
Integrator's Guide
OpenIDM 3

Anders Askåsen
Paul Bryan
Mark Craig
Andi Egloff

Laszlo Hordos
Matthias Tristl

Lana Frost
Mike Jang

Daly Chikhaoui

ForgeRock AS
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2011-2017 ForgeRock AS.

Abstract

Guide to configuring and integrating OpenIDM into identity management solutions. The
OpenIDM project offers flexible, open source services for automating management of the
identity life cycle.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, http://fontawesome.io.

This Font Software is licensed under the SIL Open Font License, Version 1.1. This license is available with a FAQ at: http://scripts.sil.org/OFL

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
http://fontawesome.io
http://scripts.sil.org/OFL

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. iii

Table of Contents
Preface .. vii

1. Who Should Use this Guide ... vii
2. Formatting Conventions .. vii
3. Accessing Documentation Online .. viii
4. Using the ForgeRock.org Site ... viii

1. Architectural Overview .. 1
1.1. OpenIDM Modular Framework ... 2
1.2. Infrastructure Modules ... 2
1.3. Core Services ... 3
1.4. Secure Commons REST Commands .. 4
1.5. Access Layer .. 5

2. Starting and Stopping OpenIDM ... 6
2.1. To Start and Stop OpenIDM ... 6
2.2. Specifying the OpenIDM Startup Configuration .. 7
2.3. Obtaining Information About an OpenIDM Instance .. 9
2.4. Verifying the Health of an OpenIDM System .. 11
2.5. Displaying Information About Installed Modules ... 13
2.6. Starting OpenIDM in Debug Mode ... 15

3. OpenIDM Command-Line Interface ... 17
3.1. configexport ... 18
3.2. configimport ... 19
3.3. configureconnector ... 20
3.4. encrypt ... 21
3.5. keytool .. 23
3.6. validate ... 24

4. OpenIDM User Interface ... 25
4.1. Overview of the Default User Interface .. 25
4.2. Configuring the Default User Interface ... 27
4.3. Managing User Accounts With the User Interface .. 32
4.4. Managing Workflows From the User Interface .. 35
4.5. Changing the UI Theme ... 36
4.6. Using an External System for Password Reset .. 39
4.7. Providing a Logout URL to External Applications .. 39
4.8. Changing the UI Path ... 39
4.9. Disabling the UI ... 40

5. Configuring OpenIDM ... 41
5.1. OpenIDM Configuration Objects ... 41
5.2. Changing the Default Configuration ... 42
5.3. Configuring an OpenIDM System for Production .. 43
5.4. Configuring OpenIDM Over REST .. 43
5.5. Using Property Value Substitution in the Configuration 48
5.6. Adding Custom Endpoints .. 50
5.7. Default and Custom Configuration Directories .. 56

6. Accessing Data Objects ... 58

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. iv

6.1. Accessing Data Objects by Using Scripts .. 58
6.2. Accessing Data Objects by Using the REST API .. 59
6.3. Defining and Calling Queries .. 59

7. Managing Users, Groups, and Roles .. 64
7.1. Working with Managed Users .. 64
7.2. Working With Managed Groups .. 64
7.3. Configuring Custom Roles .. 65

8. Using Policies to Validate Data ... 81
8.1. Configuring the Default Policy .. 81
8.2. Extending the Policy Service .. 85
8.3. Disabling Policy Enforcement ... 86
8.4. Managing Policies Over REST .. 87

9. Configuring Server Logs ... 91
10. Connecting to External Resources ... 92

10.1. About OpenIDM and OpenICF .. 92
10.2. Accessing Remote Connectors .. 93
10.3. Configuring Connectors .. 95
10.4. Installing and Configuring Remote Connector Servers 103
10.5. Connectors Supported With OpenIDM 3.0.0 .. 112
10.6. Creating Default Connector Configurations ... 133
10.7. Checking the Status of External Systems Over REST 137
10.8. Adding Attributes to Connectors ... 140

11. Configuring Synchronization .. 142
11.1. Types of Synchronization .. 142
11.2. Flexible Data Model .. 145
11.3. Basic Data Flow Configuration .. 146
11.4. Managing Reconciliation Over REST ... 154
11.5. Restricting Reconciliation by Using Queries .. 161
11.6. Restricting Reconciliation to a Specific ID .. 163
11.7. Querying the Reconciliation Audit Log .. 164
11.8. Configuring the LiveSync Retry Policy .. 175
11.9. Synchronization Situations and Actions ... 178
11.10. Asynchronous Reconciliation ... 187
11.11. Configuring Case Sensitivity for Data Stores ... 188
11.12. Reconciliation Optimization ... 189
11.13. Correlation Queries .. 191
11.14. Advanced Data Flow Configuration ... 192
11.15. Scheduling Synchronization .. 195

12. Scheduling Tasks and Events .. 198
12.1. Scheduler Configuration ... 198
12.2. Configuring Persistent Schedules ... 202
12.3. Schedule Examples ... 203
12.4. Managing Schedules Over REST ... 204
12.5. Scanning Data to Trigger Tasks .. 208

13. Managing Passwords ... 214
13.1. Enforcing Password Policy .. 214
13.2. Password Synchronization .. 219

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. v

14. Managing Authentication, Authorization and Role-Based Access Control 233
14.1. OpenIDM Users .. 233
14.2. Authentication .. 234
14.3. Using Delegated Authentication .. 235
14.4. Supported Authentication Modules ... 237
14.5. Roles and Authentication .. 237
14.6. Authorization .. 239
14.7. Building Role-Based Access Control (RBAC) .. 242

15. Securing & Hardening OpenIDM ... 245
15.1. Accessing the Security Management Service .. 245
15.2. Security Precautions for a Production Environment 250

16. Integrating Business Processes and Workflows .. 260
16.1. BPMN 2.0 and the Activiti Tools ... 260
16.2. Setting Up Activiti Integration With OpenIDM .. 261
16.3. Using Custom Templates for Activiti Workflows .. 267
16.4. Managing Workflows Over the REST Interface ... 268
16.5. Example Activiti Workflows With OpenIDM ... 280
16.6. Workflow Use Cases ... 288

17. Using Audit Logs ... 304
17.1. Audit Log Types ... 304
17.2. Audit Log File Formats ... 305
17.3. Audit Configuration .. 308
17.4. Generating Reports ... 312

18. Configuring OpenIDM to Work in a Cluster ... 313
18.1. Configuring an OpenIDM Instance as Part of a Cluster 314
18.2. Managing Scheduled Tasks Across a Cluster .. 317
18.3. Managing Nodes Over REST .. 318

19. Sending Email ... 320
19.1. Sending Mail Over REST .. 321
19.2. Sending Mail From a Script .. 322

20. Accessing External REST Services ... 324
20.1. Invocation Parameters .. 325
20.2. Support for Non-JSON Responses ... 326

21. OpenIDM Project Best Practices .. 329
21.1. Implementation Phases ... 329

22. Troubleshooting ... 331
22.1. OpenIDM Stopped in Background ... 331
22.2. Internal Server Error During Reconciliation or Synchronization 331
22.3. The scr list Command Shows Sync Service As Unsatisfied 332
22.4. JSON Parsing Error .. 332
22.5. System Not Available .. 333
22.6. Bad Connector Host Reference in Provisioner Configuration 333
22.7. Missing Name Attribute .. 334

23. Advanced Configuration ... 335
23.1. Advanced Startup Configuration ... 335

A. File Layout .. 337
B. Ports Used .. 346

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. vi

C. Data Models and Objects Reference .. 347
C.1. Managed Objects ... 348
C.2. Configuration Objects ... 359
C.3. System Objects .. 362
C.4. Audit Objects ... 362
C.5. Links .. 362

D. Synchronization Reference .. 363
D.1. Object-Mapping Objects ... 363
D.2. Links .. 368
D.3. Queries .. 369
D.4. Reconciliation ... 369
D.5. REST API ... 370

E. REST API Reference ... 372
E.1. URI Scheme ... 373
E.2. Object Identifiers ... 373
E.3. Content Negotiation ... 373
E.4. Supported Operations .. 374
E.5. Conditional Operations ... 380
E.6. Supported Methods .. 380
E.7. REST Endpoints and Sample Commands .. 385
E.8. HTTP Status Codes .. 395

F. Scripting Reference ... 397
F.1. Scripting Configuration .. 397
F.2. Examples .. 400
F.3. Function Reference .. 400
F.4. Places to Trigger Scripts .. 410
F.5. Variables Available in Scripts ... 411
F.6. Debugging OpenIDM JavaScripts .. 412

G. Router Service Reference ... 414
G.1. Configuration ... 414
G.2. Example ... 418

H. Embedded Jetty Configuration .. 419
H.1. Using OpenIDM Configuration Properties in the Jetty Configuration 419
H.2. Jetty Default Settings ... 421
H.3. Registering Additional Servlet Filters ... 421

I. Release Levels & Interface Stability ... 424
I.1. ForgeRock Product Release Levels .. 424
I.2. ForgeRock Product Interface Stability ... 425

OpenIDM Glossary ... 426
Index ... 428

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. vii

Preface
This guide shows you how to integrate OpenIDM as part of a complete identity management solution.

1. Who Should Use this Guide
This guide is written for systems integrators building identity management solutions based on
OpenIDM services. This guide describes OpenIDM, and shows you how to set up OpenIDM as part of
your identity management solution.

You do not need to be an OpenIDM wizard to learn something from this guide, though a background
in identity management and building identity management solutions can help.

2. Formatting Conventions
Most examples in the documentation are created in GNU/Linux or Mac OS X operating environments.
If distinctions are necessary between operating environments, examples are labeled with the
operating environment name in parentheses. To avoid repetition file system directory names are
often given only in UNIX format as in /path/to/server, even if the text applies to C:\path\to\server as
well.

Absolute path names usually begin with the placeholder /path/to/. This path might translate to /opt/,
C:\Program Files\, or somewhere else on your system.

Command-line, terminal sessions are formatted as follows:
$ echo $JAVA_HOME
/path/to/jdk

Command output is sometimes formatted for narrower, more readable output even though formatting
parameters are not shown in the command.

Program listings are formatted as follows:
class Test {
 public static void main(String [] args) {
 System.out.println("This is a program listing.");
 }
}

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. viii

3. Accessing Documentation Online
ForgeRock publishes comprehensive documentation online:

• The ForgeRock Knowledge Base offers a large and increasing number of up-to-date, practical
articles that help you deploy and manage ForgeRock software.

While many articles are visible to community members, ForgeRock customers have access to much
more, including advanced information for customers using ForgeRock software in a mission-critical
capacity.

• ForgeRock product documentation, such as this document, aims to be technically accurate and
complete with respect to the software documented. It is visible to everyone and covers all product
features and examples of how to use them.

4. Using the ForgeRock.org Site
The ForgeRock.org site has links to source code for ForgeRock open source software, as well as links
to the ForgeRock forums and technical blogs.

If you are a ForgeRock customer, raise a support ticket instead of using the forums. ForgeRock
support professionals will get in touch to help you.

https://backstage.forgerock.com/knowledge/kb
https://forgerock.org

Architectural Overview

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 1

Chapter 1

Architectural Overview

The following figure provides an overview of the OpenIDM architecture, which is covered in more
detail in subsequent sections of this chapter.

Architectural Overview
OpenIDM Modular Framework

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 2

1.1. OpenIDM Modular Framework
The OpenIDM framework is based on OSGi.

OSGi

OSGi is a module system and service platform for the Java programming language that
implements a complete and dynamic component model. For a good introduction, see the OSGi
site. While OpenIDM services are designed to run in any OSGi container, OpenIDM currently runs
in Apache Felix.

Servlet

The optional Servlet layer provides RESTful HTTP access to the managed objects and services.
While the Servlet layer can be provided by many different engines, OpenIDM embeds Jetty by
default.

1.2. Infrastructure Modules
OpenIDM infrastructure modules provide the underlying features needed for core services.

BPMN 2.0 Workflow Engine

OpenIDM provides an embedded workflow and business process engine based on Activiti and the
Business Process Model and Notation (BPMN) 2.0 standard.

For more information, see Integrating Business Processes and Workflows.

Task Scanner

OpenIDM provides a task scanning mechanism that enables you to perform a batch scan for a
specified date in OpenIDM data, on a scheduled interval, and then to execute a task when this
date is reached.

For more information, see Scanning Data to Trigger Tasks.

Scheduler

The scheduler provides a cron-like scheduling component implemented using the Quartz library.
Use the scheduler, for example, to enable regular synchronizations and reconciliations.

See the Scheduling Synchronization chapter for details.

Script Engine

The script engine is a pluggable module that provides the triggers and plugin points for
OpenIDM. OpenIDM currently supports JavaScript and Groovy.

http://www.osgi.org/About/WhyOSGi
http://felix.apache.org/site/index.html
http://www.quartz-scheduler.org

Architectural Overview
Core Services

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 3

Policy Service

OpenIDM provides an extensible policy service that enables you to apply specific validation
requirements to various components and properties.

For more information, see Using Policies to Validate Data.

Audit Logging

Auditing logs all relevant system activity to the configured log stores. This includes the data from
reconciliation as a basis for reporting, as well as detailed activity logs to capture operations on
the internal (managed) and external (system) objects.

See the Using Audit Logs chapter for details.

Repository

The repository provides a common abstraction for a pluggable persistence layer. OpenIDM 3.0.0
supports use of MySQL to back the repository. Yet, plugin repositories can include NoSQL and
relational databases, LDAP, and even flat files. The repository API operates using a JSON-based
object model with RESTful principles consistent with the other OpenIDM services. The default,
embedded implementation for the repository is the NoSQL database OrientDB, making it easy to
evaluate OpenIDM out of the box before using MySQL in your production environment.

1.3. Core Services
The core services are the heart of the OpenIDM resource oriented unified object model and
architecture.

Object Model

Artifacts handled by OpenIDM are Java object representations of the JavaScript object model as
defined by JSON. The object model supports interoperability and potential integration with many
applications, services and programming languages. As OpenIDM is a Java-based product, these
representations are instances of classes: Map, List, String, Number, Boolean, and null.

OpenIDM can serialize and deserialize these structures to and from JSON as required. OpenIDM
also exposes a set of triggers and functions that system administrators can define, in either
JavaScript or Groovy, which can natively read and modify these JSON-based object model
structures. OpenIDM is designed to support other scripting and programming languages.

Managed Objects

A managed object is an object that represents the identity-related data managed by OpenIDM.
Managed objects are configurable, JSON-based data structures that OpenIDM stores in its
pluggable repository. The default configuration of a managed object is that of a user, but you can
define any kind of managed object, for example, groups or roles.

You can access managed objects over the REST interface with a query similar to the following:

Architectural Overview
Secure Commons REST Commands

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 4

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/..."

System Objects

System objects are pluggable representations of objects on external systems. For example, a user
entry that is stored in an external LDAP directory is represented as a system object in OpenIDM.

System objects follow the same RESTful resource-based design principles as managed objects.
They can be accessed over the REST interface with a query similar to the following:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/system/..."

There is a default implementation for the OpenICF framework, that allows any connector object
to be represented as a system object.

Mappings

Mappings define policies between source and target objects and their attributes during
synchronization and reconciliation. Mappings can also define triggers for validation,
customization, filtering, and transformation of source and target objects.

See the Configuring Synchronization chapter for details.

Synchronization & Reconciliation

Reconciliation enables on-demand and scheduled resource comparisons between the OpenIDM
managed object repository and source or target systems. Comparisons can result in different
actions, depending on the mappings defined between the systems.

Synchronization enables creating, updating, and deleting resources from a source to a target
system, either on demand or according to a schedule.

See the Configuring Synchronization chapter for details.

1.4. Secure Commons REST Commands
As noted in the REST API Reference, Representational State Transfer (REST) is a software
architecture style for exposing resources, using the technologies and protocols of the World Wide
Web.

Architectural Overview
Access Layer

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 5

REST interfaces are commonly tested with a curl command. Many of these commands are used in
this document. They work with the standard ports associated with Java EE communications, 8080 and
8443.

To run curl over the secure port, 8443, you must include either the --insecure option, or follow
the instructions shown in Restrict REST Access to the HTTPS Port. You can use those instructions
with the self-signed certificate generated when OpenIDM starts, or with a *.crt file provided by a
certificate authority.

In many cases in this guide, curl commands to the secure port are depicted with a --cacert self-signed
.crt option. Instructions for creating that self-signed.crt file are shown in the aforementioned section
on Restrict REST Access to the HTTPS Port.

1.5. Access Layer
The access layer provides the user interfaces and public APIs for accessing and managing the
OpenIDM repository and its functions.

RESTful Interfaces

OpenIDM provides REST APIs for CRUD operations and invoking synchronization and
reconciliation for both HTTP and Java.

See the REST API Reference appendix for details.

User Interfaces

User interfaces provide password management, registration, self-service, and workflow services.

Starting and Stopping OpenIDM
To Start and Stop OpenIDM

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 6

Chapter 2

Starting and Stopping OpenIDM
This chapter covers the scripts provided for starting and stopping OpenIDM, and describes how to
verify the health of a system, that is, that all requirements are met for a successful system startup.

2.1. To Start and Stop OpenIDM
By default you start and stop OpenIDM in interactive mode.

To start OpenIDM interactively, open a terminal or command window, change to the openidm directory,
and run the startup script:

• startup.sh (UNIX)

• startup.bat (Windows)

The startup script starts OpenIDM, and opens an OSGi console with a -> prompt where you can issue
console commands.

To stop OpenIDM interactively in the OSGi console, enter the shutdown command.
-> shutdown

You can also start OpenIDM as a background process on UNIX, Linux, and Mac OS X. Follow these
steps before starting OpenIDM for the first time.

1. If you have already started OpenIDM, then shut down OpenIDM and remove the Felix cache files
under openidm/felix-cache/.
-> shutdown
...
$ rm -rf felix-cache/*

2. Disable ConsoleHandler logging before starting OpenIDM by editing openidm/conf/logging.properties
to set java.util.logging.ConsoleHandler.level = OFF, and to comment out other references to
ConsoleHandler, as shown in the following excerpt.

Starting and Stopping OpenIDM
Specifying the OpenIDM Startup Configuration

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 7

ConsoleHandler: A simple handler for writing formatted records to System.err
#handlers=java.util.logging.FileHandler, java.util.logging.ConsoleHandler
handlers=java.util.logging.FileHandler
...
--- ConsoleHandler ---
Default: java.util.logging.ConsoleHandler.level = INFO
java.util.logging.ConsoleHandler.level = OFF
#java.util.logging.ConsoleHandler.formatter = ...
#java.util.logging.ConsoleHandler.filter=...

3. Remove the text-based OSGi console bundle, bundle/org.apache.felix.shell.tui-version.jar.

4. Start OpenIDM in the background.
$./startup.sh &

Alternatively, use the nohup command to keep OpenIDM running after you log out.
$ nohup ./startup.sh &
[2] 394
$ appending output to nohup.out
$

To stop OpenIDM running as a background process, use the shutdown.sh script.
$./shutdown.sh
./shutdown.sh
Stopping OpenIDM (454)

2.2. Specifying the OpenIDM Startup Configuration
By default, OpenIDM starts up with the configuration and script files that are located in the openidm/
conf and openidm/script directories, and with the binaries that are in the default install location. You
can launch OpenIDM with a different configuration and set of script files, and even with a different
set of binaries, in order to test a new configuration, manage multiple different OpenIDM projects, or
to run one of the included samples.

The startup.sh script enables you to specify the following elements of a running OpenIDM instance.

• project location (-p)

The project location specifies the configuration and default scripts with which OpenIDM will run.

If you specify the project location, OpenIDM does not try to locate configuration objects in the
default location. All configuration objects and any artifacts that are not in the bundled defaults
(such as custom scripts) must be provided in the project location. This includes everything that is in
the default openidm/conf and openidm/script directories.

The following command starts OpenIDM with the configuration of sample 1:
$./startup.sh -p /path/to/openidm/samples/sample1

Starting and Stopping OpenIDM
Specifying the OpenIDM Startup Configuration

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 8

If an absolute path is not provided, the path is relative to the system property, user.dir. If no project
location is specified, OpenIDM is launched with the default configuration in /path/to/openidm/conf.

• working location (-w)

The working location specifies the directory to which OpenIDM writes its cache. Specifying a
working location separates the project from the cached data that the system needs to store. The
working location includes everything that is in the default db, audit, felix-cache, and logs directories.

The following command specifies that OpenIDM writes its cached data to /Users/admin/openidm/
storage:
$./startup.sh -w /Users/admin/openidm/storage

If an absolute path is not provided, the path is relative to the system property, user.dir. If no
working location is specified, OpenIDM writes its cached data to the openidm/db, openidm/audit, openidm
/felix-cache and openidm/logs directories.

• startup configuration file (-c)

A customizable startup configuration file (named launcher.json) enables you to specify how the OSGi
Framework is started.

Unless you are working with a highly customized deployment, you should not modify the default
framework configuration. This option is therefore described in more detail in the chapter on
Advanced Administration.

By default, properties files are loaded in the following order, and property values are resolved in the
reverse order:

1. system.properties

2. config.properties

3. boot.properties

If both system and boot properties define the same attribute, the property substitution process
locates the attribute in boot.properties and does not attempt to locate the property in system.properties.

You can use variable substitution in any .json configuration file with the install, working and project
locations described previously. The following properties can be substituted:

install.location
install.url
working.location
working.url
project.location
project.url

Property substitution takes the following syntax:

Starting and Stopping OpenIDM
Obtaining Information About an OpenIDM Instance

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 9

&{launcher.property}

For example, to specify the location of the OrientDB database, you can set the dbUrl property in
repo.orientdb.json as follows:

"dbUrl" : "local:&{launcher.working.location}/db/openidm",

The database location is then relative to a working location defined in the startup configuration.

Note that property substitution does not work for connector reference properties. So, for example,
the following configuration would not be valid:
"connectorRef" : {
 "connectorName" : "&{connectorName}",
 "bundleName" : "org.forgerock.openicf.connectors.ldap-connector",
 "bundleVersion" : "&{LDAP.BundleVersion}"
 ...

The "connectorName" must be the precise string from the connector configuration. If you need to specify
multiple connector version numbers, use a range instead, for example:
"connectorRef" : {
 "connectorName" : "org.identityconnectors.ldap.LdapConnector",
 "bundleName" : "org.forgerock.openicf.connectors.ldap-connector",
 "bundleVersion" : "[1.1.0.1,1.1.2.0)",
 ...

2.3. Obtaining Information About an OpenIDM Instance
OpenIDM includes a customizable information service that provides detailed information about a
running OpenIDM instance. The information can be accessed over the REST interface, under the
context https://localhost:8443/openidm/info.

By default, OpenIDM provides the following information:

• Basic information about the health of the system.

This information can be accessed over REST at https://localhost:8443/openidm/info/ping. For example:

 $ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/info/ping"

 {"state":"ACTIVE_READY","shortDesc":"OpenIDM ready"}

Starting and Stopping OpenIDM
Obtaining Information About an OpenIDM Instance

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 10

The information is provided by the script openidm/bin/defaults/script/info/ping.js.

• Information about the current OpenIDM session.

This information can be accessed over REST at https://localhost:8443/openidm/info/login. For
example:

 $ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/info/login"

{
 "authenticationId": "openidm-admin",
 "class": "org.forgerock.json.resource.SecurityContext",
 "parent": {
 "class": "org.forgerock.json.resource.RootContext",
 "parent": null,
 "id": "6f1709ce-75bd-4f9b-b1ad-d4592be37361"
 },
 "authorizationId": {
 "roles": [
 "openidm-admin",
 "openidm-authorized"
],
 "component": "repo/internal/user",
 "id": "openidm-admin"
 }
}

The information is provided by the script openidm/bin/defaults/script/info/login.js.

You can extend or override the default information that is provided by creating your own script
file and its corresponding configuration file in openidm/conf/info-name.json. Custom script files can
be located anywhere, although a best practice is to place them in openidm/script/info. A sample
customized script file for extending the default ping service is provided in openidm/samples/infoservice/
script/info/customping.js. The corresponding configuration file is provided in openidm/samples/
infoservice/conf/info-customping.json.

The configuration file has the following syntax:

{
 "infocontext" : "ping",
 "type" : "text/javascript",
 "file" : "script/info/customping.js"
}

The parameters in the configuration file are as follows:

Starting and Stopping OpenIDM
Verifying the Health of an OpenIDM System

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 11

• "infocontext" specifies the relative name of the info endpoint under the info context. The information
can be accessed over REST at this endpoint, for example, setting "infocontext" to "mycontext/
myendpoint" would make the information accessible over REST at https://localhost:8443/openidm/info/
mycontext/myendpoint.

• "type" specifies the type of the information source. Javascript ("type" : "text/javascript") and Groovy
("type" : "groovy") are supported.

• "file" specifies the path to the Javascript or Groovy file, if you do not provide a "source" parameter.

• "source" specifies the actual Javascript or Groovy script, if you have not provided a "file" parameter.

Additional properties can be passed to the script as depicted in this configuration file (openidm/samples/
infoservice/conf/info-name.json).

Script files in openidm/samples/infoservice/script/info/ have access to the following objects:

• request - the request details, including the method called and any parameters passed.

• healthinfo - the current health status of the system.

• openidm - access to the JSON resource API.

• Any additional properties that are depicted in the configuration file (openidm/samples/infoservice/
conf/info-name.json.)

2.4. Verifying the Health of an OpenIDM System
Due to the highly modular, configurable nature of OpenIDM, it is often difficult to assess whether
a system has started up successfully, or whether the system is ready and stable after dynamic
configuration changes have been made.

OpenIDM provides a configurable health check service that verifies that the required modules and
services for an operational system are up and running. During system startup, OpenIDM checks that
these modules and services are available and reports on whether any requirements for an operational
system have not been met. If dynamic configuration changes are made, OpenIDM rechecks that the
required modules and services are functioning so that system operation is monitored on an ongoing
basis.

The health check service reports on the state of the OpenIDM system and outputs this state to the
console and to the log files. The system can be in one of the following states:

STARTING - OpenIDM is starting up
ACTIVE_READY - all of the specified requirements have been met to consider the OpenIDM system ready
ACTIVE_NOT_READY - one or more of the specified requirements have not been met and the OpenIDM
system is not considered ready
STOPPING - OpenIDM is shutting down

OpenIDM checks all required modules and services. Examples of those services are shown here.

Starting and Stopping OpenIDM
Verifying the Health of an OpenIDM System

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 12

Required Modules (examples)

"org.forgerock.openicf.framework.connector-framework"
"org.forgerock.openicf.framework.connector-framework-internal"
"org.forgerock.openicf.framework.connector-framework-osgi"
"org.forgerock.openidm.audit"
"org.forgerock.openidm.core"
"org.forgerock.openidm.enhanced-config"
"org.forgerock.openidm.external-email"

 ...

"org.forgerock.openidm.system"
"org.forgerock.openidm.ui"
"org.forgerock.openidm.util"
"org.forgerock.commons.org.forgerock.json.resource"
"org.forgerock.commons.org.forgerock.json.resource.restlet"
"org.forgerock.commons.org.forgerock.restlet"
"org.forgerock.commons.org.forgerock.util"
"org.forgerock.openidm.security-jetty"
"org.forgerock.openidm.jetty-fragment"
"org.forgerock.openidm.quartz-fragment"
"org.ops4j.pax.web.pax-web-extender-whiteboard"
"org.forgerock.openidm.scheduler"
"org.ops4j.pax.web.pax-web-jetty-bundle"
"org.forgerock.openidm.repo-jdbc"
"org.forgerock.openidm.repo-orientdb"
"org.forgerock.openidm.config"
"org.forgerock.openidm.crypto"

Required Services (examples)

"org.forgerock.openidm.config"
"org.forgerock.openidm.provisioner"
"org.forgerock.openidm.provisioner.openicf.connectorinfoprovider"
"org.forgerock.openidm.external.rest"
"org.forgerock.openidm.audit"
"org.forgerock.openidm.policy"
"org.forgerock.openidm.managed"
"org.forgerock.openidm.script"
"org.forgerock.openidm.crypto"
"org.forgerock.openidm.recon"
"org.forgerock.openidm.info"
"org.forgerock.openidm.router"
"org.forgerock.openidm.scheduler"
"org.forgerock.openidm.scope"
"org.forgerock.openidm.taskscanner"

You can replace this list, or add to it, by adding the following lines to the openidm/conf/boot/
boot.properties file:

"openidm.healthservice.reqbundles" - overrides the default required bundles. Bundles are specified as a
list of symbolic names, separated by commas.

Starting and Stopping OpenIDM
Displaying Information About Installed Modules

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 13

"openidm.healthservice.reqservices" - overrides the default required services. Services are specified as a
list of symolic names, separated by commas.
"openidm.healthservice.additionalreqbundles" - specifies required bundles (in addition to the default list).
Bundles are specified as a list of symbolic names, separated by commas.
"openidm.healthservice.additionalreqservices" - specifies required services (in addition to the default
list). Services are specified as a list of symbolic names, separated by commas.

By default, OpenIDM gives the system ten seconds to start up all the required bundles and services,
before the system readiness is assessed. Note that this is not the total start time, but the time
required to complete the service startup after the framework has started. You can change this
default by setting the value of the servicestartmax property (in miliseconds) in the openidm/conf/boot/
boot.properties file. This example sets the startup time to five seconds.
openidm.healthservice.servicestartmax=5000

The health check service works in tandem with the scriptable information service. For more
information see Section 2.3, "Obtaining Information About an OpenIDM Instance".

Do not use the health check service to monitor the status of external resources, such as LDAP
servers, or external databases. Rather, monitor these resources over the REST interface, as described
in Checking the Status of External Systems Over REST.

2.5. Displaying Information About Installed Modules
On a running OpenIDM instance, you can list the installed modules and their states by typing the
following command in the Felix administration console. (The output will vary by configuration.)

Starting and Stopping OpenIDM
Displaying Information About Installed Modules

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 14

-> scr list

 Id State Name
[12] [active] org.forgerock.openidm.endpoint
[13] [active] org.forgerock.openidm.endpoint
[14] [active] org.forgerock.openidm.endpoint
[15] [active] org.forgerock.openidm.endpoint
[16] [active] org.forgerock.openidm.endpoint

 ...

[34] [active] org.forgerock.openidm.taskscanner
[20] [active] org.forgerock.openidm.external.rest
[6] [active] org.forgerock.openidm.router
[33] [active] org.forgerock.openidm.scheduler
[19] [unsatisfied] org.forgerock.openidm.external.email
[11] [active] org.forgerock.openidm.sync
[25] [active] org.forgerock.openidm.policy
[8] [active] org.forgerock.openidm.script
[10] [active] org.forgerock.openidm.recon
[4] [active] org.forgerock.openidm.http.contextregistrator
[1] [active] org.forgerock.openidm.config
[18] [active] org.forgerock.openidm.endpointservice
[30] [unsatisfied] org.forgerock.openidm.servletfilter
[24] [active] org.forgerock.openidm.infoservice
[21] [active] org.forgerock.openidm.authentication
->

To display additional information about a particular module or service, run the following command,
substituting the Id of that module from the preceding list.
-> scr info Id

The following example displays additional information about the router service:
-> scr info 6

ID: 6
Name: org.forgerock.openidm.router
Bundle: org.forgerock.openidm.core (41)
State: active
Default State: enabled
Activation: immediate
Configuration Policy: optional
Activate Method: activate (declared in the descriptor)
Deactivate Method: deactivate (declared in the descriptor)
Modified Method: modified
Services: org.forgerock.json.resource.JsonResource
Service Type: service
Reference: ref_JsonResourceRouterService_ScopeFactory
 Satisfied: satisfied
 Service Name: org.forgerock.openidm.scope.ScopeFactory
 Multiple: single
 Optional: mandatory
 Policy: dynamic
Properties:
 component.id = 6
 component.name = org.forgerock.openidm.router

Starting and Stopping OpenIDM
Starting OpenIDM in Debug Mode

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 15

 felix.fileinstall.filename = file:/openidm/samples/sample1/conf/router.json
 jsonconfig = {
 "filters" : [
 {
 "onRequest" : {
 "type" : "text/javascript",
 "file" : "bin/defaults/script/router-authz.js"
 }
 },
 {
 "onRequest" : {
 "type" : "text/javascript",
 "file" : "bin/defaults/script/policyFilter.js"
 },
 "methods" : [
 "create",
 "update"
]
 }
]
}
 openidm.restlet.path = /
 service.description = OpenIDM internal JSON resource router
 service.pid = org.forgerock.openidm.router
 service.vendor = ForgeRock AS
->

2.6. Starting OpenIDM in Debug Mode
To debug custom libraries, you can start OpenIDM with the option to use the Java Platform Debugger
Architecture (JPDA).

• Start OpenIDM with the jpda option:

$ cd /path/to/openidm
$./startup.sh jpda

Executing ./startup.sh...
Using OPENIDM_HOME: /path/to/openidm
Using OPENIDM_OPTS: -Xmx1024m -Xms1024m -Denvironment=PROD -Djava.compiler=NONE
 -Xnoagent -Xdebug -Xrunjdwp:transport=dt_socket,address=5005,server=y,suspend=n
Using LOGGING_CONFIG:
 -Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties
Listening for transport dt_socket at address: 5005
Using boot properties at /path/to/openidm/conf/boot/boot
.properties
-> OpenIDM version "3.0.0" (revision: xxxx)
OpenIDM ready

The relevant JPDA options are outlined in the startup script (startup.sh).

• In your IDE, attach a Java debugger to the JVM via socket, on port 5005.

Starting and Stopping OpenIDM
Starting OpenIDM in Debug Mode

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 16

Caution

This interface is internal and subject to change. If you depend on this interface, contact ForgeRock support.

OpenIDM Command-Line Interface

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 17

Chapter 3

OpenIDM Command-Line Interface
OpenIDM includes a basic command-line interface that provides a number of utilities for managing
the OpenIDM instance.

All of the utilities are subcommands of the cli.sh (UNIX) or cli.bat (Windows) scripts. To use the
utilities, you can either run them as subcommands, or launch the cli script first, and then run the
utility. For example, to run the encrypt utility on a UNIX system:

$ cd /path/to/openidm
$./cli.sh

Using boot properties at /path/to/openidm/conf/boot/boot.properties
openidm# encrypt

or

$ cd /path/to/openidm
$./cli.sh encrypt ...

By default, the command-line utilities run with the properties defined in /path/to/openidm/conf/boot/
boot.properties.

If you run the cli.sh command by itself, it opens an OpenIDM-specific shell prompt:
openidm#

The startup and shutdown scripts are not discussed in this chapter. For information about these
scripts, see Starting and Stopping OpenIDM.

The following sections describe the subcommands and their use. Examples assume that you are
running the commands on a UNIX system. For Windows systems, use cli.bat instead of cli.sh.

For a list of subcommands available from the openidm# prompt, run the cli.sh help command. The help
and exit options shown below are self-explanatory. The other subcommands are explained in the
subsections that follow.

OpenIDM Command-Line Interface
configexport

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 18

local:keytool Export or import a SecretKeyEntry.
 The Java Keytool does not allow for exporting or importing SecretKeyEntries.
local:encrypt Encrypt the input string.
local:validate Validates all json configuration files in the configuration
 (default: /conf) folder.
basic:help Displays available commands.
basic:exit Exit from the console.
remote:configureconnector Generate connector configuration.
remote:configexport Exports all configurations.
remote:configimport Imports the configuration set from local file/directory.

The configexport, configimport, and configconnector subcommands support up to four options:

-u or --user USER[:PASSWORD]

Allows you to specify the server user and password. Specifying a username is mandatory. If you
do not specify a username, the following error is output to the console: Remote operation failed:
 Unauthorized. If you do not specify a password, you are prompted for one. This option is used by
all three subcommands.

--url URL

The URL of the OpenIDM REST service. The default URL is http://localhost:8080/openidm/. This can
be used to import configuration files from a remote running instance of OpenIDM. This option is
used by all three subcommands. commands.

-P or --port PORT

The port number associated with the OpenIDM REST service. If specified, this option overrides
any port number specified with the --url option. The default port is 8080. This option is used by all
three subcommands.

-r or --replaceall or --replaceAll

Replaces the entire list of configuration files with the files in the specified backup directory. This
option is used with only the configimport command.

3.1. configexport
The configexport subcommand exports all configuration objects to a specified location, enabling you
to reuse a system configuration in another environment. For example, you can test a configuration
in a development environment, then export it and import it into a production environment. This
subcommand also enables you to inspect the active configuration of an OpenIDM instance.

OpenIDM must be running when you execute this command.

Usage is as follows:

$./cli.sh configexport --user username:passsword export-location

OpenIDM Command-Line Interface
configimport

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 19

For example:

$./cli.sh configexport --user openidm-admin:openidm-admin /tmp/conf

Configuration objects are exported, as .json files, to the specified directory. The command creates
the directory if needed. Configuration files that are present in this directory are renamed as backup
files, with a timestamp, for example, audit.json.2014-02-19T12-00-28.bkp, and are not overwritten. The
following configuration objects are exported:

• The internal repository configuration (repo.orientdb.json or repo.jdbc.json)

• Default and custom configuration directories (script.json)

• The log configuration (audit.json)

• The authentication configuration (authentication.json)

• The cluster configuration (cluster.json)

• The configuration of a connected SMTP email server (external.email.json)

• Custom configuration information (info-name.json)

• The managed object configuration (managed.json)

• The connector configuration (provisioner.openicf-*.json)

• The router service configuration (router.json)

• The scheduler service configuration (scheduler.json)

• Any configured schedules (schedule-*.json)

• The synchronization mapping configuration (sync.json)

• If workflows are defined, the configuration of the workflow engine (workflow.json) and the workflow
access configuration (process-access.json)

• Any configuration files related to the user interface (ui-*.json)

• The configuration of any custom endpoints (endpoint-*.json)

• The configuration of servlet filters (servletfilter-*.json)

• The policy configuration (policy.json)

3.2. configimport
The configimport subcommand imports configuration objects from the specified directory,
enabling you to reuse a system configuration from another environment. For example, you can

OpenIDM Command-Line Interface
configureconnector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 20

test a configuration in a development environment, then export it and import it into a production
environment.

The command updates the existing configuration from the import-location over the OpenIDM REST
interface. By default, if configuration objects are present in the import-location and not in the existing
configuration, these objects are added. If configuration objects are present in the existing location
but not in the import-location, these objects are left untouched in the existing configuration.

If you include the --replaceAll parameter, the command wipes out the existing configuration and
replaces it with the configuration in the import-location. Objects in the existing configuration that are
not present in the import-location are deleted.

Usage is as follows:

$./cli.sh configimport --user username:password [--replaceAll] import-location

For example:

$./cli.sh configimport --user openidm-admin:openidm-admin --replaceAll /tmp/conf

Configuration objects are imported, as .json files, from the specified directory to the conf directory.
The configuration objects that are imported are outlined in the corresponding export command,
described in the previous section.

3.3. configureconnector
The configureconnector subcommand generates a configuration for an OpenICF connector.

Usage is as follows:
$./cli.sh configureconnector --user username:password connector-name

Select the type of connector that you want to configure. The following example configures a new XML
connector.
$./cli.sh configureconnector --user openidm-admin:openidm-admin myXmlConnector
 Starting shell in /path/to/openidm
Using boot properties at /path/to/openidm/conf/boot/boot.properties
0. Scripted SQL Connector version 1.1.0.1
1. XML Connector version 1.1.0.1
2. Database Table Connector version 1.1.0.0
3. CSV File Connector version 1.1.0.1
4. LDAP Connector version 1.1.1.2
5. Exit
Select [0..5]: 1
Edit the configuration file and run the command again. The configuration was
saved to /openidm/temp/provisioner.openicf-myXmlConnector.json

OpenIDM Command-Line Interface
encrypt

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 21

The basic configuration is saved in a file named /openidm/temp/provisioner.openicf-connector-name.json.
Edit the configurationProperties parameter in this file to complete the connector configuration. For an
XML connector, you can use the schema definitions in sample 1 for an example configuration.

 "configurationProperties" : {
 "xmlFilePath" : "samples/sample1/data/resource-schema-1.xsd",
 "createFileIfNotExists" : false,
 "xsdFilePath" : "samples/sample1/data/resource-schema-extension.xsd",
 "xsdIcfFilePath" : "samples/sample1/data/xmlConnectorData.xml"
 },

For more information about the connector configuration properties, see Configuring Connectors.

When you have modified the file, run the configureconnector command again so that OpenIDM can
pick up the new connector configuration.
$./cli.sh configureconnector --user openidm-admin:openidm-admin myXmlConnector
Executing ./cli.sh...
Starting shell in /path/to/openidm
Using boot properties at /path/to/openidm/conf/boot/boot.properties
Configuration was found and read from: /path/to/openidm/temp/provisioner.openicf-myXmlConnector.json

You can now copy the new provisioner.openicf-myXmlConnector.json file to the conf/ subdirectory.

You can also configure connectors over the REST interface. For more information, see Creating
Default Connector Configurations.

3.4. encrypt
The encrypt subcommand encrypts an input string, or JSON object, provided at the command line.
This subcommand can be used to encrypt passwords, or other sensitive data, to be stored in the
OpenIDM repository. The encrypted value is output to standard output and provides details of the
cryptography key that is used to encrypt the data.

Usage is as follows:

$./cli.sh encrypt [-j] string

The -j option specifies that the string to be encrypted is a JSON object. If you do not enter the string
as part of the command, the command prompts for the string to be encrypted. If you enter the string
as part of the command, any special characters, for example quotation marks, must be escaped.

The following example encrypts a normal string value:

OpenIDM Command-Line Interface
encrypt

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 22

$./cli.sh encrypt mypassword

Executing ./cli.sh
Starting shell in /path/to/openidm
Using boot properties at /path/to/openidm/conf/boot/boot.properties
Activating cryptography service of type: JCEKS provider: location: security/keystore.jceks
Available cryptography key: openidm-sym-default
Available cryptography key: openidm-localhost
CryptoService is initialized with 2 keys
.
-----BEGIN ENCRYPTED VALUE-----
{
 "$crypto" : {
 "value" : {
 "iv" : "M2913T5ZADlC2ip2imeOyg==",
 "data" : "DZAAAM1nKjQM1qpLwh3BgA==",
 "cipher" : "AES/CBC/PKCS5Padding",
 "key" : "openidm-sym-default"
 },
 "type" : "x-simple-encryption"
 }
}
------END ENCRYPTED VALUE------

The following example encrypts a JSON object. The input string must be a valid JSON object.

$./cli.sh encrypt -j {\"password\":\"myPassw0rd\"}

Starting shell in /path/to/openidm
Using boot properties at /path/to/openidm/conf/boot/boot.properties
Activating cryptography service of type: JCEKS provider: location: security/keystore.jceks
Available cryptography key: openidm-sym-default
Available cryptography key: openidm-localhost
CryptoService is initialized with 2 keys
.
-----BEGIN ENCRYPTED VALUE-----
{
 "$crypto" : {
 "value" : {
 "iv" : "M2913T5ZADlC2ip2imeOyg==",
 "data" : "DZAAAM1nKjQM1qpLwh3BgA==",
 "cipher" : "AES/CBC/PKCS5Padding",
 "key" : "openidm-sym-default"
 },
 "type" : "x-simple-encryption"
 }
}
------END ENCRYPTED VALUE------

The following example prompts for a JSON object to be encrypted. In this case, you need not escape
the special characters.

OpenIDM Command-Line Interface
keytool

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 23

$./cli.sh encrypt -j

Using boot properties at /path/to/openidm/conf/boot/boot.properties
Enter the Json value

> Press ctrl-D to finish input
Start data input:
{"password":"myPassw0rd"}
^D

Activating cryptography service of type: JCEKS provider: location: security/keystore.jceks
Available cryptography key: openidm-sym-default
Available cryptography key: openidm-localhost
CryptoService is initialized with 2 keys
.
-----BEGIN ENCRYPTED VALUE-----
{
 "$crypto" : {
 "value" : {
 "iv" : "6e0RK8/4F1EK5FzSZHwNYQ==",
 "data" : "gwHSdDTmzmUXeD6Gtfn6JFC8cAUiksiAGfvzTsdnAqQ=",
 "cipher" : "AES/CBC/PKCS5Padding",
 "key" : "openidm-sym-default"
 },
 "type" : "x-simple-encryption"
 }
}
------END ENCRYPTED VALUE------

3.5. keytool
The keytool subcommand exports or imports secret key values.

The Java keytool command enables you to export and import public keys and certificates, but not
secret or symmetric keys. The OpenIDM keytool subcommand provides this functionality.

Usage is as follows:
./cli.sh keytool [--export, --import] alias

For example, to export the default OpenIDM symmetric key, run the following command:

$./cli.sh keytool --export openidm-sym-default

Using boot properties at /openidm/conf/boot/boot.properties
Use KeyStore from: /openidm/security/keystore.jceks
Please enter the password:
[OK] Secret key entry with algorithm AES
AES:606d80ae316be58e94439f91ad8ce1c0

OpenIDM Command-Line Interface
validate

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 24

The default keystore password is changeit. You should change this password after installation.

To import a new secret key named my-new-key, run the following command:

$./cli.sh keytool --import my-new-key

Using boot properties at /openidm/conf/boot/boot.properties
Use KeyStore from: /openidm/security/keystore.jceks
Please enter the password:
Enter the key:
AES:606d80ae316be58e94439f91ad8ce1c0

If a secret key of that name already exists, OpenIDM returns the following error:
"KeyStore contains a key with this alias"

3.6. validate
The validate subcommand validates all .json configuration files in the openidm/conf/ directory.

Usage is as follows:

$./cli.sh validate

Executing ./cli.sh
Starting shell in /path/to/openidm
Using boot properties at /path/to/openidm/conf/boot/boot
.properties
...
[Validating] Load JSON configuration files from:
[Validating] /path/to/openidm/conf
[Validating] audit.json SUCCESS
[Validating] authentication.json SUCCESS

 ...

[Validating] sync.json SUCCESS
[Validating] ui-configuration.json SUCCESS
[Validating] ui-countries.json SUCCESS
[Validating] ui-secquestions.json SUCCESS
[Validating] workflow.json SUCCESS

OpenIDM User Interface
Overview of the Default User Interface

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 25

Chapter 4

OpenIDM User Interface
OpenIDM provides a customizable, browser-based user interface. The default user interface enables
administrative users to create, modify and delete user accounts. It provides role-based access to
tasks based on BPMN2 workflows, and allows users to manage certain aspects of their own accounts,
including configurable self-service registration.

4.1. Overview of the Default User Interface
The default user interface is provided as a reference implementation that demonstrates the
capabilities of the REST API. You can modify certain aspects of the default user interface according to
the requirements of your deployment.

To access the user interface, install and start OpenIDM, then point your browser to https://
localhost:8443/openidmui. If you have not installed a certificate that is trusted by a certificate
authority, you are prompted with an "Untrusted Connection" warning the first time you log in to the
UI.

Log in as the default administrative user (Login: openidm-admin, Password: openidm-admin) or as an
existing user in the repository. The display differs, depending on the role of the user that has logged
in.

For an administrative user (role openidm-admin), two tabs are displayed - Dashboard and Users. The
Dashboard tab lists any tasks assigned to the user who has logged in, processes available to be
invoked, and any notifications for that user.

The following image shows the Dashboard tab for the administrative user when no tasks, processes,
or notifications are available.

https://localhost:8443/openidmui
https://localhost:8443/openidmui

OpenIDM User Interface
Overview of the Default User Interface

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 26

The Users tab is only available to administrative users and provides an interface to manage user
entries (OpenIDM managed objects under managed/user).

The following image shows the Users tab after with the two sample users created after a
reconciliation process from Sample 2b.

You can sort the list of users alphabetically, by any of the column values. Click on the column title to
sort.

The Profile link enables the user to modify his username or password. The Change Security Data link,
accessed from the top of the screen, or from the user's Profile page enables the user to change his
password and, if this functionality has been enabled, to select a new security question.

Password changes are subject to the default password policy, as shown in the following password
update screen.

OpenIDM User Interface
Configuring the Default User Interface

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 27

For a regular user (role openidm-authorized), the Users tab is not displayed. By default, regular users
cannot manage user accounts, except for certain aspects of their own accounts.

4.2. Configuring the Default User Interface
The following sections outline the configurable aspects of the default user interface.

4.2.1. Enabling Self-Registration

Self-registration (the ability for new users to create their own accounts) is disabled by default.
To enable self-registration, set "selfRegistration" to true in the UI configuration file (conf/ui-
configuration.json).

{
 "configuration" : {
 "selfRegistration" : true,
...

When self-registration is enabled, a "Register your account" link is provided on the login page. When
a user creates an account on the account registration page, a managed object is created in the
OpenIDM repository. The default policies for managed objects are applied during account creation.

OpenIDM User Interface
Configuring Security Questions

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 28

User objects created using self-registration automatically have the role openidm-authorized.

4.2.2. Configuring Security Questions

In the event that a user forgets his password, a password reset function enables registered users
to reset their own passwords. To guard against unauthorized access, you can specify that users be
prompted with one or more security questions when they request a password reset.

Security questions are disabled by default. To enable them, set "securityQuestions" to true in the UI
configuration file (conf/ui-configuration.json).

OpenIDM User Interface
Configuring Security Questions

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 29

{
 "configuration" : {
 "securityQuestions" : true,
...

A default set of questions is provided, but you can add to these, or overwrite them. Specify the list of
questions to be asked in the conf/ui-secquestions.json file.

Refresh your browser after this configuration change for the change to be picked up by the UI.

When security questions are enabled, the following panel is included on the self registration page.

In addition, a "Reset your password" link is provided on the login page. When a user attempts to
reset her password, she is prompted for the response to the security question that she set up during
registration.

OpenIDM User Interface
Minimum Length Security Answers

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 30

Note

If security questions are enabled after a specific user has registered, that particular user will be unable to use
the password reset functionality.

4.2.3. Minimum Length Security Answers

The password, passphrase, and security answer are all associated with some minimum length. To
change that minimum, edit the conf/policy.json file. Navigate to the appropriate section. Set the
minLength option to the desired number.

For example, the following excerpt from the conf/policy.json file shows a default minLength of 16
associated with the security answer.

{
 "policyId" : "minimum-length",
 "params" : {
 "minLength" : 16
 }
},

4.2.4. Enabling Site Identification

To ensure that users are entering their details onto the correct site, you can enable site identification.
Site identification provides a preventative measure against phishing.

With site identification enabled, a user is presented with a range of images from which he can select
when he registers his account, and prompted to specify his own site phrase. The selected site image
and phrase are displayed on login, to confirm that the user is logging in to the legitimate site.

To enable site identification, set "siteIdentification" to true in the UI configuration file (conf/ui-
configuration.json).

{
 "configuration" : {
 "siteIdentification" : true,
...

Refresh your browser after this configuration change for the change to be picked up by the UI.

When site identification is enabled, the following panel is included on the self registration page.

OpenIDM User Interface
Configuring the Country List

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 31

A default list of four images is presented for site identification. The images are defined in the
siteImages property in the conf/ui-configuration.json file:

"siteImages" : [
"images/passphrase/mail.png",
"images/passphrase/user.png",
"images/passphrase/report.png",
"images/passphrase/twitter.png"
],
...

You can change the default images, and include additional images, by placing image files in the ui/
extension/images folder and modifying the siteImages property in the ui-configuration.json file to point to
the new images. Refresh your browser for the change to take effect.

The following example assumes an image file named my-new-image.jpg, located in ui/extension/images.

"siteImages" : [
"images/passphrase/mail.png",
"images/passphrase/user.png",
"images/passphrase/report.png",
"images/passphrase/twitter.png",
"images/my-new-image.jpg"
],
...

Note that the default image files are located in ui/default/enduser/public/images/passphrase.

4.2.5. Configuring the Country List

The default user profile includes the ability to select the user's country and state or province. To
specify the countries, and the associated states or provinces, that appear in these drop down lists,
edit the conf/ui-countries.json file. For example, to add Norway to the list of countries, you would add
the following to the conf/ui-countries.json file:

OpenIDM User Interface
Managing User Accounts With the User Interface

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 32

{
 "key" : "norway",
 "value" : "Norway",
 "states" : [
 {
 "key" : "akershus",
 "value" : "Akershus"
 },
 {
 "key" : "aust-agder",
 "value" : "Aust-Agder"
 },
 {
 "key" : "buskerud",
 "value" : "Buskerud"
 },
...

Refresh your browser after this configuration change for the change to be picked up by the UI.

4.3. Managing User Accounts With the User Interface
Only administrative users (with the role openidm-admin) can add, modify, and delete user accounts.
Regular users can modify certain aspects of their own accounts.

Procedure 4.1. To Add a User Account

1. Log into the user interface as an administrative user.

2. Select the Users tab.

3. Click Add User.

4. Complete the fields on the Create new account page.

Most of these fields are self-explanatory. Be aware that the user interface is subject to policy
validation, as described in Using Policies to Validate Data. So, for example, the Email address
must be of valid email address format, and the Password must comply with the password
validation settings that are indicated in the panel to the right.

The Admin Role field reflects the roles that are defined in the ui-configuration.json file, as well as
any managed roles that have been added. By default, the roles are mapped as follows:

"roles" : {
 "openidm-admin" : "Administrator",
 "openidm-authorized" : "User",
 "openidm-tasks-manager" : "Tasks Manager"
},

OpenIDM User Interface
Managing User Accounts With the User Interface

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 33

A user can be assigned more than one role. Only users with the tasks-manager role can assign tasks
to any candidate user for that task.

Procedure 4.2. To Update a User Account

1. Log into the user interface as an administrative user.

2. Select the Users tab.

3. Click the Username of the user that you want to update.

4. On the user's profile page, modify the fields you want to change and click Update.

The user account is updated in the OpenIDM repository.

Procedure 4.3. To Deactivate a User Account

1. Follow steps 1-3 in Procedure 4.2, "To Update a User Account".

2. On the user's profile page, select Inactive from the Account status list.

3. Click Update.

The user account is deactivated and the user can no longer log in to the system.

Inactive users are indicated with a X icon in the Status column of the Users page. The following
image shows that Steven Carter's account has been deactivated.

OpenIDM User Interface
Managing User Accounts With the User Interface

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 34

Procedure 4.4. To Reset a User's Password

Users can change their own passwords by following the Change Security Data link in their profiles.
This process requires that users know their existing passwords.

In a situation where a user forgets his password, an administrator can reset the password of that user
without knowing the user's existing password.

1. Follow steps 1-3 in Procedure 4.2, "To Update a User Account".

2. On the user's profile page, click Change password.

3. Enter a new password that conforms to the password policy and click Update.

The user password is updated in the repository.

Procedure 4.5. To Delete a User Account

1. Log into the user interface as an administrative user.

2. Select the Users tab.

3. Click the Username of the user that you want to delete.

4. On the user's profile page, click Delete.

5. Click OK to confirm the deletion.

The user is deleted from the internal repository.

OpenIDM User Interface
Managing Workflows From the User Interface

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 35

4.4. Managing Workflows From the User Interface
The UI is integrated with the embedded Activiti worfklow engine, enabling users to interact with
workflows. Available workflows are displayed under the Processes item on the Dashboard. In order
for a workflow to be displayed here, the workflow definition file must be present in the openidm/
workflow directory.

A sample workflow integration with the user interface is provided in openidm/samples/workflow, and
documented in Sample Workflow - Provisioning User Accounts. Follow the steps in that sample for an
understanding of how the workflow integration works.

Access to workflows is based on OpenIDM roles, and is configured in the file conf/process-access.json.
By default all users with the role openidm-authorized or openidm-admin can invoke any available workflow.
The default process-access.json file is as follows:

{
 "workflowAccess" : [
 {
 "propertiesCheck" : {
 "property" : "_id",
 "matches" : ".*",
 "requiresRole" : "openidm-authorized"
 }
 },
 {
 "propertiesCheck" : {
 "property" : "_id",
 "matches" : ".*",
 "requiresRole" : "openidm-admin"
 }
 }
]
}

"property"

Specifies the property used to identify the process definition. By default, process definitions are
identified by their _id.

"matches"

A regular expression match is performed on the process definitions, according to the specified
property. The default ("matches" : ".*") implies that all process definition IDs match.

"requiresRole"

Specifies the OpenIDM role that is required for users to have access to the matched process
definition IDs. In the default file, users with the role openidm-authorized or openidm-admin have
access.

OpenIDM User Interface
Changing the UI Theme

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 36

To extend the process action definition file, identify the processes to which users should have access,
and specify the qualifying user roles. For example, if you wanted to restrict access to a process
definition whose ID was 567, to users with the role ldap you would add the following to the process-
access.json file:

{
 "propertiesCheck" : {
 "property" : "_id",
 "matches" : "567",
 "requiresRole" : "ldap"
 }
}

4.5. Changing the UI Theme
You can customize the theme of the default user interface to apply your own branding. The easiest
way to adjust the UI theme, is to edit the properties in the UI theme configuration file (/path/to/
openidm/conf/ui-themeconfig.json). This file stores detailed color values, background image paths, and
a number of other common styling options. Because the UI theme configuration file is part of the
configuration store, it is shared by all nodes in a cluster. Changes made to this file do not have to be
replicated manually across nodes.

To change theme elements that are not included in the UI theme configuration file, you can create a
custom theme in the openidm/ui/extension directory. By default the user interface reads the stylesheets
and images from the openidm/ui/default directory. Do not modify the files in this default directory
as there is no guarantee that your changes will not be overwritten in the next OpenIDM release.
Modifications made in the openidm/ui/extension directory can be maintained across product upgrades.
The UI searches the extension directory first and applies any styles or images located in this directory.
Note that files added to the extension directory must be manually copied between every node in a
cluster.

If you want to update the view logic of the UI, you cannot simply add files to the extensions folder.
It is assumed that if your deployment requires that level of control of the user interface, you are no
longer going to want to be automatically upgraded with subsequent releases. As such, you need to
take on the task of maintaining a fork of the UI.

4.5.1. Changing the Default Stylesheet
Most changes to the UI stylesheets can be made in the UI theme configuration file (conf/ui-
themeconfig.json).

With the following modification made to that file, the background color of the UI is changed to dark
grey.
$ grep "background-color" /path/to/openidm/conf/ui-themeconfig.json
"background-color" : "#ababab",

OpenIDM User Interface
Changing the Default Logo

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 37

Refresh your browser window for the change to appear.

The default stylesheets are located in the openidm/ui/default/enduser/public/css directory. To customize
the stylesheets beyond the properties available in the UI theme configuration file, copy the default
stylesheets to openidm/ui/extension/css, and edit them according to your requirements.

4.5.2. Changing the Default Logo

The default logo is located in the openidm/ui/default/enduser/public/images directory. Any file named
logo.png, added to the directory openidm/ui/extension/images, will replace the default logo when the
browser is refreshed.

To specify a different file name, or to control the size, and other properties of the image file that is
used for the logo, adjust the logo property in the UI theme configuration file (conf/themeconfig.json).

The following change to the UI theme configuration file points to an image file named example-logo.png,
in the openidm/ui/extension/images directory.
...
 "logo" : {
 "src" : "images/example-logo.png",
 "title" : "Example.com",
 "alt" : "Example.com",
 "height" : "80",
 "width" : "120"
 },
...

Refresh your browser window for the new logo to appear.

4.5.3. Changing the Language of the UI

Currently, the UI is provided only in US English. You can translate the UI and specify that your own
locale is used. The following example shows how to translate the UI into French.

1. Copy the default locale to a new folder in the same location (openidm/ui/default/enduser/public/
locales):
$ cd /path/to/openidm/ui/default/enduser/public/locales
$ cp -R en/ fr/

The new locale (fr) now contains the default translation.json file.
$ ls fr/
translation.json

2. Translate the values of the properties in the fr/translate.json file. Do not translate the property
names. For example:

OpenIDM User Interface
Creating a Project-Specific UI Theme

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 38

...
"UserMessages" : {
 "changedPassword" : "Mot de passe a été modifié",
 "profileUpdateFailed" : "Problème lors de la mise à jour du profil",
 "profileUpdateSuccessful" : "Profil a été mis à jour",
 "userNameUpdated" : "Nom d'utilisateur a été modifié",
....

3. Change the UI configuration to use the new locale by setting the value of the lang property in the
/path/to/openidm/conf/ui-configuration.json file, as follows:
"lang" : "fr",

4. Refresh your browser window for the modification to be applied.

4.5.4. Creating a Project-Specific UI Theme

You can create specific UI themes for different projects and then point a particular UI instance to use
a defined theme on startup. To create a complete custom theme, follow these steps:

1. Shut down the OpenIDM instance, if it is running. In the Felix administration console, type:
shutdown
->

2. Clear the felix-cache directory.
$ rm -rf felix-cache

3. Copy the entire default UI theme to an accessible location. For example:
$ cd /path/to/openidm/ui
$ cp -r default ../new-project-theme

4. In the copied theme, modify the required elements, as described in the previous sections. Note
that nothing is copied to the extension folder in this case - changes are made in the copied theme.

5. In the openidm/conf/boot/boot.properties file, add the following line, specifying the location of the
new theme. The path is relative to the installation root of the OpenIDM instance.
openidm.ui.fileinstall.dir=new-project-theme

6. Restart OpenIDM.
$ cd /path/to/openidm
$./startup.sh

7. Relaunch the UI in your browser. The UI is displayed with the new custom theme.

OpenIDM User Interface
Using an External System for Password Reset

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 39

4.6. Using an External System for Password Reset
By default, the password reset mechanism is handled internally, in OpenIDM. You can reroute
password reset in the event that a user has forgotten his password, by specifying an external URL to
which password reset requests are sent. Note that this URL applies to the password reset link on the
login page only, not to the security data change facility that is available after a user has logged in.

To set an external URL to handle password reset, set the passwordResetLink parameter in the UI
configuration file (conf/ui-configuration.json) file. The following example sets the passwordResetLink to
https://accounts.example.com/account/reset-password.
passwordResetLink: "https://accounts.example.com/reset-password"

The passwordResetLink parameter takes either an empty string as a value (which indicates that no
external link is used) or a full URL to the external system that handles password reset requests.

Note

External password reset and security questions for internal password reset are mutually exclusive. Therefore,
if you set a value for the passwordResetLink parameter, users will not be prompted with any security questions,
regardless of the setting of the securityQuestions parameter.

4.7. Providing a Logout URL to External Applications
By default, a UI session is invalidated when a user clicks on the Log out link. In certain situations
your external applications might require a distinct logout URL to which users can be routed, to
terminate their UI session.

The logout URL is #logout, appended to the UI URL, for example, https://localhost:8443/openidmui/index
.html#logout/.

The logout URL effectively performs the same action as clicking on the Log out link of the UI.

4.8. Changing the UI Path
By default, the UI is registered at a specific URL (context-root/openidmui). To override the default URL
and specify your own path, edit the openidm/conf/ui.context-enduser.json file, setting the urlContextRoot
property to the new URL. For example, to change the path to context-root/exampleui, edit the file as
follows:
"urlContextRoot" : "/exampleui",

OpenIDM User Interface
Disabling the UI

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 40

4.9. Disabling the UI
The UI is packaged as a separate bundle that can be disabled in the configuration before server
startup. To disable the registration of the UI servlet, edit the openidm/conf/ui.context-enduser.json file,
setting the enabled property to false:
"enabled" : false,

Configuring OpenIDM
OpenIDM Configuration Objects

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 41

Chapter 5

Configuring OpenIDM
OpenIDM configuration is split between .properties and container configuration files, and also
dynamic configuration objects. The majority of OpenIDM configuration files are stored under openidm/
conf/, as described in the appendix listing the File Layout.

OpenIDM stores configuration objects in its internal repository. You can manage the configuration by
using either the REST access to the configuration objects, or by using the JSON file based views.

5.1. OpenIDM Configuration Objects
OpenIDM exposes internal configuration objects in JSON format. Configuration elements can be
either single instance or multiple instance for an OpenIDM installation.

Single Instance Configuration Objects

Single instance configuration objects correspond to services that have at most one instance per
installation.

JSON file views of these configuration objects are named object-name.json.

• The audit configuration specifies how audit events are logged.

• The authentication configuration controls REST access.

• The cluster configuration defines how one OpenIDM instance can be configured in a cluster.

• The endpoint configuration controls any custom REST endpoints.

• The info configuration points to script files for the customizable information service.

• The managed configuration defines managed objects and their schemas.

• The policy configuration defines the policy validation service.

• The process access configuration defines access to any configured workflows.

• The repo.repo-type configuration such as repo.orientdb or repo.jdbc configures the internal repository.

• The router configuration specifies filters to apply for specific operations.

• The script configuration defines default and custom configuration directories.

Configuring OpenIDM
Changing the Default Configuration

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 42

• The sync configuration defines the mappings that OpenIDM uses when synchronizing and
reconciling managed objects.

• The ui configuration defines the configurable aspects of the default user interface.

• The workflow configuration defines the configuration of the workflow engine.

Multiple Instance Configuration Objects

Multiple instance configuration objects correspond to services that can have many instances per
installation. Configuration objects are named objectname/instancename, for example, provisioner.openicf/
xml.

JSON file views of these configuration objects are named objectname-instancename.json, for example,
provisioner.openicf-xml.json.

• Multiple schedule configurations can run reconciliations and other tasks on different schedules.

• Multiple provisioner.openicf configurations correspond to the resources connected to OpenIDM.

• Multiple servletfilter configurations can be used for different servlet filters such as the Cross
Origin and GZip filters.

5.2. Changing the Default Configuration
When you change OpenIDM's configuration objects, take the following points into account.

• OpenIDM's authoritative configuration source is the internal repository. JSON files provide a view
of the configuration objects, but do not represent the authoritative source.

OpenIDM updates JSON files after making configuration changes, whether those changes are made
through REST access to configuration objects, or through edits to the JSON files.

• OpenIDM recognizes changes to JSON files when it is running. OpenIDM must be running when
you delete configuration objects, even if you do so by editing the JSON files.

• Avoid editing configuration objects directly in the internal repository. Rather edit the configuration
over the REST API, or in the configuration JSON files to ensure consistent behavior and that
operations are logged.

• OpenIDM stores its configuration in the internal database by default. If you remove an OpenIDM
instance and do not specifically drop the repository, the configuration remains in effect for a new
OpenIDM instance that uses that repository. For testing or evaluation purposes, you can disable
this persistent configuration in the conf/system.properties file by uncommenting the following line:

openidm.config.repo.enabled=false

Configuring OpenIDM
Configuring an OpenIDM System for Production

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 43

Disabling persistent configuration means that OpenIDM will store its configuration in memory only.
You should not disable persistent configuration in a production environment.

5.3. Configuring an OpenIDM System for Production
Out of the box, OpenIDM is configured to make it easy to install and evaluate. Specific configuration
changes are required before you deploy OpenIDM in a production environment.

5.3.1. Configuring a Production Repository
By default, OpenIDM uses OrientDB for its internal repository so that you do not have to install a
database in order to evaluate OpenIDM. Before you use OpenIDM in production, you must replace
OrientDB with a supported repository.

For more information, see Installing a Repository for Production in the Installation Guide in the
Installation Guide.

5.3.2. Disabling Automatic Configuration Updates
By default, OpenIDM polls the JSON files in the conf directory periodically for any changes to the
configuration. In a production system, it is recommended that you disable automatic polling for
updates to prevent untested configuration changes from disrupting your identity service.

To disable automatic polling for configuration changes, edit the conf/system.properties file by
uncommenting the following line:
openidm.fileinstall.enabled=false

This setting also disables the file-based configuration view, which means that OpenIDM reads its
configuration only from the repository.

Before you disable automatic polling, you must have started the OpenIDM instance at least once to
ensure that the configuration has been loaded into the repository.

Note if automatic polling is enabled, changes to scripts that are called from a JSON configuration file
are taken into account immediately.

5.4. Configuring OpenIDM Over REST
OpenIDM exposes configuration objects under the /openidm/config context path.

You can list the configuration on the local host by performing a GET https://localhost:8443/openidm/
config. The following example shows excerpts of the default configuration for an OpenIDM instance
started with Sample 1.
$ curl \

Configuring OpenIDM
Configuring OpenIDM Over REST

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 44

 --request GET \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --cacert self-signed.crt \
 https://localhost:8443/openidm/config
 {
 "configurations": [
 {
 "factoryPid": "servletfilter",
 "pid": "servletfilter.ec099f08-bfd4-4ab4-8537-78e5b956c7cc",
 "_id": "servletfilter/gzip"
 },
 {
 "factoryPid": null,
 "pid": "router",
 "_id": "router"
 },

 ...

 {
 "factoryPid": "endpoint",
 "pid": "endpoint.7e9ec068-bb4a-4fa0-ae15-1706bb4a3a07",
 "_id": "endpoint/jqgrid"
 },
 {
 "factoryPid": "endpoint",
 "pid": "endpoint.47978983-0411-425d-8f53-4022175e146a",
 "_id": "endpoint/gettasksview"
 },

 ...

 {
 "factoryPid": "ui",
 "pid": "ui.b10eb4cb-83e3-4a4b-9d29-d91d90eb3053",
 "_id": "ui/countries"
 },
 {
 "factoryPid": "process",
 "pid": "process.9863529c-60e0-42e3-b5d5-c5c704016e95",
 "_id": "process/access"
 }
]
}

Single instance configuration objects are located under openidm/config/object-name. The following
example shows the default audit configuration.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 "https://localhost:8443/openidm/config/audit"
{
 "eventTypes": {
 "recon": {},
 "activity": {
 "filter": {

Configuring OpenIDM
Configuring OpenIDM Over REST

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 45

 "actions": [
 "create",
 "update",
 "delete",
 "patch",
 "action"
]
 },
 "passwordFields": [
 "password"
],
 "watchedFields": []
 }
 },
 "exceptionFormatter": {
 "file": "bin/defaults/script/audit/stacktraceFormatter.js",
 "type": "text/javascript"
 },
 "logTo": [
 {
 "recordDelimiter": ";",
 "logType": "csv",
 "location": "audit"
 },
 {
 "useForQueries": true,
 "logType": "repository"
 }
]
}

Multiple instance configuration objects are found under openidm/config/object-name/instance-name.

The following example shows the configuration for the XML connector provisioner, based on the first
IDM sample described in the First IDM Sample in the Installation Guide of the OpenIDM Installation
Guide.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 "https://localhost:8443/openidm/config/provisioner.openicf/xml"
{
 "operationTimeout": {
 "SCRIPT_ON_CONNECTOR": -1,
 "VALIDATE": -1,
 "SYNC": -1,
 "DELETE": -1,
 "TEST": -1,
 "UPDATE": -1,
 "CREATE": -1,
 "AUTHENTICATE": -1,
 "SEARCH": -1,
 "GET": -1,
 "SCRIPT_ON_RESOURCE": -1,
 "SCHEMA": -1
 },
 "connectorRef": {

Configuring OpenIDM
Configuring OpenIDM Over REST

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 46

 "connectorName": "org.forgerock.openicf.connectors.xml.XMLConnector",
 "bundleVersion": "1.1.0.1",
 "bundleName": "org.forgerock.openicf.connectors.xml-connector"
 },
 "connectorPoolingSupported": true,
 "syncFailureHandler": {
 "maxRetries": 5,
 "postRetryAction": "logged-ignore"
 },
 "configurationProperties": {
 "xsdFilePath": "samples/sample1/data/resource-schema-extension.xsd",
 "xsdIcfFilePath": "samples/sample1/data/resource-schema-1.xsd",
 "xmlFilePath": "samples/sample1/data/xmlConnectorData.xml"
 },
 "objectTypes": {
 "account": {
 "nativeType": "__ACCOUNT__",
 "$schema": "http://json-schema.org/draft-03/schema",
 "type": "object",
 "properties": {
 "securityAnswer": {
 "nativeType": "string",
 "nativeName": "securityAnswer",
 "required": true,
 "type": "string"
 },
 "securityQuestion": {
 "nativeType": "string",
 "nativeName": "securityQuestion",
 "required": true,
 "type": "string"
 },
 "password": {
 "nativeType": "string",
 "nativeName": "password",
 "type": "string"
 },
 "mobileTelephoneNumber": {
 "nativeType": "string",
 "nativeName": "mobileTelephoneNumber",
 "required": true,
 "type": "string"
 },
 "_id": {
 "nativeName": "__UID__",
 "type": "string"
 },
 "email": {
 "nativeType": "string",
 "nativeName": "email",
 "type": "string"
 },
 "description": {
 "nativeType": "string",
 "nativeName": "__DESCRIPTION__",
 "type": "string"
 },
 "name": {
 "nativeType": "string",

Configuring OpenIDM
Configuring OpenIDM Over REST

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 47

 "nativeName": "__NAME__",
 "required": true,
 "type": "string"
 },
 "roles": {
 "nativeType": "string",
 "nativeName": "roles",
 "required": false,
 "type": "string"
 },
 "lastname": {
 "nativeType": "string",
 "nativeName": "lastname",
 "required": true,
 "type": "string"
 },
 "firstname": {
 "nativeType": "string",
 "nativeName": "firstname",
 "type": "string"
 }
 },
 "id": "__ACCOUNT__"
 }
 },
 "operationOptions": {},
 "name": "xmlfile",
 "producerBufferSize": 100,
 "poolConfigOption": {
 "maxObjects": 10,
 "minEvictableIdleTimeMillis": 120000,
 "maxIdle": 10,
 "minIdle": 1,
 "maxWait": 150000
 }
 }

You can change the configuration over REST by using an HTTP PUT request to modify the required
configuration object. Note that HTTP PATCH is not supported on the /config endpoint.

The following example modifies the router.json file to remove all filters, effectively bypassing any
policy validation.

Configuring OpenIDM
Using Property Value Substitution in the Configuration

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 48

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request PUT \
 --data '{
 "filters" : [
 {
 "onRequest" : {
 "type" : "text/javascript",
 "file" : "bin/defaults/script/router-authz.js"
 }
 }
]
 }' \
 "https://localhost:8443/openidm/config/router"
{
 "filters": [
 {
 "onRequest": {
 "file": "bin/defaults/script/router-authz.js",
 "type": "text/javascript"
 }
 }
]
}

For more information about using the REST API to update objects, see the REST API Reference.

5.5. Using Property Value Substitution in the Configuration
In an environment where you have more than one OpenIDM instance, you might require a
configuration that is similar, but not identical, across the different OpenIDM hosts. OpenIDM
supports variable replacement in its configuration which means that you can modify the effective
configuration according to the requirements of a specific environment or OpenIDM instance.

Property substitution enables you to achieve the following:

• Define a configuration that is specific to a single OpenIDM instance, for example, setting the
location of the keystore on a particular host.

• Define a configuration whose parameters vary between different environments, for example, the
URLs and passwords for test, development, and production environments.

• Disable certain capabilities on specific nodes. For example, you might want to disable the workflow
engine on specific instances.

When OpenIDM starts up, it combines the system configuration, which might contain specific
environment variables, with the defined OpenIDM configuration properties. This combination makes
up the effective configuration for that OpenIDM instance. By varying the environment properties, you
can change specific configuration items that vary between OpenIDM instances or environments.

Configuring OpenIDM
Using Property Value Substitution With System Properties

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 49

Property references are contained within the construct &{ }. When such references are found,
OpenIDM replaces them with the appropriate property value, defined in the boot.properties file.

Example 5.1.

The following example defines two separate OpenIDM environments - a development environment
and a production environment. You can specify the environment at startup time and, depending on
the environment, the database URL is set accordingly.

The environments are defined by adding the following lines to the conf/boot.properties file:
PROD.location=production
DEV.location=development

The database URL is then specified as follows in the repo.orientdb.json file:
{
 "dbUrl" : "plocal:./db/&{&{environment}.location}-openidm",
 ...
}

The effective database URL is determined by setting the OPENIDM_OPTS environment variable when you
start OpenIDM. To use the production environment, start OpenIDM as follows:
$ export OPENIDM_OPTS="-Xmx1024m -Xms1024m -Denvironment=PROD"
$./startup.sh

To use the development environment, start OpenIDM as follows:
$ export OPENIDM_OPTS="-Xmx1024m -Xms1024m -Denvironment=DEV"
$./startup.sh

5.5.1. Using Property Value Substitution With System Properties

You can use property value substitution in conjunction with the system properties, to modify the
configuration according to the system on which the OpenIDM instance runs.

Example 5.2. Custom Audit Log Location

The following example modifies the audit.json file so that the log file is written to the user's directory.
The user.home property is a default Java System property.
{
 "logTo" : [
 {
 "logType" : "csv",
 "location" : "&{user.home}/audit",
 "recordDelimiter" : ";"
 }
]
}

Configuring OpenIDM
Limitations of Property Value Substitution

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 50

You can define nested properties (that is a property definition within another property definition) and
you can combine system properties and boot properties.

Example 5.3.

The following example uses the user.country property, a default Java System property. The example
defines specific LDAP ports, depending on the country (identified by the country code) in the boot
.properties file. The value of the LDAP port (set in the provisioner.openicf-ldap.json file) depends on the
value of the user.country System property.

The port numbers are defined in the boot.properties file as follows:
openidm.NO.ldap.port=2389
openidm.EN.ldap.port=3389
openidm.US.ldap.port=1389

The following extract from the provisioner.openicf-ldap.json file shows how the value of the LDAP port
is eventually determined, based on the System property:
"configurationProperties" :
 {
 "credentials" : "Passw0rd",
 "port" : "&{openidm.&{user.country}.ldap.port}",
 "principal" : "cn=Directory Manager",
 "baseContexts" :
 [
 "dc=example,dc=com"
],
 "host" : "localhost"
 }

5.5.2. Limitations of Property Value Substitution

Note the following limitations when you use property value substitution:

• You cannot reference complex objects or properties with syntaxes other than String. Property
values are resolved from the boot.properties file or from the System properties and the value of
these properties is always in String format.

Property substitution of boolean values is currently only supported in stringified format, that is,
resulting in "true" or "false".

• Substitution of encrypted property values is currently not supported.

5.6. Adding Custom Endpoints
You can customize OpenIDM to meet the specific requirements of your deployment by adding your
own RESTful endpoints. Endpoints are configured in files named conf/endpoint-name.json, where name
generally describes the purpose of the endpoint.

Configuring OpenIDM
The Components of an Endpoint Configuration File

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 51

A sample custom endpoint configuration is provided in the openidm/samples/customendpoint directory. The
use of this sample is described in Section 5.6.6, "Custom Endpoint Example". Custom endpoints in
OpenIDM can be written either in JavaScript or Groovy. The sample includes three files:

conf/endpoint-echo.json

Provides the configuration for the endpoint.

script/echo.js

Supports an endpoint script written in JavaScript.

script/echo.groovy

Supports an endpoint script written in Groovy.

Endpoint configuration files have a certain structure. They may cite scripts written in JavaScript or
Groovy.

The cited scripts include defined request and context global variables.

5.6.1. The Components of an Endpoint Configuration File

The sample custom endpoint configuration (/path/to/openidm/samples/customendpoint/conf/endpoint-
echo.json) depicts a typical endpoint, configured to use a Groovy script that is specified in the script/
echo.groovy file. The structure of the sample configuration is as follows:
{
 "file" : "echo.groovy",
 "type" : "groovy",
 "_file" : "echo.js",
 "_type" : "text/javascript"
}

The "_file" and "_type" properties are comments, which you can change to accommodate an endpoint
written in JavaScript.

If appropriate, you can also include a context property in this file. The following example shows how
the context is used to display routing to an endpoint.

 "context" : "endpoint/echo",

The endpoint configuration can specify the route on which the endpoint is available. For an example,
look at the conf/endpoint-linkedView.json file. The code shown declares the route on which the endpoint
is available.

Configuring OpenIDM
Context Component Access Methods

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 52

{
 "context": "endpoint/linkedView/*",
 "type" : "text/javascript",
 "source" : "require('linkedView').fetch(request.resourceName);"
}

The following list describes each property in the custom endpoint configuration file:

"type"

string, required

Specifies the type of script to be executed. Supported types include "text/javascript" and "groovy".

"file" or "source"

The actual script, inline, or a path to the file that contains the script. The script files associated
with this sample, echo.js and echo.groovy, support requests using all ForgeRock RESTful CRUD
operations (including PATCH, ACTION, and QUERY).

context

Requests are dispatched, routed, handled, processed, and more, in a context.

5.6.2. Context Component Access Methods

For both JavaScript and Groovy, the context consists of a chain of structures that provide different
levels of detail. The detail varies depending on the context type:

security

Provides authentication / authorization data.

http

Provides data from the HTTP request.

router

Provides data on where the information is sent.

JavaScript and Groovy access these context structures in different ways. The term shown is the
JavaScript access method; the definition includes the Groovy access method.

context.current

In Groovy, known simply as context

The current context in which the request is handled by a script or a script-hook.

Configuring OpenIDM
Custom Endpoints and request Objects

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 53

context.http

In Groovy, known as one of the following:

 context.asContext(org.forgerock.json.resource.servlet.HttpContext.class)
 context.getContext("http")

The HTTP context.

context.security

In Groovy, known as one of the following:

 context.asContext(org.forgerock.json.resource.SecurityContext.class)
 context.getContext("security")

The security context.

5.6.3. Custom Endpoints and request Objects
The endpoint configuration file specifies a script (either inline with the "source" property, or in a
referenced file with the "file" property). The script is invoked with a global request variable in its
scope.

All processes within OpenIDM are initiated with a request. Requests can come either from the REST
API, as shown in the REST API Reference) or internally, from a script, using the openidm router object,
as defined in the Router Service Reference. Regardless of how the process is initiated, the details of
the request are represented in the same way - within an object named request.

Most request types include a complex object that stores the details required for that particular
request. For example, when you start an action process over the REST interface, you might want to
include certain detailed information for that action. You include this information as a JSON string in
the POST body. The HTTP request header Content-type describes this string as application/json.

Consider the following REST request:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data { "name": "bob"} \
 "https://localhost:8443/openidm/endpoint/test?_action=myAction"

This request includes the string '{ "name": "bob"}' as the HTTP post body. OpenIDM expects this to be
a JSON string, and will deserialize it into an object. The object is accessed using request.content.

Depending on the type of request, the associated content may include the following properties:

method

The requested operation, which may be create, read, update, delete, patch, query or action.

Configuring OpenIDM
Custom Endpoints, Contexts, and Chains

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 54

resourceName

The local identifier, without the endpoint/ prefix, such as echo.

newResourceId

An identifier associated with a new resource, associated with the create method.

additionalParameters

The sample code returns request parameters from an HTTP GET with ?param=x, as "params":
{"param":"x"}.

revision

The revision level associated with the method used, relative to a newResourceId.

content

Content based on the latest version of the object, using getObject.

context

Based on a JSON object that contains nested attributes. The object with the attributes, defines
the request, based on ForgeRock REST Supported Operations.

5.6.4. Custom Endpoints, Contexts, and Chains

Custom endpoints include contexts that may be wrapped in various layers, analogous to the way
network packets can be wrapped at ascending network levels.

As an example, start with a request such as the following:
GET https://localhost:8443/openidm/endpoint/echo?queryId=query-all-ids&_para=foo

A request at an endpoint starts with a root context, associated with a specific context ID, and the org
.forgerock.json.resource.RootContext context.

The root context is wrapped in the security context that holds the authentication and authorization
detail for the request. The associated class is org.forgerock.json.resource.SecurityContext, with an
authenticationId user name such as openidm-admin, and associated roles such as openidm-authorized.

That security context is further wrapped by the HTTP context, with the target URI. The class is org
.forgerock.json.resource.HttpContext, and it is associated with the normal parameters of a REST call,
including a user agent, authorization token, and method.

The HTTP context is then further wrapped by one or more server / router context(s). That class is org
.forgerock.json.resource.RouterContext, with an endpoint URI. You may see several layers of server and
router contexts.

Configuring OpenIDM
Additional Custom Endpoint Parameters

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 55

5.6.5. Additional Custom Endpoint Parameters
A couple of additional parameters are shown with the query request method. You can review how this
works in the following section of the OpenIDM Installation Guide: Sample 2c - Synchronizing LDAP
Group Membership in the Installation Guide.

The final statement in the script is the return value. In the following example, there is no return
keyword, and the value of the last statement (x) is returned.
var x = "Sample return";
functioncall();
x

5.6.6. Custom Endpoint Example
The following example uses the sample provided in the openidm/samples/customendpoint directory, copied
to the openidm/conf and openidm/script directories. The output from the query shows the complete
request structure.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/endpoint/echo?_queryId=query-all-ids"

 {
 "result" : [{
 "method" : "query",
 "resourceName" : "",
 "pagedResultsCookie" : null,
 "pagedResultsOffset" : 0,
 "pageSize" : 0,
 "queryExpression" : null,
 "queryId" : "query-all-ids",
 "queryFilter" : "null",
 "parameters" : { },
 "context" : {
 "parent" : {
 "parent" : {
 "parent" : {
 "parent" : {
 "parent" : {
 "parent" : null,
 "contextName" : "root",
 "rootContext" : true,
 "id" : "43576021-fe54-4468-8d10-09b14af2a36d"
 },
 "contextName" : "security",
 "authenticationId" : "openidm-admin",
 "authorizationId" : {
 "id" : "openidm-admin",
 "component" : "repo/internal/user",
 "roles" : ["openidm-admin", "openidm-authorized"]
 },
 "rootContext" : false,

Configuring OpenIDM
Default and Custom Configuration Directories

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 56

 "id" : "43576021-fe54-4468-8d10-09b14af2a36d"
 },
 "headers" : {
 "X-OpenIDM-Username" : ["openidm-admin"],
 "Host" : ["localhost:8443" :8443"],
 "Accept" : ["*/*"],
 "X-OpenIDM-Password" : ["openidm-admin"],
 "User-Agent" : ["curl/7.19.7 (x86_64-redhat-linux-gnu)
 libcurl/7.19.7 NSS/3.14.0.0 zlib/1.2.3 libidn/1.18
 libssh2/1.4.2"]
 },
 "parameters" : {
 "_queryId" : ["query-all-ids"],
 "_prettyPrint" : ["true"]
 },
 "external" : true,
 "contextName" : "http",
 "method" : "GET",
 "path" : "https://localhost:8443/openidm/endpoint/echo",
 "rootContext" : false,
 "id" : "43576021-fe54-4468-8d10-09b14af2a36d"
 },
 "contextName" : "apiInfo",
 "apiVersion" : "2.3.1-SNAPSHOT",
 "apiName" : "org.forgerock.commons.json-resource-servlet",
 "rootContext" : false,
 "id" : "43576021-fe54-4468-8d10-09b14af2a36d"
 },
 "contextName" : "server",
 "rootContext" : false,
 "id" : "43576021-fe54-4468-8d10-09b14af2a36d"
 },
 "uriTemplateVariables" : { },
 "contextName" : "router",
 "matchedUri" : "endpoint/echo",
 "baseUri" : "endpoint/echo",
 "rootContext" : false,
 "id" : "43576021-fe54-4468-8d10-09b14af2a36d"
 }
 }],
 "resultCount" : 1,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
}

You must protect access to any custom endpoints by configuring the appropriate authorization for
those contexts. For more information, see the Authorization section.

5.7. Default and Custom Configuration Directories
You can set up custom configuration files in directories as defined in the openidm/conf/script.json file.

The following portion of the script.json file points to sources in installation and project directories.
As implied in the section on Specifying the OpenIDM Startup Configuration , the launcher.project
.location is the directory cited if you start OpenIDM with a specific project directory.

Configuring OpenIDM
Default and Custom Configuration Directories

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 57

...
"sources" : {
 "default" : {
 "directory" : "&{launcher.install.location}/bin/defaults/script"
 },
 "install" : {
 "directory" : "&{launcher.install.location}"
 },
 "project" : {
 "directory" : "&{launcher.project.location}"
 },
 "project-script" : {
 "directory" : "&{launcher.project.location}/script"
 }
...

For example, if you start OpenIDM from the /path/to/openidm directory with the following command:
$./startup.sh -p /path/to/openidm/customconfig

The launcher.project.location directory would be /path/to/openidm/customconfig.

The script.json file also refers to a launcher.install.location directory, which is /path/to/openidm.

Thus, based on the way the script.json file is configured for project and project-script, you can add
custom configuration and script files to the /path/to/openidm/customconfig and the /path/to/openidm/
customconfig/script directories.

Accessing Data Objects
Accessing Data Objects by Using Scripts

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 58

Chapter 6

Accessing Data Objects

OpenIDM supports a variety of objects that can be addressed via a URL or URI. You can access data
objects by using scripts (through the Resource API) or by using direct HTTP calls (through the REST
API).

The following sections describe these two methods of accessing data objects, and provide information
on constructing and calling data queries.

6.1. Accessing Data Objects by Using Scripts
OpenIDM's uniform programming model means that all objects are queried and manipulated in the
same way, using the Resource API. The URL or URI that is used to identify the target object for an
operation depends on the object type. For an explanation of object types, see the Data Models and
Objects Reference. For more information about scripts and the objects available to scripts, see the
Scripting Reference.

You can use the Resource API to obtain managed objects, configuration objects, and repository
objects, as follows:

val = openidm.read("managed/organization/mysampleorg")
val = openidm.read("config/custom/mylookuptable")
val = openidm.read("repo/custom/mylookuptable")

For information about constructing an object ID, see URI Scheme in the REST API Reference.

You can update entire objects with the update() function, as follows.

openidm.update("managed/organization/mysampleorg", mymap)
openidm.update("config/custom/mylookuptable", mymap)
openidm.update("repo/custom/mylookuptable", mymap)

For managed objects, you can partially update an object with the patch() function.

openidm.patch("managed/organization/mysampleorg", rev, value)

Accessing Data Objects
Accessing Data Objects by Using the REST API

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 59

The create(), delete(), and query() functions work the same way.

6.2. Accessing Data Objects by Using the REST API
OpenIDM provides RESTful access to data objects via a REST API. To access objects over REST, you
can use a browser-based REST client, such as the Simple REST Client for Chrome, or RESTClient for
Firefox. Alternatively you can use the curl command-line utility.

For a comprehensive overview of the REST API, see the REST API Reference appendix.

To obtain a managed object through the REST API, depending on your security settings and
authentication configuration, perform an HTTP GET on the corresponding URL, for example https://
localhost:8443/openidm/managed/organization/mysampleorg.

By default, the HTTP GET returns a JSON representation of the object.

6.3. Defining and Calling Queries
OpenIDM supports an advanced query model that enables you to define queries, and to call them over
the REST or Resource API.

6.3.1. Parameterized Queries

Managed objects in the supported OpenIDM repositories can be accessed using a parameterized
query mechanism. Parameterized queries on repositories are defined in the repository configuration
(repo.*.json) and are called by their _queryId.

Parameterized queries provide security and portability for the query call signature, regardless of the
back-end implementation. Queries that are exposed over the REST interface must be parameterized
queries to guard against injection attacks and other misuse. Queries on the officially supported
repositories have been reviewed and hardened against injection attacks.

For system objects, support for parameterized queries is restricted to _queryId=query-all-ids. There
is currently no support for user-defined parameterized queries on system objects. Typically,
parameterized queries on system objects are not called directly over the REST interface, but are
issued from internal calls, such as correlation queries.

A typical query definition is as follows:

"query-all-ids" : "select _openidm_id from ${unquoted:_resource}"

To call this query, you would reference its ID, as follows:

https://chrome.google.com/webstore/detail/simple-rest-client/fhjcajmcbmldlhcimfajhfbgofnpcjmb
https://addons.mozilla.org/en-US/firefox/addon/restclient/
http://curl.haxx.se/

Accessing Data Objects
Native Query Expressions

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 60

?_queryId=query-all-ids

The following example calls query-all-ids over the REST interface:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 "https://localhost:8443/openidm/managed/user?_queryId=query-all-ids"

6.3.2. Native Query Expressions

Native query expressions are supported for all managed objects and system objects, and can be
called directly over the REST interface, rather than being defined in the repository configuration.

Native queries are intended specifically for internal callers, such as custom scripts, in situations
where the parameterized query facility is insufficient. For example, native queries are useful if the
query needs to be generated dynamically.

The query expression is specific to the target resource. For repositories, queries use the native
language of the underlying data store. For system objects that are backed by OpenICF connectors,
queries use the applicable query language of the system resource.

Native queries on the repository are made using the _queryExpression keyword. For example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 "https://localhost:8443/openidm/managed/user?_queryExpression=select+from+managed_user"

Unless you have specifically enabled native queries, the previous command returns a 403 access
denied error message. Native queries should not be enabled in production environments, as they are
not portable and do not guard against injection attacks.

Such query expressions should therefore not be used or made accessible over the REST interface or
over HTTP, other than for development, and should be used only via the internal Resource API. If you
want to enable such native queries for development, see the section on Protecting Sensitive REST
Interface URLs.

Alternatively, if you really need to expose native queries over HTTP, in a selective manner, you can
design a custom endpoint to wrap such access.

6.3.3. Constructing Queries

The openidm.query function enables you to query OpenIDM resource objects for reconciliation
processes and workflows. The query syntax is openidm.query(id, params), where id specifies the object

Accessing Data Objects
Constructing Queries

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 61

on which the query should be performed and params provides the parameters that are passed to the
query, either _queryFilter or _queryID. For example:

var params = {
 '_queryFilter' : 'givenName co "' + sourceCriteria + '" or ' + 'sn co "'
 + sourceCriteria + '"'
};
var results = openidm.query("system/ScriptedSQL/account", params)

The query filter is specified in common filter notation, with the following operations.

Attribute Operations

Equals Filter

Determines whether the resource contains an attribute that matches a specific attribute value.

Returns true if the object satisfies all selection criteria of the filter, otherwise returns false.

For example:

"_queryFilter" : "employeeType eq \"Permanent\""

Comparable Attribute Operations

Compares single-value attributes to a given filter.

GreaterThan Filter

Determines whether the attribute value of the resource object is greater than the one provided in
the filter.

Returns true if the attribute value is greater, otherwise returns false.

For example:

"_queryFilter" : "employeeNumber gt \"50000\""

GreaterThanOrEqual Filter

Determines whether the attribute value of the resource object is greater than or equal to the one
provided in the filter.

Returns true if the attribute value is greater than or equal, otherwise returns false.

For example:

Accessing Data Objects
Constructing Queries

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 62

"_queryFilter" : "employeeNumber ge \"50000\""

LessThan Filter

Determines whether the attribute value of the resource object is less than the one provided in the
filter.

Returns true if the attribute value is less, otherwise returns false.

For example:

"_queryFilter" : "employeeNumber lt \"50000\""

LessThanOrEqual Filter

Determines whether the attribute value of the resource object is less than or equal to the one
provided in the filter.

Returns true if the attribute value is less than or equal, otherwise returns false.

For example:

"_queryFilter" : "employeeNumber le \"50000\""

String Attribute Operations

Compares string values to a given filter.

StartsWith Filter

Returns attributes whose value starts with the string specified in the filter.

For example:

"_queryFilter" : "lastName sw \"smi\""

Contains Filter

Returns attributes whose value contains the string specified in the filter.

For example:

"_queryFilter" : "lastName co \"smi\""

Accessing Data Objects
Constructing Queries

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 63

EndsWith Filter

Returns attributes whose value ends with the string specified in the filter.

For example:

"_queryFilter" : "lastName ew \"ith\""

Filter Operations

Filter operations are used to construct more complex filters by comparing two filters from the
preceding section or negating filters defined in the previous section.

AND Filter

A filter that matches entries using the AND boolean operator on two filters.

For example:

"_queryFilter": "(lastName eq \"Smith\") and (givenName eq \"John\")"

OR Filter

A filter that matches entries using the OR boolean operator on two filters.

For example:

"_queryFilter": "(lastName eq \"Smith\") or (lastName eq \"Smythe\")"

NOT Filter

A filter that filters out matched entries by using a query. Syntax is "! (expression)".

For example:

"_queryFilter": "! (employeeType eq \"Contractor\")"

Managing Users, Groups, and Roles
Working with Managed Users

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 64

Chapter 7

Managing Users, Groups, and Roles
OpenIDM does not control the structure of objects that are stored in its repository. You can define
any kind of managed object, but a definition for users, groups and roles is provided by default.

This chapter describes how to work with these default managed objects. More information about the
OpenIDM object model is provided in the Data Models and Objects Reference.

7.1. Working with Managed Users
External users that are stored in OpenIDM's repository are referred to as managed users. For
a JDBC repository, OpenIDM stores managed users in the managedobjects table. A second table,
managedobjectproperties, serves as the index table. For an OrientDB repository, managed users are
stored in the managed_user table.

OpenIDM provides RESTful access to managed users, at the context path /openidm/managed/user. For
more information, see To Get Started With the OpenIDM REST Interface in the Installation Guide in
the Installation Guide.

7.2. Working With Managed Groups
OpenIDM provides support for a managed "group" object. For a JDBC repository, OpenIDM
stores managed groups with all other managed objects, in the managedobjects table, and uses the
managedobjectproperties for indexing. For an OrientDB repository, managed groups are stored in the
managed_group table.

The managed group object is not provided by default. To use managed groups, add an object similar
to the following to your conf/managed.json file:
{
 "name" : "group"
},

With this addition, OpenIDM provides RESTful access to managed groups, at the context path /openidm
/managed/group.

For an example of a deployment that uses managed groups, see Sample 2d - Synchronizing LDAP
Groups in the Installation Guide in the Installation Guide.

Managing Users, Groups, and Roles
Configuring Custom Roles

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 65

7.3. Configuring Custom Roles
The default managed object model includes a managed role object that can be manipulated in the
same way as any other managed object.

This section refers to two distinct types of roles - direct (static) and indirect (dynamic) roles. Direct
roles refer to roles that are specifically added to the user's "roles" attribute by an administrator
operation. Indirect roles might be added to the user entry as a result of a script or rule that
assigns the role. For example, a user might acquire a "sales-role" as a result of being in the "sales"
organization.

A managed user's "roles" attribute takes an array as a value. Currently, only flat strings are
supported in this array.

The "roles" attribute includes any specifically assigned roles, and any roles assigned internally by
OpenIDM. So, the "roles" attribute of a particular user entry might appear as follows:

"roles" : [
 "name" : "managed/role/sample-role",
 "name" : "openidm-authorized"
]

A role value that includes a / character is considered to be a URL that points to the role details on the
router, for example, managed/role/sample-role.

The following sections describe basic role manipulation - how roles are defined, assigned to users,
and deleted. The entitlements or assignments supplied by roles are described in the subsequent
section.

7.3.1. Creating, Assigning, and Deleting Roles

Role definitions are stored in the repository and are accessible at the /openidm/managed/role context
path. This section describes how to manipulate roles over the REST interface.

The examples in this section assume that OpenIDM has been started with the configuration of Sample
2b, and refers to the managed user objects created in that sample. For more information, see Sample
2b - LDAP Two Way in the Installation Guide in the Installation Guide.

7.3.1.1. To Create a Role Definition

The following REST call creates a relatively complex role:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \

Managing Users, Groups, and Roles
Creating, Assigning, and Deleting Roles

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 66

 --header "If-None-Match: *" \
 --request PUT \
 --data '{
 "properties":{"description":"an example role"},
 "assignments":{"ldap":{"attributes":[
 {"name":"cns",
 "assignmentOperation":"mergeWithTarget",
 "unassignmentOperation":"removeFromTarget",
 "value":["CN=employees,O=corp"]}],
 "onAssignment": {"file":"roles/onAssignment_ldap.js","type":"text/javascript"},
 "onUnassignment":{"file":"roles/onUnassignment_ldap.js",
 "type":"text/javascript"}}}}' \
 "https://localhost:8443/openidm/managed/role/newrole"

 {
 "assignments": {
 "ldap": {
 "attributes": [
 {
 "name": "cns",
 "unassignmentOperation": "removeFromTarget",
 "assignmentOperation": "mergeWithTarget",
 "value": [
 "CN=employees,O=corp"
]
 }
],
 "onAssignment": {
 "file": "roles/onAssignment_ldap.js",
 "type": "text/javascript"
 },
 "onUnassignment": {
 "file": "roles/onUnassignment_ldap.js",
 "type": "text/javascript"
 }
 }
 },
 "_id": "newrole",
 "properties": {
 "description": "an example role"
 },
 "_rev": "1"
 }

For the definitions of each of these attributes, see Section 7.3.2.1, "A Sample Role Definition for Two
Remote Systems"

Most of the examples in this guide use client-assigned IDs when creating resources, as it makes the
examples easier to read. In general, server-assigned UUIDs are better in production, as they can be
generated easily in clustered environments.

7.3.1.2. To List the Defined Roles

To obtain a list of all defined managed roles, query the /openidm/managed/role context path, as follows.

Managing Users, Groups, and Roles
Creating, Assigning, and Deleting Roles

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 67

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/role/?_queryId=query-all-ids"

{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 1,
 "result": [
 {
 "_rev": "0",
 "_id": "newrole"
 }
]
}

7.3.1.3. To Assign a Role to a User

To assign a direct role to a user, you can update the user's entry over REST, adding managed/role/role
 ID to the user's "roles" attribute. The following example adds the ldap role, created previously, to
user bjensen.

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --header "If-Match: *" \
 --request PATCH \
 --data '[
 {
 "operation": "add",
 "field": "/roles/-",
 "value": "managed/role/newrole"

 }
]' \
 "https://localhost:8443/openidm/managed/user/bjensen"

{
 "mail": "bjensen@example.com",
 "sn": "Jensen",
 "passwordAttempts": "0",
 "address2": "",
 "lastPasswordAttempt": "Thu Apr 10 2014 12:49:32 GMT+0200 (SAST)",
 "givenName": "Barbara",
 "city": "",
 "country": "",
 "_rev": "2",
 "lastPasswordSet": "",

Managing Users, Groups, and Roles
Creating, Assigning, and Deleting Roles

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 68

 "postalCode": "",
 "_id": "bjensen",
 "description": "Created for OpenIDM",
 "accountStatus": "active",
 "telephoneNumber": "1-503-334-2546",
 "roles": ["openidm-authorized", "managed/role/newrole"],
 "effectiveAssignments" : {
 "ldap" : {
 "onUnassignment" : {
 "type" : "text/javascript",
 "file" : "roles/onUnassignment_ldap.js"
 },
 "onAssignment" : {
 "type" : "text/javascript",
 "file" : "roles/onAssignment_ldap.js"
 },
 "attributes" : [{
 "value" : ["CN=employees,O=corp"],
 "assignedThrough" : "managed/role/newrole",
 "assignmentOperation" : "mergeWithTarget",
 "unassignmentOperation" : "removeFromTarget",
 "name" : "cns"
 }]
 }
 },
 "postalAddress": "",
 "userName": "bjensen",
 "stateProvince": "",
 "displayName": "Babara Jensen"
}

Note the dash (-) character appended to the field name, within the -data option. This character
specifies that the command appends the role that you add to the existing roles for that user. If you do
not include the dash character, the request overwrites all current values of the "roles" attribute.

If you see a message such as "Object bjensen not found in managed/user", you may need to substitute
the _id, as output from the query-all-ids query described in Section 3.4.3, "Running the Sample" in
the Installation Guide. Take care when configuring that sample, as it assumes that you have set up a
running instance of OpenDJ with specific data.

7.3.1.4. To Remove a Role Assignment

To remove a role assignment from a user, simply replace that user's "roles" attribute with the array of
roles that the user should have. The following example removes the newrole role from user bjensen.

Managing Users, Groups, and Roles
Creating, Assigning, and Deleting Roles

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 69

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --header "If-Match: *" \
 --request PATCH \
 --data '[
 {
 "operation": "replace",
 "field": "/roles",
 "value": [
 "openidm-authorized"
]
 }
]' \
 "https://localhost:8443/openidm/managed/user/bjensen"

In the role definition, you can specify what should happen when an assignment of that role is
removed.

7.3.1.5. To Query Role Membership
To return a list of all users who have a specific directly assigned role, specify the role ID in the query
on the managed/user context path. It is not currently possible to query role membership for indirect
roles.

The following query returns all members of the "newrole" role created previously. Currently that role
has only one member, bjensen.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/user?_queryId=get-users-of-direct-role&role=managed/role/newrole"

 {
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 1,
 "result": [
 {
 "_rev": "0",
 "_id": "bjensen"
 }
]
}

7.3.1.6. To Delete a Managed Role Definition
When a role definition is removed, an "unassignment" operation is triggered for any attributes that
have been assigned to a user indirectly through that role.

Managing Users, Groups, and Roles
Understanding Effective Roles and Effective Assignments

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 70

The following sample command deletes the newrole role, created previously.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request DELETE \
 "https://localhost:8443/openidm/managed/role/newrole"

 {
 "_id" : "newrole",
 "_rev" : "2",
 "assignments" : {
 "ldap" : {
 "onUnassignment" : {
 "type" : "text/javascript",
 "file" : "roles/onUnassignment_ldap.js"
 },
 "onAssignment" : {
 "type" : "text/javascript",
 "file" : "roles/onAssignment_ldap.js"
 },
 "attributes" : [{
 "value" : ["CN=employees,O=corp"],
 "assignmentOperation" : "mergeWithTarget",
 "unassignmentOperation" : "removeFromTarget",
 "name" : "cns"
 }]
 }
 },
 "properties" : {
 "description" : "an example role"
 }
 }

7.3.2. Understanding Effective Roles and Effective Assignments
The primary purpose of roles is the management of user access to system resources. User access is
controlled by the assignments or entitlements provided by the role.

The previous section described how to create a basic role definition and to assign that role to a user.
However, the main functionality of roles is provided in the assignments that are specified for that
role.

7.3.2.1. A Sample Role Definition for Two Remote Systems
The following sample role definition shows how assignments are configured for two remote systems -
an LDAP server (ldap), and an Active Directory Server (ad).

Do remember to include the assignments field name. OpenIDM uses it to keep assigned roles up to
date.

Managing Users, Groups, and Roles
Understanding Effective Roles and Effective Assignments

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 71

{
 "name": "samplerole",
 "_id": "samplerole",
 "assignments": {
 "ad": {
 "attributes": [
 {
 "name": "cns",
 "value": [
 "CN=fileshare,O=corp",
 "CN=desktop,O=corp",
 "CN=terminal,O=corp",
 "CN=intranet,O=corp"
],
 "assignmentOperation": "mergeWithTarget"
 }
]
 },
 "ldap": {
 "attributes": [
 {
 "name": "cns",
 "value": [
 "CN=employees,O=corp"
],
 "operation": "mergeWithTarget"
 },
 {
 "name": "employeeType",
 "value": "employee"
 }
]
 }
 }
}

• "name" is the name of the role, and should be unique. Avoid using special characters in the role
name.

• "_id" is the object identifier of the role, by which it is accessed over REST. These examples use a
client-assigned ID, for ease of reference, however, in production it is recommended that you use a
server-assigned UUID.

• "assignments" provide the list of assignments (or entitlements) that this role will create on the
specified system.

Each assignment includes the name of the external system, such as ad and ldap, the attribute or
attributes whose values will be generated, on the external system, and the value or values that will
be applied to each attribute.

• When you update a role by adding, updating, or removing an attribute, that action triggers either
an "assignmentOperation" or an "unassignmentOperation".

If you assign or unassign a role to a user, that action will also trigger either an "assignmentOperation"
or an "unassignmentOperation".

Managing Users, Groups, and Roles
Understanding Effective Roles and Effective Assignments

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 72

The "assignmentOperation" specifies the way in which the value is applied. You can set this option to
"mergeWithTarget" or to the default, "replaceTarget".

In contrast, the "unassignmentOperation" specifies the way in which the value is removed. You can set
this option to "removeFromTarget".

The "mergeWithTarget" operation first merges the source value with the existing target value, then
adds the value or values from the role assignment. In the event that duplicate values are found (for
attributes that take a list as a value), each value is included only once in the resulting target value.

The "replaceTarget" operation replaces the entire target attribute value with whatever is specified in
the role definition. When this operation is specified, the value from the role assignments becomes
the only authoritative source for the attribute.

The "mergeWithTarget", "replaceTarget" and "removeFromTarget" operations are aliases, as defined in the
defaultMapping.js file.

• The "onAssignment" and "onUnassignment" scripts are assignment-specific. Either option supports
further customization.

When you create, assign, or delete a role from a specific user entry, OpenIDM triggers either an
"onAssignment" or an "onUnassignment" script.

Every sync operation triggers an "onAssignment" script. In contrast, an "onUnassignment" script is
triggered only when an assignment is removed from a role, or when a role is unassigned from a
user.

If you customize an "onAssignment" or an "onUnassignment" script, make sure the script returns a
"targetObject". Otherwise, the script operation may fail.

Once a role has been defined, and assigned to a user, check that the expected effective roles and
effective assignments have been generated for that user.

Then add a default mapping to your synchronization configuration to apply the effective assignments
to the target resource.

OpenIDM logs any changes to a managed role definition in the audit log.

7.3.2.2. Managed Role Object Script Hooks

In addition to the functionality provided by the assignments, a managed role object has script
hooks that allow you to determine what should happen when a role is created, updated or deleted.
The managed role object has the following structure in the managed objects configuration file
(managed.json):

Managing Users, Groups, and Roles
Understanding Effective Roles and Effective Assignments

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 73

{
 "name" : "role",
 "postCreate" : {
 "type" : "text/javascript",
 "file" : "roles/update-users-of-role.js"
 },
 "postUpdate" : {
 "type" : "text/javascript",
 "file" : "roles/update-users-of-role.js"
 },
 "postDelete" : {
 "type" : "text/javascript",
 "file" : "roles/update-users-of-role.js"
 }
}

The "postCreate", "postUpdate", and "postDelete" properties enable you to specify what should happen
when a role definition is created, updated, or deleted. By default, the update-users-of-role.js script
runs in each of these cases.

The update-users-of-role.js script includes a triggerSyncCheck attribute, which reviews the effectiveRoles
and effectiveAssignments virtual attributes, so see whether OpenIDM should run a sync operation on
them.

This script iterates over all managed users, locates the users who have been assigned this role, and
regenerates their effective assignments on the target resource. So, for example, if the role "ldap"
gives a user an assignment on the resource "Active Directory", when, that role definition is deleted,
a reconciliation operation runs to remove the assignment for that user on the "Active Directory"
resource.

7.3.2.3. Virtual Role Attributes

Based on the set of role definitions that are assigned to a specific user, the roles mechanism
generates two virtual attributes on the user entry - effectiveRoles and effectiveAssignments.

The logic that calculates the effectiveRoles and effectiveAssignments attribute values is located in two
scripts: /path/to/openidm/bin/defaults/script/roles/effectiveRoles.js and /path/to/openidm/bin/defaults/
script/roles/effectiveAssignments.js. You should not alter these scripts. If you need to modify how roles
and assignments are handled, create your own custom script and reference it in the conf/managed.json
file. For information about using custom scripts, see the Scripting Reference.

The effectiveRoles attribute lists the specific role definitions that are applied to a user entry. By
default, the effective roles script supports direct role assignments only. Dynamic role assignment
is not provided out of the box, but can be added with a custom script that overrides the default
effectiveRoles.js script. For more information, see Procedure 7.2, "To Add Support for Dynamic
Assignments".

Based on the effective roles, the effectiveAssignments attribute provides the calculated resource
assignments, that is the amalgamated set of entitlements for a specific user.

Managing Users, Groups, and Roles
Understanding Effective Roles and Effective Assignments

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 74

The value of the effectiveAssignments attribute provides the information required for the provisioner to
apply the effective assignments, and provides a reference to the source of the assignment. In reading
this attribute, it is therefore possible to find and change the root source of an assignment.

Effective assignments can merge attribute operations on the same system from multiple roles. For
example, role A might add group A to a user's group membership list, and role B might add group B
to the same group membership property on the same assigned system.

The effective roles and effective assignments attributes are configured in conf/managed.json as follows:

 {
 "name" : "effectiveRoles",
 "type" : "virtual",
 "onRetrieve" : {
 "type" : "text/javascript",
 "file" : "roles/effectiveRoles.js",
 "rolesPropName" : "roles"
 }
 },
 {
 "name" : "effectiveAssignments",
 "type" : "virtual",
 "onRetrieve" : {
 "type" : "text/javascript",
 "file" : "roles/effectiveAssignments.js",
 "effectiveRolesPropName" : "effectiveRoles"
 }
 }

By default, the effectiveRoles.js script uses the "roles" attribute of a user entry to determine
the direct roles assigned to the user. The effectiveAssignments.js script uses the virtual
"effectiveRoles" attribute of the user entry to calculate the user's effective assignments. If your
deployment uses different attributes to store this information, change the "rolesPropName" and the
"effectiveRolesPropName" properties of the virtual attribute definitions accordingly.

When a user entry is assigned a role, the effectiveRoles and effectiveAssignments of that entry are
calculated according to the role definition. A managed user entry, whose roles have been generated
based on the role definition illustrated previously, might appear as follows:

 {
 "_id":"i",
 "_rev":"1",
 "roles":[
 "openidm-authorized",
 "managed/role/sample-role"
],
 "effectiveRoles":[
 "openidm-authorized",
 "managed/role/sample-role"
],
 "effectiveAssignments":{
 "ldap":{

Managing Users, Groups, and Roles
Understanding Effective Roles and Effective Assignments

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 75

 "attributes":[
 {
 "value":[
 "CN=employees,O=corp"
],
 "operation":"replaceTarget",
 "name":"cns",
 "assignedThrough":"managed/role/sample-role"
 },
 {
 "value":"employee",
 "name":"employeeType",
 "assignedThrough":"managed/role/sample-role"
 }
]
 },
 "ad":{
 "attributes":[
 {
 "value":[
 "CN=fileshare,O=corp",
 "CN=desktop,O=corp",
 "CN=terminal,O=corp",
 "CN=intranet,O=corp"
],
 "operation":"replaceTarget",
 "name":"cns",
 "assignedThrough":"managed/role/sample-role"
 }
]
 }
 }
 }

Note that the value of the "assignedThrough" property of the virtual "effectiveAssignments" attribute
indicates how each assignment has been generated.

Procedure 7.1. To Test Effective Roles and Assignments

The following sample procedure creates a new role ("ad") that includes assignments, adds that role to
the user entry bjensen and then shows how bjensen's effective assignments have been generated.

1. Create the role definition over REST.

This example uses a PUT request to create the role definition, so that we can specify role _id. The
_id will be used to assign the role directly to user entries.

The example adds a role definition with the _id ldap.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --header "If-None-Match: *" \
 --request PUT \

Managing Users, Groups, and Roles
Understanding Effective Roles and Effective Assignments

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 76

 --data '{
 "assignments": {
 "ldap": {
 "attributes": [
 {
 "name": "cns",
 "value": [
 "cn=printers,ou=Groups,dc=example,dc=com",
 "cn=intranet,ou=Groups,dc=example,dc=com"
],
 "operation": "replaceTarget"
 }
]
 }
 }
}' \
 "https://localhost:8443/openidm/managed/role/ldap"
 {
 "assignments": {
 "ldap": {
 "attributes": [
 {
 "name": "cns",
 "operation": "replaceTarget",
 "value": [
 "cn=printers,ou=Groups,dc=example,dc=com",
 "cn=intranet,ou=Groups,dc=example,dc=com"
]
 }
]
 }
 },
 "_id": "ldap",
 "_rev": "0"
}

2. Add a mapping for the role to assign to your sync.json file. For this example, the following
assignment add the following lines to sync.json:

 "mappings":[
 "assignmentsToMap":[
 "ldap"
],
]

OpenIDM addresses any change in role assignments with the onAssignment and onUnassignment
attributes in the defaultMapping.js file.

3. Assign the role to user bjensen.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --header "If-Match: *" \

Managing Users, Groups, and Roles
Understanding Effective Roles and Effective Assignments

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 77

 --request PATCH \
 --data '[
 {
 "operation": "replace",
 "field": "/roles",
 "value": [
 "openidm-authorized",
 "managed/role/ldap"
]
 }
]' \
 "https://localhost:8443/openidm/managed/user/bjensen"
 {
 "mail": "bjensen@example.com",
 "sn": "Jensen",
 "passwordAttempts": "0",
 "address2": "",
 "lastPasswordAttempt": "Thu Apr 10 2014 12:49:32 GMT+0200 (SAST)",
 "givenName": "Barbara",
 "city": "",
 "country": "",
 "_rev": "2",
 "lastPasswordSet": "",
 "postalCode": "",
 "_id": "bjensen",
 "accountStatus": "active",
 "description": "Created for OpenIDM",
 "roles": [
 "openidm-authorized",
 "managed/role/ldap"
],
 "telephoneNumber": "1-503-334-2546",
 "postalAddress": "",
 "userName": "bjensen",
 "stateProvince": "",
 "displayName": "Babara Jensen"
}

4. Query bjensen's user entry again.

Managing Users, Groups, and Roles
Understanding Effective Roles and Effective Assignments

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 78

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/user/bjensen"
 ...
{
 "effectiveAssignments": {
 "ldap": {
 "attributes": [
 {
 "assignedThrough": "managed/role/ldap",
 "name": "cns",
 "operation": "replaceTarget",
 "value": [
 "cn=printers,ou=Groups,dc=example,dc=com",
 "cn=intranet,ou=Groups,dc=example,dc=com"
]
 }
]
 }
 },
 ...

Note that bjensen's effective assignments have been updated to include the assignments provided
by the ldap role.

Procedure 7.2. To Add Support for Dynamic Assignments

Although support for dynamic role assignments is not provided by default, it can easily be added with
a custom script, as follows.

1. Copy the default effective roles script to your project's script/roles directory.

$ cp /path/to/openidm/bin/defaults/script/roles/effectiveRoles.js \
 project-dir/script/roles/

The new script will override the default effective roles script.

2. Modify the effective roles script to include the dynamic role assignment logic.

For example, to enable dynamic role assignment for the example organization, you might add the
following extract after the section:

 // This is the location to expand to dynamic roles,
 // project role script return values can then be added via
 // effectiveRoles = effectiveRoles.concat(dynamicRolesArray);

Managing Users, Groups, and Roles
Setting up the Role Mapping

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 79

 if (object.org === 'example') {
 effectiveRoles = effectiveRoles.concat(['dynamic-role1', 'dynamic-role2']);
 }

3. (Optional) To apply changes to the dynamic assignment rules to existing users, run a
reconciliation operation on those users.

Note that changes to dynamic role assignments for existing users require a manual reconciliation
of the affected group of users for those changes to take effect. So, if a new dynamic role definition
is created, if an existing dynamic role definition is changed, or if changes are made to the dynamic
assignment rule, the group of users affected by that assignment rule must be reconciled manually.
and changes to the assigned roles.

When a user entry is changed or synchronized, however, all dynamic role assignments are reassessed
automatically.

7.3.3. Setting up the Role Mapping

After the role has been defined, and the effective assignments checked, you must set up mapping for
the role and, optionally, restrict provisioning based on the effective assignments.

This section describes these two steps.

7.3.3.1. Creating a Mapping For Effective Assignments

After the effective assignments have been calculated, OpenIDM applies these assignments to the
target resources.

The following sample extract of a sync.json file applies the ldap assignment, illustrated in the previous
section, on the target resource (system/ldap/account) for all entries that have "effectiveAssignments" :
 "ldap" in the source.

{
 "name" : "managedUser_systemLdapAccounts",
 "source" : "managed/user",
 "target" : "system/ldap/account",
 "links" : "systemLdapAccounts_managedUser",
 },
 "assignmentsToMap": [
 "ldap"
],
 ...
}

Managing Users, Groups, and Roles
Setting up the Role Mapping

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 80

7.3.3.2. Using Roles For Conditional Mapping
The roles mechanism provides the ability to restrict provisioning based on a user's effective
assignments. For example, you might want to prevent users from being provisioned to an Active
Directory system, if they do not have specific access to that system.

Based on the "effectiveAssignments" virtual attribute, described in the previous section, you could
configure a conditional mapping for this example, as follows:

1. Create a role definition that gives the user the Active Directory assignment, for example:

 "_id": "ad-role",
 "assignments": {
 "ad": {
 "attributes": [
 {
 "name": "cns",
 "value": [
 "CN=fileshare,O=corp",
 "CN=desktop,O=corp",
 "CN=terminal,O=corp",
 "CN=intranet,O=corp"
],
 "assignmentOperation": "replaceTarget"
 }
]
 }

2. Add the role directly as a value of the user's "roles" attribute.

"roles" : [
 "name" : "managed/role/ad-role",
 "name" : "openidm-authorized"
]

3. Add a condition in the mapping that restricts provisioning to users who have the "ad-role" as an
effective role. The effective roles are calculated from the values in the user's "roles" attribute.

{
 "mappings": [
 {
 "name": "managedUser_systemAdAccounts",
 "source": "managed/user",
 "sourceCondition": {
 "effectiveRoles": "managed/role/ad-role"
 },
 "target": "system/ad/account"
 ...
 }
]
}

Using Policies to Validate Data
Configuring the Default Policy

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 81

Chapter 8

Using Policies to Validate Data

OpenIDM provides an extensible policy service that enables you to apply specific validation
requirements to various components and properties. The policy service provides a REST interface for
reading policy requirements and validating the properties of components against configured policies.
Objects and properties are validated automatically when they are created, updated, or patched.
Policies can be applied to user passwords, but also to any kind of managed object.

The policy service enables you to do the following:

• Read the configured policy requirements of a specific component.

• Read the configured policy requirements of all components.

• Validate a component object against the configured policies.

• Validate the properties of a component against the configured policies.

A default policy applies to all managed objects. You can configure the default policy to suit your
requirements, or you can extend the policy service by supplying your own scripted policies.

8.1. Configuring the Default Policy
The default policy is configured in two files:

• A policy script file (openidm/bin/defaults/script/policy.js) which defines each policy and specifies how
policy validation is performed.

• A policy configuration file (openidm/conf/policy.json) which specifies which policies are applicable to
each resource.

8.1.1. Policy Script File

The policy script file defines policy configuration in two parts:

• A policy configuration object, which defines each element of the policy.

• A policy implementation function, which describes the requirements that are enforced by that
policy.

Using Policies to Validate Data
Policy Script File

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 82

Together, the configuration object and the implementation function determine whether an object is
valid in terms of the policy. The following extract from the policy script file configures a policy that
specifies that the value of a property must contain a certain number of capital letters.
...
{ "policyId" : "at-least-X-capitals",
 "policyExec" : "atLeastXCapitalLetters",
 "clientValidation": true,
 "validateOnlyIfPresent":true,
 "policyRequirements" : ["AT_LEAST_X_CAPITAL_LETTERS"]
},
...

policyFunctions.atLeastXCapitalLetters = function(fullObject, value, params, property) {
 var isRequired = _.find(this.failedPolicyRequirements, function (fpr) {
 return fpr.policyRequirement === "REQUIRED";
 }),
 isNonEmptyString = (typeof(value) === "string" && value.length),
 valuePassesRegexp = (function (v) {
 var test = isNonEmptyString ? v.match(/[(A-Z)]/g) : null;
 return test !== null && test.length >= params.numCaps;
 }(value));

 if ((isRequired || isNonEmptyString) && !valuePassesRegexp) {
 return [{ "policyRequirement" : "AT_LEAST_X_CAPITAL_LETTERS", "params" : {"numCaps":
 params.numCaps} }];
 }

 return [];
}
...

To enforce user passwords that contain at least one capital letter, the previous policy ID is applied
to the appropriate resource and the required number of capital letters is defined in the policy
configuration file, as described in Section 8.1.2, "Policy Configuration File".

8.1.1.1. Policy Configuration Object

Each element of the policy is defined in a policy configuration object. The structure of a policy
configuration object is as follows:

{ "policyId" : "minimum-length",
 "policyExec" : "propertyMinLength",
 "clientValidation": true,
 "validateOnlyIfPresent": true,
 "policyRequirements" : ["MIN_LENGTH"]
}

"policyId" - a unique ID that enables the policy to be referenced by component objects.
"policyExec" - the name of the function that contains the policy implementation. For more information,
see Section 8.1.1.2, "Policy Implementation Function".

Using Policies to Validate Data
Policy Configuration File

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 83

"clientValidation" - indicates whether the policy decision can be made on the client. When
"clientValidation": true, the source code for the policy decision function is returned when the client
requests the requirements for a property.
"validateOnlyIfPresent" - notes that the policy is to be validated only if it exists.
"policyRequirements" - an array containing the policy requirement ID of each requirement that is
associated with the policy. Typically, a policy will validate only one requirement, but it can validate
more than one.

8.1.1.2. Policy Implementation Function

Each policy ID has a corresponding policy implementation function that performs the validation.
Functions take the following form:

function <name>(fullObject, value, params, propName) {
 <implementation_logic>
}

fullObject is the full resource object that is supplied with the request.
value is the value of the property that is being validated.
params refers to the "params" array that is specified in the property's policy configuration.
propName is the name of the property that is being validated.

The following example shows the implementation function for the "required" policy.

function required(fullObject, value, params, propName) {
 if (value === undefined) {
 return [{ "policyRequirement" : "REQUIRED" } : "REQUIRED" }];
 }
 return [];
}

8.1.2. Policy Configuration File

The policy configuration file includes a pointer to the policy script, and the configured policies for
each component resource. The following includes three sample extracts from the policy.js file,
illustrating policies for passwords, roles, and mobile telephone numbers.

8.1.2.1. Sample Password Policy Extract

The following extract of the default policy configuration file shows how the at-least-X-capitals policy
is applied to user passwords. In this case, the configuration file requires users to include at least one
upper case (capital) letter in their passwords.

Using Policies to Validate Data
Policy Configuration File

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 84

{
 "type" : "text/javascript",
 "file" : "bin/defaults/script/policy.js",
 "resources" : [
 {
 "resource" : "managed/user/*",
 "properties" : [
...
 {
 "name" : "password",
 "policies" : [
 {
 "policyId" : "required"
 },
 {
 "policyId" : "not-empty"
 },
 {
 "policyId" : "at-least-X-capitals",
 "params" : {
 "numCaps" : 1
 }
 },
 ...
 }
]
}

The configuration file includes the following properties:

• "type" - specifies the type of policy service. Supported types include "text/javascript" and "groovy".

• "file" - provides the path to the policy script file, relative to the OpenIDM installation directory.

• "resources" provides an array of resource objects, in JSON format, that are subject to the policy
service. Resource objects are identified by the "resource" parameter, which indicates the URI and
supports wildcard syntax. For example, "managed/user/*" indicates that the policy applies to all
objects under /managed/user. Each resource has the following properties:

"name" - the name of the property to which the policy is applied.
"policyId" - the ID of the policy that is applied to that property.
"params" - any specific parameters that apply to that policy ID.

8.1.2.2. Sample Array Policy Extract

Some users may choose to include multiple cellular telephone numbers. In OpenIDM, multiple values
for an object can be organized in an array. The following excerpt from a sample policy.json file
requires an entry for mobilePhones, and includes two separate policies.

The first policy suggests that the mobilePhones policy must be present in the object, and there must be
at least one element within that object (array).

Using Policies to Validate Data
Extending the Policy Service

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 85

The second policy suggests that for any given element of the mobilePhones object must not be an empty
string.

...
 {
 "name" : "mobilePhones",
 "policies" : [
 {
 "policyId" : "required"
 },
 {
 "policyId" : "not-empty"
 }
]
 },
 {
 "name" : "mobilePhones[*]",
 "policies" : [
 {
 "policyId" : "not-empty"
 }
]
 }
...

8.2. Extending the Policy Service
You can extend the policy service by adding your own scripted policies in openidm/script and
referencing them in the policy configuration file (conf/policy.json). Avoid manipulating the default
policy script file (in bin/defaults/script) as doing so might result in interoperability issues in a future
release. To reference additional policy scripts, set the "additionalFiles" property in conf/policy.json.

The following example creates a custom policy that rejects properties with null values. The policy is
defined in a script named mypolicy.js.

var policy = { "policyId" : "notNull",
 "policyExec" : "notNull",
 "policyRequirements" : ["NOT_NULL"]
}

addPolicy(policy);

function notNull(fullObject, value, params, property) {
 if (value == null) {
 return [{"policyRequirement": "NOT_NULL"}: "NOT_NULL"}];
 }
 return [];
}

The mypolicy.js policy is referenced in the policy.json configuration file as follows:

Using Policies to Validate Data
Disabling Policy Enforcement

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 86

{
 "type" : "text/javascript",
 "file" : "bin/defaults/script/policy.js",
 "additionalFiles" : ["script/mypolicy.js"],
 "resources" : [
 {
...

You can also configure policies for managed object properties as part of the property definition in
the conf/managed.json file. For example, the following extract of a managed.json file shows a policy
configuration for the password property.

...
"properties" : [
 {
 "name" : "password",
 "encryption" : {
 "key" : "openidm-sym-default"
 },
 "scope" : "private"
 "policies" : [
 {
 "policyId" : "required"
 },
 {
 "policyId" : "not-empty"
 },
 {
 "policyId" : "at-least-X-capitals",
 "params" : {
 "numCaps" : 1
 }
 }
]
 },
...

8.3. Disabling Policy Enforcement
Policy enforcement refers to the automatic validation of data in the repository when it is created,
updated, or patched. In certain situations you might want to disable policy enforcement temporarily.
You might, for example, want to import existing data that does not meet the validation requirements
with the intention of cleaning up this data at a later stage.

You can disable policy enforcement by setting openidm.policy.enforcement.enabled to false in the conf/
boot/boot.properties file. This setting disables policy enforcement in the back-end only, and has no
impact on direct policy validation calls to the Policy Service (which the user interface makes to
validate input fields). So, with policy enforcement disabled, data added directly over REST is not
subject to validation, but data added with the UI is still subject to validation.

Using Policies to Validate Data
Managing Policies Over REST

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 87

Disabling policy enforcement permanently in a production system is not recommended.

8.4. Managing Policies Over REST
You can manage the policy service over the REST interface, by calling the REST endpoint https://
localhost:8443/openidm/policy, as shown in the following examples.

8.4.1. Listing the Defined Policies

The following REST call displays a list of all the defined policies. The policy objects are returned in
JSON format, with one object for each defined policy ID.

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/policy"

{
 "resources": [
 {
 "properties": [
 {
 "name": "_id",
 "policies": [
 {
 "policyFunction":
...

To display the policies that apply to a specific component, include the component name in the URL.
For example, the following REST call displays the policies that apply to managed users.

Using Policies to Validate Data
Validating Objects and Properties Over REST

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 88

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/policy/managed/user/*"

{
 "properties": [
 {
 "name": "_id",
 "policies": [
 {
 "policyFunction": "
 "\n function (fullObject, value, params, property) {
 \n var i, join = function (arr, d) {

...
}

8.4.2. Validating Objects and Properties Over REST

Use the validateObject action to verify that an object adheres to the requirements of a policy.

The following example verifies that a new managed user object is acceptable in terms of the policy
requirements.

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{
 "sn":"Jones",
 "givenName":"Bob",
 "_id":"bjones",
 "telephoneNumber":"0827878921",
 "passPhrase":null,
 "mail":"bjones@example.com",
 "accountStatus":"active",
 "roles":"admin",
 "userName":"bjones@example.com",
 "password":"123"}' \
 "https://localhost:8443/openidm/policy/managed/user/bjones?_action=validateObject"

 {
 "failedPolicyRequirements": [
 {
 "property": "password",
 "policyRequirements": [
 {
 "params": {

Using Policies to Validate Data
Validating Objects and Properties Over REST

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 89

 "numCaps": 1
 },
 "policyRequirement": "AT_LEAST_X_CAPITAL_LETTERS"
 }
]
 },
 {
 "property": "password",
 "policyRequirements": [
 {
 "params": {
 "minLength": 8
 },
 "policyRequirement": "MIN_LENGTH"
 }
]
 },
 {
 "property": "passPhrase",
 "policyRequirements": [
 {
 "params": {
 "minLength": 4
 },
 "policyRequirement": "MIN_LENGTH"
 }
]
 }
],
 "result": false
 }

The result (false) indicates that the object is not valid. The unfulfilled policy requirements are
provided as part of the response - in this case, the user password does not meet the validation
requirements.

Use the validateProperty action to verify that a specific property adheres to the requirements of a
policy.

The following example checks whether Barbara Jensen's new password (12345) is acceptable.
$ curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{ "password" : "12345" }' \
 "http://localhost:8080/openidm/policy/managed/user/bjensen?_action=validateProperty"

{
 "result": false,
 "failedPolicyRequirements": [
 {
 "policyRequirements": [
 {
 "policyRequirement": "AT_LEAST_X_CAPITAL_LETTERS",

Using Policies to Validate Data
Validating Objects and Properties Over REST

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 90

 "params": {
 "numCaps": 1
 }
 },
 {
 "policyRequirement": "MIN_LENGTH",
 "params": {
 "minLength": 8
 }
 }
],
 "property": "password"
 }
]
}

The result (false) indicates that the password is not valid. The unfulfilled policy requirements are
provided as part of the response - in this case, the minimum length and the minimum number of
capital letters.

Validating a property that does fulfil the policy requirements returns a true result, for example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{ "password" : "1NewPassword" }' \
 "https://localhost:8443/openidm/policy/managed/user/bjensen?_action=validateProperty"

{
 "failedPolicyRequirements": []
 "result": true,
}

Configuring Server Logs

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 91

Chapter 9

Configuring Server Logs

This chapter briefly describes server logging. For audit information, see the chapter on Using Audit
Logs.

To configure logging, edit the openidm/conf/logging.properties file.

The default configuration writes log messages in simple format to openidm/logs/openidm*.log files,
rotating files when the size reaches 5 MB, and retaining up to 5 files. Also by default, OpenIDM
writes all system and custom log messages to the files.

You can update the configuration to attach loggers to individual packages, setting the log level to one
of the following values.

SEVERE (highest value)
WARNING
INFO
CONFIG
FINE
FINER
FINEST (lowest value)

If you use logger functions in your JavaScript scripts, you can set the log level for the scripts as
follows:
org.forgerock.script.javascript.JavaScript.level=level

You can override the log level settings per script by using
org.forgerock.script.javascript.JavaScript.script-name.level

Connecting to External Resources
About OpenIDM and OpenICF

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 92

Chapter 10

Connecting to External Resources

This chapter describes how to connect to external resources such as LDAP, Active Directory, flat files,
and others. Configurations shown here are simplified to show essential aspects. Not all resources
support all OpenIDM operations, however the resources shown here support most of the CRUD
operations, and also reconciliation and LiveSync.

In OpenIDM, resources are external systems, databases, directory servers, and other sources
of identity data to be managed and audited by the identity management system. To connect to
resources, OpenIDM loads the Identity Connector Framework, OpenICF. OpenICF aims to avoid the
need to install agents to access resources, instead using the resources' native protocols. For example,
OpenICF connects to database resources using the database's Java connection libraries or JDBC
driver. It connects to directory servers over LDAP. It connects to UNIX systems by using ssh.

10.1. About OpenIDM and OpenICF
OpenICF provides a common interface to allow identity services access to the resources that contain
user information. OpenIDM loads the OpenICF API as one of its OSGi modules. OpenICF uses
connectors to separate the OpenIDM implementation from the dependencies of the resource to which
OpenIDM is connecting. A specific connector is required for each remote resource. Connectors can
run either locally or remotely.

Local connectors are loaded by OpenICF as regular bundles in the OSGi container. Remote
connectors must be executed on a remote connector server. Most connectors can be run locally.
However, a remote connector server is required when access libraries that cannot be included as
part of the OpenIDM process are needed. If a resource, such as Microsoft Active Directory, does not
provide a connection library that can be included inside the Java Virtual Machine, OpenICF can use
the native .dll with a remote .NET connector server. In other words, OpenICF connects to Active
Directory through a remote connector server that is implemented as a .NET service.

Connections to remote connector servers are configured in a single connector info provider
configuration file, located in /path/to/openidm/conf.

Connectors themselves are configured through provisioner files. One provisioner file must exist for
each connector. Provisioner files are named provisioner.openicf-name where name corresponds to the
name of the connector, and are also located in the /path/to/openidm/conf directory.

A number of sample connector configurations are available in the openidm/samples/provisioners
directory. To use these connectors, edit the configuration files as required, and copy them to the
openidm/conf directory.

http://openicf.forgerock.org/

Connecting to External Resources
Accessing Remote Connectors

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 93

The following figure shows how OpenIDM connects to resources by using connectors and remote
connector servers. The figure shows one local connector (LDAP) and two remote connectors (Scripted
SQL and PowerShell). In this example, the remote Scripted SQL connector uses a remote Java
connector server. The remote PowerShell connector always requires a remote .NET connector server.

Tip

Connectors that use the .NET framework must run remotely. Java connectors can be run locally or remotely.
Run them as remote services for scalability, or to have the service run in the cloud.

10.2. Accessing Remote Connectors

Connecting to External Resources
Accessing Remote Connectors

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 94

When you configure a remote connector, you use the connector info provider service to connect
through a remote connector server. The connector info provider service configuration is stored in the
file openidm/conf/provisioner.openicf.connectorinfoprovider.json. A sample configuration file is provided in
the openidm/samples/provisioners/ directory. To use this sample configuration, edit the file as required,
and copy it to the openidm/conf directory.

The connector info provider service takes the following configuration:

{
 "connectorsLocation" : string,
 "remoteConnectorServers" : [remoteConnectorServer objects]
}

Connector Info Provider Properties

connectorsLocation

string, optional

Specifies the directory in which the OpenICF connectors are located, relative to the OpenIDM
installation directory. The default location is openidm/connectors.

remoteConnectorServers

array of RemoteConnectorServer objects, optional

An array of remote connector servers that are managed by this service.

Remote Connector Server Properties

The following example shows a remoteConnectorServer object configuration.

{
 "name" : "dotnet",
 "host" : "127.0.0.1",
 "port" : 8759,
 "heartbeatInterval" : 60,
 "useSSL" : false,
 "timeout" : 0,
 "key" : "Passw0rd"
}

You can configure the following remote connector server object properties.

name

string, required

The name of the remote connector server object. This name is used to identify the remote
connector server in the list of connector reference objects.

Connecting to External Resources
Configuring Connectors

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 95

host

string, required

The remote host to connect to.

port

string, optional

The remote port to connect to. The default remote port is 8759.

heartbeatInterval

integer, optional

The interval, in seconds, at which heartbeat packets are transmitted. If the connector server is
unreachable, based on this heartbeat interval, all services that use the connector server are made
unavailable until the connector server can be reached again. The default interval is 60 seconds.

useSSL

boolean, optional

Specifies whether to connect to the connector server over SSL. The default value is false.

timeout

integer, optional

Specifies the timeout (in milliseconds) to use for the connection. The default value is 0, which
means that there is no timeout.

key

string, required

The secret key, or password, to use to authenticate to the remote connector server.

10.3. Configuring Connectors
Connectors are configured through the OpenICF provisioner service. Each connector configuration
is stored in a file in the openidm/conf/ folder, and accessible over REST at the openidm/conf endpoint.
Configuration files are named openidm/conf/provisioner.openicf-name where name corresponds to
the name of the connector. A number of sample connectors are available in the openidm/samples/
provisioners directory. To use these connectors, edit the configuration files as required, and copy them
to the openidm/conf directory.

Connecting to External Resources
Configuring Connectors

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 96

If you are creating your own connector configuration files, do not include additional dash characters (
-) in the connector name, as this might cause problems with the OSGi parser. For example, the name
provisioner.openicf-hrdb.json is fine. The name provisioner.openicf-hr-db.json is not.

The following example shows a connector configuration for an XML file resource.
{
 "name" : "xml",
 "connectorRef" : connector-ref-object,
 "poolConfigOption" : pool-config-option-object,
 "operationTimeout" : operation-timeout-object,
 "configurationProperties" : configuration-properties-object,
 "objectTypes" : object-types-object,
 "operationOptions" : operation-options-object
}

The "name" property specifies the name of the system to which you are connecting. This name must be
alphanumeric.

Connector Reference

The following example shows a connector reference object.

{
 "bundleName" : "org.forgerock.openicf.connectors.xml-connector",
 "bundleVersion" : "[1.1,1.5]",
 "connectorName" : "org.forgerock.openicf.connectors.xml.XMLConnector",
 "connectorHostRef" : "host"
}

bundleName

string, required

The ConnectorBundle-Name of the OpenICF connector.

bundleVersion

string, required

The ConnectorBundle-Version of the OpenICF connector. The value can be a single version (such
as 1.4.0.0) or a range of versions, which enables you to support multiple connector versions in a
single project.

You can specify a range of versions as follows:

• [1.1.0.0,1.4.0.0] indicates that all connector versions from 1.1 to 1.4, inclusive, are supported.

• [1.1.0.0,1.4.0.0) indicates that all connector versions from 1.1 to 1.4, including 1.1 but
excluding 1.4, are supported.

Connecting to External Resources
Configuring Connectors

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 97

• (1.1.0.0,1.4.0.0] indicates that all connector versions from 1.1 to 1.4, excluding 1.1 but
including 1.4, are supported.

• (1.1.0.0,1.4.0.0) indicates that all connector versions from 1.1 to 1.4, exclusive, are supported.

connectorName

string, required

The Connector implementation class name.

connectorHostRef

string, optional

If the connector runs remotely, the value of this field must match the name field
of the RemoteConnectorServers object in the connector server configuration file
(provisioner.openicf.connectorinfoprovider.json). For example:
...
 "remoteConnectorServers" :
 [
 {
 "name" : "dotnet",
 ...

If the connector runs locally, the value of this field can be one of the following:

• If the connector .jar is installed in openidm/connectors/, the value must be "#LOCAL". This is
currently the default, and recommended location.

• If the connector .jar is installed in openidm/bundle/ (not recommended), the value must be
"osgi:service/org.forgerock.openicf.framework.api.osgi.ConnectorManager".

Pool Configuration Option

The Pool Configuration Option ("poolConfigOption") specifies the pool configuration for poolable
connectors only. Non-poolable connectors ignore this parameter.

The following example shows a pool configuration option object for a poolable connector.
{
 "maxObjects" : 10,
 "maxIdle" : 10,
 "maxWait" : 150000,
 "minEvictableIdleTimeMillis" : 120000,
 "minIdle" : 1
}

maxObjects

The maximum number of idle and active instances of the connector.

Connecting to External Resources
Configuring Connectors

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 98

maxIdle

The maximum number of idle instances of the connector.

maxWait

The maximum time, in milliseconds, that the pool waits for an object before timing out. A value of
0 means that there is no timeout.

minEvictableIdleTimeMillis

The maximum time, in milliseconds, that an object can be idle before it is removed. A value of 0
means that there is no idle timeout.

minIdle

The minimum number of idle instances of the connector.

Operation Timeout

The operation timeout enables you to configure timeout values per operation type. By default, there is
no timeout configured for any operation type. A sample configuration follows:

{
 "CREATE" : -1,
 "TEST" : -1,
 "AUTHENTICATE" : -1,
 "SEARCH" : -1,
 "VALIDATE" : -1,
 "GET" : -1,
 "UPDATE" : -1,
 "DELETE" : -1,
 "SCRIPT_ON_CONNECTOR" : -1,
 "SCRIPT_ON_RESOURCE" : -1,
 "SYNC" : -1,
 "SCHEMA" : -1
}

operation-name

Timeout in milliseconds

A value of -1 disables the timeout.

Configuration Properties

This object contains the configuration for the connection between the connector and the resource,
and is therefore resource specific.

The following example shows a configuration properties object for the default XML sample resource
connector.

Connecting to External Resources
Configuring Connectors

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 99

"configurationProperties" : {
 "xsdIcfFilePath" : "&{launcher.project.location}/data/resource-schema-1.xsd",
 "xsdFilePath" : "&{launcher.project.location}/data/resource-schema-extension.xsd",
 "xmlFilePath" : "&{launcher.project.location}/data/xmlConnectorData.xml"
}

property

Individual properties depend on the type of connector.

Object Types

This configuration object specifies the object types (user, group, and so on) that are supported by the
connector. The property name defines the objectType, used in the URI:
system/$systemName/$objectType

The configuration is based on the JSON Schema with the extensions described in the following
section.

Attribute names that start or end with __ are specific to the resource type and are used by OpenICF
for particular purposes, such as __NAME__, used as the naming attribute for objects on a resource.

The following extract shows the configuration of an account object type.
{
 "account" :
 {
 "$schema" : "http://json-schema.org/draft-03/schema",
 "id" : "__ACCOUNT__",
 "type" : "object",
 "nativeType" : "__ACCOUNT__",
 "properties" :
 {
 "name" :
 {
 "type" : "string",
 "nativeName" : "__NAME__",
 "nativeType" : "JAVA_TYPE_PRIMITIVE_LONG",
 "flags" :
 [
 "NOT_CREATABLE",
 "NOT_UPDATEABLE",
 "NOT_READABLE",
 "NOT_RETURNED_BY_DEFAULT"
]
 },
 "groups" :
 {
 "type" : "array",
 "items" :
 {

http://tools.ietf.org/html/draft-zyp-json-schema-03

Connecting to External Resources
Configuring Connectors

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 100

 "type" : "string",
 "nativeType" : "string"
 },
 "nativeName" : "__GROUPS__",
 "nativeType" : "string",
 "flags" :
 [
 "NOT_RETURNED_BY_DEFAULT"
]
 },
 "givenName" : {
 "type" : "string",
 "nativeName" : "givenName",
 "nativeType" : "string"
 },
 }
 }
}

Object Level Extensions

nativeType

string, optional

The native OpenICF object type.

The list of supported native object types is dependent on the resource, or on the connector.
For example, an LDAP connector might have object types such as __ACCOUNT__ and __GROUP__.

Property Level Extensions

nativeType

string, optional

The native OpenICF attribute type.

The following native types are supported:

Connecting to External Resources
Configuring Connectors

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 101

JAVA_TYPE_BIGDECIMAL
JAVA_TYPE_BIGINTEGER
JAVA_TYPE_BYTE
JAVA_TYPE_BYTE_ARRAY
JAVA_TYPE_CHAR
JAVA_TYPE_CHARACTER
JAVA_TYPE_DATE
JAVA_TYPE_DOUBLE
JAVA_TYPE_FILE
JAVA_TYPE_FLOAT
JAVA_TYPE_GUARDEDBYTEARRAY
JAVA_TYPE_GUARDEDSTRING
JAVA_TYPE_INT
JAVA_TYPE_INTEGER
JAVA_TYPE_LONG
JAVA_TYPE_OBJECT
JAVA_TYPE_PRIMITIVE_BOOLEAN
JAVA_TYPE_PRIMITIVE_BYTE
JAVA_TYPE_PRIMITIVE_DOUBLE
JAVA_TYPE_PRIMITIVE_FLOAT
JAVA_TYPE_PRIMITIVE_LONG
JAVA_TYPE_STRING

nativeName

string, optional

The native OpenICF attribute name.

flags

string, optional

The native OpenICF attribute flags. The required and multivalued flags are defined by the
JSON schema.
required = "required" : true

multivalued = "type" : "array"

If the type is array, an additional "items" field specifies the supported type for the objects in
the array. For example:
"groups" :
 {
 "type" : "array",
 "items" :
 {
 "type" : "string",
 "nativeType" : "string"
 },

Connecting to External Resources
Configuring Connectors

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 102

Note

Avoid using the dash character (-) in property names, like last-name, as dashes in names make JavaScript
syntax more complex. If you cannot avoid the dash, then write source['last-name'] instead of source.last-name
in the JavaScripts.

Operation Options

Operation options (specified with the "operationOptions" property) define how to act on specified
operations. You can, for example deny operations on specific resources to avoid OpenIDM
accidentally updating a read-only resource during a synchronization operation.

The following example defines the options for the "SYNC" operation.
"operationOptions" : {
 {
 "SYNC" :
 {
 "denied" : true,
 "onDeny" : "DO_NOTHING",
 "objectFeatures" :
 {
 "__ACCOUNT__" :
 {
 "denied" : true,
 "onDeny" : "THROW_EXCEPTION",
 "operationOptionInfo" :
 {
 "$schema" : "http://json-schema.org/draft-03/schema",
 "id" : "FIX_ME",
 "type" : "object",
 "properties" :
 {
 "_OperationOption-float" :
 {
 "type" : "number",
 "nativeType" : "JAVA_TYPE_PRIMITIVE_FLOAT"
 }
 }
 }
 },
 "__GROUP__" :
 {
 "denied" : false,
 "onDeny" : "DO_NOTHING"
 }
 }
 }
 }
...

The OpenICF Framework supports the following operations:

• AUTHENTICATE: AuthenticationApiOp

Connecting to External Resources
Installing and Configuring Remote Connector Servers

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 103

• CREATE: CreateApiOp

• DELETE: DeleteApiOp

• GET: GetApiOp

• RESOLVEUSERNAME: ResolveUsernameApiOp

• SCHEMA: SchemaApiOp

• SCRIPT_ON_CONNECTOR: ScriptOnConnectorApiOp

• SCRIPT_ON_RESOURCE: ScriptOnResourceApiOp

• SEARCH: SearchApiOp

• SYNC: SyncApiOp

• TEST: TestApiOp

• UPDATE: UpdateApiOp

• VALIDATE: ValidateApiOp

denied

boolean, optional

This property prevents operation execution if the value is true.

onDeny

string, optional

If denied is true, then the service uses this value. Default value: DO_NOTHING.

• DO_NOTHING: On operation the service does nothing.

• THROW_EXCEPTION: On operation the service throws a ForbiddenException exception.

10.4. Installing and Configuring Remote Connector Servers
Connectors that use the .NET framework must run remotely. Java connectors can run locally or
remotely. Connectors that run remotely require a connector server to enable OpenIDM to access the
connector.

Note

OpenIDM 3.0.0 supports version 1.4.0.0 of the OpenICF Framework. Therefore, you must use version 1.4.0.0
of the .NET Connector Server, or the Java Connector Server. The 1.4.0.0 Java Connector Server is backward

Connecting to External Resources
Installing and Configuring a .NET Connector Server

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 104

compatible with the version 1.1.x connectors. The 1.4.0.0 .NET Connector Server is compatible only with the
1.4.x connectors.

This section describes the steps to install a .NET connector server and a remote Java Connector
Server.

10.4.1. Installing and Configuring a .NET Connector Server

A .NET connector server is useful when an application is written in Java, but a connector bundle
is written using C#. Because a Java application (for example, a J2EE application) cannot load C#
classes, you must deploy the C# bundles under a .NET connector server. The Java application can
communicate with the C# connector server over the network, and the C# connector server acts as a
proxy to provide access to the C# bundles that are deployed within the C# connector server, to any
authenticated application.

The .NET connector server requires the .NET framework (version 4.0.30319 or later) and is
supported on Windows Server 2008 and 2008 R2.

By default, the connector server outputs log messages to a file named connectorserver.log, in the C:
\path\to\openicf directory. To change the location of the log file, set the initializeData parameter in the
configuration file, before you install the connector server. For example, the following excerpt sets the
log directory to C:\openicf\logs\connectorserver.log.
<add name="file"
 type="System.Diagnostics.TextWriterTraceListener"
 initializeData="C:\openicf\logs\connectorserver.log"
 traceOutputOptions="DateTime">
 <filter type="System.Diagnostics.EventTypeFilter" initializeData="Information"/>
 </add>

Procedure 10.1. Installing the .NET Connector Server

1. Download the OpenICF .NET Connector Server from the Open Stack download page.

Click on the OpenIDM Download link on that page, and scroll down to "Connector Servers".

The .NET Connector Server is distributed in two formats. The .msi file is a wizard that installs the
Connector Server as a Windows Service. The .zip file is simply a bundle of all the files required to
run the Connector Server.

If you do not want to run the Connector Server as a Windows service, download and extract the
.zip file, and move on to Procedure 10.2, "Configuring the .NET Connector Server". Otherwise,
follow the steps in this section.

2. Execute the openicf-zip-1.4.0.0-dotnet.msi installation file and complete the wizard.

When the wizard has completed, the Connector Server is installed as a Windows Service.

3. Open the Services console and make sure that the Connector Server is listed there.

http://forgerock.com/download-stack/

Connecting to External Resources
Installing and Configuring a .NET Connector Server

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 105

The name of the service is OpenICF Connector Server, by default.

Procedure 10.2. Configuring the .NET Connector Server

After you have installed the .NET Connector Server, as described in the previous section, follow these
steps to configure the Connector Server.

1. Make sure that the Connector Server is not currently running. If it is running, use the Services
console to stop it.

2. At the command prompt, change to the directory where the Connector Server was installed.
c:\> cd "c:\Program Files (x86)\Identity Connectors\Connector Server"

3. Run the ConnectorServer /setkey command to set a secret key for the Connector Server. The key
can be any string value. This example sets the secret key to Passw0rd.
ConnectorServer /setkey Passw0rd
Key Updated.

This key is used by clients connecting to the Connector Server. The key that you set here must
also be set in the OpenIDM connector info provider configuration file (conf/provisioner.openicf
.connectorinfoprovider.json). For more information, see Procedure 10.4, "Configuring OpenIDM to
Connect to the .NET Connector Server".

4. Edit the Connector Server connection settings.

The Connector Server configuration is saved in a file named ConnectorServer.exe.Config (in the
directory in which the Connector Server is installed).

Check and edit this file, as necessary, to reflect your installation. In particular, check the
connection properties, under the <appsettings> item.

Connecting to External Resources
Installing and Configuring a .NET Connector Server

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 106

<add key="connectorserver.port" value="8759" />
<add key="connectorserver.usessl" value="false" />
<add key="connectorserver.certificatestorename" value="ConnectorServerSSLCertificate" />
<add key="connectorserver.ifaddress" value="0.0.0.0" />
<add key="connectorserver.key" value="xOS4IeeE6eb/AhMbhxZEC37PgtE=" />

The following connection properties are set by default.

connectorserver.port

Specifies the port on which the Connector Server listens.

Note

If Windows firewall is enabled, you must create an inbound port rule to open the TCP port for the
connector server (8759 by default). If you do not open the TCP port, OpenIDM will be unable to
contact the Connector Server. For more information, see the Microsoft documentation on creating an
inbound port rule.

connectorserver.usessl

Indicates whether client connections to the Connector Server should be over SSL. This
property is set to false by default.

To secure connections to the Connector Server, set this property to true and store the server
certificate in your certificate store, using the following command:

ConnectorServer /storeCertificate /storeName <certificate-store-name> /certificateFile
 <certificate>

connectorserver.certificatestorename

Specifies the name of the certificate store, into which your server certificate has been
installed.

connectorserver.ifaddress

Specifies a single IP address from which connections will be accepted.

If you set a value here (other than the default 0.0.0.0) connections from all IP addresses other
than the one specified are denied.

5. Check the trace settings, in the same configuration file, under the <system.diagnostics> item.

http://technet.microsoft.com/en-us/library/cc947814(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc947814(v=ws.10).aspx

Connecting to External Resources
Installing and Configuring a .NET Connector Server

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 107

<system.diagnostics>
 <trace autoflush="true" indentsize="4">
 <listeners>
 <remove name="Default" />
 <add
 name="myListener"
 type="System.Diagnostics.TextWriterTraceListener"
 initializeData="c:\connectorserver.log"
 traceOutputOptions="DateTime">
 <filter
 type="System.Diagnostics.EventTypeFilter"
 initializeData="Information" />
 </add>
 </listeners>
 </trace>
</system.diagnostics>

The Connector Server uses the standard .NET trace mechanism. For more information about
tracing options, see Microsoft's .NET documentation for System.Diagnostics.

The default trace settings are a good starting point. For less tracing, you can change the
EventTypeFilter's initializeData to "Warning" or "Error". For very verbose logging you can set the
value to "Verbose" or "All". The level of logging performed has a direct effect on the performance
of the Connector Servers, so take care when setting this level.

Procedure 10.3. Starting the .NET Connector Server

Start the .NET Connector Server in one of the following ways.

1. Start the server as a Windows service, by using the Microsoft Services Console.

Locate the connector server service (OpenICF Connector Server), and click Start the service or Restart
 the service.

The service is executed with the credentials of the "run as" user (System, by default).

2. Start the server as a Windows service, by using the command line.

In the Windows Command Prompt, run the following command:
net start ConnectorServerService

To stop the service in this manner, run the following command:
net stop ConnectorServerService

3. Start the server without using Windows services.

In the Windows Command Prompt, change directory to the location where the Connector Server
was installed. The default location is c:\Program Files (x86)\Identity Connectors\Connector Server.

http://msdn.microsoft.com/en-us/library/15t15zda(v=vs.71).aspx

Connecting to External Resources
Installing and Configuring a .NET Connector Server

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 108

Start the server with the following command:
ConnectorServer.exe /run

Note that this command starts the Connector Server with the credentials of the current user. It
does not start the server as a Windows service.

Procedure 10.4. Configuring OpenIDM to Connect to the .NET Connector Server

The connector info provider service enables you to configure one or more remote connector servers
to which OpenIDM can connect. The connector info provider configuration is stored in a file
named openidm/conf/provisioner.openicf.connectorinfoprovider.json. A sample connector info provider
configuration file is located in openidm/samples/provisioners/.

To configure OpenIDM to use the remote .NET connector server, follow these steps:

1. Start OpenIDM, if it is not already running.

2. Copy the sample connector info provider configuration file to the path/to/openidm/conf directory.
$ cd /path/to/openidm
$ cp samples/provisioners/provisioner.openicf.connectorinfoprovider.json conf/

3. Edit the connector info provider configuration, specifying the details of the remote connector
server.
"remoteConnectorServers" : [
 {
 "name" : "dotnet",
 "host" : "192.0.2.0",
 "port" : 8759,
 "useSSL" : false,
 "timeout" : 0,
 "key" : "Passw0rd"
 }
]

Configurable properties are as follows:

name

Specifies the name of the connection to the .NET connector server. The name can be any
string. This property is referenced in the connector configuration file (provisioner.openicf-
ad.json with the "connectorHostRef" property.

host

Specifies the IP address of the host on which the Connector Server is installed.

Connecting to External Resources
Installing and Configuring a Remote Java Connector Server

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 109

port

Specifies the port on which the Connector Server listens. This property matches the
connectorserver.port property in the ConnectorServer.exe.config file.

For more information, see Procedure 10.2, "Configuring the .NET Connector Server".

useSSL

Specifies whether the connection to the Connector Server should be secured. This property
matches the "connectorserver.usessl" property in the ConnectorServer.exe.config file.

timeout

Specifies the length of time, in seconds, that OpenIDM should attempt to connect to the
Connector Server before abandoning the attempt. To disable the timeout, set the value of this
property to 0.

key

Specifies the connector server key. This property matches the key property in the
ConnectorServer.exe.config file. For more information, see Procedure 10.2, "Configuring
the .NET Connector Server".

The string value that you enter here is encrypted as soon as the file is saved.

10.4.2. Installing and Configuring a Remote Java Connector Server
In certain situations, it might be necessary to set up a remote Java Connector Server. This section
provides instructions for setting up a remote Java Connector Server on Unix/Linux and Windows.

Procedure 10.5. Installing a Remote Java Connector Server for Unix/Linux

1. Download the OpenICF Java Connector Server from the Open Stack download page.

Click on the OpenIDM Download link on that page, and scroll down to "Connector Servers".

2. Change to the appropriate directory and unpack the zip file. The following command unzips the
file in the current folder.
$ unzip openicf-zip-1.4.0.0.zip

3. Change to the openicf directory:
$ cd path/to/openicf

4. (Optional) The Java Connector Server uses a key property to authenticate the connection. The
default key value is changeit. To change the value of the secret key, run a command similar to the
following. This example sets the key value to Passw0rd:

http://forgerock.com/download-stack/

Connecting to External Resources
Installing and Configuring a Remote Java Connector Server

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 110

$ cd /path/to/openicf
$ java \
 -cp "./lib/framework/*" \
 org.identityconnectors.framework.server.Main \
 -setKey
 -key Passw0rd
 -properties ./conf/ConnectorServer.properties

5. Review the ConnectorServer.properties file in the /path/to/openicf/conf directory, and make any
required changes. By default, the configuration file has the following properties:
connectorserver.port=8759
connectorserver.libDir=lib
connectorserver.usessl=false
connectorserver.bundleDir=bundles
connectorserver.loggerClass=org.forgerock.openicf.common.logging.slf4j.SLF4JLog
connectorserver.key=xOS4IeeE6eb/AhMbhxZEC37PgtE\=

Indicates whether client connections to the connector server should be over SSL. This property is
set to false by default.

To secure connections to the connector server, set this property to true and set the following
properties before you start the connector server:
java -Djavax.net.ssl.keyStore=mySrvKeystore -Djavax.net.ssl.keyStorePassword=Passw0rd

6. Start the Java Connector Server.
$ java -cp "./lib/framework/*" \
 org.identityconnectors.framework.server.Main \
 -run \
 -properties ./conf/ConnectorServer.properties

The connector server is now running, and listening on port 8759, by default.

Log files are available in the /path/to/openicf/logs directory.
$ ls logs/
Connector.log ConnectorServer.log ConnectorServerTrace.log

7. If required, stop the Java Connector Server by pressing CTRL-C.

Procedure 10.6. Installing a Remote Java Connector Server for Windows

1. Download the OpenICF Java Connector Server from the Open Stack download page.

Click on the OpenIDM Download link on that page, and scroll down to "Connector Servers".

2. Change to the appropriate directory and unpack the zip file.

3. In a Command Prompt window, change to the openicf directory:
C:\>cd C:\path\to\openicf\bin

http://forgerock.com/download-stack/

Connecting to External Resources
Installing and Configuring a Remote Java Connector Server

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 111

4. If required, secure the communication between OpenIDM and the Java Connector Server. The
Java Connector Server uses a key property to authenticate the connection. The default key value is
changeit.

To change the value of the secret key, use the bin\ConnectorServer.bat /setkey command. The
following example sets the key to Passw0rd:
c:\path\to\openicf>bin\ConnectorServer.bat /setkey Passw0rd
lib\framework\connector-framework.jar;lib\framework\connector-framework-
internal
.jar;lib\framework\groovy-all.jar;lib\framework\icfl-over-slf4j.jar;lib\framewor
k\slf4j-api.jar;lib\framework\logback-core.jar;lib\framework\logback-classic.jar

5. Review the ConnectorServer.properties file in the path\to\openicf\conf directory, and make any
required changes. By default, the configuration file has the following properties:
connectorserver.port=8759
connectorserver.libDir=lib
connectorserver.usessl=false
connectorserver.bundleDir=bundles
connectorserver.loggerClass=org.forgerock.openicf.common.logging.slf4j.SLF4JLog
connectorserver.key=xOS4IeeE6eb/AhMbhxZEC37PgtE\=

6. You can either run the Java Connector Server as a Windows service, or just start and stop it from
the command line.

• To install the Java Connector Server as a Windows service, run the following command.
c:\path\to\openicf>bin\ConnectorServer.bat /install

If you install the connector server as a Windows service you can use the Microsoft Service
Console to start, stop and restart the service. The Java Connector Service is named
OpenICFConnectorServerJava.

To uninstall the Java Connector Server as a Windows service, run the following command.
c:\path\to\openicf>bin\ConnectorServer.bat /uninstall

7. To start the Java Connector Server from the command line, enter the following command:
c:\path\to\openicf>bin\ConnectorServer.bat /run
lib\framework\connector-framework.jar;lib\framework\connector-framework-
internal
.jar;lib\framework\groovy-all.jar;lib\framework\icfl-over-slf4j.jar;lib\framework
\slf4j-api.jar;lib\framework\logback-core.jar;lib\framework\logback-classic.jar

The connector server is now running, and listening on port 8759, by default.

Log files are available in the \path\to\openicf\logs directory.

8. If required, stop the Java Connector Server by pressing ^C.

Connecting to External Resources
Connectors Supported With OpenIDM 3.0.0

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 112

10.5. Connectors Supported With OpenIDM 3.0.0
OpenIDM 3.0.0 provides several connectors by default, in the path/to/openidm/connectors directory.
Additional connectors can be downloaded from the Open Stack download page.

This section describes the connectors that are supported for use with OpenIDM 3.0.0, and provides
instructions for installing and configuring these connectors. For instructions on building connector
configurations interactively, see Section 10.6, "Creating Default Connector Configurations".

10.5.1. XML File Connector

A sample XML connector configuration is provided in path/to/openidm/samples/provisioners/
provisioner.openicf-xml.json. The following extract of the provisioner configuration shows the main
configurable properties.

{
 "connectorRef": {
 "connectorHostRef": "#LOCAL",
 "bundleName": "org.forgerock.openicf.connectors.xml-connector",
 "bundleVersion": "[1.1,1.5]",
 "connectorName": "org.forgerock.openicf.connectors.xml.XMLConnector"
 }
}

The connectorHostRef is optional if the connector server is local.

The configuration properties for the XML file connector set the relative path to the file containing the
identity data, and also the paths to the required XML schemas.
{
 "configurationProperties": {
 "xsdIcfFilePath" : "&{launcher.project.location}/data/resource-schema-1.xsd",
 "xsdFilePath" : "&{launcher.project.location}/data/resource-schema-extension.xsd",
 "xmlFilePath" : "&{launcher.project.location}/data/xmlConnectorData.xml"
 }
}

&{launcher.project.location} refers to the project directory of your OpenIDM instance. For more
information, see Default and Custom Configuration Directories. Note that relative paths such as these
work only if your connector server runs locally. For remote connector servers, you must specify the
absolute path to the schema and data files.

xsdIcfFilePath

References the XSD file defining schema common to all XML file resources. Do not change the
schema defined in this file.

xsdFilePath

References custom schema defining attributes specific to your project.

http://forgerock.com/download-stack/

Connecting to External Resources
XML File Connector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 113

xmlFilePath

References the XML file containing account entries.

10.5.1.1. Example : Using the XML Connector to Reconcile Users in a Remote XML
Data Store

This sample demonstrates reconciliation of users stored in an XML file on a remote machine. The
remote Java Connector Server enables OpenIDM to synchronize the internal OpenIDM repository
with the remote XML repository.

Before You Start

This sample assumes that a remote Java Connector Server is installed and running on a host named
remote-host. For instructions on setting up the remote Java Connector Server, see Procedure 10.5,
"Installing a Remote Java Connector Server for Unix/Linux" or Procedure 10.6, "Installing a Remote
Java Connector Server for Windows".

The sample uses the XML data that is provided in the basic XML reconciliation sample (Sample 1).
Before you start, copy the XML data from that sample to an accessible location on the machine that
hosts the remote Java Connector Server. For example:
$ cd path/to/openidm
 $ scp -r samples/sample1/data testuser@remote-host:/home/testuser/xml-sample
 testuser@remote-host's password:
 resource-schema-1.xsd 100% 4083 4.0KB/s 00:00
 resource-schema-extension.xsd 100% 1351 1.3KB/s 00:00
 xmlConnectorData.xml 100% 1648 1.6KB/s 00:00

The XML connector runs as a remote connector, that is, on the remote host on which the Java
Connector Server is installed. Copy the XML connector .jar from the OpenIDM installation to the
openicf/bundles directory on the remote host.
$ cd path/to/openidm
 $ scp connectors/xml-connector-1.4.0.0.jar testuser@remote-host:/path/to/openicf/bundles
 testuser@172.16.203.97's password:
 xml-connector-1.4.0.0.jar 100% 4379KB 4.3MB/s 00:00

Procedure 10.7. Configuring OpenIDM for the XML Connector Example

This example uses the configuration of Sample 1, which is effectively your OpenIDM project location.
Any configuration changes that you make must therefore be made in the conf directory of sample1.

1. Copy the remote connector configuration file (provisioner.openicf.connectorinfoprovider.json) from
the provisioner samples directory to the configuration directory of your OpenIDM project (sample
1).
$ cd path/to/openidm/samples/
 $ cp provisioners/provisioner.openicf.connectorinfoprovider.json sample1/conf

Connecting to External Resources
XML File Connector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 114

2. Edit the remote connector configuration file (provisioner.openicf.connectorinfoprovider.json) to
match your network setup. Also, change the value of the "connectorsLocation" property to "bundles",
as this is where the connector will be installed on the remote host.

The following example indicates that the remote Java Connector server is running on the host
remote-host, listening on the default port, and configured with a secret key of Passw0rd.
{
 "connectorsLocation" : "bundles",
 "remoteConnectorServers" : [
 {
 "name" : "xml",
 "host" : "remote-host",
 "port" : 8759,
 "useSSL" : false,
 "timeout" : 0,
 "key" : "Passw0rd"
 }
]
 }

3. Edit the XML connector configuration file (provisioner.openicf-xml.json) in the sample1/conf
directory as follows.
{
 "name" : "xmlfile",
 "connectorRef" : {
 "connectorHostRef" : "xml",
 "bundleName" : "org.forgerock.openicf.connectors.file.openicf-xml-connector",
 "bundleVersion" : "[1.1,1.5]",
 "connectorName" : "org.forgerock.openicf.connectors.xml.XMLConnector"
 },
 "configurationProperties" : {
 "xsdIcfFilePath" : "/home/testuser/xml-sample/data/resource-schema-1.xsd",
 "xsdFilePath" : "/home/testuser/xml-sample/data/resource-schema-extension.xsd",
 "xmlFilePath" : "/home/testuser/xml-sample/data/xmlConnectorData.xml"
 },
 }

4. • The "connectorHostRef" property indicates which remote connector server to use, and refers to
the "name" property defined in the provisioner.openicf.connectorinfoprovider.json file.

• The bundleVersion : [1.1,1.5] must be exactly the same as the version of the XML connector that
you are using. If you specify a range here, the XML connector version must be included in this
range.

• The "configurationProperties" must specify the absolute path to the data files that you copied to
the server on which the Java Connector Server is running.

5. Start OpenIDM with the configuration for Sample 1.
$./startup.sh -p samples/sample1/

6. In the Felix console, run the following command to show the state of the remote connector:

Connecting to External Resources
XML File Connector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 115

-> scr list
 ...
 [22] [active] org.forgerock.openidm.provisioner.openicf
 ...

The connector module (org.forgerock.openidm.provisioner.openicf) should be active, indicating that
the remote connector has been installed correctly. If the connector state is not active, check the
configuration, following the preceding steps.

The number of the connector module might differ. Make a note of the number returned.

7. View the configuration of the remote connector, by running the following command, substituting
the number of the provisioner module returned in the previous step:
-> scr info 22

8. To test that the connector has been configured correctly, run a reconciliation operation as
follows:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 "https://localhost:8443/openidm/recon?_action=recon&mapping=systemXmlfileAccounts_managedUser"

If successful, the operation returns a reconciliation ID, similar to the following:
{"_id":"a5346543-db9a-4f8b-ba25-af2a1b576a54"}

9. To verify that the users from the remote XML files have been created in the OpenIDM repository,
run the following command:

Connecting to External Resources
Generic LDAP Connector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 116

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/user/?_queryId=query-all-ids"
 {
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 2,
 "result": [
 {
 "_rev": "0",
 "_id": "bjensen"
 },
 {
 "_rev": "0",
 "_id": "scarter"
 }
]
 }

10.5.2. Generic LDAP Connector

A sample LDAP connector configuration is provided in path/to/openidm/samples/provisioners/
provisioner.openicf-ldap.json. The following extract of the provisioner configuration shows the main
configurable properties.

The following excerpt shows the connectorRef configuration property for connection to an LDAP server.
The connectorHostRef property is optional, if you use the connector .jar provided in openidm/connectors,
and you use a local connector server.

{
 "connectorRef": {
 "connectorHostRef": "#LOCAL",
 "connectorName": "org.identityconnectors.ldap.LdapConnector",
 "bundleName": "org.forgerock.openicf.connectors.ldap-connector",
 "bundleVersion": "[1.1,1.5]"
 }
}

The following excerpt shows the settings for the connector configuration properties in the sample
LDAP connector.

"configurationProperties" : {
 "host" : "localhost",
 "port" : 1389,
 "ssl" : false,
 "principal" : "cn=Directory Manager",
 "credentials" : "password",
 "baseContexts" : [
 "dc=example,dc=com"

Connecting to External Resources
Generic LDAP Connector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 117

],
 "baseContextsToSynchronize" : [
 "dc=example,dc=com"
],
 "accountSearchFilter" : null,
 "accountSynchronizationFilter" : null,
 "groupSearchFilter" : null,
 "groupSynchronizationFilter" : null,
 "passwordAttributeToSynchronize" : null,
 "synchronizePasswords" : false,
 "removeLogEntryObjectClassFromFilter" : true,
 "modifiersNamesToFilterOut" : [],
 "passwordDecryptionKey" : null,
 "changeLogBlockSize" : 100,
 "attributesToSynchronize" : [],
 "changeNumberAttribute" : "changeNumber",
 "passwordDecryptionInitializationVector" : null,
 "filterWithOrInsteadOfAnd" : false,
 "objectClassesToSynchronize" : [
 "inetOrgPerson"
],
 "vlvSortAttribute" : "uid",
 "passwordAttribute" : "userPassword",
 "useBlocks" : false,
 "maintainPosixGroupMembership" : false,
 "failover" : [],
 "readSchema" : true,
 "accountObjectClasses" : [
 "top",
 "person",
 "organizationalPerson",
 "inetOrgPerson"
],
 "accountUserNameAttributes" : [
 "uid"
],
 "groupMemberAttribute" : "uniqueMember",
 "passwordHashAlgorithm" : null,
 "usePagedResultControl" : false,
 "blockSize" : 100,
 "uidAttribute" : "dn",
 "maintainLdapGroupMembership" : false,
 "respectResourcePasswordPolicyChangeAfterReset" : false
},

host

The host name or IP address of the server on which the LDAP instance is running.

port

The port on which the LDAP server listens for LDAP requests. The sample configuration specifies
a default port of 1389.

ssl

If true, the specified port listens for LDAPS connections.

Connecting to External Resources
Generic LDAP Connector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 118

principal

The bind DN that is used to connect to the LDAP server.

credentials

The password of the principal that is used to connect to the LDAP server.

baseContexts

One or more starting points in the LDAP tree that will be used when searching the tree. Searches
are performed when discovering users from the LDAP server or when looking for the groups of
which a user is a member.

baseContextsToSynchronize

One or more starting points in the LDAP tree that will be used to determine if a change should be
synchronized. The base contexts attribute will be used to synchronize a change if this property is
not set.

accountSynchronizationFilter

Used during synchronization actions to filter out LDAP accounts

accountObjectClasses

The object classes used when creating new LDAP user objects. When specifying more than
one object class, add each object class as its own property. For object classes that inherit from
parents other than top, such as inetOrgPerson, specify all object classes in the class hierarchy.

accountSearchFilter

Search filter that accounts must match

accountUserNameAttributes

Attributes holding the account's user name. Used during authentication to find the LDAP entry
matching the user name.

attributesToSynchronize

List of attributes used during object synchronization. OpenIDM ignores change log updates that
do not include any of the specified attributes. If empty, OpenIDM considers all changes.

blockSize

Block size for simple paged results and VLV index searches, reflecting the maximum number of
accounts retrieved at any one time

changeLogBlockSize

Block size used when fetching change log entries

Connecting to External Resources
Generic LDAP Connector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 119

changeNumberAttribute

Change log attribute containing the last change number

failover

LDAP URLs specifying alternative LDAP servers to connect to if OpenIDM cannot connect to the
primary LDAP server specified in the host and port properties

filterWithOrInsteadOfAnd

In most cases, the filter to fetch change log entries is AND-based. If this property is set, the filter
ORs the required change numbers instead.

groupMemberAttribute

LDAP attribute holding members for non-POSIX static groups

maintainLdapGroupMembership

If true, OpenIDM modifies group membership when entries are renamed or deleted.

In the sample LDAP connector configuration file provided with OpenIDM, this property is set
to false. This means that LDAP group membership is not modified when entries are renamed or
deleted in OpenIDM. To ensure that entries are removed from LDAP groups when the entries are
deleted, set this property to true or enable referential integrity on the LDAP server. For OpenDJ,
see Configuring Referential Integrity for more information.

maintainPosixGroupMembership

If true, OpenIDM modifies POSIX group membership when entries are renamed or deleted.

modifiersNamesToFilterOut

Use to avoid loops caused by OpenIDM's own changes

objectClassesToSynchronize

OpenIDM synchronizes only entries having these object classes.

passwordAttribute

Attribute to which OpenIDM writes the predefined PASSWORD attribute

passwordAttributeToSynchronize

OpenIDM synchronizes password values on this attribute.

passwordDecryptionInitializationVector

Initialization vector used to decrypt passwords when performing password synchronization

http://docs.forgerock.org/en/opendj/2.6.0/admin-guide/index.html#referential-integrity

Connecting to External Resources
Generic LDAP Connector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 120

passwordDecryptionKey

Key used to decrypt passwords when performing password synchronization

passwordHashAlgorithm

Hash password values with the specified algorithm, if the LDAP server stores them in clear text.

The hash algorithm can be one of the following:

• NONE - Clear text

• WIN-AD - Used for password changes to Active Directory

• SHA - Secure Hash Algorithm

• SHA-1 - A 160-bit hash algorithm that resembles the MD5 algorithm

• SSHA - Salted SHA

• MD5 - A 128-bit message-digest algorithm

• SMD5 - Salted MD5

readSchema

If true, read LDAP schema from the LDAP server.

removeLogEntryObjectClassFromFilter

If true, the filter to fetch change log entries does not contain the changeLogEntry object class, and
OpenIDM expects no entries with other object types in the change log. Default: true

respectResourcePasswordPolicyChangeAfterReset

If true, bind with the Password Expired and Password Policy controls, and throw
PasswordExpiredException and other exceptions appropriately.

synchronizePasswords

If true, synchronize passwords.

uidAttribute

Specifies the LDAP attribute that should be used as the immutable ID (_UID_) for the entry. For an
OpenDJ resource, you should use the entryUUID. You can use the DN as the UID attribute but note
that this is not immutable.

useBlocks

If true, use block-based LDAP controls like simple paged results and virtual list view.

usePagedResultControl

If true, use simple paged results rather than virtual list view when both are available.

Connecting to External Resources
Active Directory Connector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 121

useTimestampsForSync

If true, use timestamps for LiveSync operations, instead of the change log.

By default, the LDAP connector has a change log strategy for LDAP servers that support a change
log (such as OpenDJ and Oracle Directory Server Enterprise Edition). If the LDAP server does not
support a change log, or if the change log is disabled, LiveSync for create and modify operations
can still occur, based on the timestamps of modifications.

vlvSortAttribute

Attribute used as the sort key for virtual list view

If you use the LDAP connector over SSL, you must set the ssl property to true in the provisioner
configuration file. You must also specify the path to a truststore in the system.properties file.
A truststore is provided by default at openidm/security/truststore. Add the following line to the
system.properties file, substituting the path to your own truststore if you do not want to use the
default.

Set the truststore
javax.net.ssl.trustStore=/path/to/openidm/security/truststore

10.5.3. Active Directory Connector

Unlike most other connectors, the Active Directory connector is written not in Java, but in C# for
the .Net platform. OpenICF should connect to Active Directory over ADSI, the native connection
protocol for Active Directory. The connector therefore requires a connector server that has access to
the ADSI .dll files.

Before you configure the Active Directory Connector, make sure that the .NET Connector Server
is installed, configured and started, and that OpenIDM has been configured to use the Connector
Server. For more information, see Section 10.4.1, "Installing and Configuring a .NET Connector
Server".

Procedure 10.8. Setting Up the Active Directory Connector

1. Download the Active Directory Connector from the OpenIDM download page under the
ForgeRock Open Stack download page.

2. Extract the contents of the AD Connector zip file into the directory in which you installed the
Connector Server (by default c:\Program Files (x86)\Identity Connectors\Connector Server>).

Note that the files, specifically the connector itself (ActiveDirectory.Connector.dll) must be directly
under the path\to\Identity Connectors\Connector Server folder, and not in a subfolder.

http://forgerock.com/download-stack/

Connecting to External Resources
Active Directory Connector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 122

Note

If the account that is used to install the Active Directory connector is different from the account under
which the Connector Server runs, you must give the Connector Server runtime account the rights to access
the Active Directory connector log files.

3. A sample Active Directory Connector configuration file is provided in path/to/opendim/samples/
provisioners/provisioner.openicf-ad.json. On the OpenIDM host, copy the sample Active Directory
connector configuration file to the openidm/conf directory.
$ cd /path/to/openidm
$ cp samples/provisioners/provisioner.openicf-ad.json conf/

4. Edit the Active Directory connector configuration to match your Active Directory deployment.

Specifically, check and edit the "configurationProperties" that define the connection details to the
Active Directory server.

Also, check that the bundleVersion of the connector matches the version of the
ActiveDirectory.Connector.dll in the Connector Server directory. The bundle version can be a range
that includes the version of the connector bundle. To check the .dll version:

• Right click on the ActiveDirectory.Connector.dll file and select Properties.

• Select the Details tab and note the Product Version.

Connecting to External Resources
Active Directory Connector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 123

The following configuration extract shows sample values for the "connectorRef" and
"configurationProperties":

Connecting to External Resources
Active Directory Connector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 124

...
"connectorRef" :
 {
 "connectorHostRef" : "dotnet",
 "connectorName" : "Org.IdentityConnectors.ActiveDirectory.ActiveDirectoryConnector",
 "bundleName" : "ActiveDirectory.Connector",
 "bundleVersion" : "1.4.0.0"
 }, ...
"configurationProperties" :
 {
 "DirectoryAdminName" : "EXAMPLE\\Administrator",
 "DirectoryAdminPassword" : "Passw0rd",
 "ObjectClass" : "User",
 "Container" : "dc=example,dc=com",
 "CreateHomeDirectory" : true,
 "LDAPHostName" : "192.0.2.0",
 "SearchChildDomains" : false,
 "DomainName" : "example",
 "SyncGlobalCatalogServer" : null,
 "SyncDomainController" : null,
 "SearchContext" : ""
 },

The main configurable properties are as follows:

"connectorHostRef"

Must point to an existing connector info provider configuration in openidm/conf/
provisioner.openicf.connectorinfoprovider.json. The "connectorHostRef" property is required
because the Active Directory connector must be installed on a .NET connector server, which
is always "remote", relative to OpenIDM.

"DirectoryAdminName" and "DirectoryAdminPassword"

Specify the credentials of an administrator account in Active Directory, that the connector
will use to bind to the server.

The "DirectoryAdminName" can be specified as a bindDN, or in the format DomainName\
\samaccountname.

"SearchChildDomains" boolean, false by default

Specifies if a Global Catalog (GC) should be used. This parameter is used in search and query
operations. A Global Catalog is a read-only, partial copy of the entire forest, and is never be
used for create, update or delete operations.

"LDAPHostName"

Specifies a particular Domain Controller (DC) or Global Catalog (GC), using its hostname.
This parameter is used for query, create, update, and delete operations.

Connecting to External Resources
Active Directory Connector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 125

If "SearchChildDomains" is set to true, this specific GC will be used for search and query
operations. If the "LDAPHostName" is null (as it is by default), the connector will allow the ADSI
libraries to pick up a valid DC or GC each time it needs to perform a query, create, update, or
delete operation.

"SyncGlobalCatalogServer"

Specifies a Global Catalog server name for sync operations. This property is used in
combination with the "SearchChildDomains" property.

If a value for "SyncGlobalCatalogServer" is set (that is, the value is not null) and
"SearchChildDomains" is set to true, this GC server is used for sync operations. If no value for
"SyncGlobalCatalogServer" is set and "SearchChildDomains" is set to true, the connector allows the
ADSI libraries to pick up a valid GC.

"SyncDomainController"

Specifies a particular DC server for sync operations. If no DC is specified, the connector picks
up the first available DC and retains this DC in future sync operations.

For a complete list of all the configuration properties, and their meanings, see the OpenICF
Connectors Configuration Reference.

The updated configuration is applied immediately.

5. Check that the connector has been configured correctly by running the following command in the
OSGi console:
scr list

This command returns all of the installed modules. The openicf provisioner module should be
active, as follows:
[32] [active] org.forgerock.openidm.provisioner.openicf.connectorinfoprovider

The number of the module may differ. Make a note of the module number, as it is referenced in
the commands that follow.

6. Review the contents of the connector by running the following command in the OSGi console
(substituting the module number returned in the previous step):
scr info 32
ID: 32
Name: org.forgerock.openidm.provisioner.openicf.connectorinfoprovider
Bundle: org.forgerock.openidm.provisioner-openicf (82)
State: active
Default State: enabled
Activation: immediate
Configuration Policy: optional
Activate Method: activate (declared in the descriptor)
Deactivate Method: deactivate (declared in the descriptor)
Modified Method: -

Connecting to External Resources
Active Directory Connector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 126

Services: org.forgerock.openidm.provisioner.openicf.ConnectorInfoProvider
 org.forgerock.openidm.metadata.MetaDataProvider
 org.forgerock.openidm.provisioner.ConfigurationService
Service Type: service
Reference: osgiConnectorEventPublisher
 Satisfied: satisfied
 Service Name: org.identityconnectors.common.event.ConnectorEventPublisher
 Multiple: multiple
 Optional: optional
 Policy: dynamic
Reference: connectorInfoManager
 Satisfied: satisfied
 Service Name: org.identityconnectors.framework.api.ConnectorInfoManager
 Multiple: single
 Optional: optional
 Policy: static
Reference: connectorFacadeFactory
 Satisfied: satisfied
 Service Name: org.identityconnectors.framework.api.ConnectorFacadeFactory
 Multiple: single
 Optional: optional
 Policy: static
Properties:
 component.id = 32
 component.name = org.forgerock.openidm.provisioner.openicf.connectorinfoprovider
 felix.fileinstall.filename = file:/openidm/conf/provisioner.openicf.connectorinfoprovider.json
 jsonconfig = {
 "connectorsLocation" : "connectors",
 "remoteConnectorServers" : [
 {
 "name" : "dotnet",
 "host" : "192.0.2.0",
 "port" : 8759,
 "useSSL" : false,
 "timeout" : 0,
 "key" : {
 "$crypto" : {
 "value" : {
 "iv" : "3XpjsLV1YNP034Rt/6BZgg==",
 "data" : "8JXxpoRJjYGFkRVHvTwGTA==",
 "cipher" : "AES/CBC/PKCS5Padding",
 "key" : "openidm-sym-default"
 },
 "type" : "x-simple-encryption"
 }
 }
 }
]
}
 service.description = OpenICF Connector Info Service
 service.pid = org.forgerock.openidm.provisioner.openicf.connectorinfoprovider
 service.vendor = ForgeRock AS.

7. The connector is now configured. To verify the configuration, perform a RESTful GET request on
the remote system URL, for example:

Connecting to External Resources
Active Directory Connector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 127

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/system/ActiveDirectory/account?_queryId=query-all-ids"

This request should return the user accounts in the Active Directory server.

8. (Optional) To configure reconciliation or liveSync between OpenIDM and Active Directory, create
a synchronization configuration file (sync.json) in the openidm/conf directory.

The synchronization configuration file defines the attribute mappings and policies that are used
during reconciliation.

The following is a simple example of a sync.json file for Active Directory.
{
 "mappings" : [
 {
 "name" : "systemADAccounts_managedUser",
 "source" : "system/ActiveDirectory/account",
 "target" : "managed/user",
 "properties" : [
 { "source" : "cn", "target" : "displayName" },
 { "source" : "description", "target" : "description" },
 { "source" : "givenName", "target" : "givenName" },
 { "source" : "mail", "target" : "email" },
 { "source" : "sn", "target" : "familyName" },
 { "source" : "sAMAccountName", "target" : "userName" }
],
 "policies" : [
 { "situation" : "CONFIRMED", "action" : "UPDATE" },
 { "situation" : "FOUND", "action" : "UPDATE" },
 { "situation" : "ABSENT", "action" : "CREATE" },
 { "situation" : "AMBIGUOUS", "action" : "EXCEPTION" },
 { "situation" : "MISSING", "action" : "UNLINK" },
 { "situation" : "SOURCE_MISSING", "action" : "DELETE" },
 { "situation" : "UNQUALIFIED", "action" : "DELETE" },
 { "situation" : "UNASSIGNED", "action" : "DELETE" }
]
 }
]
}

9. To test the synchronization, run a reconciliation operation by running the following command.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 "https://localhost:8443/openidm/recon?_action=recon&mapping=systemADAccounts_managedUser"

Connecting to External Resources
Active Directory Connector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 128

If reconciliation is successful, the command returns a reconciliation run ID, similar to the
following:
{"_id":"0629d920-e29f-4650-889f-4423632481ad"}

10. Query the internal repository, using either a curl command, or the OpenIDM UI, to make sure
that the users in your Active Directory server were provisioned into the repository.

10.5.3.1. Using PowerShell Scripts With the Active Directory Connector

The Active Directory connector supports PowerShell scripting. The following example shows a simple
PowerShell script that is referenced in the connector configuration and can be called over the REST
interface.

This PowerShell script creates a new MS SQL user with a username that is specified when the script
is called. The script sets the user's password to Passw0rd and, optionally, gives the user a role. Save
this script as openidm/script/createUser.ps1.

Note

External script execution is disabled on system endpoints by default. For testing purposes, you can enable
script execution over REST, on system endpoints by adding the script action to the system object, in the
access.js file. For example:

$ more /path/to/openidm/script/access.js
 ...
{
 "pattern" : "system/ActiveDirectory",
 "roles" : "openidm-admin",
 "methods" : "action",
 "actions" : "script"
},

Be aware that scripts passed to clients imply a security risk in production environments. If you need to expose a
script for direct external invocation, it might be better to write a custom authorization function to constrain the
script ID that is permitted. Alternatively, do not expose the script action for external invocation, and instead,

Connecting to External Resources
Active Directory Connector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 129

expose a custom endpoint that can make only the desired script calls. For more information on using custom
endpoints, see Adding Custom Endpoints.

 if ($loginName -ne $NULL) {
 [System.Reflection.Assembly]::LoadWithPartialName('Microsoft.SqlServer.SMO') | Out-Null
 $sqlSrv = New-Object ('Microsoft.SqlServer.Management.Smo.Server') ('WIN-C2MSQ8G1TCA')

 $login = New-Object -TypeName ('Microsoft.SqlServer.Management.Smo.Login') ($sqlSrv, $loginName)
 $login.LoginType = 'SqlLogin'
 $login.PasswordExpirationEnabled = $false
 $login.Create('Passw0rd')
 # The next two lines are optional, and to give the new login a server role, optional
 $login.AddToRole('sysadmin')
 $login.Alter()
 } else {
 $Error_Message = [string]"Required variables 'loginName' is missing!"
 Write-Error $Error_Message
 throw $Error_Message
 }

Now edit the Active Directory connector configuration to reference the script. Add the following
section to the connector configuration file (opendim/conf/provisioner.openicf-ad.json).

 "systemActions" : [
 {
 "_scriptId" : "ConnectorScriptName",
 "actions" : [
 {
 "systemType" : ".*ActiveDirectoryConnector",
 "actionType" : "Shell",
 "actionSource" : "@echo off \r\n echo %loginName%\r\n"
 },
 {
 "systemType" : ".*ActiveDirectoryConnector",
 "actionType" : "PowerShell",
 "actionFile" : "script/createUser.ps1"
 }
]
 }
]

To call the PowerShell script over the REST interface, use the following request, specifying the
userName as input:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 "https://localhost:8443/openidm/system/ActiveDirectory/?
_action=script&scriptId=ConnectorScriptName&scriptExecuteMode=resource&loginName=myUser"

Connecting to External Resources
CSV File Connector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 130

10.5.4. CSV File Connector

The CSV file connector is often useful when importing users, either for initial provisioning or for
ongoing updates. When used continuously in production, a CSV file serves as a change log, often
containing only user records that changed.

A sample CSV file connector configuration is provided in openidm/samples/provisioners/
provisioner.openicf-csv.json.

The following example shows an excerpt of the provisioner configuration. The default location of
the connector .jar is openidm/connectors. Therefore the value of the connectorHostRef property must be
"#LOCAL".
{
 "connectorRef": {
 "connectorHostRef": "#LOCAL",
 "connectorName": "org.forgerock.openicf.csvfile.CSVFileConnector",
 "bundleName": "org.forgerock.openicf.connectors.csvfile-connector",
 "bundleVersion": "[1.1,1.5]"
 }
}

The following excerpt shows required configuration properties.
{
 "configurationProperties": {
 "filePath": "data/hr.csv",
 "uniqueAttribute": "uid"
 }
}

The CSV file connector also supports a number of optional configuration properties, in addition to the
required properties.

encoding (optional)

Default: "utf-8"

fieldDelimiter (optional)

Default: ","

filePath (required)

References the CSV file containing account entries

multivalueDelimiter (optional)

Used with multi-valued attributes. Default: ";"

passwordAttribute (optional)

Attribute containing the password. Use when password-based authentication is required.

Connecting to External Resources
Scripted SQL Connector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 131

uniqueAttribute (required)

Primary key used for the CSV file

usingMultivalue (optional)

Whether attributes can have multiple values. Default: false

10.5.5. Scripted SQL Connector
The Scripted SQL Connector uses customizable Groovy scripts to interact with the database.

The connector uses one script for each of the following actions on the external database.

• Create

• Delete

• Search

• Sync

• Test

• Update

Example groovy scripts are provided in the openidm/samples/sample3/tools/ directory.

For a sample configuration that uses the scripted SQL connector, see Sample 3 - Scripted SQL in the
Installation Guide in the Installation Guide.

The scripted SQL connector runs with autocommit mode enabled by default. As soon as a statement
is executed that modifies a table, the update is stored on disk and the change cannot be rolled back.
This setting applies to all database actions (search, create, delete, test, synch, and update). You can
disable autocommit in the connector configuration file (conf/provisioner.openicf-scriptedsql.json) by
adding the autocommit property and setting it to false, for example:

"configurationProperties" : {
 "host" : "localhost",
 "port" : "3306",
 ...
 "database" : "HRDB",
 "autoCommit" : false,
 "reloadScriptOnExecution" : true,
 "createScriptFileName" : "&{launcher.project.location}/tools/CreateScript.groovy",
 ...

If you require a traditional transaction with a manual commit for a specific script, you can disable
autocommit mode in the script or scripts for each action that requires a manual commit. For more
information on disabling autocommit, see the corresponding MySQL documentation.

http://dev.mysql.com/doc/refman/5.6/en/commit.html

Connecting to External Resources
Database Table Connector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 132

10.5.6. Database Table Connector

The Database Table connector enables provisioning to a single table in a JDBC database. A sample
connector configuration for the Database Table connector is provided in samples/provisioners/
provisioner.openicf-contractordb.json. The corresponding data definition language file is provided in
samples/provisioners/provisioner.openicf-contractordb.sql.

The following excerpt shows the settings for the connector configuration properties in the sample
Database Table connector:

"configurationProperties" :
 {
 "quoting" : "",
 "host" : "localhost",
 "port" : "3306",
 "user" : "root",
 "password" : "",
 "database" : "contractordb",
 "table" : "people",
 "keyColumn" : "UNIQUE_ID",
 "passwordColumn" : "",
 "jdbcDriver" : "com.mysql.jdbc.Driver",
 "jdbcUrlTemplate" : "jdbc:mysql://%h:%p/%d",
 "enableEmptyString" : false,
 "rethrowAllSQLExceptions" : true,
 "nativeTimestamps" : true,
 "allNative" : false,
 "validConnectionQuery" : null,
 "changeLogColumn" : "CHANGE_TIMESTEMP",
 "datasource" : "",
 "jndiProperties" : null
 },

The mandatory configurable properties are as follows:

database

The JDBC database that contains the table to which you are provisioning.

table

The name of the table in the JDBC database that contains the user accounts.

keyColumn

The column value that is used as the unique identifier for rows in the table.

10.5.7. Groovy Connector

The Groovy connector is a generic scripted connector that enables you to run Groovy scripts on any
external resource.

Connecting to External Resources
Powershell Connector

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 133

The Groovy connector is bundled with OpenIDM 3.0.0, in the JAR openidm/connectors/groovy-
connector-1.4.0.0.jar. Sample scripted connector implementations are included in the JAR.

10.5.8. Powershell Connector

The PowerShell connector is a generic scripted connector to address the Microsoft Windows
ecosystem. You can use this connector to provision any Microsoft system, including, but not limited
to, Active Directory, MS SQL, MS Exchange, Sharepoint, Office365, and Azure. Essentially, any task
that can be performed with PowerShell can be executed through this connector.

The PowerShell connector runs on the .NET platform and requires the installation of a .NET
connector server on the Windows system. To install the .NET connector, follow the instructions in
Section 10.4.1, "Installing and Configuring a .NET Connector Server". The PowerShell connector
requires PowerShell V2.

The PowerShell connector is not bundled with OpenIDM, and must be downloaded separately.

10.6. Creating Default Connector Configurations
Rather than creating provisioner files by hand, use the service that OpenIDM exposes through the
REST interface to create basic connector configuration files, or use the cli.sh or cli.bat scripts to
generate a basic connector configuration.

This section describes how to create connector configurations over the REST interface. For
instructions on using the CLI to create connector configurations, see the configureconnector section
of the CLI Interface chapter.

You create a new connector configuration file in three stages:

1. List available connectors.

2. Generate the core configuration.

3. Connect to the target system and generate the final configuration.

List available connectors using the following command.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 "https://localhost:8443/openidm/system?_action=CREATECONFIGURATION"

Available connectors are installed in openidm/connectors. OpenIDM bundles the following connectors.

• csv file

Connecting to External Resources
Creating Default Connector Configurations

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 134

• database table

• ldap

• scripted groovy

• scripted sql

• xml

The command above therefore should return the following output.
{
 "connectorRef": [
 {
 "bundleVersion": "1.1.0.1",
 "bundleName": "org.forgerock.openicf.connectors.csvfile-connector",
 "displayName": "CSV File Connector",
 "connectorName": "org.forgerock.openicf.csvfile.CSVFileConnector"
 },
 {
 "bundleVersion": "1.1.0.0",
 "bundleName": "org.forgerock.openicf.connectors.databasetable-connector",
 "displayName": "Database Table Connector",
 "connectorName": "org.identityconnectors.databasetable.DatabaseTableConnector"
 },
 {
 "bundleVersion": "1.4.0.0",
 "bundleName": "org.forgerock.openicf.connectors.groovy-connector",
 "displayName": "Scripted Poolable Groovy Connector",
 "connectorName": "org.forgerock.openicf.connectors.groovy.ScriptedPoolableConnector"
 },
 {
 "bundleVersion": "1.4.0.0",
 "bundleName": "org.forgerock.openicf.connectors.groovy-connector",
 "displayName": "Scripted Groovy Connector",
 "connectorName": "org.forgerock.openicf.connectors.groovy.ScriptedConnector"
 },
 {
 "bundleVersion": "1.1.1.3",
 "bundleName": "org.forgerock.openicf.connectors.ldap-connector",
 "displayName": "LDAP Connector",
 "connectorName": "org.identityconnectors.ldap.LdapConnector"
 },
 {
 "bundleVersion": "1.1.1.0",
 "bundleName": "org.forgerock.openicf.connectors.scriptedsql-connector",
 "displayName": "Scripted SQL",
 "connectorName": "org.forgerock.openicf.connectors.scriptedsql.ScriptedSQLConnector"
 },
 {
 "bundleVersion": "1.1.0.1",
 "bundleName": "org.forgerock.openicf.connectors.xml-connector",
 "displayName": "XML Connector",
 "connectorName": "org.forgerock.openicf.connectors.xml.XMLConnector"
 }
]
}

Connecting to External Resources
Creating Default Connector Configurations

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 135

To generate the core configuration, choose one of the available connectors by copying one of the
JSON objects from the generated list into the body of the REST command, as shown below for the
XML connector.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{"connectorRef":
 {"connectorName": "org.forgerock.openicf.connectors.xml.XMLConnector",
 "displayName": "XML Connector",
 "bundleName": "org.forgerock.openicf.connectors.xml-connector",
 "bundleVersion": "1.1.0.1"}
 }' \
 "https://localhost:8443/openidm/system?_action=CREATECONFIGURATION"

This command returns a core connector configuration, similar to the following:
{
 "poolConfigOption": {
 "minIdle": 1,
 "minEvictableIdleTimeMillis": 120000,
 "maxWait": 150000,
 "maxIdle": 10,
 "maxObjects": 10
 },
 "resultsHandlerConfig": {
 "enableAttributesToGetSearchResultsHandler": true,
 "enableFilteredResultsHandler": true,
 "enableNormalizingResultsHandler": true
 },
 "operationTimeout": {
 "SCHEMA": -1,
 "SYNC": -1,
 "VALIDATE": -1,
 "SEARCH": -1,
 "AUTHENTICATE": -1,
 "CREATE": -1,
 "UPDATE": -1,
 "DELETE": -1,
 "TEST": -1,
 "SCRIPT_ON_CONNECTOR": -1,
 "SCRIPT_ON_RESOURCE": -1,
 "GET": -1,
 "RESOLVEUSERNAME": -1
 },
 "configurationProperties": {
 "xsdIcfFilePath": null,
 "xsdFilePath": null,
 "createFileIfNotExists": false,
 "xmlFilePath": null
 },
 "connectorRef": {
 "bundleVersion": "1.1.0.1",
 "bundleName": "org.forgerock.openicf.connectors.xml-connector",
 "displayName": "XML Connector",

Connecting to External Resources
Creating Default Connector Configurations

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 136

 "connectorName": "org.forgerock.openicf.connectors.xml.XMLConnector"
 }
}

The configuration that is returned is not yet functional. Notice that it does not contain the required
system-specific "configurationProperties", such as the host name and port for web based connectors, or
the "xmlFilePath" for the XML file-based connectors. In addition, the configuration does not include
the complete list of "objectTypes" and "operationOptions".

To generate the final configuration, add values for the "configurationProperties" to the core
configuration, and use the updated configuration as the body for the next command.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{
 "configurationProperties":
 {
 "xsdIcfFilePath" : "samples/sample1/data/resource-schema-1.xsd",
 "xsdFilePath" : "samples/sample1/data/resource-schema-extension.xsd",
 "xmlFilePath" : "samples/sample1/data/xmlConnectorData.xml",
 "createFileIfNotExists": false
 },
 "operationTimeout": {
 "SCHEMA": -1,
 "SYNC": -1,
 "VALIDATE": -1,
 "SEARCH": -1,
 "AUTHENTICATE": -1,
 "CREATE": -1,
 "UPDATE": -1,
 "DELETE": -1,
 "TEST": -1,
 "SCRIPT_ON_CONNECTOR": -1,
 "SCRIPT_ON_RESOURCE": -1,
 "GET": -1,
 "RESOLVEUSERNAME": -1
 },
 "resultsHandlerConfig": {
 "enableAttributesToGetSearchResultsHandler": true,
 "enableFilteredResultsHandler": true,
 "enableNormalizingResultsHandler": true
 },
 "poolConfigOption": {
 "minIdle": 1,
 "minEvictableIdleTimeMillis": 120000,
 "maxWait": 150000,
 "maxIdle": 10,
 "maxObjects": 10
 },
 "connectorRef": {
 "bundleVersion": "1.1.0.1",
 "bundleName": "org.forgerock.openicf.connectors.xml-connector",
 "displayName": "XML Connector",
 "connectorName": "org.forgerock.openicf.connectors.xml.XMLConnector"

Connecting to External Resources
Checking the Status of External Systems Over REST

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 137

 }
}' \
 "https://localhost:8443/openidm/system?_action=CREATECONFIGURATION"

Note

Notice the single quotes around the argument to the --data option in the preceding command. For most UNIX
shells, single quotes around a string prevent the shell from executing the command when encountering a
newline in the content. You can therefore pass the --data '...' option on a single line, or including line feeds.

OpenIDM attempts to read the schema, if available, from the external resource in order to generate
output. OpenIDM then iterates through schema objects and attributes, creating JSON representations
for "objectTypes" and "operationOptions" for supported objects and operations.

The output includes the basic --data input, along with operationOptions and objectTypes.

Because OpenIDM produces a full property set for all attributes and all object types in the schema
from the external resource, the resulting configuration can be large. For an LDAP server, OpenIDM
can generate a configuration containing several tens of thousands of lines, for example. You might
therefore want to reduce the schema to a minimum on the external resource before you run the final
command.

10.7. Checking the Status of External Systems Over REST
After a connection has been configured, external systems are accessible over the REST interface at
the URL https://localhost:8443/openidm/system/connector-name. Aside from accessing the data objects
within the external systems, you can test the availability of the systems themselves.

To list the external systems that are connected to an OpenIDM instance, use the test action on the
URL https://localhost:8443/openidm/system/. The following example shows two external LDAP servers
connected to OpenIDM:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 "https://localhost:8443/openidm/system?_action=test"

[
 {
 "ok": true,
 "name": "ldap1"
 },
 {
 "ok": true,
 "name": "ldap2"
 }
]

Connecting to External Resources
Checking the Status of External Systems Over REST

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 138

The status of the system is provided by the ok parameter. If the connection is available, the value of
this parameter is true.

To obtain the status for a single system, include the name of the connector in the URL, for example:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/system/ldap1?_action=test"

{
 "ok": true,
 "name": "ldap1"
}

If there is a problem with the connection, the request returns an error message. In the following
example, the LDAP server named ldap1 is down.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 "https://localhost:8443/openidm/system/ldap1?_action=test"
 {
 "error": "javax.naming.CommunicationException: localhost:1389
 [Root exception is java.net.ConnectException: Connection refused: Connection refused]",
 "name": "ldap"
}

To test the validity of a connector configuration, use the testConfig action and include the
configuration in the command. For example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --data '{
 "name" : "xmlfile",
 "connectorRef" : {
 "bundleName" : "org.forgerock.openicf.connectors.xml-connector",
 "bundleVersion" : "1.1.0.1",
 "connectorName" : "org.forgerock.openicf.connectors.xml.XMLConnector"
 },
 "producerBufferSize" : 100,
 "connectorPoolingSupported" : true,
 "poolConfigOption" : {
 "maxObjects" : 10,
 "maxIdle" : 10,
 "maxWait" : 150000,
 "minEvictableIdleTimeMillis" : 120000,
 "minIdle" : 1
 },

Connecting to External Resources
Checking the Status of External Systems Over REST

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 139

 "operationTimeout" : {
 "CREATE" : -1,
 "TEST" : -1,
 "AUTHENTICATE" : -1,
 "SEARCH" : -1,
 "VALIDATE" : -1,
 "GET" : -1,
 "UPDATE" : -1,
 "DELETE" : -1,
 "SCRIPT_ON_CONNECTOR" : -1,
 "SCRIPT_ON_RESOURCE" : -1,
 "SYNC" : -1,
 "SCHEMA" : -1
 },
 "configurationProperties" : {
 "xsdIcfFilePath" : "samples/sample1/data/resource-schema-1.xsd",
 "xsdFilePath" : "samples/sample1/data/resource-schema-extension.xsd",
 "xmlFilePath" : "samples/sample1/data/xmlConnectorData.xml"
 },
 "syncFailureHandler" : {
 "maxRetries" : 5,
 "postRetryAction" : "logged-ignore"
 },
 "objectTypes" : {
 "account" : {
 "$schema" : "http://json-schema.org/draft-03/schema",
 "id" : "__ACCOUNT__",
 "type" : "object",
 "nativeType" : "__ACCOUNT__",
 "properties" : {
 "description" : {
 "type" : "string",
 "nativeName" : "__DESCRIPTION__",
 "nativeType" : "string"
 },
 "firstname" : {
 "type" : "string",
 "nativeName" : "firstname",
 "nativeType" : "string"
 },
 "email" : {
 "type" : "string",
 "nativeName" : "email",
 "nativeType" : "string"
 },
 "_id" : {
 "type" : "string",
 "nativeName" : "__UID__"
 },
 "password" : {
 "type" : "string",
 "nativeName" : "password",
 "nativeType" : "string"
 },
 "name" : {
 "type" : "string",
 "required" : true,
 "nativeName" : "__NAME__",
 "nativeType" : "string"

Connecting to External Resources
Adding Attributes to Connectors

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 140

 },
 "lastname" : {
 "type" : "string",
 "required" : true,
 "nativeName" : "lastname",
 "nativeType" : "string"
 },
 "mobileTelephoneNumber" : {
 "type" : "string",
 "required" : true,
 "nativeName" : "mobileTelephoneNumber",
 "nativeType" : "string"
 },
 "securityQuestion" : {
 "type" : "string",
 "required" : true,
 "nativeName" : "securityQuestion",
 "nativeType" : "string"
 },
 "securityAnswer" : {
 "type" : "string",
 "required" : true,
 "nativeName" : "securityAnswer",
 "nativeType" : "string"
 },
 "roles" : {
 "type" : "string",
 "required" : false,
 "nativeName" : "roles",
 "nativeType" : "string"
 }
 }
 }
 },
 "operationOptions" : { }
}' \
 --request POST \
 "https://localhost:8443/openidm/system?_action=testConfig"

If the configuration is valid, the command returns "ok": true, for example:
{
 "ok": true,
 "name": "xmlfile"
}

10.8. Adding Attributes to Connectors
You can add the attributes of your choice to a connector configuration file. Specifically, if you want to
set up Property Level Extensions to one of the objectTypes such as account, use the format shown under
Object Types.

Connecting to External Resources
Adding Attributes to Connectors

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 141

You can configure connectors to enable provisioning of arbitrary property level extensions (such
as image files) to system resources. For example, if you want to set up image files such as account
avatars, open the appropriate provisioner file. Look for an account section similar to:

"account" : {
 "$schema" : "http://json-schema.org/draft-03/schema",
 "id" : "__ACCOUNT__",
 "type" : "object",
 "nativeType" : "__ACCOUNT__",
 "properties" : {

Under "properties", add one of the following code blocks. The first block works for a single photo
encoded as a base64 string. The second block would address multiple photos encoded in the same
way.

"attributeByteArray" : {
 "type" : "string",
 "nativeName" : "attributeByteArray",
 "nativeType" : "JAVA_TYPE_BYTE_ARRAY"
},

"attributeByteArrayMultivalue": {
 "type": "array",
 "items": {
 "type": "string",
 "nativeType": "JAVA_TYPE_BYTE_ARRAY"
 },
 "nativeName": "attributeByteArrayMultivalue"
},

Configuring Synchronization
Types of Synchronization

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 142

Chapter 11

Configuring Synchronization

One of the core services of OpenIDM is synchronizing identity data from different resources. This
chapter explains what you must know to get started configuring OpenIDM's flexible synchronization
mechanism, and illustrates the concepts with examples.

11.1. Types of Synchronization
Synchronization happens either when OpenIDM receives a change directly, or when OpenIDM
discovers a change on an external resource.

For direct changes to OpenIDM, OpenIDM immediately pushes updates to all external resources
configured to receive the updates. A direct change can originate not only as a write request through
the REST interface, but also as an update resulting from reconciliation with another resource.

OpenIDM discovers and synchronizes changes from external resources through reconciliation and
LiveSync.

In contrast, OpenIDM synchronizes changes from internal resources to external targets using
automatic sync.

Reconciliation

In identity management, reconciliation is the process of bidirectional synchronization of objects
between different data stores. Reconciliation applies mainly to user objects, although OpenIDM
can reconcile any objects, including groups and roles.

To perform reconciliation, OpenIDM analyzes both source and target systems to uncover the
differences that it must reconcile. Reconciliation can therefore be a heavyweight process. When
working with large data sets, finding all changes can be more work than processing the changes.

Reconciliation is, however, thorough. It recognizes system error conditions and catches changes
that might be missed by the more lightweight LiveSync mechanism. Reconciliation therefore
serves as the basis for compliance and reporting functionality.

LiveSync

LiveSync captures the changes that occur on a remote system, then pushes those changes to
OpenIDM. OpenIDM uses the defined mappings to replay the changes where they are required

Configuring Synchronization
How Automatic Sync works with onSync

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 143

- either in the OpenIDM repository, or on another remote system, or both. Unlike reconciliation,
LiveSync uses a polling system, and is intended to react quickly to changes as they happen.

To perform this polling, LiveSync relies on a change detection mechanism on the external
resource to determine which objects have changed. The change detection mechanism is specific
to the external resource, and can be a time stamp, a sequence number, a change vector or
other any method of recording changes that have occurred on the system. For example, OpenDJ
implements a change log that provides OpenIDM with a list of objects that have changed since
the last request. Active Directory implements a change sequence number, and certain databases
might have a lastChange attribute.

Automatic sync

Automatic sync automatically pushes changes made in the OpenIDM internal repository to
external systems.

In other words, automatic sync pushes data in the opposite direction to LiveSync. The section that
follows describes additional features that can be included with automatic sync.

To determine what to synchronize, and how to carry out synchronization, OpenIDM relies on
mappings configured in the /path/to/conf/sync.json file. LiveSync and automatic sync rely on the
mappings configured once per OpenIDM server.

For reconciliation or LiveSync, you can schedule changes as described in Scheduling Tasks and
Events.

11.1.1. How Automatic Sync works with onSync

When automatic sync is used to push a large number of changes to external databases, that process
takes time. Problems such as lost connections could happen, resulting in partial synchronization.

For example, if a Human Resources manager adds a group of new employees in one database, a
partial synchronization may mean that some of those employees do not have access to their email or
other systems.

Automatic sync assumes that the external data sources include all data currently in the internal
OpenIDM repository. If that does not reflect your configuration, you should start either with an initial
reconciliation, or with LiveSync as described in the Installation Guide, Sample 6 - LiveSync with an
AD Server in the Installation Guide.

An example of automatic sync is depicted in the OpenIDM Installation Guide, Sample 5b -
Compensated Synchronization with onSync in the Installation Guide. That sample demonstrates how
OpenIDM compensates for the failure of an external resource.

OpenIDM includes an optional onSync hook, which you can include in the /path/to/conf/managed.json file.
A sample excerpt is shown here:

Configuring Synchronization
How Automatic Sync works with onSync

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 144

...
"onDelete" : {
 "type" : "text/javascript",
 "file" : "ui/onDelete-user-cleanup.js"
 },
"onSync" : {
 "type" : "text/javascript",
 "file" : "compensate.js"
 },
"properties" : [
 ...

Note the reference from onSync to compensate.js. You can find that file in the /path/to/openidm/bin/
defaults/script directory.

When a change to a user is made, either in the UI or through a REST call, a change is made to the
managed object for that user.

The automatic sync feature of OpenIDM attempts to synchronize the change (and any other pending
changes) to the external data store(s). The automatic sync process is configured in the associated
sync.json configuration file.

Look at the contents of the sync.json file. It might start with source and target mappings similar to:

 ...
 "mappings" : [
 {
 "name" : "managedUser_systemAdAccounts",
 "source" : "managed/user",
 "target" : "system/ad/account",
 ...

Based on this excerpt, automatic synchronization takes information from the internal OpenIDM
managed user data store, and synchronizes that information to the AD data store. Once complete, it
proceeds down the file to the next source and target to be synchronized.

The compensate.js script is designed to avoid partial synchronization. If synchronization proceeds to
completion, OpenIDM exits from the script, based on some of the first active entries in the file:

if (syncResults.success) {
 logger.debug("sync was a success; no compensation necessary");
 return;
}

If synchronization does not complete, OpenIDM proceeds through the remainder of the compensate.js
script, with warning messages related to the sync action (notifyCreate, notifyUpdate, notifyDelete,
along with the error that caused the sync failure, which should be available in the standard OpenIDM
log file.

Configuring Synchronization
Flexible Data Model

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 145

Without the compensate.js script, any issues with connections to an external resource can lead to data
stores that are out of sync, such as the example cited earlier where some new employees do not have
access to their corporate email accounts.

With the compensate.js script, any such errors will result in each data store using the information it
had before automatic synchronization started. OpenIDM stores that information, temporarily, in
properties such as oldObject and oldTarget.

In this particular example, human resource managers should see that new employees are not shown
in their database. Then, the administrators of the OpenIDM system can check log files for errors,
address them, and then restart automatic synchronization with a new REST call.

11.2. Flexible Data Model
Identity management software tends to favor either a meta-directory data model, where all data are
mirrored in a central repository, or a virtual data model, where only a minimum set of attributes
are stored centrally, and most are loaded on demand from the external resources in which they are
stored. The meta-directory model offers fast access at the risk of getting outdated data. The virtual
model guarantees fresh data, but pays for that guarantee in terms of performance.

OpenIDM leaves the data model choice up to you. You determine the right trade offs for a particular
deployment. OpenIDM does not hard code any particular schema or set of attributes stored in the
repository. Instead, you define how external system objects map onto managed objects, and OpenIDM
dynamically updates the repository to store the managed object attributes that you configure.

You can, for example, choose to follow the data model defined in the Simple Cloud Identity
Management (SCIM) specification. The following object represents a SCIM user.

{
 "userName": "james1",
 "familyName": "Berg",
 "givenName": "James",
 "email": [
 "james1@example.com"
],
 "description": "Created by OpenIDM REST.",
 "password": "asdfkj23",
 "displayName": "James Berg",
 "phoneNumber": "12345",
 "employeeNumber": "12345",
 "userType": "Contractor",
 "title": "Vice President",
 "active": true
}

http://www.simplecloud.info/specs/draft-scim-core-schema-00.html

Configuring Synchronization
Basic Data Flow Configuration

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 146

Note

Avoid using the dash character (-) in property names, like last-name, as dashes in names make JavaScript
syntax more complex. If you cannot avoid the dash, then write source['last-name'] instead of source.last-name
in your JavaScript.

11.3. Basic Data Flow Configuration
Data flow for synchronization involves the following elements:

• Connector configuration files (conf/provisioner-*.json), with one file per external resource.

• Synchronization mappings file (conf/sync.json), with one file per OpenIDM instance.

• A links table that OpenIDM maintains in its repository.

• The scripts required to check objects and manipulate attributes.

11.3.1. Connector Configuration Files

Connector configuration files map external resource objects to OpenIDM objects, and are described
in detail in the chapter on Connecting to External Resources. Connector configuration files are
named openidm/conf/provisioner.resource-name.json, where resource-name reflects the connector
technology and external resource, such as openicf-xml.

An excerpt from an example connector configuration follows. The example shows the name for the
connector and two attributes of an account object type. In the attribute mapping definitions, the
attribute name is mapped from the nativeName, the attribute name used on the external resource,
to the attribute name used in OpenIDM. Thus the example shows that the sn attribute in LDAP is
mapped to lastName in OpenIDM. The homePhone attribute can have multiple values.

Configuring Synchronization
Synchronization Mappings File

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 147

{
 "name": "MyLDAP",
 "objectTypes": {
 "account": {
 "lastName": {
 "type": "string",
 "required": true,
 "nativeName": "sn",
 "nativeType": "string"
 },
 "homePhone": {
 "type": "array",
 "items": {
 "type": "string",
 "nativeType": "string"
 },
 "nativeName": "homePhone",
 "nativeType": "string"
 }
 }
 }
}

In order for OpenIDM to access external resource objects and attributes, the object and its attributes
must match the connector configuration. Note that the connector file only maps external resource
objects to OpenIDM objects. To construct attributes and to manipulate their values, you use the
synchronization mappings file.

11.3.2. Synchronization Mappings File

The synchronization mappings file (openidm/conf/sync.json) represents the core configuration for
OpenIDM synchronization.

The sync.json file describes a set of mappings. Each mapping specifies how attributes from source
objects correspond to attributes on target objects. The source and target indicate the direction for
the data flow, so you must define a separate mapping for each data flow. For example, if you want
data flows from an LDAP server to the repository and also from the repository to the LDAP server,
you must define two separate mappings.

You identify external resource sources and targets as system/name/object-type, where name is
the name used in the connector configuration file, and object-type is the object defined in the
connector configuration file list of object types. For objects in OpenIDM's internal repository, you use
managed/object-type, where object-type is defined in openidm/conf/managed.json. The name for the mapping
by convention is set to a string of the form source_target, as shown in the following example.

{
 "mappings": [
 {
 "name": "systemLdapAccounts_managedUser",
 "source": "system/MyLDAP/account",
 "target": "managed/user",

Configuring Synchronization
Synchronization Mappings File

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 148

 "properties": [
 {
 "target": "sn",
 "source": "lastName"
 },
 {
 "target": "telephoneNumber",
 "source": "homePhone"
 },
 {
 "target": "phoneExtension",
 "default": "0047"
 },
 {
 "target": "mail",
 "comment": "Set mail if non-empty.",
 "source": "email",
 "condition": {
 "type": "text/javascript",
 "source": "(object.email != null)"
 }
 },
 {
 "target": "displayName",
 "source": "",
 "transform": {
 "type": "text/javascript",
 "source": "source.lastName +', ' + source.firstName;"
 }
 }
]
 }
]
}

In this example, the source is the external resource, MyLDAP, and the target is OpenIDM's repository,
specifically the managed user objects. The properties reflect OpenIDM attribute names. For example,
the mapping has the attribute lastName defined in the MyLDAP connector configuration file mapped to
sn in the OpenIDM managed user object. Notice that the attribute names come from the connector
configuration, rather than the external resource itself.

You can create attributes on the target as part of the mapping. In the preceding example, a
phoneExtension attribute with a default value of 0047 is created on the target. The "default" property
can also be used to specify the value to assign to the target property if the "source" property and the
"transform" script yield a null value. If no value is specified, the default value is null.

You can also set up conditions under which OpenIDM maps attributes as shown for the email
attribute in the example. By default, OpenIDM synchronizes all attributes. In the example, the mail
attribute is set only if the script for the condition returns true.

OpenIDM also enables you to transform attributes. In the example, the value of the displayName
attribute is set using a combination of the lastName and firstName attribute values from the source.
For transformations, the source property is optional. However, the source object is only available
when you specify the source property. Therefore, in order to use source.lastName and source.firstName to
calculate the displayName, the example specifies "source" : "".

Configuring Synchronization
Synchronization Mappings File

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 149

To add a flow from the repository to MyLDAP, you would define a mapping with source managed/user and
target system/MyLDAP/account, named for example managedUser_systemLdapAccounts.

The following image shows the paths to objects in the OpenIDM namespace.

OpenIDM stores managed objects in the repository, and exposes them under /openidm
/managed. System objects on external resources are exposed under /openidm/system.

By default, OpenIDM synchronizes all objects that match those defined in the connector configuration
for the resource. Many connectors allow you to limit the scope of objects that the connector accesses.
For example, the LDAP connector allows you to specify base DNs and LDAP filters so that you do
not need to access every entry in the directory. OpenIDM also allows you to filter what is considered
a valid source or valid target for synchronization by using scripts. To apply these filters, use the
validSource, and validTarget properties in your mapping.

Configuring Synchronization
Synchronization Mappings File

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 150

validSource

A script that determines if a source object is valid to be mapped. The script yields a boolean
value: true indicates that the source object is valid; false can be used to defer mapping until some
condition is met. In the root scope, the source object is provided in the "source" property. If the
script is not specified, then all source objects are considered valid.

{
 "validSource": {
 "type": "text/javascript",
 "source": "source.ldapPassword != null"
 }
}

validTarget

A script, used during reconciliation's second phase, that determines if a target object is valid to
be mapped. The script yields a boolean value: true indicates that the target object is valid; false
indicates that the target object should not be included in reconciliation. In the root scope, the
source object is provided in the "target" property. If the script is not specified, then all target
objects are considered valid for mapping.

{
 "validTarget": {
 "type": "text/javascript",
 "source": "target.employeeType == 'internal'"
 }
}

During synchronization, your scripts always have access to a source object and a target object.
Examples already shown in this section use source.attributeName to retrieve attributes from the source
objects. Your scripts can also write to target attributes using target.attributeName syntax.

{
 "onUpdate": {
 "type": "text/javascript",
 "source": "if (source.email != null) {target.mail = source.email;}"
 }
}

See the Scripting Reference appendix for more on scripting.

By default, all mappings participate in automatic synchronization operations. You can prevent a
specific mapping from participating in automatic synchronization by setting the "enableSync" property
of that mapping to false. In the following example, automatic synchronization is disabled. This means
that changes to objects in the internal repository are not automatically propagated to the LDAP
directory. To propagate changes to the LDAP directory, reconciliation must be launched manually.

Configuring Synchronization
Using Encrypted Values

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 151

{
 "mappings" : [
 {
 "name" : "managedUser_systemLdapAccounts",
 "source" : "managed/user",
 "target" : "system/ldap/account",
 "enableSync" : false,

}

Note that if enableSync is set to false for a system to managed user mapping (for example
"systemLdapAccounts_managedUser"), LiveSync is disabled for that mapping.

If a source resource is empty, the default behavior is for a reconciliation operation to exit, without
failure, and to log a warning, similar to the following:

2014-03-20 10:41:18:918 WARN Cannot perform reconciliation with an empty source
 object set, unless explicitly configured to allow it.

The reconciliation summary is also logged in the reconciliation audit log.

This behavior prevents reconciliation operations from accidentally deleting everything in a target
resource. For example, in the event that a source system is unavailable but erroneously reporting its
status as "up", the absence of source objects should not result in objects being removed on the target
resource.

There might be situations in which you do want reconciliations of an empty source resource to
proceed. In this case, you can override the default behavior by setting the "allowEmptySourceSet"
property to true in the mapping. For example:

{
 "mappings" : [
 {
 "name" : "systemXmlfileAccounts_managedUser",
 "source" : "system/xmlfile/account",
 "allowEmptySourceSet" : true,
 ...

Reconciliation of an empty source effectively wipes out the target.

You can update mappings in the synchronization configuration file (sync.json) while the server is
running, provided you do not update a mapping that is currently in use by a reconciliation process.

11.3.3. Using Encrypted Values
OpenIDM supports reversible encryption of attribute values for managed objects. Attribute values
to encrypt include passwords, authentication questions, credit card numbers, and social security

Configuring Synchronization
Restricting HTTP Access to Sensitive Data

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 152

numbers. If passwords are already encrypted on the external resource, they are generally excluded
from the synchronization process. For more information, see Managing Passwords.

You configure encryption in the managed object configuration (in the openidm/conf/managed.json file).
The following extract of that file shows a managed object configuration that encrypts and decrypts
securityAnswer, ssn, and password attributes using the default symmetric key, and additional scripts for
extra passwords.

{
 "objects": [
 {
 "name": "user",
 ...
 "properties": [
 {
 "name": "securityAnswer",
 "encryption": {
 "key": "openidm-sym-default"
 }
 },
 {
 "name": "ssn",
 "encryption": {
 "key": "openidm-sym-default"
 }
 },
 {
 "name": "password",
 "encryption": {
 "key": "openidm-sym-default"
 }
 }
],
 ...
 }
]
}

Do not use the default symmetric key, openidm-sym-default, in production. See the chapter on Securing
and Hardening OpenIDM for instructions on adding your own symmetric key.

11.3.4. Restricting HTTP Access to Sensitive Data

You can protect specific sensitive data stored in the repository by marking the corresponding
properties as "private". Private data, whether it is encrypted or not, is not accessible over the REST
interface. Properties that are marked as private are removed from an object when that object is
retrieved over REST.

To mark a property as private, set its "scope" to "private" in the conf/managed.json file.

The following extract of the managed.json file shows how HTTP access is prevented on the password and
securityAnswer properties.

Configuring Synchronization
Constructing and Manipulating Attributes

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 153

 "properties" : [
 {
 "name" : "securityAnswer",
 "encryption" : {
 "key" : "openidm-sym-default"
 },
 "scope" : "private"
 },
 {
 "name" : "password",
 "encryption" : {
 "key" : "openidm-sym-default"
 },
 "scope" : "private"

A potential caveat with using private properties is that such properties are removed if an object is
updated by using an HTTP PUT request. A PUT request replaces the entire object in the repository.
Because properties that are marked as private are ignored in HTTP requests, these properties are
effectively removed from the object when the update is done. To work around this limitation, do not
use PUT requests if you have configured private properties. Instead, use a PATCH request to update only
those properties that need to be changed.

For example, to update the givenName of user jdoe, you could run the following command:

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '[
 {
 "operation":"replace",
 "field":"/givenName",
 "value":"Jon"
 }
]' \
 "https://localhost:8443/openidm/managed/user?_action=patch&_queryId=for-userName&uid=jdoe"

Note

The filtering of private data applies only to direct HTTP read and query calls on managed objects. No automatic
filtering is done for internal callers, and the data that these callers choose to expose.

11.3.5. Constructing and Manipulating Attributes
OpenIDM enables you to construct and manipulate attributes using scripts that are triggered when
an object is created (onCreate), updated (onUpdate), retrieved (onRetrieve), or deleted (onDelete).
Additional scripts are available when a managed object requires validation (onValidate), and when an

Configuring Synchronization
Reusing Links

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 154

object is about to be stored in the repository (onStore). Similar scripts are available for when a link is
created (onLink) or removed (onUnlink).

The following example derives a DN for an LDAP entry when the entry is created in the internal
repository.

{
 "onCreate": {
 "type": "text/javascript",
 "source":
 "target.dn = 'uid=' + source.uid + ',ou=people,dc=example,dc=com'"
 }
}

In addition, OpenIDM supports the use of post-action scripts, including after the creation of an
object is complete (postCreate), after the update of an object is complete (postUpdate), and after the
deletion of an object (postDelete).

11.3.6. Reusing Links

When two mappings exist to synchronize the same objects bidirectionally, you can use the links
property in one mapping to have OpenIDM use the same internally managed link for both mappings.
Otherwise, if no links property is specified, OpenIDM maintains a link for each mapping.

The following excerpt shows two mappings, one from MyLDAP accounts to managed users, and
another from managed users to MyLDAP accounts. In the second mapping, the link property tells
OpenIDM to reuse the links created in the first mapping, rather than create new links.

{
 "mappings": [
 {
 "name": "systemMyLDAPAccounts_managedUser",
 "source": "system/MyLDAP/account",
 "target": "managed/user"
 },
 {
 "name": "managedUser_systemMyLDAPAccounts",
 "source": "managed/user",
 "target": "system/MyLDAP/account",
 "links": "systemMyLDAPAccounts_managedUser"
 }
]
}

11.4. Managing Reconciliation Over REST
You can trigger, cancel, and monitor reconciliation operations over REST, using the REST endpoint
https://localhost:8443/openidm/recon.

Configuring Synchronization
Triggering a Reconciliation Run

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 155

11.4.1. Triggering a Reconciliation Run
The following example triggers a reconciliation operation based on the systemLdapAccounts_managedUser
mapping. The mapping is defined in the file conf/sync.json.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 "https://localhost:8443/openidm/recon?_action=recon&mapping=systemLdapAccounts_managedUser"

By default, an assigned reconciliation run ID is returned immediately when the reconciliation
operation is initiated. Clients can make subsequent calls to the reconciliation service, using this
reconciliation run ID to query its state and to call operations on it.

For example, the reconciliation run initiated previously would return something similar to the
following:
{"_id":"0890ad62-4738-4a3f-8b8e-f3c83bbf212e"}

To have the entire reconciliation run complete before the reconciliation run ID is returned, set the
waitForCompletion property to true when the reconciliation is initiated. For example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 "https://localhost:8443/openidm/recon?
_action=recon&mapping=systemLdapAccounts_managedUser&waitForCompletion=true"

11.4.2. Obtaining the Details of a Reconciliation Run
You can display the details of a particular reconciliation run over REST by specifying the
reconciliation run ID in the URL. For example, the following call shows the details of the
reconciliation run initiated in the previous section:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/recon/0890ad62-4738-4a3f-8b8e-f3c83bbf212e"
 {
 "ended": "2014-03-06T07:00:32.094Z",
 "_id": "7a07c100-4f11-4d7e-bf8e-fa4594f99d58",
 "mapping": "systemLdapAccounts_managedUser",
 "state": "SUCCESS",
 "stage": "COMPLETED_SUCCESS",
 "stageDescription": "reconciliation completed.",
 "progress": {
 "links": {

Configuring Synchronization
Canceling a Reconciliation Run

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 156

 "created": 0,
 "existing": {
 "total": "1",
 "processed": 1
 }
 },
 "target": {
 "created": 0,
 "existing": {
 "total": "3",
 "processed": 3
 }
 },
 "source": {
 "existing": {
 "total": "1",
 "processed": 1
 }
 }
 },
 "situationSummary": {
 "UNASSIGNED": 2,
 "TARGET_IGNORED": 0,
 "SOURCE_IGNORED": 0,
 "MISSING": 0,
 "FOUND": 0,
 "AMBIGUOUS": 0,
 "UNQUALIFIED": 0,
 "CONFIRMED": 1,
 "SOURCE_MISSING": 0,
 "ABSENT": 0
 },
 "started": "2014-03-06T07:00:31.907Z"
}

11.4.3. Canceling a Reconciliation Run

You can cancel a reconciliation run by sending a REST call with the cancel action, specifying the
reconciliation run ID. For example, the following call cancels the reconciliation run initiated in the
previous section:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 "https://localhost:8443/openidm/recon/0890ad62-4738-4a3f-8b8e-f3c83bbf212e?_action=cancel"

The output for a reconciliation cancellation request is similar to the following:
{
 "status":"SUCCESS",
 "action":"cancel",
 "_id":"0890ad62-4738-4a3f-8b8e-f3c83bbf212e"
}

Configuring Synchronization
Listing Reconciliation Runs

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 157

If you specified that the call should wait for completion before the ID is returned, you can obtain the
reconciliation run ID from the list of active reconciliations, as described in the following section.

11.4.4. Listing Reconciliation Runs

You can display a list of reconciliation processes that have completed, and those that are in progress,
by running a RESTful GET on "https://localhost:8443/openidm/recon". The following example displays all
reconciliation runs.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/recon"

The output of such a request is similar to the following, with one item for each reconciliation run.
{
 "reconciliations": [
 {
 "ended": "2014-03-06T06:14:11.845Z",
 "_id": "4286510e-986a-4521-bfa4-8cd1e039a7f5",
 "mapping": "systemLdapAccounts_managedUser",
 "state": "SUCCESS",
 "stage": "COMPLETED_SUCCESS",
 "stageDescription": "reconciliation completed.",
 "progress": {
 "links": {
 "created": 1,
 "existing": {
 "total": "0",
 "processed": 0
 }
 },
 "target": {
 "created": 1,
 "existing": {
 "total": "2",
 "processed": 2
 }
 },
 "source": {
 "existing": {
 "total": "1",
 "processed": 1
 }
 }
 },
 "situationSummary": {
 "UNASSIGNED": 2,
 "TARGET_IGNORED": 0,
 "SOURCE_IGNORED": 0,
 "MISSING": 0,
 "FOUND": 0,

Configuring Synchronization
Listing Reconciliation Runs

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 158

 "AMBIGUOUS": 0,
 "UNQUALIFIED": 0,
 "CONFIRMED": 0,
 "SOURCE_MISSING": 0,
 "ABSENT": 1
 },
 "started": "2014-03-06T06:14:04.722Z"
 },
]
}

Each reconciliation run has the following properties:

_id

The ID of the reconciliation run.

mapping

The name of the mapping, defined in the conf/sync.json file.

state

The high level state of the reconciliation run. Values can be as follows:

• ACTIVE

The reconciliation run is in progress.

• CANCELED

The reconciliation run was successfully canceled.

• FAILED

The reconciliation run was terminated because of failure.

• SUCCESS

The reconciliation run completed successfully.

stage

The current stage of the reconciliation run's progress. Values can be as follows:

• ACTIVE_INITIALIZED

The initial stage, when a reconciliation run is first created.

• ACTIVE_QUERY_ENTRIES

Configuring Synchronization
Listing Reconciliation Runs

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 159

Querying the source, target and possibly link sets to reconcile.

• ACTIVE_RECONCILING_SOURCE

Reconciling the set of IDs retrieved from the mapping source.

• ACTIVE_RECONCILING_TARGET

Reconciling any remaining entries from the set of IDs retrieved from the mapping target, that
were not matched or processed during the source phase.

• ACTIVE_LINK_CLEANUP

Checking whether any links are now unused and should be cleaned up.

• ACTIVE_PROCESSING_RESULTS

Post-processing of reconciliation results.

• ACTIVE_CANCELING

Attempting to abort a reconciliation run in progress.

• COMPLETED_SUCCESS

Successfully completed processing the reconciliation run.

• COMPLETED_CANCELED

Completed processing because the reconciliation run was aborted.

• COMPLETED_FAILED

Completed processing because of a failure.

stageDescription

A description of the stages described previously.

progress

The progress object has the following structure (annotated here with comments):

Configuring Synchronization
Triggering LiveSync Over REST

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 160

"progress":{
 "source":{ // Progress on set of existing entries in the mapping source
 "existing":{
 "processed":1001,
 "total":"1001" // Total number of entries in source set, if known, “?” otherwise
 }
 },
 "target":{ // Progress on set of existing entries in the mapping target
 "existing":{
 "processed":1001,
 "total":"1001" // Total number of entries in target set, if known, “?” otherwise
 },
 "created":0 // New entries that were created
 },
 "links":{ // Progress on set of existing links between source and target
 "existing":{
 "processed":1001,
 "total":"1001" // Total number of existing links, if known, “?” otherwise
 },
 "created":0 // Denotes new links that were created
 }
},

11.4.5. Triggering LiveSync Over REST

The ability to trigger LiveSync operations over REST, or by using the resource API, enables you to
use an external scheduler to trigger a LiveSync operation, rather than using the OpenIDM scheduling
mechanism.

There are two ways in which to trigger a LiveSync operation over REST.

• Use the _action=liveSync parameter directly on the resource. This is the recommended method. The
following example calls a LiveSync operation on the user accounts in an external LDAP system.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 "https://localhost:8443/openidm/system/ldap/account?_action=liveSync"

• Target the system endpoint and supply a source parameter to identify the object that should be
synchronized. This method matches the scheduler configuration and can therefore be used to test
schedules before they are implemented.

The following example calls the same LiveSync operation as the previous example.

Configuring Synchronization
Restricting Reconciliation by Using Queries

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 161

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 "https://localhost:8443/openidm/system?_action=liveSync&source=system/ldap/account"

A successful LiveSync operation returns the following response:
{
 "_rev": "4",
 "_id": "SYSTEMLDAPACCOUNT",
 "connectorData": {
 "nativeType": "integer",
 "syncToken": 1
 }
}

Do not run two identical LiveSync operations simultaneously - rather, ensure that the first operation
has completed before a second similar operation is launched.

To troubleshoot a LiveSync operation that has not succeeded, you can include an optional parameter
(detailedFailure) to return additional information. For example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 "https://localhost:8443/openidm/system/ldap/account?_action=liveSync&detailedFailure=true"

Note

The first time that a LiveSync operation is called, no synchronization token exists in the database to establish
which changes have already been processed. The default LiveSync behavior is to locate the last existing entry
in the change log, and to store that entry in the database as the current starting position from which changes
should be applied. This behavior prevents LiveSync from processing changes that might already have been
processed during an initial data load. Subsequent LiveSync operations will pick up and process any new
changes.

Typically, in setting up LiveSync on a new system, you would load the data initially (by using reconciliation, for
example) and then enable LiveSync, starting from that base point.

11.5. Restricting Reconciliation by Using Queries
Every reconciliation operation performs a query on the source, and on the target resource, to
determine which records should be reconciled. The default source and target queries are query-all-
ids, which means that all records in both the source and the target are considered candidates for that
reconciliation operation.

Configuring Synchronization
Restricting Reconciliation by Using Queries

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 162

You can restrict reconciliation to specific entries by defining explicit source or target queries in the
mapping configuration.

For example, to restrict reconciliation to only those records whose employeeType on the source resource
is Permanent, you might specify a source query as follows:

"mappings" : [
 {
 "name" : "managedUser_systemLdapAccounts",
 "source" : "managed/user",
 "target" : "system/ldap/account",
 "sourceQuery" : : {
 "queryFilter" : "employeeType eq \"Permanent\""
 },
...

The format of the query can be any query type that is supported by the resource, and can include
additional parameters, if applicable. OpenIDM 3.0.0 supports the following query types.

For queries on managed objects:

• _queryId for arbitrary predefined, parameterized queries

• _queryExpression for client-supplied queries, in native query format

For queries on system objects:

• _queryId=query-all-ids (the only supported predefined query)

• _queryFilter for arbitrary filters, in common filter notation

The source and target queries send the query to the resource that is defined for that source or target,
by default. You can override the resource to which the query is sent by specifying a resourceName in the
query. For example, to query a specific endpoint instead of the source resource, you might modify the
preceding source query as follows:

"mappings" : [
 {
 "name" : "managedUser_systemLdapAccounts",
 "source" : "managed/user",
 "target" : "system/ldap/account",
 "sourceQuery" : {
 "resourceName" : "endpoint/scriptedQuery"
 "queryFilter" : "employeeType eq \"Permanent\""
 },
...

To override a source or target query that is defined in the mapping, you can specify the query when
you call the reconciliation operation. For example, if you wanted to reconcile all employee entries,
and not just the permanent employees, you would run the reconciliation operation as follows:

Configuring Synchronization
Restricting Reconciliation to a Specific ID

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 163

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{"sourceQuery": {"_queryId" : "query-all-ids"}}' \
 "https://localhost:8443/openidm/recon?_action=recon&mapping=managedUser_systemLdapAccounts"

By default, a reconciliation operation runs both the source and target phase, that is both the source
and the target resources are queried. To specify that either the source or target resource is not
queried, set runSourcePhase or runTargetPhase to false in the mapping configuration (conf/sync.json file).
For example, to prevent the target resource from being queried during the reconciliation operation
configured in the previous example, you would amend the mapping configuration as follows:

{
 "mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "sourceQuery" : {
 "queryFilter" : "employeeType eq \"Permanent\""
 },
 "runTargetPhase" : false,
 ...

11.6. Restricting Reconciliation to a Specific ID
In the same way that you can restrict reconciliation operations to specific records by using queries,
you can specify an ID to restrict a reconciliation operation to a particular record.

To restrict reconciliation to a specific ID, use the reconById action, instead of the recon action when you
call the reconciliation operation. Specify the ID with the ids parameter. Currently reconciling more
than one ID with the reconById action is not supported.

The following example is based on the data from Sample 2b, which maps an LDAP server
with the OpenIDM repository. The example reconciles only the user bjensen, using the
managedUser_systemLdapAccounts mapping to update the user account in LDAP with the data from
the OpenIDM repository. The _id for bjensen in this example is b3c2f414-e7b3-46aa-8ce6-f4ab1e89288c.
The example assumes that automatic synchronization has been disabled and that a reconciliation
operation is required to copy changes made in the repository to the LDAP system.

Configuring Synchronization
Querying the Reconciliation Audit Log

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 164

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 "https://localhost:8443/openidm/recon?
_action=reconById&mapping=managedUser_systemLdapAccounts&ids=b3c2f414-e7b3-46aa-8ce6-f4ab1e89288c"

A reconciliation by ID takes the default reconciliation options that are specified in the mapping, so
the source and target queries, and source and target phases described in the previous section apply
equally to reconciliation by ID.

11.7. Querying the Reconciliation Audit Log
Reconciliation operations are logged in the file /path/to/openidm/audit/recon.csv and in the repository.
You can read and query the reconciliation audit logs over the REST interface, as outlined in the
following examples.

By default all audit/recon query responses are formatted based on the entryType of the entry. Fields
that are not required for the specific entry type are stripped away from the response. For example,
a summary entry would not need to include a null targetObjectId field, as this would not add information
to a summary. You can specify that this auto-formatting be disabled and return the full entry for all
entry types. To disable entry formatting, include formatted=false as a query parameter in the request.

To return all reconciliation operations logged in the audit log, run a RESTful GET on the audit/recon
endpoint. For example:

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/audit/recon"

The following code sample shows an extract of the audit log after the first reconciliation operation in
Sample 1.
{
 "entries": [
 {
 "rootActionId": "d0578abf-f38e-4ede-a7dc-5ee9eaa8ce53",
 "messageDetail": null,
 "message": "Reconciliation initiated by openidm-admin",
 "timestamp": "2013-05-08T07:58:33.296Z",
 "reconId": "5cf09dfa-e85c-4d52-ab6c-8ba7c2e3d34f",
 "entryType": "start",
 "_id": "11381e20-3679-469d-a71c-c557c2bd091e",
 "status": "SUCCESS",
 "exception": "",
 "mapping": "systemXmlfileAccounts_managedUser"
 },

Configuring Synchronization
Querying the Reconciliation Audit Log

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 165

 {
 "messageDetail": null,
 "rootActionId": "d0578abf-f38e-4ede-a7dc-5ee9eaa8ce53",
 "situation": "ABSENT",
 "actionId": "86995423-8a43-4fc7-9c3c-9e450e0234cb",
 "targetObjectId": "managed/user/scarter",
 "action": "CREATE",
 "entryType": "",
 "_id": "9f59bb8a-31c6-41af-8f27-02094391ba0c",
 "reconId": "5cf09dfa-e85c-4d52-ab6c-8ba7c2e3d34f",
 "status": "SUCCESS",
 "exception": "",
 "reconciling": "source",
 "ambiguousTargetObjectIds": "",
 "timestamp": "2013-05-08T07:58:33.791Z",
 "message": null,
 "sourceObjectId": "system/xmlfile/account/scarter"
 },
 {
 "messageDetail": null,
 "rootActionId": "d0578abf-f38e-4ede-a7dc-5ee9eaa8ce53",
 "situation": "ABSENT",
 "actionId": "dea9b5c5-7a75-4cab-b8e4-176bea0a94a6",
 "targetObjectId": "managed/user/bjensen",
 "action": "CREATE",
 "entryType": "",
 "_id": "4fd285ef-a409-4875-abd0-5d70965fe172",
 "reconId": "5cf09dfa-e85c-4d52-ab6c-8ba7c2e3d34f",
 "status": "SUCCESS",
 "exception": "",
 "reconciling": "source",
 "ambiguousTargetObjectIds": "",
 "timestamp": "2013-05-08T07:58:33.793Z",
 "message": null,
 "sourceObjectId": "system/xmlfile/account/bjensen"
 },
 {
 "rootActionId": "d0578abf-f38e-4ede-a7dc-5ee9eaa8ce53",
 "messageDetail": {
 "ended": "2013-05-08T07:58:33.813Z",
 "started": "2013-05-08T07:58:33.294Z",
 "situationSummary": {
 "SOURCE_MISSING": 0,
 "FOUND": 0,
 "SOURCE_IGNORED": 0,
 "UNQUALIFIED": 0,
 "UNASSIGNED": 0,
 "TARGET_IGNORED": 0,
 "CONFIRMED": 0,
 "AMBIGUOUS": 0,
 "ABSENT": 2,
 "MISSING": 0
 },
 "progress": {
 "links": {
 "created": 2,
 "existing": {
 "total": "0",
 "processed": 0

Configuring Synchronization
Querying the Reconciliation Audit Log

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 166

 }
 },
 "target": {
 "created": 2,
 "existing": {
 "total": "0",
 "processed": 0
 }
 },
 "source": {
 "existing": {
 "total": "2",
 "processed": 2
 }
 }
 },
 "stageDescription": "reconciling target entries",
 "stage": "ACTIVE_RECONCILING_TARGET",
 "state": "ACTIVE",
 "mapping": "systemXmlfileAccounts_managedUser"
 },
 "message": "SOURCE_IGNORED: 0 MISSING: 0 FOUND: 0 AMBIGUOUS: 0 UNQUALIFIED: 0
 CONFIRMED: 0 SOURCE_MISSING: 0 ABSENT: 2 TARGET_IGNORED: 0 UNASSIGNED: 0 ",
 "timestamp": "2013-05-08T07:58:33.813Z",
 "reconId": "5cf09dfa-e85c-4d52-ab6c-8ba7c2e3d34f",
 "entryType": "summary",
 "_id": "a8a81f9f-fa8f-49f4-a0d6-c88b5fc4be2a",
 "status": "SUCCESS",
 "exception": "",
 "mapping": "systemXmlfileAccounts_managedUser"
 }
]
}

Most of the fields in this audit log are self-explanatory. Each distinct reconciliation operation is
identified by its reconId. Each entry in the log is identified by a unique _id. The first log entry indicates
the status for the complete reconciliation operation. Successive entries indicate the status for each
record affected by the reconciliation.

To obtain information on a specific audit log entry, include its entry _id in the URL. For example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/audit/recon/9f59bb8a-31c6-41af-8f27-02094391ba0c"

The following sample output shows the results of a read operation on a specific reconciliation audit
entry.

Configuring Synchronization
Querying the Reconciliation Audit Log

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 167

{
 "targetObjectId": "managed/user/5b9b75e8-2667-4040-a50d-7a644922f072",
 "sourceObjectId": "system/ldap/account/uid=jdoe,ou=People,dc=example,dc=com",
 "situation": "CONFIRMED",
 "reconciling": "source",
 "ambiguousTargetObjectIds": "",
 "action": "UPDATE",
 "actionId": "a0c8ea66-8798-451d-a55c-9d4b95f0941e",
 "exception": "",
 "_id": "88802a56-8be9-43bf-aaf9-d861820f3e39",
 "entryType": "",
 "timestamp": "2014-03-06T06:59:14.637Z",
 "reconId": "a0c8ea66-8798-451d-a55c-9d4b95f0941e",
 "rootActionId": "a0c8ea66-8798-451d-a55c-9d4b95f0941e",
 "status": "SUCCESS",
 "message": null,
 "messageDetail": null
}

To query the audit log for a particular reconciliation operation, use the audit-by-recon-id keyword,
specifying the reconciliation ID, as follows:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/audit/recon?_queryId=audit-by-recon-id&reconId=<reconID>"

Output similar to the following is returned, for the specified reconciliation operation:
{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 5,
 "result": [
 {
 "mapping": "systemLdapAccounts_managedUser",
 "exception": "",
 "_id": "e8932aef-31ad-43e8-ab5a-c997b247ab9d",
 "entryType": "summary",
 "timestamp": "2014-03-06T06:59:14.691Z",
 "reconId": "a0c8ea66-8798-451d-a55c-9d4b95f0941e",
 "rootActionId": "a0c8ea66-8798-451d-a55c-9d4b95f0941e",
 "status": "SUCCESS",
 "message": "SOURCE_IGNORED: 0 MISSING: 0 FOUND: 0 AMBIGUOUS: 0 UNQUALIFIED: 0
 CONFIRMED: 1 SOURCE_MISSING: 0 ABSENT: 0 TARGET_IGNORED: 0 UNASSIGNED: 2 ",
 "messageDetail": {
 "stage": "ACTIVE_RECONCILING_TARGET",
 "stageDescription": "reconciling target entries",
 "ended": "2014-03-06T06:59:14.691Z",
 "started": "2014-03-06T06:59:14.353Z",
 "mapping": "systemLdapAccounts_managedUser",
 "state": "ACTIVE",
 "situationSummary": {
 "SOURCE_MISSING": 0,
 "FOUND": 0,
 "SOURCE_IGNORED": 0,

Configuring Synchronization
Querying the Reconciliation Audit Log

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 168

 "UNQUALIFIED": 0,
 "UNASSIGNED": 2,
 "TARGET_IGNORED": 0,
 "CONFIRMED": 1,
 "AMBIGUOUS": 0,
 "ABSENT": 0,
 "MISSING": 0
 },
 "progress": {
 "links": {
 "created": 0,
 "existing": {
 "processed": 1,
 "total": "1"
 }
 },
 "source": {
 "existing": {
 "processed": 1,
 "total": "1"
 }
 },
 "target": {
 "created": 0,
 "existing": {
 "processed": 3,
 "total": "3"
 }
 }
 }
 }
 },
 {
 "targetObjectId": "managed/user/e8b93d84-5295-4286-b951-cea07550a331",
 "sourceObjectId": null,
 "situation": "UNASSIGNED",
 "reconciling": "target",
 "ambiguousTargetObjectIds": null,
 "action": "IGNORE",
 "actionId": null,
 "exception": "",
 "_id": "7878e924-0aa6-46a9-8d42-716eae098121",
 "entryType": "",
 "timestamp": "2014-03-06T06:59:14.674Z",
 "reconId": "a0c8ea66-8798-451d-a55c-9d4b95f0941e",
 "rootActionId": "a0c8ea66-8798-451d-a55c-9d4b95f0941e",
 "status": "SUCCESS",
 "message": null,
 "messageDetail": null
 },
 {
 "targetObjectId": "managed/user/0e4cfe5e-3d9d-4d74-acf4-596f610eda5a",
 "sourceObjectId": null,
 "situation": "UNASSIGNED",
 "reconciling": "target",
 "ambiguousTargetObjectIds": null,
 "action": "IGNORE",
 "actionId": null,
 "exception": "",

Configuring Synchronization
Querying the Reconciliation Audit Log

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 169

 "_id": "795d1616-9ec7-44c7-80f5-bc7c566bd2fe",
 "entryType": "",
 "timestamp": "2014-03-06T06:59:14.653Z",
 "reconId": "a0c8ea66-8798-451d-a55c-9d4b95f0941e",
 "rootActionId": "a0c8ea66-8798-451d-a55c-9d4b95f0941e",
 "status": "SUCCESS",
 "message": null,
 "messageDetail": null
 },
 {
 "targetObjectId": "managed/user/5b9b75e8-2667-4040-a50d-7a644922f072",
 "sourceObjectId": "system/ldap/account/uid=jdoe,ou=People,dc=example,dc=com",
 "situation": "CONFIRMED",
 "reconciling": "source",
 "ambiguousTargetObjectIds": "",
 "action": "UPDATE",
 "actionId": "a0c8ea66-8798-451d-a55c-9d4b95f0941e",
 "exception": "",
 "_id": "88802a56-8be9-43bf-aaf9-d861820f3e39",
 "entryType": "",
 "timestamp": "2014-03-06T06:59:14.637Z",
 "reconId": "a0c8ea66-8798-451d-a55c-9d4b95f0941e",
 "rootActionId": "a0c8ea66-8798-451d-a55c-9d4b95f0941e",
 "status": "SUCCESS",
 "message": null,
 "messageDetail": null
 },
 {
 "mapping": "systemLdapAccounts_managedUser",
 "exception": "",
 "_id": "91c00e7f-1975-4f68-bfba-7740e8f05ec5",
 "entryType": "start",
 "timestamp": "2014-03-06T06:59:14.354Z",
 "reconId": "a0c8ea66-8798-451d-a55c-9d4b95f0941e",
 "rootActionId": "a0c8ea66-8798-451d-a55c-9d4b95f0941e",
 "status": "SUCCESS",
 "message": "Reconciliation initiated by openidm-admin",
 "messageDetail": null
 }
]
}

To query the audit log for a specific reconciliation situation, use the audit-by-recon-id-situation
keyword, specifying the reconciliation ID and the situation that you want to query. For example, the
following query returns all ABSENT records found during the specified reconciliation operation:

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/audit/recon?_queryId=audit-by-recon-id-
situation&situation=ABSENT&reconId=fd2a59df-1fcd-444d-97ca-2c8a7ec6dc6c"

Output similar to the following is returned, with one entry for each record that matches the situation
queried:

Configuring Synchronization
Querying the Reconciliation Audit Log

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 170

{
 "result": [
 {
 "messageDetail": null,
 "rootActionId": "3c098d6f-a5e5-483c-a8ce-82911a10b0a9",
 "situation": "ABSENT",
 "actionId": "1a391fe8-201b-4f59-ad05-92ee804488a8",
 "targetObjectId": "managed/user/scarter",
 "action": "CREATE",
 "entryType": "",
 "_id": "6dc0a18a-826d-487d-a29f-5cd8d2f55465",
 "reconId": "1ef8e7b6-33dc-4f92-810a-b51913508a68",
 "status": "SUCCESS",
 "exception": "",
 "reconciling": "source",
 "ambiguousTargetObjectIds": "",
 "timestamp": "2013-05-14T08:20:41.763Z",
 "message": null,
 "sourceObjectId": "system/xmlfile/account/scarter"
 },
 {
 "messageDetail": null,
 "rootActionId": "3c098d6f-a5e5-483c-a8ce-82911a10b0a9",
 "situation": "ABSENT",
 "actionId": "0aaba292-1dd3-4e98-a0e2-04bec9ae5209",
 "targetObjectId": "managed/user/bjensen",
 "action": "CREATE",
 "entryType": "",
 "_id": "1cda457e-54e2-451b-8a40-ef93dec7e60c",
 "reconId": "1ef8e7b6-33dc-4f92-810a-b51913508a68",
 "status": "SUCCESS",
 "exception": "",
 "reconciling": "source",
 "ambiguousTargetObjectIds": "",
 "timestamp": "2013-05-14T08:20:41.760Z",
 "message": null,
 "sourceObjectId": "system/xmlfile/account/bjensen"
 }
]
}

The activity logs track all operations on internal (managed) and external (system) objects. Entries in
the activity log contain identifiers for the reconciliation or synchronization action that triggered the
activity, and for the original caller and the relationships between related actions.

You can access the activity logs over REST with the following call:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/audit/activity"

The following extract of the activity log shows the last entry in the log, which was a password change
for user bjensen.
{

Configuring Synchronization
Querying the Reconciliation Audit Log

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 171

 "entries": [
 ...
 },
 "before": null,
 "requester": "openidm-admin",
 "parentActionId": "c2c102bc-7b32-4020-b5aa-9a7d63652cb6",
 "_id": "bbaff1e0-923b-48f0-b053-b1614cbb3647",
 "activityId": "c2c102bc-7b32-4020-b5aa-9a7d63652cb6",
 "timestamp": "2014-03-13T16:20:54.811Z",
 "action": "CREATE",
 "message": "create",
 "objectId": "managed/user/4f2f5eea-918a-4ef1-9244-be41dcf128a4",
 "rev": "1",
 "rootActionId": "c2c102bc-7b32-4020-b5aa-9a7d63652cb6"
 },
 {
 "passwordChanged": true,
 "changedFields": [
 "/password"
],
 "status": "SUCCESS",
 "after": {
 "securityAnswer": {
 "$crypto": {
 "value": {
 "key": "openidm-sym-default",
 "iv": "8CvlA6rWN03MAhLSKJmbvw==",
 "cipher": "AES/CBC/PKCS5Padding",
 "data": "oJBTrrX+wFAygFZkLuGPrhB/jAIICcdIBuCX1eEbpS0="
 },
 "type": "x-simple-encryption"
 }
 },
 ...

To return activity information for a specific action, include the _id of the action in the endpoint, for
example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/audit/activity/22ef6d20-bd84-4267-9db8-745825a46ad1"

Results similar to the following are returned:
{
 "passwordChanged": true,
 "changedFields": [
 "/password"
],
 "status": "SUCCESS",
 "after": {
 "securityAnswer": {
 "$crypto": {
 "value": {
 "key": "openidm-sym-default",

Configuring Synchronization
Querying the Reconciliation Audit Log

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 172

 "iv": "HpsyTtTXc2pfNrXlYbro7Q==",
 "cipher": "AES/CBC/PKCS5Padding",
 "data": "0M6O7geNjalJ7e0EGSG9B90eaeF8zJuogdL74hcAIRg="
 },
 "type": "x-simple-encryption"
 }
 },
 "userName": "bjensen@example.com",
 "stateProvince": "",
 "postalAddress": "",
 "effectiveAssignments": {},
 "roles": "openidm-authorized",
 "telephoneNumber": "1234567",
 "accountStatus": "active",
 "password": {
 "$crypto": {
 "value": {
 "key": "openidm-sym-default",
 "iv": "dkRjURz761HaObBuLl+EkA==",
 "cipher": "AES/CBC/PKCS5Padding",
 "data": "9chNPUlXotHy195ERj6vlg=="
 },
 "type": "x-simple-encryption"
 }
 },
 "effectiveRoles": [
 "openidm-authorized"
],
 "givenName": "Barbara",
 "lastPasswordAttempt": "Thu Mar 13 2014 07:23:12 GMT-0800 (GMT-08:00)",
 "address2": "",
 "passwordAttempts": "0",
 "sn": "Jensen",
 "mail": "bjensen@example.com",
 "securityQuestion": "1",
 "city": "",
 "country": "",
 "_rev": "7",
 "lastPasswordSet": "",
 "postalCode": "",
 "_id": "bjensen",
 "description": "Created By XML1"
},
 "before": {
 "securityAnswer": "Some security answer",
 "userName": "bjensen@example.com",
 "stateProvince": "",
 "postalAddress": "",
 "roles": "openidm-authorized",
 "telephoneNumber": "1234567",
 "password": {
 "$crypto": {
 "value": {
 "key": "openidm-sym-default",
 "iv": "bqhRyLW1lI+KZROcpgyukg==",
 "cipher": "AES/CBC/PKCS5Padding",
 "data": "qO8A76GqNqftVVwOlasyPw=="
 },
 "type": "x-simple-encryption",

Configuring Synchronization
Querying the Reconciliation Audit Log

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 173

 "securityQuestion": "1",
 "givenName": "Barbara",
 "address2": "",
 "lastPasswordAttempt": "Thu Mar 13 2014 07:23:12 GMT-0800 (GMT-08:00)",
 "passwordAttempts": "0",
 "sn": "Jensen",
 "mail": "bjensen@example.com",
 "country": "",
 "city": "",
 "_rev": "7",
 "lastPasswordSet": "",
 "postalCode": "",
 "_id": "bjensen",
 "description": "Created By XML1",
 "accountStatus": "active"
},
"requester": "openidm-admin",
"parentActionId": "71ddeed8-9006-4578-b869-13e15a3ce6b5",
"_id": "ee88adb8-3329-4f81-a8f2-d9c8e0fbf72b",
"activityId": "71ddeed8-9006-4578-b869-13e15a3ce6b5",
"timestamp": "2014-03-13T16:21:27.086Z",
"action": "UPDATE",
"message": "update",
"objectId": "managed/user/bjensen",
"rev": "7",
"rootActionId": "71ddeed8-9006-4578-b869-13e15a3ce6b5"
}

Each action in the activity log has a rootActionId and a parentActionId. The rootActionId is the ID that
was assigned to the incoming or initiating request. The parentActionId is the ID that is associated
with the overall action. So, for example, if an HTTP request invokes a script that changes a user's
password, the HTTP request is assigned the rootActionId and the action taken by the script is assigned
the parentActionId. You can query the activity log for the details of a specific action by including the
parentActionId in the query. For example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/audit/activity?_queryId=audit-by-activity-parent-
action&parentActionId=0aaba292-1dd3-4e98-a0e2-04bec9ae5209"

The following sample output shows the result of a query that requests details of the password change
for bjensen.
{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 2,
 "result": [
 {
 "rootActionId": "71ddeed8-9006-4578-b869-13e15a3ce6b5",
 "changedFields": [
 "/password"
],
 "action": "UPDATE",

Configuring Synchronization
Querying the Reconciliation Audit Log

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 174

 "objectId": "managed/user/bjensen",
 "before": {
 "securityAnswer": "Some security answer",
 "userName": "bjensen@example.com",
 "stateProvince": "",
 "postalAddress": "",
 "roles": "openidm-authorized",
 "telephoneNumber": "1234567",
 "password": "CAngetin1",
 "securityQuestion": "1",
 "givenName": "Barbara",
 "address2": "",
 "lastPasswordAttempt": "Thu Mar 13 2014 07:23:12 GMT-0800 (GMT-08:00)",
 "passwordAttempts": "0",
 "sn": "Jensen",
 "mail": "bjensen@example.com",
 "country": "",
 "city": "",
 "_rev": "7",
 "lastPasswordSet": "",
 "postalCode": "",
 "_id": "bjensen",
 "description": "Created By XML1",
 "accountStatus": "active"
 },
 "status": "SUCCESS",
 "_rev": "1",
 "_id": "ee88adb8-3329-4f81-a8f2-d9c8e0fbf72b",
 "parentActionId": "71ddeed8-9006-4578-b869-13e15a3ce6b5",
 "timestamp": "2014-03-13T16:21:27.086Z",
 "message": "update",
 "activityId": "71ddeed8-9006-4578-b869-13e15a3ce6b5",
 "after": {
 "securityAnswer": {
 "$crypto": {
 "value": {
 "key": "openidm-sym-default",
 "iv": "HpsyTtTXc2pfNrXlYbro7Q==",
 "cipher": "AES/CBC/PKCS5Padding",
 "data": "0M6O7geNjalJ7e0EGSG9B90eaeF8zJuogdL74hcAIRg="
 },
 "type": "x-simple-encryption"
 }
 },
 "userName": "bjensen@example.com",
 "stateProvince": "",
 "postalAddress": "",
 "effectiveAssignments": {},
 "roles": "openidm-authorized",
 "telephoneNumber": "1234567",
 "accountStatus": "active",
 "password": {
 "$crypto": {
 "value": {
 "key": "openidm-sym-default",
 "iv": "dkRjURz761HaObBuLl+EkA==",
 "cipher": "AES/CBC/PKCS5Padding",
 "data": "9chNPUlXotHy195ERj6vlg=="
 },

Configuring Synchronization
Configuring the LiveSync Retry Policy

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 175

 "type": "x-simple-encryption"
 }
 },
 "effectiveRoles": [
 "openidm-authorized"
],
 "givenName": "Barbara",
 "lastPasswordAttempt": "Thu Mar 13 2014 07:23:12 GMT-0800 (GMT-08:00)",
 "address2": "",
 "passwordAttempts": "0",
 "sn": "Jensen",
 "mail": "bjensen@example.com",
 "securityQuestion": "1",
 "city": "",
 "country": "",
 "_rev": "7",
 "lastPasswordSet": "",
 "postalCode": "",
 "_id": "bjensen",
 "description": "Created By XML1"
 },
 "rev": "7",
 "requester": "openidm-admin",
 "passwordChanged": true
 }
]
}

Note

For audit logs in the repository, you can define custom queries using the parameterized query mechanism. For
more information, see the section on Parameterized Queries.

For more information about the entries in these logs, see the chapter that covers Using Audit Logs.

11.8. Configuring the LiveSync Retry Policy
OpenIDM enables you to specify what should happen if a LiveSync operation reports a failure for
an operation. By configuring the LiveSync retry policy, you can specify how many times a failed
modification should be reattempted and what should happen in the event that the modification
is unsuccessful after the specified number of attempts. If no retry policy is configured, OpenIDM
reattempts the change an infinite number of times, until the change is successful. This behavior can
increase data consistency in the case of transient failures (for example, when the connection to the
database is temporarily lost). However, in situations where the cause of the failure is permanent (for
example, if the change does not meet certain policy requirements) the change will never succeed,
regardless of the number of attempts. In this case, the infinite retry behavior can effectively block
subsequent LiveSync operations from starting.

Generally, a scheduled reconciliation operation will eventually force consistency. However, to
prevent repeated retries that block the LiveSync mechanism, you should restrict the number of
times OpenIDM reattempts the same modification. You can then specify what OpenIDM does with

Configuring Synchronization
Configuring the LiveSync Retry Policy

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 176

failed LiveSync changes. The failed modification can be stored in a "dead letter queue", discarded,
or reapplied. Alternatively, an administrator can be notified of the failure by email or by some other
means. This behavior can be scripted. The default configuration, in the samples provided with
OpenIDM, is to retry a failed modification five times, and then to log and ignore the failure.

The LiveSync retry policy is configured in the connector configuration file (provisioner.openicf-*.json).
The sample connector configuration files have a retry policy defined as follows:

"syncFailureHandler" : {
 "maxRetries" : 5,
 "postRetryAction" : "logged-ignore"
},

The maxRetries field specifies the number of attempts that OpenIDM should make to process the failed
modification. The value of this property must be a positive integer, or -1. A value of zero indicates
that failed modifications should not be reattempted. In this case, the post retry action is executed
immediately when a LiveSync operation fails. A value of -1 (or omitting the maxRetries property, or the
entire syncFailureHandler from the configuration) indicates that failed modifications should be retried
an infinite number of times. In this case, no post retry action is executed.

The default retry policy relies on the scheduler, or whatever invokes the LiveSync operation.
Therefore, if retries are enabled and a LiveSync modification fails, OpenIDM will retry the
modification the next time that LiveSync is invoked.

The postRetryAction field indicates what action OpenIDM should take in the event that the maximum
number of retries has been reached (or if maxRetries has been set to zero). The post retry action can be
one of the following:

• logged-ignore indicates that OpenIDM should ignore the failed modification, and log its occurrence.

• dead-letter-queue indicates that OpenIDM should save the details of the failed modification in a table
in the repository (accessible over REST at repo/synchronisation/deadLetterQueue/provisioner-name).

• script specifies a custom script that should be executed when the maximum number of retries has
been reached. For information about using custom scripts in the configuration, see the Scripting
Reference.

In addition to the regular objects described in the Scripting Reference, the following objects are
available in the script scope:

• syncFailure

Provides details about the failed record. The structure of the syncFailure object is as follows:

Configuring Synchronization
Configuring the LiveSync Retry Policy

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 177

"syncFailure" :
 {
 "token" : the ID of the token,
 "systemIdentifier" : a string identifier that matches the "name" property in
 provisioner.openicf.json,
 "objectType" : the object type being synced, one of the keys in the
 "objectTypes" property in provisioner.openicf.json,
 "uid" : the UID of the object (for example uid=joe,ou=People,dc=example,dc=com),
 "failedRecord", the record that failed to synchronize
 },

To access these fields, include syncFailure.fieldname in your script.

• failureCause

Provides the exception that caused the original LiveSync failure.

• failureHandlers

OpenIDM currently provides two synchronization failure handlers "out of the box". loggedIgnore
indicates that the failure should be logged, after which no further action should be taken.
deadLetterQueue indicates that the failed record should be written to a specific table in the
repository, where further action can be taken. To invoke one of the internal failure handlers from
your script, use a call similar to the following (shown here for JavaScript):
failureHandlers.deadLetterQueue.invoke(syncFailure, failureCause);

Two sample scripts are provided in path/to/openidm/samples/syncfailure/script, one that logs failures,
and one that sends them to the dead letter queue in the repository.

The following sample provisioner configuration file extract shows a LiveSync retry policy that
specifies a maximum of four retries before the failed modification is sent to the dead letter queue.

...
"connectorName" : "org.identityconnectors.ldap.LdapConnector"
 },
 "syncFailureHandler" : {
 "maxRetries" : 4,
 "postRetryAction" : dead-letter-queue
 },
 "poolConfigOption" : {
...

In the case of a failed modification, a message similar to the following is output to the log file:
INFO: sync retries = 1/4, retrying

OpenIDM reattempts the modification, the specified number of times. If the modification is still
unsuccessful, a message similar to the following is logged:

Configuring Synchronization
Synchronization Situations and Actions

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 178

INFO: sync retries = 4/4, retries exhausted
Jul 19, 2013 11:59:30 AM
 org.forgerock.openidm.provisioner.openicf.syncfailure.DeadLetterQueueHandler invoke
INFO: uid=jdoe,ou=people,dc=example,dc=com saved to dead letter queue

The log message indicates the entry for which the modification failed (uid=jdoe, in this example).

You can view the failed modification in the dead letter queue, over the REST interface, as follows:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/repo/synchronisation/deadLetterQueue/ldap?_queryId=query-all-ids"
 {
 "query-time-ms": 2,
 "result":
 [
 {
 "_id": "4",
 "_rev": "0"
 }
],
 "conversion-time-ms": 0
 }

To view the details of a specific failed modification, include its ID in the URL:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/repo/synchronisation/deadLetterQueue/ldap/4"
 {
 "objectType": "account",
 "systemIdentifier": "ldap",
 "failureCause": "org.forgerock.openidm.sync.SynchronizationException:
 org.forgerock.openidm.objset.ConflictException:
 org.forgerock.openidm.sync.SynchronizationException:
 org.forgerock.openidm.script.ScriptException:
 ReferenceError: \"bad\" is not defined.
 (PropertyMapping/mappings/0/properties/3/condition#1)",
 "token": 4,
 "failedRecord": "complete record, in xml format"
 "uid": "uid=jdoe,ou=people,dc=example,dc=com",
 "_rev": "0",
 "_id": "4"
}

11.9. Synchronization Situations and Actions

Configuring Synchronization
Synchronization Situations

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 179

During synchronization, OpenIDM categorizes objects according to their situation. Situations
are characterized by whether an object exists on a source or target system, whether OpenIDM
has registered a link between the source object and the target object, and whether the object is
considered valid, as assessed by the validSource and validTarget scripts. OpenIDM then takes a specific
action, depending on the situation.

You can define actions for particular situations in the policies section of a synchronization mapping,
as shown in the following excerpt.

{
 "policies": [
 {
 "situation": "CONFIRMED",
 "action": "UPDATE"
 },
 {
 "situation": "FOUND",
 "action": "UPDATE"
 },
 {
 "situation": "ABSENT",
 "action": "CREATE"
 },
 {
 "situation": "AMBIGUOUS",
 "action": "EXCEPTION"
 },
 {
 "situation": "MISSING",
 "action": "EXCEPTION"
 },
 {
 "situation": "UNQUALIFIED",
 "action": "DELETE"
 },
 {
 "situation": "UNASSIGNED",
 "action": "EXCEPTION"
 }
]
}

If you do not define a policy for a particular situation, OpenIDM takes the default action for the
situation.

The following sections describe the possible situations and their default corresponding actions.

11.9.1. Synchronization Situations

OpenIDM performs a reconciliation operation in two phases:

1. Source reconciliation, where OpenIDM accounts for source objects and associated links, based on
the configured mapping.

Configuring Synchronization
Synchronization Situations

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 180

2. Target reconciliation, where OpenIDM iterates over the target objects that were not processed in
the first phase.

During the source reconciliation phase, OpenIDM builds three lists, assigning values to the objects to
reconcile.

1. All valid objects from the source

OpenIDM assigns valid source objects qualifies=1. Invalid objects, including those that were
not found in the source system, and those that were filtered out by the script specified in the
validSource property, are assigned qualifies=0.

2. All records from the appropriate links table

Objects that have a corresponding link in the links table of the repository are assigned link=1.
Objects that do not have a corresponding link are assigned link=0.

3. All valid objects on the target system

Objects that are found in the target system are assigned target=1. Objects that are not found in the
target system are assigned target=0.

Based on the values assigned to objects during source reconciliation, OpenIDM assigns situations,
listed here with default and appropriate alternative actions.

"CONFIRMED" (qualifies=1, link=1, target=1)

The source object qualifies for a target object, and a link to an existing target object was found.
This situation is detected during change events and during reconciliation.

Default action: UPDATE the target object.

Other valid actions: IGNORE, REPORT, NOREPORT, ASYNC

"FOUND" (qualifies=1, link=0, target=1)

The source object qualifies for a target object and there is no link to an existing target object.
There is a single target object, that correlates with this source object, according to the logic in
the correlation query. This situation is detected during change events and reconciliation.

Default action: UPDATE the target object.

Other valid actions: EXCEPTION, IGNORE, REPORT, NOREPORT, ASYNC

"FOUND_ALREADY_LINKED" (qualifies=1, link=1, target=1)

The source object qualifies for a target object and there is no link from that source object to an
existing target object. There is a single target object, that correlates with this source object,
according to the logic in the correlation query, but that target object is already linked to a
different source object. This situation is detected during change events and reconciliation.

Default action: log an EXCEPTION.

Configuring Synchronization
Synchronization Situations

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 181

Other valid actions: IGNORE, REPORT, NOREPORT, ASYNC

"ABSENT" (qualifies=1, link=0, target=0)

The source object qualifies for a target object, there is no link to an existing target object, and
there is no correlated target object found. This situation is detected during change events and
reconciliation.

Default action: CREATE a target object.

Other valid actions: EXCEPTION, IGNORE, REPORT, NOREPORT, ASYNC

"AMBIGUOUS" (qualifies=1, link=0, target>1)

The source object qualifies for a target object, there is no link to an existing target object, but
there is more than one correlated target object (that is, more than one possible match on the
target system). This situation is detected during source object changes and reconciliation.

Default action: log an EXCEPTION.

Other valid actions: IGNORE, REPORT, NOREPORT, ASYNC

"MISSING" (qualifies=1, link=1, target=0)

The source object qualifies for a target object, and there is a link to a target object, but the target
object is missing. This situation is detected during reconciliation operations and during source
object changes.

Default action: log an EXCEPTION.

Other valid actions: CREATE, UNLINK, IGNORE, REPORT, NOREPORT. ASYNC

"UNQUALIFIED" (qualifies=0, link=0 or 1, target=1 or >1)

The source object is unqualified (by the "validSource" script). One or more target objects
are found through the correlation logic. This situation is detected during change events and
reconciliation.

Default action: DELETE the target object or objects.

Other valid actions: EXCEPTION, IGNORE, REPORT, NOREPORT, ASYNC

"TARGET_IGNORED" (qualifies=0, link=0 or 1, target=1)

The source object is unqualified (by the "validSource" script). One or more target objects are
found through the correlation logic. This situation is detected only during source object changes.

It is different from "UNQUALIFIED", based on the status of the link and target. If there is a link,
the target is not valid. If there is no link and exactly one target, that target is not valid.

Default action: IGNORE the target object until the next full reconciliation operation.

Other valid actions: DELETE, UNLINK, EXCEPTION, REPORT, NOREPORT, ASYNC

Configuring Synchronization
Synchronization Situations

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 182

"SOURCE_IGNORED" (qualifies=0, link=0, target=0)

The source object is unqualified (by the "validSource" script), no link is found, and no correlated
target exists. This situation is detected during source object changes and reconciliation.

Default action: IGNORE the source object.

Other valid actions: EXCEPTION, REPORT, NOREPORT, ASYNC

"LINK_ONLY" (qualifies=n/a, link=1, target=0)

The source may or may not be qualified, a link is found, but no target object is found. This
situation is detected only during source object changes.

Default action: Log an EXCEPTION.

Other valid actions: UNLINK, IGNORE, REPORT, NOREPORT, ASYNC

"ALL_GONE" (qualifies=n/a, link=0, cannot-correlate)

The source object has been removed. No link is found. Correlation is not possible, for one of the
following reasons:

• No previous source value can be found

• There is no correlation query

• A previous value was found, and a correlation query exists, but no corresponding target was
found

This situation is detected only during source object changes.

Default action: "IGNORE" the source object.

Other valid actions: EXCEPTION, REPORT, NOREPORT, ASYNC

During the target reconciliation phase, OpenIDM assigns the following values as it iterates through
the target objects that were not accounted for during the source reconciliation.

1. Valid objects from the target

OpenIDM assigns valid target objects qualifies=1. Invalid objects, including those that are filtered
out by the script specified in the validTarget property, are assigned qualifies=0.

2. All records from the appropriate links table

Objects that have a corresponding link in the links table of the repository are assigned link=1.
Objects that do not have a corresponding link are assigned link=0.

3. All valid objects on the source system

Objects that are found in the source system are assigned source=1. Objects that are not found in
the source system are assigned source=0.

Configuring Synchronization
Synchronization Situations

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 183

Based on the values that are assigned to objects during the target reconciliation phase, OpenIDM
assigns situations, listed here with their default actions.

"TARGET_IGNORED" (qualifies=0)

During target reconciliation, the target becomes unqualified by the "validTarget" script. This
situation is detected only during reconciliation operations.

Default action: IGNORE the target object.

Other valid actions: DELETE, UNLINK, REPORT, NOREPORT, ASYNC

"UNASSIGNED" (qualifies=1, link=0)

A valid target object exists, for which there is no link. This situation is detected only during
reconciliation operations.

Default action: log an EXCEPTION.

Other valid actions: IGNORE, REPORT, NOREPORT, ASYNC

"CONFIRMED" (qualifies=1, link=1, source=1)

The target object qualifies, and a link to a source object exists. This situation is detected only
during reconciliation operations.

Default action: UPDATE the target object.

Other valid actions: IGNORE, REPORT, NOREPORT

"UNQUALIFIED" (qualifies=0, link=1, source=1, but source does not qualify)

The target object is unqualified, (by the "validTarget" script), but there is a link to an existing
source object, which is also unqualified. This situation is detected during change events and
reconciliation.

Default action: DELETE the target object.

Other valid actions: UNLINK, EXCEPTION, IGNORE, REPORT, NOREPORT, ASYNC

SOURCE_MISSING (qualifies=1, link=1, source=0)

The target object qualifies and a link is found. But the source object is missing. This situation is
detected during change events and reconciliation.

Default action: log an "EXCEPTION".

Other valid actions: DELETE, UNLINK, IGNORE, REPORT, NOREPORT, ASYNC

The following sections reiterate in detail how OpenIDM assigns situations during each of the two
synchronization phases.

Configuring Synchronization
Source Reconciliation

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 184

11.9.2. Source Reconciliation

OpenIDM starts reconciliation and LiveSync by reading a list of objects from the resource. For
reconciliation, the list includes all objects that are available through the connector. For LiveSync, the
list contains only changed objects. The connector can filter objects out of the list, too, by using the
script specified in the validSource property.

OpenIDM then iterates over the list, checking each entry against the validSource filter, and classifying
objects according to their situations as described in Section 11.9.1, "Synchronization Situations".
OpenIDM uses the list of links for the current mapping to classify objects. Finally, OpenIDM executes
the action that is configured for each situation.

The following table shows how OpenIDM assigns the appropriate situation during source
reconciliation, depending on whether a valid source exists (Source Qualifies), whether a link exists in
the repository (Link Exists), and how many target objects are found, based either on links or on the
results of the correlation query.

Table 11.1. Resolving Source Reconciliation Situations

Source Qualifies? Link Exists? Target Objects Founda

Yes No Yes No 0 1 > 1
Situation

 X X X SOURCE_MISSING
 X X X UNQUALIFIED
 X X X UNQUALIFIED
 X X X TARGET_IGNORED
 X X X UNQUALIFIED
X X X ABSENT
X X X FOUND
X Xb X FOUND_ALREADY_LINKED
X X X AMBIGUOUS
X X X MISSING
X X X CONFIRMED

aIf no link exists for the source object, then OpenIDM executes a correlation query. If no previous object is available, OpenIDM
cannot correlate.
bA link does exist from the target object but it not for this specific source object.

11.9.3. Target Reconciliation

During source reconciliation, OpenIDM cannot detect situations where no source object exists, such
as the UNASSIGNED situation. When no source object exists, OpenIDM detects the situation during
the second reconciliation phase, target reconciliation. During target reconciliation, OpenIDM iterates
over all target objects that do not have a representation on the source, checking each object against

Configuring Synchronization
Situations Specific to Automatic Synchronization and LiveSync

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 185

the validTarget filter, determining the appropriate situation, and executing the action configured for
the situation.

The following table shows how OpenIDM assigns the appropriate situation during target
reconciliation, depending on whether a valid target exists (Target Qualifies), whether a link with an
appropriate type exists in the repository (Link Exists), whether a source object exists (Source Exists),
and whether the source object qualifies (Source Qualifies). Not all situations assigned during source
reconciliation are assigned during target reconciliation.

Table 11.2. Resolving Target Reconciliation Situations

Target Qualifies? Link Exists? Source Exists? Source Qualifies?
Yes No Yes No Yes No Yes No

Situation

 X TARGET_IGNORED
X X X UNASSIGNED
X X X X CONFIRMED
X X X X UNQUALIFIED
X X X SOURCE_MISSING

11.9.4. Situations Specific to Automatic Synchronization and LiveSync

Certain situations occur only during automatic synchronization (when OpenIDM pushes changes
made in the repository out to external systems) and LiveSync (when OpenIDM polls external system
change logs for changes and updates the repository).

The following table shows the situations that pertain only to automatic sync and LiveSync, when
records are deleted from the source or target resource.

Table 11.3. Resolving Automatic Sync and LiveSync Delete Situations

Source Qualifies? Link Exists? Target Objects Found a

Yes No Yes No 0 1 > 1
Situation

N/A N/A X X LINK_ONLY
N/A N/A X X ALL_GONE
X X X AMBIGUOUS
 X X X UNQUALIFIED

a If no link exists for the source object, then OpenIDM executes a correlation query. If no previous object is available, OpenIDM
cannot correlate.

Configuring Synchronization
Synchronization Actions

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 186

11.9.5. Synchronization Actions
Once OpenIDM has assigned a situation to an object, OpenIDM takes the actions configured in
the mapping. If no action is configured, then OpenIDM takes the default action for the situation.
OpenIDM supports the following actions.

"CREATE"

Create and link a target object.

"UPDATE"

Link and update a target object.

"DELETE"

Delete and unlink the target object.

"LINK"

Link the correlated target object.

"UNLINK"

Unlink the linked target object.

"EXCEPTION"

Flag the link situation as an exception.

You should not use this action for LiveSync mappings.

"IGNORE"

Do not change the link or target object state.

"REPORT"

Do not perform any action but report on what would happen if the default action were performed.

"NOREPORT"

Do not perform any action or generate any report.

"ASYNC"

An asynchronous process has been started so do not perform any action or generate any report.

11.9.6. Providing a Script as an Action
In addition to the static synchronization actions described in the previous section, you can provide
a script that is run in specific synchronization situations. The following extract of a sample sync.json

Configuring Synchronization
Asynchronous Reconciliation

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 187

file specifies that when a synchronization operation assesses an entry as ABSENT, the workflow named
managedUserApproval is invoked. The parameters for the workflow are passed in as properties of the
action parameter.

{
 "situation" : "ABSENT",
 "action" : {
 "workflowName" : "managedUserApproval",
 "type" : "text/javascript",
 "file" : "workflow/triggerWorkflowFromSync.js"
 }
}

The variables available to these scripts are described in Variables Available in Scripts in the Scripting
Appendix.

11.10. Asynchronous Reconciliation
Reconciliation can work in tandem with workflows to provide additional business logic to the
reconciliation process. You can define scripts to determine the action that should be taken for
a particular reconciliation situation. A reconciliation process can launch a workflow after it has
assessed a situation, and then perform the reconciliation, or some other action.

For example, you might want a reconciliation process to assess new user accounts that need to
be created on a target resource. However, new user account creation might require some kind of
approval from a manager before the accounts are actually created. The initial reconciliation process
can assess the accounts that need to be created, launch a workflow to request management approval
for those accounts, and then relaunch the reconciliation process to create the accounts, once the
management approval has been received.

In this scenario, the defined script returns IGNORE for new accounts and the reconciliation engine does
not continue processing the given object. The script then initiates an asynchronous process which
calls back and completes the reconciliation process at a later stage.

A sample configuration for this scenario is available in openidm/samples/sample9, and described in
Sample 9 - Asynchronous Reconciliation Using Workflows in the Installation Guide in the Installation
Guide.

Configuring asynchronous reconciliation involves the following steps:

1. Create the workflow definition file (.xml or .bar file) and place it in the openidm/workflow directory.
For more information about creating workflows, see Integrating Business Processes and
Workflows.

2. Modify the conf/sync.json file for the situation or situations that should call the workflow.
Reference the workflow name in the configuration for that situation.

Configuring Synchronization
Configuring Case Sensitivity for Data Stores

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 188

For example, the following sync.json extract calls the managedUserApproval workflow if the situation is
assessed as ABSENT:

{
 "situation" : "ABSENT",
 "action" : {
 "workflowName" : "managedUserApproval",
 "type" : "text/javascript",
 "file" : "workflow/triggerWorkflowFromSync.js"
 }
},

3. In the sample configuration, the workflow calls a second, explicit reconciliation process as a final
step. This reconciliation process is called on the sync context path, with the performAction action
(openidm.action('sync', 'performAction', params)).

You can also use this kind of explicit reconciliation to perform a specific action on a source or
target record, regardless of the assessed situation.

You can call such an operation over the REST interface, specifying the source, and/or target
IDs, the mapping, and the action to be taken. The action can be any one of the supported
reconciliation actions, that is, CREATE, UPDATE, DELETE, LINK, UNLINK, EXCEPTION, REPORT, NOREPORT, ASYNC
, IGNORE. In addition, if you specify a reconId, the action that is taken is logged in the audit/recon
log, along with the the other audit data for that reconciliation run.

The following sample command calls the DELETE action on user bjensen, whose _id in the LDAP
directory is uid=bjensen,ou=People,dc=example,dc=com. The user is deleted in the target resource, in
this case, the OpenIDM repository.

Note that the _id must be URL-encoded in the REST call.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 "https://localhost:8443/openidm/sync?_action=performAction&sourceId=uid%3Dbjensen%2Cou%3DPeople%2Cdc
%3Dexample%2Cdc%3Dcom&mapping=
 systemLdapAccounts_ManagedUser&action=DELETE"
{}

11.11. Configuring Case Sensitivity for Data Stores
By default, OpenIDM is case-sensitive, which means that case is taken into account when comparing
IDs during reconciliation. For data stores that are case-insensitive, such as OpenDJ, IDs and links that
are created by a reconciliation process may be stored with a different case to the way in which they
are stored in the OpenIDM repository. Such a situation can cause problems during a reconciliation
operation, as the links for these IDs may not match.

Configuring Synchronization
Reconciliation Optimization

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 189

For such data stores, you can configure OpenIDM to ignore case during reconciliation operations.
With case sensitivity turned off in OpenIDM, for those specific mappings, comparisons are done
without regard to case.

To specify that data stores are not case-sensitive, set the "sourceIdsCaseSensitive" or
"targetIdsCaseSensitive" property to false in the mapping for those links. For example, if the LDAP data
store is case-insensitive, set the mapping from the LDAP store to the managed user repository as
follows:

"mappings" : [
{
"name" : "systemLdapAccounts_managedUser",
"source" : "system/ldap/account",
"sourceIdsCaseSensitive" : false,
"target" : "managed/user",
"properties" : [
...

If a mapping inherits links by using the "links" property, it is not necessary to set case sensitivity,
because the mapping uses the setting of the referred links.

Note that configuring OpenIDM to be case-insensitive when comparing links does not make the
OpenICF provisioner case-insensitive when it requests data. For example, if a user entry is stored
with the ID testuser and you make a request for https://localhost:8443/openidm/managed/TESTuser, most
provisioners will filter out the match because of the difference in case, and will indicate that the
record is not found. To prevent the provisioner from performing this secondary filtering, set the
enableFilteredResultsHandler property to false in the provisioner configuration. For example:
"resultsHandlerConfig" :
{
 "enableFilteredResultsHandler":false,
},

Caution

Do not disable the filtered results handler for the CSV file connector. The CSV file connector does not perform
filtering so if you disable the filtered results handler for this connector, the full CSV file will be returned for
every request.

11.12. Reconciliation Optimization
By default, reconciliation is configured to function in an optimized way. Some of these optimizations
might, however, be unsuitable for your environment. The following sections describe the
optimizations and how they can be configured.

Configuring Synchronization
Correlating Empty Target Sets

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 190

11.12.1. Correlating Empty Target Sets

To optimize a reconciliation operation, the reconciliation process does not attempt to correlate
source objects to target objects if the set of target objects is empty when the correlation is started.
This considerably speeds up the process the first time the reconciliation is run. You can change
this behavior for a specific mapping by adding the correlateEmptyTargetSet property to the mapping
definition and setting it to true. For example:

{
 "mappings": [
 {
 "name" : "systemMyLDAPAccounts_managedUser",
 "source" : "system/MyLDAP/account",
 "target" : "managed/user",
 "correlateEmptyTargetSet" : true
 },
]
}

Be aware that this setting will have a performance impact on the reconciliation process.

11.12.2. Prefetching Links

All links are queried at the start of a correlation and the results of that query are used. You can
disable the prefetching of links, so that the correlation process looks up each link in the database
as it processes each source or target object. You can disable the prefetching of links by adding the
prefetchLinks property to the mapping, and setting it to false, for example:

{
 "mappings": [
 {
 "name": "systemMyLDAPAccounts_managedUser",
 "source": "system/MyLDAP/account",
 "target": "managed/user"
 "prefetchLinks" : false
 }
]
}

Be aware that this setting will have a performance impact on the reconciliation process.

11.12.3. Parallel Reconciliation Threads

By default, reconciliation is executed in a multi-threaded manner, that is, numerous threads are
dedicated to the same reconciliation run. Multithreading generally improves reconciliation run
performance. The default number of threads for a single reconciliation run is ten (plus the main
reconciliation thread). Under normal circumstances, you should not need to change this number,
however the default might not be appropriate in the following situations:

Configuring Synchronization
Correlation Queries

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 191

• The hardware has many cores and supports more concurrent threads. As a rule of thumb for
performance tuning, start with setting the thread number to two times the number of cores.

• The source or target is an external system with high latency or slow response times. Threads may
then spend considerable time waiting for a response from the external system. Increasing the
available threads enables the system to prepare or continue with additional objects.

To change the number of threads, set the taskThreads property in the conf/sync.json file, for example:

 "mappings" : [
 {
 "name" : "systemXmlfileAccounts_managedUser",
 "source" : "system/xmlfile/account",
 "target" : "managed/user",
 "taskThreads" : 20
 ...
 }
]
}

A value of 0 specifies that reconciliation is run on the main reconciliation thread, that is, in a serial
manner.

11.13. Correlation Queries
Every time OpenIDM creates an object through synchronization, it creates a link between the source
and target objects. OpenIDM then uses the link to determine the object's situation during later
synchronization operations.

Initial, bulk synchronization operations can involve correlating many objects that exist both on source
and target systems. In this case, OpenIDM uses correlation queries to find target objects that already
exist, and that correspond to source objects. For the target objects that match a correlation query,
OpenIDM needs only to create a link, rather than a new target object.

Correlation queries run against target resources. The query syntax therefore depends on the target
system, and is either specific to the data store underlying the OpenIDM repository, or to OpenICF
query capabilities.

11.13.1. Managed Objects as Correlation Query Targets
Queries on managed objects in the repository must be defined in the configuration file for the
repository, which is either openidm/conf/repo.orientdb.json, or openidm/conf/repo.jdbc.json.

The following example shows a correlation query defined in openidm/conf/repo.orientdb.json.

"for-userName" : "SELECT * FROM ${unquoted:_resource} WHERE userName = ${uid}"

By default, a ${value} token replacement is assumed to be a quoted string. If the value is not a quoted
string, use the unquoted: prefix, as shown above.

Configuring Synchronization
System Objects as Correlation Query Targets

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 192

The following correlation query example shows the JavaScript to call the query defined for OrientDB.
The _queryId property value matches the name of the query specified in openidm/conf/repo.orientdb.json,
for-userName. The source.name value replaces ${uid} in the query. OpenIDM replaces ${unquoted:_resource}
in the query with the name of the table that holds managed objects.

{
 "correlationQuery": {
 "type": "text/javascript",
 "source":
 "var query = {'_queryId' : 'for-userName', 'uid' : source.name}; query;"
 }
}

The query can return zero or more objects, so the situation OpenIDM assigns to the source object
depends on the number of target objects returned.

With a JDBC-based repository, the query defined in openidm/conf/repo.jdbc.json is more complex due
to how the tables are indexed. The correlation query you define in openidm/conf/sync.json is the same,
however.

11.13.2. System Objects as Correlation Query Targets
Correlation queries on system objects access the connector. The connector then executes the query
on the external resource.

Your correlation query JavaScript must return a map that holds a generic query with the following
elements:

• A condition, such as "Equals"

• The naming attribute to compare on the system object. In the example that follows, the naming
attribute is uid.

• The value from the source object to use in the search filter. You set this as the value of the value
property, which takes an array. In the example that follows, the value to use in the search filter is
source.userName.

var map = {"_queryFilter": 'uid eq "' + source.userName + '"'};
map;

11.14. Advanced Data Flow Configuration
Section 11.3, "Basic Data Flow Configuration" shows how to trigger scripts when objects are created
and updated. Other situations require you to trigger scripts in response to other synchronization
actions. For example, you might not want OpenIDM to delete a managed user directly when an
external account is deleted, but instead unlink the objects and deactivate the user in another

Configuring Synchronization
Advanced Data Flow Configuration

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 193

resource. (Alternatively, you might delete the object in OpenIDM but nevertheless execute a script.)
The following example shows a more advanced mapping configuration.
 1 {
 2 "mappings": [
 3 {
 4 "name": "systemLdapAccount_managedUser",
 5 "source": "system/ldap/account",
 6 "target": "managed/user",
 7 "validSource": {
 8 "type": "text/javascript",
 9 "file": "script/isValid.js"
 10 },
 11 "correlationQuery" : {
 12 "type" : "text/javascript",
 13 "source" : "var map = {'_queryFilter': 'uid eq \"' +
 14 source.userName + '\"'}; map;"
 15 },
 16 "properties": [
 17 {
 18 "source": "uid",
 19 "transform": {
 20 "type": "text/javascript",
 21 "source": "source.toLowerCase()"
 22 },
 23 "target": "userName"
 24 },
 25 {
 26 "source": "",
 27 "transform": {
 28 "type": "text/javascript",
 29 "source": "if (source.myGivenName)
 30 {source.myGivenName;} else {source.givenName;}"
 31 },
 32 "target": "givenName"
 33 },
 34 {
 35 "source": "",
 36 "transform": {
 37 "type": "text/javascript",
 38 "source": "if (source.mySn)
 39 {source.mySn;} else {source.sn;}"
 40 },
 41 "target": "familyName"
 42 },
 43 {
 44 "source": "cn",
 45 "target": "fullname"
 46 },
 47 {
 48 "comment": "Multi-valued in LDAP, single-valued in AD.
 49 Retrieve first non-empty value.",
 50 "source": "title",
 51 "transform": {
 52 "type": "text/javascript",
 53 "file": "script/getFirstNonEmpty.js"
 54 },
 55 "target": "title"
 56 },

Configuring Synchronization
Advanced Data Flow Configuration

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 194

 57 {
 58 "condition": {
 59 "type": "text/javascript",
 60 "source": "var clearObj = openidm.decrypt(object);
 61 ((clearObj.password != null) &&
 62 (clearObj.ldapPassword != clearObj.password))"
 63 },
 64 "transform": {
 65 "type": "text/javascript",
 66 "source": "source.password"
 67 },
 68 "target": "__PASSWORD__"
 69 }
 70],
 71 "onCreate": {
 72 "type": "text/javascript",
 73 "source": "target.ldapPassword = null;
 74 target.adPassword = null;
 75 target.password = null;
 76 target.ldapStatus = 'New Account'"
 77 },
 78 "onUpdate": {
 79 "type": "text/javascript",
 80 "source": "target.ldapStatus = 'OLD'"
 81 },
 82 "onUnlink": {
 83 "type": "text/javascript",
 84 "file": "script/triggerAdDisable.js"
 85 },
 86 "policies": [
 87 {
 88 "situation": "CONFIRMED",
 89 "action": "UPDATE"
 90 },
 91 {
 92 "situation": "FOUND",
 93 "action": "UPDATE"
 94 },
 95 {
 96 "situation": "ABSENT",
 97 "action": "CREATE"
 98 },
 99 {
100 "situation": "AMBIGUOUS",
101 "action": "EXCEPTION"
102 },
103 {
104 "situation": "MISSING",
105 "action": "EXCEPTION"
106 },
107 {
108 "situation": "UNQUALIFIED",
109 "action": "UNLINK"
110 },
111 {
112 "situation": "UNASSIGNED",
113 "action": "EXCEPTION"
114 }
115]

Configuring Synchronization
Scheduling Synchronization

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 195

116 }
117]
118 }

The following list shows all the properties that you can use as hooks in mapping configurations to call
scripts.

Triggered by Situation

onCreate, onRead, onUpdate, onDelete, onValidate, onRetrieve, onStore, onLink, onUnlink,
postCreate, postUpdate, postDelete

Object Filter

vaildSource, validTarget

Correlating Objects

correlationQuery

Triggered on Reconciliation

result

Scripts Inside Properties

condition, transform

Your scripts can get data from any connected system at any time by using the openidm.read(id)
function, where id is the identifier of the object to read.

The following example reads a managed user object from the repository.

repoUser = openidm.read("managed/user/ddoe");

The following example reads an account from an external LDAP resource.

externalAccount = openidm.read("system/ldap/account/uid=ddoe,ou=People,dc=example,dc=com");

Note that the query targets a DN rather than a UID, as it did in the previous example. The attribute
that is used for the _id is defined in the connector configuration file and, in this example, is set to
"uidAttribute" : "dn". Although it is possible to use a DN (or any unique attribute) for the _id, as a best
practice, you should use an attribute that is both unique and immutable.

11.15. Scheduling Synchronization

Configuring Synchronization
Configuring Scheduled Synchronization

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 196

You can schedule synchronization operations, such as LiveSync and reconciliation, using cron-like
syntax.

This section describes scheduling for reconciliation and LiveSync, however, you can also use
OpenIDM's scheduler service to schedule any other event by supplying a link to a script file, in which
that event is defined. For information about scheduling other events, and for a deeper understanding
of the OpenIDM scheduler service, see Scheduling Tasks and Events.

11.15.1. Configuring Scheduled Synchronization

Each scheduled reconciliation and LiveSync task requires a schedule configuration file in
openidm/conf. By convention, files are named openidm/conf/schedule-schedule-name .json, where
schedule-name is a logical name for the scheduled synchronization operation, such as
reconcile_systemXmlAccounts_managedUser.

Schedule configuration files have the following format:

{
 "enabled" : true,
 "persisted" : false,
 "type" : "cron",
 "startTime" : "(optional) time",
 "endTime" : "(optional) time",
 "schedule" : "cron expression",
 "misfirePolicy" : "optional, string",
 "timeZone" : "(optional) time zone",
 "invokeService" : "service identifier",
 "invokeContext" : "service specific context info"
}

For an explanation of each of these properties, see Scheduling Tasks and Events.

To schedule a reconciliation or LiveSync task, set the invokeService property to either "sync" (for
reconciliation) or "provisioner" for LiveSync.

The value of the invokeContext property depends on the type of scheduled event. For reconciliation, the
properties are set as follows:

{
 "invokeService": "sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": "systemLdapAccount_managedUser"
 }
}

The "mapping" is either referenced by its name in the openidm/conf/sync.json file, or defined inline by
using the "mapping" property, as shown in the example in Alternative Mappings.

Configuring Synchronization
Alternative Mappings

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 197

For LiveSync, the properties are set as follows:

{
 "invokeService": "provisioner",
 "invokeContext": {
 "action": "liveSync",
 "source": "system/OpenDJ/__ACCOUNT__"
 }
}

The "source" property follows OpenIDM's convention for a pointer to an external resource object and
takes the form system/resource-name/object-type.

11.15.2. Alternative Mappings

Mappings for synchronization are usually stored in openidm/conf/sync.json for reconciliation, LiveSync,
and for pushing changes made to managed objects to external resources. You can, however,
provide alternative mappings for scheduled reconciliation by adding the mapping to the schedule
configuration instead of referencing a mapping in sync.json.

{
 "enabled": true,
 "type": "cron",
 "schedule": "0 08 16 * * ?",
 "invokeService": "sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": {
 "name": "CSV_XML",
 "source": "system/Ldap/account",
 "target": "managed/user",
 "properties": [
 {
 "source": "firstname",
 "target": "firstname"
 },
 ...
],
 "policies": [...]
 }
 }
}

Scheduling Tasks and Events
Scheduler Configuration

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 198

Chapter 12

Scheduling Tasks and Events

OpenIDM enables you to schedule reconciliation and synchronization tasks. You can also use
scheduling to trigger scripts, collect and run reports, trigger workflows, perform custom logging, and
so forth.

OpenIDM supports cron-like syntax to schedule events and tasks, based on expressions supported by
the Quartz Scheduler (bundled with OpenIDM).

If you use configuration files to schedule tasks and events, you must place the schedule files in
the openidm/conf directory. By convention, OpenIDM uses file names of the form schedule-schedule-
name.json, where schedule-name is a logical name for the scheduled operation, for example, schedule-
reconcile_systemXmlAccounts_managedUser.json. There are several example schedule configuration files in
the openidm/samples/schedules directory.

You can configure OpenIDM to pick up changes to scheduled tasks and events dynamically, during
initialization and also at runtime. For more information, see Changing the Configuration.

In addition to the fine-grained scheduling facility, you can perform a scheduled batch scan for a
specified date in OpenIDM data, and then automatically execute a task when this date is reached. For
more information, see Section 12.5, "Scanning Data to Trigger Tasks".

12.1. Scheduler Configuration
Schedules are configured through JSON objects. The schedule configuration involves three files:

• The openidm/conf/boot/boot.properties file, where you can enable the execution of persistent schedules

• The openidm/conf/scheduler.json file, that configures the overall scheduler service

• One openidm/conf/schedule-schedule-name.json file for each configured schedule

In the boot properties configuration file (openidm/conf/boot/boot.properties), the instance type is
standalone and persistent schedules are enabled by default:

valid instance types for node include standalone, clustered-first, and clustered-additional
openidm.instance.type=standalone

enables the execution of persistent schedulers
openidm.scheduler.execute.persistent.schedules=true

Scheduling Tasks and Events
Scheduler Configuration

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 199

The scheduler service configuration file (openidm/conf/scheduler.json) governs the configuration for a
specific scheduler instance, and has the following format:

{
 "threadPool" : {
 "threadCount" : "10"
 },
 "scheduler" : {
 "executePersistentSchedules" : "&{openidm.scheduler.execute.persistent.schedules}"
 }
}

The properties in the scheduler.json file relate to the configuration of the Quartz Scheduler.

• threadCount specifies the maximum number of threads that are available for the concurrent
execution of scheduled tasks.

• executePersistentSchedules allows you to disable persistent schedule execution for a specific node.
If this parameter is set to false, the Scheduler Service will support the management of persistent
schedules (CRUD operations) but it will not execute any persistent schedules. The value of this
property can be a string or boolean and is true by default.

• advancedProperties (optional) enables you to configure additional properties for the Quartz Scheduler.

Note

In clustered environments, the scheduler service obtains an instanceID and checkin and timeout settings from
the cluster management service (defined in the openidm/conf/cluster.json file). This behavior differs from
OpenIDM 2.1.0 (in which the scheduler service specified the instance ID and checkin and timeout settings).
Therefore, if you used the scheduler service in OpenIDM 2.1.0, you will need to migrate any reference to
assigned instance IDs, allowing them to be provided by the cluster management service.

For details of all the configurable properties for the Quartz Scheduler, see the Quartz Scheduler
Configuration Reference.

Each schedule configuration file, openidm/conf/schedule- schedule-name.json has the following format:

{
 "enabled" : true,
 "persisted" : false,
 "concurrentExecution" : false,
 "type" : "cron",
 "startTime" : "(optional) time",
 "endTime" : "(optional) time",
 "schedule" : "cron expression",
 "misfirePolicy" : "optional, string",
 "timeZone" : "(optional) time zone",
 "invokeService" : "service identifier",
 "invokeContext" : "service specific context info",
 "invokeLogLevel" : "(optional) debug"
}

http://www.quartz-scheduler.org/documentation/quartz-2.1.x/configuration/ConfigMain
http://www.quartz-scheduler.org/documentation/quartz-2.1.x/configuration/ConfigMain

Scheduling Tasks and Events
Scheduler Configuration

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 200

The schedule configuration properties are defined as follows:

enabled

Set to true to enable the schedule. When this property is set to false, OpenIDM considers the
schedule configuration dormant, and does not allow it to be triggered or executed.

If you want to retain a schedule configuration, but do not want it used, set enabled to false for task
and event schedulers, instead of changing the configuration or cron expressions.

persisted (optional)

Specifies whether the schedule state should be persisted or stored in RAM. Boolean (true or
false), false by default.

In a clustered environment, this property must be set to true to have the schedule fire only once
across the cluster. For more information, see Section 12.2, "Configuring Persistent Schedules".

concurrentExecution

Specifies whether multiple instances of the same schedule can run concurrently. Boolean (true
or false), false by default. Multiple instances of the same schedule cannot run concurrently
by default. This setting prevents a new scheduled task from being launched before the same
previously launched task has completed. For example, under normal circumstances you would
want a liveSync operation to complete its execution before the same operation was launched
again. To enable concurrent execution of multiple schedules, set this parameter to true. The
behavior of "missed" scheduled tasks is governed by the misfirePolicy.

type

Currently OpenIDM supports only cron.

startTime (optional)

Used to start the schedule at some time in the future. If this parameter is omitted, empty, or set
to a time in the past, the task or event is scheduled to start immediately.

Use ISO 8601 format to specify times and dates (YYYY-MM-DD Thh:mm :ss).

endTime (optional)

Used to plan the end of scheduling.

schedule

Takes cron expression syntax. For more information, see the CronTrigger Tutorial and Lesson 6:
CronTrigger.

misfirePolicy

For persistent schedules, this optional parameter specifies the behavior if the scheduled task is
missed, for some reason. Possible values are as follows:

http://www.quartz-scheduler.org/docs/tutorials/crontrigger.html
http://www.quartz-scheduler.org/docs/tutorial/TutorialLesson06.html
http://www.quartz-scheduler.org/docs/tutorial/TutorialLesson06.html

Scheduling Tasks and Events
Scheduler Configuration

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 201

• fireAndProceed. The first execution of a missed schedule is immediately executed when the
server is back online. Subsequent executions are discarded. After this, the normal schedule is
resumed.

• doNothing, all missed schedules are discarded and the normal schedule is resumed when the
server is back online.

timeZone (optional)

If not set, OpenIDM uses the system time zone.

invokeService

Defines the type of scheduled event or action. The value of this parameter can be one of the
following:

• "sync" for reconciliation

• "provisioner" for LiveSync

• "script" to call some other scheduled operation defined in a script

invokeContext

Specifies contextual information, depending on the type of scheduled event (the value of the
invokeService parameter).

The following example invokes reconciliation.

{
 "invokeService": "sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": "systemLdapAccount_managedUser"
 }
}

For a scheduled reconciliation task, you can define the mapping in one of two ways:

• Reference a mapping by its name in sync.json, as shown in the previous example. The mapping
must exist in the openidm/conf/sync.json file.

• Add the mapping definition inline by using the "mapping" property, as shown in the example in
Alternative Mappings.

The following example invokes a LiveSync action.

{
 "invokeService": "provisioner",
 "invokeContext": {
 "action": "liveSync",
 "source": "system/OpenDJ/__ACCOUNT__"
 }
}

Scheduling Tasks and Events
Configuring Persistent Schedules

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 202

For scheduled LiveSync tasks, the "source" property follows OpenIDM's convention for a pointer
to an external resource object and takes the form system/resource-name /object-type.

The following example invokes a script, which prints the string Hello World to the OpenIDM log (/
openidm/logs/openidm0.log.X).

{
 "invokeService": "script",
 "invokeContext": {
 "script": {
 "type": "text/javascript",
 "source": "java.lang.System.out.println('Hello World');"
 }
 }
}

Note that these are sample configurations only. Your own schedule configuration will differ
according to your specific requirements.

invokeLogLevel (optional)

Specifies the level at which the invocation will be logged. Particularly for schedules that run very
frequently, such as LiveSync, the scheduled task can generate significant output to the log file,
and the log level should be adjusted accordingly. The default schedule log level is info. The value
can be set to any one of the SLF4J log levels:

• "trace"

• "debug"

• "info"

• "warn"

• "error"

• "fatal"

12.2. Configuring Persistent Schedules
By default, scheduling information, such as schedule state and details of the schedule execution, is
stored in RAM. This means that such information is lost when OpenIDM is rebooted. The schedule
configuration itself (defined in the openidm/conf/schedule- schedule-name.json file) is not lost when
OpenIDM is shut down, and normal scheduling continues when the server is restarted. However,
there are no details of missed schedule executions that should have occurred during the period the
server was unavailable.

You can configure schedules to be persistent, which means that the scheduling information is stored
in the internal repository rather than in RAM. With persistent schedules, scheduling information

http://www.slf4j.org/apidocs/org/apache/commons/logging/Log.html

Scheduling Tasks and Events
Schedule Examples

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 203

is retained when OpenIDM is shut down. Any previously scheduled jobs can be rescheduled
automatically when OpenIDM is restarted.

Persistent schedules also enable you to manage scheduling across a cluster (multiple OpenIDM
instances). When scheduling is persistent, a particular schedule will be executed only once across
the cluster, rather than once on every OpenIDM instance. For example, if your deployment
includes a cluster of OpenIDM nodes for high availability, you can use persistent scheduling to
start a reconciliation action on only one node in the cluster, instead of starting several competing
reconciliation actions on each node.

You can use persistent schedules with the default OrientDB repository, or with the MySQL repository
(see Installing a Repository For Production in the Installation Guide).

To configure persistent schedules, set the "persisted" property to true in the schedule configuration
file (schedule-schedule-name.json).

If OpenIDM is down when a scheduled task was set to occur, one or more executions of that schedule
might be missed. To specify what action should be taken if schedules are missed, set the misfirePolicy
in the schedule configuration file. The misfirePolicy determines what OpenIDM should do if scheduled
tasks are missed. Possible values are as follows:

• fireAndProceed. The first execution of a missed schedule is immediately executed when the server is
back online. Subsequent executions are discarded. After this, the normal schedule is resumed.

• doNothing. All missed schedules are discarded and the normal schedule is resumed when the server
is back online.

12.3. Schedule Examples
The following example shows a schedule for reconciliation that is not enabled. When enabled
("enabled" : true,), reconciliation runs every 30 minutes, starting on the hour.

{
 "enabled": false,
 "persisted": false,
 "type": "cron",
 "schedule": "0 0/30 * * * ?",
 "invokeService": "sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": "systemLdapAccounts_managedUser"
 }
}

The following example shows a schedule for LiveSync enabled to run every 15 seconds, starting
at the beginning of the minute. The schedule is persisted, that is, stored in the internal repository
rather than in memory. If one or more LiveSync executions are missed, as a result of OpenIDM being
unavailable, the first execution of the LiveSync action is executed when the server is back online.
Subsequent executions are discarded. After this, the normal schedule is resumed.

Scheduling Tasks and Events
Managing Schedules Over REST

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 204

{
 "enabled": false,
 "persisted": true,
 "misfirePolicy" : "fireAndProceed",
 "type": "cron",
 "schedule": "0/15 * * * * ?",
 "invokeService": "provisioner",
 "invokeContext": {
 "action": "liveSync",
 "source": "system/ldap/account"
 }
}

12.4. Managing Schedules Over REST
OpenIDM exposes the scheduler service under the /openidm/scheduler context path. The following
examples show how schedules can be created, read, updated, and deleted, over REST, like any other
object.

12.4.1. Creating a Schedule

You can create a schedule with a PUT request, which allows you to specify the ID of the schedule, or
with a POST request, in which case the server assigns an ID automatically.

The following example uses a PUT request to create a schedule that fires a script (script/testlog.js)
every second. The schedule configuration is as described in Section 12.1, "Scheduler Configuration".
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request PUT \
 --data '{
 "enabled":true,
 "type":"cron",
 "schedule":"0/1 * * * * ?",
 "persisted":true,
 "misfirePolicy":"fireAndProceed",
 "invokeService":"script",
 "invokeContext": {
 "script": {
 "type":"text/javascript",
 "file":"script/testlog.js"
 }
 }
 }' \
 "https://localhost:8443/openidm/scheduler/testlog-schedule"
{
 "type": "cron",
 "invokeService": "script",
 "persisted": true,

Scheduling Tasks and Events
Creating a Schedule

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 205

 "_id": "testlog-schedule",
 "schedule": "0/1 * * * * ?",
 "misfirePolicy": "fireAndProceed",
 "enabled": true,
 "invokeContext": {
 "script": {
 "file": "script/testlog.js",
 "type": "text/javascript"
 }
 }
}

The following example uses a POST request to create an identical schedule to the one created in the
previous example, but with a server-assigned ID.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{
 "enabled":true,
 "type":"cron",
 "schedule":"0/1 * * * * ?",
 "persisted":true,
 "misfirePolicy":"fireAndProceed",
 "invokeService":"script",
 "invokeContext": {
 "script": {
 "type":"text/javascript",
 "file":"script/testlog.js"
 }
 }
 }' \
 "https://localhost:8443/openidm/scheduler?_action=create"
{
 "type": "cron",
 "invokeService": "script",
 "persisted": true,
 "_id": "d6d1b256-7e46-486e-af88-169b4b1ad57a",
 "schedule": "0/1 * * * * ?",
 "misfirePolicy": "fireAndProceed",
 "enabled": true,
 "invokeContext": {
 "script": {
 "file": "script/testlog.js",
 "type": "text/javascript"
 }
 }
}

The output includes the _id of the schedule, in this case "_id": "d6d1b256-7e46-486e-af88-169b4b1ad57a".

Scheduling Tasks and Events
Obtaining the Details of a Schedule

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 206

12.4.2. Obtaining the Details of a Schedule

The following example displays the details of the schedule created in the previous section. Specify the
schedule ID in the URL.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/scheduler/d6d1b256-7e46-486e-af88-169b4b1ad57a"
{
 "_id": "d6d1b256-7e46-486e-af88-169b4b1ad57a",
 "schedule": "0/1 * * * * ?",
 "misfirePolicy": "fireAndProceed",
 "startTime": null,
 "invokeContext": {
 "script": {
 "file": "script/testlog.js",
 "type": "text/javascript"
 }
 },
 "enabled": true,
 "concurrentExecution": false,
 "persisted": true,
 "timeZone": null,
 "type": "cron",
 "invokeService": "org.forgerock.openidm.script",
 "endTime": null,
 "invokeLogLevel": "info"
}

12.4.3. Updating a Schedule

To update a schedule definition, use a PUT request and update all properties of the object. Note that
PATCH requests are currently supported only for managed objects. The following example disables
the schedule created in the previous section.

Scheduling Tasks and Events
Listing Configured Schedules

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 207

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request PUT \
 --data '{
 "enabled":false,
 "type":"cron",
 "schedule":"0/1 * * * * ?",
 "persisted":true,
 "misfirePolicy":"fireAndProceed",
 "invokeService":"script",
 "invokeContext": {
 "script": {
 "type":"text/javascript",
 "file":"script/testlog.js"
 }
 }
 }' \
 "https://localhost:8443/openidm/scheduler/d6d1b256-7e46-486e-af88-169b4b1ad57a"
 null

12.4.4. Listing Configured Schedules

To display a list of all configured schedules, query the openidm/scheduler context path as shown in the
following example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/scheduler?_queryId=query-all-ids"
{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 2,
 "result": [
 {
 "_id": "d6d1b256-7e46-486e-af88-169b4b1ad57a"
 },
 {
 "_id": "recon"
 }
]
}

12.4.5. Deleting a Schedule

To deleted a configured schedule, call a DELETE request on the schedule ID. For example:

Scheduling Tasks and Events
Scanning Data to Trigger Tasks

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 208

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request DELETE \
 "https://localhost:8443/openidm/scheduler/d6d1b256-7e46-486e-af88-169b4b1ad57a"
null

12.5. Scanning Data to Trigger Tasks
In addition to the fine-grained scheduling facility described previously, OpenIDM provides a task
scanning mechanism. The task scanner enables you to perform a batch scan on a specified property
in OpenIDM, at a scheduled interval, and then to execute a task when the value of that property
matches a specified value.

When the task scanner identifies a condition that should trigger the task, it can invoke a script
created specifically to handle the task.

For example, the task scanner can scan all managed/user objects for a "sunset date" and can invoke a
script that executes a "sunset task" on the user object when this date is reached.

12.5.1. Configuring the Task Scanner

The task scanner is essentially a scheduled task that queries a set of managed users. The task
scanner is configured in the same way as a regular scheduled task, in a schedule configuration
file named (schedule-task-name.json), with the "invokeService" parameter set to "taskscanner. The
"invokeContext" parameter defines the details of the scan, and the task that should be executed when
the specified condition is triggered.

The following example defines a scheduled scanning task that triggers a sunset script. This sample
configuration file is provided in the OpenIDM delivery as openidm/samples/taskscanner/conf/schedule-
taskscan_sunset.json. To use this sample file, copy it to the openidm/conf directory. The sample file calls
a script (script/sunset.js) which must be copied from openidm/samples/taskscanner/script/sunset.js to the
openidm/script directory.

{
 "enabled" : true,
 "type" : "cron",
 "schedule" : "0 0 * * * ?",
 "concurrentExecution" : false,
 "invokeService" : "taskscanner",
 "invokeContext" : {
 "waitForCompletion" : false,
 "maxRecords" : 2000,
 "numberOfThreads" : 5,
 "scan" : {
 "_queryId" : "scan-tasks",
 "property" : "sunset/date",
 "condition" : {

Scheduling Tasks and Events
Configuring the Task Scanner

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 209

 "before" : "${Time.now}"
 },
 "taskState" : {
 "started" : "sunset/task-started",
 "completed" : "sunset/task-completed"
 },
 "recovery" : {
 "timeout" : "10m"
 }
 },
 "task" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "script/sunset.js"
 }
 }
 }
}

The "invokeContext" parameter takes the following properties:

"waitForCompletion" (optional)

This property specifies whether the task should be performed synchronously. Tasks are
performed asynchronously by default (with waitForCompletion set to false). A task ID (such as
{"_id":"354ec41f-c781-4b61-85ac-93c28c180e46"}) is returned immediately. If this property is set to
true, tasks are performed synchronously and the ID is not returned until all tasks have completed.

"maxRecords" (optional)

The maximum number of records that can be processed. This property is not set by default so the
number of records is unlimited. If a maximum number of records is specified, that number will be
spread evenly over the number of threads.

"numberOfThreads" (optional)

By default, the task scanner runs in a multi-threaded manner, that is, numerous threads are
dedicated to the same scanning task run. Multithreading generally improves the performance of
the task scanner. The default number of threads for a single scanning task is ten. To change this
default, set the "numberOfThreads" property.

"scan"

Defines the details of the scan. The following properties are defined:

"object"

Defines the object type against which the query should be performed.

"_queryId"

Specifies the query that is performed. The queries that can be set here are defined in the
database configuration file (either conf/repo.orientdb.json or conf/repo.jdbc.json).

Scheduling Tasks and Events
Configuring the Task Scanner

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 210

"property"

Defines the property against which the query is performed.

If you are using a JDBC repository, with a generic mapping, you must explicitly set this
property as searchable so that it can be queried by the task scanner. For more information,
see Using Generic Mappings in the Installation Guide in the Installation Guide.

"condition" (optional)

Indicates the conditions that must be matched for the defined property.

In the previous example, the scanner scans for users for whom the property sunset/date is set
to a value prior to the current timestamp at the time the script is executed.

You can use these fields to define any condition. For example, if you wanted to limit the
scanned objects to a specified location, say, London, you could formulate a query to compare
against object locations and then set the condition to be:

 "condition" : {
 "location" : "London"
 },

For time-based conditions, the "condition" property supports macro syntax, based on the Time
.now object (which fetches the current time). You can specify any date/time in relation to the
current time, using the + or - operator, and a duration modifier. For example: "before": "${Time
.now + 1d}" would return all user objects whose sunset/date is before tomorrow (current time
plus one day). You must include space characters around the operator (+ or -). The duration
modifier supports the following unit specifiers:

s - second
m - minute
h - hour
d - day
M - month
y - year

"taskState"

Indicates the fields that are used to track the status of the task.

"started" specifies the field that stores the timestamp for when the task begins.
"completed" specifies the field that stores the timestamp for when the task completes its
operation. The "completed" field is present as soon as the task has started, but its value is null
until the task has completed.

"recovery" (optional)

Specifies a configurable timeout, after which the task scanner process ends. In a scenario
with clustered OpenIDM instances, there might be more than one task scanner running
at a time. A task cannot be executed by two task scanners at the same time. When one

Scheduling Tasks and Events
Managing Scanning Tasks Over REST

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 211

task scanner "claims" a task, it indicates that the task has been started. That task is then
unavailable to be claimed by another task scanner and remains unavailable until the end of
the task is indicated. In the event that the first task scanner does not complete the task by the
specified timeout, for whatever reason, a second task scanner can pick up the task.

"task"

Provides details of the task that is performed. Usually, the task is invoked by a script, whose
details are defined in the "script" property:

"type" - the type of script. Currently, only JavaScript is supported.
"file" - the path to the script file. The script file takes at least two objects (in addition to
the default objects that are provided to all OpenIDM scripts): "input" which is the individual
object that is retrieved from the query (in the example, this is the individual user object)
and "objectID" which is a string that contains the full identifier of the object. The objectID is
useful for performing updates with the script as it allows you to target the object directly, for
example: openidm.update(objectID, input['_rev'], input);. A sample script file is provided in openidm/
samples/taskscanner/script/sunset.js. To use this sample file, you must copy it to the openidm/
script directory. The sample script marks all user objects that match the specified conditions
as "inactive". You can use this sample script to trigger a specific workflow, or any other task
associated with the sunset process. For more information about using scripts in OpenIDM, see
the Scripting Reference.

12.5.2. Managing Scanning Tasks Over REST

You can trigger, cancel, and monitor scanning tasks over the REST interface, using the REST
endpoint https://localhost:8443/openidm/taskscanner.

12.5.2.1. Triggering a Scanning Task

The following REST command executes a task named "taskscan_sunrise". The task itself is defined in
a file named openidm/conf/schedule-taskscan_sunset.json.

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 "https://localhost:8443/openidm/taskscanner?_action=execute&name=schedule/taskscan_sunset"

By default, a scanning task ID is returned immediately when the task is initiated. Clients can
make subsequent calls to the task scanner service, using this task ID to query its state and to call
operations on it.

For example, the scanning task initiated previously would return something similar to the following,
as soon as it was initiated:

Scheduling Tasks and Events
Managing Scanning Tasks Over REST

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 212

{"_id":"edfaf59c-aad1-442a-adf6-3620b24f8385"}

To have the scanning task complete before the ID is returned, set the waitForCompletion property to
true in the task definition file (schedule-taskscan_sunset.json). You can also set the property directly over
the REST interface when the task is initiated. For example:

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 "https://localhost:8443/openidm/taskscanner?_action=execute&name=schedule/
taskscan_sunset&waitForCompletion=true"

12.5.2.2. Canceling a Scanning Task
You can cancel a scanning task by sending a REST call with the cancel action, specifying the task ID.
For example, the following call cancels the scanning task initiated in the previous section.

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 "https://localhost:8443/openidm/taskscanner/edfaf59c-aad1-442a-adf6-3620b24f8385?_action=cancel"

The output for a scanning task cancellation request is similar to the following:

 {"_id":"edfaf59c-aad1-442a-adf6-3620b24f8385",
 "action":"cancel",
 "status":"SUCCESS"}

12.5.2.3. Listing Scanning Tasks
You can display a list of scanning tasks that have completed, and those that are in progress, by
running a RESTful GET on the openidm/taskscanner" context. The following example displays all
scanning tasks.

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/taskscanner"

Scheduling Tasks and Events
Managing Scanning Tasks Over REST

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 213

The output of such a request is similar to the following, with one item for each scanning task.
{
 "tasks": [
 {
 "ended": 1352455546182
 "started": 1352455546149,
 "progress": {
 "failures": 0
 "successes": 2400,
 "total": 2400,
 "processed": 2400,
 "state": "COMPLETED",
 },
 "_id": "edfaf59c-aad1-442a-adf6-3620b24f8385",
 }
]
}

Each scanning task has the following properties:

ended

The time at which the scanning task ended.

started

The time at which the scanning task started.

progress

The progress of the scanning task, summarised in the following fields:

failures - the number of records not able to be processed
successes - the number of records processed successfully
total - the total number of records
processed - the number of processed records
state - the overall state of the task, INITIALIZED, ACTIVE, COMPLETED, CANCELLED, or ERROR

_id

The ID of the scanning task.

The number of processed tasks whose details are retained is governed by the "openidm.taskscanner
.maxcompletedruns" property in the conf/system.properties file. By default, the last one hundred
completed tasks are retained.

Managing Passwords
Enforcing Password Policy

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 214

Chapter 13

Managing Passwords

OpenIDM provides password management features that help you enforce password policies, limit the
number of passwords users must remember, and let users reset and change their passwords.

13.1. Enforcing Password Policy
A password policy is a set of rules defining what sequence of characters constitutes an acceptable
password. Acceptable passwords generally are too complex for users or automated programs to
generate or guess.

Password policies set requirements for password length, character sets that passwords must contain,
dictionary words and other values that passwords must not contain. Password policies also require
that users not reuse old passwords, and that users change their passwords on a regular basis.

OpenIDM enforces password policy rules as part of the general policy service. For more information
about the policy service, see Using Policies to Validate Data. The default password policy applies the
following rules to passwords as they are created and updated:

• A password property is required for any user object.

• The value of a password cannot be empty.

• The password must include at least one capital letter.

• The password must include at least one number.

• The minimum length of a password is 8 characters.

• The password cannot contain the user name, given name, or family name.

You can remove these validation requirements, or include additional requirements, by configuring the
policy for passwords. For more information, see Configuring the Default Policy.

The password validation mechanism can apply in many situations.

Password change and password reset

Password change involves changing a user or account password in accordance with password
policy. Password reset involves setting a new user or account password on behalf of a user.

Managing Passwords
Creating a Password History Policy

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 215

By default, OpenIDM controls password values as they are provisioned.

To change the default administrative user password, openidm-admin, see the procedure, To Replace
the Default User and Password, for instructions.

Password recovery

Password recovery involves recovering a password or setting a new password when the password
has been forgotten.

OpenIDM provides a self-service end user interface for password changes, password recovery,
and password reset.

Password comparisons with dictionary words

You can add dictionary lookups to prevent use of password values that match dictionary words.

Password history

You can add checks to prevent reuse of previous password values. For more information, see
Section 13.1.1, "Creating a Password History Policy".

Password expiration

You can configure OpenIDM to call a workflow that ensures users are able to change expiring or
to reset expired passwords.

13.1.1. Creating a Password History Policy

To minimize password reuse, you can set up a password history policy. One way to do so is with a
custom javascript file for the onCreate trigger. You can then add a reference to that javascript file in
the conf/managed.json file.

You would then add a scripted policy in a custom javascript file, ready to be called out in appropriate
JSON configuration files.

The following procedure retains a record of the last four passwords for each user. Any attempt to
reuse one of those passwords is rejected.

This procedure takes advantage of the directories configured in the conf/script.json file. If you started
OpenIDM with files in some customconfig subdirectory, you would need to make sure such files exist
in that directory tree. For more information, see the section on Default and Custom Configuration
Directories.

Procedure 13.1. Configuring Limits on Password History

1. Create a custom onCreate javascript file. One way to do so is with a copy of the onCreate-user-set-
default-files.js file in the bin/defaults/script/ui directory. You can save the custom file in the

Managing Passwords
Creating a Password History Policy

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 216

script directory. For example, the following commands create an onCreate-user-custom.js file in the
default script directory defined in conf/script.json:
$ cd /path/to/openidm/bin/defaults/script/ui
$ cp onCreate-user-set-default-fields.js /path/to/openidm/script/onCreate-user-custom.js

2. In the newly created custom Javascript file, include the cipher for password encryption:
var cipher = "AES/CBC/PKCS5Padding",
 alias = identityServer.getProperty("openidm.config.crypto.alias", "true", true);

3. Next, declare a new lastPass attribute. For example, to prevent reuse of the last four passwords,
you would add the following line:
object.lastPass = new Array(4);

4. After the new array is declared, the following lines would increment the previous password:
if (object.password) {
 object.lastPass.shift();
 object.lastPass.push(object.password);
}

5. Now create a new file with a script that increments passwords in the array with each new
password. This procedure uses the following file name: onUpdate-user-pwpolicy.js, written to the
same directory as the onCreate-user-custom.js file, in this case, script.

6. Add the following content to the newly created onUpdate-user-pwpolicy.js file:
/*global newObject, oldObject */
var cipher = "AES/CBC/PKCS5Padding",
 alias = identityServer.getProperty("openidm.config.crypto.alias", "true", true);

if (openidm.isEncrypted(newObject.lastPass)) {
 newObject.lastPass = openidm.decrypt(newObject.lastPass);
}

if (typeof newObject.lastPass === "undefined") {
 newObject.lastPass = new Array(4);
}

if (newObject.password !== oldObject.password) {
 newObject.lastPass.shift();
 newObject.lastPass.push(newObject.password);
}

newObject.lastPass = openidm.encrypt(newObject.lastPass, cipher, alias);
}

7. In the existing conf/managed.json file, add appropriate lines that point to the files just created in the
script directory. Given the default directories previously described in the conf/script.json file, you
do not need to add a directory path to the newly created files. The following is an excerpt of the
modified conf/managed.json file:

Managing Passwords
Creating a Password History Policy

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 217

{
 "objects" : [
 "name" : "user"
 "onCreate" : {
 "type" : "text/javascript",
 "file" : "onCreate-user-custom.js"
 },
 "onUpdate" : {
 "type" : "text/javascript",
 "file" : "onUpdate-user-pwpolicy.js"
 },
 "onDelete" : {
 "type" : "text/javascript",
 "file" : "ui/onDelete-user-cleanup.js"
 },

8. Now extend the policy service to all users by adding a scripted policy. One way to do so is by
adding the following information to a custom javascript file. For this procedure, call that file
pwpolicy.js, also in the script subdirectory.

As you can see from the comments to the file, it is designed to ignore new users, users without a
password history, and users for whom passwords have not changed.

The last part of the file decrypts encrypted passwords prior to making the comparison, and makes
sure the password has a non-zero length.

/*global addPolicy, request, openidm */

addPolicy({
 "policyId" : "is-new",
 "policyExec" : "isNew",
 "policyRequirements" : ["IS_NEW"]
});

function isNew(fullObject, value, params, property) {
 var currentObject, lastPass, i;

 // don't do a read if the resource ends with "/*", which indicates that
 // this is a create with a server-supplied id
 if (!request.resourceName || request.resourceName.match('/*$')) {
 return [];
 }

 currentObject = openidm.read(request.resourceName);

 // don't try this policy if the resource being evaluated wasn't found. Happens in the
 // case of a create with a client-supplied id.
 if (currentObject === null) {
 return [];
 }

 // don't try this policy is there is no history object available
 if (currentObject.lastPass === null || currentObject.lastPass === undefined) {
 return [];
 }

Managing Passwords
Creating a Password History Policy

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 218

 if (currentObject[property] !== null && currentObject[property] !== undefined &&
 openidm.isEncrypted(currentObject[property])) {
 currentObject[property] = openidm.decrypt(currentObject[property]);
 }

 // if the password hasn't changed, then we aren't interested in checking the history
 if (currentObject[property] === value) {
 return [];
 }

 if (openidm.isEncrypted(currentObject.lastPass)) {
 lastPass = openidm.decrypt(currentObject.lastPass);
 } else {
 lastPass = currentObject.lastPass;
 }

 for(i=0; i < lastPass.length; i++) {
 if (lastPass[i] === value) {
 return [{"policyRequirement": "IS_NEW"}: "IS_NEW"}];
 }
 }
 return [];

}

9. Now open the conf/policy.json file. Add the following lines to call the newly created pwpolicy.js
script, right after the existing line that calls the policy.js script:
...
 "file" : "policy.js",
 "additionalFiles" : [
 "script/pwpolicy.js"],
...

10. Later in the same conf/policy.json file, in the password configuration block, add the newly created is
-new policyId:
...
 {
 "name" : "password",
 "policies" : [
 {
 "policyId" : "not-empty"
 },
 {
 "policyId" : "is-new"
 },
...

11. Reopen the conf/managed.json file. Add the following code to the properties section to encrypt the
new lastPass attribute, and to prevent REST retrievals of such passwords:

Managing Passwords
Password Synchronization

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 219

...
 "properties" : [
 {
 "name" : "lastPass",
 "encryption" : {
 "key" : "openidm-sym-default"
 },
 "scope" : "private"
 }
 ...

13.2. Password Synchronization
Password synchronization intercepts user password changes, and ensures uniform password
changes across resources that store the password. Following password synchronization, the user
authenticates using the same password on each resource. No centralized directory or authentication
server is required for performing authentication. Password synchronization reduces the number of
passwords users need to remember, so they can use fewer, stronger passwords.

OpenIDM can propagate passwords to the resources that store a user's password, and can intercept
and synchronize passwords that are changed natively in OpenDJ and Active Directory.

When you use password synchronization, set up password policy enforcement on OpenDJ or Active
Directory rather than on OpenIDM. Alternatively, ensure that all password policies that are enforced
are identical to prevent password updates on one resource from being rejected by OpenIDM or by
another resource.

The password synchronization plugins intercept password changes on the resource before the
passwords are stored in encrypted form. The plugins then send intercepted password values to
OpenIDM over an encrypted channel.

In the event that the OpenIDM instance is unavailable when a password is changed, the plugin
intercepts the change, encrypts the password, and stores the encrypted password in a JSON file.
The plugin then checks whether the OpenIDM instance is available, at a predefined interval. When
OpenIDM becomes available, the plugin performs a PATCH on the user record, to replace the
password with the encrypted password stored in the JSON file.

To be able to synchronize the passwords, the plugin requires that the managed/user object exist in the
OpenIDM repository. Users have typically been created by a reconciliation or liveSync process.

The OpenDJ password sync plugin is supported for OpenDJ versions 2.4.6, 2.5, and 2.6. The Active
Directory password sync plugin is supported on Windows 2008 RC 2, Active Directory version 47.

The sample provided in /path/to/openidm/samples/misc/managed.json shows password synchronization
between three systems - OpenIDM, OpenDJ, and Active Directory. The sample assumes that the
following steps have been performed:

• You have set up OpenDJ and Active Directory.

Managing Passwords
Password Synchronization

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 220

• The password attributes for the three systems are as follows:

ldapPassword for OpenDJ
adPassword for Active Directory
password for the internal OpenIDM password

• You have installed the password synchronization plugins, as described in the following sections.

Procedure 13.2. To Install the OpenDJ Password Synchronization Plugin

Before you start:

• Make sure that OpenDJ is configured to communicate over LDAPS as described in the OpenDJ
documentation.

• OpenIDM must be running.

The following steps install the plugin on an OpenDJ directory server that is running on the same host
as OpenIDM. If you run OpenDJ on a different host, use the fully qualified domain name rather than
localhost, and use your certificates rather than the generated OpenIDM certificate.

1. OpenIDM generates a self-signed certificate the first time it starts up. You must import this self-
signed certificate into OpenDJ's truststore so that the OpenDJ agent can make SSL requests to
the OpenIDM endpoints.

a. Export OpenIDM's generated self-signed certificate to a file, as follows:
$ cd /path/to/openidm/security
$ keytool
 -export
 -alias openidm-localhost
 -file openidm-localhost.crt
 -keystore keystore.jceks
 -storetype jceks
Enter keystore password: <changeit>
Certificate stored in file <openidm-localhost.crt>

b. Import the self-signed certificate into the trust store for OpenDJ.

http://docs.forgerock.org/en/opendj/2.6.0/admin-guide/#chap-connection-handlers
http://docs.forgerock.org/en/opendj/2.6.0/admin-guide/#chap-connection-handlers

Managing Passwords
Password Synchronization

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 221

$ cd /path/to/OpenDJ/config
$ keytool
 -import
 -alias openidm-localhost
 -keystore truststore
 -storepass `cat keystore.pin`
 -file /path/to/openidm/security/openidm-localhost.crt
Owner: C=None, L=None, O=OpenIDM Self-Signed Certificate, OU=None, CN=localhost
Issuer: C=None, L=None, O=OpenIDM Self-Signed Certificate, OU=None, CN=localhost
Serial number: 1544a7b975ed50a7
Valid from: Sat Oct 19 16:04:41 SAST 2013 until: Thu Nov 16 16:04:41 SAST 2023
Certificate fingerprints:
 MD5: 0C:BF:08:06:F0:69:E8:E6:6F:39:38:B8:CC:9A:C1:60
 SHA1: B0:40:17:0A:6E:3A:3B:BB:82:39:A1:97:04:00:BC:7C:94:63:76:E7
 Signature algorithm name: SHA512withRSA
 Version: 3
Trust this certificate? [no]: yes
Certificate was added to keystore

2. Download the OpenDJ password synchronization plugin (OpenIDM Agents-OpenDJ) from the
OpenIDM download page under the ForgeRock Open Stack download page.

3. Unzip the module delivery.

$ unzip ~/Downloads/opendj-accountchange-handler-1.0.0.zip
 creating: opendj/
 creating: opendj/config/
 creating: opendj/config/schema/
...

4. Copy the files to the directory where OpenDJ is installed.
$ cd opendj
$ cp -r * /path/to/OpenDJ/

5. Workaround for OPENIDM-1380:

Edit the file /path/to/OpenDJ/config/schema/90-openidm-pwsync-plugin.ldif to remove the attributes ds-
cfg-sql-user and ds-cfg-sql-passwd.

6. Workaround for OPENIDM-1379:

Move the following nine jar files from the opendj/lib folder into the opendj/lib/extensions folder:

http://forgerock.com/download-stack/

Managing Passwords
Password Synchronization

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 222

$ cd /path/to/opendj/lib
$ mv json-fluent-1.1.0.jar extensions/
$ mv org.forgerock.util-1.0.0.jar extensions/
$ mv json-crypto-core-1.1.0.jar extensions/
$ mv jackson-core-asl-1.9.3.jar extensions/
$ mv jackson-mapper-asl-1.9.3.jar extensions/
$ mv org.restlet-2.0.10.jar extensions/
$ mv org.restlet.ext.jackson-2.0.10.jar extensions/
$ mv org.restlet.ext.net-2.0.10.jar extensions/
$ mv commons-codec-1.5.jar extensions/

7. Restart OpenDJ to load the additional schema from the module.
$ cd /path/to/OpenDJ/bin
$./stop-ds --restart

8. Workaround for OPENIDM-1523:

Edit the plugin config with a subjectDN that matches the generated OpenIDM certificate.
$ cd /path/to/OpenDJ/config

Edit openidm-pwsync-plugin-config.ldif, changing the value of ds-certificate-subject-dn to C=None,
 L=None, O=OpenIDM Self-Signed Certificate, OU=None, CN=localhost.

9. Add the plugin configuration to OpenDJ's configuration.
$./ldapmodify
 --port 1389
 --hostname `hostname`
 --bindDN "cn=Directory Manager"
 --bindPassword "password"
 --defaultAdd
 --filename ../config/openidm-pwsync-plugin-config.ldif
Processing ADD request for cn=OpenIDM Notification Handler,
 cn=Account Status Notification Handlers,cn=config
ADD operation successful for DN cn=OpenIDM Notification Handler,
 cn=Account Status Notification Handlers,cn=config

10. Restart OpenDJ.
$./stop-ds --restart
...
[20/Nov/2013:08:55:47 +0100] category=EXTENSIONS severity=INFORMATION
 msgID=1049147 msg=Loaded extension from file '/path/to/OpenDJ/lib/extensions
 /opendj-accountchange-handler-1.0.0.jar' (build <unknown>,
 revision <unknown>)
...
[20/Nov/2013:08:55:51 +0100] category=CORE severity=NOTICE msgID=458891
 msg=The Directory Server has sent an alert notification generated by class
 org.opends.server.core.DirectoryServer (alert type
 org.opends.server.DirectoryServerStarted, alert ID 458887):
 The Directory Server has started successfully

11. Enable the plugin for the appropriate password policy.

Managing Passwords
Password Synchronization

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 223

The following command enables the plugin for the default password policy.
$./dsconfig \
 set-password-policy-prop \
 --port 4444 \
 --hostname `hostname` \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --policy-name "Default Password Policy" \
 --set account-status-notification-handler:"OpenIDM Notification Handler" \
 --trustStorePath ../config/admin-truststore \
 --no-prompt

12. If the password attribute does not exist in the managed/user object on OpenIDM, the password sync
service will return an error when the password is updated in OpenDJ. To prevent this, add the
following onCreate script to the OpenDJ > Managed Users mapping in the sync.json file:

"mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "properties" : [
 {
 "source" : "uid",
 "target" : "userName"
 }
],
 "onCreate" : {
 "type" : "text/javascript",
 "source" : "target.password=''"
 },
...

The onCreate script creates an empty password in the managed/user object, so that the attribute
exists and can be patched.

Procedure 13.3. To Install the Active Directory Password Synchronization Plugin

Use the Active Directory password synchronization plugin to synchronize passwords between
OpenIDM and Active Directory (on systems running at least Microsoft Windows Server 2008 R2).

Install the plugin on Active Directory primary domain controllers (PDCs) to intercept password
changes, and send the password values to OpenIDM over an encrypted channel. You must have
Administrator privileges to install the plugin. In a clustered Active Directory environment, you must
install the plugin on all PDCs.

1. Download the Active Directory password synchronization plugin, OpenIDM Agents-AD, from the
OpenIDM download page under the ForgeRock Open Stack download page.

2. Double-click the setup file (setup.exe) to launch the installation wizard.

http://forgerock.com/download-stack/

Managing Passwords
Password Synchronization

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 224

3. Provide the following information during the installation. You must accept the Common
Development and Distribution License (CDDL) license agreement to proceed with the installation.

OpenIDM Connection information

• OpenIDM URL. Enter the URL where OpenIDM is deployed, including the query that
targets each user account. For example:
http://localhost:8080/openidm/managed/user?_action=patch&_queryId=for-userName&uid=
${samaccountname}

For mutual authentication, the default URL is
https://localhost:8444/openidm/managed/user?_action=patch&_queryId=for-userName&uid=
${samaccountname}

For this query to work, you must set a mapping from samaccountname to username in the /path/
to/openidm/conf/sync.json file, for example:
{
 "mappings" : [
 {
 "name" : "systemADAccounts_managedUser",
 "source" : "system/ad/account",
 "target" : "managed/user",
 "properties" : [
 ...
 {
 "source" : "samaccountname",
 "target" : "userName"
 },
 ...
 }
]
}

• OpenIDM User Password attribute. The password attribute for the managed/user object, for
example password.

If the password attribute does not exist in the managed/user object, the password sync service
will return an error when the password is updated in Active Directory. To prevent this, add
the following script to the Active Directory > Managed Users mapping in the sync.json file:
"onCreate" : {
 "type" : "text/javascript",
 "source" : "target.password=''; target.adPassword='';"
},

The onCreate script creates an empty password in the managed/user object, so that the
attribute exists and can be patched.

Managing Passwords
Password Synchronization

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 225

OpenIDM Authentication Parameters

Provide the following information:

• User name. Enter the user name that is used to authenticate to OpenIDM, for example,
openidm-admin.

• Password. Enter the password of the user that authenticates to OpenIDM, for example,
openidm-admin.

• Select authentication type. Select the type of authentication that Active Directory will use
to authenticate to OpenIDM.

For plain HTTP authentication, select OpenIDM Header. For mutual authentication, select
Certificate.

Certificate authentication settings

If you selected Certificate as the authentication type on the previous screen, specify the
details of the certificate that will be used for authentication.

• Select Certificate file. Browse to select the certificate file that Active Directory will use to
authenticate to OpenIDM. The certificate file must be in PKCS12 format.

For production purposes, you should use a certificate that has been issued by a Certificate
Authority. For testing purposes, you can generate a self-signed certificate. Whichever
certificate you use, the certificate must be imported into OpenIDM's trust store.

To generate a self-signed certificate for Active Directory, follow these steps:

1. On the Active Directory host, generate a self-signed certificate with the alias ad-pwd-
plugin-localhost.
> keytool
 -genkey
 -alias ad-pwd-plugin-localhost
 -keyalg rsa
 -dname "CN=localhost, O=AD-pwd-plugin Self-Signed Certificate"
 -keystore keystore.jceks
 -storetype JCEKS
Enter keystore password: changeit
Re-enter new password: changeit
Enter key password for <ad-pwd-plugin-localhost>
 <RETURN if same as keystore password>

2. Self-sign the certificate.

Managing Passwords
Password Synchronization

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 226

> keytool
 -selfcert
 -alias ad-pwd-plugin-localhost
 -validity 365
 -keystore keystore.jceks
 -storetype JCEKS
 -storepass changeit

3. Export the certificate as a PKCS12 certificate.
> keytool
 -importkeystore
 -srckeystore keystore.jceks
 -srcstoretype jceks
 -srcstorepass changeit
 -srckeypass changeit
 -srcalias ad-pwd-plugin-localhost
 -destkeystore ad-pwd-plugin-localhost.p12
 -deststoretype PKCS12
 -deststorepass changeit
 -destkeypass changeit
 -destalias ad-pwd-plugin-localhost
 -noprompt

This command generates a PKCS12 certificate file, named ad-pwd-plugin-localhost.p12.
Copy this certificate file to the machine that hosts OpenIDM, and import the certificate
into the OpenIDM truststore.
$ keytool
 -importkeystore
 -srckeystore /path/to/ad-pwd-plugin-localhost.p12
 -srcstoretype PKCS12
 -destkeystore truststore
 -deststoretype JKS

• Password to open certificate file. Specify the keystore password (changeit, in the previous
example).

Password Encryption settings

Provide the details of the certificate that will be used to encrypt password values.

• Certificate file. Browse to select the certificate file that will be used for password
encryption. The certificate file must be in PKCS12 format.

For evaluation purposes, you can use a self-signed certificate, as described in the previous
step. For production purposes, you should use a certificate that has been issued by a
Certificate Authority.

Managing Passwords
Password Synchronization

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 227

Whichever certificate you use, the certificate must be imported into OpenIDM's keystore, so
that OpenIDM can locate the key with which to decrypt the data. To import the certificate
into OpenIDM's keystore, run the following command on the OpenIDM host:

$ keytool
 -importkeystore
 -srckeystore /path/to/ad-pwd-plugin-localhost.p12
 -srcstoretype PKCS12
 -destkeystore /path/to/openidm/security/keystore.jceks
 -deststoretype jceks

• Private key alias. Specify the certificate alias for the certificate, such as ad-pwd-plugin-
localhost, from the previous self-signed certificate example.

• Password to open certificate file. Specify the password to access the PFX keystore file, such
as changeit, from the previous example.

• Select encryption key type. Specify the encryption key type that will be used when
encrypting the password value (AES-128, AES-192, or AES-256).

Data storage

Provide the details for the storage of encrypted passwords in the event that OpenIDM is not
available when a password modification is made.

• Select a secure directory in which the JSON files that contain encrypted passwords are
queued. The server should prevent access to this folder, except access by the Password Sync
 service. The path name cannot include spaces.

• Directory poll interval (seconds). Enter the number of seconds between calls to check
whether OpenIDM is available, for example, 60, to poll OpenIDM every minute.

Log storage

Provide the details of the messages that should be logged by the plugin.

• Select the location to which messages should be logged. The path name cannot include
spaces.

• Select logging level. Select the severity of messages that should be logged, either error,
info, warning, fatal, or debug.

Select Destination Location

Setup installs the plugin in the location you select, by default C:\Program Files\OpenIDM Password
 Sync.

4. After running the installation wizard, restart the computer.

Managing Passwords
Password Synchronization

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 228

5. If you need to change any settings after installation, access the settings using the Registry Editor
under HKEY_LOCAL_MACHINE > SOFTWARE > ForgeRock > OpenIDM > PasswordSync.

6. If you selected to authenticate over plain HTTP in the previous step, your setup is now complete.

If you selected to authenticate with mutual authentication, complete this step.

• The Password Sync Service uses Windows certificate stores to verify OpenIDM's identity. The
certificate that OpenIDM uses must therefore be added to the list of trusted certificates on
the Windows machine.

For production purposes, you should use a certificate that has been issued by a certificate
authority. For test purposes, you can use the self-signed certificate that is generated by
OpenIDM on first startup.

To add the OpenIDM certificate to the list of trusted certificates, use the Microsoft
Management Console.

1. Select Start and type mmc in the Search field.

2. In the Console window, select File > Add/Remove Snap-in.

3. From the left hand column, select Certificates and click Add.

4. Select My user account, and click Finish.

5. Repeat the previous two steps for Service account and Computer account.

For Service account, select Local computer, then select OpenIDM Password Sync Service.

For Computer account, select Local computer.

6. Click Finish when you have added the three certificate snap-ins.

Managing Passwords
Password Synchronization

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 229

7. Still in the mmc Console, expand Certificates - Current User > Personal and select
Certificates.

8. Select Action > All Tasks > Import to open the Certificate Import Wizard.

9. Browse for the OpenIDM certificate (openidm-localhost by default, if you use OpenIDM's
self-signed certificate).

10. Enter the Password for the certificate (changeit by default, if you use OpenIDM's self-
signed certificate).

11. Accept the default for the Certificate Store.

12. Click Finish to complete the import.

13. Repeat the previous five steps to import the certificate for:

Current User > Trusted Root Certification Authorities
Service > OpenIDM Password Sync\Personal
Service > OpenIDM Password Sync\Trusted Root Certification Authorities
Local Computer > Personal
Local Computer > Trusted Root Certification Authorities

Procedure 13.4. To Set Up OpenIDM to Handle Password Changes

Follow these steps to configure OpenIDM to access password changes from OpenDJ and Active
Directory.

1. You must add the OpenDJ/Active Directory server certificates that you have used to
OpenIDM's trust store so that OpenIDM knows to trust OpenDJ/Active Directory during mutual
authentication.

Use the Java keytool command to import the certificate into the OpenIDM trust store.

2. Add the configuration to managed objects to handle password synchronization.

An example for synchronization with both OpenDJ and Active Directory is provided in the samples/
misc/managed.json file, JavaScript lines folded for readability:

{
 "objects": [
 {
 "name": "user",
 "properties": [
 {
 "name": "ldapPassword",
 "encryption": {
 "key": "openidm-sym-default"
 }
 },

Managing Passwords
Password Synchronization

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 230

 {
 "name": "adPassword",
 "encryption": {
 "key": "openidm-sym-default"
 }
 },
 {
 "name": "password",
 "encryption": {
 "key": "openidm-sym-default"
 }
 }
],
 "onUpdate": {
 "type": "text/javascript",
 "source":
 "if (newObject.ldapPassword != oldObject.ldapPassword) {
 newObject.password = newObject.ldapPassword
 } else if (newObject.adPassword != oldObject.adPassword) {
 newObject.password = newObject.adPassword
 }"
 }
 }
]
}

This sample assumes you define the password as ldapPassword for OpenDJ, and adPassword for Active
Directory.

3. Update the connector configuration files to add the password property to the account object type.

For OpenDJ, update provisioner.openicf-ldap.json, as follows:

Managing Passwords
Password Synchronization

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 231

 "objectTypes" :
 {
 "account" :
 {
 "$schema" : "http://json-schema.org/draft-03/schema",
 "id" : "__ACCOUNT__",
 "type" : "object",
 "nativeType" : "__ACCOUNT__",
 "properties" :
 {
 "cn" :
 {
 "type" : "string",
 "nativeName" : "cn",
 "nativeType" : "string"
 },
 ...
 "ldapPassword" :
 {
 "type" : "string",
 "nativeName" : "userpassword",
 "nativeType" : "string"
 },
 ...

For Active Directory, update provisioner.openicf-ad.json, as follows:

 "objectTypes" :
 {
 "account" :
 {
 "$schema" : "http://json-schema.org/draft-03/schema",
 "id" : "__ACCOUNT__",
 "type" : "object",
 "nativeType" : "__ACCOUNT__",
 "properties" :
 {
 "cn" :
 {
 "type" : "string",
 "nativeName" : "cn",
 "nativeType" : "string"
 },
 ...
 "adPassword" :
 {
 "type" : "string",
 "nativeName" : "_PASSWORD_",
 "nativeType" : "JAVA_TYPE_GUARDEDSTRING"
 },
 ...

4. When you change a password in OpenDJ, you will notice that the value changes in OpenIDM.

Managing Passwords
Password Synchronization

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 232

$ tail -f openidm/audit/activity.csv | grep bjensen
...userName=bjensen, ... password={$crypto={...data=tEsy7ZXo6nZtEqzW/uVE/A==...
...userName=bjensen, ... password={$crypto={...data=BReT79lnQEPcvfQG3ibLpg==...

Be aware that the plugin is patching the password value of the managed user in OpenIDM. The
target password property must exist for the patch to work.

To configure automatic synchronization, that is the password is updated in Active Directory
automatically when it is changed in OpenIDM, you must complete the following three steps:

• Define a mapping from managed/user to system/ad/account in your /path/to/openidm/conf/sync.json file.

• Specify the {"source" : "password", "target" : "adPassword"} property as part of this mapping.

• Make sure that automatic synchronization is enabled for that mapping. By default, all mappings
participate in automatic synchronization operations so you should not have to enable this
operation manually unless you have specifically set the "enableSync" property of the mapping to
false.

Managing Authentication, Authorization and Role-Based Access Control
OpenIDM Users

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 233

Chapter 14

Managing Authentication, Authorization and
Role-Based Access Control

OpenIDM provides a flexible authentication and authorization mechanism, based on REST interface
URLs and on roles which may be stored in the repository.

14.1. OpenIDM Users
While OpenIDM authenticates internal and managed users with the DELEGATED module, there are
differences between these two types of users.

14.1.1. Internal Users

OpenIDM creates two internal users by default: anonymous and openidm-admin. These accounts are
separated from other user accounts to protect them from any reconciliation or synchronization
processes.

OpenIDM stores internal users and their role membership in a table in the repository. For the way
internal users are mapped, see the discussion on the explicitMapping property to "internal/user".

For more information on storage mechanisms for managed users in OrientDB and JDBC, see Working
With Managed Users.

anonymous

This user enables anonymous access to OpenIDM, for users who do not have their own accounts.
The anonymous user, configured by default with the openidm-reg role, has limited rights within
OpenIDM. It can be used to allow self-registration. For more information on the process, see
Enabling Self-Registration.

openidm-admin

This user serves as the top-level administrator. After installation, the openidm-admin user has full
access, and provides a fallback mechanism in case other users are locked out. Do not use openidm-
admin for regular tasks. Under normal circumstances, the openidm-admin account does not represent
a regular user, so any audit log records for this account do not represent the actions of any real
person.

Managing Authentication, Authorization and Role-Based Access Control
Managed Users

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 234

OpenIDM encrypts the default administrative password, openidm-admin. Change the password
immediately after installation. For instructions, see To Replace the Default User and Password.

14.1.2. Managed Users

External users managed by OpenIDM are known as managed users.

The location of managed users depends on the type of repository. For JDBC repositories, OpenIDM
stores managed users in the managed objects table, named managedobjects. OpenIDM may access an
index table managedobjectproperties as well.

For the OrientDB repository, managed objects are stored in the table managed_user.

By default, the attribute names for managed user login and password are userName and password,
respectively.

14.2. Authentication
OpenIDM does not allow access to the REST interface without authentication.

User self-registration requires anonymous access. For that purpose, OpenIDM includes an anonymous
user, with the following password: anonymous. For more information, see Section 14.1.1, "Internal
Users".

In production, only applications are expected to access the REST interface.

OpenIDM supports an improved authentication mechanism on the REST interface. Unlike basic
authentication or form-based authentication, the OpenIDM authentication mechanism is compatible
with the AJAX framework. You can configure authentication with standard or OpenIDM-specific
header fields, as follows:

OpenIDM authentication with standard header fields

$ curl --user userName:password

This method uses standard basic authentication. However, it does not prompt for missing
credentials.

OpenIDM authentication with OpenIDM header fields

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"

Managing Authentication, Authorization and Role-Based Access Control
Using Delegated Authentication

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 235

Note

This document uses the OpenIDM authentication options for all REST calls. Where no OpenIDM-specific options
exist, the "long-form" option such as --data is used. In contrast, the README files that accompany OpenIDM
generally use "short-form" options such as -X (instead of --request) and -H (instead of --header).

For more information about the OpenIDM authentication mechanism, see Use Message Level
Security.

You can change the attributes used by OpenIDM to store user login and password values. Attribute
names are shown in a database query listed in openidm/conf/repo.repo-type.json.

Two queries are defined by default.

credential-internaluser-query

Uses the _openidm_id attribute for login

credential-query

Uses the userName attribute for login

The openidm/conf/authentication.json file defines the active query with the queryId property. In
the following example, credential-query is the queryId identifier used in a queryRequest to validate
credentials.

{
 "queryId" : "credential-query",
 "queryOnResource" : "managed/user",
...
}

You can explicitly define the properties that constitute passwords or roles with the propertyMapping
object in the conf/authentication.json file. The default property mapping is shown here:

 ...
 "propertyMapping" : {
 "authenticationId" : "username",
 "userCredential" : "password",
 "userRoles" : "roles"
 },
 ...

14.3. Using Delegated Authentication
In addition to the internal and managed user authentication modules, OpenIDM 3.0.0 supports a
delegated authentication mechanism. With delegated authentication, the username and password

Managing Authentication, Authorization and Role-Based Access Control
Using Delegated Authentication

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 236

included with the REST request are validated against those stored in a remote system, such as an
LDAP server.

Delegated authentication for OpenIDM 3.0.0 includes the functionality associated with the PASSTHROUGH,
MANAGED_USER, and INTERNAL_USER modules. OpenIDM 3.0.0 includes those modules as aliases for the
DELEGATED module.

The samples listed in the OpenIDM Installation Guide in the Installation Guide include multiple
options for authentication mechanisms.

You can add the delegated authentication module to the conf/authentication.json file. For example, the
following excerpt illustrates one way to implement the DELEGATED configuration object. For descriptive
purposes, you can substitute the PASSTHROUGH alias for DELEGATED.

"authModules" : [
 {
 "name" : "DELEGATED",
 "properties" : {
 "augmentSecurityContext": {
 "type" : "text/javascript",
 "file" : "auth/populateAsManagedUser.js"
 },
 "queryOnResource" : "system/ldap/account",
 "propertyMapping" : {
 "authenticationId" : "uid",
 "groupMembership" : "memberOf"
 },
 "groupRoleMapping" : {
 "openidm-admin" : ["cn=admins"]
 },
 "managedUserLink" : "systemLdapAccounts_managedUser",
 "defaultUserRoles" : [
 "openidm-authorized"
]
 },
 "enabled" : true
 },
 ...
]

The properties shown from this excerpt are defined in Section 14.6.3, "Properties for Authentication
and Roles"

The content of the delegated authentication object varies. Samples 2/2b/2c/2d, 3, 5, and 6 include
slightly different versions of the conf/authentication.json file.

Samples 2, 2b, 2c, 2d (LDAP)

Samples 2, 2b, 2c, and 2d relate to connections from an LDAP server. Samples 5 and 5b are quite
similar, as they uses XML information to masquerade as an LDAP server. The authentication.json
file is identical in each of these samples.

Managing Authentication, Authorization and Role-Based Access Control
Supported Authentication Modules

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 237

In the common authentication.json file, the queryOnResource endpoint is system/ldap/account. The
managedUserLink is systemLdapAccounts_managedUser.

Sample 3 (Scripted SQL)

Sample 3 relates to a connection to a scripted SQL database. As such, the queryOnResource endpoint
is system/scriptedsql/account. The managedUserLink is systemHrdb_managedUser.

Sample 5, 5b (Synchronization of two resources)

The XML files used in samples 5 and 5b simulate a connection between LDAP servers. For that
reason, the conf/authentication.json file used in these samples are identical to that for sample
2/2b/2c/2d.

Sample 6 (LiveSync)

The queryOnResource endpoint is system/ad/account. The autheticationId matches the AD attribute used
for account names. The associated managedUserLink is systemAdAccounts_managedUser.

14.4. Supported Authentication Modules
OpenIDM supports a variety of modules, including those available from the Common Authentication
Framework. OpenIDM also provides two additional authentication modules, DELEGATED and CLIENT_CERT.

JWT_SESSION

The JSON Web Token session authentication module. For more information on this common
authentication module, see the Class JwtSessionModule Javadoc.

CLIENT_CERT

Module for users who authenticate with a client certificate.

DELEGATED

Module that validates client requests by passing through to an OpenICF connector. For OpenIDM
3.0.0, this is an alias for MANAGED_USER, INTERNAL_USER, and PASSTHROUGH.

14.5. Roles and Authentication
OpenIDM includes a number of default roles, and supports the configuration of managed roles,
enabling you to customize the roles mechanism as needed.

The following roles are configured by default:

openidm-reg

Role assigned to users who access OpenIDM with the default anonymous account.

http://commons.forgerock.org/forgerock-auth-filters/forgerock-authn-filter/forgerock-jaspi-modules/forgerock-jaspi-jwt-session-module/apidocs/org/forgerock/jaspi/modules/session/jwt/JwtSessionModule.html

Managing Authentication, Authorization and Role-Based Access Control
Roles and Authentication

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 238

The openidm-reg role is excluded from the reauthorization required policy definition by default.

openidm-admin

OpenIDM administrator role, excluded from the reauthorization required policy definition by
default.

openidm-authorized

Default role for any user who has authenticated with a user name and password.

openidm-cert

Default role for any user authenticated with mutual SSL authentication.

This role applies only for mutual authentication. Furthermore, the shared secret (certificate)
must be adequately protected. The openidm-cert role is excluded from the reauthorization required
policy definition by default.

OpenIDM begins the process of assigning the roles of a user with the roles property. OpenIDM then
proceeds in the following sequence to define user roles:

• If the defaultRoles property is set, OpenIDM assigns those roles to the given user. The defaultRoles
property must be configured in an array.

• The userRoles property is a string that defines the attribute. The value of the attribute may be
either a comma-delimited string or a list of strings. You can identify the list with a REST call to a
queryOnResource endpoint such as system/ldap/account

• If the groupRoleMapping and groupMembership properties are defined, OpenIDM assigns additional roles
to users depending on any existing group membership.

The roles calculated in sequence are cumulative. In other words, if all of the above properties
are defined, OpenIDM would assign roles from defaultRoles and userRoles. It would also use a
MappingRoleCalculator to define roles from the groupRoleMapping and groupMembership properties.

For users who have authenticated with mutual SSL authentication, the module is CLIENT_CERT and the
default role for such users is openidm-cert.

{ "name" : "CLIENT_CERT",
 "properties" : {
 "queryOnResource": "managed/user",
 "defaultUserRoles": ["openidm-cert"],
 "allowedAuthenticationPatterns" : []
 },
 "enabled" : "true"
}

Access control for such users is configured in the access.js file. For more information, see
Section 14.6, "Authorization".

Managing Authentication, Authorization and Role-Based Access Control
Authorization

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 239

14.6. Authorization
OpenIDM provides role-based authorization that restricts direct HTTP access to REST interface
URLs. The default authorization configuration grants different access rights to users that are
assigned the roles "openidm-admin", "openidm-cert", "openidm-authorized", and "openidm-reg".

Note that this access control applies to direct HTTP calls only. Access for internal calls (for example,
calls from scripts) is not affected by this mechanism.

Authorization is configured in two script files:

• openidm/bin/defaults/script/router-authz.js

• openidm/script/access.js

OpenIDM calls these scripts for each request, via the onRequest hook that is defined in the default
router.json file. The scripts either throw the string Access denied, or nothing. If Access denied is thrown,
OpenIDM denies the request.

14.6.1. router-authz.js

This file provides the functions that enforce access rules. For example, the following function controls
whether users with a certain role can start a specified process.

...
function isAllowedToStartProcess() {
var processDefinitionId = request.content._processDefinitionId;
return isProcessOnUsersList(processDefinitionId);
}
...

There are certain authorization-related functions in router-authz.js that should not be altered, as
described in a comment in the file.

14.6.2. access.js

This file defines the access configuration for HTTP requests and references the methods defined in
router-authz.js. Each entry in the configuration contains a pattern to match against the incoming
request ID, and the associated roles, methods, and actions that are allowed for requests on that
pattern.

The options shown in the default version of the file do not include all of the actions available at each
endpoint.

The following sample configuration entry indicates the configurable parameters and their purpose.

Managing Authentication, Authorization and Role-Based Access Control
access.js

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 240

 {
 "pattern" : "*",
 "roles" : "openidm-admin",
 "methods" : "*", // default to all methods allowed
 "actions" : "*", // default to all actions allowed
 "customAuthz" : "disallowQueryExpression()",
 "excludePatterns": "system/*"
 },

As shown, this entry affects users with the openidm-admin role. Such users have HTTP access to all but
system endpoints. The parameters are as follows:

• "pattern" - the REST endpoint to which access is being controlled. "*" indicates access to all
endpoints. "managed/user/*" would indicate access to all managed user objects.

• "roles" - a list of the roles to which this access configuration applies.

• "methods" - a comma separated list of the methods to which access is being granted. The method can
be one or more of create, read, update, delete, patch, action, query. A value of "*" indicates that all
methods are allowed. A value of "" indicates that no methods are allowed.

• "actions" - a comma separated list of the allowed actions. The possible values depend on the service
(URL) that is being exposed. The following list indicates the possible actions for each service.

openidm/info/* - (no action parameter applies)
openidm/authentication - reauthenticate
openidm/config/ui/* - (no action parameter applies)
openidm/endpoint/securityQA - securityQuestionForUserName, checkSecurityAnswerForUserName,
 setNewPasswordForUserName
openidm/endpoint/getprocessforuser - create, complete
openidm/endpoint/gettaskview - create, complete
openidm/external/email - send
openidm/external/rest - (no action parameter applies)
openidm/managed - patch, triggerSyncCheck
openidm/managed/user - validateObject, validateProperty
openidm/policy - validateObject, validateProperty
openidm/recon - recon, reconByQuery, reconById, cancel
openidm/repo - updateDbCredentials
openidm/script/* - eval
openidm/security/keystore - generateCert, generateCSR
openidm/security/truststore - generateCert, generateCSR
openidm/sync - notifyCreate, notifyUpdate, notifyDelete, recon, performAction
openidm/system - test, testConfig, CREATECONFIGURATION, liveSync, authenticate
openidm/system/<name> - script, test, liveSync
openidm/system/<name>/{id} - authenticate, liveSync
openidm/taskscanner - execute, cancel
openidm/workflow/processdefinition - create, complete
openidm/workflow/processinstance - create, complete

Managing Authentication, Authorization and Role-Based Access Control
Properties for Authentication and Roles

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 241

openidm/workflow/taskinstance - claim, create, complete

A value of "*" indicates that all actions exposed for that service are allowed. A value of "" indicates
that no actions are allowed.

• "customAuthz" - an optional parameter that enables you to specify a custom function for additional
authorization checks. These functions are defined in router-authz.js.

The allowedPropertiesForManagedUser variable, declared at the beginning of the file, enables you to
create a white list of attributes that users are able to modify on their own accounts.

• "excludePatterns" - an optional parameter that enables you to specify particular endpoints to which
access should not be given.

14.6.3. Properties for Authentication and Roles

The properties in this section define how users and groups may be associated with roles and
certain authentication mechanisms. Some of these properties are included in the excerpt of the
authentication.json file shown in Section 14.3, "Using Delegated Authentication".

Different authentication modules may apply. In files such as authentication.json, you may assign an
authentication module to the name property. Just be sure to include enabled=true or enabled=false for the
configured module(s). For a list of available modules, see Section 14.4, "Supported Authentication
Modules".

queryOnResource

The system endpoint against which the user authenticates, such as system/ldap/account, system/
scriptedsql/account, system/ad/account, managed/user, and repo/internal/user.

augmentSecurityContext (optional)

This parameter points to a script, executed only after a successful authentication request to
provide additional information, based on the security context.

For delegated (pass-through authentication), OpenIDM uses the populateAsManagedUser.js script.
This script uses authentication details returned from the pass-through authentication module.
Those details can point to a linked managed user record. If a linked record is found, the script
adjusts the details of the security context to match that managed user object. The adjusted
security context enables additional operations for the authenticated user, such as the ability to
access the default user interface.

The script must be either JavaScript ("type":"text/javascript") or Groovy ("type":"groovy"), and can
be provided inline ("source":"script source") or in a file ("file":"filename").

propertyMapping (optional)

A list that enables you to map the following OpenIDM properties to fields in the system resource
used for the authentication.

Managing Authentication, Authorization and Role-Based Access Control
Extending the Authorization Mechanism

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 242

authenticationId

Specifies the authentication property, such as "uid", "sAMAccountName", and "username"

groupMembership

Specifies the name of the property in the remote system that contains the list of groups of which
the authenticated user is a member, such as memberOf, or ldapGroups.

groupRoleMapping (optional)

Enables you to assign roles to users, based on their group membership in the system resource. In
this example, users who are members of the "cn=admins" group in the LDAP directory automatically
acquire the "openidm-admin" role. Group membership is determined, based on the groupMembership
property, described previously.

managedUserLink (optional)

Used by the script specified in "augmentSecurityContext" to switch the context of an authenticated
user from their original security context to a context that is based on the related managed/user
account. The value is based on the name of the mapping in the associated sync.json file.

The value of this property is the "links" entry (usually the mapping name defined in sync.json) that
was used to relate the remote system users with the managed users.

defaultUserRoles (optional)

Can be defined for any authentication module. OpenIDM assigns such roles (or an empty set) to
the security context of a user.

enabled

Specifies whether the given authentication module is enabled (true) or disabled (false).

14.6.4. Extending the Authorization Mechanism

You can extend the default authorization mechanism by defining additional functions in router-
authz.js and by creating new access control configuration definitions in access.js.

14.7. Building Role-Based Access Control (RBAC)
In OpenIDM, role assignments can be configured with different authentication options. Roles can be
assigned in a number of ways. The roles assigned to specific users are cumulative.

The roles for each user are calculated based on the process depicted here:

Managing Authentication, Authorization and Role-Based Access Control
Building Role-Based Access Control (RBAC)

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 243

In OpenIDM, RBAC incorporates authentication and authorization options from roles configured for
clients, for managed / internal users, as well as for group memberships.

For information on the properties listed in this section, see Section 14.6.3, "Properties for
Authentication and Roles".

Roles and authentication options can be configured for users in three stages:

Client Controlled

The defaultUserRoles may be added to authentication modules configured in the applicable
authentication.json file. Default roles are listed in Section 14.5, "Roles and Authentication".

Managing Authentication, Authorization and Role-Based Access Control
Roles, Authentication, and the Security Context

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 244

If you see the following entry in authentication.json, the cited authentication property applies to all
authenticated users:
"defaultUserRoles" : []

Managed / Internal

Accumulated roles for users are collected in the userRoles property.

For a definition of managed and internal users, see Section 14.1, "OpenIDM Users".

Group roles

OpenIDM also uses group roles as input. Options include groupMembership, groupRoleMapping, and
groupComparison

context.security

Once OpenIDM assigns roles and authentication modules to a user, OpenIDM then evaluates the
result based on the context.security map, based on the scripts in the policy.js file. Details require
an extended discussion in the next section.

14.7.1. Roles, Authentication, and the Security Context

The Security Context, written into the code as context.security, consists of a principal defined by the
authenticationId, along with access control defined through the authorizationId.

If authentication is successful, Common Authentication Framework (CAF) modules set a principal.
OpenIDM stores that principal as the authenticationId. For more information, see the authentication
components defined in Section 14.4, "Supported Authentication Modules".

The authorizationId includes two roles-related components, generated by OpenIDM:

roles

Discussed in Section 14.5, "Roles and Authentication"

component

Resources defined through properties defined in Section 14.6.3, "Properties for Authentication
and Roles". The authorizationId component is set to the value references in the queryOnResource
property.

Securing & Hardening OpenIDM
Accessing the Security Management Service

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 245

Chapter 15

Securing & Hardening OpenIDM

OpenIDM provides a security management service, that manages keystore and truststore files.
The security service is accessible over the REST interface, enabling you to read and import SSL
certificates, and to generate certificate signing requests.

This chapter describes the security management service and its REST interface.

In addition, the chapter outlines the specific security procedures that you should follow before
deploying OpenIDM in a production environment.

Note

In a production environment, we recommend that you avoid the use of: communications over insecure HTTP,
self-signed certificates, and certificates associated with insecure ciphers.

15.1. Accessing the Security Management Service
OpenIDM stores keystore and truststore files in a folder named /path/to/openidm/security. These files
can be managed by using the keytool command, or over the REST interface, at the URL https:/
/localhost:8443/openidm/security. For information about using the keytool command, see http://
docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html.

The following sections describe how to manage certificates and keys over REST.

Example 15.1. To Display the Contents of the Keystore

OpenIDM generates a symmetric key and a private key the first time the server is started. After
startup, display the contents of the keystore over REST, as follows:

http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html

Securing & Hardening OpenIDM
To Generate a Certificate Signing Request Over REST

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 246

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/security/keystore"

{
 "type" : "JCEKS",
 "provider" : {
 "Cipher.Blowfish SupportedKeyFormats" : "RAW",
 "AlgorithmParameters.DESede" : "com.sun.crypto.provider.DESedeParameters",
 "AlgorithmParameters.DES" : "com.sun.crypto.provider.DESParameters",
 ...
 },
 "aliases" : ["openidm-sym-default", "openidm-localhost"]
}

By default, OpenIDM includes the following aliases:

• openidm-sym-default - the default symmetric key that is used, for example, to encrypt the
configuration.

• openidm-localhost - the default alias that is used by the Jetty web server to service SSL requests. This
alias references a private key and a self-signed certificate. You can use the self-signed certificate
for testing purposes. When you deploy OpenIDM in a production environment, you should replace
the self-signed certificate with a certificate that has been signed by a certificate authority.

15.1.1. To Generate a Certificate Signing Request Over REST
To request a signed certificate, generate a certificate signing request (CSR) over REST, as described
in this section. The details of the CSR are specified in JSON format, for example:

{
 "DN" : "www.example.com",
 "OU" : "HR",
 "L" : "Cupertino",
 "C" : "US"
}

For information about the complete contents of a CSR, see http://www.sslshopper.com/what-is-a-csr-
certificate-signing-request.html.

To generate a CSR over the REST interface, include the private key alias in the URL. The following
example, uses the default alias (openidm-localhost). If you have created your own private key for this
request, specify its alias instead of openidm-localhost. Set "returnPrivateKey" : true to return the private
key along with the request.

$ curl \

http://www.sslshopper.com/what-is-a-csr-certificate-signing-request.html
http://www.sslshopper.com/what-is-a-csr-certificate-signing-request.html

Securing & Hardening OpenIDM
To Generate a Certificate Signing Request Over REST

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 247

 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{"CN" : "www.example.com",
 "OU" : "HR",
 "L" : "Cupertino",
 "C" : "US",
 "returnPrivateKey" : true,
 "alias" : "openidm-localhost"}' \
 "https://localhost:8443/openidm/security/keystore?_action=generateCSR"

{
 "_id": "openidm-localhost",
 "csr": "-----BEGIN CERTIFICATE REQUEST-----\n
MIICmzCCAYMCAQAwWDEZMBcGA1UEAwwQd3d3MS5
leGFtcGxlLmNvbTELMAkGA1UE\nCwwCSFIxDTALBgNVBAoMBE5vbmUxEjAQBgNVBAcMCUN1cGVyd
GlubzELMAkGA1UE\nBhMCVVMwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDAjCjTt1b
o0WKH\nP/4PR/Td3A1ElTo4/J/7o7eWflOqs8vW5d76SMcJFKOQ6FhoOcOHRNewch+a0DBK\njKF
aRCE1c0PuXiIlrO7wsF4dFTtTZKAhrpFdM+0hU4LeyCDxQQ5UDga3rmyVIvC8\nL1PvW+sZEcZ9r
T67XOV03cwUpjvG4W58FCUKd6UAI0szfIrFdvJp4q4LkkBNkk9J\nUf+MXsSVuHzZrqvqhX900Is
a19mXD6/P9Cql8KmwEzzbglGFf6uYAK33F71Kx409\nTeS85sjmBbyJwUVwhgQ0R35H3HC6jex4P
jx1rSfPmsi61JBx9kyGu6rnSv5FOQGy\nBQpgQFnJAgMBAAEwDQYJKoZIhvcNAQENBQADggEBAKc
yInfo2d7/12jUrOjL4Bqt\nStuQS/HkO2KAsc/zUnlpJyd3RPI7Gs1C6FxIRVCzi4Via5QzE06n2
F8HHkinqc6m\nBWhIcf5Omk6fSqG0aw7fqn20XWDkRm+I4vtm8P8CuWftUj5qv5kmyUtrcQ3+YPD
O\nL+cK4cfuCkjLQ3h4GIgBJP+gfWX8fTmCHyaHEFjLTMj1hZYEx+3f8awOVFoNmr3/\nB8LIJNH
UiFHO6EED7LDOwa/z32mTRET0nK5DVO60H80JSWxzdWYZQV/IzHzm8ST4\n6j6vuheBZiG5gZR2V
F0x5XoudQrSg7lpVslXBHNeiM85+H08RMQh8Am2bp+Xstw=\n",
 -----END CERTIFICATE REQUEST-----\n",
 "publicKey": {
 "format": "X.509",
 "encoded": "-----BEGIN PUBLIC KEY-----\n
MIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAr
ALtYU662bNbQZG7JZ3M\noOUmVP9cPP3+DhQ5H0V0qB+9YjE4XUtuwUGqaUmuT+mrXHwGpLAqvUm
NsVyXJj9s\nJhX6PCyXzO3RdKBVC8pphMfKXodjBC57ef0OkWjO5ZRAqCRwS3BXkoCfu6/ZXRpk\
ncc/A1RmLZdPmcuKmN5vQl4E3Z6F4YyG7M0g7TE54dhqPvGNS9cO4r0Vom9373MDh\n+8QSfmLCC
94Ro+VUAF9Q6nk2j0PgTi+QZ0i93jbKAWWX57w6S5i7CpEptKyeP9iG\ncFnJddSICPHkbQJ73gu
lyZYkbcBblNUxIhODZV5bJ0oxn9qgYvzlxJupldYsYkBo\ncwIDAQAB\n
 -----END PUBLIC KEY-----\n",
 "algorithm": "RSA"
 },
 "privateKey": {
 "format": "PKCS#8",
 "encoded": "-----BEGIN RSA PRIVATE KEY-----\n
MIIEpAIBAAKCAQEArALtYU662bNbQZG7JZ3MoOU
VP9cPP3+DhQ5H0V0qB+9YjE4\nXUtuwUGqaUmuT+mrXHwGpLAqvUmNsVyXJj9sJhX6PCyXzO3RdK
BVC8pphMfKXodj\nBC57ef0OkWjO5ZRAqCRwS3BXkoCfu6/ZXRpkcc/A1RmLZdPmcuKmN5vQl4E3
Z0i93jbKAWWX57w6S5i7CpEptKyeP9iGcFnJddSICPHkbQJ73gulyZYkbcBb\nlNUxIhODZV5bJ0
Z6F4\nYyG7M0g7TE54dhqPvGNS9cO4r0Vom9373MDh+8QSfmLCC94Ro+VUAF9Q6nk2j0Pg\nTi+Q
oxn9qgYvzlxJupldYsYkBocwIDAQABAoIBAGmfpopRIPWbaBb8\nWNIBcuz9qSsaX1ZolP+qNWVZ
bgfq7Y0FMlo/frQXEYBzqSETGJHC6wVn0+bF6scV\nVw86dLtyVWVr8I77HdoitfZ2hZLuZ/rh4d
BohpPi63YoyJs7DPTy4y2/v1aLuwoy\nMiQ0l6c3bm6sr+eIVgMH4A9Xk5/jzAHVTCBrvfTYZnh6
qD4Qmiuj8pQn79HQV8NK\nLt/5kmV1+uGj78jg7NR06NjNsa4L3mNZSiqsn2haPXZAnBjKfWApxe
GugURgNBCO\ncmYqCDZLvpMy4S/qoRBu+6qdYGprb+tHshBYNywuDkrgszhwgr5yRm8VQ60T9tM/
\nceKM+TECgYEA2Az2DkpC9TjJHPJG7x4boRRVqV5YRgPf5MrU+7PxDMb+EauXXUXg\nsch9Eeon
30yINqSv6FwATLVlkzQpZLkkJ6GJqAxUmPjRslAuosiSJqKaWamDUDbz\nSu/7iANJWvRGayqZsa
GQqFwM0Xpfp/EiBGe757k0D02u8sAv94A75bsCgYEAy9FQ\nMwDU3CaDzgv0qgR1ojXkSW0dCbv0
QPEkKZ2Ik7JbXzwVGzfdv2VUVrzRKBGReYzn\nGg/s4HbZkYy4O+SJo44n/5iO2pgKG5MEDFHSpw

Securing & Hardening OpenIDM
To Import a Signed Certificate into the Keystore

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 248

X54Rm+qabT2fQ2lFJ/myWKsPgJ\n4gZ9bUvcemCcLLzsiAphueulQp49eOLnkzPlQKkCgYEAy7A0
jrZuuDjoStUUET5G\neC/urvZWrPPcMx0TfZZhTVWSlWA8HWDS/WnymGA1ZS4HQdU0TxHl6mwerp
C/8ckn\nEAIZAQlW/L2hHcbAoRIN0ET+1kedmJOl/mGQt+O5Vfn1JfYM3s5ezouyPhBsfK43\nDw
Ypvsb6EO+BYDXXQzVvwx8CgYB9o67LcfTFLNzNFCOi9pLJBm2OMbvXt0wPCFch\nbCG34hdfMntU
RvDjvgPqYASSrZm+kvQW5cBAciMWDOe4y91ovAW+En3lFBoO+2Zg\nbcPr/8wUTblxfQxU660Fa4
GL0u2Wv5/f+94vlLb5nTpIfcFU7wllAXTjBwaf0Uet\nPy1P2QKBgQDPoyJqPi2TdN7ZQYcoXAM4
Gl5Yv9oO16RC917XH6SLvj0ePmdLgBXo\nrR6aAmOjLzFp9jiytWZqVR9DbAWd2YNpvQav4Gude3
lteew02UT+GNv/gC71bXCw\ncFTxnmKjP8YYIBBqZXzuk9wEaHN7OdGybUW0dsBCGxTXwDKe8XiA
6w==\n-----END RSA PRIVATE KEY-----\n",
 "algorithm": "RSA"
}

This sample request returns the CSR, the private key associated with the request, and the public
key. The security management service stores the private key in the repository. When the signed
certificate is returned by the certificate authority and you import the certificate into the keystore, you
do not need to supply the private key. The security management service locates the private key in the
repository, adds the certificate chain, and loads it into the keystore.

If you will be importing the signed certificate into the keystore of an OpenIDM instance that is not
connected to the repository in which this private key was stored, you must include the private key
when you import the signed certificate. Setting "returnPrivateKey" : true in the CSR enables you to
maintain a copy of the private key for this purpose.

Send the output from
"csr": "-----BEGIN CERTIFICATE REQUEST-----
 ...
 -----END CERTIFICATE REQUEST-----

to your certificate authority for signature.

15.1.2. To Import a Signed Certificate into the Keystore
When a signed certificate is returned by the certificate authority, import it into the keystore
by running a RESTful PUT command on the keystore alias. Include the CA root certificate in the
command. If you are not importing the certificate into the same keystore as the one from which the
CSR was generated, include the private key in the PUT request.

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request PUT \
 --data '{
 "alias": "openidm-localhost",
 "fromCSR": true,
 "certs": [
 "-----BEGIN CERTIFICATE-----\n
MIIGcDCCBVigAwIBAgIDC23tMA0GCSqGSIb3DQEBBQUAMIGMMQswCQYDVQQGEwJJ\n
TDEWMBQGA1UEChMNU3RhcnRDb20gTHRkLjErMCkGA1UECxMiU2VjdXJlIERpZ2l0\n
YWwgQ2VydGlmaWNhdGUgU2lnbmluZzE4MDYGA1UEAxMvU3RhcnRDb20gQ2xhc3Mg\n
MSBQcmltYXJ5IEludGVybWVkaWF0ZSBTZXJ2ZXIgQ0EwHhcNMTMwODA3MTMyODAz\n

Securing & Hardening OpenIDM
To Import a Signed Certificate into the Keystore

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 249

WhcNMTQwODA4MDY0NTM5WjB2MRkwFwYDVQQNExBwZ3BDaGU4cEJPZnptVE9KMQsw\n
CQYDVQQGEwJHQjEjMCEGA1UEAxMadGVzdC1jb25uZWN0LmZvcmdlcm9jay5jb20x\n
JzAlBgkqhkiG9w0BCQEWGHBvc3RtYXN0ZXJAZm9yZ2Vyb2NrLmNvbTCCASIwDQYJ\n
KoZIhvcNAQEBBQADggEPADCCAQoCggEBAJRWGbnMGs+uGKU6ZrlTaaFdPczLqZnv\n
D37T0FOc/X3XXHxSVH94FDk7N4ansP2o6BsDWttIkM2AXkX3efMRaNpgxg7l4+DL\n
opV6H1RkrRba2Lom6Hp2pgkqvOBfd1ZMOmLbjUHt0jhypnIzu7TVwtTH7Ywsrx9F\n
uR9d4veYdW70IeQ64EhUG3RJBGG++AYJZCOjgEfbCwAYe/NoX/YVu+aMreHMR/+0\n
CV0YXKvHZgytcwZIc5WkQYaSWQA9lDWZzt5XjCErCATfiGEQ0k02QgpEfNTXxwQs\n
kfxh//O/qbfOWmloGwVU/2NY+5z3ZW8/eCksmiL1gGAYQAd+9+WI7BsCAwEAAaOC\n
Au4wggLqMAkGA1UdEwQCMAAwCwYDVR0PBAQDAgOoMBMGA1UdJQQMMAoGCCsGAQUF\n
BwMBMB0GA1UdDgQWBBR2zHzb71ZOHSwDZk28L9It3PvOtzAfBgNVHSMEGDAWgBTr\n
QjTQmLCrn/Qbawj3zGQu7w4sRTA0BgNVHREELTArghp0ZXN0LWNvbm5lY3QuZm9y\n
Z2Vyb2NrLmNvbYINZm9yZ2Vyb2NrLmNvbTCCAVYGA1UdIASCAU0wggFJMAgGBmeB\n
DAECATCCATsGCysGAQQBgbU3AQIDMIIBKjAuBggrBgEFBQcCARYiaHR0cDovL3d3\n
dy5zdGFydHNzbC5jb20vcG9saWN5LnBkZjCB9wYIKwYBBQUHAgIwgeowJxYgU3Rh\n
cnRDb20gQ2VydGlmaWNhdGlvbiBBdXRob3JpdHkwAwIBARqBvlRoaXMgY2VydGlm\n
aWNhdGUgd2FzIGlzc3VlZCBhY2NvcmRpbmcgdG8gdGhlIENsYXNzIDEgVmFsaWRh\n
dGlvbiByZXF1aXJlbWVudHMgb2YgdGhlIFN0YXJ0Q29tIENBIHBvbGljeSwgcmVs\n
aWFuY2Ugb25seSBmb3IgdGhlIGludGVuZGVkIHB1cnBvc2UgaW4gY29tcGxpYW5j\n
ZSBvZiB0aGUgcmVseWluZyBwYXJ0eSBvYmxpZ2F0aW9ucy4wNQYDVR0fBC4wLDAq\n
oCigJoYkaHR0cDovL2NybC5zdGFydHNzbC5jb20vY3J0MS1jcmwuY3JsMIGOBggr\n
BgEFBQcBAQSBgTB/MDkGCCsGAQUFBzABhi1odHRwOi8vb2NzcC5zdGFydHNzbC5j\n
b20vc3ViL2NsYXNzMS9zZXJ2ZXIvY2EwQgYIKwYBBQUHMAKGNmh0dHA6Ly9haWEu\n
c3RhcnRzc2wuY29tL2NlcnRzL3N1Yi5jbGFzczEuc2VydmVyLmNhLmNydDAjBgNV\n
HRIEHDAahhhodHRwOi8vd3d3LnN0YXJ0c3NsLmNvbS8wDQYJKoZIhvcNAQEFBQAD\n
ggEBAKVOAHtXTrgISj7XvE4/lLxAfIP56nlhpoLu8CqVlLK6eK4zCQRyTiFYx3xq\n
VQMSNVgQIdimjEsMz8o5/fDrCrozsT6sqxIPFsdgdskPyz9YyC9Y/AVBuECxabQr\n
B//0STicfdPg8PuDYtI64/INA47d/gtb57RaTFYxKs6bU8vtObinDJCwT33x4tvt\n
ob18DwB3/PeTbWyVUIxB0nvfm89dys0SF2alaA/bLuy0B7rdlppd4dOMpmiD0tnI\n
DORtr5HOD1xGiixZWzA1V2pTmF/hJZbhmEgBUSIyPK5Z9pZPephMf+/KrovbQqKr\n
6SEjgs7dGwpo6fA2mfCH5cCrid0=\n
-----END CERTIFICATE-----",
 "-----BEGIN CERTIFICATE-----\n
MIIDdTCCAl2gAwIBAgILBAAAAAABFUtaw5QwDQYJKoZIhvcNAQEFBQAwVzELMAkG\n
A1UEBhMCQkUxGTAXBgNVBAoTEEdsb2JhbFNpZ24gbnYtc2ExEDAOBgNVBAsTB1Jv\n
b3QgQ0ExGzAZBgNVBAMTEkdsb2JhbFNpZ24gUm9vdCBDQTAeFw05ODA5MDExMjAw\n
MDBaFw0yODAxMjgxMjAwMDBaMFcxCzAJBgNVBAYTAkJFMRkwFwYDVQQKExBHbG9i\n
YWxTaWduIG52LXNhMRAwDgYDVQQLEwdSb290IENBMRswGQYDVQQDExJHbG9iYWxT\n
aWduIFJvb3QgQ0EwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDaDuaZ\n
jc6j40+Kfvvxi4Mla+pIH/EqsLmVEQS98GPR4mdmzxzdzxtIK+6NiY6arymAZavp\n
xy0Sy6scTHAHoT0KMM0VjU/43dSMUBUc71DuxC73/OlS8pF94G3VNTCOXkNz8kHp\n
1Wrjsok6Vjk4bwY8iGlbKk3Fp1S4bInMm/k8yuX9ifUSPJJ4ltbcdG6TRGHRjcdG\n
snUOhugZitVtbNV4FpWi6cgKOOvyJBNPc1STE4U6G7weNLWLBYy5d4ux2x8gkasJ\n
U26Qzns3dLlwR5EiUWMWea6xrkEmCMgZK9FGqkjWZCrXgzT/LCrBbBlDSgeF59N8\n
9iFo7+ryUp9/k5DPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNVHRMBAf8E\n
BTADAQH/MB0GA1UdDgQWBBRge2YaRQ2XyolQL30EzTSo//z9SzANBgkqhkiG9w0B\n
AQUFAAOCAQEA1nPnfE920I2/7LqivjTFKDK1fPxsnCwrvQmeU79rXqoRSLblCKOz\n
yj1hTdNGCbM+w6DjY1Ub8rrvrTnhQ7k4o+YviiY776BQVvnGCv04zcQLcFGUl5gE\n
38NflNUVyRRBnMRddWQVDf9VMOyGj/8N7yy5Y0b2qvzfvGn9LhJIZJrglfCm7ymP\n
AbEVtQwdpf5pLGkkeB6zpxxxYu7KyJesF12KwvhHhm4qxFYxldBniYUr+WymXUad\n
DKqC5JlR3XC321Y9YeRq4VzW9v493kHMB65jUr9TU/Qr6cf9tveCX4XSQRjbgbME\n
HMUfpIBvFSDJ3gyICh3WZlXi/EjJKSZp4A==
\n
-----END CERTIFICATE-----"
],
 "privateKey": "-----BEGIN RSA PRIVATE KEY-----\n
zDot5q3vP9YjCihMZMkSa0zT2Zt+8S+mC0EVuYuTVhVpqrVNtkP1mlt+CYqmDffY\n
sGuD6SMrT6+SeAzX2uYFgY4+s8yaRWBcr0C5Z7yihilM6BK+IJ4is9kaW5VFr1Ph\n
wRKvSeFHBGh2wLNpjVSNPzLMDZBtkVi9Ny/xD5C3M1Gah0PGmnrPGCP8tr1Lshv4\n

Securing & Hardening OpenIDM
Security Management Service Endpoints

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 250

PxYJwzHzouTdQDkLYlCjMN++NmIYfx7zrbEYV4VzXMxgNq7d3+d5dlVfE8xpAjSR\n
Lqlamib+doe1oWOQ2WiS6baBAH+Gw5rgqfwhJbCY/UlbCpuJ6kl7TLvTrFp8YpvB\n
Iv1GD0yuwSued3a+AxMFuIzTBYd2rC6rHq+eF4eHd/Q/Sbm9+9VuW/h8dW3LGvbE\n
5SUUhNw6uSkOZmZ0z/+FLbwoLPCASukY9biSd+12KJf4N42WZxID+9mJTp1j/Bv7\n
n29oGfZ3vav8PqG+F987hSyWEIdGTMfIxwaUrdYe1fmbUCxv0suMcYTRbAs9g3cm\n
eCNxbZBYC/fL+Nlj5NjZ+gxA/tEXV7wWynPZW3mZny6fQpDTDMslqsoFZR+rAUzH\n
ViePuLbCdxIC5heUyqvDBbeOzgQWOu6SZjX+mAQpo0DPKt1KDP4DKv9EW92sIwW3\n
AnFg98sje0DZ+zfsnevGioQMJrG0JSnqTYADxHaauu7NWndkfMZisfNIKA0u+ajU\n
AbP8xFXIP5JU8O4tWmlbxAbMOYfrZHabFNZx4DH1OVOJqdJIVx0KER0GSZd50D6W\n
QBzCfEbwMlJ17OB0AgWzNrbaak3MCmW1mh7OecjQwge1ajy7ho+JtQ==\n
-----END RSA PRIVATE KEY-----"
 }' \
 "https://localhost:8443/openidm/security/keystore/cert"

{
 "_id": "openidm-localhost"
}

If the import is successful, the command returns the alias of the keystore to which the signed
certificate was added.

15.1.3. Security Management Service Endpoints
The OpenIDM security management service includes the following endpoints:

• openidm/security/keystore

• openidm/security/truststore

You can use these endpoints to READ the contents on the keystore and truststore.

In addition, you can use these endpoints to perform related actions such as generateCert and
generateCSR.

When you set up an _action request on either endpoint, you need to include all properties, including
alias, in the request data.

The alias is not provided in the URL; it is available in the data object. For example, you might include
"alias" : "openidm-localhost" within a --data '{ "alias" : "openidm-localhost" }' option.

Certificates and private keys are associated with the following endpoints: openidm/security/keystore/
cert, openidm/security/keystore/privatekey, and openidm/security/truststore/cert.

All CRUD requests on such certificates and private/public keys use these endpoints.

15.2. Security Precautions for a Production Environment
Out of the box, OpenIDM is set up for ease of development and deployment. When you deploy
OpenIDM in production, there are specific precautions you should take to minimize security

Securing & Hardening OpenIDM
Use SSL and HTTPS

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 251

breaches. After following the guidance in this section, make sure that you test your installation to
verify that it behaves as expected before putting it into production.

15.2.1. Use SSL and HTTPS

We recommend that you disable plain HTTP access, as described in the section titled Secure Jetty.

Use TLS/SSL to access OpenIDM, ideally with mutual authentication so that only trusted systems
can invoke each other. TLS/SSL protects data on the network. Mutual authentication with strong
certificates, imported into the trust and keystores of each application, provides a level of confidence
for trusting application access.

Augment this protection with message level security where appropriate.

15.2.2. Restrict REST Access to the HTTPS Port

When possible, use a certificate to secure REST access, over HTTPS. For production, that certificate
should be signed by a certificate authority.

OpenIDM generates a self-signed certificate when it first starts up. You can use this certificate to test
secure REST access.

While not recommended for production, you can test secure REST access using the default self-
signed certificate. To do so, you can create a self-signed certificate file, self-signed.crt, using the
following procedure:

1. Extract the certificate that is generated when OpenIDM starts up.
$ openssl s_client -showcerts -connect localhost:8443 </dev/null

This command outputs the entire certificate to the terminal.

2. Using any text editor, create a file named self-signed.crt. Copy the portion of the certificate from
-----BEGIN CERTIFICATE----- to ----END CERTIFICATE----- and paste it into the self-signed.crt file, which
should appear similar to the following:

Securing & Hardening OpenIDM
Encrypt Data Internally and Externally

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 252

$ more self-signed.crt
-----BEGIN CERTIFICATE-----
MIIB8zCCAVygAwIBAgIETkvDjjANBgkqhkiG9w0BAQUFADA+MSgwJgYDVQQKEx9P
cGVuSURNIFNlbGYtU2lnbmVkIENlcnRpZmljYXRlMRIwEAYDVQQDEwlsb2NhbGhv
c3QwHhcNMTEwODE3MTMzNTEwWhcNMjEwODE3MTMzNTEwWjA+MSgwJgYDVQQKEx9P
cGVuSURNIFNlbGYtU2lnbmVkIENlcnRpZmljYXRlMRIwEAYDVQQDEwlsb2NhbGhv
c3QwgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAKwMkyvHS5yHAnI7+tXUIbfI
nQfhcTChpWNPTHc/cli/+Ta1InTpN8vRScPoBG0BjCaIKnVVl2zZ5ya74UKgwAVe
oJQ0xDZvIyeC9PlvGoqsdtH/Ihi+T+zzZ14oVxn74qWoxZcvkG6rWEOd42QzpVhg
wMBzX98slxkOZhG9IdRxAgMBAAEwDQYJKoZIhvcNAQEFBQADgYEASo4qMI0axEKZ
m0jU4yJejLBHydWoZVZ8fKcHVlD/rTirtVgWsVgvdr3yUr0Idk1rH1nEF47Tzn+V
UCq7qJZ75HnIIeVrZqmfTx8169paAKAaNF/KRhTE6ZII8+awst02L86shSSWqWz3
s5xPB2YTaZHWWdzrPVv90gL8JL/N7/
Q=
-----END CERTIFICATE-----

3. Test REST access on the HTTPS port, referencing the self-signed certificate in the command. For
example:
$ curl \
 --header "X-OpenIDM-Username:openidm-admin" \
 --header "X-OpenIDM-Password:openidm-admin" \
 --cacert self-signed.crt \
 --request GET \
 "https://localhost:8443/openidm/managed/user/?_queryId=query-all-ids"
 {
 "result": [],
 "resultCount": 0,
 "pagedResultsCooke": null,
 "remainingPagedResuts": -1
}

15.2.3. Encrypt Data Internally and Externally
Beyond relying on end-to-end availability of TLS/SSL to protect data, OpenIDM also supports explicit
encryption of data that goes on the network. This can be important if the TLS/SSL termination
happens prior to the final endpoint.

OpenIDM also supports encryption of data stored in the repository, using a symmetric key. This
protects against some attacks on the data store. Explicit table mapping is supported for encrypted
string values.

OpenIDM automatically encrypts sensitive data in configuration files, such as passwords. OpenIDM
replaces clear text values when the system first reads the configuration file. Take care with
configuration files having clear text values that OpenIDM has not yet read and updated.

15.2.4. Use Message Level Security
OpenIDM supports message level security, forcing authentication before granting access.
Authentication works by means of a filter-based mechanism that lets you use either an HTTP Basic

Securing & Hardening OpenIDM
Use Message Level Security

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 253

like mechanism or OpenIDM-specific headers, setting a cookie in the response that you can use for
subsequent authentication. If you attempt to access OpenIDM URLs without the appropriate headers
or session cookie, OpenIDM returns HTTP 401 Unauthorized, or HTTP 403 Forbidden, depending on
the situation. If you use a session cookie, you must include an additional header that indicates the
origin of the request.

15.2.4.1. Message Level Security with Logins
The following examples show successful authentications.

$ curl \
 --cacert self-signed.crt \
 --dump-header /dev/stdout \
 --user openidm-admin:openidm-admin \
 "https://localhost:8443/openidm/managed/user?_queryId=query-all-ids"

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Cache-Control: no-cache
Set-Cookie: session-jwt=2l0zobpuk6st1b2m7gvhg5zas ...;Path=/
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Vary: Accept-Encoding, User-Agent
Content-Length: 82
Server: Jetty(8.y.z-SNAPSHOT)

{"result":[],"resultCount":"0","pagedResultsCookie":null,"remainingPagedResults":-1}

$ curl \
 --cacert self-signed.crt \
 --dump-header /dev/stdout \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 "https://localhost:8443/openidm/managed/user?_queryId=query-all-ids"

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Cache-Control: no-cache
Set-Cookie: session-jwt=2l0zobpuk6st1b2m7gvhg5zas ...;Path=/
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Vary: Accept-Encoding, User-Agent
Content-Length: 82
Server: Jetty(8.y.z-SNAPSHOT)

{"result":[],"resultCount":"0","pagedResultsCookie":null,"remainingPagedResults":-1}

$ curl \
 --dump-header /dev/stdout \
 --cacert self-signed.crt \
 --header "Cookie: session-jwt=2l0zobpuk6st1b2m7gvhg5zas ..." \
 --header "X-Requested-With: OpenIDM Plugin" \
 "https://localhost:8443/openidm/managed/user?_queryId=query-all-ids"

Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: application/json; charset=UTF-8

Securing & Hardening OpenIDM
Replace Default Security Settings

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 254

Cache-Control: no-cache
Vary: Accept-Encoding, User-Agent
Content-Length: 82
Server: Jetty(8.y.z-SNAPSHOT)

Notice that the last example uses the cookie OpenIDM set in the response to the previous request,
and includes the X-Requested-With header to indicate the origin of the request. The value of the header
can be any string, but should be informative for logging purposes. If you do not include the X-Requested
-With header, OpenIDM returns HTTP 403 Forbidden.

Note

The careful readers among you may notice that the expiration date of the JWT cookie, January 1, 1970,
corresponds to the start of UNIX time. Since that time is in the past, browsers will not store that cookie after
the browser is closed.

You can also request one-time authentication without a session.

$ curl \
 --dump-header /dev/stdout \
 --cacert self-signed.crt \
 --header "X-OpenIDM-NoSession: true" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 "https://localhost:8443/openidm/managed/user?_queryId=query-all-ids"

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Cache-Control: no-cache
Vary: Accept-Encoding, User-Agent
Content-Length: 82
Server: Jetty(8.y.z-SNAPSHOT)

{"result":[],"resultCount":"0","pagedResultsCookie":null,"remainingPagedResults":-1}

15.2.4.2. Logout By Removing the JWT Cookie
OpenIDM maintains sessions with a JWT session cookie, stored in a client browser. To log out and
destroy the session, you would access and remove that cookie from the client browser.

The JWT session cookie is based on the JWT_SESSION module documented in Supported Authentication
Modules.

15.2.5. Replace Default Security Settings
The default security settings are adequate for evaluation purposes. For production, change the
default encryption key, and then replace the default user password.

Securing & Hardening OpenIDM
Replace Default Security Settings

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 255

Procedure 15.1. To Change Default Encryption Keys

By default, OpenIDM uses a symmetric encryption key with alias openidm-sym-default. Change this
default key before deploying OpenIDM in production.

As noted in the section on the keytool command, the default keystore password is changeit.

1. Add the new key to the keystore.
$ cd /path/to/openidm/
$ keytool \
 -genseckey \
 -alias new-sym-key \
 -keyalg AES \
 -keysize 128 \
 -keystore security/keystore.jceks \
 -storetype JCEKS
 Enter keystore password:
Enter key password for <new-sym-key>
 (RETURN if same as keystore password):
Re-enter new password:

Additional options associated with the keytool command in OpenIDM are shown in the following
file: openidm/samples/security/keystore_readme.txt.

2. Change the alias used in openidm/conf/boot/boot.properties.

Procedure 15.2. To Replace the Default User & Password

After changing the default encryption key, change at least the default user password.

1. Use the encrypt command to obtain the encrypted version of the new password.

$ cd /path/to/openidm/
$ cli.sh encrypt newpwd

..
.
-----BEGIN ENCRYPTED VALUE-----
{
 "$crypto" : {
 "value" : {
 "iv" : "TCoC/YrmiRmINw6jCPB5LQ==",
 "data" : "nCFvBIApIQ7C6k+UPzosaA==",
 "cipher" : "AES/CBC/PKCS5Padding",
 "key" : "openidm-sym-default"
 },
 "type" : "x-simple-encryption"
 }
}
------END ENCRYPTED VALUE------

Securing & Hardening OpenIDM
Secure Jetty

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 256

2. Replace the user object in the openidm/db/scripts/mysql/openidm.sql script before setting up MySQL
as a repository for OpenIDM.

Alternatively, replace the user in the internal user table.

15.2.6. Secure Jetty

If you do not want to use regular HTTP on a production OpenIDM system, edit the openidm/conf/
jetty.xml configuration file. Comment out the line that enables regular HTTP.

The following excerpt includes the Java comment code that you would add around the openidm
.port.http argument. The value of this argument (8080 by default) is taken from the conf/boot/
boot.properties file and the conf/config.properties file.

<Call name="addConnector>
 <Arg>
 <New class="org.eclipse.jetty.server.nio.SelectChannelConnector">
 <Set name="host"><Property name="jetty.host" /></Set>
<!-- <Set name="port"><Call class="org.forgerock.openidm.jetty.Param"
 name="getProperty"<Arg>openidm.port.http</Arg></Call></Set> -->
 <Set name="maxIdleTime">300000</Set>
 <Set name="Acceptors">2</Set>
 <Set name="statsOn">false</Set>
 <Set name="confidentialPort">
 <Call class="org.forgerock.openidm.jetty.Param" name="getProperty">
 <Arg>openidm.port.https</Arg>
 </Call>
 </Set>
 </New>
 </Arg>
</Call>

15.2.7. Protect Sensitive REST Interface URLs

Anything attached to the router is accessible with the default policy, including the repository. If you
do not need such access, deny it in the authorization policy to reduce the attack surface.

In addition, you can deny direct HTTP access to system objects in production, particularly access to
action. As a rule of thumb, do not expose anything that is not used in production. The main public
interfaces over HTTP are /openidm/managed/ and /openidm/config/. Other URIs are triggered indirectly, or
are used for internal consumption.

OpenIDM supports native query expressions on the repository, and it is possible to enable these over
HTTP, for example, the following query should identify managed users in an OrientDB repository:

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 "https://localhost:8443/openidm/managed/user?_queryExpression=select+*+from+managed_user"

Securing & Hardening OpenIDM
Protect Sensitive Files & Directories

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 257

By default, direct HTTP access to native queries is disallowed, and should remain so in production
systems.

For testing or development purposes, it can be helpful to enable native queries on the repository over
HTTP. To do so, edit the access control configuration file (access.js). In that file, remove any instances
of "disallowQueryExpression()" such as the following:

{
 "pattern" : "*",
 "roles" : "openidm-admin",
 "methods" : "*", // default to all methods allowed
 "actions" : "*", // default to all actions allowed
 // "customAuthz" : "disallowQueryExpression()",
 "excludePatterns": "system/*"
},
...
{
 "pattern" : "system/*",
 "roles" : "openidm-admin",
 "methods" : "create,read,update,delete,patch,query", // restrictions on 'action'
 "actions" : ""
 // "customAuthz" : "disallowQueryExpression()"
},
...
 "customAuthz" : "ownDataOnly() &&
 managedUserRestrictedToAllowedProperties('"+allowedPropertiesForManagedUser+"')",
 // && disallowQueryExpression()"

See the chapter on Managing Authentication, Authorization & RBAC for an example showing how to
protect sensitive URLs.

15.2.8. Protect Sensitive Files & Directories

Protect OpenIDM files from access by unauthorized users.

In particular, prevent other users from reading files in at least the openidm/conf/boot/ and openidm/
security/ directories.

The objective is to limit access to the user that is running the service. Depending on the operating
system and configuration, that user might be root, Administrator, openidm, or something similar.

Procedure 15.3. Protecting key files in Unix

1. For the target directory, and the files therein, make sure user and group ownership is limited to
the user that is running the OpenIDM service.

2. Disable access of any sort for other users. One simple command for that purpose, from the /path/
to/openidm directory, is:

Securing & Hardening OpenIDM
Obfuscate Bootstrap Information

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 258

chmod -R o-rwx .

Procedure 15.4. Protecting key files in Windows

1. The OpenIDM process in Windows is normally run by the Administrator user.

2. If you are concerned about the security of the administrative account, you can Deny permissions
on the noted directories to existing users, or alternatively the Users group.

15.2.9. Obfuscate Bootstrap Information
OpenIDM uses the information in conf/boot/boot.properties, including the keystore password, to start
up. The keystore password is changeit by default, and is stored in clear text in the boot.properties file.
To set an obfuscated version of the keystore password in the boot.properties file, follow these steps.

1. Generate an obfuscated version of the password, by using the crypto bundle provided with
OpenIDM:

$ java -jar /path/to/openidm/bundle/openidm-crypto-3.0.0.jar

This utility helps obfuscate passwords to prevent casual observation.
It is not securely encrypted and needs further measures to prevent disclosure.
Please enter the password:
OBF:1vn21ugu1saj1v9i1v941sar1ugw1vo0
CRYPT:a8b5a01ba48a306f300b62a1541734c7

2. Paste the obfuscated password (OBF:xxxxxxx) and the cryptographic key (CRYPT:xxxxxxx) into the conf/
boot/boot.properties file. Comment out the regular keystore password and remove the comment
tags from the lines that contain the obfuscated password and the cryptographic key:

$ more conf/boot/boot.properties

...
Keystore password, adjust to match your keystore and protect this file
openidm.keystore.password=changeit
openidm.truststore.password=changeit

optionally use the cli encrypt to obfuscate the password and set
openidm.keystore.password=OBF:1vn21ugu1saj1v9i1v941sar1ugw1vo0
openidm.keystore
.password=CRYPT:a8b5a01ba48a306f300b62a1541734c7
...

3. Restart OpenIDM.
$./startup.sh

Securing & Hardening OpenIDM
Remove or Protect Development & Debug Tools

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 259

15.2.10. Remove or Protect Development & Debug Tools

Before deploying OpenIDM in production, remove or protect development and debug tools, including
the OSGi console exposed under /system/console. Authentication for this console is not integrated with
authentication for OpenIDM.

To remove the OSGi console, remove the web console bundle, org.apache.felix.webconsole-version.jar.

If you cannot remove the OSGi console, then protect it by overriding the default admin:admin
credentials. Create a file called openidm/conf/org.apache.felix.webconsole.internal.servlet.OsgiManager.cfg
containing the user name and password to access the console in Java properties file format.

username=user-name
password=password

15.2.11. Protect the OpenIDM Repository

Use the JDBC or MSSQL repositories. OrientDB is not yet supported for production use.

Use a strong password for the JDBC connection. Do not rely on default passwords.

Use a case sensitive database, particularly if you work with systems with different identifiers that
match except for case. Otherwise correlation queries can pick up identifiers that should not be
considered the same.

15.2.12. Adjust Log Levels

Leave log levels at INFO in production to ensure that you capture enough information to help diagnose
issues. See the chapter on Configuring Server Logs for more information.

At start up and shut down, INFO can produce many messages. Yet, during stable operation, INFO
generally results in log messages only when coarse-grain operations such as scheduled reconciliation
start or stop.

15.2.13. Set Up Restart At System Boot

You can run OpenIDM in the background as a service (daemon), and add startup and shutdown
scripts to manage the service at system boot and shutdown. For more information, see Starting and
Stopping OpenIDM.

See your operating system documentation for details on adding a service such as OpenIDM to be
started at boot and shut down at system shutdown.

Integrating Business Processes and Workflows
BPMN 2.0 and the Activiti Tools

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 260

Chapter 16

Integrating Business Processes and Workflows

Key to any identity management solution is the ability to provide workflow-driven provisioning
activities, whether for self-service actions such as requests for entitlements, roles or resources,
running sunrise or sunset processes, handling approvals with escalations, or performing
maintenance.

OpenIDM provides an embedded workflow and business process engine based on Activiti and the
Business Process Model and Notation (BPMN) 2.0 standard.

More information about Activiti and the Activiti project can be found at http://www.activiti.org.

16.1. BPMN 2.0 and the Activiti Tools
Business Process Model and Notation 2.0 is the result of consensus among Business Process
Management (BPM) system vendors. The Object Management Group (OMG) has developed and
maintained the BPMN standard since 2004.

The first version of the BPMN specification focused only on graphical notation, and quickly became
popular with the business analyst audience. BPMN 1.x defines how constructs such as human tasks,
executable scripts, and automated decisions are visualized in a vendor-neutral, standard way. The
second version of BPMN extends that focus to include execution semantics, and a common exchange
format. Thus, BPMN 2.0 process definition models can be exchanged not only between different
graphical editors, but can also be executed as is on any BPMN 2.0-compliant engine, such as the
engine embedded in OpenIDM.

Using BPMN 2.0, you can add artifacts describing workflow and business process behavior to
OpenIDM for provisioning and other purposes. For example, you can craft the actual artifacts
defining business processes and workflow in a text editor, or using a special Eclipse plugin. The
Eclipse plugin provides visual design capabilities, simplifying packaging and deployment of the
artifact to OpenIDM. See the Activiti BPMN 2.0 Eclipse Plugin documentation for instructions on
installing Activiti Eclipse BPMN 2.0 Designer.

Also, read the Activiti User Guide section covering BPMN 2.0 Constructs, which describes in detail
the graphical notations and XML representations for events, flows, gateways, tasks, and process
constructs.

With the latest version of Activiti, JavaScript tasks can be added to workflow definitions. However,
OpenIDM functions cannot be called from a JavaScript task in a workflow. Therefore, you can use

http://www.activiti.org
http://omg.org/
http://www.omg.org/spec/BPMN/
http://docs.codehaus.org/display/ACT/Activiti+BPMN+2.0+Eclipse+Plugin
http://www.activiti.org/userguide/#bpmnConstructs

Integrating Business Processes and Workflows
Setting Up Activiti Integration With OpenIDM

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 261

JavaScript for non-OpenIDM workflow tasks, but you must use the activiti:expression construct to call
OpenIDM functions.

16.2. Setting Up Activiti Integration With OpenIDM
OpenIDM embeds an Activiti Process Engine that is started in the OpenIDM OSGi container.

After OpenIDM has been installed (as described in the Installation Guide in the Installation Guide),
start OpenIDM, and run the scr list command at the console to check that the workflow bundle is
active.
-> OpenIDM ready
scr list
 Id State Name
...
[39] [active] org.forgerock.openidm.workflow
...

OpenIDM reads workflow definitions from the /path/to/openidm/workflow directory. To test workflow
integration, at least one workflow definition must exist in this directory.

A sample workflow (example.bpmn20.xml) is provided in the /path/to/openidm/samples/misc directory. Copy
this workflow to the /path/to/openidm/workflow directory to test the workflow integration.
$ cd /path/to/openidm
$ cp samples/misc/example.bpmn20.xml workflow/

Verify the workflow integration by using the REST API. The following REST call lists the defined
workflows:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processdefinition?_queryId=query-all-ids"

The sample workflow definition that you copied in the previous step is named osgiProcess. The result
of the preceding REST call therefore includes output similar to the following:

Integrating Business Processes and Workflows
Setting Up Activiti Integration With OpenIDM

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 262

{
...
 "result":[
 {
 ...
 "key": "osgiProcess",
 ...
 "name":"Osgi process",
 ...
 "_id":"osgiProcess:1:3",
 ...
 }
]
}

The osgiProcess workflow calls OpenIDM, queries the available workflow definitions from Activiti, then
prints the list of workflow definitions to the OpenIDM logs. Invoke the osgiProcess workflow with the
following REST call:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{"_key":"osgiProcess"}' \
 "https://localhost:8443/openidm/workflow/processinstance?_action=create"

The workflow prints the list of workflow definitions to the OpenIDM console. With the default sample,
you should see something like this on the console:

script task using resolver: [
 pagedResultsCookie:null,
 remainingPagedResults:-1,
 result:[
 [
 tenantId:,
 candidateStarterGroupIdExpressions:[],
 candidateStarterUserIdExpressions:[],
 participantProcess:null,
 processDiagramResourceName:null,
 historyLevel:null,
 hasStartFormKey:false,
 laneSets:[],
 version:1, _id:osgiProcess:1:3,
 description:null,
 name:Osgi process,
 executionListeners:[:],
 key:osgiProcess,
 resourceName:OSGI-INF/activiti/example.bpmn20.xml,
 ioSpecification:null,
 taskDefinitions:null,
 suspensionState:1,
 deploymentId:1,
 properties:[:],
 startFormHandler:null,

Integrating Business Processes and Workflows
Configuring the Activiti Engine

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 263

 suspended:false,
 variables:null,
 _rev:1,
 revisionNext:2,
 category:Examples,
 eventSupport:[:],
 graphicalNotationDefined:false
]
]
]
script task using expression resolver: [
 pagedResultsCookie:null,
 remainingPagedResults:-1,
 result:[
 [
 tenantId:,
 candidateStarterGroupIdExpressions:[],
 ...
]

16.2.1. Configuring the Activiti Engine

The OpenIDM Activiti module is configured in a file named conf/workflow.json. If this file is absent from
the configuration, the workflow module is unavailable for use. In the default OpenIDM installation,
the workflow.json file has the following basic configuration:

{
 "enabled" : true
}

You can disable the workflow module by setting the "enabled" property to false.

There are several additional configuration properties for the Activiti module. A sample workflow.json
file that includes all configurable properties, is provided in samples/misc. To configure an Activiti
engine beyond the default configuration, edit this sample file and copy it to the /path/to/openidm/conf
directory.

The sample workflow.json file contains the following configuration:

Integrating Business Processes and Workflows
Configuring the Activiti Engine

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 264

 {
 "enabled" : true,
 "location" : "remote",
 "engine" : {
 "url" : "http://localhost:9090/openidm-workflow-remote-3.0.0",
 "username" : "youractivitiuser",
 "password" : "youractivitipassword"
 },
 "mail" : {
 "host" : "yourserver.smtp.com",
 "port" : 587,
 "username" : "yourusername",
 "password" : "yourpassword",
 "starttls" : true
 },
 "history" : "audit"
}

These fields have the following meaning:

• enabled. Indicates whether the Activiti module is enabled for use. Possible values are true or false.
The default value is true.

• mail. Specifies the details of the mail server that Activiti will use to send email notifications. By
default, Activiti uses the mail server localhost:25. To specify a different mail server, enter the details
of the mail server here.

• host. The host of the mail server.

• port. The port number of the mail server.

• username. The user name of the account that connects to the mail server.

• password. The password for the user specified above.

• startTLS. Whether startTLS should be used to secure the connection.

• history. Determines the history level that should be used for the Activiti engine. For more
information, see Configuring the Activiti History Level.

16.2.1.1. Configuring the Activiti History Level

The Activiti history level determines how much historical information is retained when workflows are
executed. You can configure the history level by setting the history property in the workflow.json file,
for example:
"history" : "audit"

The following history levels can be configured:

Integrating Business Processes and Workflows
Defining Activiti Workflows

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 265

• none. No history archiving is done. This level results in the best performance for workflow execution,
but no historical information is available.

• activity. Archives all process instances and activity instances. No details are archived.

• audit. This is the default level. All process instances, activity instances and submitted form
properties are archived so that all user interaction through forms is traceable and can be audited.

• full. This is the highest level of history archiving and has the greatest performance impact. This
history level stores all the information that is stored for the audit level, as well as any process
variable updates.

16.2.2. Defining Activiti Workflows
The following section outlines the process to follow when you create an Activiti workflow for
OpenIDM. Before you start creating workflows, you must configure the Activiti engine, as described
in Configuring the Activiti Engine.

1. Define your workflow in a text file, either using an editor, such as Activiti Eclipse BPMN 2.0
Designer, or a simple text editor.

2. Package the workflow definition file as a .bar file (Business Archive File). If you are using Eclipse
to define the workflow, a .bar file is created when you select "Create deployment artifacts". A .bar
file is essentially the same as a .zip file, but with the .bar extension.

3. Copy the .bar file to the openidm/workflow directory.

4. Invoke the workflow using a script (in openidm/script/) or directly using the REST interface. For
more information, see Invoking Activiti Workflows.

You can also schedule the workflow to be invoked repeatedly, or at a future time.

16.2.3. Invoking Activiti Workflows
You can invoke workflows and business processes from any trigger point within OpenIDM, including
reacting to situations discovered during reconciliation. Workflows can be invoked from script files,
using the openidm.create() function, or directly from the REST interface.

The following sample script extract shows how to invoke a workflow from a script file:

/*
 * Calling 'myWorkflow' workflow
 */

var params = {
 "_key": "myWorkflow"
};

openidm.create('workflow/processinstance', null, params);

Integrating Business Processes and Workflows
Invoking Activiti Workflows

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 266

The null in this example indicates that you do not want to specify an ID as part of the create call. For
more information, see the Function Reference.

You can invoke the same workflow from the REST interface by sending the following REST call to
OpenIDM:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{"_key":"myWorkflow"}' \
 "https://localhost:8443/openidm/workflow/processinstance?_action=create"

There are two ways in which you can specify the workflow definition that is used when a new
workflow instance is started.

• _key specifies the id attribute of the workflow process definition, for example:

<process id="sendNotificationProcess" name="Send Notification Process">

If there is more than one workflow definition with the same _key parameter, the latest deployed
version of the workflow definition is invoked.

• _processDefinitionId specifies the ID that is generated by the Activiti Process Engine when a
workflow definition is deployed, for example:

"sendNotificationProcess:1:104";

You can obtain the processDefinitionId by querying the available workflows, for example:

 {
 "result": [
 {
 "name": "Process Start Auto Generated Task Auto Generated",
 "_id": "ProcessSAGTAG:1:728"
 },
 {
 "name": "Process Start Auto Generated Task Empty",
 "_id": "ProcessSAGTE:1:725"
 },
 ...

If you specify a _key and a _processDefinitionId, the _processDefinitionId is used because it is more
precise.

Integrating Business Processes and Workflows
Querying Activiti Workflows

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 267

You can use the optional _businessKey parameter to add specific business logic information to the
workflow when it is invoked. For example, the following workflow invocation assigns the workflow a
business key of "newOrder". This business key can later be used to query "newOrder" processes.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{"_key":"myWorkflow", "_businessKey":"newOrder"}' \
 "https://localhost:8443/openidm/workflow/processinstance?_action=create"

16.2.4. Querying Activiti Workflows
The Activiti implementation supports filtered queries that enable you to query the running process
instances and tasks, based on specific query parameters. To perform a filtered query send a GET
request to the workflow/processinstance context path, including the query in the URL.

For example, the following query returns all process instances with the business key "newOrder", as
invoked in the previous example.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processinstance?_queryId=filtered-query&businessKey=newOrder"

Any Activiti properties can be queried using the same notation, for example,
processDefinitionId=managedUserApproval:1:6405. The query syntax applies to all queries with
_queryId=filtered-query. The following query returns all process instances that were started by the user
openidm-admin:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processinstance?_queryId=filtered-query&startUserId=openidm-
admin"

You can also query process instances based on the value of any process instance variable, by
prefixing the variable name with var-. For example:
var-processvariablename=processvariablevalue

16.3. Using Custom Templates for Activiti Workflows
The embedded Activiti engine is integrated with the default user interface. For simple workflows,
you can use the standard Activiti form properties, and have the UI render the corresponding generic

Integrating Business Processes and Workflows
Managing Workflows Over the REST Interface

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 268

forms automatically. If you require a more complex form template, (including input validation, rich
input field types, complex CSS, and so forth) you must define a custom form template.

There are two ways in which you can define custom form templates for your workflows:

• Create an HTML template, and refer to that template in the workflow definition.

This is the recommended method of creating custom form templates. To refer to the
HTML template in the workflow definition, use the activiti:formKey attribute, for example
activiti:formKey="nUCStartForm.xhtml".

The HTML file must be deployed as part of the workflow definition. Create a .zip file that contains
the HTML template and the workflow definition file. Rename the .zip file with a .bar extension.

For a sample workflow that uses external, referenced form templates, see samples/usecase/workflow/
newUserCreate.bpmn20.xml. The HTML templates, and the corresponding .bar file are included in that
directory.

• Use an embedded template within the workflow definition.

This method is not ideal, because the HTML code must be escaped, and is difficult to read, edit,
or maintain, as a result. Also, sections of HTML code will most likely need to be duplicated if your
workflow includes multiple task stages. However, you might want to use this method if your form is
small, not too complex and you do not want to bother with creating a separate HTML file and .bar
deployment.

16.4. Managing Workflows Over the REST Interface
In addition to the queries described previously, the following examples show the context paths that
are exposed for managing workflows over the REST interface. The example output is based on the
sample workflow that is provided in openidm/samples/sample9.

openidm/workflow/processdefinition

• List the available workflow definitions:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processdefinition?_queryId=query-all-ids"

{
 "result" : [{
 "tenantId" : "",
 "candidateStarterGroupIdExpressions" : [],
 "candidateStarterUserIdExpressions" : [],
 "participantProcess" : null,

Integrating Business Processes and Workflows
openidm/workflow/processdefinition

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 269

 "processDiagramResourceName" : null,
 "historyLevel" : null,
 "hasStartFormKey" : false,
 "laneSets" : [],
 "version" : 1,
 "_id" : "managedUserApproval:1:3",
 "description" : null,
 "name" : "Managed User Approval Workflow",
 "executionListeners" : { },
 "key" : "managedUserApproval",
 "resourceName" : "OSGI-INF/activiti/managedUserApproval.bpmn20.xml",
 "ioSpecification" : null,
 "taskDefinitions" : null,
 "suspensionState" : 1,
 "deploymentId" : "1",
 "properties" : { },
 "startFormHandler" : null,
 "suspended" : false,
 "variables" : null,
 "_rev" : 1,
 "revisionNext" : 2,
 "category" : "Examples",
 "eventSupport" : { },
 "graphicalNotationDefined" : false
 }],
 "resultCount" : 1,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
}

• List the workflow definitions, based on certain filter criteria:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processdefinition?_queryId=filtered-query&category=Examples"

{
 "result": [
 {
 ...
 "name": "Managed User Approval Workflow",
 "_id": "managedUserApproval:1:3",
 ...
 "category" : "Examples",
 ...
 }
]
}

Integrating Business Processes and Workflows
openidm/workflow/processdefinition/{id}

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 270

openidm/workflow/processdefinition/{id}

• Obtain detailed information for a process definition, based on the ID. You can determine the ID by
querying all the available process definitions, as described in the first example in this section.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processdefinition/managedUserApproval:1:3"

{
 "tenantId" : "",
 "candidateStarterGroupIdExpressions" : [],
 "candidateStarterUserIdExpressions" : [],
 "participantProcess" : null,
 "processDiagramResourceName" : null,
 "historyLevel" : null,
 "hasStartFormKey" : false,
 "laneSets" : [],
 "version" : 1,
 "formProperties" : [],
 "_id" : "managedUserApproval:1:3",
 "description" : null,
 "name" : "Managed User Approval Workflow",
 "executionListeners" : {
 "end" : [{ }]
 },
 "key" : "managedUserApproval",
 "resourceName" : "OSGI-INF/activiti/managedUserApproval.bpmn20.xml",
 "ioSpecification" : null,
 "taskDefinitions" : {
 "evaluateRequest" : {
 "assigneeExpression" : {
 "expressionText" : "openidm-admin"
 },
 "candidateGroupIdExpressions" : [],
 "candidateUserIdExpressions" : [],
 "categoryExpression" : null,
 "descriptionExpression" : null,
 "dueDateExpression" : null,
 "key" : "evaluateRequest",
 "nameExpression" : {
 "expressionText" : "Evaluate request"
 },
 "ownerExpression" : null,
 "priorityExpression" : null,
 "taskFormHandler" : {
 "deploymentId" : "1",
 "formKey" : null,
 "formPropertyHandlers" : [{
 "defaultExpression" : null,
 "id" : "requesterName",
 "name" : "Requester's name",
 "readable" : true,
 "required" : false,

Integrating Business Processes and Workflows
openidm/workflow/processdefinition/{id}

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 271

 "type" : null,
 "variableExpression" : {
 "expressionText" : "${sourceId}"
 },
 "variableName" : null,
 "writable" : false
 }, {
 "defaultExpression" : null,
 "id" : "requestApproved",
 "name" : "Do you approve the request?",
 "readable" : true,
 "required" : true,
 "type" : {
 "name" : "enum",
 "values" : {
 "true" : "Yes",
 "false" : "No"
 }
 },
 "variableExpression" : null,
 "variableName" : null,
 "writable" : true
 }]
 },
 "taskListeners" : {
 "assignment" : [{ }],
 "create" : [{ }]
 }
 }
 },
 "suspensionState" : 1,
 "deploymentId" : "1",
 "properties" : {
 "documentation" : null
 },
 "startFormHandler" : {
 "deploymentId" : "1",
 "formKey" : null,
 "formPropertyHandlers" : []
 },
 "suspended" : false,
 "variables" : { },
 "_rev" : 2,
 "revisionNext" : 3,
 "category" : "Examples",
 "eventSupport" : { },
 "graphicalNotationDefined" : false
}

• Delete a workflow process definition, based on its ID. Note that you cannot delete a process
definition if there are currently running instances of that process definition.

OpenIDM picks up workflow definitions from the files located in the /path/to/openidm/workflow
directory. If you delete the workflow definition (.xml file) from this directory, the OSGI bundle
is deleted. However, deleting this file does not remove the workflow definition from the Activiti
engine. You must therefore delete the definition over REST, as shown in the following example.

Integrating Business Processes and Workflows
openidm/workflow/processinstance

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 272

Note that, although there is only one representation of a workflow definition in the file system,
there might be several versions of the same definition in Activiti. If you want to delete redundant
process definitions, delete the definition over REST, making sure that you do not delete the latest
version.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "If-Match: *" \
 --request DELETE \
 "http://localhost:8080/openidm/workflow/processdefinition/managedUserApproval:1:3"

The delete request returns the contents of the deleted workflow definition.

openidm/workflow/processinstance

• Start a workflow process instance. For example:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --data '{"_key":"managedUserApproval"}' \
 --request POST \
 "https://localhost:8443/openidm/workflow/processinstance?_action=create"

{
 "_id" : "4",
 "processInstanceId" : "4",
 "status" : "suspended",
 "businessKey" : null,
 "processDefinitionId" : "managedUserApproval:1:3"
}

• Obtain the list of running workflows (process instances). The query returns a list of IDs. For
example:

Integrating Business Processes and Workflows
openidm/workflow/processinstance/{id}

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 273

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processinstance?_queryId=query-all-ids"

{
 "result" : [{
 "tenantId" : "",
 "businessKey" : null,
 "queryVariables" : null,
 "durationInMillis" : null,
 "processVariables" : { },
 "endTime" : null,
 "superProcessInstanceId" : null,
 "startActivityId" : "start",
 "startTime" : "2014-04-25T09:54:30.035+02:00",
 "startUserId" : "openidm-admin",
 "_id" : "4",
 "endActivityId" : null,
 "processInstanceId" : "4",
 "processDefinitionId" : "managedUserApproval:1:3",
 "deleteReason" : null
 }],
 "resultCount" : 1,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
}

• Obtain the list of running workflows based on specific filter criteria.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processinstance?_queryId=filtered-
query&businessKey=myBusinessKey"

openidm/workflow/processinstance/{id}

• Obtain the details of the specified process instance. For example:

Integrating Business Processes and Workflows
openidm/workflow/processinstance/{id}

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 274

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processinstance/4"

 {
 "tenantId" : "",
 "businessKey" : null,
 "queryVariables" : null,
 "durationInMillis" : null,
 "processVariables" : { },
 "endTime" : null,
 "superProcessInstanceId" : null,
 "startActivityId" : "start",
 "startTime" : "2014-05-12T20:56:25.415+02:00",
 "startUserId" : "openidm-admin",
 "_id" : "4",
 "endActivityId" : null,
 "processInstanceId" : "4",
 "processDefinitionId" : "managedUserApproval:1:3",
 "deleteReason" : null
}

• Stop the specified process instance. For example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request DELETE \
 "https://localhost:8443/openidm/workflow/processinstance/4"
 {
 "deleteReason": null,
 "processDefinitionId": "managedUserApproval:1:3",
 "processInstanceId": "4",
 "endActivityId": null,
 "_id": "4",
 "startUserId": "openidm-admin",
 "startTime": "2014-06-18T10:33:40.955+02:00",
 "tenantId": "",
 "businessKey": null,
 "queryVariables": null,
 "durationInMillis": null,
 "processVariables": {},
 "endTime": null,
 "superProcessInstanceId": null,
 "startActivityId": "start"
}

The delete request returns the contents of the deleted process instance.

Integrating Business Processes and Workflows
openidm/workflow/processdefinition/{id}/taskdefinition

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 275

openidm/workflow/processdefinition/{id}/taskdefinition

• Query the list of tasks defined for a specific process definition. For example:
$ curl \
 --cacert self-signed.crt \
 --header X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processdefinition/managedUserApproval:1:3/taskdefinition?
_queryId=query-all-ids"

{
 "result" : [{
 "taskCandidateGroup" : [],
 "ownerExpression" : null,
 "assignee" : {
 "expressionText" : "openidm-admin"
 },
 "categoryExpression" : null,
 "taskListeners" : {
 "assignment" : [{ }],
 "create" : [{ }]
 },
 "formProperties" : {
 "deploymentId" : "1",
 "formKey" : null,
 "formPropertyHandlers" : [{
 "_id" : "requesterName",
 "defaultExpression" : null,
 "name" : "Requester's name",
 "readable" : true,
 "required" : false,
 "type" : null,
 "variableExpression" : {
 "expressionText" : "${sourceId}"
 },
 "variableName" : null,
 "writable" : false
 }, {
 "_id" : "requestApproved",
 "defaultExpression" : null,
 "name" : "Do you approve the request?",
 "readable" : true,
 "required" : true,
 "type" : {
 "name" : "enum",
 "values" : {
 "true" : "Yes",
 "false" : "No"
 }
 },
 "variableExpression" : null,
 "variableName" : null,
 "writable" : true
 }]
 },
 "taskCandidateUser" : [],

Integrating Business Processes and Workflows
openidm/workflow/processdefinition/{id}/taskdefinition

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 276

 "formResourceKey" : null,
 "_id" : "evaluateRequest",
 "priority" : null,
 "descriptionExpression" : null,
 "name" : {
 "expressionText" : "Evaluate request"
 },
 "dueDate" : null
 }],
 "resultCount" : 1,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
}

• Query a task definition based on the process definition ID and the task name (taskDefinitionKey). For
example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processdefinition/managedUserApproval:1:3/taskdefinition/evaluateRequest"

 {
 "taskCandidateGroup" : [],
 "ownerExpression" : null,
 "formProperties" : {
 "deploymentId" : "1",
 "formKey" : null,
 "formPropertyHandlers" : [{
 "_id" : "requesterName",
 "defaultExpression" : null,
 "name" : "Requester's name",
 "readable" : true,
 "required" : false,
 "type" : null,
 "variableExpression" : {
 "expressionText" : "${sourceId}"
 },
 "variableName" : null,
 "writable" : false
 }, {
 "_id" : "requestApproved",
 "defaultExpression" : null,
 "name" : "Do you approve the request?",
 "readable" : true,
 "required" : true,
 "type" : {
 "name" : "enum",
 "values" : {
 "true" : "Yes",
 "false" : "No"
 }
 },
 "variableExpression" : null,
 "variableName" : null,

Integrating Business Processes and Workflows
openidm/workflow/taskinstance

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 277

 "writable" : true
 }]
 },
 "taskCandidateUser" : [],
 "_id" : "evaluateRequest",
 "priority" : null,
 "name" : {
 "expressionText" : "Evaluate request"
 },
 "descriptionExpression" : null,
 "categoryExpression" : null,
 "assignee" : {
 "expressionText" : "openidm-admin"
 },
 "taskListeners" : {
 "assignment" : [{ }],
 "create" : [{ }]
 },
 "dueDate" : null
}

openidm/workflow/taskinstance

• Query all running task instances. For example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/taskinstance?_queryId=query-all-ids"

 {
 "result" : [{
 "tenantId" : "",
 "createTime" : "2014-05-12T21:17:10.054+02:00",
 "executionId" : "10",
 "delegationStateString" : null,
 "processVariables" : { },
 "_id" : "15",
 "processInstanceId" : "10",
 "description" : null,
 "priority" : 50,
 "name" : "Evaluate request",
 "dueDate" : null,
 "parentTaskId" : null,
 "processDefinitionId" : "managedUserApproval:1:3",
 "taskLocalVariables" : { },
 "suspensionState" : 1,
 "assignee" : "openidm-admin",
 "cachedElContext" : null,
 "queryVariables" : null,
 "activityInstanceVariables" : { },
 "deleted" : false,
 "suspended" : false,
 "_rev" : 1,

Integrating Business Processes and Workflows
openidm/workflow/taskinstance/{id}

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 278

 "revisionNext" : 2,
 "category" : null,
 "taskDefinitionKey" : "evaluateRequest",
 "owner" : null,
 "eventName" : null,
 "delegationState" : null
 }],
 "resultCount" : 1,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
}

• Query task instances based on candidate users or candidate groups. For example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/taskinstance?_queryId=filtered-
query&taskCandidateUser=manager1"

or
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/taskinstance?_queryId=filtered-
query&taskCandidateGroup=management"

Note that you can include both users and groups in the same query.

openidm/workflow/taskinstance/{id}

• Obtain detailed information for a running task, based on the task ID. For example:

Integrating Business Processes and Workflows
openidm/workflow/taskinstance/{id}

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 279

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/taskinstance/15"

 {
 "dueDate": null,
 "processDefinitionId": "managedUserApproval:1:3",
 "owner": null,
 "taskDefinitionKey": "evaluateRequest",
 "name": "Evaluate request"
,
...

• Update task-related data stored in the Activiti workflow engine. For example:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "If-Match : *" \
 --request PUT \
 --data '{"description":"Evaluate the new managed user request"}' \
 "https://localhost:8443/openidm/workflow/taskinstance/15"

• Complete the specified task. The variables required by the task are provided in the request body.
For example:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{"requestApproved":"true"}' \
 "https://localhost:8443/openidm/workflow/taskinstance/15?_action=complete"

• Claim the specified task. A user who claims a task has that task inserted into his list of pending
tasks. The ID of the user who claims the task is provided in the request body. For example:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{"userId":"manager1"}' \
 "https://localhost:8443/openidm/workflow/taskinstance/15?_action=claim"

Integrating Business Processes and Workflows
Example Activiti Workflows With OpenIDM

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 280

16.5. Example Activiti Workflows With OpenIDM
This section describes two example workflows - an email notification workflow, and a workflow that
demonstrates provisioning, using the browser-based user interface.

16.5.1. Example Email Notification Workflow
This example uses the Activiti Eclipse BPMN 2.0 Designer to set up an email notification business
process. The example relies on an SMTP server listening on localhost, port 25.

The example sets up a workflow that can accept parameters used to specify the sender and recipient
of the mail.

${fromSender}

Specifies the sender

${toEmail}

Specifies the recipient

Create a new BPMN2 diagram in Eclipse, then drag and drop components to create the workflow.
This simple example uses a StartEvent, MailTask, and EndEvent.

When you have created the workflow definition, edit the generated XML source code, adding the
<extensionElements> to the <serviceTask> tag, as follows.

<?xml version="1.0" encoding="UTF-8"?>
<definitions
 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:activiti="http://activiti.org/bpmn"
 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
 xmlns:omgdc="http://www.omg.org/spec/DD/20100524/DC"
 xmlns:omgdi="http://www.omg.org/spec/DD/20100524/DI"
 typeLanguage="http://www.w3.org/2001/XMLSchema"
 expressionLanguage="http://www.w3.org/1999/XPath"
 targetNamespace="http://www.activiti.org/test">
 <process id="EmailNotification" name="emailNotification">
 <documentation>Simple Email Notification Task</documentation>
 <startEvent id="startevent1" name="Start"></startEvent>
 <sequenceFlow id="flow1" name="" sourceRef="startevent1"
 targetRef="mailtask1"></sequenceFlow>
 <endEvent id="endevent1" name="End"></endEvent>
 <sequenceFlow id="flow2" name="" sourceRef="mailtask1"
 targetRef="endevent1"></sequenceFlow>
 <serviceTask id="mailtask1" name="Email Notification"
 activiti:type="mail">
 <extensionElements>

Integrating Business Processes and Workflows
Example Email Notification Workflow

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 281

 <activiti:field name="to" expression="${toEmail}"
 ></activiti:field>
 <activiti:field name="from" expression="${fromSender}"
 ></activiti:field>
 <activiti:field name="subject" expression="Simple Email Notification"
 ></activiti:field>
 <activiti:field name="text">
 <activiti:expression><![CDATA[Here is a simple Email Notification
 from ${fromSender}.]]></activiti:expression>
 </activiti:field>
 </extensionElements>
 </serviceTask>
 </process>
 <bpmndi:BPMNDiagram id="BPMNDiagram_EmailNotification">
 <bpmndi:BPMNPlane bpmnElement="EmailNotification"
 id="BPMNPlane_EmailNotification">
 <bpmndi:BPMNShape bpmnElement="startevent1" id="BPMNShape_startevent1">
 <omgdc:Bounds height="35" width="35" x="170" y="250"></omgdc:Bounds>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNShape bpmnElement="endevent1" id="BPMNShape_endevent1">
 <omgdc:Bounds height="35" width="35" x="410" y="250"></omgdc:Bounds>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNShape bpmnElement="mailtask1" id="BPMNShape_mailtask1">
 <omgdc:Bounds height="55" width="105" x="250" y="240"></omgdc:Bounds>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNEdge bpmnElement="flow1" id="BPMNEdge_flow1">
 <omgdi:waypoint x="205" y="267"></omgdi:waypoint>
 <omgdi:waypoint x="250" y="267"></omgdi:waypoint>
 </bpmndi:BPMNEdge>
 <bpmndi:BPMNEdge bpmnElement="flow2" id="BPMNEdge_flow2">
 <omgdi:waypoint x="355" y="267"></omgdi:waypoint>
 <omgdi:waypoint x="410" y="267"></omgdi:waypoint>
 </bpmndi:BPMNEdge>
 </bpmndi:BPMNPlane>
 </bpmndi:BPMNDiagram>
</definitions>

Save the workflow definition as a bpmn20.xml file (email-notification.bpmn20.xml) in the openidm/workflow
directory.

After you have deployed the workflow, create a script named openidm/script/triggerEmailNotification.js.
The script invokes the workflow.

/*
 * Calling 'EmailNotification' workflow
 */

var params = {
 "_key" : "EmailNotification",
 "fromSender" : "noreply@openidm",
 "toEmail" : "jdoe@example.com"
};

openidm.action('workflow/processinstance', {"_action" : "createProcessInstance"}, params);

You can also invoke the workflow over the REST interface with the following REST command:

Integrating Business Processes and Workflows
Sample Workflow - Provisioning User Accounts

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 282

$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --data '{
 "_key":"EmailNotification",
 "fromSender":"noreply@openidm",
 "toEmail":"jdoe@example.com"
 }' \
 --request POST \
 "https://localhost:8443/openidm/workflow/processinstance?_action=create"

To schedule the workflow to be invoked regularly, create a schedule configuration object named
openidm/conf/schedule-EmailNotification.json. The following schedule invokes the workflow once per
minute.

{
 "enabled" : true,
 "type" : "cron",
 "schedule" : "0 0/1 * * * ?",
 "invokeService" : "script",
 "invokeContext" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "script/triggerEmailNotification.js"
 },
 }
}

16.5.2. Sample Workflow - Provisioning User Accounts
This example, provided in openidm/samples/workflow, uses workflows to provision user accounts. The
example demonstrates the use of the browser-based user interface to manage workflows.

16.5.2.1. Overview of the Sample
The sample starts with a reconciliation process that loads user accounts from an XML file into the
managed users repository. The reconciliation creates two users, with UIDs user1 and manager1. Both
users have the same password (Welcome1).

The sample adds two new business roles to the configuration - employee (assigned to user1) and manager
(assigned to manager1).

As part of the provisioning, employees are required to initiate a "Contract Onboarding" process. This
process is a request to add a contractor to the managed users repository, with an option to include
the contractor in the original data source (the XML file).

When the employee has completed the required form, the request is sent to the manager for
approval. Any user with the role "manager" can claim the approval task. If the request is approved, the

Integrating Business Processes and Workflows
Sample Workflow - Provisioning User Accounts

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 283

user is created in the managed users repository. If a request was made to add the user to the original
data source (the XML file) this is done in a subsequent step.

The workflow uses embedded templates to build a more sophisticated input form. The form is
validated with the server-side policy rules, described in Using Policies to Validate Data.

16.5.2.2. Running the Sample
1. Start OpenIDM with the configuration for the workflow sample.

$ cd /path/to/openidm
$./startup.sh -p samples/workflow

2. Run reconciliation over the REST interface.
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/recon?_action=recon&mapping=systemXmlfileAccounts_managedUser"

Successful reconciliation returns an "_id" object, such as the following:
{"_id":"aea493f5-29ee-423d-b4b1-10449c60886c"}

The two users are added to the repository. You can test this with the following REST query, which
shows the two users, manager1 and user1.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/user/?_queryId=query-all-ids"

 {
 "result" : [{
 "_id" : "manager1",
 "_rev" : "0"
 }, {
 "_id" : "user1",
 "_rev" : "0"
 }],
 "resultCount" : 2,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
}

3. Log into the user interface as user1, with password Welcome1. For information about logging in to
the user interface, see Overview of the Default User Interface.

4. Under "Processes" click "Contractor onboarding process".

Integrating Business Processes and Workflows
Sample Workflow - Provisioning User Accounts

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 284

5. Complete the details of the new user, then click Start.

6. Log out of the UI.

7. Log into the UI as manager1, with password Welcome1.

8. Under "Tasks that are in my group's queue" click "Contractor Approval".

Integrating Business Processes and Workflows
Sample Workflow - Provisioning User Accounts

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 285

9. From the drop-down list, select "Assign to me".

Note that the "Contractor Approval" task has now moved under "My tasks".

10. Under "My tasks" click "Contractor Approval".

11. Under Actions, click Details.

The form containing the details of the contractor is displayed.

12. At the bottom of the form, select a decision from the drop-down list (either "Accept" or "Reject"),
then click Complete.

Integrating Business Processes and Workflows
Sample Workflow - Provisioning User Accounts

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 286

When you Accept the new contractor details, the user account is created in the repository. You
can check the new account by running the following REST command:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/user/?_queryId=query-all-ids"

{
 "result" : [{
 "_id" : "manager1",
 "_rev" : "0"
 }, {
 "_id" : "user1",
 "_rev" : "0"
 }, {
 "_id" : "96a9513b-7896-4d22-83cc-6b35a709f0a8",
 "_rev" : "0"
 }],
 "resultCount" : 3,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
}

Display the details of the new user, by running a REST query on the user ID, as follows:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/user/96a9513b-7896-4d22-83cc-6b35a709f0a8"

{
 "_id" : "96a9513b-7896-4d22-83cc-6b35a709f0a8",
 "_rev" : "1",

Integrating Business Processes and Workflows
Sample Workflow - Provisioning User Accounts

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 287

 "startDate" : "05/13/2014",
 "manager" : "user1",
 "passwordAttempts" : "0",
 "department" : "Finance",
 "address2" : "",
 "endDate" : "06/13/2014",
 "givenName" : "John",
 "effectiveRoles" : ["openidm-authorized"],
 "city" : "",
 "lastPasswordSet" : "",
 "postalCode" : "",
 "description" : "Accountant",
 "accountStatus" : "active",
 "userName" : "johnb",
 "stateProvince" : "",
 "jobTitle" : "Contract Accountant",
 "mail" : "johnb@example.com",
 "sn" : "Brand",
 "provisionToXML" : "1",
 "lastPasswordAttempt" : "Tue May 13 2014 09:56:49 GMT+0200 (SAST)",
 "country" : "",
 "telephoneNumber" : "8934794578",
 "roles" : ["openidm-authorized"],
 "effectiveAssignments" : { },
 "postalAddress" : ""
}

You can now log into the UI as the new user (with the details that you specified in Step 5). Under
"Notifications" you will see a welcome message indicating the working dates of the new user. If
you log in as user1 you are notified of the result of the manager's decision.

If you specified that the new user should be added to the original data source, you will see that
the account was added to the XML file:
$ cd /path/to/openidm
$ cat samples/workflow/data/xmlConnectorData.xml
 ...
 <ri:__ACCOUNT__>
 <icf:__DESCRIPTION__>Accountant</icf:__DESCRIPTION__>
 <ri:roles>openidm-authorized</ri:roles>
 <ri:mobileTelephoneNumber>8934794578</ri:mobileTelephoneNumber>
 <ri:firstname>John</ri:firstname>
 <ri:manager>user1</ri:manager>
 <ri:startDate>05/13/2014</ri:startDate>
 <ri:jobTitle>Contract Accountant</ri:jobTitle>
 <icf:__UID__>67b6bb5f-5457-4ac6-bb49-5d98f2b1f3f8</icf:__UID__>
 <icf:__NAME__>johnb</icf:__NAME__>
 <ri:email>johnb@example.com</ri:email>
 <icf:__PASSWORD__>Welcome1</icf:__PASSWORD__>
 <ri:department>Finance</ri:department>
 <ri:endDate>06/13/2014</ri:endDate>
 <ri:lastname>Brand</ri:lastname>
 </
ri:__ACCOUNT__>
...

Integrating Business Processes and Workflows
Workflow Use Cases

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 288

If you declined the approval request, the user will not be created in either data source.

You can see the details of the workflow definition in samples/workflow/workflow/
contractorOnboarding.bpmn20.xml.

16.6. Workflow Use Cases
This section describes a number of sample workflows, that demonstrate typical use cases for
OpenIDM. The use cases, provided in /path/to/openidm/samples/usecase, work together to provide a
complete business story, with the same set of sample data. Each of the use cases is integrated with
the default UI.

The use cases can be run independently, but rely on the data set that is imported during use case 1 -
so you must run use case 1 before running any of the other use cases.

The use cases assume an initial data set of twenty "ordinary" managed users in OpenIDM (user.0 -
user.19). The users are divided as follows:

Users Department Manager Employees Contractors
user.0-user.4 Human Resources user.0 user.0-user.3 user.4
user.5-user.9 Production Planning user.5 user.5-user.8 user.9
user.10-user.14 Sales & Distribution user.10 user.10-user.13 user.14
user.15-user.19 Treasury & Payments user.15 user.15-user.18 user.19

In addition, the following "special" users are defined:

• hradmin - represents the human interaction of the HR department

• systemadmin - represents the human interaction of the populated systems (Business and Project)

• superadmin - represents the manager of the managers

Note that the curl commands in this section use the secure port for OpenIDM (8443) and assume
a self-signed certificate named self-signed.crt, located in the directory from which the command is
launched. For instructions on using the self-signed certificate that is generated when OpenIDM first
starts up, see Restrict REST Access to the HTTPS Port.

16.6.1. Use Case 1 - Initial Reconciliation

This use case assumes an OpenDJ server and populates the managed user repository with users from
OpenDJ.

To prepare the sample:

Integrating Business Processes and Workflows
Use Case 1 - Initial Reconciliation

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 289

• Download and install OpenDJ, as described in Installing OpenDJ With the QuickSetup Wizard.

This sample assumes that OpenDJ is listening on port 1389, the standard LDAP port for users who
cannot use privileged ports.

• During the install, import the user data from the LDIF file /path/to/openidm/samples/usecase/data/
hr_data.ldif.

• The use case assumes a user with DN cn=Directory Manager and password password who will bind to
the directory server.

The OpenDJ server now contains the users required for all the workflow use cases.

1. Start OpenIDM with the configuration for use case 1.
$ cd /path/to/openidm
$./startup.sh -p samples/usecase/usecase1

2. Run reconciliation to populate the managed user repository with the users from the OpenDJ
server.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 "https://localhost:8443/openidm/recon?_action=recon&mapping=systemHRAccounts_managedUser"

3. Query the managed users that were created by the reconciliation process.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/user?_queryId=query-all-ids"

 {
 "result" : [{
 "_id" : "user.5",
 "_rev" : "0"
 }, {
 "_id" : "user.10",
 "_rev" : "0"
 }, {
 "_id" : "user.1",
 "_rev" : "0"
 },
 ...
 {
 "_id" : "hradmin",
 "_rev" : "0"
 }, {

http://docs.forgerock.org/en/opendj/2.6.0/install-guide/index.html#chap-install-gui

Integrating Business Processes and Workflows
Use Case 2 - New User Onboarding

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 290

 "_id" : "systemadmin",
 "_rev" : "0"
 }, {
 "_id" : "superadmin",
 "_rev" : "0"
 }],
 "resultCount" : 23,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
}

23 users will have been created by the reconciliation process. The default password of all the
newly created users is Passw0rd.

4. Shut down OpenIDM before you proceed with the next use case.
$ cd /path/to/openidm
$./shutdown.sh

16.6.2. Use Case 2 - New User Onboarding

This use case demonstrates a new user onboarding process. The process can be initiated by any of
the users created in the previous reconciliation process. In this example, we use user.1 to initiate the
process. user.1 captures the details of a new user, and then submits the new user entry for approval
by the prospective manager of that new user.

The use case includes three separate workflows - onboarding (creation of the new user), sunrise
(commencement of the new user work period) and sunset (termination of the user contract).

The use case also demonstrates email notification with the optional configuration of an external
email service. If you want to use email notification, you must configure the external email service, as
described in Procedure 16.2, "Configuring Email Notification", before you start the workflow.

The use case works with the OpenIDM UI, accessible at the following URL by default: https://
localhost:8443/openidmui/.

Procedure 16.1. Initiating the Onboarding Workflow

1. Start OpenIDM with the configuration for use case 2.
$ cd /path/to/openidm
$./startup.sh -p samples/usecase/usecase2

2. Log into the UI as user.1 with password Passw0rd.

Integrating Business Processes and Workflows
Use Case 2 - New User Onboarding

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 291

3. In this use case, the processes associated with the new user onboarding workflow are visible to
any user who logs into the UI.

Click on the User Onboarding Process and complete the fields for a sample new user. Complete at
least all mandatory fields.

Department. Specifies one of four departments to which the new user will belong (Human
Resources, Production Planning, Sales & Distribution, or Treasury & Payments). The value you
select here determines the "manager" of the new user, to which the request will be sent for
approval. (See the previous table of users for a list of the managers of the various departments.)

User Type. Governs user access to specific accounts. If the User Type is "Employee", the new
user will have access to an account named "Business". This access is represented as an attribute
of the managed user entry in the OpenIDM repository, as follows: accounts : ["Business"]. If the
User Type is "Contractor", the new user will have no accounts associated with its managed user
representation in OpenIDM.

Send Email Notification. Indicates whether an email should be sent to alert the manager of
the new required approval. The email details used here are defined when you configure email
notification, as described in Procedure 16.2, "Configuring Email Notification". If you select not
to send an email notification, the notification is simply added to the OpenIDM repository, and
appears when the manager logs into the UI.

4. Click Start to initiate the onboarding workflow.

This action sends the new user request to the corresponding "management" users (the
department manager, as well as the superadmin user, who is an overall manager).

5. Log out of the UI, and log back in as the management user of the department that you selected
when you completed the new user form. For example, if you selected "Human Resources", log
in as user.0, which simulates the management user for the HR department. All users have the
password Passw0rd.

Integrating Business Processes and Workflows
Use Case 2 - New User Onboarding

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 292

Notice that this user now has an Onboarding Approval task in the queue of tasks assigned to his
group.

6. Click on the Onboarding Approval task and select "Assign to Me".

This action "claims" the task for user.0, removes it from the group queue, and places it in the list
of pending tasks for user.0.

7. Click on the Onboarding Approval task under the My Tasks list and click Details.

The complete new user request is displayed for the manager's approval. As the manager, you can
add any information that was missing from the original request.

In addition, you can specify the following information for the new user.

• Start Date. Completing this field results in the user being created, with a "startDate" added to
that user's managed user entry. The status of the user is inactive. This field is optional, and is
used by the task scanner to trigger the Sunrise workflow.

• End Date. Completing this field results in the user being created, with an "endDate" added to
that user's managed user entry. The field is optional, and is used by the task scanner to trigger
the Sunset workflow.

• Manager. Selecting "Yes" here adds a "title" property, with a value of "manager", to the new
managed user entry.

• Decision. Selecting "Reject" here terminates the workflow and sends a notification to the user
who initiated the workflow. Selecting "Accept" creates the managed user entry in OpenIDM.
The password of the new user is Passw0rd.

Two notifications are created when the request is accepted - one for the user who initiated the
workflow, and one for the newly created user. The notifications are visible in the UI after login.
If you selected email notification, one email is sent to the user defined when you configured
email notification, as described in Procedure 16.2, "Configuring Email Notification".

8. At the bottom of the form, there is an option either to Requeue the request or to Complete it.
Click Complete.

Integrating Business Processes and Workflows
Use Case 2 - New User Onboarding

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 293

If you click Requeue here, the task is removed from the list of My Tasks for that user, and
returned to the list of tasks pending for that group. The task can then be claimed by any member
of that group.

When the new user request has been approved, the user is created in the OpenIDM repository. If
you did not include a Start Date in the manager approval, you should now be able to log into the
UI with the details of the new user. If you included a Start Date, you need to complete the sunrise
workflow before the user account is active (which will enable you to log in as this user).

Procedure 16.2. Configuring Email Notification

This step is optional, and required only if you want to use email notification with this workflow.

1. Edit the settings in the file /path/to/openidm/samples/usecase/usecase2/conf/external.email.json to
match the settings of your mail server. For example:
$ cd /path/to/openidm
$ more samples/usecase/usecase2/conf/external.email.json

 {
 "host" : "smtp.gmail.com",
 "port" : "587",
 "username" : "my-username"
 "password" : "my-password",
 "mail.smtp.auth" : "true",
 "mail.smtp.starttls.enable" : "true"
}

2. Change the notification email parameters in the workflow definition file (samples/usecase/usecase2/
workflow/newUserCreate.bpmn20.xml).

The email parameters are towards the end of this file:
$ cd /path/to/openidm/samples/usecase/usecase2/workflow/newUserCreate.bpmn20.xml
$ grep emailParams newUserCreate.bpmn20.xml

emailParams = [from : 'usecasetest@forgerock.com', to : 'notification@example.com',
openidm.action("external/email", 'sendEmail', emailParams);
emailParams.body = 'Welcome! Your work days are from ' + startDate + ' to ' + endDate;
openidm.action("external/email", 'sendEmail', emailParams);
emailParams = [from : 'usecasetest@forgerock.com', to : 'notification@example.com',
openidm.action("external/email", 'sendEmail', emailParams);

Change the from and to parameters to reflect valid email addresses.

Procedure 16.3. Initiating the Sunrise Workflow

If a sunrise date is specified for the new user, the user is created in the repository, with an inactive
account status.

Integrating Business Processes and Workflows
Use Case 2 - New User Onboarding

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 294

• To trigger the sunrise workflow (which activates the account), enable the sunrise task scanning
schedule. The schedule is disabled by default.

Modify the schedule configuration file (samples/usecase/usecase2/conf/schedule-taskscan_sunrise.json),
setting the "enabled" property to true.
$ cd /path/to/openidm
$ grep "enabled" samples/usecase/usecase2/conf/schedule-taskscan_sunrise.json
"enabled" : true,

The scan runs every minute, and checks the repository for users that have a sunrise date that is
anything up to one day after the current date. When the scan is triggered, it locates the newly
created user and starts the sunrise workflow on this user. The workflow takes the following
actions:

• Changes the account status of the user to active.

• Generates a notification for the new user, which is visible when the user logs into the UI.

Procedure 16.4. Initiating the Sunset Workflow

If a sunset date is set for the new user, you can trigger the sunset workflow to deactivate the user
account when the end of his work period is reached.

1. To trigger the sunset workflow, enable the sunset task scanning schedule. The schedule is
disabled by default.

Modify the schedule configuration file (samples/usecase/usecase2/conf/schedule-taskscan_sunset.json),
setting the "enabled" property to true.
$ cd /path/to/openidm
$ grep "enabled" samples/usecase/usecase2/conf/schedule-taskscan_sunset.json

"enabled" : true,

The scan runs every minute, and checks the repository for users that have a sunset date that is
anything up to one day after the current date. When the scan is triggered, it locates users whose
contracts are about to end, and starts the sunset workflow on these users. When the workflow
is initiated, it assigns a task to the manager of the affected user. In this example, the task is
assigned to user.0.

Integrating Business Processes and Workflows
Use Case 3 - User Access Request

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 295

2. When the sunset schedule has been enabled, log into OpenIDM UI as user.0 (with password
Passw0rd). If the user's sunset date is within one day of the current date, a "Contract Termination"
task becomes available under the 'My tasks' section for the manager of that user.

Select the contract termination task and click Details.

3. In the Decision field, select either "Accept termination" or "Modify date", then click Complete.

When you accept the termination, the user's account status is set to inactive and the HR
administrative user receives a notification to that effect, next time that user logs into the UI. The
deactivated user is no longer able to log into the UI.

If you select to modify the date, the sunset date of that user is changed to the value that you
specify in the End Date field on that form. The management user receives a UI notification that
the employee's contract has been extended.

4. Shut down OpenIDM before you proceed with the next use case.
$ cd /path/to/openidm
$./shutdown.sh

16.6.3. Use Case 3 - User Access Request

This use case simulates a user access request, with two levels of approval for the request.

If you want to use email notification with this workflow, follow the instructions in Procedure 16.2,
"Configuring Email Notification" before you start the workflow, substituting usecase3/conf/
external.email.json and usecase3/workflow/accessRequest.bpmn20.xml for the files described in that
procedure.

1. Start OpenIDM with the configuration for use case 3.
$ cd /path/to/openidm
$./startup.sh -p samples/usecase/usecase3

2. Log into the UI as user.1 with password Passw0rd.

user.1 belongs to the HR department and, in this workflow, is requesting access to a Project
system.

3. Click on the Access Request Process in the list of available processes and click Start to start the
workflow.

A User Access Request appears in the list of tasks for user.1.

4. Select the User Access Request task and click Details.

The resulting form indicates the various systems to which the user may request access.

Integrating Business Processes and Workflows
Use Case 3 - User Access Request

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 296

Access to Business system. This field reflects the current value of the "accounts" property for that
user in the repository. If the value includes "Business" this field is True.

Access to Project system. Set this field to True to request Project access for user.1.

Send Email Notification. Indicates whether an email should be sent to alert the manager of
the new access request. The email details used here are defined when you configure email
notification, as described in Procedure 16.2, "Configuring Email Notification". If you select not
to send an email notification, the notification is simply added to the OpenIDM repository, and
appears when the manager logs into the UI.

Select either Cancel, to terminate the process, or Request, to start a user task, assigned to the
manager of the user requesting access (user.0 in this example).

5. Log out of the UI and log back in as the manager (user.0 with password Passw0rd).

6. Under "Tasks that are in my group's queue" click "User Access Request Approval" and select
"Assign to me".

Note that the "User Access Request Approval" task has now moved under "My tasks".

7. Under "My tasks" click "User Access Request Approval" and click Details.

8. The details of the access request are displayed. The manager is able to modify the access rights.
Select Accept or Reject to approve or deny the request.

Rejecting the request results in a notification being sent to the user who made the request. If you
have enabled email notification, a single email is sent to the account defined when you configure
email notification, as described in Procedure 16.2, "Configuring Email Notification".

Accepting the request initiates a second approval task, assigned to the systemadmin user.

Click Complete to complete the task.

Integrating Business Processes and Workflows
Use Case 4 - Orphan Account Detection

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 297

9. Log out of the UI and log in as the systemadmin user (with password Passw0rd).

This user now has one User Access Request Approval task in his queue.

10. Select the task and click Details.

This task interface is similar to that of the task that was assigned to the manager.

Rejecting the request results in a notification being sent to the user who made the request.

Accepting the request updates the managed/user record in OpenIDM, to reflect the approved
access changes.

If you have enabled email notification, a single email is sent to the account defined when you
configured the external email service (Procedure 16.2, "Configuring Email Notification"),
indicating whether the request has been accepted or rejected.

Note that this sample includes an escalation step that is attached to the manager approval task. If
the manager does not complete assessment of the user task within ten minutes of its initiation, a
new user task is created and assigned to the superadmin user. This task has the same interface and
functionality as the task assigned to the manager. Accordingly, when the superadmin user completes
the task, the execution is passed to the systemadmin user for approval.

Shut down OpenIDM before you proceed with the next use case.
$ cd /path/to/openidm
$./shutdown.sh

16.6.4. Use Case 4 - Orphan Account Detection
This use case demonstrates two asynchronous tasks, started from a reconciliation process:

• Detecting orphan accounts on a target object set

• Handling ambiguous results during correlation

This use case relies on a customized synchronization configuration (mapping) file, named
syncManagedBusiness.json, in the /path/to/openidm/samples/usecase/usecase4/conf directory.

This file defines a mapping (recon_managedUser_systemBusiness) between a source (managed users) and a
target object set. The target object set is defined in the file samples/usecase/usecase4/data/business.csv.
The business.csv file includes all users from the initial reconciliation (described in Section 16.6.1, "Use
Case 1 - Initial Reconciliation"). These users are categorized as employees, and therefore include the
property "accounts" : ["Business"] in their managed user entry (see Section 16.6.2, "Use Case 2 - New
User Onboarding" for an explanation of the User Type).

The mapping includes the following "validSource" field:
"validSource" : {
 "type" : "text/javascript",
 "file" : "script/isSourceValidBusiness.js"
},

Integrating Business Processes and Workflows
Use Case 4 - Orphan Account Detection

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 298

This field references a script which specifies that only those users who are employees are taken into
account during the reconciliation.

In addition, the business.csv file includes the following users:

• user.50. This user is defined only in the .csv file, and not in the managed/user repository. When a
reconciliation operation is run, this user is detected as an orphan account. The orphan account
workflow is triggered when an "UNQUALIFIED" or "UNASSIGNED" situation is encountered, as
indicated in this section of the mapping:
{
 "situation" : "UNQUALIFIED",
 "action" : {
 "workflowName" : "orphanAccountReport",
 "type" : "text/javascript",
 "file" : "workflow/triggerWorkflowFromSync.js"
 }
},
{
 "situation" : "UNASSIGNED",
 "action" : {
 "workflowName" : "orphanAccountReport",
 "type" : "text/javascript",
 "file" : "workflow/triggerWorkflowFromSync.js"
 }
}

• user.33. This user has a "userName" attribute of "user.3" (which is the same as the "userName" attribute
of the user, user.3). The correlation query of the reconciliation operation is based on the "userName"
attribute. During the correlation query, two candidate users are therefore correlated with the same
managed user (user.3), and the result is ambiguous. The manual match workflow is triggered when
an "AMBIGUOUS" situation is encountered, as indicated in this section of the mapping:
{
 "situation" : "AMBIGUOUS",
 "action" : {
 "workflowName" : "manualMatch",
 "type" : "text/javascript",
 "file" : "workflow/triggerWorkflowFromSync.js"
 }
}

1. Before you start with this use case, rename the mapping file to sync.json.
$ cd /path/to/openidm/samples/usecase/usecase4/conf
$ mv syncManagedBusiness.json sync.json

2. Start OpenIDM with the configuration for use case 4.
$ cd /path/to/openidm
$./startup.sh -p samples/usecase/usecase4

You will see a warning in the Felix console about a password not being defined in the CSV file
(WARN Password attribute is not defined. [CSVFileConfiguration]). You can ignore this warning.

Integrating Business Processes and Workflows
Use Case 5 - Certification

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 299

3. Run a reconciliation operation, according to the mapping defined in sync.json.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 "https://localhost:8443/openidm/recon?_action=recon&mapping=recon_managedUser_systemBusiness"

When the reconciliation operation finds the ambiguous entry (user.3) and the orphan
entry (user.50) in the CSV file, two asynchronous workflows are launched (manualMatch and
orphanAccountReport), as indicated in the mapping file, described previously.

4. Log into the UI as the systemadmin user, with password Passw0rd.

5. Select the Manual Linking task from the My tasks list and click Details.

The Possible targets field presents a list of target entries to which the ambiguous record can be
linked. In this example, user.3 - Atrc, Aaron and user.33 - Atrc, Aaron are the two candidate users
found in the target object set by the correlation query. When you select one of these values, the
workflow manually links the managed user (user.3) to the selected user.

If you select Ignore, here, no action is taken (no link is created), and the workflow terminates.

6. Select the Orphan Account task from the My tasks list and click Details.

The Link to field enables you to enter an existing managed user ID to which this orphan account
should be linked. For the purposes of this example, enter user.5.

The Delete option deletes the user from the target object set (the CSV file in this case) and
terminates the workflow.

7. Shut down OpenIDM before you proceed with the next use case.
$ cd /path/to/openidm
$./shutdown.sh

16.6.5. Use Case 5 - Certification

This use case demonstrates a scheduled task that retrieves all managed users and starts a
certification workflow for each one.

1. Start OpenIDM with the configuration for use case 5.
$ cd /path/to/openidm
$./startup.sh -p samples/usecase/usecase5

2. To start the scheduled task, enable the schedule in schedule-certification.json.

Integrating Business Processes and Workflows
Use Case 5 - Certification

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 300

$ cd /path/to/openidm
$ more samples/usecase/usecase5/conf/schedule-certification.json
{
 "enabled" : true,
...

3. Log into the UI as user.0 with password Passw0rd.

user.0 represents the manager of the users who are being certified.

4. Under "Tasks that are in my group's queue" click "Certification Process" and select "Assign to
me".

The "Certification Process" task moves under "My tasks".

5. Under "My tasks" click "Certification Process" and click Details.

6. On the "Access Status Check" task, click Details.

The Access to Business system and Access to Project system fields reflect the values of the
"accounts" property of the managed user that is being certified. These values can be changed on
this form, which changes the corresponding values in the managed user object.

7. Select a Decision.

If you select Certify, no action is taken, the certified user is not modified and the workflow
terminates.

Selecting Change results in a new user task being created, and assigned to the systemadmin user.

Click Complete after you have selected one of the previous options.

8. If you selected Change in the previous step, log in to the UI as the systemadmin user with password
Passw0rd.

9. Select the Access Status Check task and click Details.

The Access to Business system and Access to Project system fields can be modified on this form, if
required.

10. Select a Decision.

If you select Accept, the managed user object of the user being certified is updated with values
of the access fields on this form. A notification regarding the change is sent to the affected user,
visible in the UI when the user next logs in.

If you select Reject, the managed user object of the user is not changed. A notification is sent to
the manager of the user, indicating that the certification change request has been rejected by the
systemadmin user.

Click Complete after you have selected one of the previous options.

Integrating Business Processes and Workflows
Use Case 6 - Password Change Reminder

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 301

11. Shut down OpenIDM before you proceed with the next use case.
$ cd /path/to/openidm
$./shutdown.sh

16.6.6. Use Case 6 - Password Change Reminder

This use case demonstrates using the task scanner to trigger a password change reminder workflow
for managed users.

In this example, each managed user entry in OpenIDM has a dedicated attribute, lastPasswordSet, that
stores the date on which the password was last changed. The value of this attribute is updated by an
onStore script, defined in the managed user configuration file (conf/managed.json), as follows:

"onStore" : {
 "type" : "text/javascript",
 "file" : "script/onStoreManagedUser.js"
},

When a new password is stored for a user, the script sets the date on which this change was
made. The task scanner periodically scans the lastPasswordSet attribute, and starts the workflow if
the password was changed more than an hour ago. This condition is configured in the schedule
configuration file (schedule-taskscan_passwordchange.json):
$ cd /path/to/openidm
$ more samples/usecase/usecase6/conf/schedule-taskscan_passwordchange.json

...
"condition" : {
 "before" : "${Time.now - 1h}"
}
,
....

Obviously, in a real deployment, the period between required password changes would be longer, and
this value would need to be set accordingly. For the purposes of testing this use case, you might want
to set the value to a shorter period, such as "${Time.now - 1m}", which will send the notification one
minute after a password change.

By default, the workflow sends notifications to the user entry, visible when the user logs into the UI.
If you want notifications sent by email, configure the external email service, as follows:

1. Edit the settings in the file /path/to/openidm/samples/usecase/usecase6/conf/external.email.json to
match the settings of your mail server. For example:

Integrating Business Processes and Workflows
Use Case 6 - Password Change Reminder

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 302

$ cd /path/to/openidm
$ more samples/usecase/usecase6/conf/external.email.json

{
 "host" : "smtp.gmail.com",
 "port" : "587",
 "username" : "my-username"
 "password" : "my-password",
 "mail.smtp.auth" : "true",
 "mail.smtp.starttls.enable" : "true"
}

2. Enable email notification in the script file that starts the workflow (samples/usecase/usecase6/script/
passwordchange.js). For example:
$ cd /path/to/openidm
$ more samples/usecase/usecase6/script/passwordchange.js

/*global objectID*/

(function () {
 var params = {
 "userId" : objectID,
 "emailEnabled" : "true",
 "_key": "passwordChangeReminder"
};

3. Make sure that all users have a valid email address as the value of their mail attribute, in the
OpenIDM repository.

The task scanning schedule is disabled by default. To test this use case, follow these steps:

1. Enable the task scanning schedule by setting enabled to true in the schedule configuration file
(schedule-taskscan_passwordchange.json).
$ cd /path/to/openidm
$ more samples/usecase/usecase6/conf/schedule-taskscan_passwordchange.json

{
 "enabled" : true
,
...

2. Start OpenIDM with the configuration for use case 6.
$ cd /path/to/openidm
$./startup.sh -p samples/usecase/usecase6

3. Log into the UI as any of the users listed in the introduction to this section (for example, user.4,
with password Passw0rd).

The user sees the following notification upon login:

Integrating Business Processes and Workflows
Use Case 6 - Password Change Reminder

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 303

If the password has not been changed after five minutes, a second notification is sent to the user.

If the password has not been changed two minutes after this second notification, the user's
account is deactivated and that user is no longer able to log into the UI.

4. (Optional) To avoid the second notification, or the account deactivation, you can change the user
password through the UI, as follows:

a. Log into the UI as the user whose password you want to change and click Change Security
Data at the top right of the page.

b. Enter the existing password (in this case Passw0rd).

c. Enter a new password that conforms to the requirements of the password policy.

Using Audit Logs
Audit Log Types

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 304

Chapter 17

Using Audit Logs

OpenIDM auditing can publish and log all relevant system activity to the targets you specify. Auditing
can include data from reconciliation as a basis for reporting, access details, and activity logs that
capture operations on internal (managed) objects and external (system) objects. Auditing provides
the data for all the relevant reports, including orphan account reports.

The auditing interface allows you to push auditing data to files and to the OpenIDM repository.

17.1. Audit Log Types
This section describes the types of audit log OpenIDM provides.

Access Log

OpenIDM writes messages concerning access to the REST API in this log.

Default file: openidm/audit/access.csv

Activity Log

OpenIDM logs operations on internal (managed) and external (system) objects to this log type.

Entries in the activity log contain identifiers, both for the action that triggered the activity, and
also for the original caller and the relationships between related actions.

Default file: openidm/audit/activity.csv

Reconciliation Log

OpenIDM logs the results of a reconciliation run, including situations and the resulting actions
taken to this log type. The activity log contains details about the actions, where log entries
display parent activity identifiers, recon/reconID.

Default file: openidm/audit/recon.csv

Where an action happens related to a higher level business function, the log entry points to a parent
activity for that function. The relationships are hierarchical. For example, a synchronization operation
could result from scheduled reconciliation for an object type. OpenIDM also logs the top level root
activity with each entry, making it possible to query related activities.

Using Audit Logs
Audit Log File Formats

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 305

17.2. Audit Log File Formats
This section describes the audit log file formats to help you map these to the reports you generate.

Access Log Fields

The access log includes the following information:

"_id"

UUID for the message object, such as "0419d364-1b3d-4e4f-b769-555c3ca098b0"

"action"

Action requested, such as "authenticate"

"ip"

IP address of the client. For access from the local host, this can appear for example as
"0:0:0:0:0:0:0:1%0".

"principal"

Principal (username) requesting the operation, such as "openidm-admin"

"roles"

Roles associated with the principal, such as "[openidm-admin, openidm-authorized]"

"status"

Result of the operation, such as "SUCCESS"

"timestamp"

The time that OpenIDM logged the message, in UTC format, for example "2012-11-18T08:48:00.160Z"

"userid"

The ID (_id) of the user requesting the operation, such as openidm-admin, jdoe or a UUID that has
been generated by the server, such as "0d7532e2-2b45-420e-b10e-c35684c633fd".

Activity Log Fields

The activity log includes the following information for each entry:

"_id"

UUID for the message object, such as "0419d364-1b3d-4e4f-b769-555c3ca098b0"

Using Audit Logs
Audit Log File Formats

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 306

"action"

Action performed on that entry, such as "create". See the section on Event Types for a list of
possible actions.

"activityId"

UUID for the activity corresponding to the UUID of the resource context

"after"

JSON representation of the object resulting from the activity

"before"

JSON representation of the object prior to the activity

"changedFields"

List of the fields that were changed as a result of the activity. This list takes into consideration
only those fields that have been configured as "watchedFields" in the conf/audit.json file.

"message"

Human readable text about the activity

"objectId"

Object identifier, such as "managed/user/jdoe" or "managed/user/38e29216-4b0e-4701-8a6f-ed8bf69692c7".

"parentActionId"

UUID of the action leading to the activity

"passwordChanged"

Boolean (true or false) indicating whether the action resulted in a password change.

"requester"

Principal requesting the operation

"rev"

Object revision number

"rootActionId"

UUID of the root cause for the activity. This matches a corresponding "rootActionId" in a
reconciliation message.

"status"

Result of the operation, such as "SUCCESS"

Using Audit Logs
Audit Log File Formats

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 307

"timestamp"

Time when OpenIDM logged the message, in UTC format, for example "2012-11-18T08:48:00.160Z"

Reconciliation Log Fields

Reconciliation messages include the following information:

"_id"

UUID for the message object, such as "0419d364-1b3d-4e4f-b769-555c3ca098b0"

"action"

Synchronization action, such as "CREATE". See the section on Actions for a list of possible actions.

"actionID"

The unique ID assigned to the action.

"ambiguousTargetObjectIds"

When the situation is AMBIGUOUS or UNQUALIFIED and OpenIDM cannot distinguish between
more than one target object, OpenIDM logs the identifiers of the objects in this field in comma-
separated format. This makes it possible to figure out what was ambiguous afterwards.

"entryType"

The type of reconciliation log entry, such as "start", or "summary".

"exception"

The stack trace of the exception, if any.

"mapping"

The name of the mapping used for the reconciliation (defined in conf/sync.json, for example
"systemLdapAccounts_managedUser".

"message"

Human readable text about the reconciliation action that was taken.

"messageDetail"

For the "summary" entry type, this field contains details about that specific stage of the
reconciliation run, such as the stage name and description, start and end time, and so forth.

When script exceptions are encountered during a reconciliation run, the error details can also be
stored in this property.

For script exception details to be pulled in, the script exception must take the following format:

Using Audit Logs
Audit Configuration

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 308

"throw {
 'openidmCode' : HTTP error code,
 'message' : error message,
 'detail' : {
 details
 }
};"

"reconId"

UUID for the reconciliation operation, which is the same for all entries pertaining to the
reconciliation run.

"reconciling"

What OpenIDM is reconciling, "source" for the first phase, "target" for the second phase

"rootActionId"

UUID of the root cause for the activity. This matches a corresponding "rootActionId" in an activity
message.

"situation"

The situation encountered. See the section describing synchronization situations for a list.

"sourceObjectId"

The object identifier on the source system, such as "system/xmlfile/account/bjensen" or "managed/user/
bjensen" (depending on the resource configured as the source in the mapping).

"status"

Result of the operation, such as "SUCCESS"

"targetObjectId"

The object identifier on the target system, such as "system/xmlfile/account/bjensen" or "managed/user/
bjensen" (depending on the resource configured as the target in the mapping).

"timestamp"

Time when OpenIDM logged the message, in UTC format, for example "2012-11-18T08:48:00.160Z"

17.3. Audit Configuration
OpenIDM exposes the audit logging configuration under http://localhost:8080/openidm/config/audit for
the REST API, and in the file conf/audit.json where you installed OpenIDM. A sample conf/audit.json
configuration file follows:

Using Audit Logs
Event Types

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 309

{
 "eventTypes" : {
 "activity" : {
 "filter" : {
 "actions" : [
 "create",
 "update",
 "delete",
 "patch",
 "action"
]
 },
 "watchedFields" : [],
 "passwordFields" : ["password"]
 },
 "recon" : { }
 },
 "logTo" : [
 {
 "logType" : "csv",
 "location" : "audit",
 "recordDelimiter" : ";",
 "ignoreLoggingFailures" : true
 },
 {
 "logType" : "repository",
 "useForQueries" : true,
 "ignoreLoggingFailures" : true
 }
],
 "exceptionFormatter" : {
 "type" : "text/javascript",
 "file" : "bin/defaults/script/audit/stacktraceFormatter.js"
 }
}

17.3.1. Event Types

The eventTypes configuration specifies what events OpenIDM writes to audit logs. OpenIDM supports
two eventTypes: activity for the activity log, and recon for the reconciliation log. The filter for actions
under activity logging shows the actions on managed or system objects for which OpenIDM writes to
the activity log.

The filter actions list enables you to configure the conditions that result in actions being written to
the activity log.

read

When an object is read by using its identifier.

create

When an object is created.

Using Audit Logs
Event Types

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 310

update

When an object is updated.

delete

When an object is deleted.

patch

When an object is partially modified.

query

When a query is performed on an object.

action

When an action is performed on an object.

You can optionally add a filter triggers list that specifies the actions that are logged for a particular
trigger. For example, the following addition to the audit.json file specifies that only create and update
actions are logged for an activity that was triggered by a recon.

 ...
 "filter" : {
 "actions" : [
 "create",
 "update",
 "delete",
 "patch",
 "action"
],
 "triggers" : {
 "recon" : [
 "create",
 "update"
]
 }
 },
 "watchedFields" : [],
 ...

If a trigger is provided, but no actions are specified, nothing is logged for that trigger. If a trigger is
omitted, all actions are logged for that trigger. In the current OpenIDM release, only the recon trigger
is implemented. For a list of reconciliation actions that can be logged, see Synchronization Actions.

The watchedFields parameter enables you to specify a list of fields that should be "watched" for
changes. When the value of one of the fields in this list changes, the change is logged in the audit log,
under the column "changedFields". Fields are listed in comma-separated format, for example:

Using Audit Logs
Log To List

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 311

"watchedFields" : ["email", "address"]

The passwordFields parameter enables you to specify a list of fields that are considered passwords.
This parameter functions much like the watchedFields parameter in that changes to these field values
are logged in the audit log, under the column "changedFields". In addition, when a password field is
changed, the boolean "passwordChanged" flag is set to true in the audit log. Fields are listed in comma-
separated format, for example:
"passwordFields" : ["password", "username"]

17.3.2. Log To List

The logTo list enables you to specify the format of the log, where it is written, and various parameters
for each log type.

logType

The format of the audit log. The log type can be one of the following:

• csv - write to a comma-separated variable format file.

The "location" property indicates the name of the directory in which the file should be written,
relative to the directory in which you installed OpenIDM.

Audit file names are fixed, access.csv, activity.csv, and recon.csv.

The "recordDelimiter" property enables you to specify the separator between each record.

• repository - write to the OpenIDM database repository.

OpenIDM stores entries under the /openidm/repo/audit/ context. Such entries appear as audit/
access/_id, audit/activity/_id, and audit/recon/_id, where the _id is the UUID of the entry, such as
0419d364-1b3d-4e4f-b769-555c3ca098b0.

In the OrientDB repository, OpenIDM stores log records in the audit_access, audit_activity, and
audit_recon tables.

In a JDBC repository, OpenIDM stores records in the auditaccess, auditactivity, and auditrecon
tables.

The "useForQueries" boolean property indicates whether the repository logger should be used to
service reads and query requests. The value is true by default. If "useForQueries" is set to false,
the CSV file is used to service read and query requests.

ignoreLoggingFailures

In certain situations, you might want to tolerate the inability to write to an audit log and prevent
an exception from being thrown if the logging fails. For example, a request for configuration data

Using Audit Logs
Exception Formatter

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 312

might succeed, but fail to write to the activity log. Reasons for logging failures might include full
disk (for a CSV logger) or repository unavailable (for a repository logger).

For each log type, you can specify that failure to write to the log should be ignored, and should
not prevent the successful execution of the underlying request. To ignore logging failures for
a specific log type, add the "ignoreLoggingFailures" property to the log type configuration, and
set its value to true. This parameter is not included in the default audit.json file, and its value is
considered to be false by default for all log types.

You can specify a logTo location to the directory of your choice. The example shown in Custom Audit
Log Locations shows how you can configure logTo to direct audit logs to a user home directory.

17.3.3. Exception Formatter

The exceptionFormatter property specifies the name and type of file that handles the formatting and
display of exceptions thrown by the audit logger. Supported types include "text/javascript" and
"groovy".

The "file" property provides the path to the script file that performs the formatting. The default
exception formatter is "bin/defaults/script/audit/stacktraceFormatter.js".

17.4. Generating Reports
When generating reports from audit logs, you can correlate information from activity and
reconciliation logs by matching the "rootActionId" on entries in both logs.

The following MySQL query shows a join of the audit activity and audit reconciliation tables using
root action ID values.

mysql> select distinct auditrecon.activity,auditrecon.sourceobjectid,
 auditrecon.targetobjectid,auditactivity.activitydate,auditrecon.status
 from auditactivity inner join auditrecon
 auditactivity.rootactionid=auditrecon.rootactionid
 where auditrecon.activity is not null group by auditrecon.sourceobjectid;
+----------+--------------------------+----------------------+---------------------+---------+
| activity | sourceobjectid | targetobjectid | activitydate | status |
+----------+--------------------------+----------------------+---------------------+---------+
CREATE	system/xmlfile/account/1	managed/user/juser	2012-01-17T07:59:12	SUCCESS
CREATE	system/xmlfile/account/2	managed/user/ajensen	2012-01-17T07:59:12	SUCCESS
CREATE	system/xmlfile/account/3	managed/user/bjensen	2012-01-17T07:59:12	SUCCESS
+----------+--------------------------+----------------------+---------------------+---------+
3 rows in set (0.00 sec)

Configuring OpenIDM to Work in a Cluster

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 313

Chapter 18

Configuring OpenIDM to Work in a Cluster

To ensure availability of the identity management service, you can deploy multiple OpenIDM
instances in a cluster. In a clustered environment, all instances point to the same external database.
The database itself might or might not be clustered, depending on your particular availability
strategy.

In a clustered environment, if one instance of OpenIDM becomes unavailable or does not check in
with the cluster management service, another instance of OpenIDM detects this situation. If the
unavailable instance did not complete one or more tasks, the available instance attempts to recover
and rerun those tasks.

For example, if instance1 goes down while executing a scheduled task, the cluster manager notifies
the scheduler service that instance1 is not available. The scheduler service then attempts to clean up
any jobs that instance1 was running when it went down.

This chapter describes what changes you need to make to OpenIDM to configure multiple instances
that point to a database.

The following diagram depicts a relatively simple cluster configuration. You do need to do more than
just set a unique value for openidm.node.id

Configuring OpenIDM to Work in a Cluster
Configuring an OpenIDM Instance as Part of a Cluster

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 314

The default installation of OpenIDM is pre-configured to enable the cluster service. The conf/
cluster.json file includes the "enabled" : true directive. All you need to do with multiple instances of
OpenIDM on the same subnet is modify each boot.properties file. Pay attention to the openidm.node.id
and openidm.instance.type properties in that file.

When you configure a cluster, check the configuration files for each instance of OpenIDM. Except for
boot.properties, the configuration files should be identical.

18.1. Configuring an OpenIDM Instance as Part of a Cluster
Before you configure an instance of OpenIDM to work in a cluster, make sure that OpenIDM is
stopped. If someone had previously run that instance of OpenIDM, delete the /path/to/openidm/felix-
cache directory.

All OpenIDM instances that form part of a single cluster must must all be configured to use the same
type of repository. Note that OrientDB is currently unsupported in production environments.

To configure an individual OpenIDM instance as a part of a clustered deployment, follow these steps.

Configuring OpenIDM to Work in a Cluster
Edit the Boot Configuration

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 315

1. Configure OpenIDM for a MySQL repository, as described in Installing a Repository For
Production in the Installation Guide in the Installation Guide.

You need only import the data definition language script for OpenIDM into MySQL once, not
repeatedly for each OpenIDM instance.

2. Section 18.1.1, "Edit the Boot Configuration"

3. Section 18.1.2, "Edit the Cluster Configuration"

4. If you are using scheduled tasks, do configure persistent schedules to ensure that they fire only
once across the cluster. For more information, see the section on Persisted Schedules.

18.1.1. Edit the Boot Configuration

Each participating instance in a cluster must have its own unique node or instance ID, and must be
attributed a role in the cluster. Specify these parameters in the conf/boot/boot.properties file of each
instance.

• Specify a unique identifier for the instance, such as:

openidm.node.id=instance1

On subsequent instances, the openidm.node.id can be set to instance2, instance3, and so forth. You can
choose any value, as long as it is unique within the cluster.

In the cluster manager configuration file, cluster.json, the clustering service is enabled by default
with the following setting:

"enabled": true

The cluster manager specifies the OpenIDM instance ID from the boot.properties file as follows:

"instanceId" : "&{openidm.node.id}",

The scheduler uses the instance ID to claim and execute pending jobs. If multiple nodes have
the same instance ID, problems will arise with multiple nodes attempting to execute the same
scheduled jobs.

The cluster manager requires nodes to have unique IDs to ensure that it is able to detect when a
node becomes unavailable.

• Specify the instance type in the cluster.

On the primary instance, revise the following line in the boot.properties file as follows:

Configuring OpenIDM to Work in a Cluster
Edit the Cluster Configuration

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 316

openidm.instance.type=clustered-first

On subsequent instances, revise the following line in the boot.properties file as follows:

openidm.instance.type=clustered-additional

The instance type is used during the setup process. When the primary node has been configured,
additional nodes are bootstrapped with the security settings (keystore and truststore) of the
primary node. After all nodes have been configured, they are all considered equal in the cluster,
that is, there is no concept of a "master" node.

If no instance type is specified, the default value for this property is openidm.instance.type=standalone,
which indicates that the instance will not be part of a cluster.

18.1.2. Edit the Cluster Configuration

The cluster configuration file is /path/to/openidm/conf/cluster.json. To enable a cluster, you should not
have to make changes to this file:
{
 "instanceId" : "&{openidm.node.id}",
 "instanceTimeout" : "30000",
 "instanceRecoveryTimeout" : "30000",
 "instanceCheckInInterval" : "5000",
 "instanceCheckInOffset" : "0",
 "enabled" : true
 }

• The instanceId is set to the value of openidm.node.id, as configured in the conf/boot/boot.properties file.

• instanceTimeout specifies the length of time (in milliseconds) that an instance can be "down" before
the instance is considered to be in recovery mode.

Recovery mode implies that the instanceTimeout of an instance has expired, and that another instance
of OpenIDM in the cluster has detected that event. That second instance of OpenIDM is now
attempting to recover the instance. The logic behind the recovery mechanism differs, depending
on the component within OpenIDM. The scheduler component has well-defined recovery logic, and
attempts to move any jobs that had been acquired by the unavailable instance back into the pool of
waiting jobs.

• instanceRecoveryTimeout specifies the length of time (in milliseconds) that an instance can be in
recovery mode before that instance is considered to be offline.

The purpose of the recovery timeout is to prevent an instance from attempting to recover an
unavailable instance indefinitely.

Configuring OpenIDM to Work in a Cluster
Managing Scheduled Tasks Across a Cluster

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 317

• instanceCheckInInterval specifies the frequency (in milliseconds) that this instance checks in with the
cluster manager to indicate that it is still online.

• instanceCheckInOffset specifies an offset (in milliseconds) for the checkin timing, per instance, when a
number of instances in a cluster are started simultaneously.

Specifying a checkin offset prevents a situation in which all the instances in a cluster check in at
the same time, and place a strain on the cluster manager resource.

• enabled notes whether or not the clustering service should be enabled when you start OpenIDM.

If the default cluster configuration is not suitable for your deployment, edit the cluster.json file for
each instance.

18.2. Managing Scheduled Tasks Across a Cluster
In a clustered environment, the scheduler service looks for pending jobs and handles them as follows:

• Non-persistent (in-memory) jobs will fire on each node in the cluster.

• Persistent scheduled jobs are picked up and executed by a single node in the cluster.

• Jobs that are configured as persistent but not concurrent will fire only once across the cluster and
will not fire again at the scheduled time, on the same node, or on a different node, until the current
job has completed.

For example, a reconciliation operation that runs for longer than the time between scheduled
intervals will not trigger a duplicate job while it is still running.

The order in which nodes in a cluster claim jobs is random. If a node goes down, the cluster manager
will automatically fail over jobs that have been claimed by that node, but not yet started. For
example, if node A claims a job but does not start it, and then goes down, node B can reclaim that job.
If node A claims and job, starts it, and then goes down, the job cannot be reclaimed by another node
in the cluster. That specific job will never be completed. Instance B can claim the next iteration (or
scheduled occurrence) of the job.

Note that this failover behavior is different to the behavior in OpenIDM 2.1.0, in which an unavailable
node would need to come up again to free a job that it had already claimed.

If a number of changes are made as a result of a LiveSync action, a single instance will claim the
action, and will process all the changes related to that action.

To prevent a specific instance from claiming pending jobs, "executePersistentSchedules" should be set
to false in the scheduler configuration for that instance. Because all nodes in a cluster read their
configuration from a single repository you must use token substitution, via the boot.properties file, to
define a specific scheduler configuration for each node.

Configuring OpenIDM to Work in a Cluster
Managing Nodes Over REST

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 318

So, if you want certain nodes to participate in processing clustered schedules (such as LiveSync)
and other nodes not to participate, you can specify this information in the conf/boot/boot.properties
file of each node. For example, to prevent a node from participating, add the following line to the
boot.properties file of that node:

execute.clustered.schedules=false

The initial scheduler configuration that is loaded into the repository must point to the relevant
property in boot.properties. So, the initial scheduler.json file would include a token such as the
following:

{
 "executePersistentSchedules" : "&{execute.clustered.schedules}",
}

You do not want to allow changes to a configuration file to overwrite the global configuration in the
repository. To do so, start each instance of OpenIDM and then disable the file-based configuration
view in a clustered deployment. For more information, see Section 5.3.2, "Disabling Automatic
Configuration Updates".

18.3. Managing Nodes Over REST
You can manage clusters and individual nodes over the REST interface, at the URL https://
localhost:8443/openidm/cluster/. The following sample REST commands demonstrate the cluster
information that is available over REST.

Example 18.1. Displaying the Nodes in the Cluster

The following REST request displays the nodes configured in the cluster, and their status.

Configuring OpenIDM to Work in a Cluster
Managing Nodes Over REST

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 319

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/cluster"

{
 "results": [
 {
 "shutdown": "",
 "startup": "2013-10-28T11:48:29.026+02:00",
 "instanceId": "instance1",
 "state": "running"
 },
 {
 "shutdown": "",
 "startup": "2013-10-28T11:51:31.639+02:00",
 "instanceId": "instance2",
 "state": "running"
 }
]
}

Example 18.2. Checking the State of an Individual Node

To check the status of a specific node, include its instance ID in the URL, for example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/cluster/instance1"

{
 "results": {
 "shutdown": "",
 "startup": "2013-10-28T11:48:29.026+02:00",
 "instanceId": "instance1",
 "state": "running"
 }
}

Sending Email

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 320

Chapter 19

Sending Email

This chapter shows you how to configure the outbound email service, so that you can send email
through OpenIDM either by script or through the REST API.

Procedure 19.1. To Set Up Outbound Email

The outbound email service relies on a configuration object to identify the email account used to send
messages. A sample configuration is provided in /path/to/openidm/samples/misc/external.email.json. To
set up the external email service, follow these steps.

1. Shut down OpenIDM.

2. Copy the sample configuration to the conf directory.
$ cd /path/to/openidm/
$ cp samples/misc/external.email.json conf/

3. Edit external.email.json to reflect the account that is used to send messages.

{
 "host" : "smtp.example.com",
 "port" : "25",
 "username" : "openidm",
 "password" : "secret12",
 "mail.smtp.auth" : "true",
 "mail.smtp.starttls.enable" : "true"
}

OpenIDM encrypts the password you provide.

Follow these hints when editing the configuration.

"host"

SMTP server host name or IP address. This can be "localhost" if the server is on the same
system as OpenIDM.

"port"

SMTP server port number such as 25, or 587

Sending Email
Sending Mail Over REST

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 321

"username"

Mail account user name needed when "mail.smtp.auth" : "true"

"password"

Mail account user password needed when "mail.smtp.auth" : "true"

"mail.smtp.auth"

If "true", use SMTP authentication

"mail.smtp.starttls.enable"

If "true", use TLS

"from"

Optional default From: address

4. Start up OpenIDM.

5. Check that the email service is active.
-> scr list
...
[6] [active] org.forgerock.openidm.external.email
...

Note

The REST call described in the section that follows may use the local SMTP server. For a "quick and dirty" test,
you could use the default port, disable authentication, and TLS:

"host" : "localhost",
"port" : "25,
"username" : "xxxxxx",
"password" : "xxxxxx",
"mail.smtp.auth" : "false",
"mail.smtp.starttls.enable" : "false"

19.1. Sending Mail Over REST
Although you are more likely to send mail from a script in production, you can send email using the
REST API by sending an HTTP POST to /openidm/external/email in order to test that your configuration
works. You pass the message parameters as POST parameters, URL encoding the content as
necessary.

Sending Email
Sending Mail From a Script

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 322

The following example sends a test email using the REST API.

$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{"from":"openidm@example.com",
 "to":"admin@example.com",
 "subject":"Test",
 "body":"Test"}' \
 "https://localhost:8443/openidm/external/email?_action=send"

19.2. Sending Mail From a Script
You can send email by using the resource API functions with the external/email context, as in the
following example, where params is an object that contains the POST parameters.

var params = new Object();
params.from = "openidm@example.com";
params.to = "admin@example.com";
params.cc = "wally@example.com,dilbert@example.com";
params.subject = "OpenIDM recon report";
params.type = "text/html";
params.body = "<html><body><p>Recon report follows...</p></body></html>";

openidm.action("external/email", params);

OpenIDM supports the following POST parameters.

from

Sender mail address

to

Comma-separated list of recipient mail addresses

cc

Optional comma-separated list of copy recipient mail addresses

bcc

Optional comma-separated list of blind copy recipient mail addresses

subject

Email subject

Sending Email
Sending Mail From a Script

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 323

body

Email body text

type

Optional MIME type. One of "text/plain", "text/html", or "text/xml".

Accessing External REST Services

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 324

Chapter 20

Accessing External REST Services

You can access remote REST services by using the openidm/external/rest endpoint, or by specifying
the external/rest resource in your scripts. Note that this service is not intended as a full connector
to synchronize or reconcile identity data, but as a way to make dynamic HTTP calls as part of the
OpenIDM logic. For more declarative and encapsulated interaction with remote REST services, and
for synchronization or reconciliation operations, you should rather use the scripted REST connector.

An external REST call via a script might look something like the following:
openidm.action("external/rest", "call", params);

The "call" parameter specifies the action name to be used for this invocation, and is the standard
method signature for the openidm.action method in OpenIDM 3.0.0.

An external REST call over REST might look something like the following:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{
 "url": "http://www.december.com/html/demo/hello.html",
 "method": "GET",
 "detectResultFormat": false,
 "headers": { "custom-header": "custom-header-value" }
 }' \
 "https://localhost:8443/openidm/external/rest?_action=call"
{
 "body": "<!DOCTYPE html PUBLIC \"-//IETF//DTD HTML 2.0//EN\">\r\n
 <html>\r\n
 <head>\r\n
 <title>\r\n Hello World Demonstration Document\r\n </title>\r\n
 </head>\r\n
 <body>\r\n
 <h1>\r\n Hello, World!\r\n </h1>
 …
 </html>\r\n",
 "headers": {
 "Server": "Apache",
 "ETag": "\"299-4175ff09d1140\"",
 "Date": "Mon, 28 Jul 2014 08:21:25 GMT",
 "Content-Length": "665",
 "Last-Modified": "Thu, 29 Jun 2006 17:05:33 GMT",
 "Keep-Alive": "timeout=15, max=100",

Accessing External REST Services
Invocation Parameters

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 325

 "Content-Type": "text/html",
 "Connection": "Keep-Alive",
 "Accept-Ranges": "bytes"
 }
}

Note that attributes in the POST body do not have underscore prefixes. This is different to the
OpenIDM 2.1 implementation, in which underscores were required.

HTTP 2xx responses are represented as regular, successful responses to the invocation. All other
responses, including redirections, are returned as exceptions, with the HTTP status code in the
exception "code", and the response body in the exception "detail", within the "content" element.

20.1. Invocation Parameters
The following parameters are passed in the resource API parameters map. These parameters can
override the static configuration (if present) on a per-invocation basis.

• url. The target URL to invoke, in string format.

• method. The HTTP action to invoke, in string format.

Possible actions include "POST", "GET", "PUT", "DELETE", "HEAD" and "OPTIONS".

• authenticate. The login details with which to authenticate. For example:
"authenticate" : {"type": "basic", "user" : "john", "password" : "Passw0rd"}

If no authenticate parameter is specified, no authentication is used. Currently, only basic
authentication is supported.

• headers. The HTTP headers to set, in a map format from string (header-name) to string (header-
value). For example, Accept-Language: en-US.

• content-type. The media type of the data that is sent, for example Content-Type: application/json or
Content-Type: application/xml.

• body. The body/resource representation to send (for PUT and POST operations), in string format.

• detectResultFormat. Specifies whether JSON or non-JSON results are expected. Boolean, defaults to
true.

For all responses other than 2xx, the result is returned as an exception, with the HTTP code in the
exception "code". Any details are returned in the exception "detail" under the "content" element. For
example:

Accessing External REST Services
Support for Non-JSON Responses

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 326

$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{
 "url":"http://december.com/non_existing_page",
 "method":"GET",
 "content-type":"application/xml"
 }' \
 "https://localhost:8443/openidm/external/rest?_action=call"
{
 "detail": {
 "content": "<html><head><title>December Communications, Inc. Missing Page</title> (...) </html>
\n"
 },
 "message": "Error while processing GET request: Not Found",
 "reason": "Not Found",
 "code": 404
}

For more information about non-JSON results, see Section 20.2, "Support for Non-JSON
Responses".

20.2. Support for Non-JSON Responses
The external REST service supports any arbitrary payload (currently in stringified format). The
"detectResultFormat" parameter specifies whether the server should attempt to detect the response
format and, if the format is known, parse that format.

Currently, the only known response format is JSON. So, if the service that is requested returns results
in JSON format, and "detectResultFormat" is set to true (the default), the response from the call to
external/rest will be the identical JSON data that was returned from the remote system. This enables
JSON clients to interact with the external REST service with minimal changes to account for in the
response.

If the service returns results in JSON format and "detectResultFormat" is set to false, results are
represented as a stringified entry.

If "detectResultFormat" is set to true and the mime type is not recognized (currently any type other than
JSON) the result is the same as if "detectResultFormat" were set to false. Set "detectResultFormat" to false
if the remote system returns non-JSON data, or if you require details in addition to the literal JSON
response body (for example, if you need to access a specific response header, such as a cookie).

The representation as parsed JSON differs from the stringified format as follows:

• The parsed JSON representation returns the message payload directly in the body, with no
wrapper. Currently, for parsed JSON responses, additional meta-data is not returned in the body.
For example:

Accessing External REST Services
Support for Non-JSON Responses

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 327

$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{
 "url": "http://localhost:8080/openidm/info/ping",
 "method": "GET",
 "detectResultFormat": true,
 "headers": { "X-OpenIDM-Username": "anonymous", "X-OpenIDM-Password": "anonymous" }
 }' \
 "https://localhost:8443/openidm/external/rest?_action=call"
{
 "shortDesc": "OpenIDM ready",
 "state": "ACTIVE_READY"
}

• The stringified format includes a wrapper that represents other meta-data, such as returned
headers. For example:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{
 "url": "http://localhost:8080/openidm/info/ping",
 "method": "GET",
 "detectResultFormat": false,
 "headers": { "X-OpenIDM-Username": "anonymous", "X-OpenIDM-Password": "anonymous" }
 }' \
 "https://localhost:8443/openidm/external/rest?_action=call"
{
 "body": "{\"state\":\"ACTIVE_READY\",\"shortDesc\":\"OpenIDM ready\"}",
 "headers": {
 "Cache-Control": "no-cache",
 "Server": "Jetty(8.y.z-SNAPSHOT)",
 "Content-Type": "application/json;charset=UTF-8",
 "Set-Cookie": "session-jwt=eyAiYWxn...-cQ.3QT4zT4ZZTj8LH8Oo_zx3w;Path=/",
 "Expires": "Thu, 01 Jan 1970 00:00:00 GMT",
 "Content-Length": "52",
 "Vary": "Accept-Encoding, User-Agent"
 }
}

A sample non-JSON response would be similar:
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{
 "url":"http://december.com",
 "method":"GET",

Accessing External REST Services
Support for Non-JSON Responses

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 328

 "content-type":"application/xml",
 "detectResultFormat":false
 }' \
 "https://localhost:8443/openidm/external/rest?_action=call"
{
 "body": "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01 Transitional//EN\"
 \"http://www.w3.org/TR/html4/loose.dtd\"> \n
 <html><head><title>December Communications, Inc.
 december.com</title>\n
 <meta http-equiv=\"Content-Type\" content=\"text/html;
 charset=iso-8859-1\">
 ..."
 "headers": {
 "Server": "Apache",
 "ETag": "\"4c3c-4f06c64da3980\"",
 "Date": "Mon, 28 Jul 2014 19:16:33 GMT",
 "Content-Length": "19516",
 "Last-Modified": "Mon, 20 Jan 2014 20:04:06 GMT",
 "Keep-Alive": "timeout=15, max=100",
 "Content-Type": "text/html",
 "Connection": "Keep-Alive",
 "Accept-Ranges": "bytes"
 }
}

OpenIDM Project Best Practices
Implementation Phases

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 329

Chapter 21

OpenIDM Project Best Practices

This chapter lists points to check when implementing an identity management solution with
OpenIDM.

21.1. Implementation Phases
Any identity management project should follow a set of well defined phases, where each phase
defines discrete deliverables. The phases take the project from initiation to finally going live with a
tested solution.

21.1.1. Initiation
The project's initiation phase involves identifying and gathering project background, requirements,
and goals at a high level. The deliverable for this phase is a statement of work or a mission statement.

21.1.2. Definition
In the definition phase, you gather more detailed information on existing systems, determine
how to integrate, describe account schemas, procedures, and other information relevant to the
OpenIDM deployment. The deliverable for this phase is one or more documents that define detailed
requirements for the project, and that cover project definition, the business case, use cases to solve,
and functional specifications.

The definition phase should capture at least the following.

User Administration and Management

Procedures for managing users and accounts, who manages users, what processes look like for
joiners, movers and leavers, and what is required of OpenIDM to manage users

Password Management and Password Synchronization

Procedures for managing account passwords, password policies, who manages passwords, and
what is required of OpenIDM to manage passwords

Security Policy

What security policies defines for users, accounts, passwords, and access control

OpenIDM Project Best Practices
Design

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 330

Target Systems

Target systems and resources with which OpenIDM must integrate. Information such as schema,
attribute mappings and attribute transformation flow, credentials and other integration specific
information.

Entitlement Management

Procedures to manage user access to resources, individual entitlements, grouping provisioning
activities into encapsulated concepts such as roles and groups

Synchronization and Data Flow

Detailed outlines showing how identity information flows from authoritative sources to target
systems, attribute transformations required

Interfaces

How to secure the REST, user and file-based interfaces, and to secure the communication
protocols involved

Auditing and Reporting

Procedures for auditing and reporting, including who takes responsibility for auditing and
reporting, and what information is aggregated and reported. Characteristics of reporting engines
provided, or definition of the reporting engine to be integrated.

Technical Requirements

Other technical requirements for the solution such as how to maintain the solution in terms
of monitoring, patch management, availability, backup, restore and recovery process. This
includes any other components leveraged such as a ConnectorServer and plug-ins for password
synchronization on Active Directory, or OpenDJ.

21.1.3. Design
This phase focuses on solution design including on OpenIDM and other components. The deliverables
for this phase are the architecture and design documents, and also success criteria with detailed
descriptions and test cases to verify when project goals have been met.

21.1.4. Build
This phase builds and tests the solution prior to moving the solution into production.

21.1.5. Production
This phase deploys the solution into production until an application steady state is reached and
maintenance routines and procedures can be applied.

Troubleshooting
OpenIDM Stopped in Background

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 331

Chapter 22

Troubleshooting

When things are not working check this chapter for tips and answers.

22.1. OpenIDM Stopped in Background
When you start OpenIDM in the background without having disabled the text console, the job can
stop immediately after startup.
$./startup.sh &
[2] 346
$./startup.sh
Using OPENIDM_HOME: /path/to/openidm
Using OPENIDM_OPTS: -Xmx1024m -Xms1024m
Using LOGGING_CONFIG:
 -Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties
Using boot properties at /path/to/openidm/conf/boot/boot.properties
->

[2]+ Stopped ./startup.sh

To resolve this problem, make sure you remove openidm/bundle/org.apache.felix.shell.tui-1.4.1.jar
before starting OpenIDM, and also remove Felix cache files in openidm/felix-cache/.

22.2. Internal Server Error During Reconciliation or
Synchronization
You might see an error message such as the following returned from reconciliation or
synchronization.

{
 "error": "Conflict",
 "description": "Internal Server Error:
 org.forgerock.openidm.sync.SynchronizationException:
 Cowardly refusing to perform reconciliation with an
 empty source object set: Cowardly refusing to perform
 reconciliation with an empty source object set"
}

Troubleshooting
The scr list Command Shows Sync Service As Unsatisfied

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 332

This error can be misleading. This usually means the connector is not able to communicate with the
target source.

Check the settings for your connector. For example, with the XML connector you get this error if the
filename for the source is invalid. With the LDAP connector, you can get this error if your connector
cannot contact the target LDAP server.

22.3. The scr list Command Shows Sync Service As
Unsatisfied
You might encounter this message in the logs.

WARNING: Loading configuration file /path/to/openidm/conf/sync.json failed
org.forgerock.openidm.config.InvalidException:
 Configuration for org.forgerock.openidm.sync could not be parsed and may not
 be valid JSON : Unexpected character ('}' (code 125)): expected a value
 at [Source: java.io.StringReader@3951f910; line: 24, column: 6]
 at org.forgerock.openidm.config.crypto.ConfigCrypto.parse...
 at org.forgerock.openidm.config.crypto.ConfigCrypto.encrypt...
 at org.forgerock.openidm.config.installer.JSONConfigInstaller.setConfig...

This indicates a syntax error in openidm/conf/sync.json. After fixing your configuration, change to the /
path/to/openidm/ directory, and use the cli.sh validate command to check that your configuration files
are valid.
$ cd /path/to/openidm ; ./cli.sh validate
Using boot properties at /path/to/openidm/conf/boot/boot.properties
...
[Validating] Load JSON configuration files from:
[Validating] /path/to/openidm/conf
[Validating] audit.json SUCCESS
[Validating] authentication.json SUCCESS
[Validating] managed.json SUCCESS
[Validating] provisioner.openicf-xml.json SUCCESS
[Validating] repo.orientdb.json SUCCESS
[Validating] router.json SUCCESS
[Validating] scheduler-reconcile_systemXmlAccounts_managedUser.json SUCCESS
[Validating] sync.json SUCCESS

22.4. JSON Parsing Error
You might encounter this error message in the logs.

"Configuration for org.forgerock.openidm.provisioner.openicf could not be
 parsed and may not be valid JSON : Unexpected character ('}' (code 125)):
 was expecting double-quote to start field name"

Troubleshooting
System Not Available

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 333

The error message usually indicates the precise point where the JSON file has the syntax problem.
The error above was caused by an extra comma in the JSON file, {"attributeName":{},{},}. The second
comma is redundant.

The situation usually results in the service that the specific JSON file configures being left in the
unsatisfied state.

After fixing your configuration, change to the /path/to/openidm/ directory, and use the cli.sh validate
command to check that your configuration files are valid.

22.5. System Not Available
OpenIDM throws the following error as a result of a reconciliation where the source systems
configuration can not be found.

{
 "error": "Conflict",
 "description": "Internal Server Error:
 org.forgerock.openidm.sync.SynchronizationException:
 org.forgerock.openidm.objset.ObjectSetException:
 System: system/HR/account is not available.:
 org.forgerock.openidm.objset.ObjectSetException:
 System: system/HR/account is not available.:
 System: system/HR/account is not available."
}

This error occurs when the "name" property value in provisioner.resource.json is changed from HR to
something else.

The same error occurs when a provisioner configuration fails to load due to misconfiguration, or
when the path to the data file for a CSV or XML connector is incorrectly set.

22.6. Bad Connector Host Reference in Provisioner
Configuration
You might see the following error when a provisioner configuration loads.

Wait for meta data for config org.forgerock.openidm.provisioner.openicf-scriptedsql

In this case the configuration fails to load because information is missing. One possible cause is an
incorrect value for connectorHostRef in the provisioner configuration file.

For local Java connector servers, the following rules apply.

• If the connector .jar is installed as a bundle under openidm/bundle, then the value must be
"connectorHostRef" : "osgi:service/org.forgerock.openicf.framework.api.osgi.ConnectorManager",.

Troubleshooting
Missing Name Attribute

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 334

• If the connector .jar is installed as a connector under openidm/connectors, then the value must be
"connectorHostRef" : "#LOCAL",.

22.7. Missing Name Attribute
In this case, the situation in the audit recon log shows "NULL".

A missing name attribute error, followed by an IllegalArgumentException, points to misconfiguration of
the correlation rule, with the correlation query pointing to the external system. Such queries usually
reference the "name" field which, if empty, leads to the error below.

Jan 20, 2012 1:59:58 PM
 org.forgerock.openidm.provisioner.openicf.commons.AttributeInfoHelper build
SEVERE: Failed to build name attribute out of [null]
Jan 20, 2012 1:59:58 PM
 org.forgerock.openidm.provisioner.openicf.impl.OpenICFProvisionerService query
SEVERE: Operation [query, system/ad/account] failed with Exception on system
 object: java.lang.IllegalArgumentException: Attribute value must be an
 instance of String.
Jan 20, 2012 1:59:58 PM org.forgerock.openidm.router.JsonResourceRouterService
 handle
WARNING: JSON resource exception
org.forgerock.json.resource.JsonResourceException: IllegalArgumentException
 at org.forgerock.openidm.provisioner....OpenICFProvisionerService.query...
 at org.forgerock.openidm.provisioner.....OpenICFProvisionerService.handle...
 at org.forgerock.openidm.provisioner.impl.SystemObjectSetService.handle...
 at org.forgerock.json.resource.JsonResourceRouter.handle...

Check your correlationQuery. Another symptom of a broken correlation query is that the audit recon
log shows a situation of "NULL", and no onCreate, onUpdate or similar scripts are executed.

Advanced Configuration
Advanced Startup Configuration

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 335

Chapter 23

Advanced Configuration
OpenIDM is a highly customizable, extensible identity management system. For the most part, the
customization and configuration required for a "typical" deployment is described earlier in this book.
This chapter describes advanced configuration methods that would usually not be required in a
deployment, but that might assist in situations that require a high level of customization.

23.1. Advanced Startup Configuration
A customizable startup configuration file (named launcher.json) enables you to specify how the OSGi
Framework is started. You specify the startup configuration file with the -c option of the startup
command.

Unless you are working with a highly customized deployment, you should not modify the default
framework configuration.

If no configuration file is specified, the default configuration (defined in /path/to/openidm/bin/
launcher.json) is used. The following command starts OpenIDM with an alternative startup
configuration file:
$./startup.sh -c /Users/admin/openidm/bin/launcher.json

You can modify the default startup configuration file to specify a different startup configuration.

The customizable properties of the default startup configuration file are as follows:

• "location" : "bundle" - resolves to the install location. You can also load OpenIDM from a specified
zip file ("location" : "openidm.zip") or you can install a single jar file ("location" : "openidm-system-2.2
.jar").

• "includes" : "**/openidm-system-*.jar" - the specified folder is scanned for jar files relating to the
system startup. If the value of "includes" is *.jar, you must specifically exclude any jars in the
bundle that you do not want to install, by setting the "excludes" property.

• "start-level" : 1 - specifies a start level for the jar files identified previously.

• "action" : "install.start" - a period-separated list of actions to be taken on the jar files. Values can
be one or more of "install.start.update.uninstall".

• "config.properties" - takes either a path to a configuration file (relative to the project location) or a
list of configuration properties and their values. The list must be in the format "string":"string", for
example:

Advanced Configuration
Advanced Startup Configuration

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 336

 "config.properties" :
 {
 "property" : "value"
 },

• "system.properties" - takes either a path to a system.properties file (relative to the project location)
or a list of system properties and their values. The list must be in the format "string":"string", for
example:

 "system.properties" :
 {
 "property" : "value"
 },

• "boot.properties" - takes either a path to a boot.properties file (relative to the project location) or a
list of boot properties and their values.The list must be in the format "string":object, for example:

 "boot.properties" :
 {
 "property" : true
 },

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 337

Appendix A. File Layout

When you unpack and start OpenIDM 3.0.0, you create the following files and directories. Note that
the precise paths will depend on the install, project, and working directories that you have selected
during startup. For more information, see Specifying the OpenIDM Startup Configuration.

openidm/audit/

OpenIDM audit log directory default location, created at run time, as configured in openidm/conf/
audit.json

openidm/audit/access.csv

Default OpenIDM access audit log

openidm/audit/activity.csv

Default OpenIDM activity audit log

openidm/audit/recon.csv

Default OpenIDM reconciliation audit log

openidm/bin/

OpenIDM core libraries and scripts

openidm/bin/create-openidm-logrotate.sh

Script to create an openidmlog log rotation scheduler for inclusion under /etc/logrotate.d/

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 338

openidm/bin/create-openidm-rc.sh

Script to create an openidm resource definition file for inclusion under /etc/init.d/

openidm/bin/defaults/script

Default scripts required to run specific services. In general, you should not modify these scripts.
Instead, add customized scripts to the openidm/script folder.

openidm/bin/defaults/script/audit/*.js

Scripts related to the audit logging service.

openidm/bin/defaults/script/auth/*.js

Scripts related to the authentication mechanism, described in the Authentication chapter.

openidm/bin/defaults/script/compensate.js

Script that provides the compensation functionality to assure or roll back reconciliation
operations. For more information, see How Automatic Sync Works With onSync.

openidm/bin/defaults/script/info/crypto.js

A wrapper script for the openidm.encrypt function.

openidm/bin/defaults/script/info/login.js

Provides information about the current OpenIDM session.

openidm/bin/defaults/script/info/ping.js

Provides basic information about the health of an OpenIDM system

openidm/bin/defaults/script/lib/*

Internal libraries required by certain OpenIDM javascripts

openidm/bin/defaults/script/linkedView.js

A script that returns all the records linked to a specific resource, used in reconciliation.

openidm/bin/defaults/script/policy.js

Defines each policy and specifies how policy validation is performed

openidm/bin/defaults/script/policyFilter.js

Enforces policy validation

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 339

openidm/bin/defaults/script/roles/*.js

Scripts to provide the default roles functionality. For more information, see Configuring Custom
Roles.

openidm/bin/defaults/script/router-authz.js

Provides the functions that enforce access rules

openidm/bin/defaults/script/ui/*

Scripts required by the UI

openidm/bin/defaults/script/workflow/*

Default workflow scripts

openidm/bin/felix.jar
openidm/bin/openidm.jar
openidm/bin/org.apache.felix.gogo.runtime-0.10.0.jar
openidm/bin/org.apache.felix.gogo.shell-0.10.0.jar

Files relating to the Apache Felix OSGi framework

openidm/bin/launcher.bat
openidm/bin/launcher.jar
openidm/bin/launcher.json

Files relating to the startup configuration

openidm/bin/LICENSE.TXT
openidm/bin/NOTICE.TXT

Files relating to the Apache Software License

openidm/bin/install-service.bat
openidm/bin/MonitorService.bat
openidm/bin/prunmgr.exe
openidm/bin/amd64/prunsrv.exe
openidm/bin/i386/prunsrv.exe
openidm/bin/ia64/prunsrv.exe

Files required by the user interface to monitor and configure installed services

openidm/bin/startup/
openidm/bin/startup/OS X - Run OpenIDM In Background.command
openidm/bin/startup/OS X - Run OpenIDM In Terminal Window.command
openidm/bin/startup/OS X - Stop OpenIDM.command

Clickable commands for Mac OS X

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 340

openidm/bin/workflow/

Files related to the Activiti workflow engine

openidm/bundle/

OSGi bundles and modules required by OpenIDM. Upgrade can install new and upgraded bundles
here.

openidm/cli.bat
openidm/cli.sh

Management commands for operations such as validating configuration files

openidm/conf/

OpenIDM configuration files, including .properties files and JSON files. You can also access JSON
views through the REST interface.

openidm/conf/audit.json

Audit event publisher configuration file

openidm/conf/authentication.json

Authentication configuration file for access to the REST API

openidm/conf/boot/boot.properties

OpenIDM bootstrap properties

openidm/conf/cluster.json

Configuration file to enable use of this OpenIDM instance in a cluster

openidm/conf/config.properties

Felix and OSGi bundle configuration properties

openidm/conf/endpoint-*.json

Endpoint configuration files required by the UI for the default workflows

openidm/conf/info-*.json

Configuration files for the info service, described in Obtaining Information About an OpenIDM
Instance.

openidm/conf/jetty.xml

Jetty configuration controlling access to the REST interface

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 341

openidm/conf/logging.properties

OpenIDM log configuration properties

openidm/conf/managed.json

Managed object configuration file

openidm/conf/policy.json

Default policy configuration

openidm/conf/process-access.json

Workflow access configuration

openidm/conf/repo.orientdb.json

OrientDB internal repository configuration file

openidm/conf/router.json

Router service configuration file

openidm/conf/scheduler.json

Scheduler service configuration

openidm/conf/script.json

Script configuration file with default script directories.

openidm/conf/servletfilter-*.json

Sample servlet filter configuration, described in Registering Additional Servlet Filters.

openidm/conf/system.properties

System configuration properties used when starting OpenIDM services

openidm/conf/ui-configuration.json

Main configuration file for the browser-based user interface

openidm/conf/ui-countries.json

Configurable list of countries available when registering users in the user interface

openidm/conf/ui-secquestions.json

Configurable list of security questions available when registering users in the user interface

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 342

openidm/conf/ui-themeconfig.json

Customizable UI theme configuration file

openidm/conf/ui.context-enduser.json

Configuration file that specifies the context root of the UI, /openidmui by default

openidm/conf/workflow.json

Configuration of the Activiti workflow engine

openidm/connectors/

OpenICF connector libraries. OSGi enabled connector libraries can also be stored in openidm/
bundle/.

openidm/db/

Internal repository files, including both OrientDB files and data definition language scripts for
JDBC based repositories such as MySQL

openidm/felix-cache/

Bundle cache directory created when the Felix framework is started

openidm/lib

Location in which third-party libraries (required, for example, by custom connectors) should be
placed.

openidm/logs/

OpenIDM service log directory

openidm/logs/openidm0.log.*

OpenIDM service log files as configured in openidm/conf/logging.properties

openidm/samples/

OpenIDM sample configurations

openidm/samples/audit-sample/

Sample demonstrates configuring a MySQL database to receive the audit logs for access, activity,
and recon.

openidm/samples/customendpoint/

Sample custom endpoint configuration. For more information, see Adding Custom Endpoints.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 343

openidm/samples/infoservice/

Sample that shows how to use the configurable information service. For more information, see
Obtaining Information About an OpenIDM Instance.

openidm/samples/misc/

Sample configuration files

openidm/samples/provisioners/

Sample connector configuration files

openidm/samples/sample1/

XML file connector sample

openidm/samples/sample2/

One-way reconciliation sample using OpenDJ and LDAP connector

openidm/samples/sample2b/

Bi-directional reconciliation sample using OpenDJ and LDAP connector

openidm/samples/sample2c/

Sample using LDAP connector to synchronize LDAP group membership

openidm/samples/sample2d/

>Sample using LDAP connector to synchronize LDAP groups

openidm/samples/sample3/

Scripted SQL connector sample for MySQL

openidm/samples/sample4/

Sample demonstrating synchronization between two external resources (CSV and XML) without
using the OpenIDM internal repository

openidm/samples/sample5/

LDAP to OpenIDM to Active Directory attribute flow sample using XML resources rather than
actual directories

openidm/samples/sample5b/

Similar to sample 5 but also configures a compensation script that attempts to ensure either all
the synchronization or none of the synchronization is performed

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 344

openidm/samples/sample6/

LiveSync and reconciliation sample for use with two LDAP servers, using Active Directory and
OpenDJ

openidm/samples/sample7/

Sample exposing identities with a SCIM-line schema

openidm/samples/sample8/

Sample demonstrating logging in scripts

openidm/samples/sample9/

Sample demonstrating how to perform an asynchronous action from a reconciliation

openidm/samples/schedules/

Sample schedule configuration files

openidm/samples/security/

Sample keystore, truststore, and certificates

openidm/samples/syncfailure/

Sample showing the sync failure handler for liveSync

openidm/samples/taskscanner/

Sample sunset scanning task. For more information, see Scanning Data to Trigger Tasks.

openidm/samples/workflow/

Typical use case of a workflow for provisioning

openidm/samples/usecase/*

Several workflow samples to demonstrate common use cases

openidm/script/

OpenIDM location for script files referenced in the configuration

openidm/script/access.js

Default authorization policy script

openidm/security/

OpenIDM security configuration, keystore, and truststore

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 345

openidm/shutdown.sh

Script to shutdown OpenIDM services based on the process identifier

openidm/startup.bat

Script to start OpenIDM services on Windows

openidm/startup.sh

Script to start OpenIDM services on UNIX

openidm/ui/default/*

Default OpenIDM graphical UI files

openidm/ui/extension/*

Location for any UI customizations

openidm/workflow/

OpenIDM location for BPMN 2.0 workflows and .bar files

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 346

Appendix B. Ports Used

By default, OpenIDM 3.0.0 listens on the following ports (specified in the files /path/to/openidm/conf/
boot/boot.properties and /path/to/openidm/conf/config.properties):

If you change the default port numbers, you must make the same modification in both the
boot.properties and config.properties files.

8080

HTTP access to the REST API, requiring OpenIDM authentication. This port is not secure,
exposing clear text passwords and all data that is not encrypted. This port is therefore not
suitable for production use.

8443

HTTPS access to the REST API, requiring OpenIDM authentication

8444

HTTPS access to the REST API, requiring SSL mutual authentication. Clients that present
certificates found in the truststore under openidm/security/ are granted access to the system.

The Jetty configuration (in openidm/conf/jetty.xml) references the ports that are specified in the
boot.properties and config.properties files.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 347

Appendix C. Data Models and Objects
Reference

OpenIDM allows you to customize a variety of objects that can be addressed via a URL or URI, and
that have a common set of functions that OpenIDM can perform on them such as CRUD, query, and
action.

Depending on how you intend to use them, different objects are appropriate.

Table C.1. OpenIDM Objects

Object Type Intended Use Special Functionality
Managed objects Serve as targets and sources for

synchronization, and to build virtual
identities.

Provide appropriate auditing,
script hooks, declarative
mappings and so forth
in addition to the REST
interface.

Configuration objects Ideal for look-up tables or other custom
configuration, which can be configured
externally like any other system configuration.

Adds file view, REST
interface, and so forth

Repository objects The equivalent of arbitrary database table
access. Appropriate for managing data
purely through the underlying data store or
repository API.

Persistence and API access

System objects Representation of target resource objects,
such as accounts, but also resource objects
such as groups.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 348

Object Type Intended Use Special Functionality
Audit objects Houses audit data in the OpenIDM internal

repository.

Links Defines a relation between two objects.

C.1. Managed Objects
A managed object in OpenIDM is an object which represents the identity-related data managed by
OpenIDM. Managed objects are stored by OpenIDM in its data store. All managed objects are JSON-
based data structures.

C.1.1. Managed Object Schema

Managed objects have an associated schema to enforce a specific data structure. Schema is specified
using the JSON Schema specification. This is currently an Internet-Draft, with implementations in
multiple programming languages.

C.1.1.1. Managed Object Reserved Properties

Top-level properties in a managed object that begin with an underscore (_) are reserved by
OpenIDM for internal use, and are not explicitly part of its schema. Internal properties are read-only,
and are ignored when provided by the REST API client.

The following properties exist for all managed objects in OpenIDM.

_id

string

The unique identifier for the object. This value forms a part of the managed object's URI.

_rev

string

The revision of the object. This is the same value that is exposed as the object's ETag through
the REST API. The content of this attribute is not defined. No consumer should make any
assumptions of its content beyond equivalence comparison. This attribute may be provided by the
underlying data store.

_schema_id

string

The a reference to the schema object that the managed object is associated with.

http://tools.ietf.org/html/draft-zyp-json-schema-03

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 349

_schema_rev

string

The revision of the schema that was used for validation when the object was last stored.

C.1.1.2. Managed Object Schema Validation

Schema validation is performed unequivocally whenever an object is stored, and conditionally
whenever an object is retrieved from the data store and exhibits a _schema_rev value that differs
from the _rev of the schema that the OpenIDM instance currently has for that managed object type.
Whenever schema validation is performed, the _schema_rev of the object is updated to contain the _rev
value of the current schema.

C.1.1.3. Managed Object Derived Properties

Properties can be defined to be strictly derived from other properties within the object. This allows
computed and composite values to be created in the object. Whenever an object undergoes a change,
all derived properties are recomputed. The values of derived properties are stored in the data store,
and are not recomputed upon retrieval.

C.1.2. Data Consistency

Single-object operations shall be consistent within the scope of the operation performed, limited by
capabilities of the underlying data store. Bulk operations shall not have any consistency guarantees.
OpenIDM does not expose any transactional semantics in the managed object access API.

All access through the REST API uses the ETag and associated conditional headers: If-Match, If-None-
Match. In operations that modify model objects, conditional headers are mandatory.

C.1.3. Managed Object Triggers

Triggers are user-definable functions that validate or modify object or property state.

C.1.3.1. State Triggers

Managed objects are resource-oriented. A set of triggers is defined to intercept the supported request
methods on managed objects. Such triggers are intended to perform authorization, redact, or modify
objects before the action is performed. The object being operated on is in scope for each trigger,
meaning that the object is retrieved by the data store before the trigger is fired.

If retrieval of the object fails, the failure occurs before any trigger is called. Triggers are executed
before any optimistic concurrency mechanisms are invoked. The reason for this is to prevent a
potential attacker from getting information about an object (including its presence in the data store)
before authorization is applied.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 350

onCreate

Called upon a request to create a new object. Throwing an exception causes the create to fail.

postCreate

Called after the creation of a new object is complete.

onRead

Called upon a request to retrieve a whole object or portion of an object. Throwing an exception
causes the object to not be included in the result. This method is also called when lists of objects
are retrieved via requests to its container object; in this case, only the requested properties are
included in the object. Allows for uniform access control for retrieval of objects, regardless of the
method in which they were requested.

onUpdate

Called upon a request to store an object. The "old" and "new" objects are in-scope for the trigger.
The "old" object represents a complete object as retrieved from the data store. The trigger
can elect to change "new" object properties. If as a result of the trigger the object's "old" and
"new" values are identical (that is, update is reverted), the update ends prematurely, though
successfully. Throwing an exception causes the update to fail.

postUpdate

Called after an update request is complete.

onDelete

Called upon a request to delete an object. Throwing an exception causes the deletion to fail.

postDelete

Called after an object is deleted.

C.1.3.2. Object Storage Triggers

An object-scoped trigger applies to an entire object. Unless otherwise specified, the object itself is in
scope for the trigger.

onValidate

Validates an object prior to its storage in the data store. Throws an exception in the event of a
validation failure.

onStore

Called just prior to when an object is stored in the data store. Typically used to transform an
object just prior to its storage (for example, encryption).

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 351

C.1.3.3. Property Storage Triggers

A property-scoped trigger applies to a specific property within an object. Only the property itself is
in scope for the trigger. No other properties in the object should be accessed during execution of the
trigger. Unless otherwise specified, the order of execution of property-scoped triggers is intentionally
left undefined.

onValidate

Validates a given property value after its retrieval from and prior to its storage in the data store.
Throws an exception in the event of a validation failure.

onRetrieve

Called in the result of a query request. Executed only when the executeOnRetrieve condition shows
a full managed object.

onStore

Called prior to when an object is stored in the data store. Typically used to transform a given
property prior to its object's storage.

C.1.3.4. Storage Trigger Sequences

Triggers are executed in the following order:

Object Retrieval Sequence

1. Retrieve the raw object from the data store

2. The executeOnRetrieve boolean is used to see if a full managed object is returned. The sequence
continues if the boolean is set to true.

3. Call object onRetrieve trigger

4. Per-property within the object:

• Call property onRetrieve trigger

• Perform schema validation if _schema_rev does not match (see the Schema Validation section)

Object Storage Sequence

1. Per-property within the object:

• Call property onValidate trigger

• Call object onValidate trigger

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 352

2. Per-property trigger within the object:

• Call property onStore trigger

• Call object onStore trigger

• Store the object with any resulting changes to the data store

C.1.4. Managed Object Encryption

Sensitive object properties can be encrypted prior to storage, typically through the property onStore
trigger. The trigger has access to configuration data, which can include arbitrary attributes that you
define, such as a symmetric encryption key. Such attributes can be decrypted during retrieval from
the data store through the property onRetrieve trigger.

C.1.5. Managed Object Configuration

Configuration of managed objects is provided through an array of managed object configuration
objects.

{
 "objects": [managed-object-config object, ...]
}

objects

array of managed-object-config objects, required

Specifies the objects that the managed object service manages.

Managed-Object-Config Object Properties

Specifies the configuration of each managed object.

{
 "name" : string,
 "schema" : json-schema object,
 "onCreate" : script object,
 "postCreate": script object,
 "onRead" : script object,
 "onUpdate" : script object,
 "postUpdate": script object,
 "onDelete" : script object,
 "postDelete": script object,
 "onValidate": script object,
 "onRetrieve": script object,
 "onStore" : script object,
 "properties": [property-configuration object, ...]
}

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 353

name

string, required

The name of the managed object. Used to identify the managed object in URIs and identifiers.

schema

json-schema object, optional

The schema to use to validate the structure and content of the managed object. The schema-
object format is specified by the JSON Schema specification.

onCreate

script object, optional

A script object to trigger when the creation of an object is being requested. The object to be
created is provided in the root scope as an object property. The script may change the object. If
an exception is thrown, the create aborts with an exception.

postCreate

script object, optional

A script object to trigger after an object is created, but before any targets are synchronized.

onRead

script object, optional

A script object to trigger when the read of an object is being requested. The object being read
is provided in the root scope as an object property. The script may change the object. If an
exception is thrown, the read aborts with an exception.

onUpdate

script object, optional

A script object to trigger when an update to an object is requested. The old value of the object
being updated is provided in the root scope as an oldObject property. The new value of the object
being updated is provided in the root scope as a newObject property. The script may change the
newObject. If an exception is thrown, the update aborts with an exception.

postUpdate

script object, optional

A script object to trigger after an update to an object is complete, but before any targets are
synchronized.

onDelete

script object, optional

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 354

A script object to trigger when the deletion of an object is being requested. The object being
deleted is provided in the root scope as an object property. If an exception is thrown, the deletion
aborts with an exception.

postDelete

script object, optional

A script object to trigger after a delete of an object is complete, but before any further
synchronization.

onValidate

script object, optional

A script object to trigger when the object requires validation. The object to be validated is
provided in the root scope as an object property. If an exception is thrown, the validation fails.

onRetrieve

script object, optional

A script object to trigger once an object is retrieved from the repository. The object that was
retrieved is provided in the root scope as an object property. The script may change the object. If
an exception is thrown, then object retrieval fails.

onStore

script object, optional

A script object to trigger when an object is about to be stored in the repository. The object to be
stored is provided in the root scope as an object property. The script may change the object. If an
exception is thrown, then object storage fails.

properties

array of property-config objects, optional

A list of property specifications.

Script Object Properties

{
 "type" : "text/javascript",
 "source": string
 }

type

string, required

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 355

Specifies the type of script to be executed. Supported types include "text/javascript" and "groovy".

source, file

string, required (only one, source or file is required)

Specifies the source code of the script to be executed (if the keyword is "source"), or a pointer to
the file that contains the script (if the keyword is "file").

Property Config Properties

{
 "name" : string,
 "onValidate": script object,
 "onRetrieve": script object,
 "onStore" : script object,
 "encryption": property-encryption object,
 "scope" : string
}

name

string, required

The name of the property being configured.

onValidate

script object, optional

A script object to trigger when the property requires validation. The property to be validated is
provided in the root scope as the property property. If an exception is thrown, the validation fails.

onRetrieve

script object, optional

A script object to trigger once a property is retrieved from the repository. The property that
was retrieved is provided in the root scope as the property property. The script may change the
property value. If an exception is thrown, then object retrieval fails.

onStore

script object, optional

A script object to trigger when a property is about to be stored in the repository. The property
to be stored is provided in the root scope as the property property. The script may change the
property value. If an exception is thrown, then object storage fails.

encryption

property-encryption object, optional

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 356

Specifies the configuration for encryption of the property in the repository. If omitted or null, the
property is not encrypted.

scope

string, optional

Specifies whether the property should be filtered from HTTP/external calls. The value can be
either "public" or "private". "private" indicates that the property should be filtered, "public"
indicates no filtering. If no value is set, the property is assumed to be public and thus not filtered.

Property Encryption Object

{
 "cipher": string,
 "key" : string
}

cipher

string, optional

The cipher transformation used to encrypt the property. If omitted or null, the default cipher of
"AES/CBC/PKCS5Padding" is used.

key

string, required

The alias of the key in the OpenIDM cryptography service keystore used to encrypt the property.

C.1.6. Custom Managed Objects
Managed objects in OpenIDM are inherently fully user definable and customizable. Like all OpenIDM
objects, managed objects can maintain relationships to each other in the form of links. Managed
objects are intended for use as targets and sources for synchronization operations to represent
domain objects, and to build up virtual identities. The name comes from the intention that OpenIDM
stores and manages these objects, as opposed to system objects that are present in external systems.

OpenIDM can synchronize and map directly between external systems (system objects), without
storing intermediate managed objects. Managed objects are appropriate, however, as a way to cache
the data—for example, when mapping to multiple target systems, or when decoupling the availability
of systems—to more fully report and audit on all object changes during reconciliation, and to build up
views that are different from the original source, such as transformed and combined or virtual views.
Managed objects can also be allowed to act as an authoritative source if no other appropriate source
is available.

Other object types exist for other settings that should be available to a script, such as configuration
or look-up tables that do not need audit logging.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 357

C.1.6.1. Setting Up a Managed Object Type
To set up a managed object, you declare the object in the conf/managed.json file where OpenIDM is
installed. The following example adds a simple foobar object declaration after the user object type.

{
 "objects": [
 {
 "name": "user"
 },
 {
 "name": "foobar"
 }
]
}

C.1.6.2. Manipulating Managed Objects Declaratively
By mapping an object to another object, either an external system object or another internal managed
object, you automatically tie the object life cycle and property settings to the other object. See the
chapter on Configuring Synchronization for details.

C.1.6.3. Manipulating Managed Objects Programmatically
You can address managed objects as resources using URLs or URIs with the managed/ prefix. This
works whether you address the managed object internally as a script running in OpenIDM or
externally through the REST interface.

You can use all resource API functions in script objects for create, read, update, delete operations,
and also for arbitrary queries on the object set, but not currently for arbitrary actions. See the
Scripting Reference appendix for details.

OpenIDM supports concurrency through a multi version concurrency control (MVCC) mechanism. In
other words, each time an object changes, OpenIDM assigns it a new revision.

Objects can be arbitrarily complex as long as they use supported types, such as maps, lists, numbers,
strings, and booleans as defined in JSON.

C.1.6.3.1. Creating Objects

The following script example creates an object type.

openidm.create("managed/foobar", "myidentifier", mymap)

C.1.6.3.2. Updating Objects

The following script example updates an object type.

http://www.json.org

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 358

var expectedRev = origMap._rev
openidm.update("managed/foobar/myidentifier", expectedRev, mymap)

The MVCC mechanism requires that expectedRev be set to the expected revision of the object to
update. You obtain the revision from the object's _rev property. If something else changes the object
concurrently, OpenIDM rejects the update, and you must either retry or inspect the concurrent
modification.

C.1.6.3.3. Patching Objects

You can partially update a managed object using the patch method, which changes only the specified
properties of the object. OpenIDM implements the JSON patch media type version 02, described at
http://tools.ietf.org/html/rfc6902.

The following script example updates an object type.

openidm.patch("managed/foobar/myidentifier", rev, value)

The patch method supports a revision of "null", which effectively disables the MVCC mechanism, that
is, changes are applied, regardless of revision. In the REST interface, this matches the If-Match: "*"
condition supported by patch.

The API supports patch by query, so the caller does not need to know the identifier of the object to
change.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '[{
 "operation":"replace",
 "field":"/password",
 "value":"Passw0rd"
 }]' \
 "https://localhost:8443/openidm/managed/user?_action=patch&_queryId=for-userName&uid=DDOE"

For the syntax on how to formulate the query _queryId=for-userName&uid=DDOE see Section C.1.6.3.6,
"Querying Object Sets".

C.1.6.3.4. Deleting Objects

The following script example deletes an object type.
var expectedRev = origMap._rev
openidm.delete("managed/foobar/myidentifier", expectedRev)

The MVCC mechanism requires that expectedRev be set to the expected revision of the object to
update. You obtain the revision from the object's _rev property. If something else changes the

http://tools.ietf.org/html/rfc6902

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 359

object concurrently, OpenIDM rejects deletion, and you must either retry or inspect the concurrent
modification.

C.1.6.3.5. Reading Objects

The following script example reads an object type.

val = openidm.read("managed/foobar/myidentifier")

C.1.6.3.6. Querying Object Sets

The following script example queries object type instances.

var params = {
 "_queryId": "my-custom-query-id",
 "mycustomtoken": "samplevalue"
};
val = openidm.query("managed/foobar", params);

The example sets up a query with ID my-custom-query-id. The query definition (not shown) is found
in the repository configuration. The query definition includes the parameter mycustomtoken for token
substitution.

An example for a query can be found in chapter Managed Object as Correlation Query Target .

C.1.7. Accessing Managed Objects Through the REST API

OpenIDM exposes all managed object functionality through the REST API unless you configure a
policy to prevent such access. In addition to the common REST functionality of create, read, update,
delete, patch, and query, the REST API also supports patch by query. See the REST API Reference
appendix for details.

OpenIDM requires authentication to access the REST API. Authentication configuration is shown in
openidm/conf/authentication.json. The default authorization filter script is openidm/script/router-authz.js.

C.2. Configuration Objects
OpenIDM provides an extensible configuration to allow you to leverage regular configuration
mechanisms.

Unlike native OpenIDM configuration, which OpenIDM interprets automatically and can start new
services, OpenIDM stores custom configuration objects and makes them available to your code
through the API.

See the chapter on Configuration Options for an introduction to standard configuration objects.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 360

C.2.1. When To Use Custom Configuration Objects
Configuration objects are ideal for metadata and settings that need not be included in the data to
reconcile. In other words, use configuration objects for data that does not require audit log, and does
not serve directly as a target or source for mappings.

Although you can set and manipulate configuration objects both programmatically and also manually,
configuration objects are expected to change slowly, perhaps through a mix of both manual file
updates and also programmatic updates. To store temporary values that can change frequently and
that you do not expect to be updated by configuration file changes, custom repository objects can be
more appropriate.

C.2.2. Custom Configuration Object Naming Conventions
By convention custom configuration objects are added under the reserved context, config/custom.

You can choose any name under config/context. Be sure, however, to choose a value for context that
does not clash with future OpenIDM configuration names.

C.2.3. Mapping Configuration Objects To Configuration Files
If you have not disabled the file based view for configuration, you can view and edit all configuration
including custom configuration in openidm/conf/*.json files. The configuration maps to a file named
context-config-name.json, where context for custom configuration objects is custom by convention, and
config-name is the configuration object name. A configuration object named escalation thus maps to a
file named conf/custom-escalation.json.

OpenIDM detects and automatically picks up changes to the file.

OpenIDM also applies changes made through APIs to the file.

By default, OpenIDM stores configuration objects in the repository. The file view is an added
convenience aimed to help you in the development phase of your project.

C.2.4. Configuration Objects File & REST Payload Formats
By default, OpenIDM maps configuration objects to JSON representations.

OpenIDM represents objects internally in plain, native types like maps, lists, strings, numbers,
booleans, null. OpenIDM constrains the object model to simple types so that mapping objects to
external representations is trivial.

The following example shows a representation of a configuration object with a look-up map.
{
 "CODE123" : "ALERT",
 "CODE889" : "IGNORE"
}

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 361

In the JSON representation, maps are represented with braces ({ }), and lists are represented with
brackets ([]). Objects can be arbitrarily complex, as in the following example.
{
 "CODE123" : {
 "email" : ["sample@sample.com", "john.doe@somedomain.com"],
 "sms" : ["555666777"]
 }
 "CODE889" : "IGNORE"
}

C.2.5. Accessing Configuration Objects Through the REST API

You can list all available configuration objects, including system and custom configurations, using an
HTTP GET on /openidm/config.

The _id property in the configuration object provides the link to the configuration details with an
HTTP GET on /openidm/config/id-value. By convention, the id-value for a custom configuration object
called escalation is custom/escalation.

OpenIDM supports REST mappings for create, read, update, and delete of configuration objects.
Currently OpenIDM does not support patch and custom query operations for configuration objects.

C.2.6. Accessing Configuration Objects Programmatically

You can address configuration objects as resources using the URL or URI config/ prefix both
internally and also through the REST interface. The resource API provides script object functions for
create, read, update, and delete operations.

OpenIDM supports concurrency through a multi version concurrency control mechanism. In other
words, each time an object changes, OpenIDM assigns it a new revision.

Objects can be arbitrarily complex as long as they use supported types, such as maps, lists, numbers,
strings, and booleans.

C.2.7. Creating Objects

The following script example creates an object type.

openidm.create("config/custom", "myconfig", mymap)

C.2.8. Updating Objects

The following script example updates a custom configuration object type.
openidm.update("config/custom/myconfig", mymap)

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 362

C.2.9. Deleting Objects

The following script example deletes a custom configuration object type.
openidm.delete("config/custom/myconfig")

C.2.10. Reading Objects

The following script example reads an object type.

val = openidm.read("config/custom/myconfig")

C.3. System Objects
System objects are pluggable representations of objects on external systems. They follow the same
RESTful resource based design principles as managed objects. There is a default implementation for
the OpenICF framework, which allows any connector object to be represented as a system object.

C.4. Audit Objects
Audit objects house audit data selected for local storage in the OpenIDM repository. For details, see
the chapter on Using Audit Logs.

C.5. Links
Link objects define relations between source objects and target objects, usually relations between
managed objects and system objects. The link relationship is established by provisioning activity that
either results in a new account on a target system, or a reconciliation or synchronization scenario
that takes a LINK action.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 363

Appendix D. Synchronization Reference

The synchronization engine is one of the core services of OpenIDM. You configure the
synchronization service through a mappings property that specifies mappings between objects that are
managed by the synchronization engine.
{
 "mappings": [object-mapping object, ...]
}

D.1. Object-Mapping Objects
An object-mapping object specifies the configuration for a mapping of source objects to target
objects.
 {
 "name" : string,
 "source" : string,
 "target" : string,
 "links" : string,
 "oldTarget" : script object
 "validSource" : script object,
 "validTarget" : script object,
 "correlationQuery": script object,
 "properties" : [property object, ...],
 "policies" : [policy object, ...],
 "onCreate" : script object,
 "onUpdate" : script object,
 "onLink" : script object,
 "onUnlink" : script object,
 "result" : script object
}

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 364

Mapping Object Properties

name

string, required

Uniquely names the object mapping. Used in the link object identifier.

source

string, required

Specifies the path of the source object set. Example: "managed/user".

target

string, required

Specifies the path of the target object set. Example: "system/ldap/account".

links

string, optional

Enables reuse of the links created in another mapping. Example: "systemLdapAccounts_managedUser"
reuses the links created by a previous mapping whose name is "systemLdapAccounts_managedUser".

oldTarget

object, optional

An optional old target object, which contains the value of the target before any mappings were
applied.

validSource

script object, optional

A script that determines if a source object is valid to be mapped. The script yields a boolean
value: true indicates the source object is valid; false can be used to defer mapping until some
condition is met. In the root scope, the source object is provided in the "source" property. If the
script is not specified, then all source objects are considered valid.

validTarget

script object, optional

A script used during the target phase of reconciliation that determines if a target object is valid
to be mapped. The script yields a boolean value: true indicates that the target object is valid;

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 365

false indicates that the target object should not be included in reconciliation. In the root scope,
the target object is provided in the "target" property. If the script is not specified, then all target
objects are considered valid for mapping.

correlationQuery

script object, optional

A script that yields a query object to query the target object set when a source object has no
linked target. The syntax for writing the query depends on the target system of the correlation.
See the section on Correlation Queries for examples of some common targets. The source object
is provided in the "source" property in the script scope.

properties

array of property-mapping objects, optional

Specifies mappings between source object properties and target object properties, with optional
transformation scripts.

policies

array of policy objects, optional

Specifies a set of link conditions and associated actions to take in response.

onCreate

script object, optional

A script to execute when a target object is to be created, after property mappings have been
applied. In the root scope, the source object is provided in the "source" property, projected target
object in the "target" property and the link situation that led to the create operation in "situation".
The _id property in the target object can be modified, allowing the mapping to select an identifier;
if not set then the identifier is expected to be set by the target object set. If the script throws an
exception, then target object creation is aborted.

onUpdate

script object, optional

A script to execute when a target object is to be updated, after property mappings have been
applied. In the root scope, the source object is provided in the "source" property, projected target
object in the "target" property, link situation that led to the update operation in "situation". If the
script throws an exception, then target object update is aborted.

onLink

script object, optional

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 366

A script to execute when a source object is to be linked to a target object, after property
mappings have been applied. In the root scope, the source object is provided in the "source"
property, projected target object in the "target" property. If the script throws an exception, then
target object linking is aborted.

onUnlink

script object, optional

A script to execute when a source and a target object are to be unlinked, after property mappings
have been applied. In the root scope, the source object is provided in the "source" property,
projected target object in the "target" property. If the script throws an exception, then target
object unlinking is aborted.

result

script object, optional

A script to execute on each mapping event, independent of the nature of the operation. In the
root scope, the source object is provided in the "source" property, projected target object in the
"target" property. If the script throws an exception, then target object unlinking is aborted.

The "result" script is executed only during reconciliation operations!

D.1.1. Property Objects

A property object specifies how the value of a target property is determined.
 {
 "target" : string,
 "source" : string,
 "transform" : script object,
 "condition" : script object,
 "default": value
}

Property Object Properties

target

string, required

Specifies the path of the property in the target object to map to.

source

string, optional

Specifies the path of the property in the source object to map from. If not specified, then the
target property value is derived from the script or default value.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 367

transform

script object, optional

A script to determine the target property value. The root scope contains the value of the source in
the "source" property, if specified. If the "source" property has a value of "", then the entire source
object of the mapping is contained in the root scope. The resulting value yielded by the script is
stored in the target property.

condition

script object, optional

A script to determine whether the mapping should be executed or not. The condition has an
"object" property available in root scope, which (if specified) contains the full source object. For
example "source": "(object.email != null)". The script is considered to return a boolean value.

default

any value, optional

Specifies the value to assign to the target property if a non-null value is not established by
"source" or "transform". If not specified, the default value is null.

D.1.2. Policy Objects
A policy object specifies a link condition and the associated actions to take in response.
{
 "situation" : string,
 "action" : string or script object
 "postAction" : optional, script object
}

Policy Object Properties

situation

string, required

Specifies the situation for which an associated action is to be defined.

action

string or script object, required

Specifies the action to perform. If a script is specified, the script is executed and is expected to
yield a string containing the action to perform.

postAction

script object, optional

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 368

Specifies the action to perform after the previously specified action has completed.

D.1.2.1. Script Object

Script objects take the following form.
{
 "type" : "text/javascript",
 "source": string
}

type

string, required

Specifies the type of script to be executed. Supported types include "text/javascript" and "groovy".

source

string, required

Specifies the source code of the script to be executed.

D.2. Links
To maintain links between source and target objects in mappings, OpenIDM stores an object set in
the repository. The object set identifier follows this scheme.
links/mapping

Here, mapping represents the name of the mapping for which links are managed.

Link entries have the following structure.
{
 "_id":string,
 "_rev":string,
 "linkType":string,
 "firstId":string
 "secondId":string,
}

_id

string

The identifier of the link object.

_rev

string, required

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 369

The value of link object's revision.

linkType

string, required

The type of the link. Usually then name of the mapping which created the link.

firstId

string, required

The identifier of the first of the two linked objects.

secondId

string

The identifier of the second of the two linked objects.

D.3. Queries
OpenIDM performs the following queries on a link object set.

1. Find link(s) for a given firstId object identifier.
SELECT * FROM links WHERE linkType
 = value AND firstId = value

Although a single result makes sense, this query is intended to allow multiple results so that this
scenario can be handled as an exception.

2. Select link(s) for a given second object identifier.
SELECT * FROM links WHERE linkType
 = value AND secondId = value

Although a single result makes sense, this query is intended to allow multiple results so that this
scenario can be handled as an exception.

D.4. Reconciliation
OpenIDM performs reconciliation on a per-mapping basis. The process of reconciliation for a given
mapping includes these stages.

1. Iterate through all objects for the object set specified as "source". For each source object, carry
out the following steps.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 370

a. Look for a link to a target object in the link object set, and perform a correlation query (if
defined).

b. Determine the link condition, as well as whether a target object can be found.

c. Determine the action to perform based on the policy defined for the condition.

d. Perform the action.

e. Keep track of the target objects for which a condition and action has already been determined.

f. Write the results.

2. Iterate through all object identifiers for the object set specified as "target". For each identifier,
carry out the following steps.

a. Find the target in the link object set.

Determine if the target object was handled in the first phase.

b. Determine the action to perform based on the policy defined for the condition.

c. Perform the action.

d. Write the results.

3. Iterate through all link objects, carrying out the following steps.

a. If the reconId is "my", then skip the object.

If the reconId is not recognized, then the source or the target is missing.

b. Determine the action to perform based on the policy.

c. Perform the action.

d. Store the reconId identifer in the mapping to indicate that it was processed in this run.

Note

To optimize a reconciliation operation, the reconciliation process does not attempt to correlate source objects
to target objects if the set of target objects is empty when the correlation is started. For information on
changing this default behaviour, see Reconciliation Optimization.

D.5. REST API
External synchronized objects expose an API to request immediate synchronization. This API includes
the following requests and responses.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 371

Request

Example:

POST /openidm/system/xml/account/jsmith?_action=liveSync HTTP/1.1

Response (success)

Example:

HTTP/1.1 204 No Content
...

Response (synchronization failure)

Example:

HTTP/1.1 409 Conflict
...
[JSON representation of error]

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 372

Appendix E. REST API Reference

Representational State Transfer (REST) is a software architecture style for exposing resources, using
the technologies and protocols of the World Wide Web. REST describes how distributed data objects,
or resources, can be defined and addressed. OpenIDM provides a RESTful API for accessing managed
objects, system objects, workflows, and some elements of the system configuration.

The ForgeRock implementation of REST, known as commons REST (CREST), defines an API intended
for common use across all ForgeRock products. CREST is a framework used to access various web
resources, and for writing to RESTful resource providers (servers).

CREST is intended to support the following types of operations, described in detail in Section E.4,
"Supported Operations": Create, Read, Update, Delete, Action, and Query.

ForgeRock defines a JSON Resource core library, as a common framework to implement RESTful
APIs. That core library includes two components:

json-resource

A Maven module that provides core interfaces such as Connections, Requests, and Request Handlers.

json-resource-servlet

Provides J2EE servlet integration. Defines a common HTTP-based REST API for interacting with
JSON resources.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 373

Note

You can examine the libraries associated with ForgeRock REST at http://commons.forgerock.org/forgerock-rest.

E.1. URI Scheme
The URI scheme for accessing a managed object follows this convention, assuming the OpenIDM web
application was deployed at /openidm.
/openidm/managed/type/id

Similar schemes exist for URIs associated with all but system objects. For more information, see the
reference on the access.js file.

The URI scheme for accessing a system object follows this convention:
/openidm/system/resource-name/type/id

An example of a system object in an LDAP repository might be:

/openidm/system/ldap/account/uid=jsmith,ou=people,dc=example,dc=com

E.2. Object Identifiers
Every managed and system object has an identifier (expressed as id in the URI scheme) that is used
to address the object through the REST API. The REST API allows for client-generated and server-
generated identifiers, through PUT and POST methods. The default server-generated identifier type
is a UUID. If you create an object by using POST, a server-assigned ID is generated in the form of a
UUID. If you create an object by using PUT, the client assigns the ID in whatever format you specify.

Most of the examples in this guide use client-assigned IDs, as it makes the examples easier to read.

In general, UUIDs are better in production, as they can be generated easily in clustered
environments. However, you might have specific reasons that dictate a different scheme for
generating IDs.

E.3. Content Negotiation
The REST API fully supports negotiation of content representation through the Accept HTTP header.
Currently, the supported content type is JSON. In most cases, you should include the following
header:
Accept: application/json

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 374

In a REST call (using the curl command, for example), you would include the following option to
specify the noted header:
--header "Content-Type: application/json"

You can also specify the default UTF-8 character set as follows:
--header "Content-Type: application/json;charset=utf-8"

The application/json content type is not needed when a REST call is made with the GET and DELETE
methods.

E.4. Supported Operations
CREST supports several types of operations for communication with web servers.

The following request parameters can be used in conjunction with the supported operations.

_debug=[true,false]

If _debug=true, the HttpServlet dumps the HttpServletRequest to the embedded Jetty Servlet log file.

_prettyPrint=[true,false]

If _prettyPrint=true, the HttpServlet formats the response, in a fashion similar to the JSON parser
known as jq.

For example, adding _prettyPrint=true to the end of a query-all-ids request formats the output in
the following manner:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/user?_queryId=query-all-ids&_prettyPrint=true"
{
 "result" : [{
 "_id" : "bjensen",
 "_rev" : "0"
 }, {
 "_id" : "scarter",
 "_rev" : "0"
 }, {
 "_id" : "jberg",
 "_rev" : "0"
 }],
 "resultCount" : 3,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
}

http://stedolan.github.io/jq/

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 375

Note that most command-line examples in this guide do not show this parameter, although the
output in the examples is formatted for readability.

_fields

The _fields parameter can be used to return multiple common attributes.

For example, you can use GET to read specific attributes for a user as follows:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET
 "https://localhost:8443/openidm/managed/user/james?_fields=userName,mail"
{
 "mail": "james@example.com",
 "userName": "james"
}

E.4.1. Creating an Object

Objects can be created with two different HTTP operations: POST and PUT.

To create an object with a server-assigned ID, use the POST operation with the create action. For
example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '{
 "userName":"mike",
 "sn":"Smith",
 "givenName":"Mike",
 "mail": "mike@example.com",
 "telephoneNumber": "082082082",
 "password":"Passw0rd"
 }'
 "https://localhost:8443/openidm/managed/user?_action=create"
{
 "userName": "mike",
 ...
 "_rev": "1",
 "_id": "a5bed4d7-99d4-41c4-8d64-49493b48a920",
 ...
}

To create an object with a client-assigned ID, use the PUT operation, with either of the following
headers:

If-None-Match: *

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 376

If-None-Match: "*"

Specify the ID as part of the URL, for example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --header "If-None-Match: *"
 --request PUT \
 --data '{
 "userName":"james",
 "sn":"Berg",
 "givenName":"James",
 "mail": "james@example.com",
 "telephoneNumber": "082082082",
 "password":"Passw0rd"
 }' \
 "https://localhost:8443/openidm/managed/user/james"
{
 "userName": "james",
 ...
 "_rev": "1",
 ...
 "_id": "james",
 ...
}

E.4.2. Reading an Object

To read the contents of an object, use the GET operation, specifying the object ID. For example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/system/ldap/account/uid=mike,ou=People,dc=example,dc=com"
{
 "_id": "uid=mike,ou=People,dc=example,dc=com",
 "sn": "Smith",
 "telephoneNumber": "082082082",
 "description": null,
 "mail": "mike@example.com",
 "givenName": "Mike",
 "cn": "Mike Smith",
 "dn": "uid=mike,ou=People,dc=example,dc=com",
 "uid": "mike",
 "ldapGroups": []
}

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 377

E.4.3. Updating an Object

An update replaces some or all of the contents of an existing object. Any object can be updated over
REST with a PUT request. Managed objects can also be updated with a POST request, using the patch
action, or with a PATCH request.

To update an object with a PUT request, use the If-Match header, for example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --header "If-Match : *" \
 --request PUT \
 --data '{"description":"The new description for Mike"}'
 "https://localhost:8443/openidm/system/ldap/account/uid=mike,ou=People,dc=example,dc=com"
{
 "_id": "uid=mike,ou=People,dc=example,dc=com",
 "sn": "Smith",
 "telephoneNumber": "082082082",
 "description": "The new description for Mike",
 "mail": "mike@example.com",
 "givenName": "Mike",
 "cn": "Mike Smith",
 "dn": "uid=mike,ou=People,dc=example,dc=com",
 "uid": "mike",
 "ldapGroups": []
}

To update a managed object with a POST request, use the patch action and specify the updated fields
as an array in the data option. For example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --request POST \
 --data '[
 {
 "operation":"replace",
 "field":"/description",
 "value":"The new description for James"
 }
]'
 "https://localhost:8443/openidm/managed/user/james?_action=patch"
{
 ...
 "userName": "james",
 ...
 "_id": "james",
 "description": "The new description for James",
 ...
}

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 378

To update a managed object with a PATCH request, use the If-Match header. A PATCH request can
add, remove, replace, or increment an attribute value. A replace operation replaces an existing value,
or adds a value if no value exists.

The following example shows a patch request that updates a multi-valued attribute by adding a new
value. Note the dash - character appended to the field name, which specifies that the value provided
should be added to the existing values. If the dash character is omitted, the provided value replaces
the existing values of that field.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Content-Type: application/json" \
 --header "If-Match: *" \
 --request PATCH \
 --data '[
 {
 "operation": "add",
 "field": "/roles/-",
 "value": "managed/role/ldap"

 }
]' \
 "https://localhost:8443/openidm/managed/user/bjensen"

E.4.4. Deleting an Object
A delete request is similar to an update request, and can optionally include the HTTP If-Match header.
To delete an object, specify its ID in the request, for example:
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request DELETE \
 "https://localhost:8443/openidm/system/ldap/account/uid=james,ou=People,dc=example,dc=com"
{
 "_id": "uid=james,ou=People,dc=example,dc=com"
}

E.4.5. Querying Resources
Resources can be queried using the GET method, with one of the following query parameters:

For queries on managed objects:

• _queryId for arbitrary predefined, parameterized queries

• _queryExpression for client-supplied queries, in native query format

For queries on system objects:

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 379

• _queryId=query-all-ids (the only supported predefined query)

• _queryFilter for arbitrary filters, in common filter notation

The following additional query parameters are supported.

_sortKeys

When configured with a comma-separated list, this will order the way JSON resources are
returned by this query request.

_pagedResultsCookie

Opaque cookie used by the server to keep track of the position in the search results. The format
of the cookie is a string value.

The server provides the cookie value on the first request. You should then supply the cookie
value in subsequent requests until the server returns a null cookie, meaning that the final page of
results has been returned.

Paged results are enabled only if the _pageSize is a non-zero integer.

_pagedResultsOffset

Specifies the index within the result set of the number of records to be skipped before the first
result is returned. The format of the _pagedResultsOffset is an integer value. When the value of
_pagedResultsOffset is greater than or equal to 1, the server returns pages, starting after the
specified index.

This request assumes that the _pageSize is set, and not equal to zero.

For example, if the result set includes 10 records, the _pageSize is 2, and the _pagedResultsOffset
is 6, the server skips the first 6 records, then returns 2 records, 7 and 8. The _pagedResultsCookie
value would then be 8 (the index of the last returned record) and the _remainingPagedResults value
would be 2, the last two records (9 and 10) that have not yet been returned.

If the offset points to a page beyond the last of the search results, the result set returned is
empty.

_pageSize

An optional parameter indicating that query results should be returned in pages of the specified
size. For all paged result requests other than the initial request, a cookie should be provided with
the query request.

The default behavior is not to return paged query results. If set, this parameter should be an
integer value, greater than zero.

For additional information on queries, see the section on Constructing Queries.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 380

E.5. Conditional Operations
The REST API fully supports conditional operations through the use of the ETag, If-Match and If-None
-Match HTTP headers. The use of HTTP conditional operations is the basis of OpenIDM's optimistic
concurrency control system. Clients should make requests conditional in order to prevent inadvertent
modification of the wrong version of an object.

E.6. Supported Methods
The managed object API uses standard HTTP methods to access managed objects.

GET

Retrieves a managed object in OpenIDM.

Example Request

GET /openidm/managed/user/bdd793f8
...

Example Response

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-cache
Vary: Accept-Encoding, User-Agent
Set-Cookie: session-jwt=2sadf... afd5;Path=/
Expires: Thu, 01 Jan 2015 00:00:00 GMT
Content-Length: 1230
Server: Jetty(8.y.z-SNAPSHOT)
...

[JSON representation of the managed object]

HEAD

Returns metainformation about a managed object in OpenIDM.

Example Request

HEAD /openidm/managed/user/bdd793f8
...

Example Response

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 123
ETag: "0"

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 381

PUT

Creates or updates a managed object.

Example Request: Creating a new object

PUT /openidm/managed/user/5752c0fd9509
Content-Type: application/json
Content-Length: 123
If-None-Match: *
...

[JSON representation of the managed object to create]

Example Response: Creating a new object (success)

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 45
ETag: "0"
...

[JSON representation containing metadata (underscore-prefixed) properties]

Example Response: Creating a new object without the If-None-Match header

HTTP/1.1 404 Not Found
Content-Type: application/json
Content-Length: 83
...

[JSON representation of error]

Example Request: Updating an existing object

PUT /openidm/managed/user/5752c0fd9509
Content-Type: application/json
Content-Length: 123
If-Match: "1"
...

[JSON representation of managed object to update]

Example Response: Updating an existing object (success)

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 45
ETag: "2"
...

[JSON representation of updated object]

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 382

Example Response: Updating an existing object when no version is supplied

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 89
ETag: "3"
...

[JSON representation of updated object]

Example Response: Updating an existing object when an invalid version is supplied

HTTP/1.1 412 Precondition Required
Content-Type: application/json
Content-Length: 89
...

[JSON representation of error]

Example Response: Updating an existing object with If-Match: *

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 45
ETag: "0"
...
[JSON representation of updated object]

POST

The POST method allows arbitrary actions to be performed on managed objects. The _action query
parameter defines the action to be performed.

The create action is used to create a managed object. Because POST is neither safe nor
idempotent, PUT is the preferred method of creating managed objects, and should be used if
the client knows what identifier it wants to assign the object. The response contains the server-
generated _id of the newly created managed object.

The POST method create optionally accepts an _id query parameter to specify the identifier to
give the newly created object. If an _id is not provided, the server selects its own identifier.

The patch action is used to update one or more attributes of a managed object, without replacing
the entire object.

Example Create Request

POST /openidm/managed/user?_action=create
Content-Type: application/json;charset=UTF-8
Content-Length: 123
...

[JSON representation of the managed object to create]

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 383

Example Response

HTTP/1.1 201 Created
Content-Type: application/json;charset=UTF-8
Cache-Control: no-cache
Location: https://Some_URI
...

[JSON representation containing metadata (underscore-prefixed) properties]

Example Patch Request

POST /openidm/managed/user?_action=patch
Content-Type: application/json;charset=UTF-8
Content-Length: 123
...

[JSON representation of the managed object to create]

Example Response (success)

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Cache-Control: no-cache
Set-Cookie: session-jwt=yAiYWxnIjogI;Path=/
...

DELETE

Deletes a managed object.

Example Request

DELETE /openidm/managed/user/c3471805b60f
If-Match: "0"
...

Example Response (success)

HTTP/1.1 200 OK
Content-Length: 405
Content-Type: application/json;charset=UTF-8
Etag: "4"
...

[JSON representation of the managed object that was deleted]

Example Response: Deleting an existing object when no version is supplied

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 384

HTTP/1.1 200 OK
Content-Length: 405
Content-Type: application/json;charset=UTF-8
Etag: "4"
...

[JSON representation of the managed object that was deleted]

Example Response: Deleting an existing object when an invalid version is supplied

HTTP/1.1 412 Precondition Required
Content-Type: application/json;charset=UTF-8
Content-Length: 89
...

[JSON representation of error]

PATCH

Performs a partial modification of a managed object.

See the JSON Patch Internet-Draft for details.

Example Request

PATCH /openidm/managed/user/5752c0fd9509
Content-Type: application/patch+json
Content-Length: 456
If-Match: "0"
...

[JSON representation of patch document to apply]

Example Response (success)

HTTP/1.1 200 OK
Set-Cookie: JSESSIONID=1kke440cyv1vivbrid6ljso7b;Path=/
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: application/json; charset=UTF-8
ETag: "1"
...
{"_id":"5752c0fd9509","_rev":"2"}

Updating an existing object when no version is supplied (version conflict)

HTTP/1.1 409 Conflict
Content-Type: application/json;charset=UTF-8
Content-Length: 89
...

[JSON representation of error]

http://tools.ietf.org/html/draft-pbryan-json-patch-04

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 385

Example Response: Updating an existing object when an invalid version is supplied (version
conflict)

HTTP/1.1 412 Precondition Required
Content-Type: application/json;charset=UTF-8
Content-Length: 89
...

[JSON representation of error]

E.7. REST Endpoints and Sample Commands
This section describes the OpenIDM REST endpoints and provides a number of sample commands
that show the interaction with the REST interface.

E.7.1. Managing the Server Configuration Over REST
OpenIDM stores configuration objects in the repository, and exposes them under the context path /
openidm/config. Single instance configuration objects are exposed under /openidm/config/object-name.

Multiple instance configuration objects are exposed under /openidm/config/object-name/instance-name.
The following table outlines these configuration objects and how they can be accessed through the
REST interface.

URI HTTP
Operation

Description

/openidm/config GET Returns a list of configuration objects
/openidm/config/audit GET Returns the current logging configuration
/openidm/config/provisioner.openicf/provisioner-name GET Returns the configuration of the specified

connector
/openidm/config/router PUT Changes the router configuration.

Modifications are provided with the -data
option, in JSON format.

/openidm/config/object DELETE Deletes the specified configuration object.

OpenIDM supports REST mappings for create, read, update, and delete of configuration objects.
Currently OpenIDM does not support custom query operations or patch operations for configuration
objects.

For an example that displays the current configuration, the current logging configuration, the
configuration with an XML connector provisioner, and how the configuration can be modified over
the router, see the section on Configuring OpenIDM Over REST.

One entry is returned for each configuration object. To obtain additional information on the
configuration object, include its pid or _id in the URL. The following example displays configuration
information on the sync object, based on OpenIDM using Sample 1.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 386

$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/config/sync"
{
 "mappings": [{
 "target" : "managed/user",
 "correlationQuery" : {
 "type" : "text/javascript",
 "source" : "var query = {'_queryId' : 'for-userName', 'uid' : source.name};query;"
 },
 "properties" : [{
 "target" : "_id",
 "source" : "_id"
 }, {
 "target" : "description",
 "source" : "description"
 }, {
 "target" : "givenName",
 "source" : "firstname"
 }, {
 "target" : "mail",
 "source" : "email"
 },
 {
...

Note

The --header "X-OpenIDM-Username=openidm-admin and --header "X-OpenIDM-Password=openidm-admin
options are constructs unique to OpenIDM. You can also specify the username and password with the following
option: --user openidm-admin:openidm-admin. For more information, see the section on Authentication.

E.7.2. Managing Users Over REST

User objects are stored in the repository and are exposed under the context path /managed/user. Many
examples of REST calls related to this context path exist throughout this document. The following
table lists available functionality associated with the /managed/user context path.

URI HTTP
Operation

Description

/openidm/managed/user?_queryId=query-all-ids GET List all the managed users in the
repository

/openidm/managed/user/id GET Retrieve the JSON representation of a
specific user

/openidm/managed/user/userName PUT Create a new user
/openidm/managed/user/userName PUT Update a user entry (replaces the entire

entry)

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 387

URI HTTP
Operation

Description

/openidm/managed/user?_action=create POST Create a new user
/openidm/managed/user?
_action=patch&_queryId=for-userName&uid=
userName

POST Update a user (can be used to replace the
value of one or more existing attributes)

/openidm/managed/user/userName PATCH Update specified fields of a user entry
/openidm/managed/user/userName DELETE Delete a user entry

The following example retrieves the JSON representation of all users stored in the internal repository.
$ curl \
--cacert self-signed.crt
 \
--header "X-OpenIDM-Username: openidm-admin"
 \
--header "X-OpenIDM-Password: openidm-admin"
 \
--request GET \
"https://localhost:8443/openidm/managed/user?_queryId=query-all-ids"

The following example retrieves the JSON representation of a specified user.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/managed/user/user_id"

To add a user without a specified ID, see the Installation Guide section on Adding Users Through
REST in the Installation Guide.

The following example adds a user with a specific user ID.
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request PUT \
 --data '{
 "userName":"james",
 "sn":"Berg",
 "givenName":"James",
 "mail": "james@example.com",
 "telephoneNumber": "082082082",
 "password":"password"
 }' \
"https://localhost:8443/openidm/managed/user/james"

The following example checks whether a user exists, then updates the user entry. The command
replaces the telephone number with the new data provided in the request body.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 388

$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '[{
 "operation":"replace",
 "field":"/telephoneNumber",
 "value":"1234567"
 }]' \
 "https://localhost:8443/openidm/managed/user?_action=patch&_queryId=for-userName&uid=id"

E.7.3. Managing System Objects Over Rest

System objects, that is, objects that are stored in remote systems, are exposed under the /openidm/
system context. OpenIDM provides access to system objects over REST, as listed in the following table.

URI HTTP
Operation

Description

/openidm/system?_action=action-name POST _action=CREATECONFIGURATION returns a list
of the connector configurations available
in openidm/connectors.

_action=test returns a list of all remote
systems, with their status.

_action=testConfig validates the connector
configuration provided in the POST body.

_action=liveSync triggers a liveSync
operation on the specified source object.

_action=authenticate authenticates to
the specified system with the credentials
provided.

/openidm/system/system-name?_action=action-name POST _action=test tests the status of the
specified system.

/openidm/system/system-name/system-object?
_action=action-name

POST _action=liveSync triggers a liveSync
operation on the specified system object.

_action=script runs the specified script on
the system object.

_action=authenticate authenticates to the
specified system object, with the provided
credentials.

_action=create creates a new system
object.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 389

URI HTTP
Operation

Description

/openidm/system/system-name/system-object?
_queryId=query-all-ids

GET Lists all IDs related to the specified system
object, such as users, and groups.

/openidm/system/system-name/system-object?
_queryFilter=filter

GET Lists the item(s) associated with the query
filter.

/openidm/system/system-name/system-object/id PUT Creates a system object, or updates the
system object, if it exists (replaces the
entire object).

/openidm/system/system-name/system-object/id DELETE Deletes a system object.

Note

When you create a system object with a PUT request (that is, specifying a client-assigned ID), you should
specify the ID in the URL only and not in the JSON payload. If you specify a different ID in the URL and in the
JSON payload, the request will fail, with an error similar to the following:

{
 "code":500,
 "reason":"Internal Server Error",
 "message":"The uid attribute is not single value attribute."}

The patch action is not supported on system objects.

Example E.1. Returning a list of the available connector configurations

$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/system?_action=CREATECONFIGURATION"

Example E.2. Returning a list of remote systems, and their status

$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/system?_action=test"
[
 {
 "ok": true,
 "name": "ldap"
 }
]

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 390

Example E.3. Two options for running a liveSync operation on a specified system object

$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "http://localhost:8080/openidm/system?_action=liveSync&source=system/ldap/account"
{
 "_rev": "1",
 "_id": "SYSTEMLDAPACCOUNT",
 "connectorData": {
 "nativeType": "integer",
 "syncToken": 0
 }
}

$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/system/ldap/account?_action=liveSync"

{
 "_rev": "2",
 "_id": "SYSTEMLDAPACCOUNT",
 "connectorData": {
 "nativeType": "integer",
 "syncToken": 0
 }
}

Example E.4. Running a script on a system object

$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/system/ldap/account?_action=script&_scriptId=addUser"

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 391

Example E.5. Authenticating to a system object

$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/system/ldap/account?
_action=authenticate&username=bjensen&password=Passw0rd"
{
 "_id": "uid=bjensen,ou=People,dc=example,dc=com"
}

Example E.6. Creating a new system object

$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --data '{
 "cn":"James Smith",
 "dn":"uid=jsmith,ou=people,dc=example,dc=com",
 "uid":"jsmith",
 "sn":"Smith",
 "givenName":"James",
 "mail": "jsmith@example.com",
 "description":"Created by OpenIDM REST"}' \
 --request POST \
 "https://localhost:8443/openidm/system/ldap/account?_action=create"
{
 "telephoneNumber":null,
 "description":"Created by OpenIDM REST",
 "mail":"jsmith@example.com",
 "givenName":"James",
 "cn":"James Smith",
 "dn":"uid=jsmith,ou=people,dc=example,dc=com",
 "uid":"jsmith",
 "ldapGroups":[],
 "sn":"Smith",
 "_id":"uid=jsmith,ou=people,dc=example,dc=com"
}

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 392

Example E.7. List the IDs associated with a specific system object

$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/system/ldap/account?_queryId=query-all-ids"
{
 "remainingPagedResults": -1,
 "pagedResultsCookie": null,
 "resultCount": 3,
 "result": [
 {
 "_id": "uid=jdoe,ou=People,dc=example,dc=com",
 "dn": "uid=jdoe,ou=People,dc=example,dc=com"
 },
 {
 "_id": "uid=bjensen,ou=People,dc=example,dc=com",
 "dn": "uid=bjensen,ou=People,dc=example,dc=com"
 },
 {
 "_id": "uid=jsmith,ou=people,dc=example,dc=com",
 "dn": "uid=jsmith,ou=people,dc=example,dc=com"
 }
]
}

E.7.4. Managing Workflows Over Rest

Workflow objects are exposed under the /openidm/workflow context. OpenIDM provides access to the
workflow module over REST, as listed in the following table.

URI HTTP
Operation

Description

/openidm/workflow/processdefinition GET Lists the defined workflow definitions
/openidm/workflow/processdefinition?_queryId=id GET Performs a filtered search for a process

definition
/openidm/workflow/processdefinition/id GET Returns detailed information about the

specified process definition
/openidm/workflow/processinstance?_queryId=query-
all-ids

GET Lists the running workflow process
instances

/openidm/workflow/processinstance/id GET Provides detailed information of a running
process instance

/openidm/workflow/taskdefinition GET Returns detailed information about the
task definition

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 393

URI HTTP
Operation

Description

/openidm/workflow/taskinstance GET Returns detailed information about the
task instance

/openidm/workflow/task?_queryId=query-all-ids GET Lists all active tasks
/openidm/workflow/task?
_queryId=filteredQuery&filter

GET Lists the tasks according to the specified
filter

/openidm/workflow/task?_queryId=user-task-
summary&id=id

GET Lists the summary of tasks assigned to the
specified user

/openidm/workflow/processinstance_action=create POST Start a new workflow. Parameters are
included in the request body.

/openidm/workflow/task/id PUT Update task data
/openidm/workflow/processinstance/id DELETE Delete a process instance
/openidm/workflow/task/id?_action=claim POST Claim or complete a task. Parameters are

included in the request body. Specifically
for user tasks, a user can claim a specific
task, which will then be assigned to that
user.

The following examples list the defined workflows. For a workflow to appear in this list, the
corresponding workflow definition must be in the openidm/workflow directory.
$ curl \
 --cacert self-signed.crt \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
 "https://localhost:8443/openidm/workflow/processdefinition?_queryId=query-all-ids"

Depending on the defined workflows, the output will be something like the following:
{
"result":[{
 "tenantId" : "",
 "candidateStarterGroupIdExpressions" : [],
 "candidateStarterUserIdExpressions" : [],
 "participantProcess" : null,
...
 }],
 "resultCount" : 1,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
}

The following example invokes a workflow named "myWorkflow". The foo parameter is given the
value bar in the workflow invokation.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 394

$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 --data '{
 "key":"contractorOnboarding",
 "foo":"bar"
 }' \
 "https://localhost:8443/openidm/workflow/processinstance?_action=create"

E.7.5. Managing Scanned Tasks Over REST

OpenIDM provides a task scanning mechanism that enables you to perform a batch scan for a
specified date in OpenIDM data, on a scheduled interval, and then to execute a task when this date is
reached. For more information about scanned tasks, see Scanning Data to Trigger Tasks.

OpenIDM provides REST access to the task scanner, as listed in the following table.

URI HTTP
Operation

Description

/openidm/taskscanner GET Lists the all scanning tasks, past and
present.

/openidm/taskscanner/id GET Lists details of the given task.
/openidm/taskscanner?_action=execute&name=name POST Triggers the specified task scan run.
/openidm/taskscanner/id?_action=cancel POST Cancels the specified task scan run.

E.7.6. Accessing Log Entries Over REST

You can interact with the audit and activity logs over REST, as shown in the following table.

URI HTTP
Operation

Description

/openidm/audit/recon GET Displays the reconciliation audit log
/openidm/audit/recon/id GET Reads a specific reconciliation audit log

entry
/openidm/audit/recon?_queryId=audit-by-recon-
id&reconId=id

GET Queries the audit log for a particular
reconciliation operation

/openidm/audit/recon?_queryId=audit-by-recon-id-
situation&situation= situation&reconId=id

GET Queries the reconciliation audit log for a
specific reconciliation situation

/openidm/audit/activity GET Displays the activity log
/openidm/audit/activity/id GET Returns activity information for a specific

action

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 395

URI HTTP
Operation

Description

/openidm/audit/activity?_queryId=audit-by-activity-
parent-action&parentActionId=id

GET Queries the activity log for the details of
an action

/openidm/audit/access GET Displays the full list of auditable actions.
/openidm/audit/access/id GET Displays information on the specific audit

item.

E.7.7. Managing Reconciliation Operations Over REST

You can interact with the reconciliation engine over REST, as shown in the following table.

URI HTTP
Operation

Description

/openidm/recon GET Lists all completed reconciliation runs
/openidm/recon?_action=recon&mapping=mapping-
name

POST Launches a reconciliation run with the
specified mapping

/openidm/recon/id?_action=cancel POST Cancels the specified reconciliation run
/openidm/system/datastore account?_action=liveSync POST Calls a LiveSync operation.

The following example runs a reconciliation action, with the mapping systemHrdb_managedUser, defined in
the sync.json file.
$ curl \
 --cacert self-signed.crt \
 --header "Content-Type: application/json" \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request POST \
 "https://localhost:8443/openidm/recon?_action=recon&mapping=systemHrdb_managedUser"

E.8. HTTP Status Codes
The OpenIDM REST API returns the standard HTTP response codes, as described in the following
table.

HTTP Status Description
200 OK The request was successfully completed. If this request created

a new resource that is addressable with a URI, and a response
body is returned containing a representation of the new resource,
a 200 status will be returned with a Location header containing
the canonical URI for the newly created resource.

201 Created A request that created a new resource was completed. A
representation of the new resource is returned. A Location

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 396

HTTP Status Description
header containing the canonical URI for the newly created
resource should also be returned.

202 Accepted The request has been accepted for processing, but the processing
has not been completed.

204 No Content The server fulfilled the request, but does not need to return a
response message body.

400 Bad Request The request could not be processed because it contains missing
or invalid information.

401 Unauthorized The authentication credentials included with this request are
missing or invalid.

403 Forbidden The server recognized your credentials, but you do not possess
authorization to perform this request.

404 Not Found The request specified a URI of a resource that does not exist.
405 Method Not Allowed The HTTP verb specified in the request (DELETE, GET, HEAD,

POST, PUT) is not supported for this request URI.
406 Not Acceptable The resource identified by this request is not capable of

generating a representation corresponding to one of the media
types in the Accept header of the request.

409 Conflict A creation or update request could not be completed, because
it would cause a conflict in the current state of the resources
supported by the server (for example, an attempt to create a
new resource with a unique identifier already assigned to some
existing resource).

500 Internal Server Error The server encountered an unexpected condition which
prevented it from fulfilling the request.

501 Not Implemented The server does not (currently) support the functionality required
to fulfill the request.

503 Service Unavailable The server is currently unable to handle the request due to
temporary overloading or maintenance of the server.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 397

Appendix F. Scripting Reference

Scripting allows you to customize various aspects of OpenIDM functionality, for example, by
providing custom logic between source and target mappings, defining correlation rules, filters, and
triggers, and so on.

OpenIDM 3.0.0 supports scripts written in JavaScript and Groovy. OpenIDM configures script options
in the conf/script.json file.

F.1. Scripting Configuration
OpenIDM includes several default scripts in the following directory: path/to/openidm/bin/defaults/
script/. Do not modify or remove any of the scripts in this directory, as OpenIDM needs these scripts
to run specific services. Scripts in this folder are not guaranteed to remain constant between product
releases.

If you develop custom scripts, copy them to the script/ directory for your project, such as path/to/
openidm/script/.

F.1.1. Script Configuration File
OpenIDM 3.0.0 includes a script configuration file in the conf/ directory, script.json. OpenIDM uses
this file to set up Default and Custom Configuration Directories .

The properties shown in the default version of the script.json file are described here:

properties

Additional custom properties.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 398

ECMAScript

JavaScript is an ECMAScript language.

javascript.debug

See Section F.6, "Debugging OpenIDM JavaScripts"

javascript.recompile.minimumInterval

Minimum time after which a script can be recompiled.

groovy.warnings

Specifies a log level for Groovy scripts.

groovy.source.encoding

Defines the encoding format for Groovy scripts.

groovy.target.directory

Specifies the output directory.

groovy.target.bytecode

Specifies the output bytecode.

groovy.classpath

Defines directories with Groovy class files.

groovy.output.verbose

Specifies the verbosity of stack traces.

groovy.output.debug

Sets debugging status.

groovy.errors.tolerance

Sets number of non-fatal errors before aborting a compilation.

groovy.script.extension

Defines the file extension for a Groovy script.

groovy.script.base

Defines the base class for the script.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 399

groovy.recompile

Allows a script to be recompiled.

groovy.recompile.minimumInterval

Minimum time between when Groovy scripts can be compiled.

groovy.target.indy

Defines whether a Groovy indy test can be used.

groovy.disabled.global.ast.transformations

Notes whether Groovy Abstract Syntax Transformations (AST)s are disabled.

The remaining options in the script.json file are discussed in the section on Default and Custom
Configuration Directories.

F.1.2. Calling A Script From Another Configuration File

{
 "type" : "text/javascript",
 "source": string
}

or

{
 "type" : "text/javascript",
 "file" : file location
}

type

string, required

Specifies the type of script to be executed. Supported types include "text/javascript" and "groovy".

source

string, required if file is not specified

Specifies the source code of the script to be executed.

file

string, required if source is not specified

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 400

Specifies the file containing the source code of the script to execute.

F.2. Examples
The following example (included in the sync.json file) returns true if the employeeType is equal to
external, otherwise returns false. This script can be useful during reconciliation to establish whether
the source object should be a part of the reconciliation, or ignored.

"validTarget": {
 "type" : "text/javascript",
 "source": "target.employeeType == 'external'"
}

The following example (included in the sync.json file) sets the __PASSWORD__ attribute to defaultpwd when
OpenIDM creates a target object.

"onCreate" : {
 "type" : "text/javascript",
 "source": "target.__PASSWORD__ = 'defaultpwd'"
}

The following example (included in the router.json file) shows a trigger to create Solaris home
directories using a script. The script is located in a file, /path/to/openidm/script/createUnixHomeDir.js.

{
 "filters" : [{
 "pattern" : "^system/solaris/account$",
 "methods" : ["create"],
 "onResponse" : {
 "type" : "text/javascript",
 "file" : "script/createUnixHomeDir.js"
 }
 }]
}

F.3. Function Reference
Functions (access to managed objects, system objects, and configuration objects) within OpenIDM
are accessible to scripts via the openidm object, which is included in the top-level scope provided to
each script.

OpenIDM also provides a logger object to access SLF4J facilities. The following code shows an
example:

logger.info("Parameters passed in: {} {} {}", param1, param2, param3);

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 401

To set the log level, use org.forgerock.openidm.script.javascript.JavaScript.level in openidm/conf/
logging.properties.

F.3.1. openidm.create(container, id, value)

This function creates a new resource object.

Parameters

container

string

The resource container in which the object will be created, for example, managed/user.

id

string

The identifier of the object to be created, if the client is supplying the ID. If the server should
generate an ID, pass null here.

value

object

The value of the object to be created.

Returns

• The created OpenIDM resource object.

Throws

• An exception is thrown if the object could not be created.

F.3.2. openidm.patch(id, rev, value)

This function performs a partial modification of a managed object. Unlike the update function, only the
modified attributes are provided, not the entire object.

Parameters

id

string

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 402

The identifier of the object to be updated.

rev

string

The revision of the object to be updated, or null if the object is not subject to revision control.

value

object

The value of the modifications to be applied to the object.

Returns

• The modified OpenIDM resource object.

Throws

• An exception is thrown if the object could not be updated.

F.3.3. openidm.read(id)
This function reads and returns an OpenIDM resource object.

Parameters

id

string

The identifier of the object to be read.

Returns

• The read OpenIDM resource object, or null if not found.

F.3.4. openidm.update(id, rev, value)
This function updates a resource object.

Parameters

id

string

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 403

The identifier of the resource object to be updated.

rev

string

The revision of the object to be updated, or null if the object is not subject to revision control.

value

object

The value of the object to be updated.

Returns

• The modified OpenIDM resource object.

Throws

• An exception is thrown if the object could not be updated.

F.3.5. openidm.delete(id, rev)

This function deletes a resource object.

Parameters

id

string

The identifier of the object to be deleted.

rev

string

The revision of the object to be deleted, or null if the object is not subject to revision control.

Returns

• A null value if successful.

Throws

• An exception is thrown if the object could not be deleted.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 404

Note that delete is a reserved word in JavaScript and this function can therefore not be called in the
usual manner. To call delete from a JavaScript, you must specify the call as shown in the following
example:

openidm['delete']('managed/user/'+ user._id, user._rev)

Calling openidm.delete() directly from a JavaScript results in an error similar to the following:

org.forgerock.openidm.script.ScriptException: missing name after . operator

F.3.6. openidm.query(id, params)

This function performs a query on the specified OpenIDM resource object.

Parameters

id

string

The identifier of the object to perform the query on.

params

object

An object containing the query ID and its parameters.

Returns

• The result of the query. A query result includes the following parameters:

"query-time-ms"

The time, in milliseconds, that OpenIDM took to process the query.

"conversion-time-ms"

(For an OrientDB repository only) the time, in milliseconds, taken to convert the data to a JSON
object.

"result"

The list of entries retrieved by the query. The result includes the revision ("_rev") of the entry
and any other properties that were requested in the query.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 405

The following example shows the result of a custom query that requests the ID, user name, and
email address of managed users in the repository. For an OrientDB repository, the query would be
something like select _openidm_id, userName, email from managed_user,.

{
 "conversion-time-ms": 0,
 "result": [
 {
 "email": "bjensen@example.com",
 "userName": "bjensen",
 "_rev": "0",
 "_id": "36bbb745-517f-4695-93d0-998e1e7065cf"
 },
 {
 "email": "scarter@example.com",
 "userName": "scarter",
 "_rev": "0",
 "_id": "cc3bf6f0-949e-4699-9b8e-8c78ce04a287"
 }
],
 "query-time-ms": 1
}

Throws

• An exception is thrown if the given query could not be processed.

F.3.7. openidm.action(id, params, value)

This function performs an action on the specified OpenIDM resource object.

Parameters

id

string

The identifier of the object on which the action should be performed.

params

object

An object containing the parameters to pass to the action.

value

object

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 406

A value that can be provided to the action for processing.

Returns

• The result of the action. May be null if no result is provided.

Throws

• An exception is thrown if the given action could not be executed for any reason.

F.3.8. openidm.encrypt(value, cipher, alias)

This function encrypts a value.

Parameters

value

any

The value to be encrypted.

cipher

string

The cipher with which to encrypt the value, using the form "algorithm/mode/padding" or just
"algorithm". Example: AES/ECB/PKCS5Padding.

alias

string

The key alias in the keystore with which to encrypt the node.

Returns

• The value, encrypted with the specified cipher and key.

Throws

• An exception is thrown if the object could not be encrypted for any reason.

F.3.9. openidm.decrypt(value)

This function decrypts a value.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 407

Parameters

value

any

The value to be decrypted.

Returns

• A deep copy of the value, with any encrypted value decrypted.

Throws

• An exception is thrown if the object could not be decrypted for any reason.

F.3.10. logger.debug(string message, object... params)
Logs a message at DEBUG level.

Parameters

message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

• A null value if successful.

Throws

• An exception is thrown if the message could not be logged.

F.3.11. logger.error(string message, object... params)
Logs a message at ERROR level.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 408

Parameters

message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

• A null value if successful.

Throws

• An exception is thrown if the message could not be logged.

F.3.12. logger.info(string message, object... params)
Logs a message at INFO level.

Parameters

message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

• A null value if successful.

Throws

• An exception is thrown if the message could not be logged.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 409

F.3.13. logger.trace(string message, object... params)

Logs a message at TRACE level.

Parameters

message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

• A null value if successful.

Throws

• An exception is thrown if the message could not be logged.

F.3.14. logger.warn(string message, object... params)

Logs a message at WARN level.

Parameters

message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

• A null value if successful.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 410

Throws

• An exception is thrown if the message could not be logged.

F.4. Places to Trigger Scripts
Scripts can be triggered at different places, by different events.

In openidm/conf/sync.json

Triggered by situation

onCreate, onUpdate, onDelete, onLink, onUnlink

Object filter

vaildSource, validTarget

Correlating objects

correlationQuery

Triggered on any reconciliation

result

Scripts inside properties

condition, transform

sync.json supports only one script per hook. If multiple scripts are defined for the same hook,
only the last one is kept.

In openidm/conf/managed.json

onCreate, onRead, onUpdate, onDelete, onValidate, onRetrieve, onStore, postCreate, postUpdate,
and postDelete

managed.json supports only one script per hook. If multiple scripts are defined for the same hook,
only the last one is kept.

In openidm/conf/router.json

onRequest, onResponse, onFailure

router.json supports multiple scripts per hook.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 411

F.5. Variables Available in Scripts
The variables that are available to scripts depend on the triggers that launch the script. The following
section outlines the available variables, per trigger.

condition

object

correlationQuery

source

Custom endpoint scripts

request

onCreate, postCreate

object, source, target

onDelete, postDelete

object

onLink

source, target

onRead

object

onRetrieve

object (when called from either an object or a property storage trigger); property (only when
called from a property storage trigger)

As a property, returns the modified property values from the script.

onStore

object, property

As a property, returns the modified property values from the script.

onUnlink

source, target

onUpdate, postUpdate

oldObject, newObject

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 412

onValidate

object, property

propertyName

Name of the property that is changed.

result

source, target

synchronization situation scripts

recon.actionParam - the details of the synchronization operation in progress. This variable can be
used for asynchronous callbacks to execute the action at a later stage.

sourceAction - a boolean that indicates whether the situation was assessed during the source phase

source (if found)

target (if found)

The properties from the configured script object.

taskScanner

input, objectID

transform

source

validSource

source

validTarget

target

F.6. Debugging OpenIDM JavaScripts
OpenIDM includes Eclipse JSDT libraries so you can use Eclipse to debug your OpenIDM JavaScripts
during development.

Procedure F.1. To Enable Debugging

Follow these steps to enable debugging using Eclipse.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 413

1. Install the environment to support JavaScript development in either of the following ways.

• Download and install Eclipse IDE for JavaScript Web Developers from the Eclipse download
page.

• Add JavaScript Development Tools to your existing Eclipse installation.

2. Create an empty JavaScript project called External JavaScript Source in Eclipse.

Eclipse then uses the External JavaScript Source directory in the default workspace location to
store sources that it downloads from OpenIDM.

3. Stop OpenIDM.

4. Edit openidm/conf/boot/boot.properties to enable debugging.

a. Uncomment and edit the following line.

#openidm.script.javascript.debug=transport=socket,suspend=y,address=9888,trace=true

Here suspend=y prevents OpenIDM from starting until the remote JavaScript debugger has
connected. You might therefore choose to set this to suspend=n.

b. Uncomment and edit the following line.

#openidm.script.javascript.sources=/Eclipse/workspace/External JavaScript Source/

Adjust /Eclipse/workspace/External JavaScript Source/ to match the absolute path to this folder
including the trailing / character. On Windows, also use forward slashes, such asC:/Eclipse/
workspace/External JavaScript Source/.

Each time OpenIDM loads a new script, it then creates or overwrites the file in the External
 JavaScript Source directory. Before toggling breakpoints, be sure to refresh the source
manually in Eclipse so you have the latest version.

5. Prepare the Eclipse debugger to allow you to set breakpoints.

In the Eclipse Debug perspective, select the Breakpoints tab, and then click the Add Script Load
Breakpoint icon to open the list of scripts.

In the Add Script Load Breakpoint window, select your scripts, and then click OK.

6. Start OpenIDM, and connect the debugger.

To create a new debug, configuration click Run > Debug Configurations... > Remote JavaScript >
New button, and then set the port to 9888 as shown above.

http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://wiki.eclipse.org/JSDT

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 414

Appendix G. Router Service Reference

The OpenIDM router service provides the uniform interface to all objects in OpenIDM: managed
objects, system objects, configuration objects, and so on.

G.1. Configuration
The router object as shown in conf/router.json defines an array of filter objects.

{
 "filters": [filter object, ...]
}

The required filters array defines a list of filters to be processed on each router request. Filters are
processed in the order in which they are specified in this array.

G.1.1. Filter Objects

Filter objects are defined as follows.

{
 "pattern": string,
 "methods": [string, ...],
 "condition": script object,
 "onRequest": script object,
 "onResponse": script object,
 "onFailure": script object
}

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 415

"pattern"

string, optional

Specifies a regular expression pattern matching the JSON pointer of the object to trigger scripts.
If not specified, all identifiers (including null) match. Pattern matching is done on the resource
name, rather than on individual objects.

"methods"

array of strings, optional

One or more methods for which the script(s) should be triggered. Supported methods are:
"create", "read", "update", "delete", "patch", "query", "action". If not specified, all methods are
matched.

"condition"

script object, optional

Specifies a script that is called first to determine if the script should be triggered. If the condition
yields "true", the other script(s) are executed. If no condition is specified, the script(s) are called
unconditionally.

"onRequest"

script object, optional

Specifies a script to execute before the request is dispatched to the resource. If the script throws
an exception, the method is not performed, and a client error response is provided.

"onResponse"

script object, optional

Specifies a script to execute after the request is successfully dispatched to the resource and a
response is returned. Throwing an exception from this script does not undo the method already
performed.

"onFailure"

script object, optional

Specifies a script to execute if the request resulted in an exception being thrown. Throwing an
exception from this script does not undo the method already performed.

G.1.2. Script Execution Sequence

All "onRequest" and "onResponse" scripts are executed in sequence. First, the "onRequest" scripts
are executed from the top down, then the "onResponse" scripts are executed from the bottom up.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 416

client -> filter 1 onRequest -> filter 2 onRequest -> resource
client <- filter 1 onResponse <- filter 2 onResponse <- resource

The following sample router.json file shows the order in which the scripts would be executed:

{
 "filters" : [
 {
 "onRequest" : {
 "type" : "text/javascript",
 "file" : "script/router-authz.js"
 }
 },
 {
 "pattern" : "^managed/user",
 "methods" : [
 "read"
],
 "onRequest" : {
 "type" : "text/javascript",
 "source" : "java.lang.System.out.println('requestFilter 1');"
 }
 },
 {
 "pattern" : "^managed/user",
 "methods" : [
 "read"
],
 "onResponse" : {
 "type" : "text/javascript",
 "source" : "java.lang.System.out.println('responseFilter 1');"
 }
 },
 {
 "pattern" : "^managed/user",
 "methods" : [
 "read"
],
 "onRequest" : {
 "type" : "text/javascript",
 "source" : "java.lang.System.out.println('requestFilter 2');"
 }
 },
 {
 "pattern" : "^managed/user",
 "methods" : [
 "read"
],
 "onResponse" : {
 "type" : "text/javascript",
 "source" : "java.lang.System.out.println('responseFilter 2');"
 }
 }
]
}

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 417

Will produce a log like:

requestFilter 1
requestFilter 2
responseFilter 2
responseFilter 1

G.1.3. Script Scope

Scripts are provided with the following scope.

{
 "openidm": openidm-functions object,
 "request": resource-request object,
 "response": resource-response object,
 "exception": exception object
}

"openidm"

openidm-functions object

Provides access to OpenIDM resources.

"request"

resource-request object

The resource-request context, which has one or more parent contexts. Provided in the scope of
"condition", "onRequest", "onResponse" and "onFailure" scripts.

"response"

openidm-functions object

The response to the resource-request. Only provided in the scope of the "onResponse" script.

"exception"

exception object

The exception value that was thrown as a result of processing the request. Only provided in the
scope of the "onFailure" script.

An exception object is defined as follows.

https://wikis.forgerock.org/confluence/display/json/resource-request

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 418

{
 "code": integer,
 "reason": string,
 "message": string,
 "detail": string
}

"code"

integer

The numeric HTTP code of the exception.

"reason"

string

The short reason phrase of the exception.

"message"

string

A brief message describing the exception.

"detail"

(optional), string

A detailed description of the exception, in structured JSON format, suitable for programmatic
evaluation.

G.2. Example
The following example executes a script after a managed user object is created or updated.

{
 "filters": [
 {
 "pattern": "^managed/user",
 "methods": [
 "create",
 "update"
],
 "onResponse": {
 "type": "text/javascript",
 "file": "scripts/afterUpdateUser.js"
 }
 }
]
}

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 419

Appendix H. Embedded Jetty Configuration

OpenIDM 3.0.0 includes an embedded Jetty web server.

To configure the embedded Jetty server, edit openidm/conf/jetty.xml. OpenIDM delegates most of the
connector configuration to jetty.xml. OSGi and PAX web specific settings for connector configuration
therefore do not have an effect. This lets you take advantage of all Jetty capabilities, as the web
server is not configured through an abstraction that might limit some of the options.

The Jetty configuration can reference configuration properties (such as port numbers and
keystore details) from OpenIDM's boot.properties configuration file. If you change the ports in the
boot.properties file, you must make the same change in the config.properties file.

H.1. Using OpenIDM Configuration Properties in the Jetty
Configuration
OpenIDM exposes a Param class that you can use in jetty.xml to include OpenIDM configuration. The
Param class exposes Bean properties for common Jetty settings and generic property access for other,
arbitrary settings.

H.1.1. Accessing Explicit Bean Properties

To retrieve an explicit Bean property, use the following syntax in jetty.xml.

<Get class="org.forgerock.openidm.jetty.Param" name="<bean property name>"/>

For example, to set a Jetty property for keystore password:

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 420

<Set name="password">
 <Get class="org.forgerock.openidm.jetty.Param" name="keystorePassword"/>
</Set>

Also see the bundled jetty.xml for further examples.

The following explicit Bean properties are available.

port

Maps to openidm.port.http

port

Maps to openidm.port.https

port

Maps to openidm.port.mutualauth

keystoreType

Maps to openidm.keystore.type

keystoreProvider

Maps to openidm.keystore.provider

keystoreLocation

Maps to openidm.keystore.location

keystorePassword

Maps to openidm.keystore.password

keystoreKeyPassword

Maps to openidm.keystore.key.password, or the keystore password, if not set

truststoreLocation

Maps to openidm.truststore.location, or the keystore location, if not set

truststorePassword

Maps to openidm.truststore.password, or the keystore password, if not set

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 421

H.1.2. Accessing Generic Properties

<Call class="org.forgerock.openidm.jetty.Param" name="getProperty">
 <Arg>org.forgerock.openidm.some.sample.property</Arg>
</Call>

H.2. Jetty Default Settings
By default the embedded Jetty server uses the following settings.

• The HTTP, SSL, and Mutual Authentication ports defined in OpenIDM

• The same keystore and truststore settings as OpenIDM

• Trivial sample realm, openidm/security/realm.properties to add users

The default settings are intended for evaluation only. Adjust them according to your production
requirements.

H.3. Registering Additional Servlet Filters
You can register generic servlet filters in the embedded Jetty server to perform additional filtering
tasks on requests to or responses from OpenIDM. For example, you might want to use a servlet filter
to protect access to OpenIDM with an access management product. Servlet filters are configured in
files named openidm/conf/servletfilter-name.json. These servlet filter configuration files define the filter
class, required libraries, and other settings.

A sample servlet filter configuration is provided in the servletfilter-cors.json file in the /path/to/
openidm/conf directory.

The sample servlet filter configuration file is shown below:

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 422

{
 "classPathURLs" : [],
 "systemProperties" : { },
 "requestAttributes" : { },
 "scriptExtensions" : { }.
 "initParams" : {
 "allowedOrigins" : "https://localhost:8443",
 "allowedMethods" : "GET,POST,PUT,DELETE,PATCH",
 "allowedHeaders" : "accept,x-openidm-password,x-openidm-nosession,
 x-openidm-username,content-type,origin,
 x-requested-with",
 "allowCredentials" : "true",
 "chainPreflight" : "false"
 },
 "urlPatterns" : [
 "/*"
],
 "filterClass" : "org.eclipse.jetty.servlets.CrossOriginFilter"
}

The sample configuration includes the following properties:

"classPathURLs"

The URLs to any required classes or libraries that should be added to the classpath used by the
servlet filter class

"systemProperties"

Any additional Java system properties required by the filter

"requestAttributes"

The HTTP Servlet request attributes that will be set by OpenIDM when the filter is invoked.
OpenIDM expects certain request attributes to be set by any module that protects access to it, so
this helps in setting these expected settings.

"scriptExtensions"

Optional script extensions to OpenIDM. Currently only "augmentSecurityContext" is supported.
A script that is defined in augmentSecurityContext is executed by OpenIDM after a successful
authentication request. The script helps to populate the expected security context in OpenIDM.
For example, the login module (servlet filter) might select to supply only the authenticated user
name, while the associated roles and user ID can be augmented by the script.

Supported script types include "text/javascript" and "groovy". The script can be provided inline
("source":script source) or in a file ("file":filename). The sample filter extends the filter interface
with the functionality in the script script/security/populateContext.js.

"filterClass"

The servlet filter that is being registered

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 423

The following additional properties can be configured for the filter:

"httpContextId"

The HTTP context under which the filter should be registered. The default is "openidm".

"servletNames"

A list of servlet names to which the filter should apply. The default is "OpenIDM REST".

"urlPatterns"

A list of URL patterns to which the filter applies. The default is ["/openidm/*", "/openidmui/*"].

"initParams"

Filter configuration initialization parameters that are passed to the servlet filter init method. For
more information, see http://docs.oracle.com/javaee/5/api/javax/servlet/FilterConfig.html.

http://docs.oracle.com/javaee/5/api/javax/servlet/FilterConfig.html

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 424

Appendix I. Release Levels & Interface
Stability

This appendix includes ForgeRock definitions for product release levels and interface stability.

I.1. ForgeRock Product Release Levels
ForgeRock defines Major, Minor, and Maintenance product release levels. The release level is
reflected in the version number. The release level tells you what sort of compatibility changes to
expect.

Table I.1. Release Level Definitions

Release Label Version Numbers Characteristics
Major Version: x[.0.0]

(trailing 0s are
optional)

• Bring major new features, minor features, and bug fixes

• Can include changes even to Stable interfaces

• Can remove previously Deprecated functionality, and in rare
cases remove Evolving functionality that has not been explicitly
Deprecated

• Include changes present in previous Minor and Maintenance
releases

Minor Version: x.y[.0]
(trailing 0s are
optional)

• Bring minor features, and bug fixes

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 425

Release Label Version Numbers Characteristics
• Can include backwards-compatible changes to Stable interfaces

in the same Major release, and incompatible changes to
Evolving interfaces

• Can remove previously Deprecated functionality

• Include changes present in previous Minor and Maintenance
releases

Maintenance Version: x.y.z • Bring bug fixes

• Are intended to be fully compatible with previous versions from
the same Minor release

I.2. ForgeRock Product Interface Stability
ForgeRock products support many protocols, APIs, GUIs, and command-line interfaces. Some of these
interfaces are standard and very stable. Others offer new functionality that is continuing to evolve.

ForgeRock acknowledges that you invest in these interfaces, and therefore must know when and how
ForgeRock expects them to change. For that reason, ForgeRock defines interface stability labels and
uses these definitions in ForgeRock products.

Table I.2. Interface Stability Definitions

Stability Label Definition
Stable This documented interface is expected to undergo backwards-compatible changes

only for major releases. Changes may be announced at least one minor release
before they take effect.

Evolving This documented interface is continuing to evolve and so is expected to change,
potentially in backwards-incompatible ways even in a minor release. Changes are
documented at the time of product release.

While new protocols and APIs are still in the process of standardization, they are
Evolving. This applies for example to recent Internet-Draft implementations, and
also to newly developed functionality.

Deprecated This interface is deprecated and likely to be removed in a future release. For
previously stable interfaces, the change was likely announced in a previous
release. Deprecated interfaces will be removed from ForgeRock products.

Removed This interface was deprecated in a previous release and has now been removed
from the product.

Internal/Undocumented Internal and undocumented interfaces can change without notice. If you
depend on one of these interfaces, contact ForgeRock support or email
info@forgerock.com to discuss your needs.

mailto:info@forgerock.com

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 426

OpenIDM Glossary

JSON JavaScript Object Notation, a lightweight data interchange format
based on a subset of JavaScript syntax. For more information, see the
JSON site.

JWT JSON Web Token. As noted in the JSON Web Token draft IETF Memo,
"JSON Web Token (JWT) is a compact URL-safe means of representing
claims to be transferred between two parties." For OpenIDM, the JWT
is associated with the JWT_SESSION authentication module.

managed object An object that represents the identity-related data managed by
OpenIDM. Managed objects are configurable, JSON-based data
structures that OpenIDM stores in its pluggable repository. The
default configuration of a managed object is that of a user, but you
can define any kind of managed object, for example, groups or roles.

mapping A policy that is defined between a source object and a target object
during reconciliation or synchronization. A mapping can also define a
trigger for validation, customization, filtering, and transformation of
source and target objects.

OSGi A module system and service platform for the Java programming
language that implements a complete and dynamic component model.
For a good introduction, see the OSGi site. OpenIDM services are
designed to run in any OSGi container, but OpenIDM currently runs in
Apache Felix.

reconciliation During reconciliation, comparisons are made between managed
objects and objects on source or target systems. Reconciliation can
result in one or more specified actions, including, but not limited to,
synchronization.

http://www.json.org
http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
http://www.osgi.org/About/WhyOSGi
http://felix.apache.org/site/index.html

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 427

resource An external system, database, directory server, or other source of
identity data to be managed and audited by the identity management
system.

REST Representational State Transfer. A software architecture style for
exposing resources, using the technologies and protocols of the World
Wide Web. REST describes how distributed data objects, or resources,
can be defined and addressed.

source object In the context of reconciliation, a source object is a data object on
the source system, that OpenIDM scans before attempting to find a
corresponding object on the target system. Depending on the defined
mapping, OpenIDM then adjusts the object on the target system
(target object).

synchronization The synchronization process creates, updates, or deletes objects on a
target system, based on the defined mappings from the source system.
Synchronization can be scheduled or on demand.

system object A pluggable representation of an object on an external system. For
example, a user entry that is stored in an external LDAP directory
is represented as a system object in OpenIDM for the period during
which OpenIDM requires access to that entry.System objects follow
the same RESTful resource-based design principles as managed
objects.

target object In the context of reconciliation, a target object is a data object on the
target system, that OpenIDM scans after locating its corresponding
object on the source system. Depending on the defined mapping,
OpenIDM then adjusts the target object to match the corresponding
source object.

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 428

Index

A
Architecture, 1
Audit logs, 304
Authentication, 233

Internal users, 233
Managed users, 233
Roles, 237

Authorization, 233, 239

B
Best practices, 245, 329
Business processes, 260

C
cluster management, 313
Configuration

Email, 320
Files, 337
Objects, 41
REST API, 43
Validating, 24

Connectors, 92
Generating configurations, 133
Object types, 99
Remote, 93

Correlation queries, 191

D
Data

accessing, 58

E
Encryption, 252, 255
External REST, 324

F
failover, 313
File layout, 337

H
healthcheck, 11

high availability, 313

K
Keytool, 23

L
LiveSync, 142

Scheduling, 196

M
Mappings, 4, 147

Hooks for scripting, 192
Scheduled reconciliation, 197

O
Objects

Audit objects, 362
Configuration objects, 41
Links, 362
Managed objects, 3, 145, 234, 348, 372

Customizing, 356
Identifiers, 373
Passwords, 214

Object types, 347
Script access, 58, 400
System objects, 4, 362

OpenICF, 92

P
Passwords, 214, 254
Policies, 81
Ports

8080, 346
8443, 346
8444, 346
Disabling, 256

R
Reconciliation, 4, 142

Scheduling, 196
Resources, 92
REST API, 43, 372

Listing configuration objects, 43
Roles, 237
Router service, 414

Integrator's Guide OpenIDM 3 (2018-01-24T14:53:44.257)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 429

S
Schedule

Examples, 203
Scheduler, 195, 198

Configuration, 198
Scheduling tasks, 198
Scripting, 397

Functions, 400
Security, 245

Authentication, 252
Encryption, 252, 255
SSL, 251

Sending mail, 320
Server logs, 91
Starting OpenIDM, 6
Stopping OpenIDM, 6
Synchronization, 4, 142, 363

Actions, 178
Conditions, 148
Connectors, 146
Correlation queries, 191
Creating attributes, 148, 153
Direct (push), 142
Encryption, 151
Filtering, 149
Mappings, 147
Passwords, 215, 219

With Active Directory, 223
With OpenDJ, 220

Reusing links, 154
Scheduling, 196
Situations, 178
Transforming attributes, 148

T
Troubleshooting, 331

W
Workflow, 260

	Integrator's Guide
	Table of Contents
	Preface
	1. Who Should Use this Guide
	2. Formatting Conventions
	3. Accessing Documentation Online
	4. Using the ForgeRock.org Site

	Chapter 1. Architectural Overview
	1.1. OpenIDM Modular Framework
	1.2. Infrastructure Modules
	1.3. Core Services
	1.4. Secure Commons REST Commands
	1.5. Access Layer

	Chapter 2. Starting and Stopping OpenIDM
	2.1. To Start and Stop OpenIDM
	2.2. Specifying the OpenIDM Startup Configuration
	2.3. Obtaining Information About an OpenIDM Instance
	2.4. Verifying the Health of an OpenIDM System
	2.5. Displaying Information About Installed Modules
	2.6. Starting OpenIDM in Debug Mode

	Chapter 3. OpenIDM Command-Line Interface
	3.1. configexport
	3.2. configimport
	3.3. configureconnector
	3.4. encrypt
	3.5. keytool
	3.6. validate

	Chapter 4. OpenIDM User Interface
	4.1. Overview of the Default User Interface
	4.2. Configuring the Default User Interface
	4.2.1. Enabling Self-Registration
	4.2.2. Configuring Security Questions
	4.2.3. Minimum Length Security Answers
	4.2.4. Enabling Site Identification
	4.2.5. Configuring the Country List

	4.3. Managing User Accounts With the User Interface
	4.4. Managing Workflows From the User Interface
	4.5. Changing the UI Theme
	4.5.1. Changing the Default Stylesheet
	4.5.2. Changing the Default Logo
	4.5.3. Changing the Language of the UI
	4.5.4. Creating a Project-Specific UI Theme

	4.6. Using an External System for Password Reset
	4.7. Providing a Logout URL to External Applications
	4.8. Changing the UI Path
	4.9. Disabling the UI

	Chapter 5. Configuring OpenIDM
	5.1. OpenIDM Configuration Objects
	5.2. Changing the Default Configuration
	5.3. Configuring an OpenIDM System for Production
	5.3.1. Configuring a Production Repository
	5.3.2. Disabling Automatic Configuration Updates

	5.4. Configuring OpenIDM Over REST
	5.5. Using Property Value Substitution in the Configuration
	5.5.1. Using Property Value Substitution With System Properties
	5.5.2. Limitations of Property Value Substitution

	5.6. Adding Custom Endpoints
	5.6.1. The Components of an Endpoint Configuration File
	5.6.2. Context Component Access Methods
	5.6.3. Custom Endpoints and request Objects
	5.6.4. Custom Endpoints, Contexts, and Chains
	5.6.5. Additional Custom Endpoint Parameters
	5.6.6. Custom Endpoint Example

	5.7. Default and Custom Configuration Directories

	Chapter 6. Accessing Data Objects
	6.1. Accessing Data Objects by Using Scripts
	6.2. Accessing Data Objects by Using the REST API
	6.3. Defining and Calling Queries
	6.3.1. Parameterized Queries
	6.3.2. Native Query Expressions
	6.3.3. Constructing Queries

	Chapter 7. Managing Users, Groups, and Roles
	7.1. Working with Managed Users
	7.2. Working With Managed Groups
	7.3. Configuring Custom Roles
	7.3.1. Creating, Assigning, and Deleting Roles
	7.3.1.1. To Create a Role Definition
	7.3.1.2. To List the Defined Roles
	7.3.1.3. To Assign a Role to a User
	7.3.1.4. To Remove a Role Assignment
	7.3.1.5. To Query Role Membership
	7.3.1.6. To Delete a Managed Role Definition

	7.3.2. Understanding Effective Roles and Effective Assignments
	7.3.2.1. A Sample Role Definition for Two Remote Systems
	7.3.2.2. Managed Role Object Script Hooks
	7.3.2.3. Virtual Role Attributes

	7.3.3. Setting up the Role Mapping
	7.3.3.1. Creating a Mapping For Effective Assignments
	7.3.3.2. Using Roles For Conditional Mapping

	Chapter 8. Using Policies to Validate Data
	8.1. Configuring the Default Policy
	8.1.1. Policy Script File
	8.1.1.1. Policy Configuration Object
	8.1.1.2. Policy Implementation Function

	8.1.2. Policy Configuration File
	8.1.2.1. Sample Password Policy Extract
	8.1.2.2. Sample Array Policy Extract

	8.2. Extending the Policy Service
	8.3. Disabling Policy Enforcement
	8.4. Managing Policies Over REST
	8.4.1. Listing the Defined Policies
	8.4.2. Validating Objects and Properties Over REST

	Chapter 9. Configuring Server Logs
	Chapter 10. Connecting to External Resources
	10.1. About OpenIDM and OpenICF
	10.2. Accessing Remote Connectors
	10.3. Configuring Connectors
	10.4. Installing and Configuring Remote Connector Servers
	10.4.1. Installing and Configuring a .NET Connector Server
	10.4.2. Installing and Configuring a Remote Java Connector Server

	10.5. Connectors Supported With OpenIDM 3.0.0
	10.5.1. XML File Connector
	10.5.1.1. Example : Using the XML Connector to Reconcile Users in a Remote XML Data Store

	10.5.2. Generic LDAP Connector
	10.5.3. Active Directory Connector
	10.5.3.1. Using PowerShell Scripts With the Active Directory Connector

	10.5.4. CSV File Connector
	10.5.5. Scripted SQL Connector
	10.5.6. Database Table Connector
	10.5.7. Groovy Connector
	10.5.8. Powershell Connector

	10.6. Creating Default Connector Configurations
	10.7. Checking the Status of External Systems Over REST
	10.8. Adding Attributes to Connectors

	Chapter 11. Configuring Synchronization
	11.1. Types of Synchronization
	11.1.1. How Automatic Sync works with onSync

	11.2. Flexible Data Model
	11.3. Basic Data Flow Configuration
	11.3.1. Connector Configuration Files
	11.3.2. Synchronization Mappings File
	11.3.3. Using Encrypted Values
	11.3.4. Restricting HTTP Access to Sensitive Data
	11.3.5. Constructing and Manipulating Attributes
	11.3.6. Reusing Links

	11.4. Managing Reconciliation Over REST
	11.4.1. Triggering a Reconciliation Run
	11.4.2. Obtaining the Details of a Reconciliation Run
	11.4.3. Canceling a Reconciliation Run
	11.4.4. Listing Reconciliation Runs
	11.4.5. Triggering LiveSync Over REST

	11.5. Restricting Reconciliation by Using Queries
	11.6. Restricting Reconciliation to a Specific ID
	11.7. Querying the Reconciliation Audit Log
	11.8. Configuring the LiveSync Retry Policy
	11.9. Synchronization Situations and Actions
	11.9.1. Synchronization Situations
	11.9.2. Source Reconciliation
	11.9.3. Target Reconciliation
	11.9.4. Situations Specific to Automatic Synchronization and LiveSync
	11.9.5. Synchronization Actions
	11.9.6. Providing a Script as an Action

	11.10. Asynchronous Reconciliation
	11.11. Configuring Case Sensitivity for Data Stores
	11.12. Reconciliation Optimization
	11.12.1. Correlating Empty Target Sets
	11.12.2. Prefetching Links
	11.12.3. Parallel Reconciliation Threads

	11.13. Correlation Queries
	11.13.1. Managed Objects as Correlation Query Targets
	11.13.2. System Objects as Correlation Query Targets

	11.14. Advanced Data Flow Configuration
	11.15. Scheduling Synchronization
	11.15.1. Configuring Scheduled Synchronization
	11.15.2. Alternative Mappings

	Chapter 12. Scheduling Tasks and Events
	12.1. Scheduler Configuration
	12.2. Configuring Persistent Schedules
	12.3. Schedule Examples
	12.4. Managing Schedules Over REST
	12.4.1. Creating a Schedule
	12.4.2. Obtaining the Details of a Schedule
	12.4.3. Updating a Schedule
	12.4.4. Listing Configured Schedules
	12.4.5. Deleting a Schedule

	12.5. Scanning Data to Trigger Tasks
	12.5.1. Configuring the Task Scanner
	12.5.2. Managing Scanning Tasks Over REST
	12.5.2.1. Triggering a Scanning Task
	12.5.2.2. Canceling a Scanning Task
	12.5.2.3. Listing Scanning Tasks

	Chapter 13. Managing Passwords
	13.1. Enforcing Password Policy
	13.1.1. Creating a Password History Policy

	13.2. Password Synchronization

	Chapter 14. Managing Authentication, Authorization and Role-Based Access Control
	14.1. OpenIDM Users
	14.1.1. Internal Users
	14.1.2. Managed Users

	14.2. Authentication
	14.3. Using Delegated Authentication
	14.4. Supported Authentication Modules
	14.5. Roles and Authentication
	14.6. Authorization
	14.6.1. router​-authz​.js
	14.6.2. access​.js
	14.6.3. Properties for Authentication and Roles
	14.6.4. Extending the Authorization Mechanism

	14.7. Building Role-Based Access Control (RBAC)
	14.7.1. Roles, Authentication, and the Security Context

	Chapter 15. Securing & Hardening OpenIDM
	15.1. Accessing the Security Management Service
	15.1.1. To Generate a Certificate Signing Request Over REST
	15.1.2. To Import a Signed Certificate into the Keystore
	15.1.3. Security Management Service Endpoints

	15.2. Security Precautions for a Production Environment
	15.2.1. Use SSL and HTTPS
	15.2.2. Restrict REST Access to the HTTPS Port
	15.2.3. Encrypt Data Internally and Externally
	15.2.4. Use Message Level Security
	15.2.4.1. Message Level Security with Logins
	15.2.4.2. Logout By Removing the JWT Cookie

	15.2.5. Replace Default Security Settings
	15.2.6. Secure Jetty
	15.2.7. Protect Sensitive REST Interface URLs
	15.2.8. Protect Sensitive Files & Directories
	15.2.9. Obfuscate Bootstrap Information
	15.2.10. Remove or Protect Development & Debug Tools
	15.2.11. Protect the OpenIDM Repository
	15.2.12. Adjust Log Levels
	15.2.13. Set Up Restart At System Boot

	Chapter 16. Integrating Business Processes and Workflows
	16.1. BPMN 2.0 and the Activiti Tools
	16.2. Setting Up Activiti Integration With OpenIDM
	16.2.1. Configuring the Activiti Engine
	16.2.1.1. Configuring the Activiti History Level

	16.2.2. Defining Activiti Workflows
	16.2.3. Invoking Activiti Workflows
	16.2.4. Querying Activiti Workflows

	16.3. Using Custom Templates for Activiti Workflows
	16.4. Managing Workflows Over the REST Interface
	16.5. Example Activiti Workflows With OpenIDM
	16.5.1. Example Email Notification Workflow
	16.5.2. Sample Workflow - Provisioning User Accounts
	16.5.2.1. Overview of the Sample
	16.5.2.2. Running the Sample

	16.6. Workflow Use Cases
	16.6.1. Use Case 1 - Initial Reconciliation
	16.6.2. Use Case 2 - New User Onboarding
	16.6.3. Use Case 3 - User Access Request
	16.6.4. Use Case 4 - Orphan Account Detection
	16.6.5. Use Case 5 - Certification
	16.6.6. Use Case 6 - Password Change Reminder

	Chapter 17. Using Audit Logs
	17.1. Audit Log Types
	17.2. Audit Log File Formats
	17.3. Audit Configuration
	17.3.1. Event Types
	17.3.2. Log To List
	17.3.3. Exception Formatter

	17.4. Generating Reports

	Chapter 18. Configuring OpenIDM to Work in a Cluster
	18.1. Configuring an OpenIDM Instance as Part of a Cluster
	18.1.1. Edit the Boot Configuration
	18.1.2. Edit the Cluster Configuration

	18.2. Managing Scheduled Tasks Across a Cluster
	18.3. Managing Nodes Over REST

	Chapter 19. Sending Email
	19.1. Sending Mail Over REST
	19.2. Sending Mail From a Script

	Chapter 20. Accessing External REST Services
	20.1. Invocation Parameters
	20.2. Support for Non-JSON Responses

	Chapter 21. OpenIDM Project Best Practices
	21.1. Implementation Phases
	21.1.1. Initiation
	21.1.2. Definition
	21.1.3. Design
	21.1.4. Build
	21.1.5. Production

	Chapter 22. Troubleshooting
	22.1. OpenIDM Stopped in Background
	22.2. Internal Server Error During Reconciliation or Synchronization
	22.3. The scr list Command Shows Sync Service As Unsatisfied
	22.4. JSON Parsing Error
	22.5. System Not Available
	22.6. Bad Connector Host Reference in Provisioner Configuration
	22.7. Missing Name Attribute

	Chapter 23. Advanced Configuration
	23.1. Advanced Startup Configuration

	Appendix A. File Layout
	Appendix B. Ports Used
	Appendix C. Data Models and Objects Reference
	C.1. Managed Objects
	C.1.1. Managed Object Schema
	C.1.1.1. Managed Object Reserved Properties
	C.1.1.2. Managed Object Schema Validation
	C.1.1.3. Managed Object Derived Properties

	C.1.2. Data Consistency
	C.1.3. Managed Object Triggers
	C.1.3.1. State Triggers
	C.1.3.2. Object Storage Triggers
	C.1.3.3. Property Storage Triggers
	C.1.3.4. Storage Trigger Sequences

	C.1.4. Managed Object Encryption
	C.1.5. Managed Object Configuration
	C.1.6. Custom Managed Objects
	C.1.6.1. Setting Up a Managed Object Type
	C.1.6.2. Manipulating Managed Objects Declaratively
	C.1.6.3. Manipulating Managed Objects Programmatically
	C.1.6.3.1. Creating Objects
	C.1.6.3.2. Updating Objects
	C.1.6.3.3. Patching Objects
	C.1.6.3.4. Deleting Objects
	C.1.6.3.5. Reading Objects
	C.1.6.3.6. Querying Object Sets

	C.1.7. Accessing Managed Objects Through the REST API

	C.2. Configuration Objects
	C.2.1. When To Use Custom Configuration Objects
	C.2.2. Custom Configuration Object Naming Conventions
	C.2.3. Mapping Configuration Objects To Configuration Files
	C.2.4. Configuration Objects File & REST Payload Formats
	C.2.5. Accessing Configuration Objects Through the REST API
	C.2.6. Accessing Configuration Objects Programmatically
	C.2.7. Creating Objects
	C.2.8. Updating Objects
	C.2.9. Deleting Objects
	C.2.10. Reading Objects

	C.3. System Objects
	C.4. Audit Objects
	C.5. Links

	Appendix D. Synchronization Reference
	D.1. Object-Mapping Objects
	D.1.1. Property Objects
	D.1.2. Policy Objects
	D.1.2.1. Script Object

	D.2. Links
	D.3. Queries
	D.4. Reconciliation
	D.5. REST API

	Appendix E. REST API Reference
	E.1. URI Scheme
	E.2. Object Identifiers
	E.3. Content Negotiation
	E.4. Supported Operations
	E.4.1. Creating an Object
	E.4.2. Reading an Object
	E.4.3. Updating an Object
	E.4.4. Deleting an Object
	E.4.5. Querying Resources

	E.5. Conditional Operations
	E.6. Supported Methods
	E.7. REST Endpoints and Sample Commands
	E.7.1. Managing the Server Configuration Over REST
	E.7.2. Managing Users Over REST
	E.7.3. Managing System Objects Over Rest
	E.7.4. Managing Workflows Over Rest
	E.7.5. Managing Scanned Tasks Over REST
	E.7.6. Accessing Log Entries Over REST
	E.7.7. Managing Reconciliation Operations Over REST

	E.8. HTTP Status Codes

	Appendix F. Scripting Reference
	F.1. Scripting Configuration
	F.1.1. Script Configuration File
	F.1.2. Calling A Script From Another Configuration File

	F.2. Examples
	F.3. Function Reference
	F.3.1. openidm.create(container, id, value)
	F.3.2. openidm.patch(id, rev, value)
	F.3.3. openidm.read(id)
	F.3.4. openidm.update(id, rev, value)
	F.3.5. openidm.delete(id, rev)
	F.3.6. openidm.query(id, params)
	F.3.7. openidm.action(id, params, value)
	F.3.8. openidm.encrypt(value, cipher, alias)
	F.3.9. openidm.decrypt(value)
	F.3.10. logger.debug(string message, object... params)
	F.3.11. logger.error(string message, object... params)
	F.3.12. logger.info(string message, object... params)
	F.3.13. logger.trace(string message, object... params)
	F.3.14. logger.warn(string message, object... params)

	F.4. Places to Trigger Scripts
	F.5. Variables Available in Scripts
	F.6. Debugging OpenIDM JavaScripts

	Appendix G. Router Service Reference
	G.1. Configuration
	G.1.1. Filter Objects
	G.1.2. Script Execution Sequence
	G.1.3. Script Scope

	G.2. Example

	Appendix H. Embedded Jetty Configuration
	H.1. Using OpenIDM Configuration Properties in the Jetty Configuration
	H.1.1. Accessing Explicit Bean Properties
	H.1.2. Accessing Generic Properties

	H.2. Jetty Default Settings
	H.3. Registering Additional Servlet Filters

	Appendix I. Release Levels & Interface Stability
	I.1. ForgeRock Product Release Levels
	I.2. ForgeRock Product Interface Stability

	OpenIDM Glossary
	Index

