login to the OpenAM console as administrator, and use the common task wizard to create a hosted
Identity Provider. This tutorial does not address PKI configuration for validation and encryption,
though OpenIG is capable of handling both when properly configured, just as any OpenAM Fedlet
can handle both. Configure the Attribute Mapping to map the the mail attribute to mail and the
employeenumber attribute to employeenumber. You can use the test certificate in the Identity Provider
configuration for signing in this example.

Then use the common task wizard to create a Fedlet. Set the Name to OpenIG. Set the Destination URL
to http://www.example.com:8080/saml. Also configure the Attribute Mapping for the Fedlet to map the the
mail attribute to mail and the employeenumber attribute to employeenumber.

Why map these attributes? The SAML 2.0 attribute mapping indicates that the SP, OpenIG, wants
the IDP, OpenAM in this case, to get the values of these attributes from the user profile and then
send them to the SP, OpenIG. OpenIG can then use the values of the attributes, in this case mail and
employeenumber, to log the user in to the application it protects.

This tutorial uses mail and employeenumber for the sake of simplicity. Both of those attributes are part
of a user's profile out of the box with the default OpenAM configuration. Neither of the attributes
are needed for anything else in this tutorial. So this tutorial uses mail to hold the username, and
employeenumber to hold the password. In a real deployment, you would no doubt use other attributes
that depend on how the real user profiles are configured.

Use the OpenAM console to create a user subject in the top level realm with Email Address george and
Employee Number costanza.

6.9. Configuring OpenIG For Federation
Unpack the configuration files from the Fedlet you created in Section 6.8, "Configuring OpenAM".
The Fedlet is packaged as a .zip file that contains a war file that in turn contains the configuration

http://www.example.com:8080
http://www.example.com:8080
https://backstage.forgerock.com/docs/am
https://backstage.forgerock.com/docs/am

OpenIG as a SAML 2.0 Service Provider
Configuring OpenIG For Federation

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 55

files to unpack. OpenAM displays the location of the .zip file upon successful creation of the Fedlet.
If you followed the instructions above, the .zip is $HOME/openam/myfedlets/OpenIG/Fedlet.zip on the system
where OpenAM runs.

$ cd $HOME/openam/myfedlets/OpenIG
$ unzip Fedlet.zip fedlet.war
$ unzip fedlet.war conf/*
$ mkdir $HOME/.openig/SAML
$ cp conf/* $HOME/.openig/SAML
$ ls -1 $HOME/.openig/SAML
FederationConfig.properties
fedlet.cot
idp-extended.xml
idp.xml
sp-extended.xml
sp.xml

On Windows, the SAML configuration files belong in %appdata%\OpenIG\SAML. To locate the %appdata%
folder for your version of Windows, open Windows Explorer, type %appdata% as the file path, and press
Enter.

Restart Jetty after preparing the SAML configuration files.

Add two new routes to the OpenIG configuration.

• Add a route that injects credentials into the exchange based on attribute values from the SAML
assertion returned on successful authentication.

The configuration file to add in this case is $HOME/.openig/config/routes/05-saml.json

{
 "handler": {
 "type": "SamlFederationHandler",
 "config": {
 "assertionMapping": {
 "username": "mail",
 "password": "employeenumber"
 },
 "subjectMapping": "subjectName",
 "redirectURI": "/federate"
 }
 },
 "condition": "${matches(exchange.request.uri.path, '^/saml')}",
 "session": "JwtSession"
}

On Windows, the file name should be %appdata%\OpenIG\config\routes\05-saml.json.

Notice the following features of the new route.

OpenIG as a SAML 2.0 Service Provider
Configuring OpenIG For Federation

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 56

• The "SamlFederationHandler" extracts credentials from the attributes returned in the SAML 2.0
assertion. It then redirects to the /federate route.

• The route matches requests to /saml.

• The route uses the "JwtSession" session implementation, meaning it stores encrypted session
information in a browser cookie. The name is a reference to the "JwtSession" object defined in
config.json. For details, see the reference for JwtSession in the Reference.

• Add a route that handles requests to perform SAML federation.

The configuration file to add in this case is $HOME/.openig/config/routes/05-federate.json

{
 "handler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${empty exchange.session.username}",
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 302,
 "reason": "Found",
 "headers": {
 "Location": [
 "http://www.example.com:8080/saml/SPInitiatedSSO"
]
 }
 }
 },
 "baseURI": "http://www.example.com:8081"
 },
 {
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://www.example.com:8081",
 "form": {
 "username": [
 "${exchange.session.username}"
],
 "password": [
 "${exchange.session.password}"
]
 }
 }
 }

OpenIG as a SAML 2.0 Service Provider
Trying It Out

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 57

],
 "handler": "ClientHandler"
 }
 },
 "baseURI": "http://www.example.com:8081"
 }
]
 }
 },
 "condition": "${matches(exchange.request.uri.path, '^/federate')}",
 "session": "JwtSession"
}

On Windows, the file name should be %appdata%\OpenIG\config\routes\05-federate.json.

Notice the following features of the new route.

• The "DispatchHandler" dispatches requests to the "StaticResponseHandler" if the username has
not yet been populated in the exchange, meaning the user has not yet authenticated with the
IDP. Otherwise, if the credentials have been inserted into the exchange, the "DispatchHandler"
dispatches requests to the "Chain" to log the user in to the protected application.

• The "StaticResponseHandler" redirects to the Service Provider initiated single sign-on end
point to initiate SAML 2.0 web browser SSO. After authentication is successful and the
"SamlFederationHandler" has injected credentials into the exchange, the user-agent ends up
redirected to this same route.

• The "StaticRequestFilter" retrieves the username and password from the exchange and replaces
your browser's original HTTP GET request with an HTTP POST login request that contains the
credentials to authenticate.

• The route matches requests to /federate. This is the route you use to test the configuration.

• The route also uses the "JwtSession" session implementation.

6.10. Trying It Out
Log out of OpenAM console, and then test whether everything is properly configured.

• For IDP initiated SSO, click this IDP initiated SSO link, and then login to OpenAM with username
george, password costanza.

• For SP initiated SSO, either browse to the URL for the new route, at http://www.example.com:8080/
federate, or click this SP initiated SSO link, and then login to OpenAM with username george,
password costanza.

However you initiate single sign-on, you should wind up viewing the page you normally see after
logging in.

http://openam.example.com:8088/openam/idpssoinit?NameIDFormat=urn:oasis:names:tc:SAML:2.0:nameid-format:transient&metaAlias=/idp&spEntityID=OpenIG&binding=urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST
http://www.example.com:8080/federate
http://www.example.com:8080/federate
http://www.example.com:8080/saml/SPInitiatedSSO?metaAlias=/sp&idpEntityID=http://openam.example.com:8088/openam&binding=urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST

OpenIG as a SAML 2.0 Service Provider
Trying It Out

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 58

What is happening behind the scenes?

The initial incoming requests matches the /federate route. As the user is not yet authenticated, the
"SPInitiatedSSORedirectHandler" sends a redirect to initiate SSO.

The user authenticates with the Identity Provider for SAML 2.0 single sign-on. After authentication,
the Identity Provider redirects the user-agent back to the SAML URI on the Service Provider
(OpenIG), which you configured for the Fedlet as /saml. The "SamlFederationHandler" gets the
request to this route. The request holds the SAML 2.0 assertion whose attributes contain credentials.

The "SamlFederationHandler" processes an incoming SAML 2.0 assertion, injecting credentials
values from the assertion into the exchange session. The "SamlFederationHandler" then redirects to
the /federate route.

On the /federate route, once the attributes from the assertion are set in the session, OpenIG
dispatches the exchange to the "Chain". The "StaticRequestFilter" in the "Chain" uses the attribute
values to replace the request with an HTTP POST of login form data to log the user in to the
protected application.

OpenIG returns the response page showing that the user has logged in.

OpenIG as an OAuth 2.0 Resource Server
About OpenIG as an OAuth 2.0 Resource Server

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 59

Chapter 7

OpenIG as an OAuth 2.0 Resource Server
This chapter explains how OpenIG acts as an OAuth 2.0 Resource Server, and follows with a tutorial
that shows you how to use OpenIG as a resource server.

7.1. About OpenIG as an OAuth 2.0 Resource Server
The OAuth 2.0 Authorization Framework describes a way of allowing a third-party application to
access a user's resources without having the user's credentials. When resources are protected with
OAuth 2.0, users can use their credentials with an OAuth 2.0-compliant identity provider, such as
OpenAM, Facebook, Google and others to access the resources, rather than setting up an account
with yet another third-party application.

In OAuth 2.0, there are four entities involved.

• The resource owner is the end user who owns protected resources on a resource server.

For example, a resource owner has photos stored in a web service.

• The resource server provides the user's protected resources to authorized client applications.

In OAuth 2.0, an authorization server grants the client application authorization based on the
resource owner's consent.

For example, a web service holds user's photos.

• The client is the application that needs access to the protected resources.

For example, a photo printing service needs access to the user's photos.

• The authorization server is the service responsible for authenticating resource owners and
obtaining their consent to allow client applications to access their resources.

For example, OpenAM can act as the OAuth 2.0 authorization server to authenticate resource
owners and obtain their consent. Other services can play this role as well. Google and Facebook for
example provide OAuth 2.0 authorization services.

In OAuth 2.0, there are different grant mechanisms whereby the client can obtain authorization. One
grant mechanism involves the client redirecting the resource owner's browser to the authorization
server to complete authentication and authorization. You might have experienced this grant

http://tools.ietf.org/html/rfc6749

OpenIG as an OAuth 2.0 Resource Server
Preparing the Tutorial

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 60

mechanism yourself when logging in with your identity provider account to access a web service,
rather than creating a new account directly with the web service. Whatever the grant mechanism, the
client's aim is to get an OAuth 2.0 access token from the authorization server.

Access tokens are the credentials used to access protected resources. An access token is just a string
that represents the authorization to access protected resources given by the authorization server. An
access token, like cash, is a bearer token. This means that anyone who has the access token can use
it to get the resources. Access tokens therefore must be protected, so requests involving them must
go over HTTPS. The advantage of access tokens over passwords or other credentials is that access
tokens can be granted and revoked without exposing the user's credentials.

When the client requests access to protected resources, it supplies the access token to the resource
server housing the resources. The resource server must then validate the access token. If the access
token is found to be valid, then the resource server can let the client have access to the resources.

When OpenIG acts therefore as an OAuth 2.0 resource server, its role is to validate access
tokens. How an access token is validated is technically not covered in the specifications for OAuth
2.0. Typically the resource server validates an access token by submitting the token to a token
information endpoint. The token information endpoint typically returns the access token, when it
expires, and the OAuth 2.0 scopes associated with the token, potentially with other information. In
OAuth 2.0, the token scopes are strings that can identify the scope of access authorized to the client,
but can also be used for other purposes. For example, OpenAM maps them to user profile attribute
values by default, and also allows custom scope handling plugins.

In the tutorial that follows, you configure OpenIG as a resource server, and use OpenAM as the
OAuth 2.0 authorization server.

7.2. Preparing the Tutorial
In the chapter on Getting Started, you learned how to configure OpenIG to proxy traffic and capture
request and response data. You also learned how to configure OpenIG to use a static request to log in
with hard-coded credentials.

This tutorial shows you how OpenIG can act as an OAuth 2.0 resource server, validating OAuth 2.0
access tokens and including token info in the exchange.

This tutorial relies on OpenAM as an OAuth 2.0 authorization server. As an OAuth 2.0 client of
OpenAM, you get an access token. You then submit the access token to OpenIG, and OpenIG acts as
the resource server.

Before you start this tutorial, prepare OpenIG and the minimal HTTP server as you did for the
chapter on Getting Started.

OpenIG should be running in Jetty, configured to access the minimal HTTP server as described in that
chapter.

OpenIG as an OAuth 2.0 Resource Server
Setting Up OpenAM as an Authorization Server

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 61

7.3. Setting Up OpenAM as an Authorization Server
Install and configure OpenAM on http://openam.example.com:8088/openam with the default configuration.
If you use a different configuration, make sure you substitute in the tutorial accordingly. Although
this tutorial does not use HTTPS, you must use HTTPS to protect access tokens in production
environments.

Login to the OpenAM console as administrator, and use the common task wizard, Configure OAuth2,
to configure an OAuth 2.0 authorization server in / (Top Level Realm).

Also create an OAuth 2.0 Client profile in / (Top Level Realm). This allows you to request an OAuth
2.0 access token on behalf of the client. In OpenAM console, browse to Access Control > / (Top Level
Realm) > Agents > OAuth 2.0 Client, and then click New in the Agent table.

Create an OAuth 2.0 client profile with name OpenIG and password password. The name is the OAuth 2.0
client_id, and the password is the client_secret.

Edit the OpenIG client profile to add mail and employeenumber scopes to the Scope(s) list, and then save
your work. In this tutorial, you overload these profile settings to pass credentials to OpenIG. This
tutorial uses mail and employeenumber for the sake of simplicity. Both of those attributes are part of
a user's profile out of the box with the default OpenAM configuration. Neither of the attributes
are needed for anything else in this tutorial. So this tutorial uses mail to hold the username, and
employeenumber to hold the password. In a real deployment, you would no doubt use other attributes
that depend on how the real user profiles are configured.

Finally, create a user whose additional credentials you set in the Email Address and Employee
Number fields if you have not already done so for another tutorial.

1. In OpenAM console, under Access Control > / (Top Level Realm) > Subjects > User, click New to
create the user profile.

2. Set the ID to george, the password to costanza, and fill the other required fields as you like before
clicking OK.

3. Click the user name to edit the profile again, setting Email Address to george and Employee
Number to costanza before clicking Save.

4. When finished, log out of OpenAM console.

7.4. Configuring OpenIG as a Resource Server
To configure OpenIG as an OAuth 2.0 resource server, you use an OAuth2ResourceServerFilter in the
Reference.

The filter expects an OAuth 2.0 access token in an incoming Authorization request header, such as the
following.

OpenIG as an OAuth 2.0 Resource Server
Configuring OpenIG as a Resource Server

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 62

Authorization: Bearer 7af41ddd-47a4-40dc-b530-a9aa9f7ceda9

The filter then uses the access token to validate the token and to retrieve token information from the
authorization server. On successful validation, the filter injects the response from the authorization
server into the location set by the "target" in the configuration.

If no access token is present in the request, or token validation does not complete successfully, the
filter returns an HTTP error status to the user-agent, and OpenIG does not continue processing the
exchange. This is done as specified in the RFC, OAuth 2.0 Bearer Token Usage.

You can therefore add additional filters and handlers to the chain directly after the
OAuth2ResourceServerFilter, and expect to have the access token if the filter completes successfully.

To configure OpenIG as an OAuth 2.0 resource server, add a new route to the OpenIG configuration,
by including the following route configuration file as $HOME/.openig/config/routes/06-rs.json.

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "providerHandler": "ClientHandler",
 "scopes": [
 "mail",
 "employeenumber"
],
 "tokenInfoEndpoint":
 "http://openam.example.com:8088/openam/oauth2/tokeninfo",
 "requireHttps": false,
 "target": "${exchange.token}"
 },
 "timer": true
 },
 {
 "type": "ScriptableFilter",
 "config": {
 "type": "application/x-groovy",
 "source":
 "import org.forgerock.json.fluent.JsonValue;
 logger.info(exchange.token.asJsonValue() as String);
 exchange.username = exchange.token.info.mail;
 exchange.password = exchange.token.info.employeenumber;
 next.handle(exchange)"
 },
 "timer": true
 },
 {
 "type": "StaticRequestFilter",
 "config": {

http://tools.ietf.org/html/rfc6750

OpenIG as an OAuth 2.0 Resource Server
Trying It Out

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 63

 "method": "POST",
 "uri": "http://www.example.com:8081",
 "form": {
 "username": [
 "${exchange.username}"
],
 "password": [
 "${exchange.password}"
]
 }
 },
 "timer": true
 }
],
 "handler": "ClientHandler"
 }
 },
 "condition": "${matches(exchange.request.uri.path, '^/rs')}",
 "timer": true
}

On Windows, the file name should be %appdata%\OpenIG\config\routes\06-rs.json.

Notice the following features of the new route.

• The "OAuth2ResourceServerFilter" includes a client handler to send access token validation
requests, the list of required scopes that the filter expects to find in access tokens, the OpenAM
token info endpoint used to validate access tokens, and "requireHttps": false to allow testing without
having to set up keys and certificates. (In production environments, do use HTTPS to protect access
tokens.)

After successfully using the token info endpoint to validate an access token, the
"OAuth2ResourceServerFilter" injects data from the response into exchange.token.

• After the "OAuth2ResourceServerFilter" has injected information for a valid access token into the
exchange, the "ScriptableFilter" dumps the token information to the log. The "ScriptableFilter" also
injects the credentials from the user profile in OpenAM into the exchange.

• The "StaticRequestFilter" retrieves the username and password from the exchange and replaces
the original HTTP GET request with an HTTP POST login request that contains the credentials to
authenticate.

• The route matches requests to /rs.

7.5. Trying It Out
To try your configuration, you need an access token. Get an access token from OpenAM and use it
to access OpenIG as in the following example, which uses the OAuth 2.0 resource owner password
credentials authorization grant.

OpenIG as an OAuth 2.0 Resource Server
Trying It Out

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 64

$ curl \
 --user "OpenIG:password" \
 --data "grant_type=password&username=george&password=costanza&scope=mail%20employeenumber" \
 http://openam.example.com:8088/openam/oauth2/access_token
{
 "scope": "mail employeenumber",
 "expires_in": 60,
 "token_type": "Bearer",
 "refresh_token": "80963b0e-8283-434b-ba11-ce01ef0e93b6",
 "access_token": "ddf31dac-e23a-446c-bd21-db60cf19b9f3"
}

$ curl \
 --header "Authorization: Bearer ddf31dac-e23a-446c-bd21-db60cf19b9f3" \
 http://www.example.com:8080/rs
...
 <h1>User Information</h1>

 <dl>
 <dt>Username</dt>
 <dd>george</dd>
 </dl>

 <h1>Request Information</h1>

 <dl>
 <dt>Method</dt>
 <dd>POST</dd>

 <dt>URI</dt>
 <dd>/</dd>

 <dt>Headers</dt>
 <dd style="font-family: monospace; font-size: small;">...</dd>
 </dl>

Also look in the Jetty server output to see the access token information. The access token information
looks something like the following.

TUE DEC 02 17:14:28 CET 2014 (INFO) {ScriptableFilter}/handler/config/filters/1
{
 "mail": "george",
 "employeenumber": "costanza",
 "scope": [
 "mail",
 "employeenumber"
],
 "grant_type": "password",
 "realm": "/",
 "token_type": "Bearer",
 "expires_in": 41,
 "access_token": "e362515f-ecf2-47b7-b1a7-c6480e705129"
}

OpenIG as an OAuth 2.0 Resource Server
Trying It Out

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 65

What is happening behind the scenes?

After OpenIG gets the curl request, the resource server filter validates the access token with
OpenAM, and injects the token information into the exchange. (If the access token was missing or
invalid, then the resource server filter would have returned an error status to the user-agent. The
OAuth 2.0 client would then have had to deal with the error.)

The "ScriptableFilter" logs the token information, and also extracts the credentials to inject them into
the exchange. Finally the "StaticRequestFilter" uses the credentials to log the user in to the minimal
HTTP server, which responds with the User Information page.

OpenIG as an OAuth 2.0 Client
About OpenIG as an OAuth 2.0 Client

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 66

Chapter 8

OpenIG as an OAuth 2.0 Client
This chapter explains how OpenIG acts as an OAuth 2.0 client or OpenID Connect 1.0 relying party,
and follows with a tutorial that shows you how to use OpenIG as an OpenID Connect 1.0 relying
party.

8.1. About OpenIG as an OAuth 2.0 Client
As described in the chapter, OpenIG as an OAuth 2.0 Resource Server, an OAuth 2.0 client is the
third-party application that needs access to a user's protected resources. The client application
therefore has the user (the OAuth 2.0 resource owner) delegate authorization by authenticating
with an identity provider (the OAuth 2.0 authorization server) using an existing account, and then
consenting to authorize access to protected resources (on an OAuth 2.0 resource server).

OpenIG can act as an OAuth 2.0 client when you configure an OAuth2ClientFilter in the Reference.
The filter handles the process of allowing the user to select a provider, and redirecting the user
through the authentication and authorization steps of an OAuth 2.0 authorization code grant, which
results in the authorization server returning an access token to the filter. At the outcome of a
successful authorization grant, the filter injects the access token data into a configurable target field
of the exchange so that subsequent filters and handlers have access to the access token. Subsequent
requests can use the access token without re-authentication.

If the protected application is an OAuth 2.0 resource server, then OpenIG can send the access token
with the resource request.

8.2. About OpenIG as an OpenID Connect 1.0 Relying Party
The specifications available through the OpenID Connect site describe an authentication layer built
on OAuth 2.0, which is OpenID Connect 1.0.

OpenID Connect 1.0 is a specific implementation of OAuth 2.0 where the identity provider holds the
protected resource that the third-party application aims to access. This resource is the UserInfo,
information about the authenticated end-user expressed in a standard format.

In OpenID Connect 1.0, the key entities are the following.

• The end user (OAuth 2.0 resource owner) whose user information the application needs to access.

http://tools.ietf.org/html/rfc6749

OpenIG as an OAuth 2.0 Client
Preparing the Tutorial

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 67

The end user wants to use an application through existing identity provider account without signing
up to and creating credentials for yet another web service.

• The Relying Party (RP) (OAuth 2.0 client) needs access to the end user's protected user
information.

For example, an online mail application needs to know which end user is accessing the application
in order to present the correct inbox.

As another example, an online shopping site needs to know which end user is accessing the site in
order to present the right offerings, account, and shopping cart.

• The OpenID Provider (OP) (OAuth 2.0 authorization server and also resource server) that holds the
user information and grants access.

The OP effectively has the end user consent to providing the RP with access to some of its user
information. As OpenID Connect 1.0 defines unique identification for an account (subject identifier
+ issuer identifier), the RP can use this as a key to its own user profile.

In the case of the online mail application, this key could be used to access the mailboxes and
related account information. In the case of the online shopping site, this key could be used to
access the offerings, account, shopping cart and so forth. The key makes it possible to serve users
as if they had local accounts.

When OpenIG acts therefore as an OpenID Connect 1.0 relying party, its ultimate role is to retrieve
user information from the OpenID provider, and then to inject that information into the exchange for
use by subsequent filters and handlers.

In the tutorial that follows, you configure OpenIG as a relying party, and use OpenAM as the OpenID
Provider.

8.3. Preparing the Tutorial
In the chapter on Getting Started, you learned how to configure OpenIG to proxy traffic and capture
request and response data. You also learned how to configure OpenIG to use a static request to log in
with hard-coded credentials.

This tutorial shows you how OpenIG can act as an OpenID Connect 1.0 relying party.

This tutorial relies on OpenAM as an OpenID Provider. As a relying party, OpenIG takes the end
user to OpenAM for authorization and an access token. It then uses the access token to get end user
information from OpenAM.

Before you start this tutorial, prepare OpenIG and the minimal HTTP server as you did for the
chapter on Getting Started.

OpenIG should be running in Jetty, configured to access the minimal HTTP server as described in that
chapter.

OpenIG as an OAuth 2.0 Client
Setting Up OpenAM as an OpenID Provider

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 68

8.4. Setting Up OpenAM as an OpenID Provider
Install and configure OpenAM on http://openam.example.com:8088/openam with the default configuration. If
you use a different configuration, make sure you substitute in the tutorial accordingly. Although this
tutorial does not use HTTPS, you must use HTTPS to protect access tokens and user information in
production environments.

Login to the OpenAM console as administrator, and use the common task wizard, Configure OAuth2,
to configure an OAuth 2.0 authorization server in / (Top Level Realm). This also configures OpenAM
as an OpenID Provider.

Also create an OAuth 2.0 Client profile in / (Top Level Realm). This allows OpenIG to communicate
with OpenAM as an OAuth 2.0 client. In OpenAM console, browse to Access Control > / (Top Level
Realm) > Agents > OAuth 2.0 Client, and then click New in the Agent table.

Create an OAuth 2.0 client profile with name OpenIG and password password. The name is the "clientId"
value, and the password is the "clientSecret" value that you use in the provider configuration in
OpenIG.

Edit the OpenIG client profile to add the Redirection URI http://www.example.com:8080/openid/callback. Also
add openid and profile scopes to the Scope(s) list, and then save your work.

In this tutorial, you overload the profile settings to pass credentials to OpenIG. This tutorial uses
Full Name and Last Name for the sake of simplicity. Both of those attributes are part of a user's
profile out of the box with the default OpenAM configuration. Neither of the attributes are needed for
anything else in this tutorial. So this tutorial uses Last Name to hold the username, and Full Name to
hold the password. In a real deployment, you would no doubt use other attributes, depending upon
the user profiles and on your requirements.

To overload the profile, create a user whose additional credentials you set in the Full Name and
Last Name fields, or edit the existing user george if you have already created the profile for another
tutorial.

1. In OpenAM console, under Access Control > / (Top Level Realm) > Subjects > User, click New to
create the user profile.

If the profile already exists in the table, then click the link to open the profile for editing.

2. Set the ID to george, the password to costanza, the Last Name to george, and the Full Name to
costanza before clicking OK (or Save).

3. When finished, log out of OpenAM console by clicking the log out button. It is not enough simply
to close the browser tab, as the OpenAM session remains active until you log out or quit the
browser.

OpenIG as an OAuth 2.0 Client
Configuring OpenIG as a Relying Party

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 69

8.5. Configuring OpenIG as a Relying Party
To configure OpenIG as an OpenID Connect 1.0 relying party, add a new route to the OpenIG
configuration, by including the following route configuration file as $HOME/.openig/config/routes/07-
openid.json.

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "OAuth2ClientFilter",
 "config": {
 "clientEndpoint": "/openid",
 "requireHttps": false,
 "requireLogin": true,
 "target": "${exchange.openid}",
 "scopes": [
 "openid",
 "profile"
],
 "failureHandler": {
 "type": "StaticResponseHandler",
 "config": {
 "comment": "Trivial failure handler for debugging only",
 "status": 500,
 "reason": "Error",
 "entity": "${exchange.openid}"
 }
 },
 "providerHandler": "ClientHandler",
 "providers": [
 {
 "name": "openam",
 "wellKnownConfiguration":
 "http://openam.example.com:8088/openam/.well-known/openid-configuration",
 "clientId": "OpenIG",
 "clientSecret": "password"
 }
]
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://www.example.com:8081",
 "form": {
 "username": [

OpenIG as an OAuth 2.0 Client
Configuring OpenIG as a Relying Party

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 70

 "${exchange.openid.user_info.family_name}"
],
 "password": [
 "${exchange.openid.user_info.name}"
]
 }
 }
 }
],
 "handler": "ClientHandler"
 }
 }
 }
 },
 "condition": "${matches(exchange.request.uri.path, '^/openid')}",
 "baseURI": "http://www.example.com:8080"
}

On Windows, the file name should be %appdata%\OpenIG\config\routes\07-openid.json.

Notice the following features of the new route.

• At the global level the route changes the base URI for requests to ensure that the initial exchange
happens between OpenIG and OpenAM, which is the OpenID Provider. This route sends only the
final request to the protected application.

• The first filter in the outermost chain has the OAuth2ClientFilter in the Reference type. This is the
filter that enables OpenIG to act as a relying party.

The filter is configured to work only with a single provider, the OpenAM server you configured
in Section 8.4, "Setting Up OpenAM as an OpenID Provider". If you had more than one provider
configured, you would need a "loginHandler" as well to help end users pick a provider.

The "OAuth2ClientFilter" has a base client endpoint of /openid. Incoming requests to /openid/login
start the delegated authorization process. Incoming requests to /openid/callback are expected as
redirects from the OP (as authorization server), so this is why you set the redirect URI in the client
profile in OpenAM to http://www.example.com:8080/openid/callback.

The "OAuth2ClientFilter" has "requireHttps": false as a convenience for testing. In production
environments, require HTTPS.

The filter has "requireLogin": true to ensure you see the delegated authorization process when you
make your request.

In the "OAuth2ClientFilter", the target for storing authorization state information is ${exchange
.openid}, so this is where subsequent filters and handlers can find access token and user
information.

The scopes are set to "openid" and "profile" as allowed for OpenID Connect 1.0.

OpenIG as an OAuth 2.0 Client
Trying It Out

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 71

Notice that on failure the filter dumps the current information in the exchange into a web page
response to the end user. While this is helpful to you for debugging purposes, it is not helpful to an
end user. In production environments, return a more user-friendly failure page.

Also in the "OAuth2ClientFilter", the typical "ClientHandler" configures the HTTP client that
communicates with the OpenID Provider.

• After the filter injects the access token and user information into exchange.openid, OpenIG invokes a
"Chain". The "Chain" uses the credentials to log the user in to the minimal HTTP server.

With this configuration, all successful requests result in login attempts against the minimal HTTP
server.

• The "StaticRequestFilter" retrieves the username and password from the exchange and replaces
the original HTTP GET request with an HTTP POST login request that contains the credentials to
authenticate.

• The route matches requests to /openid.

8.6. Trying It Out
To try your configuration, browse to OpenIG at http://www.example.com:8080/openid.

When redirected to the OpenAM login page, login as user george, password costanza, and then allow
the application access to user information.

If successful, OpenIG logs you into the minimal HTTP server as George Costanza, and the minimal
HTTP server returns George's page.

What is happening behind the scenes?

After OpenIG gets the browser request, the "OAuth2ClientFilter" redirects you to authenticate with
OpenAM and consent to authorize access to user information. After you authorize access, OpenAM
returns an access token to the filter.

The filter then uses that access token to get the user information. The filter injects the authorization
state information into exchange.openid. The outermost chain then calls its handler, which as another
"Chain".

This inner chain uses the credentials to log the user in to the minimal HTTP server, which responds
with its User Information page.

http://www.example.com:8080/openid

Configuring Routes
Before You Start

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 72

Chapter 9

Configuring Routes

Other tutorials in this guide demonstrate how to use routes so that you can change the configuration
without restarting OpenIG.

This tutorial takes a closer look at Router in the Reference and Route in the Reference configurations.
This tutorial demonstrates the use of routes to handle multiple applications. It also shows how to lock
down the configurations for deployment so that accidental changes to configuration files do not affect
servers running in production.

9.1. Before You Start
Before you start this tutorial, prepare OpenIG and the minimal HTTP server as you did for the
chapter on Getting Started.

OpenIG should be running in Jetty, configured to access the minimal HTTP server as described in that
chapter.

You start therefore with a default route

9.2. Configuring the Router
When you set up the first tutorial, you configured a Router.

The Router is a handler that you can configure in the top-level config.json file for OpenIG, and in fact
wherever you can configure a Handler. For the first tutorial, you added a Router as part of the base
configuration, which is shown here again in the following listing.

{
 "handler": {
 "type": "Router",
 "audit": "global",
 "capture": "all"
 },
 "heap": [
 {
 "name": "LogSink",
 "type": "ConsoleLogSink",
 "config": {
 "level": "DEBUG"

Configuring Routes
Configuring Additional Routes

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 73

 }
 },
 {
 "name": "JwtSession",
 "type": "JwtSession"
 },
 {
 "name": "ClientHandler",
 "type": "ClientHandler"
 },
 {
 "name": "capture",
 "type": "CaptureDecorator",
 "config": {
 "captureEntity": true,
 "_captureExchange": true
 }
 }
],
 "baseURI": "http://www.example.com:8081"
}

The Router's job is to pass the exchange to a route that matches a condition, and to periodically
reload changed route configurations. As routes define the conditions on which they accept any given
Exchange, the Router does not have to know about specific Routes in advance. In other words, you
can configure the Router first and then add routes while OpenIG is running, as you have done in
other tutorials.

The configuration shown above passes all Exchanges to the Router using the default settings,
meaning that the Router monitors $HOME/.openig/config/routes for Routes. When OpenIG receives a
request, if more time has passed than the default scan interval of 10 seconds, then OpenIG rescans
the Routes directory for changes and reloads any Routes changes it finds.

9.3. Configuring Additional Routes
Routes are configurations to handle an Exchange that meets a specified condition.

The condition is defined using a OpenIG expression in the Reference, so it can be based on almost
any characteristic of the Exchange or even of the OpenIG runtime environment. Another way to think
of the Route is like an independent DispatchHandler in the Reference.

Routes can also have their own names, used to order them lexicographically. If no name is specified,
the Route file name is used. Route file names have the extension .json. In other words, a router only
scans for files with the .json extension, and ignores files with other extensions.

Routes can have a base URI to change the scheme, host, and port of the request.

Routes wrap a heap of configuration objects, and hand off any Exchange they accept to a handler. In
this way each Route is much like its own server-wide configuration file.

Configuring Routes
Trying it Out

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 74

If no condition is specified for the Route, the Route accepts any Exchange. The following is a basic
default route that accepts any Exchange and forwards it on without changes.

{
 "name": "default",
 "handler": {
 "type": "ClientHandler"
 }
}

The rest of this section indicates how to set up Route configurations to direct requests to
ForgeRock.com and ForgeRock.org based on a query string parameter.

1. Add a ForgeRock.com Route file in the routes directory, 08-com.json, that holds the following
content.

{
 "handler": "ClientHandler",
 "condition": "${matches(exchange.request.uri.query, 'site=com')}",
 "baseURI": "http://forgerock.com:80/",
 "audit": "ForgeRock.com route"
}

This Route accepts the Exchange when the query string parameter, site matches com. When
this Route picks up an Exchange, it changes the request scheme, host, and port, and sends it to
ForgeRock.com.

2. Add a ForgeRock.org community Route file in the routes directory, 08-org.json, that holds the
following content.

{
 "handler": "ClientHandler",
 "condition": "${matches(exchange.request.uri.query, 'site=org')}",
 "baseURI": "https://forgerock.org:443/",
 "audit": "ForgeRock.org route"
}

This Route accepts the Exchange when the query string parameter, site matches org. When
this Route picks up an Exchange, it changes the request scheme, host, and port, and sends it to
ForgeRock.org.

9.4. Trying it Out
At this point you can try your new route configurations.

Configuring Routes
Locking Down Route Configurations

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 75

Browse to the .com URL: http://www.example.com:8080/?site=com.

You should see the ForgeRock.com page.

Browse to the .org URL: http://www.example.com:8080/?site=org.

You should see the ForgeRock.org Community page.

Now browse to the base URL to see that the default route still works: http://www.example.com:8080/.

What happened behind the scenes?

When you issued your first request with "?site=com", the request matched the condition defined in
the ForgeRock.com route. OpenIG rebased the request and sent it along to http://forgerock.com:80/.

When you issued your second request with "?site=org", the request matched the condition defined in
the ForgeRock.org Community route. OpenIG rebased the request and sent it along to http://forgerock
.org:80/.

When the third request did not match any of the conditions defined, the Exchange was routed to the
default Route (that accepts any Exchange). The static request filter returned the default page.

At this point, tinker with your route configurations without stopping OpenIG, and notice that changes
are picked up every 10 seconds.

9.5. Locking Down Route Configurations
Having the Route configurations automatically reloaded is great in the lab, but is perhaps not what
you want in production.

In that case, stop the server, edit the Router "scanInterval", and restart. When "scanInterval" is set to
-1, the Router only loads routes at startup.

{
 "name": "Router",
 "type": "Router",
 "config": {
 "scanInterval": -1
 }
}

You can also change the file system location to look for routes.

http://www.example.com:8080/?site=com
http://www.example.com:8080/?site=org
http://www.example.com:8080/

Configuring Routes
Locking Down Route Configurations

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 76

{
 "name": "Router",
 "type": "Router",
 "config": {
 "directory": "/path/to/safe/routes",
 "scanInterval": -1
 }
}

Configuration Templates
Proxy & Capture

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 77

Chapter 10

Configuration Templates
This chapter contains template routes for common configurations.

Before you use one of the templates here, install and configure OpenIG with a Router and default
route as described in the chapter on Getting Started.

Next, take one of the templates and then modify it to suit your deployment. Read the summary of
each template to find the right match for your application.

When you move to use OpenIG in production, be sure to turn off DEBUG level logging, and to
deactivate "CaptureDecorator" use to avoid filling up disk space. Also consider locking down the
Router configuration.

10.1. Proxy & Capture
If you installed and configured OpenIG with a Router and default route as described in the chapter on
Getting Started, then you already proxy & capture both the application requests coming in and the
server responses going out.

This template is a replacement for the default route, $HOME/.openig/config/routes/99-default.json, with
a "DispatchHandler" to change the scheme to HTTPS on login. Simply change the "baseURI" to that
of the target application, and login to the application. This template references a "ClientHandler"
defined in config.json.

{
 "handler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${exchange.request.uri.scheme == 'http'}",
 "handler": "ClientHandler",
 "baseURI": "http://TARGETIP"
 },
 {
 "condition": "${exchange.request.uri.path == '/login'}",
 "handler": "ClientHandler",
 "baseURI": "https://TARGETIP"
 },
 {
 "handler": "ClientHandler",
 "baseURI": "https://TARGETIP"

Configuration Templates
Simple Login Form

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 78

 }
]
 }
 },
 "capture": "all"
}

10.2. Simple Login Form
Logs the user into the target application with hard-coded user name and password. This template
intercepts the login page request and replaces it with the login form.

{
 "handler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${exchange.request.uri.path == '/login'}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "https://TARGETIP/login",
 "form": {
 "USER": [
 "MY_USERNAME"
],
 "PASSWORD": [
 "MY_PASSWORD"
]
 }
 }
 }
],
 "handler": "ClientHandler"
 }
 },
 "baseURI": "http://TARGETIP"
 },
 {
 "handler": "ClientHandler",
 "baseURI": "http://TARGETIP"
 }
]
 }
 }
}

Configuration Templates
Login Form With Cookie From Login Page

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 79

This template is a replacement for the default route, $HOME/.openig/config/routes/99-default.json,
Substitute TARGETIP with the IP address of your application. Also change MY_USERNAME and MY_PASSWORD,
and adapt the "StaticRequestFilter" for your application. This template references a "ClientHandler"
defined in config.json.

10.3. Login Form With Cookie From Login Page
For applications that expect a cookie from the login page to be sent in the login request form. This
templates allows the login page request to go through to the target, intercepts the response, then
creates the login form and adds the intercepted cookie to the POST.

{
 "heap": [
 {
 "name": "DispatchHandler",
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${exchange.request.uri.path == '/eum/login'}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "SwitchFilter",
 "config": {
 "onResponse": [
 {
 "handler": "LoginRequestHandler"
 }
]
 }
 }
],
 "handler": "ClientHandler"
 }
 },
 "baseURI": "http://TARGETIP"
 },
 {
 "handler": "ClientHandler",
 "baseURI": "http://TARGETIP"
 }
]
 }
 },
 {
 "name": "LoginRequestHandler",
 "type": "Chain",

Configuration Templates
Login Form With Extract Filter & Cookie Filter

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 80

 "config": {
 "filters": [
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "https://TARGETIP/login",
 "form": {
 "USER": [
 "MY_USERNAME"
],
 "PASSWORD": [
 "MY_PASSWORD"
]
 },
 "headers": {
 "cookie": [
 "${exchange.response.headers['Set-Cookie'][0]}"
]
 }
 }
 }
],
 "handler": "ClientHandler"
 }
 }
],
 "handler": "DispatchHandler"
}

This template is a replacement for the default route, $HOME/.openig/config/routes/99-default.json,
Substitute TARGETIP with the IP address of your application. Also change MY_USERNAME and MY_PASSWORD,
and adapt the "StaticRequestFilter" for your application. This template references a "ClientHandler"
defined in config.json.

10.4. Login Form With Extract Filter & Cookie Filter
For applications that return the login page when the user tries to access a page without a valid
session. This template shows how to use the "ExtractFilter" to find the login page on the response
and use the "CookieFilter" to ensure the cookies from the application are replayed on each request.
The sample application in this template is OpenAM.

Note

Without the "CookieFilter" in the "OutgoingChain" the cookie set in the login page response would not get set
in the browser since that request is intercepted before it gets to the browser. The simplest way to deal with
this situation is to let OpenIG manage all the cookies by enabling the "CookieFilter". The side effect of OpenIG
managing cookies is none of the cookies are sent to the browser, but are managed locally by OpenIG.

Configuration Templates
Login Form With Extract Filter & Cookie Filter

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 81

{
 "heap": [
 {
 "name": "DispatchHandler",
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 "IsLoginPage",
 {
 "type": "EntityExtractFilter",
 "config": {
 "messageType": "response",
 "target": "${exchange.isLoginPage}",
 "bindings": [
 {
 "key": "found",
 "pattern": "OpenAM\s\(Login\)",
 "template": "true"
 }
]
 }
 }
],
 "handler": "OutgoingChain"
 }
 },
 "baseURI": "http://TARGETIP:PORT"
 }
]
 }
 },
 {
 "name": "IsLoginPage",
 "type": "SwitchFilter",
 "config": {
 "onResponse": [
 {
 "condition": "${exchange.isLoginPage.found == 'true'}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri":
 "http://TARGETIP:PORT/openam/UI/Login",
 "form": {
 "IDToken0": [
 ""
],
 "IDToken1": [
 "MY_USERNAME"

Configuration Templates
Login Which Requires a Hidden Value From the Login Page

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 82

],
 "IDToken2": [
 "MY_PASSWORD"
],
 "IDButton": [
 "Log+In"
],
 "encoded": [
 "false"
]
 },
 "headers": {
 "host": [
 "TARGETFQDN:PORT"
]
 }
 }
 }
],
 "handler": "OutgoingChain"
 }
 }
 }
]
 }
 },
 {
 "name": "OutgoingChain",
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "CookieFilter"
 }
],
 "handler": {
 "type": "ClientHandler"
 }
 }
 }
],
 "handler": "DispatchHandler"
}

This template is a replacement for the default route, $HOME/.openig/config/routes/99-default.json,
Substitute TARGETIP with the IP address of OpenAM, TARGETFQDN with the fully qualified domain name of
OpenAM, and PORT with the port on which OpenAM listens. Also change MY_USERNAME and MY_PASSWORD to
match those of your OpenAM user. This template references a "ClientHandler" defined in config.json.

10.5. Login Which Requires a Hidden Value From the Login
Page

Configuration Templates
Login Which Requires a Hidden Value From the Login Page

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 83

Extracts a hidden value from the login page and includes it in the login form POSTed to the target
application.

{
 "handler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${exchange.request.uri.path == '/login'}",
 "handler": {
 "name": "LoginChain",
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "EntityExtractFilter",
 "config": {
 "messageType": "response",
 "target": "${exchange.hiddenValue}",
 "bindings": [
 {
 "key": "value",
 "pattern":
 "wpLoginToken\"\\s.*value=\"(.*)\"",
 "template": "$1"
 }
]
 }
 },
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "https://TARGETIP/login",
 "form": {
 "USER": [
 "MY_USERNAME"
],
 "PASSWORD": [
 "MY_PASSWORD"
],
 "hiddenValue": [
 "${exchange.hiddenValue.value}"
]
 }
 }
 }
],
 "handler": "ClientHandler"
 }
 },
 "baseURI": "http://TARGETIP"
 },
 {
 "handler": "ClientHandler",
 "baseURI": "http://TARGETIP"

Configuration Templates
HTTP & HTTPS Application

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 84

 }
]
 }
 }
}

This template is a replacement for the default route, $HOME/.openig/config/routes/99-default.json,
Substitute TARGETIP with the IP address of your application. Also change MY_USERNAME and MY_PASSWORD,
and adapt the "StaticRequestFilter" for your application. This template references a "ClientHandler"
defined in config.json.

10.6. HTTP & HTTPS Application
Proxies traffic to an application listening on ports 80 and 443. The assumption is the application uses
HTTPS for authentication and HTTP for the general application features. Assuming all login requests
go to port 443, you must add the login filters and handlers to the "Chain".

{
 "handler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${exchange.request.uri.scheme == 'http'}",
 "handler": "ClientHandler",
 "baseURI": "http://TARGETIP"
 },
 {
 "condition": "${exchange.request.uri.path == '/login'}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 "MY_FILTERS"
],
 "handler": "ClientHandler"
 }
 },
 "baseURI": "https://TARGETIP"
 },
 {
 "handler": "ClientHandler",
 "baseURI": "https://TARGETIP"
 }
]
 }
 }
}

Configuration Templates
OpenAM Integration With Headers

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 85

This template is a replacement for the default route, $HOME/.openig/config/routes/99-default.json,
Substitute TARGETIP with the IP address of your application. Also add the necessary filter
configurations that are required for login with your application, and then change MY_FILTERS to identify
the added filters. This template references a "ClientHandler" defined in config.json.

10.7. OpenAM Integration With Headers
Logs the user into the target application using the headers passed down from an OpenAM policy
agent. This template assumes the user name and password are passed down by the OpenAM policy
agent as headers. If the header passed in contains only a user name or subject and requires a lookup
to an external data source, you must add an attribute filter to the chain to retrieve the credentials.

{
 "handler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${exchange.request.uri.path == '/login'}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "https://TARGETIP/login",
 "form": {
 "USER": [
 "${exchange.request.headers['username'][0]}"
],
 "PASSWORD": [
 "${exchange.request.headers['password'][0]}"
]
 }
 }
 }
],
 "handler": "ClientHandler"
 }
 },
 "baseURI": "http://TARGETIP"
 },
 {
 "handler": "ClientHandler",
 "baseURI": "http://TARGETIP"
 }
]
 }
 }
}

Configuration Templates
Microsoft Online Outlook Web Access

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 86

This template is a replacement for the default route, $HOME/.openig/config/routes/99-default.json,
Substitute TARGETIP with the IP address of your application. Also adapt the "StaticRequestFilter" for
your application. This template references a "ClientHandler" defined in config.json.

10.8. Microsoft Online Outlook Web Access
Logs the user into Microsoft Online Outlook Web Access (OWA). This template shows how you would
use OpenIG and the OpenAM password capture feature to integrate with OWA. You can follow the
chapter on Getting Login Credentials From OpenAM, and substitute this template as a replacement
for the default route.

{
 "heap": [
 {
 "name": "DispatchHandler",
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${exchange.request.uri.path == '/owa/auth/logon.aspx'}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "CryptoHeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "operation": "DECRYPT",
 "algorithm": "DES/ECB/NoPadding",
 "key": "DESKEY",
 "keyType": "DES",
 "charSet": "utf-8",
 "headers": [
 "password"
]
 }
 },
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "https://65.55.171.158/owa/auth/owaauth.dll",
 "headers": {
 "Host": [
 "red001.mail.microsoftonline.com"
],
 "Content-Type": [
 "Content-Type:application/x-www-form-urlencoded"
]
 },

Configuration Templates
Microsoft Online Outlook Web Access

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 87

 "form": {
 "destination": [
 "https://red001.mail.microsoftonline.com/owa/"
],
 "forcedownlevel": [
 "0"
],
 "trusted": [
 "0"
],
 "username": [
 "${exchange.request.headers['username'][0]}"
],
 "password": [
 "${exchange.request.headers['password'][0]}"
],
 "isUtf8": [
 "1"
]
 }
 }
 }
],
 "handler": "OutgoingChain"
 }
 },
 "baseURI": "https://65.55.171.158"
 },
 {
 "handler": "OutgoingChain",
 "baseURI": "https://65.55.171.158"
 }
]
 }
 },
 {
 "name": "OutgoingChain",
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "remove": [
 "password",
 "username"
]
 }
 }
],
 "handler": {
 "type": "ClientHandler"
 }
 }
 }
],
 "handler": "DispatchHandler"
}

Configuration Templates
Microsoft Online Outlook Web Access

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 88

Change DESKEY to the actual key value that you generated when following the instructions in
Configuring Password Capture. This template references a "ClientHandler" defined in config.json.

Extending OpenIG
About Scripting

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 89

Chapter 11

Extending OpenIG
This chapter looks at extending what OpenIG can do beyond what you get out of the box.

To extend what you can do with Filters and Handlers, OpenIG supports dynamic scripting languages
like Groovy through the use of ScriptableFilter and ScriptableHandler objects.

If scripting is not enough, be aware that OpenIG includes a complete application programming
interface, designed to allow you to customize OpenIG as required. Customizing OpenIG can be used
to perform complex server interactions or intensive data transformations that you cannot achieve
with scripts or existing handlers, filters and expressions in the Reference.

Interface Stability: Evolving in the Reference

11.1. About Scripting
You add these Filters and Handlers to your configuration in the same way as for other Filters and
Handlers. Each takes as its configuration the script's Internet media "type" and either a "source"
script included in the JSON configuration, or a "file" script that OpenIG reads from a file. The
configuration can also optionally supply "args" in order to pass parameters to the script.

The following example defines a ScriptableFilter, written in the Groovy language, and stored
in a file named $HOME/.openig/scripts/groovy/SimpleFormLogin.groovy (%appdata%\OpenIG\scripts\groovy
\SimpleFormLogin.groovy on Windows).

 {
 "name": "SimpleFormLogin",
 "type": "ScriptableFilter",
 "config": {
 "type": "application/x-groovy",
 "file": "SimpleFormLogin.groovy"
 }
 }

Relative paths in the "file" field depend on how OpenIG is installed. If OpenIG is installed in an
application server, then paths for Groovy scripts are relative to $HOME/.openig/scripts/groovy.

This base location $HOME/.openig/scripts/groovy is on the classpath when the scripts are executed. If
therefore some Groovy scripts are not in the default package, but instead have their own package
names, they belong in the directory corresponding to their package name. For example, a script in
package com.example.groovy belongs under $HOME/.openig/scripts/groovy/com/example/groovy/.

../apidocs/index.html
../apidocs/index.html

Extending OpenIG
Scripting Dispatch

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 90

OpenIG provides scripts with several global variables at run time, enabling them to access the
Exchange, to store variables across executions, to write messages to the logs, and to make requests
to a web service or to an LDAP directory service, in addition to Groovy's built-in functionality. For
details, see the reference documentation for ScriptableFilter in the Reference and ScriptableHandler
in the Reference.

This chapter demonstrates some of what you might do using scripts.

If you want to try these scripts, first install and configure OpenIG as described in the chapter on
Getting Started.

When developing and debugging your scripts, consider configuring a CaptureDecorator in the
Reference to log requests, responses, and the exchange data in JSON form. You can then turn off
capturing when you move to production.

11.2. Scripting Dispatch
In order to route requests, especially when the conditions are complicated, you can use a
ScriptableHandler instead of a DispatchHandler in the Reference.

The following script demonstrates a simple dispatch handler.

import org.forgerock.openig.http.Response

/*
 * This simplistic dispatcher matches the path part of the HTTP request.
 * If the path is /login, it checks Username and Password headers,
 * accepting bjensen:hifalutin, and returning HTTP 403 Forbidden to others.
 * Otherwise it returns HTTP 401 Unauthorized.
 */

// Rather than get the response from an external source,
// this handler produces the response itself.
exchange.response = new Response();

switch (exchange.request.uri.path) {

 case "/login":

 if (exchange.request.headers.Username[0] == "bjensen" &&
 exchange.request.headers.Password[0] == "hifalutin") {

 exchange.response.status = 200
 exchange.response.entity = "<html><p>Welcome back, Babs!</p></html>"

 } else {

 exchange.response.status = 403
 exchange.response.entity = "<html><p>Authorization required</p></html>"

 }

 break

Extending OpenIG
Scripting Dispatch

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 91

 default:

 exchange.response.status = 401
 exchange.response.entity = "<html><p>Please log in.</p></html>"

 break

}

To try this handler, save the script as $HOME/.openig/scripts/groovy/DispatchHandler.groovy (%appdata%
\OpenIG\scripts\groovy\DispatchHandler.groovy on Windows).

Next, add the following route to your configuration as $HOME/.openig/config/routes/98-dispatch.json
(%appdata%\OpenIG\config\routes\98-dispatch.json on Windows).

{
 "heap": [
 {
 "name": "DispatchHandler",
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition":
 "${matches(exchange.request.uri.path, '^/login')}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "Username": [
 "bjensen"
],
 "Password": [
 "hifalutin"
]
 }
 }
 }
],
 "handler": "Dispatcher"
 }
 }
 },
 {
 "handler": "Dispatcher"
 }
]
 }
 },

Extending OpenIG
Scripting HTTP Basic Authentication

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 92

 {
 "name": "Dispatcher",
 "type": "ScriptableHandler",
 "config": {
 "type": "application/x-groovy",
 "file": "DispatchHandler.groovy"
 }
 }
],
 "handler": "DispatchHandler"
}

The route sets up the headers required by the script when the user logs in.

To try it out, browse to http://www.example.com:8080.

The response from the script says Please log in. When you click the "log in" link, the "HeaderFilter"
sets Username and Password headers in the request, and passes the request to the script.

The script then responds, Welcome back, Babs!

11.3. Scripting HTTP Basic Authentication
HTTP Basic authentication calls for the user agent such as a browser to send a user name and
password to the server in an Authorization header. HTTP Basic authentication relies on an encrypted
connection to protect the user name and password credentials, which are base64-encoded in the
Authorization header, not encrypted.

The following script, for use in a ScriptableFilter, adds an Authorization header based on a username
and password combination.

/*
 * Perform basic authentication with the user name and password
 * that are supplied using a configuration like the following:
 *
 * {
 * "name": "BasicAuth",
 * "type": "ScriptableFilter",
 * "config": {
 * "type": "application/x-groovy",
 * "file": "BasicAuthFilter.groovy",
 * "args": {
 * "username": "bjensen",
 * "password": "hifalutin"
 * }
 * }
 * }
 */

def userPass = username + ":" + password
def base64UserPass = userPass.getBytes().encodeBase64()

http://www.example.com:8080
http://www.example.com:8080/login

Extending OpenIG
Scripting HTTP Basic Authentication

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 93

exchange.request.headers.add("Authorization", "Basic ${base64UserPass}" as String)

// Credentials are only base64-encoded, not encrypted: Set scheme to HTTPS.

/*
 * When connecting over HTTPS, by default the client tries to trust the server.
 * If the server has no certificate
 * or has a self-signed certificate unknown to the client,
 * then the most likely result is an SSLPeerUnverifiedException.
 *
 * To avoid an SSLPeerUnverifiedException,
 * set up HTTPS correctly on the server.
 * Either use a server certificate signed by a well-known CA,
 * or set up the gateway to trust the server certificate.
 */
exchange.request.uri.scheme = "https"

// Call the next handler. This returns when the request has been handled.
next.handle(exchange)

To try this filter, save the script as $HOME/.openig/scripts/groovy/BasicAuthFilter.groovy (%appdata%\OpenIG
\scripts\groovy\BasicAuthFilter.groovy on Windows).

Next, add the following route to your configuration as $HOME/.openig/config/routes/09-basic.json
(%appdata%\OpenIG\config\routes\09-basic.json on Windows).

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "ScriptableFilter",
 "config": {
 "type": "application/x-groovy",
 "file": "BasicAuthFilter.groovy",
 "args": {
 "username": "bjensen",
 "password": "hifalutin"
 }
 },
 "capture": "filtered_request"
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "reason": "OK",
 "entity": "Hello, Babs!"
 }
 }
 }
 },
 "condition": "${matches(exchange.request.uri.path, '^/basic')}"

Extending OpenIG
Scripting LDAP Authentication

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 94

}

When the request path matches /basic the route calls the "Chain", which runs the "ScriptableFilter".
The "capture" setting captures the request as updated by the "ScriptableFilter". Finally, OpenIG
returns a static page.

To try it out, browse to http://www.example.com:8080/basic.

The captured request in the console log shows that the "scheme" is now HTTPS, and that the
"Authorization" header is set for HTTP Basic.

GET https://www.example.com:8080/basic HTTP/1.1
Authorization: Basic YmplbnNlbjpoaWZhbHV0aW4=

11.4. Scripting LDAP Authentication
Many organizations use an LDAP directory service to store user profiles including authentication
credentials. The LDAP directory service securely stores user passwords in a highly-available, central
service capable of handling thousands of authentications per second.

The following script, for use in a ScriptableFilter, performs simple authentication against an LDAP
server based on request form fields username and password.

import org.forgerock.opendj.ldap.*
import org.forgerock.openig.http.Response

/*
 * Perform LDAP authentication based on user credentials from a form.
 *
 * If LDAP authentication succeeds, then call the next handler.
 * If there is a failure, send a response back to the user.
 */

username = exchange.request.form?.username[0]
password = exchange.request.form?.password[0]

// For testing purposes, the LDAP host and port are provided in the exchange.
// Edit as needed to match your directory service.
host = exchange.ldapHost ?: "localhost"
port = exchange.ldapPort ?: 1389

client = ldap.connect(host, port as Integer)
try {

 // Assume the username is an exact match of either
 // the user ID, the email address, or the user's full name.
 filter = "(|(uid=%s)(mail=%s)(cn=%s))"

 user = client.searchSingleEntry(
 "ou=people,dc=example,dc=com",

http://www.example.com:8080/basic

Extending OpenIG
Scripting LDAP Authentication

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 95

 ldap.scope.sub,
 ldap.filter(filter, username, username, username))

 client.bind(user.name as String, password?.toCharArray())

 // Authentication succeeded.

 // Set a header (or whatever else you want to do here).
 exchange.request.headers.add("Ldap-User-Dn", user.name)

 // Most LDAP attributes are multi-valued.
 // When you read multi-valued attributes, use the parse() method,
 // with an AttributeParser method
 // that specifies the type of object to return.
 exchange.cn = user.cn?.parse().asSetOfString()

 // When you write attribute values, set them directly.
 user.description = "New description set by my script"

 // Here is how you might read a single value of a multi-valued attribute:
 exchange.description = user.description?.parse().asString()

 // Call the next handler. This returns when the request has been handled.
 next.handle(exchange)

} catch (AuthenticationException e) {

 // LDAP authentication failed, so fail the exchange with
 // HTTP status code 403 Forbidden.

 exchange.response = new Response()
 exchange.response.status = 403
 exchange.response.reason = e.message
 exchange.response.entity = "<html><p>Authentication failed: " + e.message + "</p></html>"

} catch (Exception e) {

 // Something other than authentication failed on the server side,
 // so fail the exchange with HTTP 500 Internal Server Error.

 exchange.response = new Response()
 exchange.response.status = 500
 exchange.response.reason = e.message
 exchange.response.entity = "<html><p>Server error: " + e.message + "</p></html>"

} finally {
 client.close()
}

For the list of methods to specify which type of objects to return, see the OpenDJ LDAP SDK Javadoc
for AttributeParser.

To try this out, first install an LDAP directory server such as ForgeRock Directory Services or OpenDJ
directory server. Also import some sample users who can authenticate over LDAP. With OpenDJ, you
can generate sample users at installation time.

Extending OpenIG
Scripting SQL Queries

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 96

Next, save the script as $HOME/.openig/scripts/groovy/LdapAuthFilter.groovy (%appdata%\OpenIG\scripts\groovy
\LdapAuthFilter.groovy on Windows). If the directory server installation does not match the assumptions
made in the script, adjust the script to use the correct settings for your installation.

Finally, add the following route to your configuration as $HOME/.openig/config/routes/10-ldap.json
(%appdata%\OpenIG\config\routes\10-ldap.json on Windows).

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "ScriptableFilter",
 "config": {
 "type": "application/x-groovy",
 "file": "LdapAuthFilter.groovy"
 }
 }
],
 "handler": {
 "type": "ScriptableHandler",
 "config": {
 "type": "application/x-groovy",
 "source":
 "import org.forgerock.openig.http.Response;
 dn = exchange.request.headers['Ldap-User-Dn'][0];
 entity = '<html><p>Ldap-User-Dn: ' + dn + '</p></html>';

 exchange.response = new Response();
 exchange.response.status = 200;
 exchange.response.entity = entity;"
 }
 }
 }
 },
 "condition": "${matches(exchange.request.uri.path, '^/ldap')}"
}

The route calls the "LdapAuthFilter.groovy" script to authenticate the user over LDAP. On successful
authentication, it responds with the the bind DN.

To try it out, browse to a URL where query string parameters specify a valid username and password,
such as http://www.example.com:8080/ldap?username=user.0&password=password.

The response from the script shows the DN: Ldap-User-Dn: uid=user.0,ou=People,dc=example,dc=com.

11.5. Scripting SQL Queries
You can use a ScriptableFilter to look up information in a relational database and include the results
in the Exchange.

http://www.example.com:8080/ldap?username=user.0&password=password

Extending OpenIG
Scripting SQL Queries

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 97

The following filter looks up user credentials in a database given the user's email address, which is
found in the form data of the request. The script then sets the credentials in headers, making sure the
scheme is HTTPS to protect the request when it leaves OpenIG.

/*
 * Look up user credentials in a relational database
 * based on the user's email address provided in the request form data,
 * and set the credentials in the exchange headers for the next handler.
 */

def client = new SqlClient()
def credentials = client.getCredentials(exchange.request.form?.mail[0])
exchange.request.headers.add("Username", credentials.Username)
exchange.request.headers.add("Password", credentials.Password)

// The credentials are not protected in the headers, so use HTTPS.
exchange.request.uri.scheme = "https"

// Call the next handler. This returns when the request has been handled.
next.handle(exchange)

The previous script demonstrates a ScriptableFilter that uses a SqlClient class defined in another
script. The following code listing shows the SqlClient class.

import groovy.sql.Sql

import javax.naming.InitialContext
import javax.sql.DataSource

/**
 * Access a database with a well-known structure,
 * in particular to get credentials given an email address.
 */
class SqlClient {

 // Get a DataSource from the container.
 InitialContext context = new InitialContext()
 DataSource dataSource = context.lookup("jdbc/forgerock") as DataSource
 def sql = new Sql(dataSource)

 // The expected table is laid out like the following.

 // Table USERS
 // --
 // | USERNAME | PASSWORD | EMAIL |...|
 // --
 // | <username>| <passwd> | <mail@...>|...|
 // --

 String tableName = "USERS"
 String usernameColumn = "USERNAME"
 String passwordColumn = "PASSWORD"
 String mailColumn = "EMAIL"

Extending OpenIG
Scripting SQL Queries

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 98

 /**
 * Get the Username and Password given an email address.
 *
 * @param mail Email address used to look up the credentials
 * @return Username and Password from the database
 */
 def getCredentials(mail) {
 def credentials = [:]
 def query = "SELECT " + usernameColumn + ", " + passwordColumn +
 " FROM " + tableName + " WHERE " + mailColumn + "='$mail';"

 sql.eachRow(query) {
 credentials.put("Username", it."$usernameColumn")
 credentials.put("Password", it."$passwordColumn")
 }
 return credentials
 }
}

To try this out, first follow the tutorial on Login With Credentials From a Database. When everything
in that tutorial works, you know that OpenIG can connect to the database, lookup users by email
address, and successfully authenticate to the sample application.

Next, save the scripts as $HOME/.openig/scripts/groovy/SqlAccessFilter.groovy (%appdata%\OpenIG\scripts
\groovy\SqlAccessFilter.groovy on Windows), and as $HOME/.openig/scripts/groovy/SqlClient.groovy (%appdata
%\OpenIG\scripts\groovy\SqlClient.groovy on Windows).

Finally, add the following route to your configuration as $HOME/.openig/config/routes/11-db.json (%appdata
%\OpenIG\config\routes\11-db.json on Windows).

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "ScriptableFilter",
 "config": {
 "type": "application/x-groovy",
 "file": "SqlAccessFilter.groovy"
 }
 },
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://www.example.com:8081",
 "form": {
 "username": [
 "${exchange.request.headers['Username'][0]}"
],
 "password": [
 "${exchange.request.headers['Password'][0]}"
]

Extending OpenIG
About Developing Custom Extensions

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 99

 }
 }
 }
],
 "handler": "ClientHandler"
 }
 },
 "condition": "${matches(exchange.request.uri.path, '^/db')}"
}

The route calls the "ScriptableFilter" to look up credentials over SQL. It then uses calls a
"StaticRequestFilter" to build a login request. Although the script sets the scheme to HTTPS, the
"StaticRequestFilter" ignores that and resets the URI. This is to make it easier for you to try this out,
without having to worry about setting up HTTPS.

To try it out, browse to a URL where a query string parameter specifies a valid email address, such as
http://www.example.com:8080/db?mail=george@example.com.

If the lookup and authentication are successful, you see the profile page of the sample application.

11.6. About Developing Custom Extensions
If scripting is not enough, be aware that OpenIG includes a complete Java application programming
interface, designed to allow you to customize OpenIG as required. Customizing OpenIG can be used
to perform complex server interactions or intensive data transformations that you cannot achieve
with scripts or existing handlers, filters and expressions in the Reference.

11.7. Key Extension Points
Primary extension points include these interfaces.

AuditEventListener

An AuditEventListener observes audit events. For an example, see MonitorEndpointHandler in
the Reference.

You must implement the interface for your audit agent and its heaplet must extend
ConditionalAuditEventListener.ConditionalListenerHeaplet.

Decorator

A Decorator adds new behavior to another object, without changing the base type of the object.

When suggesting custom Decorator names, know that OpenIG reserves all field names that use
only alphanumeric characters. To avoid clashes, use dots or dashes in your field names, such as
"my-decorator".

http://www.example.com:8080/db?mail=george@example.com
../apidocs/index.html
../apidocs/index.html
../apidocs/index.html?org/forgerock/openig/audit/AuditEventListener.html
../apidocs/index.html?org/forgerock/openig/audit/ConditionalAuditEventListener.ConditionalListenerHeaplet.html
../apidocs/index.html?org/forgerock/openig/decoration/Decorator.html

Extending OpenIG
Implementing a Filter

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 100

Filter

A Filter serves to process the request and/or the response.

Handler

A Handler generates a response given a request.

These Filter and Handler interfaces are similar to Java Enterprise Edition Filter and Servlet
interfaces, with some differences in the semantics of messages. While you can simply implement
these interfaces, OpenIG also provides convenience classes: GenericFilter and GenericHandler.

11.8. Implementing a Filter
The Filter interface exposes a filter() method, which takes an Exchange object and the Chain
of remaining filters and handler to dispatch to. Initially, exchange.request contains the request
to be filtered. To pass the request to the next filter or handler in the chain, the filter calls
next.handle(exchange). After this call, exchange.response contains the response that can be filtered.

A filter might elect not to pass the request to the next filter or handler, and instead handle the
request itself. It can achieve this by merely avoiding a call to next.handle(exchange) and creating its
own response object in the exchange. The filter is also at liberty to replace a response with another
of its own. A filter can exist in more than one chain, therefore should make no assumptions or
correlations using the chain it is supplied. The only valid use of a chain by a filter is to call its handle()
method to dispatch the exchange to the rest of the chain.

Note

If an existing response exists in the exchange object and the filter intends to replace it with its own, it must
call the response.close() method in order to signal that the processing of the response from a remote server is
complete.

11.9. Implementing a Handler
The Handler interface exposes a handle() method, which takes an Exchange object. It processes the
request in exchange.request and produces a response in exchange.response. A handler can elect to
dispatch the exchange to another handler or chain.

Note

If an existing response exists in the exchange object and the filter intends to replace it with its own, it must
first check to see if the it must call the response.close() method in order to signal that the processing of the
response from a remote server is complete.

11.10. Heap Object Configuration

../apidocs/index.html?org/forgerock/openig/filter/Filter.html
../apidocs/index.html?org/forgerock/openig/handler/Handler.html
../apidocs/index.html?org/forgerock/openig/filter/GenericFilter.html
../apidocs/index.html?org/forgerock/openig/handler/GenericHandler.html
../apidocs/index.html?org/forgerock/openig/filter/Filter.html#filter(org.forgerock.openig.http.Exchange,%20org.forgerock.openig.handler.Handler)
../apidocs/index.html?org/forgerock/openig/http/Exchange.html
../apidocs/index.html?org/forgerock/openig/filter/Chain.html
../apidocs/index.html?org/forgerock/openig/http/Exchange.html#request
../apidocs/index.html?org/forgerock/openig/filter/Chain.html#handle(org.forgerock.openig.http.Exchange)
../apidocs/index.html?org/forgerock/openig/http/Exchange.html#response
../apidocs/index.html?org/forgerock/openig/http/Message.html#close()
../apidocs/index.html?org/forgerock/openig/handler/Handler.html#handle(org.forgerock.openig.http.Exchange)
../apidocs/index.html?org/forgerock/openig/http/Exchange.html#response
../apidocs/index.html?org/forgerock/openig/http/Exchange.html#request
../apidocs/index.html?org/forgerock/openig/http/Exchange.html#response
../apidocs/index.html?org/forgerock/openig/http/Message.html#close()

Extending OpenIG
Sample Filter

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 101

Objects are added to the heap and supplied with configuration artifacts at initialization time. To be
integrated with the configuration, a class must have an accompanying implementation of the Heaplet
interface. The easiest and most common way of exposing the heaplet is to extend the GenericHeaplet
class in a nested class of the class you want to create and initialize, overriding the heaplet's create
method.

Within the create method, you can access the object's configuration through the config field.

11.11. Sample Filter
The following sample filter sets an arbitrary header in the incoming request and outgoing response.

../apidocs/index.html?org/forgerock/openig/heap/Heaplet.html
../apidocs/index.html?org/forgerock/openig/heap/GenericHeaplet.html
../apidocs/index.html?org/forgerock/openig/heap/GenericHeaplet.html#create()
../apidocs/index.html?org/forgerock/openig/heap/GenericHeaplet.html#config

Extending OpenIG
Sample Filter

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 102

package org.forgerock.openig.doc;

import org.forgerock.openig.filter.GenericFilter;
import org.forgerock.openig.handler.Handler;
import org.forgerock.openig.handler.HandlerException;
import org.forgerock.openig.heap.GenericHeaplet;
import org.forgerock.openig.heap.HeapException;
import org.forgerock.openig.http.Exchange;

import java.io.IOException;

/**
 * Filter to set a header in the incoming request and in the outgoing response.
 */
public class SampleFilter extends GenericFilter {

 /** Header name. */
 String name;

 /** Header value. */
 String value;

 /**
 * Set a header in the incoming request and in the outgoing response.
 * A configuration example looks something like the following.
 *
 * <pre>
 * {
 * "name": "SampleFilter",
 * "type": "SampleFilter",
 * "config": {
 * "name": "X-Greeting",
 * "value": "Hello world"
 * }
 * }
 * </pre>
 *
 * @param exchange Wraps request and response.
 * @param next Next filter or handler in the chain.
 * @throws HandlerException Failure when handling the exchange.
 * @throws IOException I/O exception when handling the exchange.
 */
 @Override
 public void filter(Exchange exchange, Handler next)
 throws HandlerException, IOException {

 // Set header in the request.
 exchange.request.getHeaders().putSingle(name, value);

 // Pass to the next filter or handler in the chain.
 next.handle(exchange);

 // Set header in the response.
 exchange.response.getHeaders().putSingle(name, value);
 }

 /**
 * Create and initialize the filter, based on the configuration.

Extending OpenIG
Sample Filter

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 103

 * The filter object is stored in the heap.
 */
 public static class Heaplet extends GenericHeaplet {

 /**
 * Create the filter object in the heap,
 * setting the header name and value for the filter,
 * based on the configuration.
 *
 * @return The filter object.
 * @throws HeapException Failed to create the object.
 */
 @Override
 public Object create() throws HeapException {

 SampleFilter filter = new SampleFilter();
 filter.name = config.get("name").required().asString();
 filter.value = config.get("value").required().asString();

 return filter;
 }
 }
}

When you set the sample filter "type" in the configuration, you need to provide the fully qualified
class name, as in "type": "org.forgerock.openig.doc.SampleFilter". You can however implement a class
alias resolver to make it possible to use a short name instead, as in "type": "SampleFilter".
package org.forgerock.openig.doc;

import org.forgerock.openig.alias.ClassAliasResolver;

import java.util.HashMap;
import java.util.Map;

/**
 * Allow use of short name aliases in configuration object types.
 *
 * This allows a configuration with {@code "type": "SampleFilter"}
 * instead of {@code "type": "org.forgerock.openig.doc.SampleFilter"}.
 */
public class SampleClassAliasResolver implements ClassAliasResolver {

 private static final Map<String, Class<?>> ALIASES =
 new HashMap<String, Class<?>>();

 static {
 ALIASES.put("SampleFilter", SampleFilter.class);
 }

 /**
 * Get the class for a short name alias.
 *
 * @param alias Short name alias.
 * @return The class, or null if the alias is not defined.
 */
 @Override
 public Class<?> resolve(String alias) {

Extending OpenIG
Building Customizations

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 104

 return ALIASES.get(alias);
 }
}

When you add your own resolver, you must make it discoverable within your custom
library. You do this by adding a services file named after the class resolver interface, where
the file contains the fully qualified class name of your resolver, under META-INF/services/
org.forgerock.openig.alias.ClassAliasResolver in the jar file for your customizations. When you have
more than one resolver, add one fully qualified class name per line. If you build your project using
Maven, then you can add this under the src/main/resources directory. The content of the file in this
example is one line:

org.forgerock.openig.doc.SampleClassAliasResolver

The corresponding heap object configuration then looks as follows.

{
 "name": "SampleFilter",
 "type": "SampleFilter",
 "config": {
 "name": "X-Greeting",
 "value": "Hello world"
 }
}

11.12. Building Customizations
You can use Apache Maven to manage dependencies on OpenIG. The dependencies are found in the
ForgeRock Maven repository.

The following listing shows the Maven POM configuration for the ForgeRock Maven repository and
the dependency to build the sample Filter.

Extending OpenIG
Embedding Customizations in OpenIG

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 105

 <repositories>
 <repository>
 <id>forgerock-staging-repository</id>
 <name>ForgeRock Release Repository</name>
 <url>http://maven.forgerock.org/repo/releases</url>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 </repository>
 <repository>
 <id>forgerock-snapshots-repository</id>
 <name>ForgeRock Snapshot Repository</name>
 <url>http://maven.forgerock.org/repo/snapshots</url>
 <releases>
 <enabled>false</enabled>
 </releases>
 </repository>
 </repositories>

 <dependencies>
 <dependency>
 <groupId>org.forgerock.openig</groupId>
 <artifactId>openig-core</artifactId>
 <version>3.1.0</version>
 </dependency>
 </dependencies>

You can then build your customizations into a jar file and install them in your local Maven repository
by using the mvn install command.

$ mvn install
...
[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ sample-filter ---
[INFO] Building jar: .../sample-filter/target/sample-filter-1.0.0-SNAPSHOT.jar
[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 1.478s
[INFO] Finished at: Fri Nov 07 16:57:18 CET 2014
[INFO] Final Memory: 18M/309M
[INFO] --

11.13. Embedding Customizations in OpenIG
After building your customizations into a jar file, you can include them in the OpenIG war file for
deployment. You do this by unpacking OpenIG-3.1.0.war, including your jar library in WEB-INF/lib, and
then creating a new war file.

Extending OpenIG
Embedding Customizations in OpenIG

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 106

For example, if your jar file is in a project named sample-filter, and the development version is 1.0.0-
SNAPSHOT, you might include the file as in the following example.

$ mkdir root && cd root
$ jar -xf ~/Downloads/OpenIG-3.1.0.war
$ cp ~/Documents/sample-filter/target/sample-filter-1.0.0-SNAPSHOT.jar WEB-INF/lib
$ jar -cf ../custom.war *

In this example, the resulting custom.war contains the custom sample filter. You can deploy the custom
war file as you would deploy OpenIG-3.1.0.war.

OpenIG Audit Framework

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 107

Chapter 12

OpenIG Audit Framework

OpenIG provides a publish-and-subscribe audit framework. Filters and Handlers publish audit events.
Agents in OpenIG that are registered with the audit system can subscribe to audit events.

Agents take responsibility for disseminating audit data to clients and to other systems. The
MonitorEndpointHandler in the Reference is an example of an audit agent.

To audit a Filter, Handler, or a route, you add an audit decoration. Audit decoration values are tags,
which are strings useful to audit agents. Agents can filter audit events of interest based on tags and
other conditions. The following example route has an audit decoration.

{
 "handler": "ClientHandler",
 "condition": "${matches(exchange.request.uri.query, 'site=com')}",
 "baseURI": "http://forgerock.com:80/",
 "audit": "ForgeRock.com route"
}

OpenIG creates an "audit" decorator, so you do not need to do so. For details on audit decorations,
see the Reference for AuditDecorator in the Reference.

The "MonitorEndpointHandler" is a simple audit agent that collates basic statistics about the number
of messages "in progress", "completed", and "internal errors" for each Filter or Handler that you have
tagged, and returns the data in JSON format. To try auditing with the "MonitorEndpointHandler"
agent, first set up the following routes.

• A route for the "MonitorEndpointHandler", 00-monitor.json:

{
 "handler": {
 "type": "MonitorEndpointHandler"
 },
 "condition": "${exchange.request.method == 'GET'
 and exchange.request.uri.path == '/openig/monitor'}"
}

• A route to ForgeRock.com, 08-com.json:

OpenIG Audit Framework

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 108

{
 "handler": "ClientHandler",
 "condition": "${matches(exchange.request.uri.query, 'site=com')}",
 "baseURI": "http://forgerock.com:80/",
 "audit": "ForgeRock.com route"
}

• A route to ForgeRock.org, 08-org.json:

{
 "handler": "ClientHandler",
 "condition": "${matches(exchange.request.uri.query, 'site=org')}",
 "baseURI": "https://forgerock.org:443/",
 "audit": "ForgeRock.org route"
}

• A default route with a static handler, 99-default.json:

{
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "reason": "OK",
 "entity": "Hello from a static default route"
 }
 },
 "audit": "Static default route"
}

With the routes in place and OpenIG running, access the following route endpoints a few times to
trigger audit events by using the following URLs.

http://www.example.com:8080/
http://www.example.com:8080/?site=com
http://www.example.com:8080/?site=org

After triggering a few audit events, access the monitor endpoint, http://www.example.com:8080/
openig/monitor. You should see counts of the audit events in JSON format.

http://www.example.com:8080/
http://www.example.com:8080/?site=com
http://www.example.com:8080/?site=org
http://www.example.com:8080/openig/monitor
http://www.example.com:8080/openig/monitor

OpenIG Audit Framework

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 109

{
 "Static default route": {
 "in progress": 0,
 "completed": 14,
 "internal errors": 0
 },
 "ForgeRock.com route": {
 "in progress": 0,
 "completed": 16,
 "internal errors": 0
 },
 "ForgeRock.org route": {
 "in progress": 0,
 "completed": 15,
 "internal errors": 0
 },
 "global": {
 "in progress": 0,
 "completed": 45,
 "internal errors": 0
 }
}

According to the example output shown above, OpenIG successfully handled 16 requests on the
"ForgeRock.com route", 15 requests on the "ForgeRock.org route", 14 default route requests for a
total of 45 request completed on the top-level "global" route.

You can build your own audit agents that implement AuditEventListener for the audit agent logic and
extend ConditionalAuditEventListener.ConditionalListenerHeaplet for the heaplet as described in the
section on Key Extension Points. For instructions on bundling your custom audit agents, see Building
Customizations.

../apidocs/index.html?org/forgerock/openig/audit/AuditEventListener.html
../apidocs/index.html?org/forgerock/openig/audit/ConditionalAuditEventListener.ConditionalListenerHeaplet.html

Troubleshooting
Object not found in heap

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 110

Chapter 13

Troubleshooting

This chapter covers common problems and their solutions.

13.1. Object not found in heap
org.forgerock.json.fluent.JsonValueException: /handler:
 object Router2 not found in heap
 at org.forgerock.openig.heap.HeapImpl.resolve(HeapImpl.java:351)
 at org.forgerock.openig.heap.HeapImpl.resolve(HeapImpl.java:334)
 at org.forgerock.openig.heap.HeapImpl.getHandler(HeapImpl.java:538)

You have specified "handler": "Router2" in config.json, but no handler configuration object named
"Router2" exists. Make sure you have added an entry for the handler and that you have correctly
spelled its name.

13.2. Extra or missing character / invalid JSON
HTTP ERROR 500

Problem accessing /wp/wp-login.php. Reason:

 Server Error

Caused by:

 org.forgerock.openig.handler.HandlerException: no handler to dispatch to

A better description of the error appears as an error in the console log:

Troubleshooting
The values in the flat file are incorrect

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 111

TUE DEC 02 17:35:57 CET 2014 (ERROR) {Router}/handler
The route defined in file '/Users/me/.openig/config/routes/route1.json'
 cannot be added

TUE DEC 02 17:35:57 CET 2014 (ERROR) {Router}/handler
Cannot read/parse content of /Users/me/.openig/config/routes/route1.json
[HeapException] > Cannot read/parse content of
 /Users/me/.openig/config/routes/route1.json
[JsonParseException] > Unexpected character (',' (code 44)):
 was expecting double-quote to start field name
 at [Source: java.io.InputStreamReader@4c8d1091; line: 4, column: 28]

In this case, extra comma is spotted at line 4, column 28.

Use a JSON editor or JSON validation tool such as JSONLint to make sure your JSON is valid.

13.3. The values in the flat file are incorrect
Ensure the flat file is readable by the user running the container for OpenIG. Values are all
characters, including space and tabs, between the separator, so make sure the values are not padded
with spaces.

13.4. Problem accessing URL
HTTP ERROR 500

Problem accessing /myURL . Reason:

java.lang.String cannot be cast to java.util.List
Caused by:
java.lang.ClassCastException: java.lang.String cannot be cast to java.util.List

This error is typically encountered when using the AssignmentFilter in the Reference and setting a
string value for one of the Headers. All headers are stored in Lists so the header must be addressed
with a subscript.

For example, if you try to set exchange.request.headers['Location'] for a redirect in the response object,
you should instead set exchange.request.headers['Location'][0]. A header without a subscript leads to
the error above.

13.5. StaticResponseHandler results in a blank page
You must define an entity for the response as in the following example.

http://jsonlint.com/

Troubleshooting
OpenIG is not logging users in

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 112

{
 "name": "AccessDeniedHandler",
 "type": "StaticResponseHandler",
 "config": {
 "status": 403,
 "reason": "Forbidden",
 "entity": "<html><p>User does not have permission</p></html>"
 }
}

13.6. OpenIG is not logging users in
If you are proxying to more than one application in multiple DNS domains, you must make sure your
container is enabled for domain cookies. For details on your specific container, see the section on
Configuring Deployment Containers.

13.7. Read timed out error when sending a request
If a "baseURI" configuration setting causes a request to come back to OpenIG, OpenIG never
produces a response to the request. You then observe the following behavior.

You send a request and OpenIG seems to hang. Then you see a failure message, HTTP Status 500 - Read
 timed out, accompanied by OpenIG throwing an exception, java.net.SocketTimeoutException: Read timed
 out.

To fix this issue, make sure that "baseURI" configuration settings do not cause requests to come back
to OpenIG.

13.8. OpenIG does not use new route configuration
OpenIG loads all configuration at startup. By default, it then periodically reloads changed route
configurations.

If you make changes to a route that result in an invalid configuration, OpenIG logs errors, but it
keeps the previous, correct configuration, and continues to use the old route.

OpenIG only uses the new configuration after you save a valid version or when you restart OpenIG.

Of course, if you restart OpenIG with an invalid route configuration, then OpenIG tries to load the
invalid route at startup and logs an error. In that case, if there is no default handler to accept any
incoming exchange for the invalid route, then you see an error, No handler to dispatch to.

Troubleshooting
Make OpenIG skip a route

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 113

13.9. Make OpenIG skip a route
If you have copied routes from another OpenIG server, those routes might depend on environment or
container configuration that you have not yet configured locally.

You can work around this problem by changing the route file extension. A router ignores route files
that do not have the .json extension.

For example, suppose you copy route all sample route configurations from the documentation, and
then start OpenIG without first configuring your container. This can result in an error such as the
following.

org.forgerock.json.fluent.JsonValueException:
 /handler/config/filters/0/config/dataSource:
 javax.naming.NameNotFoundException;
 remaining name 'jdbc/forgerock'
 at org.forgerock.openig.servlet.GatewayServlet.init(GatewayServlet.java:222)
 at org.eclipse.jetty.servlet.ServletHolder.initServlet(ServletHolder.java:595)
 at org.eclipse.jetty.servlet.ServletHolder.getServlet(ServletHolder.java:458)
 at org.eclipse.jetty.servlet.ServletHolder.handle(ServletHolder.java:724)

This arises from the route in 03-sql.json, which defines an "SqlAttributesFilter" that depends on a
JNDI data source configured in the container.

{
 "type": "SqlAttributesFilter",
 "config": {
 "dataSource": "java:comp/env/jdbc/forgerock",
 "preparedStatement":
 "SELECT username, password FROM users WHERE email = ?;",
 "parameters": [
 "george@example.com"
],
 "target": "${exchange.credentials}"
 }
}

To prevent OpenIG from loading the route configuration until you have had time to configure the
container, change the file extension to render the route inactive.

$ mv ~/.openig/config/routes/03-sql.json ~/.openig/config/routes/03-sql.inactive

If necessary, restart the container to force OpenIG to reload the configuration.

When you have configured the data source in the container, change the file extension back to .json to
render the route active again.

Troubleshooting
Make OpenIG skip a route

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 114

$ mv ~/.openig/config/routes/03-sql.inactive ~/.openig/config/routes/03-sql.json

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 115

Appendix A. SAML 2.0 & Multiple Applications

You can use a single OpenIG server as SAML 2.0 Service Provider for multiple protected applications.

A.1. Before You Start
Before you try the samples described here, familiarize yourself with OpenIG SAML 2.0 support by
reading the chapter, OpenIG as a SAML 2.0 Service Provider, and working through the tutorial in
that chapter.

Also make sure you understand the principles for configuring SAML 2.0 entities in OpenAM. The
preparation for handling multiple applications involves editing the SAML 2.0 Service Provider
configurations based on the original Fedlet configuration, and then importing the new configurations
as SAML 2.0 entities in OpenAM.

At this point, you should have OpenIG protecting the sample application as SAML 2.0 Service
Provider, with OpenAM working as Identity Provider configured as described in the tutorial.

A.2. Preparing the Network
You must configure the network so that browser traffic to the application hosts is proxied through
OpenIG.

Modify DNS or host file settings so that the hosts name of the protected applications resolve to the IP
address of OpenIG on the system where the browser runs. Restart the browser as necessary to take
the changes into account.

The examples that follow use host names sp.one.example and sp.two.example. To try the examples on
your computer, you can edit the host file settings to add these to the loopback address.

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 116

127.0.0.1 localhost www.example.com sp.one.example sp.two.example

A.3. Preparing the SAML 2.0 Service Provider Configurations
Based on the original Fedlet configuration, you add configuration for each new protected application.

In the following examples, the first application runs on host sp.one.example. The examples assign the
entity ID One to this application, and use the metaAlias /sp1 in the SAML configuration. The second
application runs on sp.two.example with entity ID Two and metaAlias /sp2.

Edit the SAML/fedlet.cot file to include the entity IDs as in the following example.

cot-name=Circle of Trust
sun-fm-cot-status=Active
sun-fm-trusted-providers=http://openam.example.com:8088/openam,OpenIG,One,Two
sun-fm-saml2-readerservice-url=
sun-fm-saml2-writerservice-url=

For each application, make copies of the SAML configuration files sp.xml and sp-extended.xml. Edit
the copy of sp.xml for the application so that the entity ID matches the application, the Location and
ResponseLocation attributes reflect those of the application, and the AssertionConsumerService
Location attributes include the metaAlias.

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 117

Example A.1. Service Provider Configuration for Application One

<!--
 Set the entityID and edit *Location attributes to match the service provider.
 Note that AssertionConsumerService Location attributes include the metaAlias.
-->
<EntityDescriptor
 entityID="One"
 xmlns="urn:oasis:names:tc:SAML:2.0:metadata">
 <SPSSODescriptor
 AuthnRequestsSigned="false"
 WantAssertionsSigned="false"
 protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 <SingleLogoutService
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"
 Location="http://sp.one.example:8080/saml/fedletSloRedirect"
 ResponseLocation="http://sp.one.example:8080/saml/fedletSloRedirect"/>
 <SingleLogoutService
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
 Location="http://sp.one.example:8080/saml/fedletSloPOST"
 ResponseLocation="http://sp.one.example:8080/saml/fedletSloPOST"/>
 <SingleLogoutService
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP"
 Location="http://sp.one.example:8080/saml/fedletSloSoap"/>
 <NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-format:transient</NameIDFormat>
 <AssertionConsumerService
 isDefault="true"
 index="0"
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
 Location="http://sp.one.example:8080/saml/fedletapplication/metaAlias/sp1"/>
 <AssertionConsumerService
 index="1"
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Artifact"
 Location="http://sp.one.example:8080/saml/fedletapplication/metaAlias/sp1"/>
 </SPSSODescriptor>
 <RoleDescriptor
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:query="urn:oasis:names:tc:SAML:metadata:ext:query"
 xsi:type="query:AttributeQueryDescriptorType"
 protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 </RoleDescriptor>
 <XACMLAuthzDecisionQueryDescriptor
 WantAssertionsSigned="false"
 protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 </XACMLAuthzDecisionQueryDescriptor>
</EntityDescriptor>

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 118

Example A.2. Service Provider Configuration for Application Two

<!--
 Set the entityID and edit *Location attributes to match the service provider.
 Note that AssertionConsumerService Location attributes include the metaAlias.
-->
<EntityDescriptor
 entityID="Two"
 xmlns="urn:oasis:names:tc:SAML:2.0:metadata">
 <SPSSODescriptor
 AuthnRequestsSigned="false"
 WantAssertionsSigned="false"
 protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 <SingleLogoutService
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"
 Location="http://sp.two.example:8080/saml/fedletSloRedirect"
 ResponseLocation="http://sp.two.example:8080/saml/fedletSloRedirect"/>
 <SingleLogoutService
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
 Location="http://sp.two.example:8080/saml/fedletSloPOST"
 ResponseLocation="http://sp.two.example:8080/saml/fedletSloPOST"/>
 <SingleLogoutService
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP"
 Location="http://sp.two.example:8080/saml/fedletSloSoap"/>
 <NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-format:transient</NameIDFormat>
 <AssertionConsumerService
 isDefault="true"
 index="0"
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
 Location="http://sp.two.example:8080/saml/fedletapplication/metaAlias/sp2"/>
 <AssertionConsumerService
 index="1"
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Artifact"
 Location="http://sp.two.example:8080/saml/fedletapplication/metaAlias/sp2"/>
 </SPSSODescriptor>
 <RoleDescriptor
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:query="urn:oasis:names:tc:SAML:metadata:ext:query"
 xsi:type="query:AttributeQueryDescriptorType"
 protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 </RoleDescriptor>
 <XACMLAuthzDecisionQueryDescriptor
 WantAssertionsSigned="false"
 protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 </XACMLAuthzDecisionQueryDescriptor>
</EntityDescriptor>

Edit the copy of sp-extended.xml for the application so that the entity ID matches the application, and
the metaAlias and appLogoutUrl are correctly set.

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 119

Example A.3. Service Provider Extended Configuration for Application One

<!--
 Set the entityID and edit the SPSSOConfig metaAlias attribute.
 Also set the value of appLogoutUrl.
-->
<EntityConfig xmlns="urn:sun:fm:SAML:2.0:entityconfig"
 xmlns:fm="urn:sun:fm:SAML:2.0:entityconfig"
 hosted="1"
 entityID="One">

 <SPSSOConfig metaAlias="/sp1">
 <Attribute name="description">
 <Value></Value>
 </Attribute>
 <Attribute name="signingCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="encryptionCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthOn">
 <Value>false</Value>
 </Attribute>
 <Attribute name="basicAuthUser">
 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthPassword">
 <Value></Value>
 </Attribute>
 <Attribute name="autofedEnabled">
 <Value>false</Value>
 </Attribute>
 <Attribute name="autofedAttribute">
 <Value></Value>
 </Attribute>
 <Attribute name="transientUser">
 <Value>anonymous</Value>
 </Attribute>
 <Attribute name="spAdapter">
 <Value></Value>
 </Attribute>
 <Attribute name="spAdapterEnv">
 <Value></Value>
 </Attribute>
 <Attribute name="fedletAdapter">
 <Value>com.sun.identity.saml2.plugins.DefaultFedletAdapter</Value>
 </Attribute>
 <Attribute name="fedletAdapterEnv">
 <Value></Value>
 </Attribute>
 <Attribute name="spAccountMapper">
 <Value>com.sun.identity.saml2.plugins.DefaultLibrarySPAccountMapper</Value>
 </Attribute>
 <Attribute name="useNameIDAsSPUserID">
 <Value>false</Value>

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 120

 </Attribute>
 <Attribute name="spAttributeMapper">
 <Value>com.sun.identity.saml2.plugins.DefaultSPAttributeMapper</Value>
 </Attribute>
 <Attribute name="spAuthncontextMapper">
 <Value>com.sun.identity.saml2.plugins.DefaultSPAuthnContextMapper</Value>
 </Attribute>
 <Attribute name="spAuthncontextClassrefMapping">
 <Value>
 urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport|0|default
 </Value>
 </Attribute>
 <Attribute name="spAuthncontextComparisonType">
 <Value>exact</Value>
 </Attribute>
 <Attribute name="attributeMap">
 <Value>employeenumber=employeenumber</Value>
 <Value>mail=mail</Value>
 </Attribute>
 <Attribute name="saml2AuthModuleName">
 <Value></Value>
 </Attribute>
 <Attribute name="localAuthURL">
 <Value></Value>
 </Attribute>
 <Attribute name="intermediateUrl">
 <Value></Value>
 </Attribute>
 <Attribute name="defaultRelayState">
 <Value></Value>
 </Attribute>
 <Attribute name="appLogoutUrl">
 <Value>http://sp.one.example:8080/saml/logout</Value>
 </Attribute>
 <Attribute name="assertionTimeSkew">
 <Value>300</Value>
 </Attribute>
 <Attribute name="wantAttributeEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="wantAssertionEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="wantNameIDEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="wantPOSTResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantArtifactResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantLogoutRequestSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantLogoutResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantMNIRequestSigned">

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 121

 <Value></Value>
 </Attribute>
 <Attribute name="wantMNIResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="responseArtifactMessageEncoding">
 <Value>URI</Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value></Attribute>
 <Attribute name="saeAppSecretList">
 </Attribute>
 <Attribute name="saeSPUrl">
 <Value></Value>
 </Attribute>
 <Attribute name="saeSPLogoutUrl">
 </Attribute>
 <Attribute name="ECPRequestIDPListFinderImpl">
 <Value>com.sun.identity.saml2.plugins.ECPIDPFinder</Value>
 </Attribute>
 <Attribute name="ECPRequestIDPList">
 <Value></Value>
 </Attribute>
 <Attribute name="ECPRequestIDPListGetComplete">
 <Value></Value>
 </Attribute>
 <Attribute name="enableIDPProxy">
 <Value>false</Value>
 </Attribute>
 <Attribute name="idpProxyList">
 <Value></Value>
 </Attribute>
 <Attribute name="idpProxyCount">
 <Value>0</Value>
 </Attribute>
 <Attribute name="useIntroductionForIDPProxy">
 <Value>false</Value>
 </Attribute>
 <Attribute name="spSessionSyncEnabled">
 <Value>false</Value>
 </Attribute>
 <Attribute name="relayStateUrlList">
 </Attribute>
 </SPSSOConfig>
 <AttributeQueryConfig metaAlias="/attrQuery">
 <Attribute name="signingCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="encryptionCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="wantNameIDEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value>
 </Attribute>
 </AttributeQueryConfig>
 <XACMLAuthzDecisionQueryConfig metaAlias="/pep">

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 122

 <Attribute name="signingCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="encryptionCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthOn">
 <Value>false</Value>
 </Attribute>
 <Attribute name="basicAuthUser">
 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthPassword">
 <Value></Value>
 </Attribute>
 <Attribute name="wantXACMLAuthzDecisionResponseSigned">
 <Value>false</Value>
 </Attribute>
 <Attribute name="wantAssertionEncrypted">
 <Value>false</Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value>
 </Attribute>
 </XACMLAuthzDecisionQueryConfig>
</EntityConfig>

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 123

Example A.4. Service Provider Extended Configuration for Application Two

<!--
 Set the entityID and edit the SPSSOConfig metaAlias attribute.
 Also set the value of appLogoutUrl.
-->
<EntityConfig xmlns="urn:sun:fm:SAML:2.0:entityconfig"
 xmlns:fm="urn:sun:fm:SAML:2.0:entityconfig"
 hosted="1"
 entityID="Two">

 <SPSSOConfig metaAlias="/sp2">
 <Attribute name="description">
 <Value></Value>
 </Attribute>
 <Attribute name="signingCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="encryptionCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthOn">
 <Value>false</Value>
 </Attribute>
 <Attribute name="basicAuthUser">
 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthPassword">
 <Value></Value>
 </Attribute>
 <Attribute name="autofedEnabled">
 <Value>false</Value>
 </Attribute>
 <Attribute name="autofedAttribute">
 <Value></Value>
 </Attribute>
 <Attribute name="transientUser">
 <Value>anonymous</Value>
 </Attribute>
 <Attribute name="spAdapter">
 <Value></Value>
 </Attribute>
 <Attribute name="spAdapterEnv">
 <Value></Value>
 </Attribute>
 <Attribute name="fedletAdapter">
 <Value>com.sun.identity.saml2.plugins.DefaultFedletAdapter</Value>
 </Attribute>
 <Attribute name="fedletAdapterEnv">
 <Value></Value>
 </Attribute>
 <Attribute name="spAccountMapper">
 <Value>com.sun.identity.saml2.plugins.DefaultLibrarySPAccountMapper</Value>
 </Attribute>
 <Attribute name="useNameIDAsSPUserID">
 <Value>false</Value>

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 124

 </Attribute>
 <Attribute name="spAttributeMapper">
 <Value>com.sun.identity.saml2.plugins.DefaultSPAttributeMapper</Value>
 </Attribute>
 <Attribute name="spAuthncontextMapper">
 <Value>com.sun.identity.saml2.plugins.DefaultSPAuthnContextMapper</Value>
 </Attribute>
 <Attribute name="spAuthncontextClassrefMapping">
 <Value>
 urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport|0|default
 </Value>
 </Attribute>
 <Attribute name="spAuthncontextComparisonType">
 <Value>exact</Value>
 </Attribute>
 <Attribute name="attributeMap">
 <Value>employeenumber=employeenumber</Value>
 <Value>mail=mail</Value>
 </Attribute>
 <Attribute name="saml2AuthModuleName">
 <Value></Value>
 </Attribute>
 <Attribute name="localAuthURL">
 <Value></Value>
 </Attribute>
 <Attribute name="intermediateUrl">
 <Value></Value>
 </Attribute>
 <Attribute name="defaultRelayState">
 <Value></Value>
 </Attribute>
 <Attribute name="appLogoutUrl">
 <Value>http://sp.two.example:8080/saml/logout</Value>
 </Attribute>
 <Attribute name="assertionTimeSkew">
 <Value>300</Value>
 </Attribute>
 <Attribute name="wantAttributeEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="wantAssertionEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="wantNameIDEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="wantPOSTResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantArtifactResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantLogoutRequestSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantLogoutResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantMNIRequestSigned">

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 125

 <Value></Value>
 </Attribute>
 <Attribute name="wantMNIResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="responseArtifactMessageEncoding">
 <Value>URI</Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value></Attribute>
 <Attribute name="saeAppSecretList">
 </Attribute>
 <Attribute name="saeSPUrl">
 <Value></Value>
 </Attribute>
 <Attribute name="saeSPLogoutUrl">
 </Attribute>
 <Attribute name="ECPRequestIDPListFinderImpl">
 <Value>com.sun.identity.saml2.plugins.ECPIDPFinder</Value>
 </Attribute>
 <Attribute name="ECPRequestIDPList">
 <Value></Value>
 </Attribute>
 <Attribute name="ECPRequestIDPListGetComplete">
 <Value></Value>
 </Attribute>
 <Attribute name="enableIDPProxy">
 <Value>false</Value>
 </Attribute>
 <Attribute name="idpProxyList">
 <Value></Value>
 </Attribute>
 <Attribute name="idpProxyCount">
 <Value>0</Value>
 </Attribute>
 <Attribute name="useIntroductionForIDPProxy">
 <Value>false</Value>
 </Attribute>
 <Attribute name="spSessionSyncEnabled">
 <Value>false</Value>
 </Attribute>
 <Attribute name="relayStateUrlList">
 </Attribute>
 </SPSSOConfig>
 <AttributeQueryConfig metaAlias="/attrQuery">
 <Attribute name="signingCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="encryptionCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="wantNameIDEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value>
 </Attribute>
 </AttributeQueryConfig>
 <XACMLAuthzDecisionQueryConfig metaAlias="/pep">

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 126

 <Attribute name="signingCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="encryptionCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthOn">
 <Value>false</Value>
 </Attribute>
 <Attribute name="basicAuthUser">
 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthPassword">
 <Value></Value>
 </Attribute>
 <Attribute name="wantXACMLAuthzDecisionResponseSigned">
 <Value>false</Value>
 </Attribute>
 <Attribute name="wantAssertionEncrypted">
 <Value>false</Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value>
 </Attribute>
 </XACMLAuthzDecisionQueryConfig>
</EntityConfig>

For each of the service provider extended configuration files, prepare a copy for use when importing
the configuration into OpenAM. The only change to make in each copy is to set hosted="0", so that
when you import the configuration into OpenAM, OpenAM considers it that of a remote service
provider.

A.4. Importing Service Provider Configurations Into OpenAM
For each new protected application, import a SAML 2.0 entity into OpenAM.

1. Login to OpenAM console as global administrator (amadmin).

2. On the Federation tab > Entity Providers table, click Import Entity.

3. Import the entity using the metadata from the edited copies of sp.xml and sp-extended.xml, where
the copy of sp-extended.xml has hosted="0".

The service provider configurations should have Location Remote in the Entity Providers table.

4. Log out of OpenAM Console.

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 127

A.5. Preparing Configurations in OpenIG
For each new protected application, prepare a OpenIG configuration. The configurations in this
section follow the example in the chapter, OpenIG as a SAML 2.0 Service Provider.

Before editing route configurations for the protected applications, configure a top-level router that
does not rebase the incoming URLs, such as the following config.json. This differs from the example
used in earlier tutorials.

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 128

{
 "handler": {
 "type": "Router"
 },
 "heap": [
 {
 "name": "LogSink",
 "type": "ConsoleLogSink",
 "config": {
 "level": "DEBUG"
 }
 },
 {
 "name": "ClientHandler",
 "type": "ClientHandler"
 },
 {
 "name": "capture",
 "type": "CaptureDecorator",
 "config": {
 "captureEntity": true,
 "captureExchange": true
 }
 }
]
}

Also restart OpenIG to put all configuration changes into effect.

For each application set up a pair of routes, one to handle redirection for SAML authentication and
login to the application, the other to act as the SAML 2.0 assertion consumer that maps attributes
from the SAML assertion into the exchange and redirects back to the first route.

The following examples show the routes for application One.

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 129

Example A.5. Route for SAML Authentication & Login: Application One

{
 "handler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${empty exchange.session.sp1Username}",
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 302,
 "reason": "Found",
 "headers": {
 "Location": [
 "http://sp.one.example:8080/saml/SPInitiatedSSO?metaAlias=/sp1"
]
 }
 }
 },
 "baseURI": "http://sp.one.example:8081"
 },
 {
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://sp.one.example:8081",
 "form": {
 "username": [
 "${exchange.session.sp1Username}"
],
 "password": [
 "${exchange.session.sp1Password}"
]
 }
 }
 }
],
 "handler": "ClientHandler"
 }
 },
 "baseURI": "http://sp.one.example:8081"
 }
]
 }
 },
 "condition": "${matches(exchange.request.uri.host, 'sp.one.example')}"
}

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 130

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 131

Example A.6. SAML Assertion Consumer: Application One

{
 "handler": {
 "type": "SamlFederationHandler",
 "config": {
 "comment": "Use unique session properties for this SP.",
 "assertionMapping": {
 "sp1Username": "mail",
 "sp1Password": "employeenumber"
 },
 "authnContext": "sp1AuthnContext",
 "sessionIndexMapping": "sp1SessionIndex",
 "subjectMapping": "sp1SubjectName",
 "redirectURI": "/sp1"
 }
 },
 "condition": "${matches(exchange.request.uri.host, 'sp.one.example')
 and matches(exchange.request.uri.path, '^/saml')}"
}

The following examples show the routes for application Two.

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 132

Example A.7. Route for SAML Authentication & Login: Application Two

{
 "handler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${empty exchange.session.sp2Username}",
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 302,
 "reason": "Found",
 "headers": {
 "Location": [
 "http://sp.two.example:8080/saml/SPInitiatedSSO?metaAlias=/sp2"
]
 }
 }
 },
 "baseURI": "http://sp.two.example:8081"
 },
 {
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://sp.two.example:8081",
 "form": {
 "username": [
 "${exchange.session.sp2Username}"
],
 "password": [
 "${exchange.session.sp2Password}"
]
 }
 }
 }
],
 "handler": "ClientHandler"
 }
 },
 "baseURI": "http://sp.two.example:8081"
 }
]
 }
 },
 "condition": "${matches(exchange.request.uri.host, 'sp.two.example')}"
}

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 133

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 134

Example A.8. SAML Assertion Consumer: Application Two

{
 "handler": {
 "type": "SamlFederationHandler",
 "config": {
 "comment": "Use unique session properties for this SP.",
 "assertionMapping": {
 "sp2Username": "mail",
 "sp2Password": "employeenumber"
 },
 "authnContext": "sp2AuthnContext",
 "sessionIndexMapping": "sp2SessionIndex",
 "subjectMapping": "sp2SubjectName",
 "redirectURI": "/sp2"
 }
 },
 "condition": "${matches(exchange.request.uri.host, 'sp.two.example')
 and matches(exchange.request.uri.path, '^/saml')}"
}

A.6. Trying It Out
Try the configuration for multiple protected applications, logging in to OpenAM as for the single SP
federation example with username george, password costanza.

If you use the example configurations described here with all services running on your computer
protecting the sample application, then you can try the SAML 2.0 web single sign-on profile with
application One by using either of the following links.

• The link for SP initiated SSO.

• The link for IDP initiated SSO.

Similarly you can try the SAML 2.0 web single sign-on profile with application Two by using either of
the following links.

• The link for SP initiated SSO.

• The link for IDP initiated SSO.

If you have not configured the examples exactly as shown in this guide, then adapt the SSO links
accordingly.

http://sp.one.example:8080/saml/SPInitiatedSSO?metaAlias=/sp1&idpEntityID=http://openam.example.com:8088/openam&binding=urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST
http://openam.example.com:8088/openam/idpssoinit?NameIDFormat=urn:oasis:names:tc:SAML:2.0:nameid-format:transient&metaAlias=/idp&spEntityID=One&binding=urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST
http://sp.two.example:8080/saml/SPInitiatedSSO?metaAlias=/sp2&idpEntityID=http://openam.example.com:8088/openam&binding=urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST
http://openam.example.com:8088/openam/idpssoinit?NameIDFormat=urn:oasis:names:tc:SAML:2.0:nameid-format:transient&metaAlias=/idp&spEntityID=Two&binding=urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST

Gateway Guide OpenIG 3.1 (2018-01-25T12:44:24.64)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 135

Index

A
Auditing, 107

C
Configuration

Federation, 50, 51
HTTP & HTTPS, 84
Login with cookie, 79
Login with filter, 80
Login with hidden value, 82
Microsoft Online Outlook Web Access, 86
Multiple applications, 72
OAuth 2.0, 59, 66
OpenID Connect 1.0, 66
Proxy & capture, 77
Run time changes, 72
SAML 2.0, 49, 115
Simple login form, 78

Containers
Jetty, 23
Tomcat, 21

Customizations
Extension points, 99
Filters, 100
Handlers, 100
Heap objects, 100

I
Installation, 19

Federation, 50

O
OAuth 2.0

Client, 66
Resource server, 59

OpenID Connect 1.0
Relying party, 66

R
Routing, 72

S
SAML 2.0, 49, 115

T
Troubleshooting, 110
Tutorials

Auditing, 107
Capture & relay passwords, 42
Credentials from a file, 34
Credentials from a relational database, 34
Getting started, 11
OAuth 2.0, 59, 66
OpenID Connect 1.0, 66
Routing, 72
SAML 2.0, 49

	Gateway Guide
	Table of Contents
	Preface
	1. Who Should Use this Guide
	2. Formatting Conventions
	3. Accessing Documentation Online
	4. Using the ForgeRock.org Site

	Chapter 1. Understanding OpenIG
	1.1. About OpenIG
	1.2. The Exchange
	1.3. The Configuration
	1.4. Routing
	1.5. Filters, Handlers, & Chains
	1.6. Comments in OpenIG Configuration Files
	1.7. Where To Go From Here

	Chapter 2. Getting Started
	2.1. Before You Begin
	2.2. Install OpenIG
	2.3. Install an Application to Protect
	2.4. Configure OpenIG
	2.5. Configure the Network
	2.6. Try It Out

	Chapter 3. Installation in Detail
	3.1. Configuring Deployment Containers
	3.1.1. About Securing Connections
	3.1.2. Configuring Apache Tomcat For OpenIG
	3.1.2.1. Configuring Tomcat Cookie Domains
	3.1.2.2. Configuring Tomcat For HTTPS (Server-Side)
	3.1.2.3. Configuring Tomcat to Access MySQL Over JNDI

	3.1.3. Configuring Jetty For OpenIG
	3.1.3.1. Configuring Jetty Cookie Domains
	3.1.3.2. Configuring Jetty For HTTPS (Server-Side)
	3.1.3.3. Configuring Jetty to Access MySQL Over JNDI

	3.2. Preparing the Network
	3.3. Installing OpenIG
	3.4. Preparing For Load Balancing & Failover
	3.5. Configuring OpenIG For HTTPS (Client-Side)
	3.6. Setting Up Keys For JWT Encryption

	Chapter 4. Getting Login Credentials From Data Sources
	4.1. Before You Start
	4.2. Login With Credentials From a File
	4.3. Login With Credentials From a Database

	Chapter 5. Getting Login Credentials From OpenAM
	5.1. Detailed Flow
	5.2. Setup Summary
	5.3. Setup Details
	5.3.1. Setting Up OpenAM Server
	5.3.2. Preparing the Policy Agent Profile
	5.3.3. Configuring Password Capture
	5.3.4. Installing OpenIG
	5.3.5. Installing the Policy Agent
	5.3.6. Configuring OpenIG

	5.4. Trying It Out

	Chapter 6. OpenIG as a SAML 2.0 Service Provider
	6.1. About SAML 2.0 Federation
	6.2. Installation Overview
	6.3. Configuration File Overview
	6.4. Configuring the Federation Handler
	6.5. Example Settings
	6.6. Identity Provider Metadata
	6.7. Preparing to Try OpenIG as a SAML 2.0 Service Provider
	6.8. Configuring OpenAM
	6.9. Configuring OpenIG For Federation
	6.10. Trying It Out

	Chapter 7. OpenIG as an OAuth 2.0 Resource Server
	7.1. About OpenIG as an OAuth 2.0 Resource Server
	7.2. Preparing the Tutorial
	7.3. Setting Up OpenAM as an Authorization Server
	7.4. Configuring OpenIG as a Resource Server
	7.5. Trying It Out

	Chapter 8. OpenIG as an OAuth 2.0 Client
	8.1. About OpenIG as an OAuth 2.0 Client
	8.2. About OpenIG as an OpenID Connect 1.0 Relying Party
	8.3. Preparing the Tutorial
	8.4. Setting Up OpenAM as an OpenID Provider
	8.5. Configuring OpenIG as a Relying Party
	8.6. Trying It Out

	Chapter 9. Configuring Routes
	9.1. Before You Start
	9.2. Configuring the Router
	9.3. Configuring Additional Routes
	9.4. Trying it Out
	9.5. Locking Down Route Configurations

	Chapter 10. Configuration Templates
	10.1. Proxy & Capture
	10.2. Simple Login Form
	10.3. Login Form With Cookie From Login Page
	10.4. Login Form With Extract Filter & Cookie Filter
	10.5. Login Which Requires a Hidden Value From the Login Page
	10.6. HTTP & HTTPS Application
	10.7. OpenAM Integration With Headers
	10.8. Microsoft Online Outlook Web Access

	Chapter 11. Extending OpenIG
	11.1. About Scripting
	11.2. Scripting Dispatch
	11.3. Scripting HTTP Basic Authentication
	11.4. Scripting LDAP Authentication
	11.5. Scripting SQL Queries
	11.6. About Developing Custom Extensions
	11.7. Key Extension Points
	11.8. Implementing a Filter
	11.9. Implementing a Handler
	11.10. Heap Object Configuration
	11.11. Sample Filter
	11.12. Building Customizations
	11.13. Embedding Customizations in OpenIG

	Chapter 12. OpenIG Audit Framework
	Chapter 13. Troubleshooting
	13.1. Object not found in heap
	13.2. Extra or missing character / invalid JSON
	13.3. The values in the flat file are incorrect
	13.4. Problem accessing URL
	13.5. StaticResponseHandler results in a blank page
	13.6. OpenIG is not logging users in
	13.7. Read timed out error when sending a request
	13.8. OpenIG does not use new route configuration
	13.9. Make OpenIG skip a route

	Appendix A. SAML 2.0 & Multiple Applications
	A.1. Before You Start
	A.2. Preparing the Network
	A.3. Preparing the SAML 2.0 Service Provider Configurations
	A.4. Importing Service Provider Configurations Into OpenAM
	A.5. Preparing Configurations in OpenIG
	A.6. Trying It Out

	Index

