FORGEROCK

Integrator's Guide
/ OpenIiDM 3.1

Latest update: 3.1.0

Anders Askasen
Paul Bryan
Mark Craig
Andi Egloff

Laszlo Hordos
Matthias Tristl
Lana Frost
Mike Jang

Daly Chikhaoui

ForgeRock AS

201 Mission St., Suite 2900
San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www . forgerock.com

Copyright © 2011-2017 ForgeRock AS.
Abstract

Guide to configuring and integrating OpenIDM into identity management solutions. The
OpenlIDM project offers flexible, open source services for automating management of the
identity life cycle.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

creati c-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

To view a copy of this license, visit http

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.
UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts
Bitstream Vera Fonts Copyright

Copyright () 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
ggét;jzg;;‘:ncludmg ‘without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.
The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright
Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the “Tavmjong Bah Arev" names.
The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT

SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright
Copyright () 2017 by Dave Gandy, http://fontawesome.io.

This Font Software is licensed under the SIL Open Font License, Version 1.1. This license is available with a FAQ at: http://scripts.sil.org/OFL

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
http://fontawesome.io
http://scripts.sil.org/OFL

(/’ FORGEROCK

Table of Contents

PTEfACE .o e viii
1. Who Should Use this GUIdeccouiiiiiiiiiiiiiiie e viii
2. Formatting CONVENTIONSiuiuiiniiiiiiiriiee et et e e e e anens viii
3. Accessing Documentation ONINEccoiuviiiiiiiiiiiiirinie e e e ix
4. Using the FOrgeROCK.OTG Siteccuuiiniiiiiiiiiiiiii e ix
1. Architectural OVEIVIEWc..iiuiiiiii ittt ettt e e e e e eans 1
1.1. OpenIDM Modular FramewoTKccooiiuiiiiiiiiiiii e 2
1.2. Infrastructure ModULESc..couuiiiiiiiii e 2
1.3, COTE SEIVICES ..outiniiiiii ittt ettt e e e ens 3
1.4. Secure Commons REST Commandscceuveuuiiuniiiiiiniiieiieieeieeieeieeeieeeieeanes 4
1.5, ACCESS LaAYET uuiniiiiiiii ettt 5
2. Starting and Stopping OPenIDMcciiiiiiiiiiiiiiiiiiei et et e e e e e eas 6
2.1. To Start and Stop OPenIDM ... e 6
2.2. Specifying the OpenIDM Startup Configurationcc.coeeviiiiiiiiniiniiniiniinennnn. 7
2.3. Obtaining Information About an OpenIDM INstancec.ccceevevveieineinennnnnnn. 9
2.4. Verifying the Health of an OpenIDM SyStemccccveiiiiiiiiiiiiiiiiiiieieiennenn. 11
2.5. Displaying Information About Installed Modulesccccceeviiiiiniiiiiinninnanns 13
2.6. Starting OpenIDM in Debug MoOdecccviiiniiiiiiiiiiiiiii e 15
2.7. Running OpenlIDM as a Service on Linux Systemsc.cc.coeeviiiiiiniiiinininenenn, 15
3. OpenIDM Command-Line Interfacecooooiiiiiiiiiiiiiiiii e 17
G 01 IR0 ¥ i 10 [=:4 010) o APPSR 18
T2 o0 Wi To 11111 010) o AU 20
3.3, CONTIGUIECONNECTOT .uuitiiiiiiiiei ittt et e e e et e e et e ee e e ee e e aneannan 20
G T T <3 s [od 1) 4 o | A PP P TP RPN 21
I T (<) 2 o Lo) E PP PPN 24
3.6, VALIAAETE ..eniinii e e 24
4. OpenIDM Web-based User Interfacesccoouiiiiiiiiiiiii e, 26
4.1. Configuring OpenIDM from the Admin Uccccoiiiiiiiiiiiiiiiiie e, 26
4.2. Overview of the User View U ... e 38
4.3. Configuring the User VIew Ulcooiiiiiiiiiiiiii ettt 40
4.4. Managing User Accounts With the User View Ulccoeiiviiiiiiiiiiiniiniinnnnn.. 45
4.5. Managing Workflows From the User View Ulc.cccoiiiiiiiiiiiiiiiiiiiiiiieeenns 49
4.6. Changing the UL Themecccviuiiiiiiiiiiiieiie et e e e ee e anaas 51
4.7. Using an External System for Password Resetccoeevevviniiiiiiinininninnennnn. 53
4.8. Providing a Logout URL to External Applicationsc.cccccevevviiiiiiiiiiniiniinnnnn. 54
4.9. Changing the UL Pathccoviiiiiiiiiii e e 54
4.10. Disabling the UT ... e e e e e e e e ans 54
5. Managing the OpenIDM RePOSILOTY ...cvuiiniiiiiiiiiiiiiee e a e aes 55
5.1. Understanding the JDBC Repository Configuration Filecc.ccocviviinninnnn.n. 55
5.2. Using Explicit or Generic Object Mapping With a JDBC Repository 58
5.3. Configuring SSL with a JDBC RePOSILOTY ..ccuviuiiniiiiiiiiiiiiiieiieceeeeieeeeee, 64
5.4. Interacting With the Repository Over RESTccoiiiiiiiiiiiiiiiiiiiiieiceceiee, 66
6. Configuring OPENIDMiuiiiiiiiiiiieiieie e ee e ee e e eteeteeta ettt eetaeaeeteeneeneeneanernaenns 68
6.1. OpenIDM Configuration ODJECEScciiiiiiiiiiiiiiiiie e 68

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

(/’ FORGEROCK

6.2. Changing the Default Configurationccccoveuviiiiiiiiiiiniininrr e 69
6.3. Configuring an OpenIDM System for Productionccoeeveiiiiniiiiiniiniannnn.e. 70
6.4. Configuring OpenIDM Over RESTcciiiiiiiiiiiiiinrn e ee e 70
6.5. Using Property Value Substitution in the Configurationcccccevevviiiinian.e. 75
6.6. Adding Custom EndpoOintsc.eeuiiiiiiiniiiiiiiieieir e e e e e eans 78
6.7. Default and Custom Configuration Directoriesccccevevviviiiiiiniiienninnennen. 83
7. AccesSing Data ODJECTES .uiuuiiniiniiiiiii e 85
7.1. Accessing Data Objects by Using ScCriptsccoevviiiiiiiiiiiiiiiiiiiiieeeen 85
7.2. Accessing Data Objects by Using the REST APIccoiviiiiiiiiiiiiiiiiiiinineeennen 86
7.3. Defining and Calling QUETIESvvuviuiiiiiiiiiiiiieie ettt ee e e e ene e 86
8. Managing Users, Groups, and ROLEScouiiiiiiiiiiiiiiiii e, 101
8.1. Working with Managed USETSc.viuviuiiiiiiiiiiiiiiieeieeee et e e enes 101
8.2. Working With Managed GTOUDSccvuuviiiiiiiiiiiiiei et e e e enes 101
8.3. Configuring Custom ROLEScoiiiiiiiiiiii e 102
9. Using Policies to Validate Datacooeuiiiiiiiiiiiiiiii i 119
9.1. Configuring the Default POLICY ...cvvuviniiiiiiiiiii e 119
9.2. Extending the POliCYy SETIVICE ...c.ceuniiniiiiiiiiiiii e 123
9.3. Disabling Policy Enforcementcoeeviiiiiiiiiiiiniiiinnieeee e 124
9.4. Managing Policies Over RESTot 125
10. Configuring SEIVET LOGS ...vuiuiiiiiiiiiiiiiiieie ettt eieeeeieeie et e et eaeeteeneeneenenns 129
10.1. Log MeSSage FileS ...oiuiiuiiiiiiiiiiiiiii e 129
10.2. Logging LEVEILS ..ouiuiiiiiiiiieie e 129
10.3. DiSabling LOGS .iuuiuuiuiiiiiiiiiiiiieie ettt ettt ee e e et e eie e et ea e aanas 130
11. Connecting to External RESOUTICESccuiiiiniiiiiiiiiiii e 131
11.1. About OpenIDM and OPenICFEccciuiiiiiiiiiieeee e e 131
11.2. Accessing Remote CONNECLOTSvvuiiiiiiiiiiiiiiiiiii e 132
11.3. Configuring CONNECTOTS ...iuiiuiiiiiiiiii ettt et s e e s ee e e ens 134
11.4. Installing and Configuring Remote Connector Serversc..ccooceveenennne. 143
11.5. Connectors Supported With OpenIDM 3.1ccoiiiiiiiiiiiieeeee e 151
11.6. Creating Default Connector Configurationsccceveveiviiniiniiniiniiniinennennn. 174
11.7. Checking the Status of External Systems Over RESTc..cccceiviiiiiniennnes 179
11.8. Adding Attributes t0 CONNECLOTSvvuiiuiiiiiiiiiiieieeie e e e 183
12. Configuring Synchronizationc.ceeuiiiriiiiiniii e 185
12.1. Types of Synchronizationc..ccoeviiiiiiiiiiiiiie e 185
12.2. Flexible Data Modelcooiiiiiiiiiii e 186
12.3. Basic Data Flow Configurationccoceviiiiiiiiiiiiiiiiiiin e 187
12.4. Managing Reconciliation Over RESTcoiuiiiiiiiiiiiiiiiiiiieiecie e 195
12.5. Restricting Reconciliation by Using QUeriescccccvevviiiiiiiiiiiniiniiniineieanns 202
12.6. Restricting Reconciliation to a Specific IDccoviiiiiiiiiiiiiiiiiiiiieens 205
12.7. Querying the Reconciliation Audit Logcccovvniiiiiiiiiiiiiniiieiciciceiean, 206
12.8. Querying the Activity AUdit Log ..ocoveiiniiiiiiiiii e 212
12.9. Querying the Synchronization Audit Logcccoveviniiiiiiiiiiiiirne e, 217
12.10. Configuring the LiveSync Retry PoliCyccoevvivviiiiiiiiiiiiiiini e, 219
12.11. Disabling Automatic Synchronization Operationscccoeevviviiiiiniinnann.. 222
12.12. Configuring Synchronization Failure Compensationc...cc.ccoeeevveenennne. 223
12.13. Synchronization Situations and ACHiONScceeeviviiiiiiiniiiiiniiriereeeeans 224
12.14. Asynchronous Reconciliationceeuviiiiiiiiiiiiiiiiiinirier e 232

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

(/’ FORGEROCK

13.

14.

15.

16.

17.

18.

19.

20.

12.15. Configuring Case Sensitivity for Data Storescoccovivviiiiiiiiiiiniiiennenenns 234
12.16. Reconciliation Optimizationcccoiuiiiiiiiiiiii s 235
12.17. Correlation QUETIESvuinieieiii et e et eeenenes 236
12.18. Advanced Data Flow Configurationc.ccceeuieiiiiiiiniiniiniiniiniineieieieen, 239
12.19. Scheduling Synchronizationccovviiiiiiiiiiiii e, 242
Scheduling Tasks and EVENEScooviiiiiiiiiiiii e 245
13.1. Scheduler Configurationcceeuiiiiiiiiiiiie e 245
13.2. Configuring Persistent Schedulesc.ccoiviiiiiiiiiiiiiiiiee 250
13.3. Schedule EXampPLESouiiniiiiiiiiiiie ettt et e et e e e e e e e e eaaes 250
13.4. Managing Schedules Over RESTccoiiiiiiiiiiiiiiiiiiii e 251
13.5. Scanning Data to Trigger TasKsccoviiiiiiiiiiiiiiiiiiii e 255
Managing PaSSWOIASc.uiuuiuniiiiiiiieieie et et e et e et et e et et et ene et enseneeneenens 262
14.1. Enforcing Password POLICYccoviiiiiiiiiiiiiiiie e 262
14.2. Password Synchronizationccccoviiviiiiiiiiiiiiiiiiin e 267
Managing Authentication, Authorization and Role-Based Access Control 281
15.1. OPENIDM USETS .ouirnininiiniieiieieeeteteet et ee e etetneaetetasatnetasnetarnesasetaraenaenaenns 281
15.2. AuthentiCationcouiiiiiiiii e 283
15.3. Supported Authentication Modulesccccoviiiiiiiiiiiiiiic e 285
15.4. Using Delegated Authenticationccccoviviiiiiiiiiiiiiiiiiiiiii e 286
15.5. Kerberos Configuration EXamplecceeuviiiiiiiiiiiniiniiiiinicieici e 287
15.6. Roles and Authenticationccooeiviiiiiiiiiiiii e 291
15.7. AULhOTIZATION «.uiiniiiiii et 292
15.8. Building Role-Based Access Control (RBAC)cccvviiiiiiiiiiiiiiiiiiiieiiiiieieenns 296
Securing & Hardening OpPenIDMc.iiiiiiiiiiiieieiei et e e ans 298
16.1. Accessing the Security Management SEIViCeccccvevviniiniiniiniiniinennennnnn. 298
16.2. Security Precautions for a Production Environmentc...cc.ocoeeeiiiiinnne. 305
Integrating Business Processes and Workflowsccocoviiviiiiiiiiiiiiiiniinininnenne, 315
17.1. BPMN 2.0 and the Activiti TOOIScc.viiiiiiiiiiiiii e, 315
17.2. Setting Up Activiti Integration With OpenIDMccooviiviiiiiiiiiiiiinninnennen. 316
17.3. Using Custom Templates for Activiti Workflowscccoeceiiiiiiiininnin. 322
17.4. Managing Workflows Over the REST Interfacec..ccooeiiiiiiiiinin. 323
17.5. Example Activiti Workflows With OpenIDMccccoviviiiniiiiiiiiiiinennennen, 334
17.6. WOTKEIOW USE CASES ..ceuniiniiiiiiiiiiiiie ettt et et ea e 342
USING AUGIE LOGS teuetniiniiiiiiti ettt et et e e e et et et et et et et eaneaneaneans 364
18.1. AUt LOG TYDES teuiiniiniiniiiiiti ettt et et e e e s e e e s e e e 364
18.2. AUdit LOg FOITAtS ..iuuieiiiiiiiiiiie ettt sttt e e e e e eaes 365
18.3. Audit Configurationccuiiiiiiiiiiii e 369
18.4. Generating REPOTITS ..uuiiuiiuiiiiiiiie ettt aae e 374
18.5. Filtering Data for AUitsccviuiiiiiiiiiie e 374
18.6. Purging Obsolete Audit Informationccocoveviiiiiiiiiiiiiiii e 375
Configuring OpenIDM to Work in a Clustercoouviiiiiiiiiiiiiiniiinc e, 378
19.1. Configuring an OpenIDM Instance as Part of a Clusterc...cc..ccoeeeeennts 379
19.2. Managing Scheduled Tasks Across a Clusterccoccvevviiiiniiniiniiniininnennee. 382
19.3. Managing Nodes Over RESTccciiiiiiiiiiiiiiiiiii e 383
Sending Email ... e 385
20.1. Sending Mail OVer REST ..ottt e e e 386
20.2. Sending Mail From @ SCIIPt ..ceveeieiiiiiinine et 387

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

(/’ FORGEROCK

21. Accessing External REST SEIVICESccuiiuiiiiniiiiiiiiii et e e 389
21.1. InvoCation Parametersc.viuviuiiuiiiiiiiieiiieie ettt et eie e e e e e e ens 390
21.2. Support for Non-JSON RESPONSES ...c.cvuiriiiiniiiiitiiieeiieeieeeeeenereeeaaenanenns 391

22. OpenIlDM Project Best PTaCtiCes ...c.ovuiuiiiiiiiiiiiiiiieiieeee et ee e e eaes 394
22.1. Implementation Phasesccoiiiiiiiiiiii e 394

23. TroUDIESNOOTIIIG . ovuiiniiniiiii et et et et e e e e 396
23.1. OpenIDM Stopped in Backgroundc..ccoeuviuviiiiniiiiiiiiiienieee e eneennns 396
23.2. Internal Server Error During Reconciliation or Synchronization 396
23.3. The scr list Command Shows Sync Service As Unsatisfiedcceeuneenee. 397
23.4. JSON Parsing ETTOTccuiiuiiiiiiiiiiiie ettt aae e 397
23.5. System Not Availablecoiiiiiiiiiii 398
23.6. Bad Connector Host Reference in Provisioner Configuration 398
23.7. Missing Name AttriDULE ...oeuivniiiiiii e e 399

24. Advanced Configurationcoevviiiiiiiiniiie e 400
24.1. Advanced Startup Configurationccceveuiiiiiiiiiiiiiiiirre e 400

F O F C I I v L PP PP 402

B. POTES USEA .uetniiniiiiiiiiiei ettt ettt e et e et et et et et et et et et et eaneaneaneans 412

C. Data Models and Objects Referenceccouvviiiiiiiiiiiiiiiiiiiiie e, 413
C.1. Managed ODJECES ...iuuiiniiiiiiiiii et e e e e e e eneens 414
C.2. Configuration ODJECES ...ccuiiuiiiiiiiiiie e 425
C.3. System ODJECES ..uuiuiiiiiiii e 428
C.4. AUAit ODJECLES eevuiiiieiiie ittt ettt et e e e e e 428
(O T 1111 < S PO 428

D. Synchronization Referencecoooviiiiiiiiiiiiiii e 429
D.1. Object-Mapping ODJECES ..cuuiuniiiiiiiiiieiieeee ettt e eie e e eaeennens 429
D2, LNKS ettt ettt et a e e e e 434
|5 RC T O 1 1<) o 1= S 435
D.4. ReCONCILATION 1ouuitniiiiiiiiiieie ettt e e e e e e e e e e 435
D.5. REST AP .ottt ettt e e e et e et eeaa e eeas 436

E. REST API REEIEIICE ...uitniiniiniiiiiieie ettt ettt et e e e e e e e e et e eie et s e enseneannas 438
E.1. URI SCREIIE ...eniiiiiiiii et et e e e 439
E.2. ODbject Identifiersccviuiiiiiiiiiiie e 439
E.3. Content Negotiationcocciiiiiiiiiiiiiii e 440
E.4. Supported OPerationscciiiiniiiiiiiiiie e e e e e e e eaaas 440
E.5. Conditional OPperationscceiuiiiiiiiieiie e e e e e eeaeanas 445
E.6. Supported Methodsccuivniiiiiiii e 445
E.7. REST Endpoints and Sample Commandscceviiiiiieiiiniieniiieeineeieennnes 451
E.8. HTTP Status COUES .ucvuiuniiniiniiiieieieieei ettt et et e et et e et et e et e e eaeaneens 463

F. SCripting REETEIICEcvniiniiiiiii ettt e e e e e e anes 465
F.1. Scripting Configurationceeoviiiiirininr e e e e eans 465
| & ¥ 1}) [N 468
F.3. Function ReferencCecccoiiuiiiiiiiii e 468
F.4. Places t0 TTigger SCIIPTS ..iiuiiuiiiiiiiiiiiiieiie ettt e et eie e e e enes 478
F.5. Variables Available in SCriptsccviiiiiiiiii s 479
F.6. Debugging OpenIDM JavaSCriPtScuiiiiiiiiiiiiiiieiei e aeanes 480
F.7. Validating Scripts Over RESTcoiiiiiiiiiiiiiii e 482

G. Router ServiCe REfEIENCEc.viuiiuiiiiiiiiiiiii et eae 483

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

vi

(/’ FORGEROCK

G.1. CONTIGUIATION ..vuiiniiniiniiiiei e et et e et e et e e e e e e eaneanes 483
LT b <= 0}] PPt 487
H. Embedded Jetty Configurationc.eeuiiiiiiiiiiniii e e 488
H.1. Using OpenIDM Configuration Properties in the Jetty Configuration 488
H.2. Jetty Default Settings ...c.ccoviiiiiiiiiiiiiiie e 490
H.3. Registering Additional Servlet Filtersccccoviiviiiiiiiiiiiiiiiiiiiec e 490
H.4. Disabling and Enabling Secure Protocolsccccoeiiiiiiiiiiiiiiiiniiiiniiniineanee, 492
I. Release Levels & Interface Stabilityoocoviiiiiiiiiiiiii e 494
I.1. ForgeRock Product Release Levelsccoouviiiiiiiiiiiiiiiiiiiiiein e 494
[.2. ForgeRock Product Interface Stabilityccocoviviniiiiiiiiiiniiiinireeeeeeeans 495
OPENIDM GLOSSATTY «evuetniniiiiiieeieiieee ettt e e et eeie et eteat ettt e enetnsenetnsaneanseneaneeneanaanes 497
|5 Te 1= PRSPPI 499

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

vii

(/’ FORGEROCK

Preface

This guide shows you how to integrate OpenIDM as part of a complete identity management solution.

1. Who Should Use this Guide

This guide is written for systems integrators building identity management solutions based on
OpenlIDM services. This guide describes OpenIDM, and shows you how to set up OpenIDM as part of
your identity management solution.

You do not need to be an OpenIDM wizard to learn something from this guide, though a background
in identity management and building identity management solutions can help.

2. Formatting Conventions

Most examples in the documentation are created in GNU/Linux or Mac OS X operating environments.
If distinctions are necessary between operating environments, examples are labeled with the
operating environment name in parentheses. To avoid repetition file system directory names are
often given only in UNIX format as in /path/to/server, even if the text applies to C:\path\to\server as
well.

Absolute path names usually begin with the placeholder /path/to/. This path might translate to /opt/,
C:\Program Files\, or somewhere else on your system.
Command-line, terminal sessions are formatted as follows:

$ echo $JAVA_HOME

/path/to/jdk

Command output is sometimes formatted for narrower, more readable output even though formatting
parameters are not shown in the command.

Program listings are formatted as follows:
class Test {

public static void main(String [] args) {
System.out.println("This is a program listing.");
}

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. viii

(/’ FORGEROCK

3. Accessing Documentation Online

ForgeRock publishes comprehensive documentation online:

» The ForgeRock Knowledge Base offers a large and increasing number of up-to-date, practical
articles that help you deploy and manage ForgeRock software.

While many articles are visible to community members, ForgeRock customers have access to much
more, including advanced information for customers using ForgeRock software in a mission-critical
capacity.

* ForgeRock product documentation, such as this document, aims to be technically accurate and
complete with respect to the software documented. It is visible to everyone and covers all product
features and examples of how to use them.

4. Using the ForgeRock.org Site

The ForgeRock.org site has links to source code for ForgeRock open source software, as well as links
to the ForgeRock forums and technical blogs.

If you are a ForgeRock customer, raise a support ticket instead of using the forums. ForgeRock
support professionals will get in touch to help you.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. ix

https://backstage.forgerock.com/knowledge/kb
https://forgerock.org

Architectural Overview

(/' FORGEROCK

Chapter 1
Architectural Overview

The following figure provides an overview of the OpenIDM architecture, which is covered in more
detail in subsequent sections of this chapter.

Clients User Interface (External Clients) Workflow Design / Modeling Tools

REST / http(s) - ForgeRock REST

Access
RESTful Java API
i BPMN 2.0 ;
M Mappings t Audit L
Core Services Oat:]:gtesd Synchronization g%?e‘ztr: workflow ug:':ﬂaug
Reconciliation definitions
=z
1T}
Script Engine =
crip
Audit 9
irastruct Logging -
nirastructure hedul -
Modules Scheduler Repository Module
Task Scanner Policy Service
BPMNv2 Workflow Engine
(0SGi 4.2)
Modularity
Framework
e (Servlet (Optional))
S _J

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 1

Architectural Overview

(" FORGEROCK' OpenIDM Modular Framework

1.1. OpenIDM Modular Framework

The OpenIDM framework is based on OSGi.

OSGi
OSGi is a module system and service platform for the Java programming language that
implements a complete and dynamic component model. For a good introduction, see the OSGi
site. While OpenIDM services are designed to run in any OSGi container, OpenIDM currently runs
in Apache Felix.

Servlet
The optional Servlet layer provides RESTful HTTP access to the managed objects and services.

While the Servlet layer can be provided by many different engines, OpenIDM embeds Jetty by
default.

1.2. Infrastructure Modules

OpenIDM infrastructure modules provide the underlying features needed for core services.
BPMN 2.0 Workflow Engine

OpenIDM provides an embedded workflow and business process engine based on Activiti and the
Business Process Model and Notation (BPMN) 2.0 standard.

For more information, see Chapter 17, "Integrating Business Processes and Workflows".

Task Scanner
OpenIDM provides a task scanning mechanism that enables you to perform a batch scan for a
specified date in OpenIDM data, on a scheduled interval, and then to execute a task when this
date is reached.
For more information, see Section 13.5, "Scanning Data to Trigger Tasks".

Scheduler

The scheduler provides a cron-like scheduling component implemented using the Quartz library.
Use the scheduler, for example, to enable regular synchronizations and reconciliations.

For details, see Chapter 13, "Scheduling Tasks and Events".
Script Engine

The script engine is a pluggable module that provides the triggers and plugin points for
OpenIDM. OpenIDM currently supports JavaScript and Groovy.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 2

http://www.osgi.org/About/WhyOSGi
http://felix.apache.org
http://www.quartz-scheduler.org

Architectural Overview

(" FORGEROCK Core Services

Policy Service

OpenlDM provides an extensible policy service that enables you to apply specific validation
requirements to various components and properties.

For more information, see Chapter 9, "Using Policies to Validate Data".
Audit Logging

Auditing logs all relevant system activity to the configured log stores. This includes the data from
reconciliation as a basis for reporting, as well as detailed activity logs to capture operations on
the internal (managed) and external (system) objects.

For details, see Chapter 18, "Using Audit Logs".
Repository

The repository provides a common abstraction for a pluggable persistence layer. OpenIDM 3.1
supports use of MySQL to back the repository. Yet, plugin repositories can include NoSQL and
relational databases, LDAP, and even flat files. The repository API operates using a JSON-based
object model with RESTful principles consistent with the other OpenIDM services. The default,
embedded implementation for the repository is the NoSQL database OrientDB, making it easy to
evaluate OpenIDM out of the box before using MySQL in your production environment.

1.3. Core Services

The core services are the heart of the OpenIDM resource oriented unified object model and
architecture.

Object Model

Artifacts handled by OpenIDM are Java object representations of the JavaScript object model as
defined by JSON. The object model supports interoperability and potential integration with many
applications, services and programming languages. As OpenIDM is a Java-based product, these
representations are instances of classes: Map, List, String, Number, Boolean, and null.

OpenIDM can serialize and deserialize these structures to and from JSON as required. OpenIDM
also exposes a set of triggers and functions that system administrators can define, in either
JavaScript or Groovy, which can natively read and modify these JSON-based object model
structures. OpenIDM is designed to support other scripting and programming languages.

Managed Objects
A managed object is an object that represents the identity-related data managed by OpenIDM.
Managed objects are configurable, JSON-based data structures that OpenIDM stores in its

pluggable repository. The default configuration of a managed object is that of a user, but you can
define any kind of managed object, for example, groups or roles.

You can access managed objects over the REST interface with a query similar to the following:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 3

Architectural Overview

(" FORGEROCK Secure Commons REST Commands

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/managed/..."

System Objects

System objects are pluggable representations of objects on external systems. For example, a user
entry that is stored in an external LDAP directory is represented as a system object in OpenIDM.

System objects follow the same RESTful resource-based design principles as managed objects.
They can be accessed over the REST interface with a query similar to the following:
$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--request GET \

"https://localhost:8443/openidm/system/..."

There is a default implementation for the OpenICF framework, that allows any connector object
to be represented as a system object.

Mappings
Mappings define policies between source and target objects and their attributes during

synchronization and reconciliation. Mappings can also define triggers for validation,
customization, filtering, and transformation of source and target objects.

For details, see Chapter 12, "Configuring Synchronization".

Synchronization & Reconciliation

Reconciliation enables on-demand and scheduled resource comparisons between the OpenIDM
managed object repository and source or target systems. Comparisons can result in different
actions, depending on the mappings defined between the systems.

Synchronization enables creating, updating, and deleting resources from a source to a target
system, either on demand or according to a schedule.

For details, see Chapter 12, "Configuring Synchronization".

1.4. Secure Commons REST Commands

As noted in Appendix E, "REST API Reference", Representational State Transfer (REST) is a software
architecture style for exposing resources, using the technologies and protocols of the World Wide
Web.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 4

Architectural Overview

(" FORGEROCK Access Layer

REST interfaces are commonly tested with a curl command. Many of these commands are used in
this document. They work with the standard ports associated with Java EE communications, 8080 and
8443.

To run curl over the secure port, 8443, you must include either the --insecure option, or follow the
instructions shown in Section 16.2.2, "Restrict REST Access to the HTTPS Port". You can use those
instructions with the self-signed certificate generated when OpenIDM starts, or with a *.crt file
provided by a certificate authority.

In many cases in this guide, curl commands to the secure port are depicted with a --cacert self-signed
.crt option. Instructions for creating that self-signed.crt file are shown in Section 16.2.2, "Restrict
REST Access to the HTTPS Port".

1.5. Access Layer

The access layer provides the user interfaces and public APIs for accessing and managing the
OpenIDM repository and its functions.

RESTful Interfaces

OpenIDM provides REST APIs for CRUD operations and invoking synchronization and
reconciliation for both HTTP and Java.

For details, see Appendix E, "REST API Reference".
User Interfaces

User interfaces provide password management, registration, self-service, and workflow services.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 5

’ Starting and Stopping OpeniDM
‘,' FORGEROCK' To Start and Stop OpenIDM

Chapter 2

Starting and Stopping OpenIDM

This chapter covers the scripts provided for starting and stopping OpenIDM, and describes how to
verify the health of a system, that is, that all requirements are met for a successful system startup.

2.1. To Start and Stop OpenIDM

By default you start and stop OpenIDM in interactive mode.

To start OpenIDM interactively, open a terminal or command window, change to the openidm directory,
and run the startup script:

 startup.sh (UNIX)
 startup.bat (Windows)

The startup script starts OpenIDM, and opens an OSGi console with a -> prompt where you can issue
console commands.
To stop OpenIDM interactively in the OSGi console, enter the shutdown command.

-> shutdown

You can also start OpenIDM as a background process on UNIX, Linux, and Mac OS X. Follow these
steps before starting OpenIDM for the first time.

1. If you have already started OpenIDM, then shut down OpenIDM and remove the Felix cache files
under openidm/felix-cache/

-> shutdown

i.ém -rf felix-cache/*

2. Start OpenIDM in the background.
$./startup.sh &

Alternatively, use the nohup command to keep OpenIDM running after you log out.

$ nohup ./startup.sh &
[2] 394
$ appending output to nohup.out

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 6

’ Starting and Stopping OpeniDM
‘,' FORGEROCK' Specifying the OpenIDM Startup Configuration

To stop OpenIDM running as a background process, use the shutdown.sh script.

$./shutdown.sh
./shutdown.sh
Stopping OpenIDM (454)

If you start OpenIDM in the background, and the job stops immediately after startup, see
Section 23.1, "OpenIDM Stopped in Background".

To disable consoleHandler logging, see Chapter 10, "Configuring Server Logs".

2.2. Specifying the OpenIDM Startup Configuration

By default, OpenIDM starts up with the configuration and script files that are located in the openidm/
conf and openidm/script directories, and with the binaries that are in the default install location. You
can launch OpenIDM with a different configuration and set of script files, and even with a different
set of binaries, in order to test a new configuration, manage multiple different OpenIDM projects, or
to run one of the included samples.

The startup.sh script enables you to specify the following elements of a running OpenIDM instance.
* project location (-p)
The project location specifies the configuration and default scripts with which OpenIDM will run.

If you specify the project location, OpenIDM does not try to locate configuration objects in the
default location. All configuration objects and any artifacts that are not in the bundled defaults
(such as custom scripts) must be provided in the project location. This includes everything that is in
the default openidm/conf and openidm/script directories.

The following command starts OpenIDM with the configuration of sample 1:
$./startup.sh -p /path/to/openidm/samples/samplel

If an absolute path is not provided, the path is relative to the system property, user.dir. If no project
location is specified, OpenIDM is launched with the default configuration in /path/to/openidm/conf.

» working location (-w)

The working location specifies the directory to which OpenIDM writes its database cache and audit
logs. The working location includes everything that is in the default db and audit directories.

The following command specifies that OpenIDM writes its database cache and audit data to /users/
admin/openidm/storage:

$./startup.sh -w /Users/admin/openidm/storage

If an absolute path is not provided, the path is relative to the system property, user.dir. If no
working location is specified, OpenIDM writes this data to the openidm/db and openidm/audit
directories.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 7

’ Starting and Stopping OpeniDM
‘,' FORGEROCK' Specifying the OpenIDM Startup Configuration

Note that this property does not affect the location of the OpenIDM system logs, or the Felix cache.
To change the location of the OpenIDM logs, edit the conf/logging.properties file. To change the
location of the Felix cache, edit the conf/config.properties file. Instructions are available in those
respective files.

* startup configuration file (-c)

A customizable startup configuration file (named tlauncher.json) enables you to specify how the OSGi
Framework is started.

Unless you are working with a highly customized deployment, you should not modify the default
framework configuration. This option is therefore described in more detail in Chapter 24,
"Advanced Configuration".

By default, properties files are loaded in the following order, and property values are resolved in the
reverse order:

1. system.properties
2. config.properties
3. boot.properties

If both system and boot properties define the same attribute, the property substitution process
locates the attribute in boot.properties and does not attempt to locate the property in system.properties.

You can use variable substitution in any .json configuration file with the install, working and project
locations described previously. The following properties can be substituted:

install.location
install.url
working.location
working.url
project.location
project.url

Property substitution takes the following syntax:

&{launcher.property}

For example, to specify the location of the OrientDB database, you can set the dburl property in
repo.orientdb.json as follows:

"dbUrl" : "local:&{launcher.working.location}/db/openidm",

The database location is then relative to a working location defined in the startup configuration.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 8

’ Starting and Stopping OpeniDM
‘,' FORGEROCK Obtaining Information About an OpenIDM Instance

Note that property substitution does not work for connector reference properties. So, for example,
the following configuration would not be valid:

""connectorRef" : {

"connectorName" : "&{connectorName}",
"bundleName" : "“org.forgerock.openicf.connectors.ldap-connector",

"bundleVersion" : "&{LDAP.BundleVersion}"

The "connectorName" must be the precise string from the connector configuration. If you need to specify
multiple connector version numbers, use a range of versions, for example:

""connectorRef" : {
"connectorName" : “org.identityconnectors.ldap.LdapConnector",
"bundleName" : "“org.forgerock.openicf.connectors.ldap-connector",

"bundleVersion" : "[1.4.0.0,2.0.0.0)",

2.3. Obtaining Information About an OpenlIDM Instance

OpenIDM includes a customizable information service that provides detailed information about a
running OpenIDM instance. The information can be accessed over the REST interface, under the
context https://localhost:8443/openidm/info.

By default, OpenIDM provides the following information:

* Basic information about the health of the system.

This information can be accessed over REST at https://localhost:8443/openidm/info/ping. For example:

$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/info/ping"

{"state":"ACTIVE_READY", "shortDesc":"OpenIDM ready"}

The information is provided by the script openidm/bin/defaults/script/info/ping.js.
* Information about the current OpenIDM session.

This information can be accessed over REST at https://localhost:8443/openidm/info/login. For
example:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 9

’ Starting and Stopping OpeniDM
‘,' FORGEROCK Obtaining Information About an OpenIDM Instance

$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/info/login"

{
"authenticationId": "openidm-admin",
"class": "org.forgerock.json.resource.SecurityContext",
"parent": {
"class": "org.forgerock.json.resource.RootContext",
"parent": null,
"id": "6f1709ce-75bd-4f9b-blad-d4592be37361"
I
"authorizationId": {
"roles": [
"openidm-admin",
"openidm-authorized"
I
"component": "repo/internal/user",
"id": "openidm-admin"
}
}

The information is provided by the script openidm/bin/defaults/script/info/login.js.

You can extend or override the default information that is provided by creating your own script

file and its corresponding configuration file in openidm/conf/info-name.json. Custom script files can

be located anywhere, although a best practice is to place them in openidm/script/info. A sample
customized script file for extending the default ping service is provided in openidm/samples/infoservice/
script/info/customping.js. The corresponding configuration file is provided in openidm/samples/
infoservice/conf/info-customping.json.

The configuration file has the following syntax:

{

"infocontext" : "ping",

"type" : "text/javascript",

"file" : "script/info/customping.js"
}

The parameters in the configuration file are as follows:

* "infocontext" specifies the relative name of the info endpoint under the info context. The information
can be accessed over REST at this endpoint, for example, setting "infocontext" to "mycontext/

myendpoint" would make the information accessible over REST at https://localhost:8443/openidm/info/
mycontext/myendpoint.

* "type" specifies the type of the information source. Javascript ("type" : "text/javascript") and Groovy
("type" : "groovy") are supported.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 10

’ Starting and Stopping OpeniDM
‘,' FORGEROCK' Verifying the Health of an OpenIDM System

» "file" specifies the path to the Javascript or Groovy file, if you do not provide a "source" parameter.
* "source" specifies the actual Javascript or Groovy script, if you have not provided a "file" parameter.

Additional properties can be passed to the script as depicted in this configuration file (openidm/samples/
infoservice/conf/info-name.json).

Script files in openidm/samples/infoservice/script/info/ have access to the following objects:
* request - the request details, including the method called and any parameters passed.

* healthinfo - the current health status of the system.

* openidm - access to the JSON resource API.

* Any additional properties that are depicted in the configuration file (openidm/samples/infoservice/
conf/info-name.json.)

2.4. Verifying the Health of an OpenIDM System

Due to the highly modular, configurable nature of OpenIDM, it is often difficult to assess whether
a system has started up successfully, or whether the system is ready and stable after dynamic
configuration changes have been made.

OpenIDM provides a configurable health check service that verifies that the required modules and
services for an operational system are up and running. During system startup, OpenIDM checks that
these modules and services are available and reports on whether any requirements for an operational
system have not been met. If dynamic configuration changes are made, OpenIDM rechecks that the
required modules and services are functioning so that system operation is monitored on an ongoing
basis.

The health check service reports on the state of the OpenIDM system and outputs this state to the
console and to the log files. The system can be in one of the following states:

STARTING - OpenIDM is starting up

ACTIVE READY - all of the specified requirements have been met to consider the OpenIDM system ready
ACTIVE NOT READY - one or more of the specified requirements have not been met and the OpenIDM
system is not considered ready

STOPPING - OpenIDM is shutting down

OpenIDM checks all required modules and services. Examples of those services are shown here.

Required Modules (examples)

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 11

(/’ FORGEROCK

Starting and Stopping OpeniDM
Verifying the Health of an OpenIDM System

"org.forgerock.openicf.framework.connector-framework"
"org.forgerock.openicf.framework.connector-framework-internal"
"org.forgerock.openicf.framework.connector-framework-osgi"

"org.forgerock.openidm.audit"
"org.forgerock.openidm.core"
"org.forgerock.openidm.enhanced-config"
"org.forgerock.openidm.external-email"

"org.forgerock.openidm.system"
"org.forgerock.openidm.ui"
"org.forgerock.openidm.util"

"org.forgerock.commons.org.forgerock.json.resource"
"org.forgerock.commons.org.forgerock.json.resource.restlet"

"org.forgerock.commons.org.forgerock.restlet"
"org.forgerock.commons.org.forgerock.util"
"org.forgerock.openidm.security-jetty"
"org.forgerock.openidm. jetty-fragment"
"org.forgerock.openidm.quartz-fragment"
"org.ops4j.pax.web.pax-web-extender-whiteboard"
"org.forgerock.openidm.scheduler"
"org.ops4j.pax.web.pax-web-jetty-bundle"
"org.forgerock.openidm. repo-jdbc"
"org.forgerock.openidm.repo-orientdb"
"org.forgerock.openidm.config"
"org.forgerock.openidm.crypto"

Required Services (examples)

"org.forgerock.openidm.config"
"org.forgerock.openidm.provisioner"

"org.forgerock.openidm.provisioner.openicf.connectorinfoprovider"

"org.forgerock.openidm.external.rest"
"org.forgerock.openidm.audit"
"org.forgerock.openidm.policy"
"org.forgerock.openidm.managed"
"org.forgerock.openidm.script"
"org.forgerock.openidm.crypto"
"org.forgerock.openidm.recon"
"org.forgerock.openidm.info"
"org.forgerock.openidm. router"
"org.forgerock.openidm.scheduler"
"org.forgerock.openidm.scope"
"org.forgerock.openidm.taskscanner"

You can replace this list, or add to it, by adding the following lines to the openidm/conf/boot/

boot.properties file:

"openidm.healthservice.regbundles" - overrides the default required bundles. Bundles are specified as a

list of symbolic names, separated by commas.

"openidm.healthservice.reqservices" - overrides the default required services. Services are specified as a

list of symolic names, separated by commas.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

12

’ Starting and Stopping OpeniDM
‘,' FORGEROCK’ Displaying Information About Installed Modules

"openidm.healthservice.additionalregbundles" - specifies required bundles (in addition to the default list).
Bundles are specified as a list of symbolic names, separated by commas.
"openidm.healthservice.additionalregservices" - specifies required services (in addition to the default
list). Services are specified as a list of symbolic names, separated by commas.

By default, OpenIDM gives the system ten seconds to start up all the required bundles and services,
before the system readiness is assessed. Note that this is not the total start time, but the time
required to complete the service startup after the framework has started. You can change this
default by setting the value of the servicestartmax property (in miliseconds) in the openidm/conf/boot/
boot.properties file. This example sets the startup time to five seconds.

openidm.healthservice.servicestartmax=5000

The health check service works in tandem with the scriptable information service. For more
information see Section 2.3, "Obtaining Information About an OpenIDM Instance".

Do not use the health check service to monitor the status of external resources, such as LDAP
servers, or external databases. Rather, monitor these resources over the REST interface, as described
in Section 11.7, "Checking the Status of External Systems Over REST".

2.5. Displaying Information About Installed Modules

On a running OpenIDM instance, you can list the installed modules and their states by typing the
following command in the Felix administration console. (The output will vary by configuration.)

-> scr list

Id State Name

12] [active org.forgerock.openidm.endpoint
13] [active org.forgerock.openidm.endpoint
14] [active org.forgerock.openidm.endpoint
15] [active org.forgerock.openidm.endpoint
16] [active org.forgerock.openidm.endpoint

[—

34] [active
20] [active
6] [active
33] [active
19] [unsatisfied
11] [active
25] [active

org.forgerock.openidm.taskscanner
org.forgerock.openidm.external.rest
org.forgerock.openidm. router
org.forgerock.openidm.scheduler
org.forgerock.openidm.external.email
org.forgerock.openidm.sync
org.forgerock.openidm.policy

[active org.forgerock.openidm.script
10] [active org.forgerock.openidm.recon
4] [active org.forgerock.openidm.http.contextregistrator
1] [active org.forgerock.openidm.config

18] [active
30] [unsatisfied
24] [active
21] [active

org.forgerock.openidm.endpointservice
org.forgerock.openidm.servletfilter
org.forgerock.openidm.infoservice
org.forgerock.openidm.authentication

—
ot e et e e e e e e e e e e e

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 13

’ Starting and Stopping OpeniDM
‘,' FORGEROCK’ Displaying Information About Installed Modules

To display additional information about a particular module or service, run the following command,
substituting the 1d of that module from the preceding list.

-> scr info Id

The following example displays additional information about the router service:
-> scr info 6

ID: 6
Name: org.forgerock.openidm.router
Bundle: org.forgerock.openidm.core (41)
State: active
Default State: enabled
Activation: immediate
Configuration Policy: optional
Activate Method: activate (declared in the descriptor)
Deactivate Method: deactivate (declared in the descriptor)
Modified Method: modified
Services: org.forgerock.json.resource.JsonResource
Service Type: service
Reference: ref_JsonResourceRouterService ScopeFactory
Satisfied: satisfied
Service Name: org.forgerock.openidm.scope.ScopeFactory
Multiple: single
Optional: mandatory
Policy: dynamic
Properties:
component.id = 6
component.name = org.forgerock.openidm.router
felix.fileinstall.filename = file:/openidm/samples/samplel/conf/router.json
jsonconfig = {

"filters" : [
{
"onRequest" : {
"type" : "text/javascript",
"file" : "bin/defaults/script/router-authz.js"
}
I
{
"onRequest" : {
"type" : "text/javascript",
"file" : "bin/defaults/script/policyFilter.js"
H
"methods" : [
"create",
"update"
]
}
1
}
openidm.restlet.path = /
service.description = OpenIDM internal JSON resource router
service.pid = org.forgerock.openidm. router
service.vendor = ForgeRock AS
->

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 14

’ Starting and Stopping OpeniDM
‘,' FORGEROCK Starting OpenIDM in Debug Mode

2.6. Starting OpenIDM in Debug Mode

To debug custom libraries, you can start OpenIDM with the option to use the Java Platform Debugger
Architecture (JPDA).

* Start OpenIDM with the jpda option:

$ cd /path/to/openidm
$./startup.sh jpda

Executing ./startup.sh...

Using OPENIDM HOME: /path/to/openidm

Using OPENIDM OPTS: -Xmx1024m -Xms1024m -Denvironment=PROD -Djava.compiler=NONE
-Xnoagent -Xdebug -Xrunjdwp:transport=dt socket,address=5005,server=y,suspend=n

Using LOGGING CONFIG:
-Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties

Listening for transport dt socket at address: 5005

Using boot properties at /path/to/openidm/conf/boot/boot

.properties

-> OpenIDM version "3.1.0-6" (revision: xxxx)

OpenIDM ready

The relevant JPDA options are outlined in the startup script (startup.sh).

* In your IDE, attach a Java debugger to the JVM via socket, on port 5005.

Caution

This interface is internal and subject to change. If you depend on this interface, contact ForgeRock support.

2.7. Running OpenIDM as a Service on Linux Systems

OpenIDM provides a script that generates an initialization script to run OpenIDM as a service on
Linux systems. You can start the script as the root user, or configure it to start during the boot
process.

When OpenIDM runs as a service, logs are written to the directory in which OpenIDM was installed.
To run OpenIDM as a service, take the following steps:

1. If you have not already done so, install and set up OpenIDM, as described in Chapter 1,
"Installing OpenIDM Services" in the Installation Guide.

2. Run the RC script.

$ cd /path/to/openidm/bin
$./create-openidm-rc.sh

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 15

’ Starting and Stopping OpeniDM
‘,' FORGEROCK' Running OpenIDM as a Service on Linux Systems

3. As a user with administrative privileges, copy the openidm script to the /etc/init.d directory.
$ sudo cp openidm /etc/init.d/

4. 1If you run Linux with SELinux enabled, change the file context of the newly copied script with the
following command:

$ sudo restorecon /etc/init.d/openidm

You can verify the change to SELinux contexts with the 1s -z /etc/init.d command. For
consistency, change the user context to match other scripts in the same directory with the sudo
chcon -u system u /etc/init.d/openidm command.

5. ¢ On Red Hat-based systems, run the following commands to add OpenIDM to the list of RC
services, in appropriate runlevels:

$ sudo chkconfig --add openidm

$ sudo chkconfig openidm on

* On Debian/Ubuntu systems, run the following command. Note the output, as Debian/Ubuntu
adds start and Kill scripts to appropriate runlevels.
$ sudo update-rc.d openidm defaults
Adding system startup for /etc/init.d/openidm ...
/etc/rc0.d/K20openidm -> ../init.d/openidm
/etc/rcl.d/K20openidm -> ../init.d/openidm
/etc/rc6.d/K20openidm -> ../init.d/openidm
/etc/rc2.d/S200penidm -> ../init.d/openidm
/etc/rc3.d/S200penidm -> ../init.d/openidm
/etc/rc4.d/S200penidm -> ../init.d/openidm
/etc/rc5.d/S200penidm -> ../init.d/openidm

When you run the command, you may get the following warning message: update-rc.d:
warning: /etc/init.d/openidm missing LSB information. You can safely ignore that message.

6. As an administrative user, start the OpenIDM service.
$ sudo /etc/init.d/openidm start

Alternatively, reboot the system to start the OpenIDM service automatically.

7. (Optional) The following commands stops and restarts the service:
$ sudo /etc/init.d/openidm stop

$ sudo /etc/init.d/openidm restart

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 16

OpenlDM Command-Line Interface

(/’ FORGEROCK

Chapter 3

OpenlDM Command-Line Interface

OpenIDM includes a basic command-line interface that provides a number of utilities for managing
the OpenIDM instance.

All of the utilities are subcommands of the cli.sh (UNIX) or cli.bat (Windows) scripts. To use the
utilities, you can either run them as subcommands, or launch the cli script first, and then run the
utility. For example, to run the encrypt utility on a UNIX system:

$ cd /path/to/openidm
$./cli.sh

Using boot properties at /path/to/openidm/conf/boot/boot.properties
openidm# encrypt

or

$ cd /path/to/openidm
$./cli.sh encrypt ...

By default, the command-line utilities run with the properties defined in /path/to/openidm/conf/boot/
boot.properties.
If you run the cli.sh command by itself, it opens an OpenIDM-specific shell prompt:

openidm#

The startup and shutdown scripts are not discussed in this chapter. For information about these
scripts, see Chapter 2, "Starting and Stopping OpenIDM".

The following sections describe the subcommands and their use. Examples assume that you are
running the commands on a UNIX system. For Windows systems, use cli.bat instead of cli.sh.

For a list of subcommands available from the openidm# prompt, run the cli.sh help command. The help
and exit options shown below are self-explanatory. The other subcommands are explained in the
subsections that follow.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 17

OpenlDM Command-Line Interface

(" FORGEROCK' configexport

local:keytool Export or import a SecretKeyEntry.
The Java Keytool does not allow for exporting or importing SecretKeyEntries.

local:encrypt Encrypt the input string.

local:validate Validates all json configuration files in the configuration
(default: /conf) folder.

basic:help Displays available commands.

basic:exit Exit from the console.

remote:configureconnector Generate connector configuration.

remote:configexport Exports all configurations.

remote:configimport Imports the configuration set from local file/directory.

The configexport, configimport, and configconnector subcommands support up to four options:
-u or --user USER[:PASSWORD]

Allows you to specify the server user and password. Specifying a username is mandatory. If you
do not specify a username, the following error is output to the console: Remote operation failed:

Unauthorized. If you do not specify a password, you are prompted for one. This option is used by
all three subcommands.

--url URL

The URL of the OpenIDM REST service. The default URL is http://localhost:8080/openidm/. This can
be used to import configuration files from a remote running instance of OpenIDM. This option is
used by all three subcommands. commands.

-P or --port PORT

The port number associated with the OpenIDM REST service. If specified, this option overrides
any port number specified with the --url option. The default port is 8080. This option is used by all
three subcommands.

-r or --replaceall or --replaceAll

Replaces the entire list of configuration files with the files in the specified backup directory. This
option is used with only the configimport command.

3.1. configexport

The configexport subcommand exports all configuration objects to a specified location, enabling you
to reuse a system configuration in another environment. For example, you can test a configuration
in a development environment, then export it and import it into a production environment. This
subcommand also enables you to inspect the active configuration of an OpenIDM instance.

OpenIDM must be running when you execute this command.

Usage is as follows:

$./cli.sh configexport --user username:passsword export-location

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 18

OpenlDM Command-Line Interface

(" FORGEROCK' configexport

For example:
$./cli.sh configexport --user openidm-admin:openidm-admin /tmp/conf

On Windows systems, the export-location must be provided in quotation marks, for example:

C:\openidm\cli.bat configexport --user openidm-admin:openidm-admin "C:\temp\openidm"

Configuration objects are exported, as .json files, to the specified directory. The command creates
the directory if needed. Configuration files that are present in this directory are renamed as backup
files, with a timestamp, for example, audit.json.2014-02-19T12-00-28.bkp, and are not overwritten. The
following configuration objects are exported:

* The internal repository configuration (repo.orientdb.json O repo.jdbc.json)

* Default and custom configuration directories (script.json)

* The log configuration (audit.json)

* The authentication configuration (authentication.json)

* The cluster configuration (cluster.json)

* The configuration of a connected SMTP email server (external.email.json)

* Custom configuration information (info-name.json)

* The managed object configuration (managed.json)

* The connector configuration (provisioner.openicf-*.json)

* The router service configuration (router.json)

» The scheduler service configuration (scheduler.json)

* Any configured schedules (schedule-*.json)

* The synchronization mapping configuration (sync.json)

» If workflows are defined, the configuration of the workflow engine (workflow.json) and the workflow
access configuration (process-access.json)

* Any configuration files related to the user interface (ui-*.json)
* The configuration of any custom endpoints (endpoint-*.json)
* The configuration of servlet filters (servietfilter-*.json)

» The policy configuration (policy.json)

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 19

OpenlDM Command-Line Interface

(" FORGEROCK' configimport

3.2. configimport

The configimport subcommand imports configuration objects from the specified directory,
enabling you to reuse a system configuration from another environment. For example, you can
test a configuration in a development environment, then export it and import it into a production
environment.

The command updates the existing configuration from the import-location over the OpenIDM REST
interface. By default, if configuration objects are present in the import-location and not in the existing
configuration, these objects are added. If configuration objects are present in the existing location
but not in the import-location, these objects are left untouched in the existing configuration.

If you include the --replaceAll parameter, the command wipes out the existing configuration and
replaces it with the configuration in the import-location. Objects in the existing configuration that are
not present in the import-location are deleted.

Usage is as follows:

$./cli.sh configimport --user username:password [--replaceAll] import-location

For example:

$./cli.sh configimport --user openidm-admin:openidm-admin --replaceAll /tmp/conf

On Windows systems, the import-location must be provided in quotation marks, for example:

C:\openidm\cli.bat configimport --user openidm-admin:openidm-admin --replaceAll "C:\temp\openidm"

Configuration objects are imported, as .json files, from the specified directory to the conf directory.
The configuration objects that are imported are outlined in the corresponding export command,
described in the previous section.

3.3. configureconnector

The configureconnector subcommand generates a configuration for an OpenICF connector.

Usage is as follows:

$./cli.sh configureconnector --user username:password connector-name

Select the type of connector that you want to configure. The following example configures a new XML
connector.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 20

OpenlDM Command-Line Interface

) ForcerOCK encrypt

$./cli.sh configureconnector --user openidm-admin:openidm-admin myXmlConnector
Starting shell in /path/to/openidm

Using boot properties at /path/to/openidm/conf/boot/boot.properties

CSV File Connector version 1.1.0.2

Database Table Connector version 1.1.0.1

Scripted Poolable Groovy Connector version 1.4.1.0

Scripted Groovy Connector version 1.4.1.0

Scripted CREST Connector version 1.4.1.0

Scripted SQL Connector version 1.4.1.0

Scripted REST Connector version 1.4.1.0

LDAP Connector version 1.4.0.1

XML Connector version 1.1.0.2

. Exit

Select [0..9]: 8

Edit the configuration file and run the command again. The configuration was
saved to /openidm/temp/provisioner.openicf-myXmlConnector.json

COoONOUTEA WNF O

The basic configuration is saved in a file named /openidm/temp/provisioner.openicf-connector-name.json.
Edit the configurationProperties parameter in this file to complete the connector configuration. For an
XML connector, you can use the schema definitions in sample 1 for an example configuration.

“configurationProperties" : {
"xmlFilePath" : "samples/samplel/data/resource-schema-1.xsd",
"createFileIfNotExists" : false,
"xsdFilePath" : "samples/samplel/data/resource-schema-extension.xsd",
"xsdIcfFilePath" : "“samples/samplel/data/xmlConnectorData.xml"

}

For more information about the connector configuration properties, see Section 11.3, "Configuring
Connectors".

When you have modified the file, run the configureconnector command again so that OpenIDM can
pick up the new connector configuration.

$./cli.sh configureconnector --user openidm-admin:openidm-admin myXmlConnector

Executing ./cli.sh...

Starting shell in /path/to/openidm

Using boot properties at /path/to/openidm/conf/boot/boot.properties
Configuration was found and read from: /path/to/openidm/temp/provisioner.openicf-myXmlConnector.json

You can now copy the new provisioner.openicf-myXmlConnector.json file to the conf/ subdirectory.

You can also configure connectors over the REST interface. For more information, see Section 11.6,
"Creating Default Connector Configurations".

3.4. encrypt

The encrypt subcommand encrypts an input string, or JSON object, provided at the command line.
This subcommand can be used to encrypt passwords, or other sensitive data, to be stored in the

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 21

OpenlDM Command-Line Interface

) ForcerOCK encrypt

OpenIDM repository. The encrypted value is output to standard output and provides details of the
cryptography key that is used to encrypt the data.

Usage is as follows:

$./cli.sh encrypt [-j] string

The -j option specifies that the string to be encrypted is a JSON object. If you do not enter the string
as part of the command, the command prompts for the string to be encrypted. If you enter the string
as part of the command, any special characters, for example quotation marks, must be escaped.

The following example encrypts a normal string value:

$./cli.sh encrypt mypassword

Executing ./cli.sh

Starting shell in /path/to/openidm

Using boot properties at /path/to/openidm/conf/boot/boot.properties

Activating cryptography service of type: JCEKS provider: location: security/keystore.jceks
Available cryptography key: openidm-sym-default

Available cryptography key: openidm-localhost

CryptoService is initialized with 2 keys

{
"$crypto" : {
"value" : {
"iv" : "M2913T5ZAD1C2ip2imeOyg==",
"data" : "DZAAAM1nKjQMlgpLwh3BgA==",
"cipher" : "AES/CBC/PKCS5Padding",
"key" : "openidm-sym-default"
1,
"type" : "x-simple-encryption"
}

The following example encrypts a JSON object. The input string must be a valid JSON object.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 22

OpenlDM Command-Line Interface

) ForcerOCK encrypt

$./cli.sh encrypt -j {\"password\":\"myPasswOrd\"}

Starting shell in /path/to/openidm

Using boot properties at /path/to/openidm/conf/boot/boot.properties

Activating cryptography service of type: JCEKS provider: location: security/keystore.jceks
Available cryptography key: openidm-sym-default

Available cryptography key: openidm-localhost

CryptoService is initialized with 2 keys

"$crypto" : {

"value" : {
"iv" : "M2913T5ZAD1C2ip2imeOyg==",
"data" : "DZAAAM1nKjQMlgpLwh3BgA==",
"cipher" : "AES/CBC/PKCS5Padding",
"key" : "openidm-sym-default"

17

"type" : "x-simple-encryption"

The following example prompts for a JSON object to be encrypted. In this case, you need not escape
the special characters.

$./cli.sh encrypt -j

Using boot properties at /path/to/openidm/conf/boot/boot.properties
Enter the Json value

> Press ctrl-D to finish input
Start data input:
{"password":"myPasswOrd"}

~D

Activating cryptography service of type: JCEKS provider: location: security/keystore.jceks
Available cryptography key: openidm-sym-default

Available cryptography key: openidm-localhost

CryptoService is initialized with 2 keys

"$crypto" : {
"value" : {
"iv" : "6eORK8/4F1EK5FzSZHwNYQ==",
"data" : "gwHSADTmzmUXeD6Gtfn6JFC8cAUiksiAGfvzTsdnAgQ=",
"cipher" : "AES/CBC/PKCS5Padding",
"key" : "openidm-sym-default"
L
"type" : "x-simple-encryption"
}

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 23

OpenlDM Command-Line Interface

(" FORGEROCK' keytool

3.5. keytool

The keytool subcommand exports or imports secret key values.

The Java keytool command enables you to export and import public keys and certificates, but not
secret or symmetric keys. The OpenIDM keytool subcommand provides this functionality.

Usage is as follows:

./cli.sh keytool [--export, --import] alias

For example, to export the default OpenIDM symmetric key, run the following command:

$./cli.sh keytool --export openidm-sym-default

Using boot properties at /openidm/conf/boot/boot.properties
Use KeyStore from: /openidm/security/keystore.jceks

Please enter the password:

[OK] Secret key entry with algorithm AES
AES:606d80ae316be58e94439f91ad8celcO

The default keystore password is changeit. You should change this password after installation.
To import a new secret key named my-new-key, run the following command:

$./cli.sh keytool --import my-new-key

Using boot properties at /openidm/conf/boot/boot.properties
Use KeyStore from: /openidm/security/keystore.jceks

Please enter the password:

Enter the key:

AES:606d80ae316be58e94439f91ad8celcO

If a secret key of that name already exists, OpenIDM returns the following error:

"KeyStore contains a key with this alias"

3.6. validate

The validate subcommand validates all .json configuration files in the openidm/conf/ directory.

Usage is as follows:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 24

(/) FORGEROCK

OpenlDM Command-Line Interface

validate

$./cli.sh validate
Executing ./cli.sh
Starting shell in /path/to/openidm
Using boot properties at /path/to/openidm/conf/boot/boot
.properties
iVéiidating] Load JSON configuration files from:
[Validating] /path/to/openidm/conf
[Validating] audit.jsoncoviiiiiiininnnennnnn. SUCCESS
[Validating] authentication.json SUCCESS
[Validating] SynC.JSONiviuiiiininiinini i enennanns SUCCESS
[Validating] ui-configuration.jsoncvvuun. SUCCESS
[Validating] ui-countries.jsoncciiiiiiinnnnnn. SUCCESS
[Validating] ui-secquestions.jsonc.uvvuvuunnnn SUCCESS
[Validating] workflow.jsonc..coiiiiiiiinnnnnnnn. SUCCESS

Integrator's Guide OpenIiDM 3.1 (2018-10-12T708:33:30.546)

Copyright © 2011-2017 ForgeRock AS. All rights reserved. 25

OpenIDM Web-based User Interfaces

(" FORGEROCK Configuring OpenIDM from the Admin Ul

Chapter 4

OpenIDM Web-based User Interfaces

OpenlIDM provides a customizable, browser-based user interface, known as the User View UI. To
take full advantage of this interface, you can configure OpenIDM managed objects (see Section C.1,
"Managed Objects") under managed/user. Most of the OpenIDM samples demonstrate how you can
deploy OpenIDM with managed users.

The User View Ul interface enables administrative users to create, modify, and delete user accounts.
It provides role-based access to tasks based on BPMN2 workflows, and allows users to manage
certain aspects of their own accounts, including configurable self-service registration. When
OpenlIDM starts, you can access the User View Ul at https://localhost:8443/openidmui.

OpenIDM also provides a configurable administrative user interface (Admin UI) that allows you
to configure connectors, customize managed objects, set up attribute mappings, and more. When
OpenlIDM starts, you can access the Admin UI at https://localhost:8443/admin.

The first time you log into either UI as the openidm-admin administrative user, the default password is
openidm-admin. As that default password is not secure, we recommend that you change that password in
production. However, you can bypass that window, by clicking the X in the upper right corner.

Change Your Password X

The current password is a default password. Please change this password to a more secure value.

Please enter 2 new password in the fields below.

Password [+ ion matches p:
Cannot be blank
Confirm Password At least 1 capital letters
At least 1 numbers
At least 8 characters

4.1. Configuring OpenIDM from the Admin Ul

You can set up a basic configuration for OpenIDM with the Administrative User Interface (Admin UI).

Through the Admin UlI, you can connect to resources, configure attribute mapping, and set up
managed objects, reconciled on a defined schedule.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 26

I OpenlDM Web-based User Interfaces
‘,' FORGEROCK' Configuring OpenIDM from the Admin Ul

You can customize the configuration of connectors, managed objects, mapping between resources,
and more. You can add and edit properties to be synchronized, configure correlation queries, and
enable LiveSync.

To access the initial Admin Ul screen, navigate to https://localhost:8443/admin.

\"\ Fo R G E Roc K openidm-admin | Log out | Settings | User \View
Resources

i
Connectors help @

Connectors are external systems, databases, directory services, and so on to be managed by OpenlDM.

@ Active ® ¢

[+

Idap New Connector

Managed Objects help @
Managed Objects represent identity data directly controlled by OpenlDM.

® s ® s

+)

role user New Managed Object

Copyright (c) 2010-14 ForgaRock, all rights resarved.

The information that appears in the initial Admin UI screen depends on how you started OpenIDM.
For example, if you start OpenIDM with one of the OpenIDM samples (see Chapter 3, "More
OpenIDM Samples" in the Installation Guide), your first Resources screen will display connectors and
managed objects as configured in the selected sample.

As shown in the initial screen, the Admin UI supports connecting to external resources (see
Chapter 11, "Connecting to External Resources") and managing users, groups, and roles (see
Chapter 8, "Managing Users, Groups, and Roles").

Integrator's Guide OpenIDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 27

OpenIDM Web-based User Interfaces

(" FORGEROCK' Administering Connectors from the Ul

Scroll up and down the Admin UI screen. Review configured connectors and managed objects. The
screenshots in this section assume that you have started OpenIDM with the configuration for Sample
2b (Section 3.4, "Sample 2b - LDAP Two Way" in the Installation Guide).

Note

While a connector is not a resource, it provides a connection to remote resources such as LDAP data stores,
XML files, and other databases.

Connectors are used to communicate with remote resources, such as a database, an identity store, or
another organized data store.

Once you connect one or more data stores and managed objects, you can create a mapping between

two resources. You can then configure property mapping between those resources, for later
synchronization.

4.1.1. Administering Connectors from the Ul
You can include several different connectors in an OpenIDM configuration. Select the option to create
a new connector. Try some of the different connector types in the screen that appears. Observe as the

Admin UI changes the configuration options to match the requirements of the connector type.

Remember, every connector serves as a conduit to an external data store.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 28

I OpenlDM Web-based User Interfaces
‘,' FORGEROCK' Administering Managed Objects from the Ul
\,‘\ Fo R G E R OC K openidm-admin | Logout | Settings | User View

£ Resources 9 Mappings

Add Connector

General Details B

Connector Name
| X

help @

Required
Enabled

True j

Connector Type
€SV Gonnector - 1.1.0.2 LI
CSV Connector

V Connector - 1.1.0.2
Database Connector

Database Connector - 1.1.0.1
Google Connector

Google Connector - 1.4.0.0
LDAP Connector

LDAP Connector - 1.4.0.0
Salesforce Connector x

Salesforce Connector - 2.0.29.1 L
XML Connector Required

XML Connector - 1.1.0.2
templates.connector.MsPowerShell_MsPowerShellConnector

templates.connector.MsPowerShell_MsPowerShellConnector - 1.4.1.0 :
I X

Required
Name Attribute

| | x

Required

Password Attribute
| x

Required

If you are not sure what to enter in a specific Add Connector text box, review the list of connectors
supported with OpenIDM (Section 11.5, "Connectors Supported With OpenIDM 3.1"). You should be
able to find guidance and or examples on how each supported connector is configured.

For additional guidance, review sample connector files in the samples/provisioners/ subdirectory.

Once you fill in all required text boxes, the Admin UI allows you to validate the connector
configuration.

4.1.2. Administering Managed Objects from the Ul

You can set up Managed Objects in a similar way to how you set up connectors. Typically, OpenIDM
uses managed objects as described in Chapter 8, "Managing Users, Groups, and Roles".

Integrator's Guide OpenIDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 29

I OpenlDM Web-based User Interfaces
‘,' FORGEROCK' Configuring a Resource Mapping from the Ul

To access the details of a Managed Object, go to the Resources screen. Select the Edit icon
associated with the Managed Object that you want to change, such as user, group, or role.

\,‘\ FO RG E ROCK openidm-admin | Logout | Seftings | User View

¥ Resources 9 Mappings

Edit Managed Object

help @

General Details B

Managed Object Name
user

Managed Scripts =]
Add script for managed events.

postCreate 4 Add Script +
© onDelete

Type: text/javascript
Source: uilonDelete-user-cleanup.js &

© onCreate

Type: text/javascript
Source: uilonCreate-user-set-default-fields.js 4

Managed Properties =]

If you have specific managed object properties add them below. Not all properties need to be added, only those with special functionality.

Managed Properties
} @ @ 5]
@ | securityAnswer Encrypted Private Virtual

Add script for property events.

onValidate Add Script +

4.1.3. Configuring a Resource Mapping from the Ul

You may have multiple connectors and managed objects. You can configure a mapping between any
two of these resources. Connectors represent an external data store, as specified in Section 11.3,
"Configuring Connectors". In contrast, managed objects represents a data store internal to OpenIDM.

Resource mapping requires a source and a target. Generally, each resource includes properties such
as username, address, surname, and title. Resource mapping can go beyond user information to other
types of data.

Once you create a mapping, you can identify properties that you wish to control in the target. With
this part of the Admin UI, you can configure how OpenIDM uses matching properties in the source.

Integrator's Guide OpenIDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 30

I OpenlDM Web-based User Interfaces
‘,' FORGEROCK' Configuring Reconciliation from the Ul

The following screenshot illustrates a property mapping between two resources. Every resource
includes identifiers for each attribute. For example, different resources may use one of the following
identifiers for usernames: un, uid, user, sAMAccountName, and account. For more information on
property mappings, see Section 12.3.2, "Synchronization Mappings File".

\,‘\ Fo RG E ROCK openidm-admin | Log out | Seftings | User View

4 Back to Mappings

systemLdapAccounts_managedUser

Source Target
system/ldap/account > managed/user
Idap managed
» Completed: Last Reconciled November 24, 2014 11:57 @ Reconcile Now IR}

i=Properties 3C Correlation @ Reconciliation Scheduling

Add Property Number of representative properties:| 4 Sample Source:
Source Target Default Transform Script Sample
@ [en displayName
@ |description description
@ |givenName givenName
Q@ |mail mail
@ |telephoneNumber telephoneMumber
@ |=n sn
@ |uid userName

Copyright {c) 2010-14 ForgeRock, all rights reserved.

The bold black line is used solely by the UI to determine what data is shown from these data stores.
It does not affect reconciliation. In the Admin UlI, you can change the location of the line, or move a
property above or below the line.

4.1.4. Configuring Reconciliation from the Ul

Reconciliation changes data on a target system to match the corresponding data on a source system.
You can customize how OpenIDM performs reconciliation in several ways.

Integrator's Guide OpenIDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 31

OpenIDM Web-based User Interfaces

(" FORGEROCK Configuring Reconciliation from the Ul

4.1.4.1. Correlation Options

OpenIDM can match existing records on the target system to records on the source system. This
matching is known as correlation.

Before activating reconciliation, you may choose to configure various correlation options, including
reconciliation query filters, individual record validation, association rules, and data association
management.

For more information on correlation, see Section 12.17, "Correlation Queries".

You can add reconciliation query filters, with queries on the source and target objects. For more
information, see Section 7.3.4, "Constructing Queries". You can set up queries on properties such as
userName and parameters such as Smith.

i= Properties 23 Correlation @ Reconciliation f Scheduling

Source Query

No Filter g

Target Query

No Filter :

=

You can add individual record validation scripts, based on the validSource and validTarget script
objects. For more information on these objects, see Section D.1, "Object-Mapping Objects".
With these scripts, you can set up criteria for OpenIDM to validate source and target objects for
reconciliation.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 32

OpenlDM Web-based User Interfaces
Configuring Reconciliation from the Ul

(/' FORGEROCK

i=Properties X Correlation @ Reconciliation) Scheduling

Individual Record Validation 8

Seript Evenis
| validTarget =

You can set up correlation queries (Section 12.17, "Correlation Queries") with an expression builder
or with a JavaScript or Groovy-based script.

i=Properties 3G Correlation @ Reconciliation) Scheduling

Reconcilation Query Filters

Individual Record Validation

Association Rules

II

& No Correlation Query
O Expression Builder
® Script

Type
' Javascript

ar

@® File Path

© Inline Script

#Add passed variables

Add Variable

A Warning! You must specify a seript or an expression. m

When a reconciliation operation finds a matching target entry, the process creates a link between
the source and the target entries. This is also known as a Data Association. Data associations serve

Integrator's Guide OpenIDM 3.1 (2018-10-12T08:33:30.546)

Copyright © 2011-2017 ForgeRock AS. All rights reserved. 33

I OpenlDM Web-based User Interfaces
‘,' FORGEROCK' Configuring Reconciliation from the Ul

two purposes - they speed up future reconciliation operations, and they serve as a record of the
relationship between a source and a target entry.

You can set up such data associations for individual entries, as well as different situations shown in
Section 12.13.1, "Synchronization Situations".

i= Properties 3¢ Correlation @ Reconciliation Scheduling

Reconcilation Query Filters

Individual Record Validation [0

|

Data Association Management (=&

View: [ALL SITUATIONS 3 e ——

Enter Search Terms Enter Search Terms
Babara Jensen G, |Babara Jensen
Created for OpenlDM Created for OpenlDM
Barbara Barbara
bjensen@example.com bjensen@example.com
John Doe G, |John Doe
Created for OpenlDM Created for OpenlOM
John John
jdoe@example.com jdoe@example.com

4.1.4.2. Reconciliation Options

Before activating reconciliation, you may choose to configure situational policies, situational event
scripts, and reconciliation scripts.

You may want to configure situational policies. By default, the policies associated with mappings
are set to "read-only". As such, OpenIDM does not change anything on the target system, unless you
make changes to situational policies.

With situational policies, you can define actions relevant for situations shown in the screenshot
below. For a full list of available policies, see Section 12.13, "Synchronization Situations and Actions".

To access the following screen, select the Mapping of your choice and select edit. In the sub-tabs that
appear, select Reconciliation.

Integrator's Guide OpenIDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 34

I OpenlDM Web-based User Interfaces
‘,' FORGEROCK' Configuring Reconciliation from the Ul

\,‘\ Fo RG E ROCK openidm-admin | Log out | Settings | User View

©f Resources ¥ Mappings

Back to Mappings

v daph nts_| dUser
Source Target
system/ldap/account > managed/user
Idap managed

» Completed: Last Reconciled Novemnber 24, 2014 11:57 help @

i=Properties X Correlation @ Reconciliation [Scheduling

Current Policy \ Custom s | User defined situational policies. help @
® Ambiguous | Exception 4 i) @ Source Missing | Delete 4 N
@ Missing | Create ¥ K] @ Found Already Linked | Exception % N
® Unqualified | lgnore # i } @® Unassigned | Ignore ¥ N |
@ Link Only | Exception % s O @ Target Ignored | lgnore % s O
@ Source Ignored | lgnore % Ol i] @ Al Gone | lgnore ¥ i]
® Confirmed | Update 4 $ O @® Found | Update 4 il 0
® Absent | Create % K]
* indicates an action that is the default for a situation

#r indicates a valid action for a given situation

You can configure situational event scripts. Each of the script events shown onCreate, onDelete,
onLink, onUnlink, and onUpdate, can help you with constructing attributes. For more information, see
Section 12.3.5, "Constructing and Manipulating Attributes".

= Properties S Correlation @ Reconciliation 4 scheduling

You can configure scripts that are triggered on reconciliation, as part of the dataflow configuration
(see Section 12.18, "Advanced Data Flow Configuration".

Integrator's Guide OpenIDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 35

I OpenlDM Web-based User Interfaces
‘,' FORGEROCK' Configuring Reconciliation from the Ul

iEProperties 3G Correlation @ Reconciliation {¥) Scheduling

Policies
Situational Event Scripts
Reconciliation Script 8

Type

[Javascript T
© File Path

@ Inline Script

1

Add passed variables

Add Variable +

[Variable Name [Variable Value [x]

You can choose to test the overall process with a single record reconciliation. In other words, you
need not test these policies and scripts against the entire data set. For example, you can restrict
reconciliation to a specific ID (see Section 12.6, "Restricting Reconciliation to a Specific ID").

Integrator's Guide OpenIDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 36

OpenlDM Web-based User Interfaces

(" FORGEROCK' Configuring Reconciliation from the Ul

i= Properties G Correlation @ Reconciliation £ Scheduling

Policies
Situational Event Scripts
Reconciliation Script

Single Record Reconciliation (&)

Find Source Record: | Enter Search Terms

Finally, you should set up a schedule, as described in Section 12.19.1, "Configuring Scheduled
Synchronization".

i= Properties 3¢ Correlation @ Reconciliation) Scheduling

Scheduler - Reconciliation

Basic Cron Advanced

Every (TR

@ Enabled () Persisted Delete Schedule Save Changes

@ Enable LiveSync for this mapping

Incremental changes from the source will automatically be synced to the target system. m

You can also configure LiveSync, which captures the changes that happen on a remote system, and
then pushes those changes to OpenIDM.

For more information on Reconciliation and LiveSync, see Section 12.1, "Types of Synchronization".

You can manage reconciliation and liveSync with the embedded Quartz scheduler. For more
information, see Chapter 13, "Scheduling Tasks and Events".

Once you've set up Reconciliation based on configured properties, correlation queries, and a
synchronization schedule, you can start the synchronization process. Try it out! You'll see the results
in the target data store.

Integrator's Guide OpenIDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 37

OpenIDM Web-based User Interfaces

(" FORGEROCK' Configuring Authentication Modules from the Ul

Once you have taken the steps required to configure OpenIDM through the Admin UI, you can start
the synchronization process from a source to a target. Once a synchronization is complete, you can
review the results in this window.

4.1.5. Configuring Authentication Modules from the Ul

You can also configure authentication modules from the Admin UI. To access those modules, click
Settings.

The page shown here displays several available modules, based on the ForgeRock Common
Authentication Framework. For more information on each module, see Section 15.3, "Supported
Authentication Modules".

/4 FORGEROCK S

©f Resources 9 Mappings

Settings

Authentic ation

Configure Authentication

Max Token Life (in minutes)

Token Idie Time {in minutes)

Session Only True | =

Authentication Module

CLIENT_CERT - managedfuser

INTERMNAL_USER - repofintemaliuser

WA - managedfuser

MAMAGED_USER - managediuser

OPENAM_SESSION - managed/user

Cle| (]|

PASSTHROUGH - managediuser

AR AR
SEN-AN-RE- N

4.2. Overview of the User View Ul

For all users, the User View Ul includes a Dashboard tab, which lists any tasks assigned to the user
who as logged in, processes available to be invoked, and any notifications for that user.

For the administrative user, (role openidm-admin), the User View UI also includes a Users tab, which
provides an interface for user entries, if you have configured managed users in the OpenIDM
repository.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 38

I OpenlDM Web-based User Interfaces
‘,' FORGEROCK Overview of the User View Ul

To access the User View UlI, install and start OpenIDM, then point your browser to https://
localhost:8443/openidmui. If you have not installed a certificate that is trusted by a certificate
authority, you are prompted with an "Untrusted Connection" warning the first time you log in to the
UL

The following image shows the Dashboard tab for the administrative user when no tasks, processes,
or notifications are available.

,‘\ openidm-admin | Profile | Change Security Data | Log out
FORGEROCK
iZ Dashboard 2 Users
My tasks Notifications
You do not have any tasks assigned to you right now. You have no notifications right now.
Processes

No processes

The following image shows the Users tab, populated with two sample users, after a reconciliation
associated with Sample 2b.

i= Dashboard 2 Users

Al |

bjensen Barbara Jensen bjensen@example.com @

jdoe John Doe jdoe@example.com ©

View 1-20of 2

You can sort the list of users alphabetically, by any of the column values. Click on the column title to
sort.

The profile link enables the user to modify his username or password. The Change Security Data link,
accessed from the top of the screen, or from the user's Profile page enables the user to change his
password and, if this functionality has been enabled, to select a new security question.

Password changes are subject to the default password policy, as shown in the following password
update screen.

Integrator's Guide OpenIDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 39

https://localhost:8443/openidmui
https://localhost:8443/openidmui

OpenIDM Web-based User Interfaces

(" FORGEROCK Configuring the User View Ul

Security data change X

Please enter new password in the fields below to change your password.

Password ssssssssse Confirmation matches password
Cannot be blank
Confirm Password | eeececccee At least 1 capital letters
At least 1 numbers

At least 8 characters

For a regular user (role openidm-authorized), the Users tab is not displayed. By default, regular users
cannot manage user accounts, except for certain aspects of their own accounts.

4.3. Configuring the User View Ul

The following sections outline the configurable aspects of the User View UI.

4.3.1. Enabling Self-Registration

Self-registration (the ability for new users to create their own accounts) is disabled by default.
To enable self-registration, set "selfRegistration" to true in the UI configuration file (conf/ui-
configuration.json).

“"configuration" : {
"selfRegistration" : true,

When self-registration is enabled, a "Register your account" link is provided on the login page. When
a user creates an account on the account registration page, a managed object is created in the
OpenIDM repository. The default policies for managed objects are applied during account creation.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 40

’ OpenIDM Web-based User Interfaces
‘,' FORGEROCK Configuring Security Questions
Register your accou nt Already have an account?

Username = bsmith -

Email address bsmith@example.com v

First Name = Bill v

Last Name | Smith v

Mobile Phone | 029028902231 v

Password ssssssssss v

Confirm Password eeesessses v

v Confirmation matches password
v Cannot be blank

» At least 1 capital letters

» At least 1 numbers

» At least 8 characters

» Cannot contain values from:
userName,givenName,sn

@ | agree to the

User objects created using self-registration automatically have the role openidm-authorized.

4.3.2. Configuring Security Questions

In the event that a user forgets his password, a password reset function enables registered users
to reset their own passwords. To guard against unauthorized access, you can specify that users be
prompted with one or more security questions when they request a password reset.

Security questions are disabled by default. To enable them, set "securityQuestions" to true in the UI
configuration file (conf/ui-configuration.json).

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 41

OpenIDM Web-based User Interfaces

(" FORGEROCK Configuring Security Questions

“"configuration" : {
"securityQuestions" : true,

A default set of questions is provided, but you can add to these, or overwrite them. Specify the list of
questions to be asked in the conf/ui-secquestions.json file.

Refresh your browser after this configuration change for the change to be picked up by the Ul

When security questions are enabled, the following panel is included on the self registration page.

The Security Question selected and comesponding Answer provided by you will
be used to help identify you in the event that you forget your password.

Security question | What was your first phone numbi =| |~

Security answer x

In addition, a "Reset your password" link is provided on the login page. When a user attempts to
reset her password, she is prompted for the response to the security question that she set up during
registration.

Forgotten password? X

Please enter your login in the field below to continue.

Login @ bjones -

Security question Entera PIN

Security answer | 1234567890123456 v
Password x
Confirm Password x

x Confirmation matches password
x Cannot be blank

x At least 1 capital latters

x At least 1 numbers

x At least B characters

x Cannot contain values from:
userName,givenName,sn

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 42

OpenIDM Web-based User Interfaces

(" FORGEROCK' Minimum Length Security Answers

Note

If security questions are enabled after a specific user has registered, that particular user will be unable to use
the password reset functionality.

4.3.3. Minimum Length Security Answers

The password, passphrase, and security answer are all associated with some minimum length. To
change that minimum, edit the conf/policy.json file, setting the minLength property to the required
minimum.

For example, the following excerpt from the conf/policy.json file shows a default minLength of 16
associated with the security answer.

"policyId" : “minimum-length",
“"params" : {

"minLength" : 16
}

b

4.3.4. Enabling Site Identification

To ensure that users are entering their details onto the correct site, you can enable site identification.
Site identification provides a preventative measure against phishing.

With site identification enabled, a user is presented with a range of images from which he can select
when he registers his account, and prompted to specify his own site phrase. The selected site image
and phrase are displayed on login, to confirm that the user is logging in to the legitimate site.

To enable site identification, set "siteIdentification" to true in the UI configuration file (conf/ui-
configuration.json).

“"configuration" : {
"siteIdentification" : true,

Refresh your browser after this configuration change for the change to be picked up by the Ul

When site identification is enabled, the following panel is included on the self registration page.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 43

OpenIDM Web-based User Interfaces

(" FORGEROCK' Configuring the Country List

The Site Image and Phrase selectad will be shawn to you upon login to confirm
that you are logging in to the genuine site

;-:.fi’.a

Site Phrase | This is the real McCoy v

A default list of four images is presented for site identification. The images are defined in the
siteImages property in the conf/ui-configuration.json file:

"siteImages" : [
“images/passphrase/mail.png",
“images/passphrase/user.png",
“images/passphrase/report.png",
"images/passphrase/twitter.png"
o

You can change the default images, and include additional images, by placing image files in the ui/
extension/images folder and modifying the siteImages property in the ui-configuration.json file to point to
the new images. Refresh your browser for the change to take effect.

The following example assumes an image file named my-new-image.jpg, located in ui/extension/images.

"siteImages" : [
"images/passphrase/mail.png",
"images/passphrase/user.png",
"images/passphrase/report.png",
"images/passphrase/twitter.png",
"images/my-new-image. jpg"

o

Note that the default image files are located in ui/default/enduser/public/images/passphrase.

4.3.5. Configuring the Country List

The default user profile includes the ability to select the user's country and state or province. To
specify the countries, and the associated states or provinces, that appear in these drop down lists,
edit the conf/ui-countries.json file. For example, to add Norway to the list of countries, you would add
the following to the conf/ui-countries.json file:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 44

OpenIDM Web-based User Interfaces

(" FORGEROCK Managing User Accounts With the User View Ul

{
"key" : "norway",
"value" : "Norway",
"states" : [
{
"key" : "akershus",
"value" : "Akershus"
+
{
"key" : "aust-agder",
"value" : "Aust-Agder"
+
{
"key" : "buskerud",
"value" : "Buskerud"
+

Refresh your browser after this configuration change for the change to be picked up by the Ul

4.4. Managing User Accounts With the User View Ul

Only administrative users (with the role openidm-admin) can add, modify, and delete user accounts.
Regular users can modify certain aspects of their own accounts.

Procedure 4.1. To Add a User Account

1. Log into the user interface as an administrative user.
2. Select the Users tab.

3. Click Add User.
4

Complete the fields on the Create new account page.

Most of these fields are self-explanatory. Be aware that the user interface is subject to policy
validation, as described in Chapter 9, "Using Policies to Validate Data". So, for example, the
Email address must be of valid email address format, and the Password must comply with the
password validation settings that are indicated in the panel to the right.

The Admin Role field reflects the roles that are defined in the ui-configuration.json file, as well as
any managed roles that have been added. By default, the roles are mapped as follows:

"roles" : {
“openidm-admin" : “Administrator",
“openidm-authorized" : "User",
“"openidm-tasks-manager" : "“Tasks Manager"

b

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 45

OpenIDM Web-based User Interfaces

(" FORGEROCK' Managing User Accounts With the User View Ul

A user can be assigned more than one role. Only users with the tasks-manager role can assign tasks
to any candidate user for that task.

Create new account

Username | scarter Password | esescescss
Email address | scarter@example.com Confirm Password | eseeessess
First Name | Steven Confirmation matches password
Cannot be blank
Last Name | Carter At least 1 capital letters
At least 1 numbers
Mobile Phone | 0986547653 At least 8 characters
Cannot contain values from:
Admin Role Administrator userName,givenName,sn
Tasks Manager
& User

Procedure 4.2. To Update a User Account

B W N e

Log into the User View UI at https://localhost:8443/openidmui as an administrative user.
Select the Users tab.

Click the Username of the user that you want to update.

On the user's profile page, modify the fields you want to change and click Update.

The user account is updated in the OpenIDM repository.

Procedure 4.3. To Deactivate a User Account

Follow steps 1-3 in Procedure 4.2, "To Update a User Account".

On the user's profile page, select Inactive from the Account status list.

Click Update.

The user account is deactivated and the user can no longer log in to the system.

Inactive users are indicated with a X icon in the Status column of the Users page. The following
image shows that Steven Carter's account has been deactivated.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 46

(/' FORGEROCK

OpenIDM Web-based User Interfaces
Managing User Accounts With the User View Ul

Users list m
All -
bjensen Barbara Jensen bjensen@example.com ©
bjones Brenda Jones bjones@example.com e
bsmith Bill Smith bsmith@example.com (V]
jdoe John Doe jdoe@example.com (V]
scarter Steven Carter scarter@example.com [x]
Pageof1 hd View1-50f5

Procedure 4.4. To Reset a User's Password

Users can change their own passwords by following the Change Security Data link in their profiles.
This process requires that users know their existing passwords.

In a situation where a user forgets his password, an administrator can reset the password of that user
without knowing the user's existing password.

1. Follow steps 1-3 in Procedure 4.2, "To Update a User Account".

2. On the user's profile page, click Change password.

3. Enter a new password that conforms to the password policy and click Update.

The user password is updated in the repository.

Procedure 4.5. To Delete a User Account

1. Log into the user interface as an administrative user.

2. Select the Users tab.

3. Click the Username of the user that you want to delete.

4. On the user's profile page, click Delete.

5. Click OK to confirm the deletion.

The user is deleted from the internal repository.

Integrator's Guide OpenIiDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

47

OpenIDM Web-based User Interfaces

(" FORGEROCK Managing User Accounts With the User View Ul

Procedure 4.6. To View a User's Account in External Resources

The User View Ul displays the details of the user account in the OpenIDM repository (managed/user).
When a mapping has been configured between the repository and one or more external resources,
you can view what that user account looks like in any of the systems to which it is linked. Note that
this view is read-only - you cannot update a user record in a linked system from within the User View
UI.

By default, implicit synchronization is enabled for mappings from the managed/user repository to any
external resource. This means that when you update a managed object, any mappings defined in the
sync.json file that have the managed object as the source are automatically executed to update the
target system. You can see these changes in the Linked Systems section of a user's profile.

To view a user's linked accounts:

1. Log into the User View Ul as an administrative user.

2. Select the Users tab.

3. Click the Username of the user whose accounts you want to view.

4. At the bottom of the user profile, the Linked Systems panel indicates the external resource or
resources to which this user entry is mapped. .

5. Select the resource in which you want to view the account, from the Linked Resource list.
The user record in the linked resource is displayed.

The following image shows the user account for a user fdoe, as it exists in the LDAP directory to
which the managed user repository is mapped.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 48

OpenIDM Web-based User Interfaces

(" FORGEROCK' Managing Workflows From the User View Ul

Linked Systems

Linked Resource
Idap account j

IdapGroups

[)
uid
fdoe

cn
Felicitas Doe

telephoneNumber
555-1234

description

dn
uid=fdoe,ou=People,dc=example,dc=com

sn
Doe

givenName
Felicitas

mail

fdoe @example.com

4.5. Managing Workflows From the User View Ul

The User View Ul is integrated with the embedded Activiti worfklow engine, enabling users to
interact with workflows. Available workflows are displayed under the Processes item on the
Dashboard. In order for a workflow to be displayed here, the workflow definition file must be present
in the openidm/workflow directory.

A sample workflow integration with the User View Ul is provided in openidm/samples/workflow, and
documented in Section 17.5.2, "Sample Workflow - Provisioning User Accounts". Follow the steps in
that sample for an understanding of how the workflow integration works.

Access to workflows is based on OpenIDM roles, and is configured in the file conf/process-access.json.
By default all users with the role openidm-authorized or openidm-admin can invoke any available workflow.
The default process-access.json file is as follows:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 49

’,) OpenIDM Web-based User Interfaces
39 FORGEROCK

Managing Workflows From the User View Ul

{
"workflowAccess" : [
{
"propertiesCheck" : {
“"property" : "_id",
"matches" : ".*",
"requiresRole" : "openidm-authorized"
}
+
{
"propertiesCheck" : {
“"property" : "_id",
"matches" : ".*",
"requiresRole" : "openidm-admin"
}
}
1
}
"property"

Specifies the property used to identify the process definition. By default, process definitions are
identified by their id.

"matches"

A regular expression match is performed on the process definitions, according to the specified
property. The default ("matches" : ".*") implies that all process definition IDs match.

"requiresRole"

Specifies the OpenIDM role that is required for users to have access to the matched process
definition IDs. In the default file, users with the role openidm-authorized or openidm-admin have
access.

To extend the process action definition file, identify the processes to which users should have access,
and specify the qualifying user roles. For example, if you wanted to restrict access to a process

definition whose ID was 567, to users with the role 1dap you would add the following to the process-
access. json file:

{

"propertiesCheck" : {
"property" : " id",
"matches" : "567",
"requiresRole" : "ldap"

}

}

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 50

OpenIDM Web-based User Interfaces

(" FORGEROCK Changing the Ul Theme

4.6. Changing the Ul Theme

You can customize the theme of the user interface with your own branding. One way to adjust

the UI theme, is to edit the properties in the Ul theme configuration file (/path/to/openidm/conf/ui-
themeconfig.json). This file stores detailed color values, background image paths, and a number of
other common styling options. Because the Ul theme configuration file is part of the configuration
store, it is shared by all nodes in a cluster. Changes made to this file do not have to be replicated
manually across nodes.

To change theme elements that are not included in the Ul theme configuration file, you can create a
custom theme in the openidm/ui/extension directory. By default the user interface reads the stylesheets
and images from the openidm/ui/default directory. Do not modify the files in this default directory

as there is no guarantee that your changes will not be overwritten in the next OpenIDM release.
Modifications made in the openidm/ui/extension directory can be maintained across product upgrades.
The Ul searches the extension directory first and applies any styles or images located in this directory.
Note that files added to the extension directory must be manually copied between every node in a
cluster.

If you want to update the view logic of the Ul, you cannot simply add files to the extensions folder.
It is assumed that if your deployment requires that level of control of the user interface, you are no
longer going to want to be automatically upgraded with subsequent releases. As such, you need to
take on the task of maintaining a fork of the UI.

4.6.1. Changing the Default Stylesheet

Most changes to the Ul stylesheets can be made in the Ul theme configuration file (conf/ui-
themeconfig.json).

If you make the following change to that file, that changes the background color of the UI to dark
grey.

$ grep "background-color" /path/to/openidm/conf/ui-themeconfig.json
"background-color" : "#ababab",

Refresh your browser window for the change to appear.
The default stylesheets are located in the openidm/ui/default/enduser/public/css directory. To customize

the stylesheets beyond the properties available in the Ul theme configuration file, copy the default
stylesheets to openidm/ui/extension/css, and edit them according to your requirements.

4.6.2. Changing the Default Logo

The default logo is located in the openidm/ui/default/enduser/public/images directory. Any file named
logo.png, added to the directory openidm/ui/extension/images, will replace the default logo when the
browser is refreshed.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 51

OpenIDM Web-based User Interfaces

(" FORGEROCK' Changing the Language of the Ul

To specify a different file name, or to control the size, and other properties of the image file that is
used for the logo, adjust the logo property in the UI theme configuration file (conf/themeconfig.json).

The following change to the UI theme configuration file points to an image file named example-logo.png,
in the openidm/ui/extension/images directory.

"logo" : {
"src" : "images/example-logo.png",
“"title" : "Example.com",
"alt" : "Example.com",
"height" : "80",
"width" : "120"

Refresh your browser window for the new logo to appear.

4.6.3. Changing the Language of the Ul

Currently, the Ul is provided only in US English. You can translate the Ul and specify that your own
locale is used. The following example shows how to translate the Ul into French.

1. Copy the default locale to a new folder in the same location (openidm/ui/default/enduser/public/
locales):
$ cd /path/to/openidm/ui/default/enduser/public/locales
$ cp -R en/ fr/
The new locale (fr) now contains the default transtlation.json file.
$ s fr/

translation. json

2. Translate the values of the properties in the fr/translate.json file. Do not translate the property
names. For example:

"UserMessages" : {
“changedPassword" : "Mot de passe a été modifié",
"profileUpdateFailed" : "Probléme lors de la mise a jour du profil",
"profileUpdateSuccessful" : "Profil a été mis a jour",
“"userNameUpdated" : "Nom d'utilisateur a été modifié",

3. Change the Ul configuration to use the new locale by setting the value of the l1ang property in the
/path/to/openidm/conf/ui-configuration.json file, as follows:

"lang” : "fr",

4. Refresh your browser window for the modification to be applied.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 52

OpenIDM Web-based User Interfaces

(" FORGEROCK Creating a Project-Specific Ul Theme

4.6.4. Creating a Project-Specific Ul Theme

You can create specific UI themes for different projects and then point a particular Ul instance to use
a defined theme on startup. To create a complete custom theme, follow these steps:
1. Shut down the OpenIDM instance, if it is running. In the Felix administration console, type:
shutdown
->
2. Clear the felix-cache directory.

$ rm -rf felix-cache

3. Copy the entire default Ul theme to an accessible location. For example:
$ cd /path/to/openidm/ui
$ cp -r default ../new-project-theme

4. In the copied theme, modify the required elements, as described in the previous sections. Note
that nothing is copied to the extension folder in this case - changes are made in the copied theme.

5. In the openidm/conf/boot/boot.properties file, add the following line, specifying the location of the
new theme. The path is relative to the installation root of the OpenIDM instance.

openidm.ui.fileinstall.dir=new-project-theme

6. Restart OpenIDM.
$ cd /path/to/openidm
$./startup.sh

7. Relaunch the UI in your browser. The Ul is displayed with the new custom theme.

4.7. Using an External System for Password Reset

By default, the password reset mechanism is handled internally, in OpenIDM. You can reroute
password reset in the event that a user has forgotten his password, by specifying an external URL to
which password reset requests are sent. Note that this URL applies to the password reset link on the
login page only, not to the security data change facility that is available after a user has logged in.

To set an external URL to handle password reset, set the passwordResetlLink parameter in the Ul
configuration file (conf/ui-configuration.json) file. The following example sets the passwordResetLink to
https://accounts.example.com/account/reset-password.

passwordResetLink: "https://accounts.example.com/reset-password"

The passwordresetLink parameter takes either an empty string as a value (which indicates that no
external link is used) or a full URL to the external system that handles password reset requests.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 53

OpenIDM Web-based User Interfaces

(" FORGEROCK' Providing a Logout URL to External Applications

Note

External password reset and security questions for internal password reset are mutually exclusive. Therefore,
if you set a value for the passwordResetLink parameter, users will not be prompted with any security questions,
regardless of the setting of the securityQuestions parameter.

4.8. Providing a Logout URL to External Applications

By default, a Ul session is invalidated when a user clicks on the Log out link. In certain situations
your external applications might require a distinct logout URL to which users can be routed, to
terminate their Ul session.

The logout URL is #logout, appended to the UI URL, for example, https://localhost:8443/openidmui/index
.html#logout/.

The logout URL effectively performs the same action as clicking on the Log out link of the UI.

4.9. Changing the Ul Path

By default, the Ul is registered at a specific URL (context-root/openidmui). To override the default URL
and specify your own path, edit the openidm/conf/ui.context-enduser.json file, setting the urlContextRoot
property to the new URL. For example, to change the path to context-root/exampleui, edit the file as
follows:

"urlContextRoot" : "/exampleui",

4.10. Disabling the Ul

The Ul is packaged as a separate bundle that can be disabled in the configuration before server
startup. To disable the registration of the Ul servlet, edit the openidm/conf/ui.context-enduser.json file,
setting the enabled property to false:

"enabled" : false,

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 54

’ Managing the OpenlDM Repository
‘,' FORGEROCK' Understanding the JDBC Repository Configuration File

Chapter 5

Managing the OpenIDM Repository

OpenIDM stores managed objects, internal users, and configuration objects in a repository. By
default, OpenIDM uses OrientDB for its internal repository. In production, you must replace OrientDB
with a supported JDBC repository, as described in Chapter 4, "Installing a Repository For Production"
in the Installation Guide.

This chapter describes the JDBC repository configuration, the use of mappings in the repository, and
how to configure a connection to the repository over SSL. It also describes how to interact with the
OpenIDM repository over the REST interface.

5.1. Understanding the JDBC Repository Configuration File

OpenIDM provides a specific configuration file for each supported JDBC repository, as well as
example configurations for other repositories. These configuration files are located in /path/to/
openidm/db/database and are named repo.jdbc.json. Copy the configuration file for your specific database
type to /path/to/openidm/conf/.

The repository configuration file includes the connection details for the repository, a number of
predefined queries, and a mapping between OpenIDM resources and the tables in the repository.

An excerpt from an example repository configuration follows.

“connection" : {
"dbType" : "MYSQL",
"jndiName" : "",
"driverClass" : "“com.mysql.jdbc.Driver",
"jdbcUrl" : "jdbc:mysql://localhost:3306/openidm?characterEncoding=utf8",
"username" : "openidm",
"password" : “openidm",
"defaultCatalog" : "openidm",
"maxBatchSize" : 100,
"maxTxRetry" : 5,
"enableConnectionPool" : true,
"connectionTimeoutInMs" : 30000

1,

"queries" : {...},

“resourceMapping" : {...}

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 55

’ Managing the OpenlDM Repository
‘,' FORGEROCK' Understanding the JDBC Repository Configuration File

"dbType" : string, optional

The type of database. The database type might affect the queries used and other optimizations.
Supported database types include MysqL, SQLSERVER, and ORACLE.

"driverClass", "jndiName", Or "jtaName"
Depending on the mechanism you use to acquire the data source, set one of these properties.
® "driverClass" : string

To use the JDBC driver manager to acquire a data source, set this property, as well as "jdbcurtl”,
“username", and "password". The driver class must be the fully qualified class name of the database
driver to use for your database.

Using the JDBC driver manager to acquire a data source is the most likely option, and the only
one supported "out of the box". The remaining options in the sample repository configuration
file assume that you are using a JDBC driver manager.

Example: "driverClass" : "com.mysql.jdbc.Driver"
® "jndiName" : string

If you use JNDI to acquire the data source, set this property to the JNDI name of the data
source.

This option might be relevant if you want to run OpenIDM inside your own web container.
:Exarnple:”jndiName“ : "jdbc/my-datasource"
* "jtaName" : string

If you use an OSGi service to acquire the data source, set this property to a stringified version
of the OsgiName.

This option would only be relevant in a highly customized deployment, for example, if you
wanted to develop your own connection pool.

:Exajnple:“jtaName“ : "osgi:service/javax.sql.DataSource/(osgi.jndi.service.name=jdbc/openidm)"
"jdbcUri"

The connection URL to the JDBC database. The URL should include all of the parameters
required by your database. For example, to specify the encoding in MySQL use
'characterEncoding=utf8'.

ExaInple:“jdchrl“ : "jdbc:mysql://localhost:3306/openidm?characterEncoding=utf8"
"username"

The username with which to access the JDBC database.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 56

’ Managing the OpenlDM Repository
‘,' FORGEROCK' Understanding the JDBC Repository Configuration File

"password"

The password with which to access the JDBC database. OpenIDM automatically encrypts clear
string passwords. To replace an existing encrypted value, replace the whole crypto-object value,
including the brackets, with a string of the new password.

"defaultCatalog"
The database schema to use for OpenIDM. By default, no schema prefix is used for queries.
"maxBatchSize"

The maximum number of SQL statements that will be batched together. This parameter allows
you to optimize the time taken to execute multiple queries. Certain databases do not support
batching, or limit how many statements can be batched. A value of 1 disables batching.

"queries"

Enables you to create pre-defined queries that can be referenced from the configuration. The
queries are divided between those for "genericTables" and those for "explicitTables".

The following sample extract from the default MySQL configuration file shows two credential
queries, one for a generic mapping, and one for an explicit mapping. Note that the lines have
been broken here for legibility only. In a real configuration file, the query would be all on one

line.
"queries" : {
"genericTables" : {
"credential-query" : "SELECT fullobject FROM ${_dbSchema}.${ mainTable}
obj INNER JOIN ${ dbSchema}.${ propTable} prop ON
obj.id = prop.${ mainTable} id INNER JOIN ${ dbSchema}.objecttypes
objtype ON objtype.id = obj.objecttypes id WHERE prop.propkey='/userName'
AND prop.propvalue = ${username} AND objtype.objecttype = ${ resource}",
“"explicitTables" : {
"credential-query" : "SELECT * FROM ${_dbSchema}.${ table}
WHERE objectid = ${username} and accountStatus = ‘'active'",
}
}

Options supported for query parameters include the following:

* A default string parameter, for example:

openidm.query("managed/user", { " queryId": "for-userName", "uid": "jdoe" });

* A list parameter (${list:propName}).

Use this parameter to specify a set of indeterminate size as part of your query. For example:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 57

’ Managing the OpenlDM Repository
‘,' FORGEROCK Using Explicit or Generic Object Mapping With a JDBC Repository

WHERE targetObjectId IN (${list:filteredIds})

* An integer parameter (${int:propName}).

Use this parameter if you need query for non-string values in the database. This is particularly
useful with explicit tables.

"resourceMapping"

Defines the mapping between OpenIDM resource URIs (for example, managed/user) and JDBC
tables. The structure of the resource mapping is as follows:

"resourceMapping" : {

"default" : {
"mainTable" : "genericobjects",
"propertiesTable" : "genericobjectproperties",

"searchableDefault" : true

1,

"genericMapping" : {...},

“"explicitMapping" : {...}
}

The default mapping object represents a default generic table in which any resource that does not
have a more specific mapping is stored.

The generic and explicit mapping objects are described in the following section.

5.2. Using Explicit or Generic Object Mapping With a JDBC
Repository
For JDBC repositories, there are two ways of mapping OpenIDM objects to the database tables.

* Generic mapping, which allows arbitrary objects to be stored without special configuration or
administration.

» Explicit mapping, which allows for optimized storage and queries by explicitly mapping objects to
tables and columns in the database.

These two mapping strategies are discussed in the following sections.

5.2.1. Using Generic Mappings

Generic mapping speeds up development, and can make system maintenance more flexible by
providing a more stable database structure. However, generic mapping can have a performance

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 58

Managing the OpenlDM Repository

(" FORGEROCK' Using Generic Mappings

impact and does not take full advantage of the database facilities (such as validation within the
database and flexible indexing). In addition, queries can be more difficult to set up.

In a generic table, the entire object content is stored in a single large-character field named
"fullobject" in the "mainTable" for the object. To search on specific fields, you can read them by
referring to them in the corresponding properties table for that object. The disadvantage of generic
objects is that, because every property you might like to filter by is stored in a separate table, you
must join to that table each time you need to filter by anything.

The following diagram shows a pared down database structure for the default generic table, and

indicates the relationship between the main table and the corresponding properties table for each
object.

] configobjectproperties ¥

"] managedobjectproperties ¥ @ configobjects_id BIGINT(20)
& managedobjects_id BIGINT(20) » propkey VARCHAR(255)
» propkey VARCHAR(255) proptype VARCHAR(32)
proptype VARCHAR(32) propvalue TEXT
» propvalue TEXT >
> Y
I
b |
! 1
[T
4

: "] configobjects v
| managedobjects ¥ id BIGINT(20)
id BIGINT(20) objecttypes_id BIGINT(20)

& objecttypes_id BIGINT(20) j objecttypes y -+ —|< > objectid VARCHAR(255)
» objectid VARCHAR(255) [»|— — — + fb::::pzammm%s) » rev VARCHAR(38)
» rev VARCHAR(38) > fullobject MEDIUMTEXT
fullobject MEDIUMTEXT > >
. i
I
1
A

"] genericobjects ¥
id BIGINT(20)
& objecttypes_id BIGINT(20)

"] genericobjectproperties ¥
& genericobjects_id BIGINT(20)

» propkey VARCHAR(255)
2 objectid VARCHAR(255) |-H — — —]
» proptype VARCHAR(32)
» rev VARCHAR(38)
propvalue TEXT

= fullobject MEDIUMTEXT
| 4

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 59

’ Managing the OpenlDM Repository
‘,' FORGEROCK' Using Generic Mappings

These separate tables can make the query syntax particularly complex. For example, a simple query
to return user entries based on a user name would need to be implemented as follows:

SELECT fullobject FROM ${ dbSchema}.${ mainTable} obj INNER JOIN ${ dbSchema}.${ propTable} prop
ON obj.id = prop.${ mainTable} id INNER JOIN ${ dbSchema}.objecttypes objtype
ON objtype.id = obj.objecttypes id WHERE prop.propkey='/userName' AND prop.propvalue = ${uid}
AND objtype.objecttype = ${ resource}",

The query can be broken down as follows:

» Select the full object from the main table

SELECT fullobject FROM ${ dbSchema}.${ mainTable} obj

* Join to the properties table and locate the object with the corresponding ID.

INNER JOIN ${ dbSchema}.${ propTable} prop ON obj.id = prop.${ mainTable} id

* Join to the object types table to restrict returned entries to objects of a specific type. For example,
you might want to restrict returned entries to managed/user objects, or managed/role objects.

INNER JOIN ${ dbSchema}.objecttypes objtype ON objtype.id = obj.objecttypes id

* Filter records by the userName property, where the userName is equal to the specified uid and the
object type is the specified type (in this case, managed/user objects).

WHERE prop.propkey='/userName'
AND prop.propvalue = ${uid}
AND objtype.objecttype = ${ resource}",

The value of the uid field is provided as part of the query call, for example:

openidm.query("managed/user", { " queryId": "for-userName", "uid": "jdoe" });

Tables for user definable objects use a generic mapping by default.

The following sample generic mapping object illustrates how managed/ objects are stored in a generic
table.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 60

Managing the OpenlDM Repository

(" FORGEROCK' Using Generic Mappings

"'genericMapping" : {

+

"managed/*" : {
"mainTable" : "managedobjects",
"propertiesTable" : "managedobjectproperties",
"'searchableDefault" : true,
“"properties" : {
"/picture" : {
"'searchable" : false
}
}
}

"mainTable" (string, mandatory)

Indicates the main table in which data is stored for this resource.

The complete object is stored in the fullobject column of this table. The table includes an
entityType foreign key, that is used to distinguish the different objects stored within the

table. In addition, the revision of each stored object is tracked, in the rev column of the table,
enabling multi version concurrency control (MVCC). For more information, see Section C.1.6.3,
"Manipulating Managed Objects Programmatically".

"propertiesTable" (string, mandatory)

Indicates the properties table, used for searches.

The contents of the properties table is a defined subset of the properties, copied from the
character large object (CLOB) that is stored in the fullobject column of the main table. The
properties are stored in a one-to-many style separate table. The set of properties stored here is
determined by the properties that are defined as "searchable".

The stored set of searchable properties makes these values available as discrete rows that can be
accessed with SQL queries, specifically, with wHERE clauses. It is not otherwise possible to query
specific properties of the full object.

The properties table includes the following columns:

${ mainTable} id corresponds to the id of the full object in the main table, for example,
manageobjects id, O genericobjects id.

propkey is the name of the searchable property, stored in JSON pointer format (for example /
mail. For more information about JSON pointer syntax, see RFC 6901.

proptype is the data type of the property, for example java.lang.String. The property type is
obtained from the Class associated with the value.

propvalue is the value of property, extracted from the full object that is stored in the main table.

Regardless of the property data type, this value is stored as a string, so queries against it
should treat it as such.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 61

http://tools.ietf.org/html/rfc6901

Managing the OpenlDM Repository

(" FORGEROCK' Improving Search Performance for Generic Mappings

"searchableDefault" (boolean, optional)

Specifies whether all properties of the resource should be searchable by default. Properties that
are searchable are stored and indexed. You can override the default for individual properties in
the "properties" element of the mapping. The preceding example indicates that all properties are
searchable, with the exception of the "picture" property.

For large, complex objects, having all properties searchable implies a substantial performance
impact. In such a case, a separate insert statement is made in the properties table for each
element in the object, every time the object is updated. Also, because these are indexed fields, the
recreation of these properties incurs a cost in the maintenance of the index. You should therefore
enable "searchable" only for those properties that must be used as part of a WHERE clause in a

query.
"properties"
Lists any individual properties for which the searchable default should be overridden.

Note that if an object was originally created with a subset of “searchable" properties, changing this
subset (by adding a new "searchable" property in the configuration, for example) will not cause the
existing values to be updated in the properties table for that object. To add the new property to
the properties table for that object, you must update or recreate the object.

5.2.2. Improving Search Performance for Generic Mappings

By default, all properties in a generic mapping are searchable. Although there are no individual
indexes in a generic mapping, you can improve search performance by setting only those properties
that you need to search as "searchable". Properties that are searchable are created within the
corresponding properties table. The properties table exists only for searches or look-ups, and has a
composite index, based on the resource, then the property name.

To restrict searches to specific properties, set the "searchablebefault" to false for the mapping, and
then explicitly set "searchable" to true for each property that should be searched. The following
sample extract from repo.jdbc.json indicates searches restricted to the "userName" property.

"genericMapping" : {

"managed/user" : {
"mainTable" : "manageduserobjects",
"propertiesTable" : “"manageduserobjectproperties",
"searchableDefault" : false,
“properties" : {
"/userName" : {
"searchable" : true
}
}
}

b

With this configuration, OpenIDM creates entries in the properties table only for "userName" properties
of managed user objects.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 62

Managing the OpenlDM Repository

(" FORGEROCK' Using Explicit Mappings

If the global "searchablebefault" is set to false, properties that do not have a searchable attribute
explicitly set to true are not written in the properties table.

5.2.3. Using Explicit Mappings

Explicit mapping is more difficult to set up and maintain, but can take complete advantage of the
native database facilities.

An explicit table offers better performance and simpler queries. There is less work in the reading and
writing of data, since the data is all in a single row of a single table. In addition, it is easier to create
different types of indexes that apply to only specific fields in an explicit table. The disadvantage of
explicit tables is the additional work required in creating the table in the schema. Also, because

rows in a table are inherently more simple, it is more difficult to deal with complex objects. Any non-
simple key:value pair in an object associated with an explicit table is converted to a JSON string and
stored in the cell in that format. This makes the value difficult to use, from the perspective of a query
attempting to search within it.

Note that it is possible to have a generic mapping configuration for most managed objects, and to
have an explicit mapping that overrides the default generic mapping in certain cases. The sample
configuration provided in /path/to/openidm/db/mysql/conf/repo.jdbc-mysql-explicit-managed-user.json has a
generic mapping for managed objects, but an explicit mapping for managed user objects.

OpenIDM uses explicit mapping for internal system tables, such as the tables used for auditing.

Depending on the types of usage your system is supporting, you might find that an explicit mapping
performs better than a generic mapping. Operations such as sorting and searching (such as those
performed in the default UI) tend to be faster with explicitly-mapped objects, for example.

The following sample explicit mapping object illustrates how internal/user objects are stored in an
explicit table.

"explicitMapping" : {
“internal/user" : {

“table" : "internaluser",

"objectToColumn" : {
"_id" : "objectid",
"“rev" : "rev",
"password" : "pwd",
"roles" : "roles"

"<resource-uri>" (string, mandatory)

Indicates the URI for the resources to which this mapping applies, for example, "internal/user".

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 63

Managing the OpenlDM Repository

(" FORGEROCK Configuring SSL with a JDBC Repository

"table" (string, mandatory)

The name of the database table in which the object (in this case internal users) is stored.
"objectToColumn" (string, mandatory)

The way in which specific managed object properties are mapped to columns in the table.

The mapping can be a simple one to one mapping, for example "userName": "userName", Or @ more
complex JSON map or list. When a column is mapped to a JSON map or list, the syntax is as
shown in the following examples:

"messageDetail” : { "column" : "messagedetail", "type" : "JSON_MAP" }

or

"roles": { "column" : "roles", "type" : "JSON LIST" }

5.3. Configuring SSL with a JDBC Repository

To configure SSL with a JDBC repository, you need to import the CA certificate file for the server
into the OpenIDM truststore. That certificate file could have a name like ca-cert.pem. If you have a
different genuine or self-signed certificate file, substitute accordingly.

To import the CA certificate file into the OpenIDM truststore, use the keytool command native to the
Java environment, typically located in the /path/to/jre-version/bin directory. On some UNIX-based
systems, /usr/bin/keytool may link to that command.

Procedure 5.1. Preparing OpenlDM for SSL with a JDBC Repository

1. Import the ca-cert.pem certificate into the OpenIDM truststore file with the following command:

$ keytool \
-importcert \
-trustcacerts \
-file ca-cert.pem \
-alias "DB cert" \
-keystore /path/to/openidm/security/truststore

2. Open the repository configuration file, repo.jdbc.json.

Look for the "jdbcUrl" properties. You should see a jdbc URL. Add a
?characterEncoding=utf8&useSSL=true to the end of that URL.

The "jdbcurl" that you configure depends on your JDBC repository. The following entries
correspond to appropriate "jdbcURL" properties for MySQL, MSSQL, PostgreSQL, and Oracle DB,
respectively.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 64

Managing the OpenlDM Repository

(" FORGEROCK Configuring SSL with a JDBC Repository

"jdbcUrl" : "jdbc:mysql://localhost:3306/openidm?characterEncoding=utf8&useSSL=true"

"jdbcUrl" : "jdbc:sqlserver://localhost:1433;instanceName=default;
databaseName=openidm;applicationName=0penIDM?characterEncoding=utf8&useSSL=true"

"jdbcUrl" : "jdbc:postgresql://localhost:5432/openidm"

"jdbcUrl" : "jdbc:oracle:thin:@//localhost:1521/openidm?characterEncoding=utf8&useSSL=true"

3. Open the /path/to/openidm/conf/config.properties file. Find the org.osgi.framework.bootdelegation
property. Make sure that property includes a reference to the javax.net.ssl option. If you started
with the default version of config.properties that line should now read as follows:

org.osgi.framework.bootdelegation=sun.*,com.sun.*,apple.*,com.apple.*,javax.net.ssl

4. Open the /path/to/openidm/conf/system.properties file. Add the following line to that file. If
appropriate, substitute the path to your own truststore:

Set the truststore
javax.net.ssl.trustStore=/path/to/openidm/security/truststore

Even if you are setting up this instance of OpenIDM as part of a cluster, you still need to
configure this initial truststore. After this instance joins a cluster, the SSL keys in this particular
truststore are replaced. For more information on clustering, see Chapter 19, "Configuring
OpenIDM to Work in a Cluster".

5. + Ifyou are not using MySQL, you're done!

» Ifyou are including MySQL as a repository, you need to take the following additional steps to
add the client certificate and key to the OpenIDM keystore:

* Create the client certificate file, client.packet, with the following command:

$ openssl \
pkcsl2 \
-export \
-inkey client-key.pem \
-in client-cert.pem \
-out client.packet

In this case, the openssl command imports a client key, client-key.pem, with input data from
the same file, exporting output to a client certificate file named client.packet, in PKCS12
format.

* You can then add the client certificate to the OpenIDM keystore with the following command:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 65

Managing the OpenlDM Repository

(" FORGEROCK' Interacting With the Repository Over REST

$ keytool \
-importkeystore \
-srckeystore client.packet \
-srcstoretype pkcsl2 \
-destkeystore /path/to/openidm/security/keystore.jceks \
-storetype JCEKS

5.4. Interacting With the Repository Over REST

The OpenIDM repository is accessible over the REST interface, at the openidm/repo endpoint.

In general, you must ensure that external calls to the openidm/repo endpoint are protected. Native
queries and free-form command actions on this endpoint are disallowed by default, as the endpoint
is vulnerable to injection attacks. For more information, see Section 5.4.2, "Running Queries and
Commands on the Repository".

5.4.1. Changing the Repository Password

In the case of an embedded OrientDB repository, the default username and password are admin and
admin. You can change the default password, by sending the following POST request on the repo
endpoint:
$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/openidm/repo?_action=updateDbCredentials&user=admin&password=newPassword"

You must restart OpenIDM for the change to take effect.

5.4.2. Running Queries and Commands on the Repository

Free-form commands and native queries on the repository are disallowed by default and should
remain so in production to reduce the risk of injection attacks.

Common filter expressions, called with the queryFilter keyword, enable you to form arbitrary queries
on the repository, using a number of supported filter operations. For more information on these

filter operations, see Section 7.3.4, "Constructing Queries". Parameterized or pre-defined queries
and commands (using the queryId and commandId keywords) can be authorized on the repository for
external calls if necessary. For more information, see Section 7.3.2, "Parameterized Queries".

Running commands on the repository is supported primarily from scripts. Certain scripts that interact
with the repository are provided by default, for example, the scripts that enable you to purge the
repository of reconciliation audit records.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 66

’ Managing the OpenlDM Repository
‘,' FORGEROCK' Running Queries and Commands on the Repository

You can define your own commands, and specify them in the repository configuration file (either
repo.orientdb.json Or repo.jdbc.json). In the following simple example, a command is called to clear out
UI notification entries from the repository, for specific users.

The command is defined in the repository configuration file, as follows:

"commands" : {
"delete-notifications-by-id" : "DELETE FROM ui_notification WHERE receiverId = ${username}"

3,
The command can be called from a script, as follows:

openidm.action("repo/ui/notification", "command", {},
{ "commandId" : "delete-notifications-by-id", "userName" : “"scarter"});

Exercise caution when allowing commands to be run on the repository over the REST interface, as
there is an attached risk to the underlying data.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 67

Configuring OpeniDM

(" FORGEROCK' OpenIDM Configuration Objects

Chapter 6

Configuring OpenlDM

OpenIDM configuration is split between .properties and container configuration files, and also
dynamic configuration objects. The majority of OpenIDM configuration files are stored under openidm/
conf/, as described in Appendix A, "File Layout".

OpenlIDM stores configuration objects in its internal repository. You can manage the configuration by
using either the REST access to the configuration objects, or by using the JSON file based views.

6.1. OpenIDM Configuration Objects

OpenIDM exposes internal configuration objects in JSON format. Configuration elements can be
either single instance or multiple instance for an OpenIDM installation.
Single Instance Configuration Objects

Single instance configuration objects correspond to services that have at most one instance per
installation.

JSON file views of these configuration objects are named object-name.json.

* The audit configuration specifies how audit events are logged.

* The authentication configuration controls REST access.

* The cluster configuration defines how one OpenIDM instance can be configured in a cluster.
* The endpoint configuration controls any custom REST endpoints.

» The info configuration points to script files for the customizable information service.

* The managed configuration defines managed objects and their schemas.

* The policy configuration defines the policy validation service.

* The process access configuration defines access to any configured workflows.

* The repo.repo-type configuration such as repo.orientdb or repo.jdbc configures the internal repository.
» The router configuration specifies filters to apply for specific operations.

* The script configuration defines default and custom configuration directories.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 68

’ Configuring OpenIDM
‘,' FORGEROCK Changing the Default Configuration

* The sync configuration defines the mappings that OpenIDM uses when synchronizing and
reconciling managed objects.

* The ui configuration defines the configurable aspects of the default user interface.

* The workflow configuration defines the configuration of the workflow engine.

Multiple Instance Configuration Objects
Multiple instance configuration objects correspond to services that can have many instances per
installation. Configuration objects are named objectname/instancename, for example, provisioner.openicf/

xml.

JSON file views of these configuration objects are named objectname-instancename.json, for example,
provisioner.openicf-xml.json.

» Multiple schedule configurations can run reconciliations and other tasks on different schedules.
* Multiple provisioner.openicf configurations correspond to the resources connected to OpenIDM.

* Multiple servietfilter configurations can be used for different servlet filters such as the Cross
Origin and GZip filters.

6.2. Changing the Default Configuration

When you change OpenIDM's configuration objects, take the following points into account.

* OpenIDM's authoritative configuration source is the internal repository. JSON files provide a view
of the configuration objects, but do not represent the authoritative source.

OpenIDM updates JSON files after making configuration changes, whether those changes are made
through REST access to configuration objects, or through edits to the JSON files.

* OpenIDM recognizes changes to JSON files when it is running. OpenIDM must be running when
you delete configuration objects, even if you do so by editing the JSON files.

* Avoid editing configuration objects directly in the internal repository. Rather edit the configuration
over the REST API, or in the configuration JSON files to ensure consistent behavior and that
operations are logged.

* OpenlDM stores its configuration in the internal database by default. If you remove an OpenIDM
instance and do not specifically drop the repository, the configuration remains in effect for a new
OpenIDM instance that uses that repository. For testing or evaluation purposes, you can disable
this persistent configuration in the conf/system.properties file by uncommenting the following line:

openidm.config.repo.enabled=false

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 69

’ Configuring OpenIDM
‘,' FORGEROCK' Configuring an OpenIDM System for Production

Disabling persistent configuration means that OpenIDM will store its configuration in memory only.
You should not disable persistent configuration in a production environment.

6.3. Configuring an OpenlDM System for Production

Out of the box, OpenIDM is configured to make it easy to install and evaluate. Specific configuration
changes are required before you deploy OpenIDM in a production environment.

6.3.1. Configuring a Production Repository

By default, OpenIDM uses OrientDB for its internal repository so that you do not have to install a
database in order to evaluate OpenIDM. Before you use OpenIDM in production, you must replace
OrientDB with a supported repository.

For more information, see Chapter 4, "Installing a Repository For Production" in the Installation
Guide.

6.3.2. Disabling Automatic Configuration Updates

By default, OpenIDM polls the JSON files in the conf directory periodically for any changes to the
configuration. In a production system, it is recommended that you disable automatic polling for
updates to prevent untested configuration changes from disrupting your identity service.

To disable automatic polling for configuration changes, edit the conf/system.properties file by
uncommenting the following line:

openidm.fileinstall.enabled=false

This setting also disables the file-based configuration view, which means that OpenIDM reads its
configuration only from the repository.

Before you disable automatic polling, you must have started the OpenIDM instance at least once to
ensure that the configuration has been loaded into the repository.

Note if automatic polling is enabled, changes to scripts that are called from a JSON configuration file
are taken into account immediately.

6.4. Configuring OpenIDM Over REST

OpenIDM exposes configuration objects under the /openidm/config context path.

You can list the configuration on the local host by performing a GET https://localhost:8443/openidm/
config. The following example shows excerpts of the default configuration for an OpenIDM instance
started with Sample 1.

$ curl \

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 70

’ Configuring OpeniDM
‘,' FORGEROCK' Configuring OpenIDM Over REST

--request GET \

--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--cacert self-signed.crt \
https://localhost:8443/openidm/config

{
"configurations": [

{
"factoryPid": "servletfilter",
"pid": "servletfilter.ec099f08-bfd4-4ab4-8537-78e5b956c7cc",
" id": "servletfilter/gzip"

}

{
"factoryPid": null,
"pid": "router",
" id": "router"

}

{
"factoryPid": "endpoint",
"pid": "endpoint.7e9ec068-bb4a-4fa0-ael5-1706bb4a3ad7",
" id": "endpoint/jqgrid"

}

{
"factoryPid": "endpoint",
"pid": "endpoint.47978983-0411-425d-8f53-4022175el46a",
" id": "endpoint/gettasksview"

}

{
"factoryPid": "ui",
"pid": "ui.blGeb4cb-83e3-4a4b-9d29-d91d90eb3053",
" id": "ui/countries"

}

{
"factoryPid": "process",
"pid": "process.9863529c-60e0-42e3-b5d5-c5c704016e95",
" id": "process/access"

}

}

Single instance configuration objects are located under openidm/config/object-name. The following
example shows the default audit configuration.
$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
"https://localhost:8443/openidm/config/audit"

"eventTypes": {

"recon": {},
"activity": {
"filter": {

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 71

’ Configuring OpenIDM
‘,' FORGEROCK' Configuring OpenIDM Over REST

"actions": [
"create",
"update",
"delete",
"patch",
"action"

I

|
"passwordFields": [
"password"
1,
"watchedFields": []
}
1,
"exceptionFormatter": {
"file": "bin/defaults/script/audit/stacktraceFormatter.js",
"type": "text/javascript"

1,
"logTo": [
{
"recordDelimiter": ";",
"logType": "csv",
"location": "audit"
}
{
"useForQueries": true,
"logType": "repository"
}
1

Multiple instance configuration objects are found under openidm/config/object-name/instance-name.

The following example shows the configuration for the XML connector provisioner, based on the first
IDM sample described in Chapter 2, "First OpenIDM Sample" in the Installation Guide.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
"https://localhost:8443/openidm/config/provisioner.openicf/xml"
{
"operationTimeout": {
"SCRIPT ON_CONNECTOR": -1,
"VALIDATE": -1,

"SYNC": -1,
"DELETE": -1,
"TEST": -1,
"UPDATE": -1,
"CREATE": -1,
"AUTHENTICATE": -1,
"SEARCH": -1,
"GET": -1,
"SCRIPT ON_RESOURCE": -1,
"SCHEMA": -1

1,

"connectorRef": {
"connectorName": "org.forgerock.openicf.connectors.xml.XMLConnector",

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 72

’ Configuring OpenIDM
‘,' FORGEROCK' Configuring OpenIDM Over REST

"bundleVersion": "1.1.0.2",
"bundleName": "org.forgerock.openicf.connectors.xml-connector"
1,
"connectorPoolingSupported": true,
"syncFailureHandler": {
"maxRetries": 5,
"postRetryAction": "logged-ignore"
1,
"configurationProperties": {
"xsdFilePath": "samples/samplel/data/resource-schema-extension.xsd",
"xsdIcfFilePath": "samples/samplel/data/resource-schema-1.xsd",
"xmlFilePath": "samples/samplel/data/xmlConnectorData.xml"
1,
"objectTypes": {
"account": {
"nativeType": " ACCOUNT_ ",
"$schema": "http://json-schema.org/draft-03/schema",
"type": "object",
"properties": {
"securityAnswer": {
"nativeType": "string",
"nativeName": "securityAnswer",
"required": true,
"type": "string"

I

"securityQuestion": {
"nativeType": "string",
"nativeName": "securityQuestion",
"required": true,
"type": "string"

I

"password": {
"nativeType": "string",
"nativeName": "password",
"type": "string"

I

"mobileTelephoneNumber": {
"nativeType": "string",
"nativeName": "mobileTelephoneNumber",
"required": true,
"type": "string"

I

"oid": {
"nativeName": " UID ",
"type": "string"

I

"email": {
"nativeType": "string",
"nativeName": "email",
"type": "string"

I

"description": {
"nativeType": "string",
"nativeName": " DESCRIPTION ",
"type": "string"

I

"name": {
"nativeType": "string",
"nativeName": " NAME_ ",

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 73

Configuring OpeniDM

(" FORGEROCK' Configuring OpenIDM Over REST

"required": true,
"type": "string"

I

"roles": {

"nativeType": "string",
"nativeName": "roles",
"required": false,
"type": "string"

}

"lastname": {
"nativeType": "string",
"nativeName": "lastname",
"required": true,
"type": "string"

+

"firstname": {
"nativeType": "string",
"nativeName": "firstname",
"type": "string"

}

+
"id": " ACCOUNT "
}
1,
"operationOptions": {},
"name": "xmlfile",

"producerBufferSize": 100,
"poolConfigOption": {
"maxObjects": 10,
"minEvictableIdleTimeMillis": 120000,

"maxIdle": 10,
"minIdle": 1,
"maxWait": 150000
}
}

You can change the configuration over REST by using an HTTP PUT request to modify the required
configuration object. Note that HTTP PATCH is not supported on the /config endpoint.

The following example modifies the router.json file to remove all filters, effectively bypassing any
policy validation.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 74

’ Configuring OpeniDM
‘,' FORGEROCK Using Property Value Substitution in the Configuration

$ curl \

--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request PUT \
--data '{

"filters" : [

"onRequest" : {
"type" : "text/javascript",
"file" : "bin/defaults/script/router-authz.js"
}
}
1
AN

"https://localhost:8443/openidm/config/router"
"filters": [

"onRequest": {
"file": "bin/defaults/script/router-authz.js",
"type": "text/javascript"
}
}
]
}

For more information about using the REST API to update objects, see Appendix E, "REST API
Reference".

6.5. Using Property Value Substitution in the Configuration

In an environment where you have more than one OpenIDM instance, you might require a
configuration that is similar, but not identical, across the different OpenIDM hosts. OpenIDM
supports variable replacement in its configuration which means that you can modify the effective
configuration according to the requirements of a specific environment or OpenIDM instance.

Property substitution enables you to achieve the following:

* Define a configuration that is specific to a single OpenIDM instance, for example, setting the
location of the keystore on a particular host.

* Define a configuration whose parameters vary between different environments, for example, the
URLs and passwords for test, development, and production environments.

» Disable certain capabilities on specific nodes. For example, you might want to disable the workflow
engine on specific instances.

When OpenlIDM starts up, it combines the system configuration, which might contain specific
environment variables, with the defined OpenIDM configuration properties. This combination makes

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 75

’ Configuring OpenIDM
‘,' FORGEROCK Using Property Value Substitution With System Properties

up the effective configuration for that OpenIDM instance. By varying the environment properties, you
can change specific configuration items that vary between OpenIDM instances or environments.

Property references are contained within the construct &{ }. When such references are found,
OpenIDM replaces them with the appropriate property value, defined in the boot.properties file.

Example 6.1.

The following example defines two separate OpenIDM environments - a development environment
and a production environment. You can specify the environment at startup time and, depending on
the environment, the database URL is set accordingly.
The environments are defined by adding the following lines to the conf/boot.properties file:

PROD. location=production

DEV.location=development

The database URL is then specified as follows in the repo.orientdb.json file:

"dbUrl" : "plocal:./db/&{&{environment}.location}-openidm",

The effective database URL is determined by setting the oPENIDM 0PTS environment variable when you
start OpenIDM. To use the production environment, start OpenIDM as follows:

$ export OPENIDM OPTS="-Xmx1024m -Xms1024m -Denvironment=PROD"
$./startup.sh

To use the development environment, start OpenIDM as follows:

$ export OPENIDM OPTS="-Xmx1024m -Xms1024m -Denvironment=DEV"
$./startup.sh

6.5.1. Using Property Value Substitution With System Properties

You can use property value substitution in conjunction with the system properties, to modify the
configuration according to the system on which the OpenIDM instance runs.

Example 6.2. Custom Audit Log Location

The following example modifies the audit.json file so that the log file is written to the user's directory.
The user.home property is a default Java System property.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 76

’ Configuring OpenIDM
‘,' FORGEROCK' Limitations of Property Value Substitution

{
"logTo" : [
"logType" : "csv",
"location" : "&{user.home}/audit",
“recordDelimiter" : ";"
}
1
}

You can define nested properties (that is a property definition within another property definition) and
you can combine system properties and boot properties.

Example 6.3.

The following example uses the user.country property, a default Java System property. The example
defines specific LDAP ports, depending on the country (identified by the country code) in the boot
.properties file. The value of the LDAP port (set in the provisioner.openicf-1ldap.json file) depends on the
value of the user.country System property.

The port numbers are defined in the boot.properties file as follows:

openidm.NO.ldap.port=2389
openidm.EN.ldap.port=3389
openidm.US.ldap.port=1389

The following extract from the provisioner.openicf-ldap.json file shows how the value of the LDAP port
is eventually determined, based on the System property:

"configurationProperties" :

{
"credentials" : "PasswOrd",
"port" : "&{openidm.&{user.country}.ldap.port}",
“"principal™ : “cn=Directory Manager",
"baseContexts" :
[
"dc=example,dc=com"
"host" : "localhost"
}

6.5.2. Limitations of Property Value Substitution
Note the following limitations when you use property value substitution:

* You cannot reference complex objects or properties with syntaxes other than String. Property
values are resolved from the boot.properties file or from the System properties and the value of
these properties is always in String format.

Property substitution of boolean values is currently only supported in stringified format, that is,
resulting in "true" or "false".

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 77

’, . _Configuring OpenI_DM
" FORGEROCK Adding Custom Endpoints

» Substitution of encrypted property values is currently not supported.

6.6. Adding Custom Endpoints

You can customize OpenIDM to meet the specific requirements of your deployment by adding your
own RESTful endpoints. Endpoints are configured in files named conf/endpoint-name.json, where name
generally describes the purpose of the endpoint.

A sample custom endpoint configuration is provided in the openidm/samples/customendpoint directory. The
use of this sample is described in Section 6.6.6, "Custom Endpoint Example". Custom endpoints in
OpenIDM can be written either in JavaScript or Groovy. The sample includes three files:

conf/endpoint-echo.json

Provides the configuration for the endpoint.
script/echo.js

Supports an endpoint script written in JavaScript.
script/echo.groovy

Supports an endpoint script written in Groovy.

Endpoint configuration files have a certain structure. They may cite scripts written in JavaScript or
Groovy.

The cited scripts include defined request and context global variables.

6.6.1. The Components of an Endpoint Configuration File

The sample custom endpoint configuration (/path/to/openidm/samples/customendpoint/conf/endpoint-
echo.json) depicts a typical endpoint, configured to use a Groovy script that is specified in the script/
echo.groovy file. The structure of the sample configuration is as follows:

{
"file" : "echo.groovy",
"type" : "groovy",
" _file" : "echo.js",
" _type" : "text/javascript"
}

The " file" and " type" properties are comments, which you can change to accommodate an endpoint
written in JavaScript.

If appropriate, you can also include a context property in this file. The following example shows how
the context is used to display routing to an endpoint.

"context" : "endpoint/echo",

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 78

’ Configuring OpenIDM
‘,' FORGEROCK Context Component Access Methods

The endpoint configuration can specify the route on which the endpoint is available. For an example,
look at the conf/endpoint-linkedView.json file. The code shown declares the route on which the endpoint
is available.

“context": “endpoint/linkedView/*",
“type" : “text/javascript",
"source" : “require('linkedView').fetch(request.resourceName);"

}

The following list describes each property in the custom endpoint configuration file:
“type”

string, required

Specifies the type of script to be executed. Supported types include "text/javascript" and "groovy".
"file" Or "source"

The actual script, inline, or a path to the file that contains the script. The script files associated
with this sample, echo.js and echo.groovy, support requests using all ForgeRock RESTful CRUD
operations (including PATCH, ACTION, and QUERY).

context

Requests are dispatched, routed, handled, processed, and more, in a context.

6.6.2. Context Component Access Methods

For both JavaScript and Groovy, the context consists of a chain of structures that provide different
levels of detail. The detail varies depending on the context type:

security

Provides authentication / authorization data.
http

Provides data from the HTTP request.
router

Provides data on where the information is sent.

JavaScript and Groovy access these context structures in different ways. The term shown is the
JavaScript access method; the definition includes the Groovy access method.

context.current

In Groovy, known simply as context

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 79

’ Configuring OpenIDM
‘,' FORGEROCK' Custom Endpoints and request Objects

The current context in which the request is handled by a script or a script-hook.
context.http
In Groovy, known as one of the following:

context.asContext(org.forgerock.json.resource.servlet.HttpContext.class)
context.getContext("http")

The HTTP context.

context.security
In Groovy, known as one of the following:

context.asContext(org.forgerock.json.resource.SecurityContext.class)
context.getContext("security")

The security context.

6.6.3. Custom Endpoints and request Objects

The endpoint configuration file specifies a script (either inline with the "source" property, or in a
referenced file with the "file" property). The script is invoked with a global request variable in its
scope.

All processes within OpenIDM are initiated with a request. Requests can come either from the REST
API, as shown in Appendix E, "REST API Reference", or internally, from a script, using the openidnm
router object, as described in Appendix G, "Router Service Reference". Regardless of how the process
is initiated, the details of the request are represented in the same way - within an object named
request.

Most request types include a complex object that stores the details required for that particular
request. For example, when you start an action process over the REST interface, you might want to
include certain detailed information for that action. You include this information as a JSON string in
the POST body. The HTTP request header Content-type describes this string as application/json.

Consider the following REST request:

$ curl \
--cacert self-signed.crt \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request POST \
--data { "name": "bob"} \
"https://localhost:8443/openidm/endpoint/test?_action=myAction"

This request includes the string '{ "name": "bob"}' as the HTTP post body. OpenIDM expects this to be
a JSON string, and will deserialize it into an object. The object is accessed using request.content.

Depending on the type of request, the associated content may include the following properties:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 80

’ Configuring OpenIDM
‘,' FORGEROCK Custom Endpoints, Contexts, and Chains

method

The requested operation, which may be create, read, update, delete, patch, query Or action.
resourceName

The local identifier, without the endpoint/ prefix, such as echo.
newResourceId

An identifier associated with a new resource, associated with the create method.
additionalParameters

The sample code returns request parameters from an HTTP GET with ?param=x, as "params":
{"param":"x"}.

revision

The revision level associated with the method used, relative to a newrResourceId.
content

Content based on the latest version of the object, using getobject.
context

Based on a JSON object that contains nested attributes. The object with the attributes, defines
the request, based on the operations listed in Section E.4, "Supported Operations".

6.6.4. Custom Endpoints, Contexts, and Chains

Custom endpoints include contexts that may be wrapped in various layers, analogous to the way
network packets can be wrapped at ascending network levels.

As an example, start with a request such as the following:
GET https://localhost:8443/openidm/endpoint/echo?queryId=query-all-ids& para=foo

A request at an endpoint starts with a root context, associated with a specific context ID, and the org
.forgerock.json.resource.RootContext context.

The root context is wrapped in the security context that holds the authentication and authorization
detail for the request. The associated class is org.forgerock.json.resource.SecurityContext, with an
authenticationId user name such as openidm-admin, and associated roles such as openidm-authorized.

That security context is further wrapped by the HTTP context, with the target URI. The class is org
.forgerock.json.resource.HttpContext, and it is associated with the normal parameters of a REST call,
including a user agent, authorization token, and method.

The HTTP context is then further wrapped by one or more server / router context(s). That class is org
.forgerock.json.resource.RouterContext, with an endpoint URI. You may see several layers of server and
router contexts.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 81

’ Configuring OpenIDM
‘,' FORGEROCK' Additional Custom Endpoint Parameters

6.6.5. Additional Custom Endpoint Parameters

A couple of additional parameters are shown with the query request method. You can review how this
works in Section 3.5, "Sample 2c - Synchronizing LDAP Group Membership" in the Installation Guide.

The final statement in the script is the return value. In the following example, there is no return
keyword, and the value of the last statement (x) is returned.

var x = "Sample return";
functioncall();
X

6.6.6. Custom Endpoint Example

The following example uses the sample provided in the openidm/samples/customendpoint directory, copied
to the openidm/conf and openidm/script directories. The output from the query shows the complete
request structure.

$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--request GET \
"https://localhost:8443/openidm/endpoint/echo?_queryId=query-all-ids"

{

"result" : [{
"method" : "query",
"resourceName" : "",
"pagedResultsCookie" : null,
"pagedResultsOffset" : 0,
"pageSize" : 0,

"queryExpression" : null,
"queryId" : "query-all-ids",
"queryFilter" : "null",
"parameters" : { },
"context" : {
"parent" : {
"parent" : {
"parent" : {
"parent" : {
"parent" : {
"parent" : null,
"contextName" : "root",
"rootContext" : true,
"id" : "43576021-fe54-4468-8d10-09bl4af2a36d"
H
"contextName" : "security",
"authenticationId" : "openidm-admin",
"authorizationId" : {
"id" : "openidm-admin",
"component" : "repo/internal/user",
"roles" : ["openidm-admin", "openidm-authorized"]
H
"rootContext" : false,

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 82

’ Configuring OpenIDM
‘,' FORGEROCK' Default and Custom Configuration Directories

"id" : "43576021-fe54-4468-8d10-09bl4af2a36d"
H
"headers" : {
"X-0penIDM-Username" : ["openidm-admin" 1],
"Host" : ["localhost:8443" 1],
"Accept" : ["¥/*"],
"X-0penIDM-Password" : ["openidm-admin" 1],
"User-Agent" : ["curl/7.19.7 (x86_64-redhat-linux-gnu)
libcurl/7.19.7 NS5/3.14.0.0 z1lib/1.2.3 1libidn/1.18
libssh2/1.4.2"]
H
"parameters" : {
" queryId" : ["query-all-ids"],
" prettyPrint" : ["true"]
H
"external" : true,
"contextName" : "http",
"method" : "GET",
"path" : "https://localhost:8443/openidm/endpoint/echo",
"rootContext" : false,
"id" : "43576021-fe54-4468-8d10-09bl4af2a36d"
H
"contextName" : "apiInfo",
"apiVersion" : "2.3.1-SNAPSHOT",
"apiName" : "org.forgerock.commons.json-resource-servlet",
"rootContext" : false,
"id" : "43576021-fe54-4468-8d10-09bl4af2a36d"
+
"contextName" : "server",
"rootContext" : false,
"id" : "43576021-fe54-4468-8d10-09b14af2a36d"
|
"uriTemplateVariables" : { },
"contextName" : "router",
"matchedUri" : "endpoint/echo",
"baseUri" : "endpoint/echo",
"rootContext" : false,
"id" : "43576021-fe54-4468-8d10-09b1l4af2a36d"
}
1
"resultCount" : 1,
"pagedResultsCookie" : null,
"remainingPagedResults" : -1

}

You must protect access to any custom endpoints by configuring the appropriate authorization for
those contexts. For more information, see Section 15.7, "Authorization" section.

6.7. Default and Custom Configuration Directories

You can set up custom configuration files in directories as defined in the openidm/conf/script.json file.

The following portion of the script.json file points to sources in installation and project directories.
As described in Section 2.2, "Specifying the OpenIDM Startup Configuration", the launcher.project
.location is the directory cited if you start OpenIDM with a specific project directory.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 83

’ Configuring OpenIDM
‘,' FORGEROCK' Default and Custom Configuration Directories

"sources" : {

"default" : {
"directory" : "&{launcher.install.location}/bin/defaults/script"
¥,
"install" : {
"directory" : "&{launcher.install.location}"
¥
"project" : {
"directory" : "&{launcher.project.location}"
¥
"project-script" : {
"directory" : "&{launcher.project.location}/script"

}

For example, if you start OpenIDM from the /path/to/openidm directory with the following command:
$./startup.sh -p /path/to/openidm/customconfig

The launcher.project.location directory would be /path/to/openidm/customconfig.
The script.json file also refers to a launcher.install.location directory, which is /path/to/openidm.

Thus, based on the way the script.json file is configured for project and project-script, you can add
custom configuration and script files to the /path/to/openidm/customconfig and the /path/to/openidm/
customconfig/script directories.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 84

Accessing Data Objects

(" FORGEROCK' Accessing Data Objects by Using Scripts

Chapter 7

Accessing Data Objects

OpenIDM supports a variety of objects that can be addressed via a URL or URI. You can access data
objects by using scripts (through the Resource API) or by using direct HTTP calls (through the REST
API).

The following sections describe these two methods of accessing data objects, and provide information
on constructing and calling data queries.

7.1. Accessing Data Objects by Using Scripts

OpenIDM's uniform programming model means that all objects are queried and manipulated in the
same way, using the Resource API. The URL or URI that is used to identify the target object for an
operation depends on the object type. For an explanation of object types, see Appendix C, "Data
Models and Objects Reference". For more information about scripts and the objects available to
scripts, see Appendix F, "Scripting Reference".

You can use the Resource API to obtain managed objects, configuration objects, and repository
objects, as follows:

val = openidm.read("managed/organization/mysampleorg")
val = openidm.read("config/custom/mylookuptable")
val = openidm.read("repo/custom/mylookuptable")

For information about constructing an object ID, see Section E.1, "URI Scheme".

You can update entire objects with the update() function, as follows.

openidm.update("managed/organization/mysampleorg", mymap)
openidm.update("config/custom/mylookuptable", mymap)
openidm.update("repo/custom/mylookuptable", mymap)

For managed objects, you can partially update an object with the patch() function.

openidm.patch("managed/organization/mysampleorg", rev, value)

The create(), delete(), and query() functions work the same way.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 85

Accessing Data Objects

(" FORGEROCK Accessing Data Objects by Using the REST API

7.2. Accessing Data Objects by Using the REST API

OpenIDM provides RESTful access to data objects via a REST API. To access objects over REST, you
can use a browser-based REST client, such as the Simple REST Client for Chrome, or RESTClient for
Firefox. Alternatively you can use the curl command-line utility.

For a comprehensive overview of the REST API, see Appendix E, "REST API Reference".

To obtain a managed object through the REST API, depending on your security settings and
authentication configuration, perform an HTTP GET on the corresponding URL, for example https://
localhost:8443/openidm/managed/organization/mysampleorg.

By default, the HTTP GET returns a JSON representation of the object.

7.3. Defining and Calling Queries

OpenIDM supports an advanced query model that enables you to define queries, and to call them
over the REST or Resource API. Three types of queries are supported, on both managed, and system
objects:

¢ Common filter expressions
* Parameterized, or predefined queries
* Native query expressions

Each of these mechanisms is discussed in the following sections.

7.3.1. Common Filter Expressions

The ForgeRock REST API defines common filter expressions, that enable you to form arbitrary
queries using a number of supported filter operations. This query capability is the standard way to
query data if no predefined query exists, and is supported for all managed and system objects.

Common filter expressions are useful in that they do not require knowledge of how the object is
stored and do not require additions to the repository configuration.

Common filter expressions are called with the queryFilter keyword. The following example uses a
common filter expression to retrieve managed user objects whose user name is Smith.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
"https://localhost:8443/openidm/managed/user? queryFilter=userName%20eq%20%22smith%22"

The filter is URL encoded in this example. The corresponding filter using the resource API would be:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 86

http://curl.haxx.se/

Accessing Data Objects

(" FORGEROCK Parameterized Queries

openidm.query("managed/user", { " _queryFilter" : '/userName eq "smith"' });

Note that, this JavaScript invocation is internal and is not subject to the same URL-encoding
requirements that a GET request would be. Also, because JavaScript supports the use of single
quotes, it is not necessary to escape the double quotes in this example.

For a list of supported filter operations, see Section 7.3.4, "Constructing Queries".

Note that using common filter expressions to retrieve values from arrays is currently not supported.
If you need to search within an array you should set up a predefined (parameterized) in your
repository configuration. For more information, see Section 7.3.2, "Parameterized Queries".

7.3.2. Parameterized Queries

Managed objects in the supported OpenIDM repositories can be accessed using a parameterized
query mechanism. Parameterized queries on repositories are defined in the repository configuration
(repo.*.json) and are called by their queryId.

Parameterized queries provide precise control over the query that is executed. Such control might be
useful for tuning, or for performing database operations such as aggregation (which is not possible
with a common filter expression.)

Parameterized queries provide security and portability for the query call signature, regardless of the
back-end implementation. Queries that are exposed over the REST interface must be parameterized
queries to guard against injection attacks and other misuse. Queries on the officially supported
repositories have been reviewed and hardened against injection attacks.

For system objects, support for parameterized queries is restricted to queryId=query-all-ids. There
is currently no support for user-defined parameterized queries on system objects. Typically,
parameterized queries on system objects are not called directly over the REST interface, but are
issued from internal calls, such as correlation queries.

A typical query definition is as follows:

"query-all-ids" : "select openidm id from ${unquoted: resource}"

To call this query, you would reference its ID, as follows:

? queryId=query-all-ids

The following example calls query-all-ids over the REST interface:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
"https://localhost:8443/openidm/managed/user? queryId=query-all-ids"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 87

Accessing Data Objects

(" FORGEROCK' Native Query Expressions

7.3.3. Native Query Expressions

Native query expressions are supported for all managed objects and system objects, and can be
called directly, rather than being defined in the repository configuration.

Native queries are intended specifically for internal callers, such as custom scripts, and should be
used only in situations where the common filter or parameterized query facilities are insufficient. For
example, native queries are useful if the query needs to be generated dynamically.

The query expression is specific to the target resource. For repositories, queries use the native
language of the underlying data store. For system objects that are backed by OpenICF connectors,
queries use the applicable query language of the system resource.

Native queries on the repository are made using the queryExpression keyword. For example:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
"https://localhost:8443/openidm/managed/user? queryExpression=select+from+managed user"

Unless you have specifically enabled native queries, the previous command returns a 403 access
denied error message. Native queries should not be enabled in production environments, as they are
not portable and do not guard against injection attacks.

Such query expressions should therefore not be used or made accessible over the REST interface

or over HTTP, other than for development, and should be used only via the internal Resource API. If
you want to enable such native queries for development, see Section 16.2.7, "Protect Sensitive REST
Interface URLs".

Alternatively, if you really need to expose native queries over HTTP, in a selective manner, you can
design a custom endpoint to wrap such access.

7.3.4. Constructing Queries

The openidm.query function enables you to query OpenIDM managed and system objects. The query
syntax is openidm.query(id, params), where id specifies the object on which the query should be
performed and params provides the parameters that are passed to the query, either queryFilter or
_queryID. For example:

var params = {
'_queryFilter' : ‘'givenName co "' + sourceCriteria + '" or ' + 'sn co "'
+ sourceCriteria + '"'
I

var results = openidm.query("system/ScriptedSQL/account", params)

Over the REST interface, the query filter is specified as queryFilter=filter, for example:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 88

Accessing Data Objects

(" FORGEROCK Constructing Queries

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET
'https://localhost:8443/openidm/managed/user?_queryFilter=userName+eq+"Smith""'

When called over REST, you must URL encode the filter expression. The following examples show the
filter expressions using the resource API and the REST API, but do not show the URL encoding, to
make them easier to read.
Note that, for generic mappings, any fields that are included in the query filter (for example
userName in the previous query), must be explicitly defined as searchable, if you have set the global
searchableDefault to false. For more information, see Section 5.2.2, "Improving Search Performance for
Generic Mappings".
The filter expression is constructed from the building blocks shown in this section. In these
expressions the simplest json-pointer is a field of the JSON resource, such as userName or id. A json-
pointer can, however, point to nested elements as described in the JSON Pointer RFC.
Comparison expressions

The following examples show how you can build filters using comparison expressions.

json-pointer eq json-value

Matches when the pointer equals the value, for example:

"_queryFilter" : '/givenName eq "Dan"'

The following REST call returns the user name and given name of all managed users whose
first name (givenName) is "Dan".

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 89

http://tools.ietf.org/html/rfc6901

Accessing Data Objects

(" FORGEROCK' Constructing Queries

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
'https://localhost:8443/openidm/managed/user?_queryFilter=givenName+eq+"Dan"&_fields=userName
,givenName'
{
"remainingPagedResults": -1,
"pagedResultsCookie": null,
"resultCount": 3,

"result": [

{
"givenName": "Dan",
"userName": "dlangdon"

1

{
"givenName": "Dan",
"userName": "dcope"

1

{
"givenName": "Dan",
"userName": "dlanoway"

}

json-pointer co json-value

Matches when the pointer contains the value, for example:

" _queryFilter" : '/givenName co "smi"'

The following REST call returns the user name and given name of all managed users whose
first name (givenName) contains "Da".

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
'https://localhost:8443/openidm/managed/user?_queryFilter=givenName+co+"Da"&_ fields=userName
,givenName'
{
"remainingPagedResults": -1,
"pagedResultsCookie": null,
"resultCount": 10,

"result": [
{
"givenName": "Dave",
"userName": "djensen"
1,
{
"givenName": "David",
"userName": "dakers"
1,

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 920

’ Accessing Data Objects
‘,' FORGEROCK Constructing Queries
{
"givenName": "Dan",
"userName": "dlangdon"
1.
{
"givenName": "Dan",
"userName": "dcope"
1.
{
"givenName": "Dan",
"userName": "dlanoway"
1.
{
"givenName": "Daniel",
"userName": "dsmith"
}
}

json-pointer sw json-value

Matches when the pointer starts with the value, for example:

" _queryFilter" : '/sn sw "Jen"'

The following REST call returns the user names of all managed users whose last name (sn)
starts with "Jen".

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
'http://localhost:8443/openidm/managed/user?_queryFilter=sn+sw+"Jen"& fields=userName'

"remainingPagedResults": -1,
"pagedResultsCookie": null,
"resultCount": 4,

"result": [

{

"userName": "bjensen"
1,
{

"userName": "djensen"
1,
{

"userName": "cjenkins"
1,
{

"userName": "mjennings"
}

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 91

(/’ FORGEROCK

Accessing Data Objects
Constructing Queries

json-pointer 1t json-value

Matches when the pointer is less than the value, for example:

" _queryFilter" :

'/employeeNumber 1t 5000'

The following REST call returns the user names of all managed users whose employeeNumber is

lower than 5000.
$ curl \

--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \

--request GET \

'http://localhost:8443/openidm/managed/user?_queryFilter=employeeNumber+1t+5000& fields=userName

,employeeNumber'
"remainingPagedResults": -1,
"pagedResultsCookie": null,
"resultCount": 4999,
"result": [

{
"employeeNumber": 4907,
"userName": "jnorris"
1,
{
"employeeNumber": 4905,
"userName": "afrancis"
1,
{
"employeeNumber": 3095,
"userName": "twhite"
1,
{
"employeeNumber": 3921,
"userName": "abasson"
1,
{
"employeeNumber": 2892,
"userName": "dcarter"
}

json-pointer le json-value

Matches when the pointer is less than or equal to the value, for example:

" _queryFilter" :

'/employeeNumber le 5000'

The following REST call returns the user names of all managed users whose employeeNumber is

5000 or lower.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

92

Accessing Data Objects

(" FORGEROCK Constructing Queries

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
'http://localhost:8443/openidm/managed/user?_queryFilter=employeeNumber+le+5000& fields=userName
,employeeNumber'
{
"remainingPagedResults": -1,
"pagedResultsCookie": null,
"resultCount": 5000,

"result": [
{
"employeeNumber": 4907,
"userName": "jnorris"
1
{
"employeeNumber": 4905,
"userName": "afrancis"
1
{
"employeeNumber": 3095,
"userName": "twhite"
1
{
"employeeNumber": 3921,
"userName": "abasson"
1
{
"employeeNumber": 2892,
"userName": "dcarter"
}

json-pointer gt json-value

Matches when the pointer is greater than the value, for example:

" _queryFilter" : '/employeeNumber gt 5000'

The following REST call returns the user names of all managed users whose employeeNumber is
higher than 5000.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
'http://localhost:8443/openidm/managed/user?_queryFilter=employeeNumber+gt+5000& fields=userName
,employeeNumber'
{
"remainingPagedResults": -1,
"pagedResultsCookie": null,

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 93

Accessing Data Objects

(" FORGEROCK' Constructing Queries

"resultCount": 1458,

"result": [
{
"employeeNumber": 5003,
"userName": "agilder"
1,
{
"employeeNumber": 5011,
"userName": "bsmith"
1,
{
"employeeNumber": 5034,
"userName": "bjensen"
1,
{
"employeeNumber": 5027,
"userName": "cclarke"
1,
{
"employeeNumber": 5033,
"userName": "scarter"
}

json-pointer ge json-value

Matches when the pointer is greater than or equal to the value for example:

" _queryFilter" : '/employeeNumber ge 5000'

The following REST call returns the user names of all managed users whose employeeNumber is
5000 or higher.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
'http://localhost:8443/openidm/managed/user?_queryFilter=employeeNumber+ge+5000& fields=userName
,employeeNumber'
{
"remainingPagedResults": -1,
"pagedResultsCookie": null,
"resultCount": 1457,

"result": [

{
"employeeNumber": 5000,
"userName": "agilder"

1,

{
"employeeNumber": 5011,
"userName": "bsmith"

1,

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 94

Accessing Data Objects

(" FORGEROCK' Constructing Queries

"employeeNumber": 5034,
"userName": "bjensen"

"employeeNumber": 5027,
"userName": "cclarke"

"employeeNumber": 5033,
"userName": "scarter"

Presence expression

json-pointer pr matches any object in which the json-pointer is present, for example:

" _queryFilter" : '/mail pr'

The following REST call returns the mail addresses for all managed users who have a maitl
property in their entry.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
'http://localhost:8443/openidm/managed/user?_queryFilter=mail+pr&_fields=mail'

"remainingPagedResults": -1,
"pagedResultsCookie": null,
"resultCount": 2,

"result": [
{
"mail": "jdoe@exampleAD.com"
1,
{
"mail": "bjensen@example.com"
}

1
}

The presence filter is not currently supported for system objects. To query for presence on a
system object, specify any attribute that exists for all entries, such as the uid on an LDAP system,
and use the starts with (sw) filter, with an empty value. For example, the following query returns
the uid of all users in an LDAP system.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 95

Accessing Data Objects

(" FORGEROCK' Constructing Queries

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
'http://localhost:8443/openidm/system/ldap/account?_queryFilter=uid+sw+""&_ fields=uid'
{
"remainingPagedResults": -1,
"pagedResultsCookie": null,
"resultCount": 2,
"result": [

"uid": "jdoe"
Iy
{

"uid": "bjensen"
}
1
}

Literal expressions
true matches any object in the resource.
false matches no object in the resource.

For example, you can list the id of all managed objects as follows:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET
'https://localhost:8443/openidm/managed/user?_queryFilter=true&_ fields=_id'

"remainingPagedResults": -1,
"pagedResultsCookie": null,
"resultCount": 2,

"result": [
{
" id": "d2e29d5f-0d74-4d04-bcfe-bldaf508ad7c"
N
{
" id": "709fed03-897b-4ff0-8a59-6faaa34e3af6"
}

1
}

Complex expressions

You can combine expressions using the boolean operators and, or, and ! (not). The following
example queries managed user objects located in London, with last name Jensen.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 96

Accessing Data Objects

(" FORGEROCK' Paging Query Results

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
https://localhost:8443/openidm/managed/user?_queryFilter=city+eq+"London"+and+sn+eq
+"Jensen"&_fields=userName,givenName,sn'&_fields=userName'

{
"remainingPagedResults": -1,
"pagedResultsCookie": null,
"resultCount": 3,
"result": [
{
"sn": "Jensen",
"givenName": "Clive",
"userName": "cjensen"
1
{
"sn": "Jensen",
"givenName": "Dave",
"userName": "djensen"
1
{
"sn": "Jensen",
"givenName": "Margaret",
"userName": "mjensen"
}
1
}

7.3.5. Paging Query Results
The common filter query mechanism supports paged query results for managed and system objects.

The following filtered query returns the first two records in an LDAP repository, whose uid starts with
b.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/system/ldap/account?_queryFilter=uid%20sw%20%22b%22& pageSize=2"

"remainingPagedResults": -1,
"pagedResultsCookie": null,
"resultCount": 2,

"result": [
{
" id": "uid=bjensen,ou=People,dc=example,dc=com",
"sn": "Jensen",
"dn": "uid=bjensen,ou=People,dc=example,dc=com",
"givenName": "Barbara",

"description": "Created for OpenIDM",

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 97

Accessing Data Objects

(" FORGEROCK' Paging Query Results

"cn": "Babara Jensen",
"uid": "bjensen",
"ldapGroups": [
"cn=openidm2, ou=Groups,dc=example,dc=com"
1,

"mail": "bjensen@example.com",
"telephoneNumber": "1-360-229-7105"

1,

{
" id": "cn=bsmith, ou=People,dc=example,dc=com",
"sn": "Smith",
"dn": "cn=bsmith,ou=People,dc=example,dc=com",
"givenName": "Bill",
"description": null,
"cn": "bsmith",
"uid": "bsmith",
"ldapGroups": [1,
"mail": "bsmith@example.com",
"telephoneNumber": "0987362837"

}

Predefined queries also provide some support for paged results, useful, for example, for Ul display
purposes. Predefined queries must be configured to support paging, in the repository configuration.
For example:

"query-all-ids" : "select openidm id from ${unquoted: resource} SKIP ${unquoted: pagedResultsOffset}
LIMIT ${unquoted: pageSize}",

This query configuration enables the paging parameters to be used, for example, in a query such as
the following:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request GET \
"https://localhost:8443/openidm/managed/user?_queryId=query-all-ids&_pageSize=2& pagedResultsOffset=3"
{
"remainingPagedResults": 2,
"pagedResultsCookie": "5",
"resultCount": 2,
"result": [
{
" rev"': "0",
" id": "b980999e-aa5c-4655-b2ad-08731b64e0ba"
+
{
" rev"': "0",
" id": "c72b9c00-1e2c-4139-9e7f-fb9fb822db96"
}

The following paging parameters are supported:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 98

Accessing Data Objects

(" FORGEROCK Sorting Query Results

_pagedResultsCookie

Opaque cookie used by the server to keep track of the position in the search results. The format
of the cookie is a string value.

The server provides the cookie value on the first request. You should then supply the cookie
value in subsequent requests until the server returns a null cookie, meaning that the final page of
results has been returned.

Paged results are enabled only if the pageSize is a non-zero integer.
_pagedResultsOffset

Specifies the index within the result set of the number of records to be skipped before the first
result is returned. The format of the pagedResultsoffset is an integer value. When the value of
_pagedResultsOffset is greater than or equal to 1, the server returns pages, starting after the
specified index.

This request assumes that the pageSize is set, and not equal to zero.

For example, if the result set includes 10 records, the pageSize is 2, and the pagedResults0ffset
is 6, the server skips the first 6 records, then returns 2 records, 7 and 8. The pagedResultsCookie
value would then be 8 (the index of the last returned record) and the remainingPagedResults value
would be 2, the last two records (9 and 10) that have not yet been returned.

If the offset points to a page beyond the last of the search results, the result set returned is
empty.

Note that the remainingPagedResults parameter is not supported for all queries. Where it is not
supported, the returned value is always -1.

_pageSize

An optional parameter indicating that query results should be returned in pages of the specified
size. For all paged result requests other than the initial request, a cookie should be provided with
the query request.

The default behavior is not to return paged query results. If set, this parameter should be an
integer value, greater than zero.

7.3.6. Sorting Query Results

For common filter query expressions, you can sort the results of a query, using the sortkeys
parameter. This parameter takes a comma-separated list as a value and orders the way in which the
JSON result is returned, based on this list.

The sortkeys parameter is not supported for predefined queries.

The following query returns all users with the givenName Dan, and sorts the results alphabetically,
according to surname (sn).

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 929

(/) FORGEROCK

Accessing Data Objects
Sorting Query Results

$
'https://localhost:8443/openidm/system/ldap/account?_queryFilter=givenName+eq+"Dan"&_fields=givenName

,Sn&_sortKeys=sn'

{
"remainingPagedResults": -1,
"pagedResultsCookie": null,
"resultCount": 3,
"result": [
{
"sn": "Cope",
"givenName": "Dan"
+
{
"sn": "Langdon",
"givenName": "Dan"
+
{
"sn": "Lanoway",
"givenName": "Dan"
}
]
}

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

100

Managing Users, Groups, and Roles

(" FORGEROCK' Working with Managed Users

Chapter 8

Managing Users, Groups, and Roles

OpenIDM does not control the structure of objects that are stored in its repository. You can define
any kind of managed object, but a definition for users, groups and roles is provided by default.

This chapter describes how to work with these default managed objects. More information about the
OpenIDM object model is provided in Appendix C, "Data Models and Objects Reference".

8.1. Working with Managed Users

External users that are stored in OpenIDM's repository are referred to as managed users. For

a JDBC repository, OpenIDM stores managed users in the managedobjects table. A second table,
managedobjectproperties, serves as the index table. For an OrientDB repository, managed users are
stored in the managed user table.

OpenIDM provides RESTful access to managed users, at the context path /openidm/managed/user.
For more information, see Section 1.3, "To Get Started With the OpenIDM REST Interface" in the
Installation Guide.

8.2. Working With Managed Groups

OpenIDM provides support for a managed "group" object. For a JDBC repository, OpenIDM

stores managed groups with all other managed objects, in the managedobjects table, and uses the
managedobjectproperties for indexing. For an OrientDB repository, managed groups are stored in the
managed group table.

The managed group object is not provided by default. To use managed groups, add an object similar
to the following to your conf/managed. json file:

{
+

"name" : "group"

With this addition, OpenIDM provides RESTful access to managed groups, at the context path /openidm
/managed/group.

For an example of a deployment that uses managed groups, see Section 3.6, "Sample 2d -
Synchronizing LDAP Groups" in the Installation Guide.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 101

Managing Users, Groups, and Roles

(" FORGEROCK' Configuring Custom Roles

8.3. Configuring Custom Roles

The default managed object model includes a managed role object that can be manipulated in the
same way as any other managed object.

This section refers to two distinct types of roles - direct (static) and indirect (dynamic) roles. Direct
roles refer to roles that are specifically added to the user's "roles" attribute by an administrator
operation. Indirect roles might be added to the user entry as a result of a script or rule that
assigns the role. For example, a user might acquire a "sales-role" as a result of being in the "sales"
organization.

A managed user's "roles" attribute takes an array as a value. Currently, only flat strings are
supported in this array.

The "roles" attribute includes any specifically assigned roles, and any roles assigned internally by
OpenIDM. So, the "roles" attribute of a particular user entry might appear as follows:

"roles" : [
“"name" : "“managed/role/sample-role",
“name" : "openidm-authorized"

A role value that includes a / character is considered to be a URL that points to the role details on the
router, for example, managed/role/sample-role.

The following sections describe basic role manipulation - how roles are defined, assigned to users,
and deleted. The entitlements or assignments supplied by roles are described in the subsequent
section.

8.3.1. Creating, Assigning, and Deleting Roles

Role definitions are stored in the repository and are accessible at the /openidm/managed/role context
path. This section describes how to manipulate roles over the REST interface.

The examples in this section assume that OpenIDM has been started with the configuration of
Sample 2b, and refers to the managed user objects created in that sample. For more information, see
Section 3.4, "Sample 2b - LDAP Two Way" in the Installation Guide.

8.3.1.1. To Create a Role Definition

To create a managed role definition, use a PUT request on the openidm/managed/role context path,
specifying the role ID in the URL. The following request creates a role definition named newrole. The
role effectively assigns the value "CN=employees,0=corp" to the ldapGroups attribute on the ldap system.
$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 102

Managing Users, Groups, and Roles

(" FORGEROCK' Creating, Assigning, and Deleting Roles

--header "If-None-Match: *" \
--request PUT \

--data '{
"properties”: {
"description”: "an example role"
}'
"assignments": {
"ldap": {
"attributes": [
{
"name": "ldapGroups",
"assignmentOperation": "mergeWithTarget",
"unassignmentOperation": "removeFromTarget",
"value": [
""CN=employees, O=corp"
1
}

]’
"onAssignment": {
"file": "roles\/onAssignment_ldap.js",
"type": "text\/javascript"
}’
"onUnassignment": {
"file": "roles\/onUnassignment_ldap.js",
"type": "text\/javascript"
}
}
}
A
"https://localhost:8443/openidm/managed/role/newrole"

{
"assignments": {
"ldap": {
"attributes": [
{
"name": "ldapGroups",
"unassignmentOperation": "removeFromTarget",
"assignmentOperation": "mergeWithTarget",
"value": [
"CN=employees,0=corp"
I
}
1,
"onAssignment": {
"file": "roles/onAssignment_ ldap.js",
"type": "text/javascript"
|
"onUnassignment": {
"file": "roles/onUnassignment ldap.js",
"type": "text/javascript"
}
}
1,
" id": "newrole",
"properties": {
"description": "an example role"
1,

"7rev" . omqn

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 103

Managing Users, Groups, and Roles

(" FORGEROCK' Creating, Assigning, and Deleting Roles

For information about each of the properties in the role definition, see Section 8.3.2.1, "A Sample
Role Definition for Two Remote Systems".

Most of the examples in this guide use PUT to create client-assigned IDs for resources, as it makes
the examples easier to read. Your deployment might require you to use server-assigned UUIDs, in
which case you should use a POST request. For more information, see Should You Use PUT or POST
to Create a Managed Object?.

8.3.1.2. To List the Defined Roles

To obtain a list of all defined managed roles, query the /openidm/managed/role context path, as follows.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/managed/role/?_queryId=query-all-ids"

{
"remainingPagedResults": -1,
"pagedResultsCookie": null,
"resultCount": 1,
"result": [
{
" rev': "0",
" id": "newrole"
}
1

}

8.3.1.3. To Assign a Role to a User

To assign a direct role to a user, update the user's entry over REST, adding managed/role/role ID to the
user's "roles" attribute. The following example adds the 1dap role, created previously, to user bjensen,
whose _id is 2e78fd22-a7cb-4585-9570-5f649e8abd25.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "If-Match: *" \
--request PATCH \

--data '[
{
“operation": "add",
"field": "/roles/-",
"value": "managed/role/newrole"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 104

(/’ FORGEROCK

Managing Users, Groups, and Roles
Creating, Assigning, and Deleting Roles

1

{

}
"\

"https://localhost:8443/openidm/managed/user/2e78fd22-a7ch-4585-9570-5f649e8abd25"

"displayName": "Babara Jensen",
"stateProvince": "",
"userName": "bjensen",
"postalAddress": "",
"effectiveAssignments": {
"ldap": {
"attributes": [
{
"name": "ldapGroups",
"unassignmentOperation": "removeFromTarget",
"assignmentOperation": "mergeWithTarget",
"assignedThrough": "managed/role/newrole",
"value": [
"CN=employees,O0=corp"
1
}
1,
"onAssignment": {
"file": "roles/onAssignment ldap.js",
"type": "text/javascript"
}
"onUnassignment": {
"file": "roles/onUnassignment ldap.js",
"type": "text/javascript"
}
}
1,
"roles": [
"openidm-authorized",
"managed/role/newrole"
1,
"city": "',
"effectiveRoles": [
"openidm-authorized",
"managed/role/newrole"
1,
"givenName": "Barbara",

"lastPasswordAttempt": "Tue Oct 21 2014 16:01:22 GMT+0200 (SAST)",

"address2": "",

"passwordAttempts": "0",

"sn": "Jensen",

"mail": "bjensen@example.com",
"country": "",

" rev": "2",

"lastPasswordSet": "",

"postalCode": "",

" id": "2e78fd22-a7cb-4585-9570-5f649e8abd25",
"description": "Created for OpenIDM",
"accountStatus": "active",
"telephoneNumber": "1-360-229-7105"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

105

Managing Users, Groups, and Roles

(" FORGEROCK' Creating, Assigning, and Deleting Roles

Note the dash (-) character that is appended to the field name in the data that is being sent. This
character specifies that the role should be added to the existing roles for that user. If you do not
include the dash character, the request overwrites all current values of the user's "roles" attribute.

8.3.1.4. To Query Role Membership

To return a list of all users who have a specific directly assigned role, use the get-users-of-direct-role
query, specifying the role ID. You cannot query role membership for indirect roles.

The following query returns all members of the "newrole" role created previously. Currently that role
has only one member, bjensen, whose ID is 2e78fd22-a7ch-4585-9570-5f649e8abd25. The query returns the
complete user object.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/managed/user?_queryId=get-users-of-direct-role&role=managed/role/newrole"

{
"remainingPagedResults": -1,
"pagedResultsCookie": null,
"resultCount": 1,
"result": [
{
"effectiveAssignments": {
"ldap": {
"attributes": [
{
"name": "ldapGroups"
" id": "2e78fd22-a7cb-4585-9570-5f649e8abd25",
" rev"': "2",
"description": "Created for OpenIDM",
"accountStatus": "active"
}
1
}

8.3.1.5. To Remove a Role Assignment

To remove a role assignment from a user, simply replace that user's "roles" attribute with the array of
roles that the user should have. The following example removes the newrole role from user bjensen by
replacing the current value of her "roles" attribute with its previous value ("openidm-authorized").

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 106

Managing Users, Groups, and Roles

(" FORGEROCK' Creating, Assigning, and Deleting Roles

$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "If-Match: *" \

--request PATCH \

--data '[

{
"operation": "replace",
"field": "/roles",
"value": [

"openidm-authorized"

1

}

1"\

"https://localhost:8443/openidm/managed/user/2e78fd22-a7cb-4585-9570-5f649e8abd25"

In the role definition, you can specify what should happen when an assignment of that role is
removed. For more information, see Section 8.3.2, "Understanding Effective Roles and Effective
Assignments".

8.3.1.6. To Delete a Managed Role Definition

To delete a role definition, send a DELETE request, specifying the role ID in the URL. The following
sample command deletes the newrole role, created previously.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request DELETE \
"https://localhost:8443/openidm/managed/role/newrole"

{
"properties": {
"description": "an example role"
1
"assignments": {
"ldap": {
"attributes": [
{
"name": "ldapGroups",
"unassignmentOperation": "removeFromTarget",
"assignmentOperation": "mergeWithTarget",
"value": [

"CN=employees,0=corp"
I
}
1,
"onAssignment": {
"file": "roles/onAssignment_ ldap.js",
"type": "text/javascript"
}
"onUnassignment": {
"file": "roles/onUnassignment ldap.js",

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 107

Managing Users, Groups, and Roles

(,' FORGEROCK Understanding Effective Roles and Effective Assignments

"type": "text/javascript"

}
}
Iy
" _rev': "1",
" id": "newrole"
}
Note

You cannot delete a role definition if that role is currently assigned to a user. Attempting to delete an assigned
role results in the following error:

{
"message": "Cannot delete a role that is currently assigned",
"reason": "Conflict",
"code": 409

}

8.3.2. Understanding Effective Roles and Effective Assignments

The primary purpose of roles is the management of user access to system resources. User access is
controlled by the assignments or entitlements provided by the role.

The previous section described how to create a basic role definition and to assign that role to a user.
This section describes how the assignments that are specified for that role are applied.

8.3.2.1. A Sample Role Definition for Two Remote Systems

The following sample role definition shows how assignments are configured for two remote systems -
an LDAP server (ldap), and an Active Directory Server (ad).

{
"name": "samplerole",
" _id": "samplerole",
“assignments": {
"ad": {
"attributes": [
{
"name": "adSystems",
"value": [
“"CN=fileshare,O=corp",
"CN=desktop, 0=corp",
“CN=terminal,O=corp",
“CN=intranet,O=corp"
1,
“"assignmentOperation": "mergeWithTarget",
“unassignmentOperation": "removeFromTarget"
}
|
Jo

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 108

’ Managing Users, Groups, and Roles
‘,' FORGEROCK Understanding Effective Roles and Effective Assignments
"ldap": {
"attributes": [
{
"name": "ldapGroups",
"value": [

"CN=employees, O0=corp"
1,

“"assignmentOperation": "mergeWithTarget",
“"unassignmentOperation": "removeFromTarget"
i
{
"name": "employeeType",
"value": "employee"
}

IE

“onAssignment": {
"file": "roles/onAssignment_ldap.js",
“type": "text/javascript"

H

“onUnassignment": {
"file": "roles/onUnassignment_ldap.js",
“type": "text/javascript"

}

The role definition includes the following properties:

"name” is the name of the role, and should be unique. Avoid using special characters in the role
name.

" id" is the object identifier of the role, by which it is accessed over REST.

"assignments" specifies the list of assignments (or entitlements) that this role will create on the
remote systems.

Each assignment includes the name of the external system, such as ad and ldap, the attribute or
attributes whose values will be generated, on the external system, and the value or values that will
be applied to each attribute.

OpenIDM uses the "assignments" property to keep assigned roles up to date.
"assignmentOperation” and "unassignmentOperation®

When you update a role definition by adding, updating, or removing an attribute, the update
triggers an "assignmentOperation" Or an "unassignmentOperation”.

When you assign or unassign a role to a user, that action also triggers an "assignmentOperation” or an
"unassignmentOperation"

¢ The "assignmentOperation" specifies the way in which the attribute value is applied, and can be one
of "replaceTarget" (the default) or "mergewithTarget".

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 109

Managing Users, Groups, and Roles

(,' FORGEROCK Understanding Effective Roles and Effective Assignments

The "replaceTarget" operation replaces the entire target attribute value with whatever is specified
in the role definition. When this operation is specified, the value from the role assignments
becomes the only authoritative source for the attribute.

The "mergewithTarget" operation first merges the source value with the existing target value, then
adds the value or values from the role assignment. In the event that duplicate values are found
(for attributes that take a list as a value), each value is included only once in the resulting target
value.

e The "unassignmentOperation" specifies the way in which the attribute value is removed, and can only
be set to "removeFromTarget".

The "mergeWithTarget", "replaceTarget” and "removeFromTarget" operations are aliases, and are defined in
the file openidm/bin/defaults/script/roles/defaultMapping.js.

* "onAssignment" and "onUnassignment"
These properties refer to customizable scripts, that are specific to each assignment.

By default, OpenIDM addresses any change in role assignments with the assignment operations
defined in the defaultMapping.js file. You can modify this behavior by writing custom onAssignment and
onUnassignment scripts. If these custom scripts are specified, OpenIDM triggers the "onAssignment" or
"onUnassignment" script whenever you create, assign, or delete a role from a user entry. In addition,
every synchronization operation triggers the "onAssignment" script. The "onUnassignment" script is
triggered when an assignment is removed from a role, or when a role is unassigned from a user.

If you create a custom "onAssignment" Or "onUnassignment" script, the script must return a
"targetObject”, otherwise, the script operation might fail.

OpenIDM logs any changes to a managed role definition in the audit log.

8.3.2.2. Virtual Role Attributes

Based on the set of role definitions that are assigned to a specific user, the roles mechanism
generates two virtual attributes on the user entry - effectiveRoles and effectiveAssignments.

The logic that calculates the effectiveRoles and effectiveAssignments attribute values is located in
two scripts: openidm/bin/defaults/script/roles/effectiveRoles.js and openidm/bin/defaults/script/roles/
effectiveAssignments.js. Do not alter these scripts. If you need to modify how roles and assignments
are handled, create your own custom script and reference it in the conf/managed. json file. For
information about using custom scripts, see Appendix F, "Scripting Reference".

The effectiveRoles attribute lists the specific role definitions that are applied to a user entry. By
default, the effective roles script supports direct role assignments only. Dynamic role assignment
is not provided out of the box, but can be added with a custom script that overrides the default
effectiveRoles.js script. For more information, see Section 8.3.5, "Adding Support for Dynamic
Assignments".

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 110

Managing Users, Groups, and Roles

(,' FORGEROCK Understanding Effective Roles and Effective Assignments

Based on the effective roles, the effectiveAssignments attribute provides the calculated resource
assignments, that is the amalgamated set of entitlements for a specific user.

The value of the effectiveAssignments attribute provides the information required for the provisioner to
apply the effective assignments, and provides a reference to the source of the assignment. In reading
this attribute, it is therefore possible to find and change the root source of an assignment.

Effective assignments can merge attribute operations on the same system from multiple roles. For
example, role A might add group A to a user's group membership list, and role B might add group B
to the same group membership property on the same assigned system.

The effective roles and effective assignments attributes are configured in openidm/conf/managed.json as
follows:

"name" : "effectiveRoles",

“type" : "“virtual",

"onRetrieve" : {
"type" : "text/javascript",
"file" : "roles/effectiveRoles.js",
"rolesPropName" : "roles"

“"name" : “effectiveAssignments",

“type" : "“virtual",

"onRetrieve" : {
"type" : "text/javascript",
"file" : "roles/effectiveAssignments.js",
"effectiveRolesPropName" : “effectiveRoles"

By default, the effectiveRoles.js script uses the "roles" attribute of a user entry to determine

the direct roles assigned to the user. The effectiveAssignments.js script uses the virtual
"effectiveRoles" attribute of the user entry to calculate the user's effective assignments. If your
deployment uses different attributes to store this information, change the "rolesPropName" and the
"effectiveRolesPropName" properties of the virtual attribute definitions accordingly.

When a user entry is assigned a role, the effectiveRoles and effectiveAssignments of that entry are
calculated according to the role definition. A managed user entry, whose roles have been generated
based on the role definition illustrated previously, might appear as follows:

{
||_id|| : ||i|| ,
"revt:"1",
"roles": [

“openidm-authorized",
"managed/role/sample-role"
1,
"effectiveRoles": [

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 111

Managing Users, Groups, and Roles

(" FORGEROCK Setting up the Role Mapping

“openidm-authorized",
"managed/role/sample-role"
1,
“"effectiveAssignments" : {
"ldap": {
"attributes": |

"value": [
"CN=employees,0=corp"
]

"operation":"replaceTarget",
"name" : " ldapGroups",
“assignedThrough":"managed/role/sample-role"

"value":"employee",
"name" : "employeeType",
“assignedThrough":"managed/role/sample-role"

I

+

"ad": {
"attributes": |

"value": [
"CN=fileshare,O=corp",
"CN=desktop,0=corp",
"CN=terminal, O=corp",
"CN=intranet,O0=corp"

I

“operation":"replaceTarget",

"name" : "adSystems",

“assignedThrough":"managed/role/sample-role"

}

Note that the value of the "assignedThrough" property of the virtual "effectiveAssignments" attribute
indicates how each assignment has been generated.

After you have defined a role, and assigned it to a user, verify that the expected effective roles and
effective assignments have been generated for that user. To apply the effective assignments to the
target resource, add a default mapping to your synchronization configuration, as described in the
following section.

8.3.3. Setting up the Role Mapping

After the role has been defined, and the effective assignments checked, you must set up mapping for
the role and, optionally, restrict provisioning based on the effective assignments.

This section describes these two steps.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 112

Managing Users, Groups, and Roles

(" FORGEROCK Setting up the Role Mapping

8.3.3.1. Creating a Mapping For Effective Assignments

After the effective assignments have been calculated, OpenIDM applies these assignments to the
target resources.

The following sample extract of a sync.json file applies the 1dap assignment, illustrated in the previous
section, on the target resource (system/ldap/account) for all entries that have "effectiveAssignments" :
"ldap" in the source.

{
"name" : "managedUser_systemLdapAccounts",
"source" : "managed/user",
“"target" : "system/ldap/account",
"links" : "systemLdapAccounts_managedUser",
1,
"assignmentsToMap": [
uldapn
1,
}

8.3.3.2. Using Roles For Conditional Mapping
The roles mechanism provides the ability to restrict provisioning based on a user's effective
assignments. For example, you might want to prevent users from being provisioned to an Active

Directory system, if they do not have specific access to that system.

Based on the "effectiveAssignments” virtual attribute, described in the previous section, you could
configure a conditional mapping for this example, as follows:

1. Create a role definition that gives the user the Active Directory assignment, for example:

"_id": “ad-role",
"assignments": {
“ad: {
"attributes": [
{
"name": "adSystems",
"value": [
"CN=fileshare,O=corp",
"CN=desktop,0=corp",
"CN=terminal,O=corp",
"CN=intranet,O0=corp"
1,
"assignmentOperation": "replaceTarget"
}
1
}

2. Add the role directly as a value of the user's "roles" attribute.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 113

’ Managing Users, Groups, and Roles
‘,' FORGEROCK Testing the Roles Mechanism
"roles" : [
"name" : "managed/role/ad-role",
"name" : "openidm-authorized"

3. Add a condition in the mapping that restricts provisioning to users who have the "ad" assignment
as an effective assignment. The effective assignments are calculated from the values in the user's

"roles" attribute.

{
"mappings": [
"name": "managedUser_systemAdAccounts",
"source": "managed/user",
"sourceCondition": {
"effectiveAssignments": "ad"
1,
"target": "system/ad/account"
}
1
b

8.3.4. Testing the Roles Mechanism

The following sample procedure creates a new role that includes an assignment, adds that role to the

user entry bjensen and then shows how bjensen's effective assignments have been generated.

1. Create the role definition over REST.

This example uses a PUT request to create the role definition, so that we can specify the role id.

The example adds a role definition with the ID ldap-role. The role ID is used to assign the role
directly to the user entry.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "If-None-Match: *" \
--request PUT \

--data '{
"assignments": {
"ldap": {
"attributes": [
{
"name": "ldapSystems",
"value": [

"cn=printers, ou=Groups,dc=example,dc=com",
"cn=intranet, ou=Groups,dc=example,dc=com"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

114

Managing Users, Groups, and Roles

(" FORGEROCK Testing the Roles Mechanism

]l
"operation": "replaceTarget"
}
1
}
}

A
"https://localhost:8443/openidm/managed/role/ldap-role"

"assignments": {

"ldap": {
"attributes": [
{
"name": "ldapSystems",
"operation": "replaceTarget",
"value": [

"cn=printers, ou=Groups,dc=example,dc=com",
"cn=intranet, ou=Groups,dc=example,dc=com"
I
}
1
}
1,
" id": "ldap-role",
" rev": "Q"

2. The ldap-role includes one assignment, named ldap. Add a mapping for the assignment, by adding
the following lines to your sync.json file:

"mappings": [
"assignmentsToMap" : [
“Idap"
Iy
1

By default, OpenIDM addresses any change in role assignments with the assignment operations
defined in the defaultMapping.js file. You can modify this behavior by writing custom onAssignment
and onUnassignment scripts.

3. Assign the role to user bjensen, whose ID is 2e78fd22-a7cb-4585-9570-5F649e8abd25.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "If-Match: *" \
--request PATCH \

--data '[
{
"operation": "replace",
"field": "/roles",
"value": [

"openidm-authorized",
"managed/role/ldap-role"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 115

Managing Users, Groups, and Roles

(" FORGEROCK Testing the Roles Mechanism

}
1"\
"https://localhost:8443/openidm/managed/user/2e78fd22-a7ch-4585-9570-5f649e8abd25"

"mail": "bjensen@example.com",
"sn": "Jensen",
"passwordAttempts": "0",
"address2": "",
"lastPasswordAttempt": "Thu October 23 2014 12:49:32 GMT+0200 (SAST)",
"givenName": "Barbara",
"city": "",
"country": "",
" rev": "2",
"lastPasswordSet": "",
"postalCode": "",
" id": "2e78fd22-a7cb-4585-9570-5f649e8abd25",
"accountStatus": "active",
"description": "Created for OpenIDM",
"roles": [
"openidm-authorized",
"managed/role/ldap-role"
Us
"telephoneNumber": "1-360-229-7105",
"postalAddress": "",
"userName": "bjensen",
"stateProvince": "",
"displayName": "Babara Jensen"

4. Query bjensen's user entry to verify that her effective assignments have been updated.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/managed/user/2e78fd22-a7cbh-4585-9570-5f649e8abd25"

{
"effectiveAssignments": {
"ldap": {
"attributes": [
{
"assignedThrough": "managed/role/ldap-role",
"name": "ldapSystems",
"operation": "replaceTarget",
"value": [
"cn=printers, ou=Groups,dc=example,dc=com",
"cn=intranet, ou=Groups,dc=example,dc=com"
1
}
1
}

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 116

Managing Users, Groups, and Roles

(" FORGEROCK Adding Support for Dynamic Assignments

Note that bjensen's effective assignments have been updated to include the assignments provided
by the ldap-role role.

8.3.5. Adding Support for Dynamic Assignments

Although support for dynamic role assignments is not provided by default, it can easily be added with
a custom script, as follows.

1. Copy the default effective roles script to your project's script/roles directory.

$ cp /path/to/openidm/bin/defaults/script/roles/effectiveRoles.js \
project-dir/script/roles/

The new script will override the default effective roles script.
2. Modify the effective roles script to include the dynamic role assignment logic.

For example, to enable dynamic role assignment for the example organization, you might add the
following extract after the section:

// This is the location to expand to dynamic roles,
// project role script return values can then be added via
// effectiveRoles = effectiveRoles.concat(dynamicRolesArray);

if (object.org === ‘'example') {
effectiveRoles = effectiveRoles.concat(['dynamic-rolel', 'dynamic-role2'l]);
}

3. (Optional) To apply changes to the dynamic assignment rules to existing users, run a
reconciliation operation on those users.

Note that changes to dynamic role assignments for existing users require a manual reconciliation

of the affected group of users for those changes to take effect. So, if a new dynamic role definition
is created, if an existing dynamic role definition is changed, or if changes are made to the dynamic
assignment rule, the group of users affected by that assignment rule must be reconciled manually.

When a user entry is changed or synchronized, however, all dynamic role assignments are reassessed
automatically.

8.3.6. Managed Role Object Script Hooks

In addition to the functionality provided by the assignments, a managed role object has script hooks
that enable you to configure role behavior. The managed role object has the following structure in the
managed objects configuration file (managed.json):

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 117

Managing Users, Groups, and Roles

(" FORGEROCK' Managed Role Object Script Hooks

{
"name" : "role",
"postCreate" : {
"type" : "text/javascript",
"file" : "roles/update-users-of-role.js"
+
"postUpdate" : {
"type" : "text/javascript",
"file" : "“roles/update-users-of-role.js"
+
"postDelete" : {
"type" : "text/javascript",
"file" : "“roles/update-users-of-role.js"
}
}

The "postCreate”, "postUpdate”, and "postDelete" properties enable you to specify what should happen
when a role definition is created, updated, or deleted. By default, the update-users-of-role.js script
runs in each of these cases.

The update-users-of-role.js script includes a triggerSyncCheck attribute, which reviews the
effectiveRoles and effectiveAssignments virtual attributes, to determine whether OpenIDM should run a
synchronization operation on these attributes.

This script iterates over all managed users, locates the users who have been assigned this role, and
regenerates their effective assignments on the target resource. So, for example, if the role "1dap"
gives a user an assignment on the resource "Active Directory", when that role definition is changed,
a reconciliation operation runs to update the assignment for that user on the "Active Directory"
resource.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 118

Using Policies to Validate Data

(" FORGEROCK' Configuring the Default Policy

Chapter 9

Using Policies to Validate Data

OpenIDM provides an extensible policy service that enables you to apply specific validation
requirements to various components and properties. The policy service provides a REST interface for
reading policy requirements and validating the properties of components against configured policies.
Objects and properties are validated automatically when they are created, updated, or patched.
Policies can be applied to user passwords, but also to any kind of managed object.

The policy service enables you to do the following:

* Read the configured policy requirements of a specific component.

* Read the configured policy requirements of all components.

» Validate a component object against the configured policies.

» Validate the properties of a component against the configured policies.

A default policy applies to all managed objects. You can configure the default policy to suit your
requirements, or you can extend the policy service by supplying your own scripted policies.

9.1. Configuring the Default Policy

The default policy is configured in two files:

* A policy script file (openidm/bin/defaults/script/policy.js) which defines each policy and specifies how
policy validation is performed.

* A policy configuration file (openidm/conf/policy.json) which specifies which policies are applicable to
each resource.

9.1.1. Policy Script File

The policy script file defines policy configuration in two parts:

* A policy configuration object, which defines each element of the policy.

* A policy implementation function, which describes the requirements that are enforced by that
policy.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 119

Using Policies to Validate Data

(" FORGEROCK Policy Script File

Together, the configuration object and the implementation function determine whether an object is
valid in terms of the policy. The following extract from the policy script file configures a policy that
specifies that the value of a property must contain a certain number of capital letters.

{ "policyId" : "at-least-X-capitals",
"policyExec" : "atlLeastXCapitallLetters",
"clientValidation": true,
"validateOnlyIfPresent":true,
"policyRequirements" : ["AT_LEAST X_CAPITAL_LETTERS"]

},
policyFunctions.atlLeastXCapitallLetters = function(fullObject, value, params, property) {
var isRequired = .find(this.failedPolicyRequirements, function (fpr) {
return fpr.policyRequirement === "REQUIRED";
1),
isNonEmptyString = (typeof(value) === "string" && value.length),

valuePassesRegexp = (function (v) {
var test = isNonEmptyString ? v.match(/[(A-Z)]/g) : null;

return test !== null && test.length >= params.numCaps;
}(value));
if ((isRequired || isNonEmptyString) && !valuePassesRegexp) {
return [{ "policyRequirement" : “AT_LEAST X_CAPITAL_LETTERS", "params" : {'numCaps":
params.numCaps} } 1;
}
return [];

}

To enforce user passwords that contain at least one capital letter, the previous policy ID is applied
to the appropriate resource and the required number of capital letters is defined in the policy
configuration file, as described in Section 9.1.2, "Policy Configuration File".

9.1.1.1. Policy Configuration Object

Each element of the policy is defined in a policy configuration object. The structure of a policy
configuration object is as follows:

{ ‘"policyId" : "minimum-length",
"policyExec" : "propertyMinLength",
"clientValidation": true,
"validateOnlyIfPresent": true,
"policyRequirements" : ["MIN_LENGTH"]

"policyId" - a unique ID that enables the policy to be referenced by component objects.
"policyExec" - the name of the function that contains the policy implementation. For more information,
see Section 9.1.1.2, "Policy Implementation Function".

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 120

Using Policies to Validate Data

(" FORGEROCK' Policy Configuration File

"clientValidation" - indicates whether the policy decision can be made on the client. When
"clientValidation": true, the source code for the policy decision function is returned when the client
requests the requirements for a property.

"validateOnlyIfPresent" - notes that the policy is to be validated only if it exists.

"policyRequirements" - an array containing the policy requirement ID of each requirement that is
associated with the policy. Typically, a policy will validate only one requirement, but it can validate
more than one.

9.1.1.2. Policy Implementation Function

Each policy ID has a corresponding policy implementation function that performs the validation.
Functions take the following form:

function <name>(fullObject, value, params, propName) {
<implementation logic>

}

fullobject is the full resource object that is supplied with the request.

value is the value of the property that is being validated.

params refers to the "params" array that is specified in the property's policy configuration.
propName is the name of the property that is being validated.

The following example shows the implementation function for the "required" policy.

function required(fullObject, value, params, propName) {

if (value === undefined) {
return [{ "policyRequirement" : "REQUIRED" } 1;
return [];

9.1.2. Policy Configuration File

The policy configuration file includes a pointer to the policy script, and the configured policies for
each component resource. The following includes three sample extracts from the policy.js file,
illustrating policies for passwords, roles, and mobile telephone numbers.

9.1.2.1. Sample Password Policy Extract

The following extract of the default policy configuration file shows how the at-least-X-capitals policy
is applied to user passwords. In this case, the configuration file requires users to include at least one
upper case (capital) letter in their passwords.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 121

Using Policies to Validate Data
Policy Configuration File

(" FORGEROCK
{
"type" : "text/javascript",
"file" : "bin/defaults/script/policy.js",
"resources" : [
{
"resource" : “managed/user/*",
“"properties" : [
{
"name" : "password",
"policies" : [
{
"policyId"
+
{
"policyId"
+
{
"policyId"
"params" :
"numCaps" :
}
+
}
1
}

The configuration file includes the following properties:

"at-least-X-capitals",

* "type" - specifies the type of policy service. Supported types include "text/javascript" and "groovy".

» "file" - provides the path to the policy script file, relative to the OpenIDM installation directory.

* "resources" provides an array of resource objects, in JSON format, that are subject to the policy
service. Resource objects are identified by the "resource" parameter, which indicates the URI and
supports wildcard syntax. For example, "managed/user/*" indicates that the policy applies to all

objects under /managed/user. Each resource has the following properties:

"name" - the name of the property to which the policy is applied.
"policyId" - the ID of the policy that is applied to that property.
"params" - any specific parameters that apply to that policy ID.

9.1.2.2. Sample Array Policy Extract

Some users may choose to include multiple cellular telephone numbers. In OpenIDM, multiple values
for an object can be organized in an array. The following excerpt from a sample policy.json file

requires an entry for mobilePhones, and includes two separate policies.

The first policy suggests that the mobilePhones policy must be present in the object, and there must be

at least one element within that object (array).

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

122

Using Policies to Validate Data

(" FORGEROCK' Extending the Policy Service

The second policy suggests that for any given element of the mobilePhones object must not be an empty
string.

{
"name" : "mobilePhones",
"policies" : [
"policyId" : "“required"
}
{
"policyId" : "not-empty"
}
1
1,
{
“name" : "mobilePhones[*]",
"policies" : [
"policyId" : "not-empty"
1

9.2. Extending the Policy Service

You can extend the policy service by adding your own scripted policies in openidm/script and
referencing them in the policy configuration file (conf/policy.json). Avoid manipulating the default
policy script file (in bin/defaults/script) as doing so might result in interoperability issues in a future
release. To reference additional policy scripts, set the "additionalFiles" property in conf/policy.json.

The following example creates a custom policy that rejects properties with null values. The policy is
defined in a script named mypolicy.js.

var policy = { “"policyId" : "notNull",
"policyExec" : "notNull",
"policyRequirements" : ["NOT_NULL"]
}

addPolicy(policy);
function notNull(fullObject, value, params, property) {
if (value == null) {
return [{"policyRequirement": "NOT_NULL"}];

return [];

The mypolicy.js policy is referenced in the policy.json configuration file as follows:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 123

Using Policies to Validate Data
Disabling Policy Enforcement

(" FORGEROCK'
{
“"type" : "text/javascript",
"file" : "bin/defaults/script/policy.js",
"additionalFiles" : ["script/mypolicy.js"],
"resources" : [
{

You can also configure policies for managed object properties as part of the property definition in
the conf/managed. json file. For example, the following extract of a managed.json file shows a policy
configuration for the password property.

“properties" : [

{

"name" : "password",
“encryption" : {

"key" : "openidm-sym-default"
+
"scope" : "private"
"policies" : [

{

"policyId" : “required"

9.3. Disabling Policy Enforcement

}
{
"policyId" : "not-empty"
}
{

"policyId" : "at-least-X-capitals",

"params" : {
"numCaps" : 1

Policy enforcement refers to the automatic validation of data in the repository when it is created,
updated, or patched. In certain situations you might want to disable policy enforcement temporarily.
You might, for example, want to import existing data that does not meet the validation requirements

with the intention of cleaning up this data at a later stage.

You can disable policy enforcement by setting openidm.policy.enforcement.enabled to false in the conf/
boot/boot.properties file. This setting disables policy enforcement in the back-end only, and has no
impact on direct policy validation calls to the Policy Service (which the user interface makes to
validate input fields). So, with policy enforcement disabled, data added directly over REST is not

subject to validation, but data added with the UI is still subject to validation.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

124

Using Policies to Validate Data

(" FORGEROCK' Managing Policies Over REST

Disabling policy enforcement permanently in a production system is not recommended.

9.4. Managing Policies Over REST

You can manage the policy service over the REST interface, by calling the REST endpoint https://
localhost:8443/openidm/policy, as shown in the following examples.

9.4.1. Listing the Defined Policies

The following REST call displays a list of all the defined policies. The policy objects are returned in
JSON format, with one object for each defined policy ID.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/policy"

{ "resources": [
¢ "properties": [
"name": "_id",
"policies": [
¢ "policyFunction":

To display the policies that apply to a specific component, include the component name in the URL.
For example, the following REST call displays the policies that apply to managed users.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 125

Using Policies to Validate Data

(" FORGEROCK' Validating Objects and Properties Over REST

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/policy/managed/user/*"

{
"properties": [
{
"name": " id",
"policies": [
{
"policyFunction": "
"\n function (fullObject, value, params, property) {
\n var i, join = function (arr, d) {
}

9.4.2. Validating Objects and Properties Over REST

Use the validateObject action to verify that an object adheres to the requirements of a policy.

The following example verifies that a new managed user object is acceptable in terms of the policy
requirements.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
--data '{
"sn":"Jones",
"givenName":"Bob",
" id":"bjones",
"telephoneNumber":"0827878921",
"passPhrase":null,
"mail”:"bjones@example.com",
"accountStatus":"active",
"roles":"admin",
"userName": "bjones@example.com",
"password":"123"}"' \
"https://localhost:8443/openidm/policy/managed/user/bjones?_action=validateObject"

"failedPolicyRequirements": [

"property": "password",
"policyRequirements": [

"params": {

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 126

Using Policies to Validate Data

(" FORGEROCK' Validating Objects and Properties Over REST

"numCaps": 1
I
"policyRequirement": "AT LEAST X CAPITAL LETTERS"

}
1
}
{
"property": "password",
"policyRequirements": [
"params": {
"minLength": 8
I
"policyRequirement": "MIN LENGTH"
}
1
}
{
"property": "passPhrase",
"policyRequirements": [
"params": {
"minLength": 4
I
"policyRequirement": "MIN LENGTH"
}
1
}

Uo
"result": false

}

The result (false) indicates that the object is not valid. The unfulfilled policy requirements are
provided as part of the response - in this case, the user password does not meet the validation
requirements.

Use the validateProperty action to verify that a specific property adheres to the requirements of a
policy.

The following example checks whether Barbara Jensen's new password (12345) is acceptable.

$ curl \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--cacert self-signed.crt \

--header "Content-Type: application/json" \

--request POST \

--data '{ "password" : "12345" }' \
"https://localhost:8443/openidm/policy/managed/user/bjensen?_action=validateProperty"

{

"result": false,
"failedPolicyRequirements": [

{

"policyRequirements": [

"policyRequirement": "AT LEAST X CAPITAL LETTERS",

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 127

Using Policies to Validate Data

(" FORGEROCK' Validating Objects and Properties Over REST

"params": {
"numCaps": 1
}
i
{
"policyRequirement": "MIN LENGTH",
"params": {
"minLength": 8
}
}
P
"property": "password"

The result (false) indicates that the password is not valid. The unfulfilled policy requirements are
provided as part of the response - in this case, the minimum length and the minimum number of
capital letters.

Validating a property that does fulfil the policy requirements returns a true result, for example:

$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--header "Content-Type: application/json" \

--request POST \

--data '{ "password" : "1lNewPassword" }' \
"https://localhost:8443/openidm/policy/managed/user/bjensen?_action=validateProperty"

"failedPolicyRequirements": []
"result": true,

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 128

Configuring Server Logs

(" FORGEROCK' Log Message Files

Chapter 10

Configuring Server Logs

This chapter briefly describes server logging. For audit information, see Chapter 18, "Using Audit
Logs".

To configure logging, edit the openidm/conf/logging.properties file.

10.1. Log Message Files

The default configuration writes log messages in simple format to openidm/logs/openidm*. log files,
rotating files when the size reaches 5 MB, and retaining up to 5 files. Also by default, OpenIDM
writes all system and custom log messages to the files.

10.2. Logging Levels

You can update the configuration to attach loggers to individual packages, setting the log level to one
of the following values.

SEVERE (highest value)
WARNING

INFO

CONFIG

FINE

FINER

FINEST (lowest value)

If you use logger functions in your JavaScript scripts, you can set the log level for the scripts as
follows:

org.forgerock.script.javascript.JavaScript.level=level

You can override the log level settings per script by using

org.forgerock.script.javascript.JavaScript.script-name.level

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 129

Configuring Server Logs

(" FORGEROCK Disabling Logs

10.3. Disabling Logs

You can also disable logs if desired. For example, before starting OpenIDM, you can disable
ConsoleHandler logging in the same openidm/conf/logging.properties file.

Just set java.util.logging.ConsoleHandler.level = OFF, and comment out other references to
ConsoleHandler, as shown in the following excerpt.

ConsoleHandler: A simple handler for writing formatted records to System.err
#handlers=java.util.logging.FileHandler, java.util.logging.ConsoleHandler
handlers=java.util.logging.FileHandler

--- ConsoleHandler ---

Default: java.util.logging.ConsoleHandler.level = INFO
java.util.logging.ConsoleHandler.level = OFF
#java.util.logging.ConsoleHandler.formatter = ...
#java.util.logging.ConsoleHandler.filter=...

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 130

Connecting to External Resources

(" FORGEROCK About OpenlDM and OpenlICF

Chapter 11

Connecting to External Resources

This chapter describes how to connect to external resources such as LDAP, Active Directory, flat files,
and others. Configurations shown here are simplified to show essential aspects. Not all resources
support all OpenIDM operations, however the resources shown here support most of the CRUD
operations, and also reconciliation and LiveSync.

In OpenIDM, resources are external systems, databases, directory servers, and other sources

of identity data to be managed and audited by the identity management system. To connect to
resources, OpenIDM loads the Identity Connector Framework, OpenICF. OpenICF aims to avoid the
need to install agents to access resources, instead using the resources' native protocols. For example,
OpenICF connects to database resources using the database's Java connection libraries or JDBC
driver. It connects to directory servers over LDAP. It connects to UNIX systems by using ssh.

11.1. About OpenIDM and OpenlICF

OpenlCF provides a common interface to allow identity services access to the resources that contain
user information. OpenIDM loads the OpenICF API as one of its OSGi modules. OpenICF uses
connectors to separate the OpenIDM implementation from the dependencies of the resource to which
OpenIDM is connecting. A specific connector is required for each remote resource. Connectors can
run either locally or remotely.

Local connectors are loaded by OpenICF as regular bundles in the OSGi container. Remote
connectors must be executed on a remote connector server. Most connectors can be run locally.
However, a remote connector server is required when access libraries that cannot be included as
part of the OpenIDM process are needed. If a resource, such as Microsoft Active Directory, does not
provide a connection library that can be included inside the Java Virtual Machine, OpenICF can use
the native .dll with a remote .NET connector server. In other words, OpenICF connects to Active
Directory through a remote connector server that is implemented as a .NET service.

Connections to remote connector servers are configured in a single connector info provider
configuration file, located in /path/to/openidm/conf.

Connectors themselves are configured through provisioner files. One provisioner file must exist for
each connector. Provisioner files are named provisioner.openicf-name where name corresponds to the
name of the connector, and are also located in the /path/to/openidm/conf directory.

A number of sample connector configurations are available in the openidm/samples/provisioners
directory. To use these connectors, edit the configuration files as required, and copy them to the
openidm/conf directory.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 131

https://forgerock.org/openicf/

(/) FORGEROCK

Connecting to External Resources
Accessing Remote Connectors

The following figure shows how OpenIDM connects to resources by using connectors and remote
connector servers. The figure shows one local connector (LDAP) and two remote connectors (Scripted
SQL and PowerShell). In this example, the remote Scripted SQL connector uses a remote Java
connector server. The remote PowerShell connector always requires a remote .NET connector server.

4 N\
Connector Info Provider
Provisioner -
Provisioner Provisioner
. OpenlCF
. Framwork
N }) _/
LDAP
OpenDJ
v v :
M
Java Connector .NET Connector :
Server Server
Legend: Scripted { Power
sSaL } \ Shell
LDAP | LDAP Connector
Power
PowerShell Connector
S"S"prd ScriptedSQL Connector
MySQL)
Active
Configuration files Directory
—

Tip

Connectors that use the .NET framework must run remotely. Java connectors can be run locally or remotely.
Run them as remote services for scalability, or to have the service run in the cloud.

11.2. Accessing Remote Connectors

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)

Copyright © 2011-2017 ForgeRock AS. All rights reserved.

132

Connecting to External Resources

(" FORGEROCK' Accessing Remote Connectors

When you configure a remote connector, you use the connector info provider service to connect
through a remote connector server. The connector info provider service configuration is stored in the
file openidm/conf/provisioner.openicf.connectorinfoprovider.json. A sample configuration file is provided in
the openidm/samples/provisioners/ directory. To use this sample configuration, edit the file as required,
and copy it to the openidm/conf directory.

The connector info provider service takes the following configuration:

{
"connectorsLocation" : string,
"remoteConnectorServers" : [remoteConnectorServer objects]

}

Connector Info Provider Properties
connectorsLocation
string, optional

Specifies the directory in which the OpenICF connectors are located, relative to the OpenIDM
installation directory. The default location is openidm/connectors.

remoteConnectorServers
array of RemoteConnectorServer objects, optional

An array of remote connector servers that are managed by this service.

Remote Connector Server Properties

The following example shows a remoteConnectorServer object configuration.

{
"name" : "dotnet",
"host" 1 "127.0.0.1",
"port" . 8759,
"heartbeatInterval" : 60,
"useSSL" : false,
“timeout" 1 0,
"key" : "PasswOrd"
}

You can configure the following remote connector server object properties.
name
string, required

The name of the remote connector server object. This name is used to identify the remote
connector server in the list of connector reference objects.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 133

Connecting to External Resources

(" FORGEROCK' Configuring Connectors

host
string, required
The remote host to connect to.
port
string, optional
The remote port to connect to. The default remote port is 8759.
heartbeatInterval
integer, optional
The interval, in seconds, at which heartbeat packets are transmitted. If the connector server is
unreachable, based on this heartbeat interval, all services that use the connector server are made
unavailable until the connector server can be reached again. The default interval is 60 seconds.
useSSL
boolean, optional
Specifies whether to connect to the connector server over SSL. The default value is fatlse.
timeout
integer, optional

Specifies the timeout (in milliseconds) to use for the connection. The default value is 0, which
means that there is no timeout.

key
string, required
The secret key, or password, to use to authenticate to the remote connector server.

To run remotely, the connector .jar itself must be copied to the openicf/bundles directory, on the
remote machine.

11.3. Configuring Connectors

Connectors are configured through the OpenICF provisioner service. Each connector configuration
is stored in a file in the openidm/conf/ folder, and accessible over REST at the openidm/conf endpoint.
Configuration files are named openidm/conf/provisioner.openicf-name where name corresponds to

the name of the connector. A number of sample connectors are available in the openidm/samples/

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 134

Connecting to External Resources

(" FORGEROCK' Configuring Connectors

provisioners directory. To use these connectors, edit the configuration files as required, and copy them
to the openidm/conf directory.

If you are creating your own connector configuration files, do not include additional dash characters (
-) in the connector name, as this might cause problems with the OSGi parser. For example, the name
provisioner.openicf-hrdb.json is fine. The name provisioner.openicf-hr-db.json is not.

The following example shows a connector configuration for an XML file resource.

{
"name" o "xml",
"connectorRef" : connector-ref-object,
"poolConfigOption" : pool-config-option-object,
“operationTimeout" : operation-timeout-object,
“configurationProperties" : configuration-properties-object,
"objectTypes" : object-types-object,
“operationOptions" : operation-options-object

}

The "name" property specifies the name of the system to which you are connecting. This name must be
alphanumeric.

Connector Reference

The following example shows a connector reference object.

{
"bundleName" : "org.forgerock.openicf.connectors.xml-connector",
"bundleVersion" : "1.1.0.2",
"connectorName" : "org.forgerock.openicf.connectors.xml.XMLConnector",
"connectorHostRef" : "host"
}
bundleName
string, required
The ConnectorBundle-Name of the OpenICF connector.
bundleVersion

string, required

The ConnectorBundle-Version of the OpenICF connector. The value can be a single version (such
as 1.4.0.0) or a range of versions, which enables you to support multiple connector versions in a
single project.

You can specify a range of versions as follows:
* [1.1.0.0,1.4.0.0] indicates that all connector versions from 1.1 to 1.4, inclusive, are supported.

* [1.1.0.0,1.4.0.0) indicates that all connector versions from 1.1 to 1.4, including 1.1 but
excluding 1.4, are supported.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 135

Connecting to External Resources

(" FORGEROCK' Configuring Connectors

* (1.1.0.0,1.4.0.0] indicates that all connector versions from 1.1 to 1.4, excluding 1.1 but
including 1.4, are supported.

* (1.1.0.0,1.4.0.0) indicates that all connector versions from 1.1 to 1.4, exclusive, are supported.

When a range of versions is specified, OpenIDM uses the latest connector that is available within
that range. If your project requires a specific connector version, you must explicitly state the
version in your provisioner configuration file, or constrain the range to address only the version
that you need.

connectorName

string, required

The Connector implementation class name.

connectorHostRef

string, optional

If the connector runs remotely, the value of this field must match the name field
of the RemoteConnectorServers object in the connector server configuration file
(provisioner.openicf.connectorinfoprovider.json). For example:

"remoteConnectorServers"
{
"name" : "dotnet",
If the connector runs locally, the value of this field can be one of the following:

* If the connector .jar is installed in openidm/connectors/, the value must be "#LocAL". This is
currently the default, and recommended location.

* If the connector .jar is installed in openidm/bundle/ (not recommended), the value must be
"osgi:service/org.forgerock.openicf.framework.api.osgi.ConnectorManager".

Pool Configuration Option

The Pool Configuration Option ("poolConfigoption") specifies the pool configuration for poolable
connectors only. Non-poolable connectors ignore this parameter.

The following example shows a pool configuration option object for a poolable connector.

{

"max0Objects" 1 10,
"maxIdle" : 10,
"maxWait" : 150000,
"minEvictableIdleTimeMillis" : 120000,
"minIdle" g 1l

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 136

Connecting to External Resources

(" FORGEROCK' Configuring Connectors

maxObjects

The maximum number of idle and active instances of the connector.
maxIdle

The maximum number of idle instances of the connector.
maxWait

The maximum time, in milliseconds, that the pool waits for an object before timing out. A value of
0 means that there is no timeout.

minEvictableldleTimeMillis

The maximum time, in milliseconds, that an object can be idle before it is removed. A value of o
means that there is no idle timeout.

minldle

The minimum number of idle instances of the connector.

Operation Timeout

The operation timeout enables you to configure timeout values per operation type. By default, there is
no timeout configured for any operation type. A sample configuration follows:

{
"CREATE" 5 =i,
“TEST" 5 =i,
“"AUTHENTICATE" 5 =i,
"SEARCH" 5 =i,
"VALIDATE" 3 =i,
“"GET" 5 =i,
"UPDATE" 5 =i,
"DELETE" 5 =i,
“"SCRIPT_ON_CONNECTOR" : -1,
“"SCRIPT_ON_RESOURCE" : -1,
"SYNC" 5 =i,
"SCHEMA" g =l

}

operation-name
Timeout in milliseconds

A value of -1 disables the timeout.

Configuration Properties

This object contains the configuration for the connection between the connector and the resource,
and is therefore resource specific.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 137

Connecting to External Resources

(" FORGEROCK Configuring Connectors

The following example shows a configuration properties object for the default XML sample resource
connector.

"configurationProperties" : {
"xsdIcfFilePath" : "&{launcher.project.location}/data/resource-schema-1.xsd",
"xsdFilePath" : "&{launcher.project.location}/data/resource-schema-extension.xsd",
"xmlFilePath" : "&{launcher.project.location}/data/xmlConnectorData.xml"

property

Individual properties depend on the type of connector.

Object Types

This configuration object specifies the object types (user, group, and so on) that are supported by the
connector. The property name defines the objectType, used in the URI:

system/$systemName/$objectType

The configuration is based on the JSON Schema with the extensions described in the following
section.

Attribute names that start or end with are specific to the resource type and are used by OpenICF
for particular purposes, such as NAME , used as the naming attribute for objects on a resource.

The following extract shows the configuration of an account object type.

"account" :
{
“"$schema" : "http://json-schema.org/draft-03/schema",
"id" : "__ACCOUNT__",
“type" : "object",
"nativeType" : "__ACCOUNT ",
“properties" :
{
“name" :
{ .
“type" : "string",
"nativeName" : "__NAME_ ",
“"nativeType" : "JAVA_TYPE PRIMITIVE_ LONG",
"flags" :
[
"NOT_CREATABLE",
"NOT_UPDATEABLE",
"NOT_READABLE",
"NOT_RETURNED_BY DEFAULT"
1
I

"'groups" :

“type" : “array",
“items" :

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 138

http://tools.ietf.org/html/draft-zyp-json-schema-03

’ Connecting to External Resources
‘,' FORGEROCK Configuring Connectors
{
"type" : "string",
“nativeType" : “string“
I
“nativeName" : "__GROUPS ",
“nativeType" : “string",
"flags" :

"NOT_RETURNED_BY_ DEFAULT"
]

+
"givenName" : {
“type" : “string",
“nativeName" : "“givenName",
“nativeType" : “string"
T
}

OpenlCF 1.4 supports the ALL object type, which ensures that objects of every type are included
in a synchronization operation. The primary purpose of this object type is to prevent synchronization
errors when multiple changes affect more than one object type.

For example, imagine a deployment synchronizing two external systems. On system A, the
administrator creates a user, jdoe, then adds the user to a group, engineers. When these changes are
synchronized to system B, if the GRouPs object type is synchronized first, the synchronization will
fail, because the group contains a user that does not yet exist on system B. Synchronizing the ALL
object type ensures that user jdoe is created on the external system before he is added to the group
engineers.

The ALL object type is assumed by default - you do not need to declare it in your provisioner
configuration file. If it is not declared, the object type is named ALL . If you want to map a different
name for this object type, declare it in your provisioner configuration. The following excerpt from a
sample provisioner configuration uses the name allobjects:
"objectTypes": {
"allobjects": {
"$schema": "http://json-schema.org/draft-03/schema",

Ilidll : "_ALL_",
"type" . "object" ,
"nativeType": "__ALL_ "

H

A LiveSync operation invoked with no object type assumes an object type of ALL . For example, the
following call invokes a LiveSync operation on all defined object types in an LDAP system:

$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--header "Content-Type: application/json" \

--request POST \
"https://localhost:8443/openidm/system/ldap?_action=1liveSync"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 139

(/’ FORGEROCK

Connecting to External Resources
Configuring Connectors

Note

The use of the _ ALL__ object type requires a mechanism to ensure the order in which synchronization changes
are processed. Servers that use the cn=changelog mechanism to order sync changes (such as OpenD], Oracle
DSEE and the legacy Sun Directory Server) cannot use the ALL object type by default, and must be forced
to use time stamps to order their sync changes. For these LDAP server types, set useTimestampsForSync to true

in the provisioner configuration.

LDAP servers that use timestamps by default (such as Active Directory GCs and OpenLDAP) can use the ALL
object type without any additional configuration. Active Directory and Active Directory LDS, which use Update
Sequence Numbers, can also use the ALL object type without additional configuration.

Object Level Extensions
nativeType
string, optional

The native OpenICF object type.

The list of supported native object types is dependent on the resource, or on the connector.
For example, an LDAP connector might have object types such as ACCOUNT and GROUP .

Property Level Extensions
nativeType
string, optional
The native OpenlCF attribute type.

The following native types are supported:

JAVA_TYPE_BIGDECIMAL
JAVA_TYPE BIGINTEGER
JAVA_TYPE BYTE
JAVA_TYPE_BYTE_ARRAY
JAVA_TYPE_CHAR
JAVA_TYPE_CHARACTER
JAVA_TYPE_DATE
JAVA_TYPE_DOUBLE
JAVA_TYPE_FILE
JAVA_TYPE_FLOAT
JAVA_TYPE_GUARDEDBYTEARRAY
JAVA_TYPE_GUARDEDSTRING
JAVA_TYPE_INT
JAVA_TYPE_INTEGER
JAVA_TYPE_LONG
JAVA_TYPE_OBJECT
JAVA_TYPE_PRIMITIVE BOOLEAN
JAVA_TYPE_PRIMITIVE BYTE
JAVA_TYPE_PRIMITIVE DOUBLE
JAVA_TYPE_PRIMITIVE FLOAT
JAVA_TYPE_PRIMITIVE LONG
JAVA_TYPE_STRING

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

140

Connecting to External Resources

(" FORGEROCK' Configuring Connectors

nativeName

string, optional

The native OpenICF attribute name.
flags

string, optional

The native OpenlCF attribute flags. The required and multivalued flags are defined by the
JSON schema.

required = "required" : true

multivalued = "type" : "array"

If the type is array, an additional "items" field specifies the supported type for the objects in
the array. For example:

"groups"
“type" : "array",
"items"
"type" : "string",
"nativeType" : "string"

b

Note

Avoid using the dash character (-) in property names, like last-name, as dashes in names make JavaScript
syntax more complex. If you cannot avoid the dash, then write source['last-name'] instead of source.last-name
in the JavaScripts.

Operation Options

Operation options (specified with the "operationOptions" property) define how to act on specified
operations. You can, for example deny operations on specific resources to avoid OpenIDM
accidentally updating a read-only resource during a synchronization operation.

The following example defines the options for the "Sync" operation.

“operationOptions" : {

"SYNC" :
{

"denied" : true,
"onDeny" : "DO_NOTHING",
“"objectFeatures" :

" ACCOUNT _" :

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 141

’ Connecting to External Resources
‘,' FORGEROCK Configuring Connectors
{
"denied" : true,
“onDeny" : "“THROW_EXCEPTION",
“operationOptionInfo" :
{
"$schema" : "http://json-schema.org/draft-03/schema",
"id" : “FIX_ME",
"type" : “"object",
“properties" :

" OperationOption-float" :

"type" : "number",
"nativeType" : "JAVA_TYPE_PRIMITIVE FLOAT"
}
}
}

}
" GROUP__ " :
"denied" : false,
"onDeny" : "DO_NOTHING"
}
}

}
}

The OpenlICF Framework supports the following operations:
* AUTHENTICATE: AuthenticationApiOp
* CREATE: CreateApiOp

* DELETE: DeleteApiOp

* GET: GetApiOp

RESOLVEUSERNAME: ResolveUsernameApiOp

* SCHEMA: SchemaApiOp

* SCRIPT ON CONNECTOR: ScriptOnConnectorApiOp
* SCRIPT ON RESOURCE: ScriptOnResourceApiOp

* SEARCH: SearchApiOp

* SYNC: SyncApiOp

* TEST: TestApiOp

UPDATE: UpdateApiOp

VALIDATE: ValidateApiOp

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

142

http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/AuthenticationApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/CreateApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/DeleteApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/GetApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/ResolveUsernameApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/SchemaApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/ScriptOnConnectorApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/ScriptOnResourceApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/SearchApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/SyncApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/TestApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/UpdateApiOp.html
http://openicf.forgerock.org/connector-framework/apidocs/org/identityconnectors/framework/api/operations/ValidateApiOp.html

Connecting to External Resources

(,' FORGEROCK Installing and Configuring Remote Connector Servers

denied
boolean, optional
This property prevents operation execution if the value is true.
onDeny
string, optional
If denied is true, then the service uses this value. Default value: D0 _NOTHING.
* DO _NOTHING: On operation the service does nothing.

* THROW EXCEPTION: On operation the service throws a ForbiddenException exception.

11.4. Installing and Configuring Remote Connector Servers

Connectors that use the .NET framework must run remotely. Java connectors can run locally or
remotely. Connectors that run remotely require a connector server to enable OpenIDM to access the
connector.

Note

OpenIDM 3.1 supports version 1.4.1.0 of the OpenICF Framework. Therefore, you must use version 1.4.1.0
of the .NET Connector Server, or the Java Connector Server. The 1.4.1.0 Java Connector Server is backward
compatible with the version 1.1.x connectors. The 1.4.1.0 .NET Connector Server is compatible only with the
1.4.x connectors.

This section describes the steps to install a .NET connector server and a remote Java Connector
Server.

11.4.1. Installing and Configuring a .NET Connector Server

A .NET connector server is useful when an application is written in Java, but a connector bundle

is written using C#. Because a Java application (for example, a J2EE application) cannot load C#
classes, you must deploy the C# bundles under a .NET connector server. The Java application can
communicate with the C# connector server over the network, and the C# connector server acts as a
proxy to provide access to the C# bundles that are deployed within the C# connector server, to any
authenticated application.

The .NET connector server requires the .NET framework (version 4.0.30319 or later) and is
supported on Windows Server 2008 and 2008 R2.

By default, the connector server outputs log messages to a file named connectorserver.log, in the C:
\path\to\openicf directory. To change the location of the log file, set the initializeData parameter in the
configuration file, before you install the connector server. For example, the following excerpt sets the
log directory to C:\openicf\logs\connectorserver.log.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 143

Connecting to External Resources

(,' FORGEROCK’ Installing and Configuring a .NET Connector Server

<add name="file"
type="System.Diagnostics.TextWriterTracelListener"
initializeData="C:\openicf\logs\connectorserver.log"
traceOutputOptions="DateTime">
<filter type="System.Diagnostics.EventTypeFilter" initializeData="Information"/>
</add>

Procedure 11.1. Installing the .NET Connector Server

1. Download the OpenICF .NET Connector Server from ForgeRock's Backstage site.
The .NET Connector Server is distributed in two formats. The .msi file is a wizard that installs the
Connector Server as a Windows Service. The .zip file is simply a bundle of all the files required to
run the Connector Server.
If you do not want to run the Connector Server as a Windows service, download and extract the
.zip file, and move on to Procedure 11.2, "Configuring the .NET Connector Server". Otherwise,

follow the steps in this section.

2. Execute the openicf-zip-${connectorServerVersion}-dotnet.msi installation file and complete the
wizard.

When the wizard has completed, the Connector Server is installed as a Windows Service.
3. Open the Services console and make sure that the Connector Server is listed there.

The name of the service is 0penICF Connector Server, by default.

Select an item to view its description. Mame -+ | Description | Status | Startup Type | Logonas |
&hNet.Tep Listener Adapter Receivesa... Started Automatic Local Service
‘.E;_’;Net.Tq:l Port Sharing Ser... Providesa... Started Manual Local Service
{;;?‘;Neﬂogon Maintains a... Started Automatic Local System
-\.‘.‘;:J_‘;Network Access Protectio... The Netwo... Manual Metwork ...
-\.‘iz_‘ENetwork Connections Manages o... Started Manual Local System
Q;Nebmork List Service Identifies t... Started Manual Local Service
n..‘.}:c?;NebNork Location Awaren... Collects an... Started Automatic Metwork S...
x‘};’-.Network Store Interface ... This servic... Started Automatic Local Service
E.S;_’;DpenICF Connector Server OpenICF C... Started Automatic Local Systemj
Q Performance Counter DLL... Enablesre... Manual Local Service
\S;" Performance Logs & Alerts Performan. .. Manual Local Service
-\.‘.‘:J‘ Flug and Flay Enablesac... Started Automatic Local System

Procedure 11.2. Configuring the .NET Connector Server

After you have installed the .NET Connector Server, as described in the previous section, follow these
steps to configure the Connector Server.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 144

https://backstage.forgerock.com/#!/downloads/OpenIDM/Connector%20Servers#browse

Connecting to External Resources

(,' FORGEROCK’ Installing and Configuring a .NET Connector Server

1. Make sure that the Connector Server is not currently running. If it is running, use the Services
console to stop it.
2. At the command prompt, change to the directory where the Connector Server was installed.

c:\> cd "c:\Program Files (x86)\Identity Connectors\Connector Server"

3. Run the ConnectorServer /setkey command to set a secret key for the Connector Server. The key
can be any string value. This example sets the secret key to password.

ConnectorServer /setkey PasswOrd
Key Updated.

This key is used by clients connecting to the Connector Server. The key that you set here must
also be set in the OpenIDM connector info provider configuration file (conf/provisioner.openicf
.connectorinfoprovider.json). For more information, see Procedure 11.4, "Configuring OpenIDM to
Connect to the .NET Connector Server".

4. Edit the Connector Server connection settings.

The Connector Server configuration is saved in a file named ConnectorServer.exe.Config (in the
directory in which the Connector Server is installed).

Check and edit this file, as necessary, to reflect your installation. In particular, check the
connection properties, under the <appsettings> item.

<add key="connectorserver.port" value="8759" />

<add key="connectorserver.usessl" value="false" />

<add key="connectorserver.certificatestorename" value="ConnectorServerSSLCertificate" />

<add key="connectorserver.ifaddress" value="0.0.0.0" />
<add key="connectorserver.key" value="x0S4IeeE6eb/AhMbhxZEC37PgtE=" />

The following connection properties are set by default.

connectorserver.port

Specifies the port on which the Connector Server listens.

Note

If Windows firewall is enabled, you must create an inbound port rule to open the TCP port for the
connector server (8759 by default). If you do not open the TCP port, OpenIDM will be unable to
contact the Connector Server. For more information, see the Microsoft documentation on creating an
inbound port rule.

connectorserver.usessl

Indicates whether client connections to the Connector Server should be over SSL. This
property is set to false by default.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 145

http://technet.microsoft.com/en-us/library/cc947814(v=ws.10).aspx
http://technet.microsoft.com/en-us/library/cc947814(v=ws.10).aspx

Connecting to External Resources

(,' FORGEROCK’ Installing and Configuring a .NET Connector Server

To secure connections to the Connector Server, set this property to true and store the server
certificate in your certificate store, using the following command:

ConnectorServer /storeCertificate /storeName <certificate-store-name> /certificateFile
<certificate>

connectorserver.certificatestorename

Specifies the name of the certificate store, into which your server certificate has been
installed.

connectorserver.ifaddress
Specifies a single IP address from which connections will be accepted.

If you set a value here (other than the default 0.0.0.0) connections from all IP addresses other
than the one specified are denied.

5. Check the trace settings, in the same configuration file, under the <system.diagnostics> item.

<system.diagnostics>
<trace autoflush="true" indentsize="4">
<listeners>
<remove name="Default" />
<add
name="myListener"
type="System.Diagnostics.TextWriterTraceListener"
initializeData="c:\connectorserver.log"
traceOutputOptions="DateTime">
<filter
type="System.Diagnostics.EventTypeFilter"
initializeData="Information" />
</add>
</listeners>
</trace>
</system.diagnostics>

The Connector Server uses the standard .NET trace mechanism. For more information about
tracing options, see Microsoft's .NET documentation for System.Diagnostics.

The default trace settings are a good starting point. For less tracing, you can change the
EventTypeFilter's initializeData to "Warning" or "Error". For very verbose logging you can set the

value to "Verbose" or "All". The level of logging performed has a direct effect on the performance
of the Connector Servers, so take care when setting this level.

Procedure 11.3. Starting the .NET Connector Server
Start the .NET Connector Server in one of the following ways.

1. Start the server as a Windows service, by using the Microsoft Services Console.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 146

http://msdn.microsoft.com/en-us/library/15t15zda(v=vs.71).aspx

Connecting to External Resources

(,' FORGEROCK’ Installing and Configuring a .NET Connector Server

Locate the connector server service (0penICF Connector Server), and click Start the service Or Restart
the service.

The service is executed with the credentials of the "run as" user (System, by default).
Start the server as a Windows service, by using the command line.

In the Windows Command Prompt, run the following command:

net start ConnectorServerService

To stop the service in this manner, run the following command:

net stop ConnectorServerService

Start the server without using Windows services.

In the Windows Command Prompt, change directory to the location where the Connector Server
was installed. The default location is c:\Program Files (x86)\Identity Connectors\Connector Server.

Start the server with the following command:

ConnectorServer.exe /run

Note that this command starts the Connector Server with the credentials of the current user. It
does not start the server as a Windows service.

Procedure 11.4. Configuring OpenIDM to Connect to the .NET Connector Server

The connector info provider service enables you to configure one or more remote connector servers
to which OpenIDM can connect. The connector info provider configuration is stored in a file

named openidm/conf/provisioner.openicf.connectorinfoprovider.json. A sample connector info provider
configuration file is located in openidm/samples/provisioners/.

To configure OpenIDM to use the remote .NET connector server, follow these steps:

1.

2.

Start OpenIDV, if it is not already running.

Copy the sample connector info provider configuration file to the path/to/openidm/conf directory.
$ cd /path/to/openidm
$ cp samples/provisioners/provisioner.openicf.connectorinfoprovider.json conf/

Edit the connector info provider configuration, specifying the details of the remote connector
server.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 147

’ Connecting to External Resources
‘,' FORGEROCK’ Installing and Configuring a .NET Connector Server
"remoteConnectorServers" : [
{
"name" : "dotnet",
"host" : "192.0.2.0",
"port" : 8759,

"useSSL" : false,
“timeout" : 0,
"key" : "PasswOrd"

Configurable properties are as follows:

name
Specifies the name of the connection to the .NET connector server. The name can be any
string. This property is referenced in the connector configuration file (provisioner.openicf-
ad.json with the "connectorHostRef" property.

host
Specifies the IP address of the host on which the Connector Server is installed.

port

Specifies the port on which the Connector Server listens. This property matches the
connectorserver.port property in the ConnectorServer.exe.config file.

For more information, see Procedure 11.2, "Configuring the .NET Connector Server".
useSSL

Specifies whether the connection to the Connector Server should be secured. This property
matches the "connectorserver.usessl" property in the ConnectorServer.exe.config file.

timeout

Specifies the length of time, in seconds, that OpenIDM should attempt to connect to the
Connector Server before abandoning the attempt. To disable the timeout, set the value of this
property to o.

key
Specifies the connector server key. This property matches the key property in the
ConnectorServer.exe.config file. For more information, see Procedure 11.2, "Configuring

the .NET Connector Server".

The string value that you enter here is encrypted as soon as the file is saved.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 148

Connecting to External Resources

(,' FORGEROCK’ Installing and Configuring a Remote Java Connector Server

11.4.2. Installing and Configuring a Remote Java Connector Server

In certain situations, it might be necessary to set up a remote Java Connector Server. This section
provides instructions for setting up a remote Java Connector Server on Unix/Linux and Windows.

Procedure 11.5. Installing a Remote Java Connector Server for Unix/Linux

1.
2.

Download the OpenICF Java Connector Server from ForgeRock's Backstage site.

Change to the appropriate directory and unpack the zip file. The following command unzips the
file in the current folder.

$ unzip openicf-zip-${connectorServerVersion}.zip

Change to the openicf directory:
$ cd path/to/openicf

(Optional) The Java Connector Server uses a key property to authenticate the connection. The
default key value is changeit. To change the value of the secret key, run a command similar to the
following. This example sets the key value to pPassword:

$ cd /path/to/openicf
$ java \
-cp "./lib/framework/*" \
org.identityconnectors.framework.server.Main \
-setKey
-key PasswOrd
-properties ./conf/ConnectorServer.properties

Review the ConnectorServer.properties file in the /path/to/openicf/conf directory, and make any
required changes. By default, the configuration file has the following properties:
connectorserver.port=8759
connectorserver.libDir=1ib
connectorserver.usessl=false
connectorserver.bundleDir=bundles
connectorserver.loggerClass=org.forgerock.openicf.common.logging.s1f4j.SLF4JLog
connectorserver.key=x05S4IeeE6eb/AhMbhxZEC37PgtE\=

Indicates whether client connections to the connector server should be over SSL. This property is
set to false by default.

To secure connections to the connector server, set this property to true and set the following
properties before you start the connector server:

java -Djavax.net.ssl.keyStore=mySrvKeystore -Djavax.net.ssl.keyStorePassword=Passw0Ord

Start the Java Connector Server.

$ java -cp "./lib/framework/*" \
org.identityconnectors.framework.server.Main \
-run \
-properties ./conf/ConnectorServer.properties

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 149

https://backstage.forgerock.com/#!/downloads/OpenIDM/Connector%20Servers#browse

Connecting to External Resources

(,' FORGEROCK’ Installing and Configuring a Remote Java Connector Server

7.

The connector server is now running, and listening on port 8759, by default.

Log files are available in the /path/to/openicf/logs directory.

$ 1s logs/
Connector.log ConnectorServer.log ConnectorServerTrace.log

If required, stop the Java Connector Server by pressing CTRL-C.

Procedure 11.6. Installing a Remote Java Connector Server for Windows

1.
2.

Download the OpenICF Java Connector Server from ForgeRock's Backstage site.
Change to the appropriate directory and unpack the zip file.

In a Command Prompt window, change to the openicf directory:
C:\>cd C:\path\to\openicf\bin

If required, secure the communication between OpenIDM and the Java Connector Server. The
Java Connector Server uses a key property to authenticate the connection. The default key value is
changeit.

To change the value of the secret key, use the bin\ConnectorServer.bat /setkey command. The
following example sets the key to Password:
c:\path\to\openicf>bin\ConnectorServer.bat /setkey PasswOrd
lib\framework\connector-framework.jar;lib\framework\connector-framework-
internal

.jar;lib\framework\groovy-all.jar;lib\framework\icfl-over-slf4j.jar;lib\framewor
k\slf4j-api.jar;lib\framework\logback-core.jar;lib\framework\logback-classic.jar

Review the ConnectorServer.properties file in the path\to\openicf\conf directory, and make any
required changes. By default, the configuration file has the following properties:
connectorserver.port=8759
connectorserver.libDir=1ib
connectorserver.usessl=false
connectorserver.bundleDir=bundles

connectorserver.loggerClass=org.forgerock.openicf.common.logging.s1f4j.SLF4JLog
connectorserver.key=x054IeeE6eb/AhMbhxZEC37PgtE\=

You can either run the Java Connector Server as a Windows service, or just start and stop it from
the command line.
* To install the Java Connector Server as a Windows service, run the following command.

c:\path\to\openicf>bin\ConnectorServer.bat /install

If you install the connector server as a Windows service you can use the Microsoft Service
Console to start, stop and restart the service. The Java Connector Service is named
OpenICFConnectorServerJava.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 150

https://backstage.forgerock.com/#!/downloads/OpenIDM/Connector%20Servers#browse

Connecting to External Resources

(" FORGEROCK Connectors Supported With OpenIDM 3.1

To uninstall the Java Connector Server as a Windows service, run the following command.

c:\path\to\openicf>bin\ConnectorServer.bat /uninstall

7. To start the Java Connector Server from the command line, enter the following command:
c:\path\to\openicf>bin\ConnectorServer.bat /run
lib\framework\connector-framework.jar;lib\framework\connector-framework-
internal

.jar;lib\framework\groovy-all.jar;lib\framework\icfl-over-slf4j.jar;lib\framework
\slf4j-api.jar;lib\framework\logback-core.jar;lib\framework\logback-classic.jar

The connector server is now running, and listening on port 8759, by default.
Log files are available in the \path\to\openicf\logs directory.

8. Ifrequired, stop the Java Connector Server by pressing ~c.

11.5. Connectors Supported With OpenIDM 3.1

OpenIDM 3.1 provides several connectors by default, in the path/to/openidm/connectors directory.
Additional connectors can be downloaded from ForgeRock's Backstage site.

This section describes the connectors that are supported for use with OpenIDM 3.1, and provides
instructions for installing and configuring these connectors. For instructions on building connector
configurations interactively, see Section 11.6, "Creating Default Connector Configurations".

11.5.1. XML File Connector

A sample XML connector configuration is provided in path/to/openidm/samples/provisioners/
provisioner.openicf-xml.json. The following extract of the provisioner configuration shows the main
configurable properties.

{
"connectorRef": {
"connectorHostRef": "#LOCAL",
"bundleName": "org.forgerock.openicf.connectors.xml-connector",
"bundleVersion": "1.1.0.2",
"connectorName": "org.forgerock.openicf.connectors.xml.XMLConnector"
}
}

The connectorHostRef is optional if the connector server is local.

The configuration properties for the XML file connector set the relative path to the file containing the
identity data, and also the paths to the required XML schemas.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 151

https://backstage.forgerock.com/#!/downloads/OpenIDM/Connectors#browse

’, Connecting to External Resources
" FORGEROCK' XML File Connector
{
“"configurationProperties": {
"xsdIcfFilePath" : "&{launcher.project.location}/data/resource-schema-1.xsd",
"xsdFilePath" : "&{launcher.project.location}/data/resource-schema-extension.xsd",
"xmlFilePath" : "&{launcher.project.location}/data/xmlConnectorData.xml"

}

&{launcher.project.location} refers to the project directory of your OpenIDM instance. For more
information, see Section 6.7, "Default and Custom Configuration Directories". Note that relative paths
such as these work only if your connector server runs locally. For remote connector servers, you must
specify the absolute path to the schema and data files.

xsdIcfFilePath

References the XSD file defining schema common to all XML file resources. Do not change the
schema defined in this file.

xsdFilePath
References custom schema defining attributes specific to your project.
xmlFilePath

References the XML file containing account entries.

11.5.1.1. Example : Using the XML Connector to Reconcile Users in a Remote XML
Data Store

This sample demonstrates reconciliation of users stored in an XML file on a remote machine. The
remote Java Connector Server enables OpenIDM to synchronize the internal OpenIDM repository
with the remote XML repository.

Before You Start

This sample assumes that a remote Java Connector Server is installed and running on a host named
remote-host. For instructions on setting up the remote Java Connector Server, see Procedure 11.5,
"Installing a Remote Java Connector Server for Unix/Linux" or Procedure 11.6, "Installing a Remote
Java Connector Server for Windows".

The sample uses the XML data that is provided in the basic XML reconciliation sample (Sample 1).
Before you start, copy the XML data from that sample to an accessible location on the machine that
hosts the remote Java Connector Server. For example:

$ cd path/to/openidm

$ scp -r samples/samplel/data testuser@remote-host:/home/testuser/xml-sample
testuser@remote-host's password:

resource-schema-1.xsd 100% 4083 4.0KB/s 00:00
resource-schema-extension.xsd 100% 1351 1.3KB/s 00:00
xmlConnectorData.xml 100% 1648 1.6KB/s 00:00

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 152

Connecting to External Resources

(" FORGEROCK XML File Connector

The XML connector runs as a remote connector, that is, on the remote host on which the Java
Connector Server is installed. Copy the XML connector .jar from the OpenIDM installation to the
openicf/bundles directory on the remote host.

$ cd path/to/openidm

$ scp connectors/xml-connector-1.4.0.0.jar testuser@remote-host:/path/to/openicf/bundles
testuser@l72.16.203.97's password:

xml-connector-1.4.0.0.jar 100% 4379KB 4.3MB/s 00:00

Procedure 11.7. Configuring OpenIDM for the XML Connector Example

This example uses the configuration of Sample 1, which is effectively your OpenIDM project location.
Any configuration changes that you make must therefore be made in the conf directory of samplel.

1. Copy the remote connector configuration file (provisioner.openicf.connectorinfoprovider.json) from
the provisioner samples directory to the configuration directory of your OpenIDM project (sample
1).

$ cd path/to/openidm/samples/
$ cp provisioners/provisioner.openicf.connectorinfoprovider.json samplel/conf

2. Edit the remote connector configuration file (provisioner.openicf.connectorinfoprovider.json) to
match your network setup. Also, change the value of the "connectorsLocation" property to “bundles”,
as this is where the connector will be installed on the remote host.

The following example indicates that the remote Java Connector server is running on the host
remote-host, listening on the default port, and configured with a secret key of password.

{
"connectorsLocation" : "bundles",
"remoteConnectorServers" : [
{
"name" : "xml",
"host" : "remote-host",
"port" : 8759,
"useSSL" : false,
"timeout" : 0,
"key" : "PasswOrd"
}
1
}

3. Edit the XML connector configuration file (provisioner.openicf-xml.json) in the samplel/conf
directory as follows.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 153

’, Connecting to External Resources
" FORGEROCK XML File Connector
{
"name" : "xmlfile",
"connectorRef" : {
"connectorHostRef" : "xml",
"bundleName" : "org.forgerock.openicf.connectors.file.openicf-xml-connector",
"bundleVersion" : "1.1.0.2",
"connectorName" : "org.forgerock.openicf.connectors.xml.XMLConnector"
}
"configurationProperties" : {
"xsdIcfFilePath" : "/home/testuser/xml-sample/data/resource-schema-1.xsd",
"xsdFilePath" : "/home/testuser/xml-sample/data/resource-schema-extension.xsd",
"xmlFilePath" : "/home/testuser/xml-sample/data/xmlConnectorData.xml"
I
}

4. -« The "connectorHostRef" property indicates which remote connector server to use, and refers to
the "name" property defined in the provisioner.openicf.connectorinfoprovider.json file.

* The bundleVersion : 1.1.0.2 must be exactly the same as the version of the XML connector that
you are using. If you specify a range here, the XML connector version must be included in this
range.

* The "configurationProperties" must specify the absolute path to the data files that you copied to
the server on which the Java Connector Server is running.

5. Start OpenIDM with the configuration for Sample 1.

$./startup.sh -p samples/samplel/

6. In the Felix console, run the following command to show the state of the remote connector:
-> scr list

[22] [active] org.forgerock.openidm.provisioner.openicf

The connector module (org. forgerock.openidm.provisioner.openicf) should be active, indicating that
the remote connector has been installed correctly. If the connector state is not active, check the
configuration, following the preceding steps.

The number of the connector module might differ. Make a note of the number returned.

7. View the configuration of the remote connector, by running the following command, substituting
the number of the provisioner module returned in the previous step:

-> scr info 22

8. To test that the connector has been configured correctly, run a reconciliation operation as
follows:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 154

Connecting to External Resources

(" FORGEROCK Generic LDAP Connector

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/openidm/recon? action=recon&mapping=systemXmlfileAccounts managedUser"

If successful, the operation returns a reconciliation ID, similar to the following:

{"_id":"a5346543-db9a-4f8b-ba25-af2alb576a54", "state": "ACTIVE"}

9. To verify that the users from the remote XML files have been created in the OpenIDM repository,
run the following command:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/managed/user/?_queryId=query-all-ids"

"remainingPagedResults": -1,
"pagedResultsCookie": null,
"resultCount": 2,

"result": [
{
" _rev"': "0",
" id": "bjensen"
I
{
" _rev"': "0",
" id": "scarter"
}
]

11.5.2. Generic LDAP Connector

A sample LDAP connector configuration is provided in path/to/openidm/samples/provisioners/
provisioner.openicf-ldap.json. The following extract of the provisioner configuration shows the main
configurable properties.

The following excerpt shows the connectorRef configuration property for connection to an LDAP server.
The connectorHostRef property is optional, if you use the connector .jar provided in openidm/connectors,
and you use a local connector server.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 155

Connecting to External Resources

(" FORGEROCK Generic LDAP Connector

"connectorRef": {
"connectorHostRef": "#LOCAL",
"connectorName": "org.identityconnectors.ldap.LdapConnector",
"bundleName": "org.forgerock.openicf.connectors.ldap-connector",
"bundleVersion": "[1.4.0.0,2.0.0.0)"

The following excerpt shows the settings for the connector configuration properties in the sample
LDAP connector.

“configurationProperties" : {
"host" : "localhost",
"port" : 1389,
"ssl" : false,
“"principal" : "cn=Directory Manager",
“credentials" : “password",
"baseContexts" : [

"dc=example,dc=com"
1,
“"baseContextsToSynchronize" : [

"dc=example,dc=com"
1,
"accountSearchFilter" : null,
“"accountSynchronizationFilter" : null,
“"groupSearchFilter" : null,
“"groupSynchronizationFilter" : null,
"passwordAttributeToSynchronize" : null,
"synchronizePasswords" : false,
"removeLogEntryObjectClassFromFilter" : true,
"modifiersNamesToFilterOut" : [],
“"passwordDecryptionKey" : null,
“changeLogBlockSize" : 100,
“attributesToSynchronize" : [1,
“changeNumberAttribute" : “changeNumber",
"passwordDecryptionInitializationVector" : null,
"filterWithOrInsteadOfAnd" : false,
"objectClassesToSynchronize" : [

“inetOrgPerson"
1,
"vlvSortAttribute" : "uid",
“"passwordAttribute" : “userPassword",
"useBlocks" : false,
“"maintainPosixGroupMembership" : false,
"failover" : [1,
"readSchema" : true,
"accountObjectClasses" : [

“top",

“person",

“organizationalPerson",

“inetOrgPerson"
1,
"accountUserNameAttributes" : [

“uid"
1,

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 156

’, Connecting to External Resources
" FORGEROCK Generic LDAP Connector
“"groupMemberAttribute" : “uniqueMember",
“"passwordHashAlgorithm" : null,
"usePagedResultControl" : false,
"blockSize" : 100,
"uidAttribute" : "dn",
“"maintainLdapGroupMembership" : false,
"respectResourcePasswordPolicyChangeAfterReset" : false
+
host

The host name or IP address of the server on which the LDAP instance is running.
port

The port on which the LDAP server listens for LDAP requests. The sample configuration specifies
a default port of 1389.

ssl
If true, the specified port listens for LDAPS connections.
principal
The bind DN that is used to connect to the LDAP server.
credentials
The password of the principal that is used to connect to the LDAP server.
baseContexts

One or more starting points in the LDAP tree that will be used when searching the tree. Searches
are performed when discovering users from the LDAP server or when looking for the groups of
which a user is a member.

baseContextsToSynchronize

One or more starting points in the LDAP tree that will be used to determine if a change should be
synchronized. The base contexts attribute will be used to synchronize a change if this property is
not set.

accountSynchronizationFilter
Used during synchronization actions to filter out LDAP accounts
accountObjectClasses

The object classes used when creating new LDAP user objects. When specifying more than
one object class, add each object class as its own property. For object classes that inherit from
parents other than top, such as inetorgPerson, specify all object classes in the class hierarchy.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 157

Connecting to External Resources

(" FORGEROCK Generic LDAP Connector

accountSearchFilter
Search filter that accounts must match
accountUserNameAttributes

Attributes holding the account's user name. Used during authentication to find the LDAP entry
matching the user name.

attributesToSynchronize

List of attributes used during object synchronization. OpenIDM ignores change log updates that
do not include any of the specified attributes. If empty, OpenIDM considers all changes.

blockSize

Block size for simple paged results and VLV index searches, reflecting the maximum number of
accounts retrieved at any one time

changeLogBlockSize

Block size used when fetching change log entries
changeNumberAttribute

Change log attribute containing the last change number
failover

LDAP URLs specifying alternative LDAP servers to connect to if OpenIDM cannot connect to the
primary LDAP server specified in the host and port properties

filterWithOrInsteadOfAnd

In most cases, the filter to fetch change log entries is AND-based. If this property is set, the filter
ORs the required change numbers instead.

groupMemberAttribute

LDAP attribute holding members for non-POSIX static groups
maintainLdapGroupMembership

If true, OpenIDM modifies group membership when entries are renamed or deleted.

In the sample LDAP connector configuration file provided with OpenIDM, this property is set

to false. This means that LDAP group membership is not modified when entries are renamed or
deleted in OpenIDM. To ensure that entries are removed from LDAP groups when the entries are
deleted, set this property to true or enable referential integrity on the LDAP server. For OpenD],
see Configuring Referential Integrity for more information.

maintainPosixGroupMembership

If true, OpenIDM modifies POSIX group membership when entries are renamed or deleted.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 158

https://backstage.forgerock.com/#!/docs/opendj/2.6/admin-guide#referential-integrity

Connecting to External Resources

(" FORGEROCK Generic LDAP Connector

modifiersNamesToFilterOut

Use to avoid loops caused by OpenIDM's own changes
objectClassesToSynchronize

OpenIDM synchronizes only entries having these object classes.
passwordAttribute

Attribute to which OpenIDM writes the predefined PASSWORD attribute
passwordAttributeToSynchronize

OpenIDM synchronizes password values on this attribute.
passwordDecryptionInitializationVector

Initialization vector used to decrypt passwords when performing password synchronization
passwordDecryptionKey

Key used to decrypt passwords when performing password synchronization
passwordHashAlgorithm

Hash password values with the specified algorithm, if the LDAP server stores them in clear text.

The hash algorithm can be one of the following:

* NONE - Clear text

* WIN-AD - Used for password changes to Active Directory

* SHA - Secure Hash Algorithm

* SHA-1 - A 160-bit hash algorithm that resembles the MD5 algorithm

SSHA - Salted SHA

* MD5 - A 128-bit message-digest algorithm

* sMD5 - Salted MD5
readSchema

If true, read LDAP schema from the LDAP server.
removeLogEntryObjectClassFromFilter

If true, the filter to fetch change log entries does not contain the changeLogEntry object class, and
OpenIDM expects no entries with other object types in the change log. Default: true

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 159

Connecting to External Resources

(" FORGEROCK' Active Directory Connector

respectResourcePasswordPolicyChangeAfterReset

If true, bind with the Password Expired and Password Policy controls, and throw
PasswordExpiredException and other exceptions appropriately.

synchronizePasswords
If true, synchronize passwords.
uidAttribute

Specifies the LDAP attribute that should be used as the immutable ID (uidb) for the entry. For an
OpenD]J resource, you should use the entryuuid. You can use the bn as the UID attribute but note
that this is not immutable.

useBlocks

If true, use block-based LDAP controls like simple paged results and virtual list view.
usePagedResultControl

If true, use simple paged results rather than virtual list view when both are available.
useTimestampsForSync

If true, use timestamps for LiveSync operations, instead of the change log.

By default, the LDAP connector has a change log strategy for LDAP servers that support a change
log (such as OpenD]J and Oracle Directory Server Enterprise Edition). If the LDAP server does not
support a change log, or if the change log is disabled, LiveSync for create and modify operations
can still occur, based on the timestamps of modifications.

vlvSortAttribute
Attribute used as the sort key for virtual list view

If you use the LDAP connector over SSL, you must set the ss1 property to true in the provisioner
configuration file. You must also specify the path to a truststore in the system.properties file.

A truststore is provided by default at openidm/security/truststore. Add the following line to the
system.properties file, substituting the path to your own truststore if you do not want to use the
default.

Set the truststore
javax.net.ssl.trustStore=/path/to/openidm/security/truststore

11.5.3. Active Directory Connector

Unlike most other connectors, the Active Directory connector is written not in Java, but in C# for
the .Net platform. OpenICF should connect to Active Directory over ADSI, the native connection

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 160

Connecting to External Resources

(" FORGEROCK' Active Directory Connector

protocol for Active Directory. The connector therefore requires a connector server that has access to
the ADSI .dll files.

In general, the generic LDAP connector has better performance than the Active Directory connector.
Unfortunately, Active Directory has some limitations when you use the LDAP connector, and the
LDAP connector might therefore not be suitable in all Active Directory deployments. However, if your
deployment can use the LDAP connector, it is preferable to do so.

Before you configure the Active Directory Connector, make sure that the .NET Connector Server
is installed, configured and started, and that OpenIDM has been configured to use the Connector
Server. For more information, see Section 11.4.1, "Installing and Configuring a .NET Connector
Server".

Procedure 11.8. Setting Up the Active Directory Connector
1. Download the Active Directory Connector from ForgeRock's Backstage site.

2. Extract the contents of the AD Connector zip file into the directory in which you installed the
Connector Server (by default c:\Program Files (x86)\Identity Connectors\Connector Server>).

Note that the files, specifically the connector itself (ActiveDirectory.Connector.dll) must be directly
under the path\to\Identity Connectors\Connector Server folder, and not in a subfolder.

Note

If the account that is used to install the Active Directory connector is different from the account under
which the Connector Server runs, you must give the Connector Server runtime account the rights to access
the Active Directory connector log files.

3. A sample Active Directory Connector configuration file is provided in path/to/opendim/samples/
provisioners/provisioner.openicf-ad.json. On the OpenIDM host, copy the sample Active Directory
connector configuration file to the openidm/conf directory.

$ cd /path/to/openidm
$ cp samples/provisioners/provisioner.openicf-ad.json conf/

4. Edit the Active Directory connector configuration to match your Active Directory deployment.

Specifically, check and edit the "configurationProperties" that define the connection details to the
Active Directory server.

Also, check that the bundleversion of the connector matches the version of the
ActiveDirectory.Connector.dll in the Connector Server directory. The bundle version can be a range
that includes the version of the connector bundle. To check the .dll version:

* Right click on the ActiveDirectory.Connector.dll file and select Properties.

e Select the Details tab and note the Product Version.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 161

https://backstage.forgerock.com

Connecting to External Resources

(" FORGEROCK' Active Directory Connector

B ActiveDirectory.Connector.dll Properties

" Genersl I Securty Details | Previous Versinnsl

Property | Value
Description

File description OpenlCF

Type Application extension
File: version 1400

Product name QpenlCF

{Product version 1.4.0.0 |
Copyright Copyright 2008-2003 Sun Microsystems, ...
Size 87.0 KB

Date modfied 6/27/2014 9:15 AM

Language Language Meutral

Criginal filename ActiveDirectory Connector dil

Bemove Properties and Personal Information

QK I Cancel Loply

The following configuration extract shows sample values for the "connectorRef" and
"configurationProperties":

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 162

’,) Connecting to E_xternal Resources
" FORGEROCK Active Directory Connector
"connectorRef"

{
"connectorHostRef" : "dotnet",
"connectorName" : "Org.IdentityConnectors.ActiveDirectory.ActiveDirectoryConnector",
"bundleName" : "ActiveDirectory.Connector",
"bundleVersion" : "[1.4.0.0,2.0.0.0)"

}, T

"configurationProperties"

{
"DirectoryAdminName" : "EXAMPLE\\Administrator",
"DirectoryAdminPassword" : "PasswOrd",
"ObjectClass" : "User",
"Container" : "dc=example,dc=com",
"CreateHomeDirectory" : true,
"LDAPHostName" : "192.0.2.0",
"SearchChildDomains" : false,
"DomainName" : "example",
"SyncGlobalCatalogServer" : null,
"SyncDomainController" : null,
"SearchContext" "

+

The main configurable properties are as follows:

"connectorHostRef"
Must point to an existing connector info provider configuration in openidm/conf/
provisioner.openicf.connectorinfoprovider.json. The "connectorHostRef" property is required
because the Active Directory connector must be installed on a .NET connector server, which
is always "remote", relative to OpenIDM.

"DirectoryAdminName" and "DirectoryAdminPassword"

Specify the credentials of an administrator account in Active Directory, that the connector
will use to bind to the server.

The "DirectoryAdminName" can be specified as a bindDN, or in the format pomainname\
\samaccountname.

"SearchChildDomains" boolean, false by default
Specifies if a Global Catalog (GC) should be used. This parameter is used in search and query
operations. A Global Catalog is a read-only, partial copy of the entire forest, and is never be
used for create, update or delete operations.

"LDAPHostName"

Specifies a particular Domain Controller (DC) or Global Catalog (GC), using its hostname.
This parameter is used for query, create, update, and delete operations.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 163

Connecting to External Resources

(" FORGEROCK' Active Directory Connector

If "SearchChildDomains" is set to true, this specific GC will be used for search and query
operations. If the "LDAPHostName" is null (as it is by default), the connector will allow the ADSI
libraries to pick up a valid DC or GC each time it needs to perform a query, create, update, or
delete operation.

"SyncGlobalCatalogServer"

Specifies a Global Catalog server name for sync operations. This property is used in
combination with the "SearchChildDomains" property.

If a value for "SyncGlobalCatalogServer" is set (that is, the value is not null) and
"SearchChildDomains" is set to true, this GC server is used for sync operations. If no value for
"SyncGlobalCatalogServer" is set and "SearchChildDomains" is set to true, the connector allows the
ADSI libraries to pick up a valid GC.

"SyncDomainController"

Specifies a particular DC server for sync operations. If no DC is specified, the connector picks
up the first available DC and retains this DC in future sync operations.

For a description of all configurable properties for this connector, see the OpenICF Connector
Configuration Reference.

The updated configuration is applied immediately.

5. Check that the connector has been configured correctly by running the following command in the
OSQGi console:

scr list

This command returns all of the installed modules. The openicf provisioner module should be
active, as follows:

[32] [active] org.forgerock.openidm.provisioner.openicf.connectorinfoprovider

The number of the module may differ. Make a note of the module number, as it is referenced in
the commands that follow.

6. Review the contents of the connector by running the following command in the OSGi console
(substituting the module number returned in the previous step):

scr info 32

ID: 32

Name: org.forgerock.openidm.provisioner.openicf.connectorinfoprovider
Bundle: org.forgerock.openidm.provisioner-openicf (82)
State: active

Default State: enabled

Activation: immediate

Configuration Policy: optional

Activate Method: activate (declared in the descriptor)
Deactivate Method: deactivate (declared in the descriptor)
Modified Method: -

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 164

https://backstage.forgerock.com/#!/docs/openicf/1.5/config-reference
https://backstage.forgerock.com/#!/docs/openicf/1.5/config-reference

Connecting to External Resources

(" FORGEROCK' Active Directory Connector

Services: org.forgerock.openidm.provisioner.openicf.ConnectorInfoProvider
org.forgerock.openidm.metadata.MetaDataProvider
org.forgerock.openidm.provisioner.ConnectorConfigurationHelper

Service Type: service

Reference: osgiConnectorEventPublisher

Satisfied: satisfied
Service Name: org.identityconnectors.common.event.ConnectorEventPublisher
Multiple: multiple
Optional: optional
Policy: dynamic
Reference: connectorInfoManager
Satisfied: satisfied
Service Name: org.identityconnectors.framework.api.ConnectorInfoManager
Multiple: single
Optional: optional
Policy: static
Reference: connectorFacadeFactory
Satisfied: satisfied
Service Name: org.identityconnectors.framework.api.ConnectorFacadeFactory
Multiple: single
Optional: optional
Policy: static
Properties:
component.id = 32
component.name = org.forgerock.openidm.provisioner.openicf.connectorinfoprovider
felix.fileinstall.filename = file:/openidm/conf/provisioner.openicf.connectorinfoprovider.json
jsonconfig = {

"connectorsLocation" : "connectors",
"remoteConnectorServers" : [
{
"name" : "dotnet",
"host" : "192.0.2.0",
"port" : 8759,
"useSSL" : false,
"timeout" : 0,
"key" : {
"$crypto" : {
"value" : {
"iv" : "3XpjsLV1YNPO34Rt/6BZgg==",
"data" : "8JIXxpoRJjYGFKRVHVTWGTA==",
"cipher" : "AES/CBC/PKCS5Padding",
"key" : "openidm-sym-default"
1,
"type" : "x-simple-encryption"
}
}
}

1

service.description = OpenICF Connector Info Service
service.pid = org.forgerock.openidm.provisioner.openicf.connectorinfoprovider
service.vendor = ForgeRock AS.

7. The connector is now configured. To verify the configuration, perform a RESTful GET request on
the remote system URL, for example:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 165

Connecting to External Resources

(" FORGEROCK' Active Directory Connector

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/system/ActiveDirectory/account? queryId=query-all-ids"

This request should return the user accounts in the Active Directory server.

8. (Optional) To configure reconciliation or liveSync between OpenIDM and Active Directory, create
a synchronization configuration file (sync.json) in the openidm/conf directory.

The synchronization configuration file defines the attribute mappings and policies that are used
during reconciliation.

The following is a simple example of a sync.json file for Active Directory.

{
"mappings" : [

"name" : "systemADAccounts_managedUser",

"source" : "system/ActiveDirectory/account",

"target" : "managed/user",

"properties" : [
{ "source" : "cn", "target" : "displayName" },
{ "source" : "description", "target" : "description" },
{ "source" : "givenName", "target" : "givenName" },
{ "source" : "mail", "target" : "email" },
{ "source" : "sn", "target" : "familyName" },
{ "source" : "sAMAccountName", "target" : "userName" }

I

"policies" : [
{ "situation" : "CONFIRMED", "action" : "UPDATE" },
{ "situation" : "FOUND", "action" : "UPDATE" },
{ "situation" : "ABSENT", "action" : "CREATE" },
{ "situation" : "AMBIGUOUS", "action" : "EXCEPTION" },
{ "situation" : "MISSING", "action" : "UNLINK" },
{ "situation" : "SOURCE_MISSING", "action" : "DELETE" },
{ "situation" : "UNQUALIFIED", "action" : "DELETE" },
{ "situation" : "UNASSIGNED", "action" : "DELETE" }

]

}
]
}

9. To test the synchronization, run a reconciliation operation by running the following command.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/openidm/recon? action=recon&mapping=systemADAccounts managedUser"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 166

Connecting to External Resources

(" FORGEROCK' Active Directory Connector

If reconciliation is successful, the command returns a reconciliation run ID, similar to the
following:

{"_1d":"0629d920-e29f-4650-889f-4423632481ad", "state": "ACTIVE"}

10. Query the internal repository, using either a curl command, or the OpenIDM U], to make sure
that the users in your Active Directory server were provisioned into the repository.

11.5.3.1. Using PowerShell Scripts With the Active Directory Connector

The Active Directory connector supports PowerShell scripting. The following example shows a simple
PowerShell script that is referenced in the connector configuration and can be called over the REST
interface.

This PowerShell script creates a new MS SQL user with a username that is specified when the script
is called. The script sets the user's password to pPassword and, optionally, gives the user a role. Save
this script as openidm/script/createUser.psl.

Note

External script execution is disabled on system endpoints by default. For testing purposes, you can enable
script execution over REST, on system endpoints by adding the script action to the system object, in the
access. js file. For example:

$ more /path/to/openidm/script/access.js

{
"pattern" : "system/ActiveDirectory",
"roles" : "openidm-admin",
"methods" : "action",
"actions" : "script"

}s

Be aware that scripts passed to clients imply a security risk in production environments. If you need to expose a
script for direct external invocation, it might be better to write a custom authorization function to constrain the
script ID that is permitted. Alternatively, do not expose the script action for external invocation, and instead,

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 167

Connecting to External Resources

(" FORGEROCK' Active Directory Connector

expose a custom endpoint that can make only the desired script calls. For more information on using custom
endpoints, see Section 6.6, "Adding Custom Endpoints".

if ($loginName -ne $NULL) {
[System.Reflection.Assembly]::LoadWithPartialName('Microsoft.SqlServer.SMO') | Out-Null
$sqlSrv = New-Object ('Microsoft.SqlServer.Management.Smo.Server') ('WIN-C2MSQ8GITCA')

$login = New-Object -TypeName ('Microsoft.SqlServer.Management.Smo.Login') ($sqlSrv, $loginName)
$login.LoginType = 'SqlLogin'
$login.PasswordExpirationEnabled = $false
$login.Create('PasswOrd')
The next two lines are optional, and to give the new login a server role, optional
$login.AddToRole('sysadmin')
$login.Alter()
} else {
$Error Message = [string]"Required variables 'loginName' is missing!"
Write-Error $Error Message
throw $Error Message

Now edit the Active Directory connector configuration to reference the script. Add the following
section to the connector configuration file (opendim/conf/provisioner.openicf-ad.json).

"systemActions" : [
{
" _scriptId" : "ConnectorScriptName",
"actions" : [
{
"systemType" : ".*ActiveDirectoryConnector",
"actionType" : "Shell",
"actionSource" : "@echo off \r\n echo %loginName%\r\n"
o
{
"systemType" : ".*ActiveDirectoryConnector",
"actionType" : "PowerShell",
"actionFile" : "script/createUser.psl1"
}
1
}

To call the PowerShell script over the REST interface, use the following request, specifying the
userName as input:

$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--header "Content-Type: application/json" \

--request POST \

"https://localhost:8443/openidm/system/ActiveDirectory/?
_action=script&scriptId=ConnectorScriptName&scriptExecuteMode=resource&loginName=myUser"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 168

Connecting to External Resources

(" FORGEROCK CSV File Connector

11.5.4. CSV File Connector

The CSV file connector is often useful when importing users, either for initial provisioning or for
ongoing updates. When used continuously in production, a CSV file serves as a change log, often
containing only user records that changed.

A sample CSV file connector configuration is provided in openidm/samples/provisioners/
provisioner.openicf-csv.json

The following example shows an excerpt of the provisioner configuration. The default location of
the connector .jar is openidm/connectors. Therefore the value of the connectorHostRef property must be
"#LOCAL".

"connectorRef": {
"connectorHostRef": "#LOCAL",
"connectorName": "org.forgerock.openicf.csvfile.CSVFileConnector",
"bundleName": "org.forgerock.openicf.connectors.csvfile-connector",
"bundleVersion": "1.1.0.2"

The following excerpt shows required configuration properties.

{

“"configurationProperties": {
"filePath": "data/hr.csv",
“"uniqueAttribute": "uid"

}

}

The CSV file connector also supports a number of optional configuration properties, in addition to the
required properties.

encoding (optional)

Default: "utf-8"
fieldDelimiter (optional)

Default: *,"
filePath (required)

References the CSV file containing account entries
multivalueDelimiter (optional)

Used with multi-valued attributes. Default: ";"
passwordAttribute (optional)

Attribute containing the password. Use when password-based authentication is required.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 169

Connecting to External Resources

(" FORGEROCK Scripted SQL Connector

uniqueAttribute (required)
Primary key used for the CSV file
usingMultivalue (optional)

Whether attributes can have multiple values. Default: false

11.5.5. Scripted SQL Connector

The Scripted SQL Connector uses customizable Groovy scripts to interact with the database.
The connector uses one script for each of the following actions on the external database.

* Create

* Delete

» Search

* Sync

» Test

* Update

Example groovy scripts are provided in the openidm/samples/sample3/tools/ directory.

For a sample configuration that uses the scripted SQL connector, see Section 3.7.1, "Sample 3 -
Using the Groovy Connector Toolkit to Connect to MySQL With ScriptedSQL" in the Installation

Guide.

The scripted SQL connector runs with autocommit mode enabled by default. As soon as a statement
is executed that modifies a table, the update is stored on disk and the change cannot be rolled back.
This setting applies to all database actions (search, create, delete, test, synch, and update). You can
disable autocommit in the connector configuration file (conf/provisioner.openicf-scriptedsql.json) by
adding the autocommit property and setting it to false, for example:

“"configurationProperties" : {
"host" : "localhost",
“"port" : "3306",

"database" : "HRDB",

"autoCommit" : false,

"reloadScriptOnExecution" : true,

"createScriptFileName" : "&{launcher.project.location}/tools/CreateScript.groovy",

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 170

Connecting to External Resources

(" FORGEROCK Database Table Connector

If you require a traditional transaction with a manual commit for a specific script, you can disable
autocommit mode in the script or scripts for each action that requires a manual commit. For more
information on disabling autocommit, see the corresponding MySQL documentation.

11.5.6. Database Table Connector

The Database Table connector enables provisioning to a single table in a JDBC database. A sample
connector configuration for the Database Table connector is provided in samples/provisioners/
provisioner.openicf-contractordb.json. The corresponding data definition language file is provided in
samples/provisioners/provisioner.openicf-contractordb.sql.

The following excerpt shows the settings for the connector configuration properties in the sample
Database Table connector:

“configurationProperties" :

{
“quoting" : "",
"host" : "localhost",
"port" : "3306",
"user" : "root",
"password" : "",
"database" : "contractordb",
"table" : "people",
"keyColumn" : "UNIQUE_ID",
"passwordColumn" : "",
“jdbcDriver" : “com.mysql.jdbc.Driver",
"jdbcUrlTemplate" : “jdbc:mysql://%h:%p/%d",
“enableEmptyString" : false,
"rethrowAllSQLExceptions" : true,
“nativeTimestamps" : true,
"allNative" : false,
"validConnectionQuery" : null,
"changeLogColumn" : "CHANGE_TIMESTEMP",
"datasource" : "",
"jndiProperties" : null

1,

The mandatory configurable properties are as follows:
database

The JDBC database that contains the table to which you are provisioning.
table

The name of the table in the JDBC database that contains the user accounts.
keyColumn

The column value that is used as the unique identifier for rows in the table.

For a description of all configurable properties for this connector, see the OpenICF Connector
Configuration Reference.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 171

http://dev.mysql.com/doc/refman/5.6/en/commit.html
https://backstage.forgerock.com/#!/docs/openicf/1.5/config-reference
https://backstage.forgerock.com/#!/docs/openicf/1.5/config-reference

Connecting to External Resources

(" FORGEROCK Groovy Connector Toolkit

11.5.7. Groovy Connector Toolkit

OpenlCF 1.4 introduces a generic Groovy Connector Toolkit that enables you to run a Groovy script
for any OpenICF operation, such as search, update, create, and so forth, on any external resource.

The Groovy Connector Toolkit is not a complete connector, in the traditional sense. Rather, it is a
framework within which you must write your own Groovy scripts to address the requirements of
your implementation. Specific scripts are provided within these samples, which demonstrate how the
Groovy Connector Toolkit can be used. These scripts cannot be used "as is" in your deployment, but
are a good starting point on which to base your customization.

The Groovy Connector Toolkit is bundled with OpenIDM 3.1, in the JAR openidm/connectors/groovy-

connector-1.4.1.0.jar.

Sample implementations are provided in Section 3.7, "Using the Groovy Connector Toolkit to Create
Scripted Connectors" in the Installation Guide.

11.5.8. PowerShell Connector Toolkit

The PowerShell Connector Toolkit is not a complete connector, in the traditional sense. Rather, it is
a framework within which you must write your own PowerShell scripts to address the requirements
of your Microsoft Windows ecosystem. You can use the PowerShell Connector Toolkit to create
connectors that can provision any Microsoft system, including, but not limited to, Active Directory,
MS SQL, MS Exchange, Sharepoint, Office365, and Azure. Essentially, any task that can be
performed with PowerShell can be executed through connectors based on this toolkit.

Connectors created with the PowerShell Connector Toolkit run on the .NET platform and require

the installation of a .NET connector server on the Windows system. To install the .NET connector,
follow the instructions in Section 11.4.1, "Installing and Configuring a .NET Connector Server". These
connectors also require PowerShell V2.

The PowerShell Connector Toolkit is not bundled with OpenIDM, but is available, with a subscription,
from ForgeRock Backstage. To install the connector, download the archive (mspowershell-
connector-1.4.1.0.zip) and extract the MsPowerShell.Connector.dll to the same folder in which the
Connector Server(connectorserver.exe) is located. OpenIDM Enterprise includes sample connectors and
scripts that will enable you to get started with this toolkit.

11.5.9. Salesforce Connector

OpenIDM Enterprise includes a Salesforce connector, along with a sample connector configuration.
The Salesforce connector enables provisioning, reconciliation, and synchronization between
Salesforce and the OpenIDM repository.

To use this connector, you need a Salesforce account, and a Connected App that has OAuth enabled,
which will allow you to retrieve the required consumer key and consumer secret.

For additional instructions, and a sample Salesforce configuration, see Section 3.19, "Sample -
Connecting to Salesforce With the Salesforce Connector" in the Installation Guide.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 172

https://backstage.forgerock.com/
http://www.forgerock.com/download-stack/
http://www.forgerock.com/download-stack/

Connecting to External Resources

(" FORGEROCK Google Apps Connector

11.5.10. Google Apps Connector

OpenIDM Enterprise includes a Google Apps connector, along with a sample connector configuration.
The Google Apps Connector enables you to interact with Google's web applications.

To use this connector, you need a Google Apps account.

If you have OpenIDM Enterprise, you can view a sample Google Apps connector configuration file in
samples/provisioners/provisioner.openicf-google.json

The following is an excerpt of the provisioner configuration file. This example shows an excerpt of the
provisioner configuration. The default location of the connector .jar is openidm/connectors. Therefore
the value of the connectorHostRef property must be "#L0cAL".

{
"connectorHostRef": "#LOCAL",
"connectorName": "org.forgerock.openicf.connectors.googleapps.GoogleAppsConnector",
"bundleName": "org.forgerock.openicf.connectors.googleapps-connector",
"bundleVersion": "[1.4.0.0,2.0.0.0)"

h

The following excerpt shows required configuration properties.

“"configurationProperties": {
"domain": "",
“"clientId": "",
"clientSecret": null,
"refreshToken": null

}

These configuration properties are fairly straightforward.
domain

Set to the domain name for OAuth 2-based authorization.
clientId

A client identifier, as issued by the OAuth 2 authorization server. For more information, see the
following section of RFC 6749: Client Identifier.

clientSecret

Sometimes also known as the client password. OAuth 2 authorization servers can support the
use of clientId and clientSecret credentials, as noted in the following section of RFC 6749: Client
Password.

refreshToken

A client can use an OAuth 2 refresh token to continue accessing resources. For more information,
see the following section of RFC 6749: Refresh Tokens.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 173

http://www.forgerock.com/download-stack/
http://tools.ietf.org/html/rfc6749#section-2.2
http://tools.ietf.org/html/rfc6749#section-2.3.1
http://tools.ietf.org/html/rfc6749#section-2.3.1
http://tools.ietf.org/html/rfc6749#section-10.4

Connecting to External Resources

(" FORGEROCK' Creating Default Connector Configurations

Section 3.18, "Sample - Connecting to Google With the Google Apps Connector" in the Installation
Guide, includes a Google Apps configuration, including example OAuth 2-based entries for
configurationProperties.

For a description of all configurable properties for this connector, see the OpenICF Connector
Configuration Reference.

11.6. Creating Default Connector Configurations

Rather than creating provisioner files by hand, use the service that OpenIDM exposes through the
REST interface to create basic connector configuration files, or use the cli.sh or cli.bat scripts to
generate a basic connector configuration.

This section describes how to create connector configurations over the REST interface.
For instructions on using the CLI to create connector configurations, see Section 3.3,
"configureconnector".

You create a new connector configuration file in three stages:

1. List the available connectors.

2. Generate the core configuration.

3. Connect to the target system and generate the final configuration.

List the available connectors by using the following command.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/openidm/system? action=availableConnectors"

Available connectors are installed in openidm/connectors. OpenIDM 3.1 bundles the following
connectors:

» CSV File Connector

» Database Table Connector

» Scripted Groovy Connector Toolkit, which includes the following sample implementations:
¢ Scripted SQL Connector
¢ Scripted CREST Connector
¢ Scripted REST Connector

* LDAP Connector

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 174

https://backstage.forgerock.com/#!/docs/openicf/1.5/config-reference
https://backstage.forgerock.com/#!/docs/openicf/1.5/config-reference

Connecting to External Resources

(" FORGEROCK Creating Default Connector Configurations

« XML

Connector

* GoogleApps Connector (OpenIDM Enterprise only)

» Salesforce Connector (OpenIDM Enterprise only)

The preceding command therefore returns the following output:

"connectorRef": [
{
"bundleVersion": "1.1.0.2",
"systemType": "provisioner.openicf",
“bundleName": "org.forgerock.openicf.connectors.csvfile-connector",
“displayName": “CSV File Connector",
“connectorName": "org.forgerock.openicf.csvfile.CSVFileConnector"
I
{
"bundleVersion": "1.1.0.1",
"systemType": "provisioner.openicf",
“bundleName": "org.forgerock.openicf.connectors.databasetable-connector",
“displayName": "Database Table Connector",
“connectorName": "org.identityconnectors.databasetable.DatabaseTableConnector"
I
{
"bundleVersion": "1.4.1.0",
"systemType": "provisioner.openicf",
“bundleName": "org.forgerock.openicf.connectors.googleapps-connector",
"displayName": "GoogleApps Connector",
“connectorName": "org.forgerock.openicf.connectors.googleapps.GoogleAppsConnector"
I
{
"bundleVersion": "1.4.1.0",
"systemType": "provisioner.openicf",
“"bundleName": "org.forgerock.openicf.connectors.groovy-connector",
"displayName": “Scripted Poolable Groovy Connector",
“connectorName": "“org.forgerock.openicf.connectors.groovy.ScriptedPoolableConnector"
I
{
"bundleVersion": "1.4.1.0",
"systemType": "provisioner.openicf",
“"bundleName": "org.forgerock.openicf.connectors.groovy-connector",
“displayName": “Scripted Groovy Connector",
“connectorName": "org.forgerock.openicf.connectors.groovy.ScriptedConnector"
I
{
"bundleVersion": "1.4.1.0",
"systemType": "provisioner.openicf",
"bundleName": "org.forgerock.openicf.connectors.groovy-connector",
"displayName": “Scripted CREST Connector",
“connectorName": "org.forgerock.openicf.connectors.scriptedcrest.ScriptedCRESTConnector"
I
{

"bundleVersion": "1.4.1.0",

"systemType": "provisioner.openicf",

“"bundleName": "org.forgerock.openicf.connectors.groovy-connector",

“displayName": “Scripted SQL Connector",

“connectorName": "“org.forgerock.openicf.connectors.scriptedsql.ScriptedSQLConnector"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 175

’, Connecting to External Resources
" FORGEROCK Creating Default Connector Configurations
I
{
"bundleVersion": "1.4.1.0",
"systemType": "provisioner.openicf",
“"bundleName": "org.forgerock.openicf.connectors.groovy-connector",
“displayName": “Scripted REST Connector",
“connectorName": "“org.forgerock.openicf.connectors.scriptedrest.ScriptedRESTConnector"
I
{
"bundleVersion": "1.4.0.1",
"systemType": "provisioner.openicf",
“bundleName": "org.forgerock.openicf.connectors.ldap-connector",
“displayName": "“LDAP Connector",
“connectorName": "org.identityconnectors.ldap.LdapConnector"
I
{
"bundleVersion": "1.1.0.2",
"systemType": "provisioner.openicf",
“"bundleName": "org.forgerock.openicf.connectors.xml-connector",
“displayName": “XML Connector",
“connectorName": "“org.forgerock.openicf.connectors.xml.XMLConnector"
I
{
"bundleVersion": "{provisioner.salesforcemodule.version}",
"systemType": "provisioner.salesforce",
“bundleName": "org.forgerock.openidm.salesforce",
"displayName": “"Salesforce Connector",
“connectorName": "org.forgerock.openidm.salesforce.Salesforce"
}
1
}

To generate the core configuration, choose one of the available connectors by copying one of the
JSON objects from the generated list into the body of the REST command, as shown below for the
XML connector.

$

curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--header "Content-Type: application/json" \

--request POST \

--data '{"connectorRef":

{"connectorName": "org.forgerock.openicf.connectors.xml.XMLConnector",
"displayName": "XML Connector",

"bundleName": "org.forgerock.openicf.connectors.xml-connector",
"bundleVersion": "1.1.0.2"}

A
"https://localhost:8443/openidm/system?_action=createCoreConfig"

This command returns a core connector configuration, similar to the following:

{

"poolConfigOption": {

"minIdle": 1,
"minEvictableIdleTimeMillis": 120000,
"maxWait": 150000,

"maxIdle": 10,

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 176

(/’ FORGEROCK

Connecting to External Resources
Creating Default Connector Configurations

}

"max0Objects": 10
i
“resultsHandlerConfig": {
"enableAttributesToGetSearchResultsHandler": true,
"enableFilteredResultsHandler": true,
“enableNormalizingResultsHandler": true
o
“operationTimeout": {
"SCHEMA": -1,
"SYNC": -1,
"VALIDATE": -1,
"SEARCH": -1,
"AUTHENTICATE": -1,
"CREATE": -1,
"UPDATE": -1,
“"DELETE": -1,
"TEST": -1,
"SCRIPT_ON_CONNECTOR": -1,
"SCRIPT_ON_RESOURCE": -1,
"GET": -1,
"RESOLVEUSERNAME" : -1
o
“configurationProperties": {
"xsdIcfFilePath": null,
"xsdFilePath": null,
"createFileIfNotExists": false,
"xmlFilePath": null
o
"connectorRef": {
"bundleVersion": "1.1.0.2",

“"bundleName": "org.forgerock.openicf.connectors.xml-connector",

“displayName": “XML Connector",

“connectorName": "“org.forgerock.openicf.connectors.xml.XMLConnector"

}

The configuration that is returned is not yet functional. Notice that it does not contain the required
system-specific "configurationProperties”, such as the host name and port for web based connectors,
or the "xmlFilePath" for the XML file-based connector. In addition, the configuration does not include

the complete list of "objectTypes" and "operationOptions".

To generate the final configuration, add values for the "configurationProperties" to the core
configuration, and use the updated configuration as the body for the next command.

$

curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--header "Content-Type: application/json" \

--request POST \

--data '{

"configurationProperties":

{

"xsdIcfFilePath" : "samples/samplel/data/resource-schema-1.xsd",
"xsdFilePath" : "samples/samplel/data/resource-schema-extension.xsd",
"xmlFilePath" : "samples/samplel/data/xmlConnectorData.xml",
"createFileIfNotExists": false

+

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

177

Connecting to External Resources

(" FORGEROCK' Creating Default Connector Configurations

"operationTimeout": {

“SCHEMA": -1,
“SYNC": -1,
"VALIDATE": -1,
“SEARCH": -1,
"AUTHENTICATE": -1,
"CREATE": -1,
"UPDATE": -1,
"DELETE": -1,
“TEST": -1,

"SCRIPT ON_CONNECTOR": -1,
"SCRIPT ON_RESOURCE": -1,
"GET": -1,
"RESOLVEUSERNAME": -1

1,

"resultsHandlerConfig": {
"enableAttributesToGetSearchResultsHandler": true,
"enableFilteredResultsHandler": true,
"enableNormalizingResultsHandler": true

1,

"poolConfigOption": {

"minIdle": 1,
"minEvictableIdleTimeMillis": 120000,
"maxWait": 150000,

"maxIdle": 10,

"maxObjects": 10

1,

"connectorRef": {

"bundleVersion": "1.1.0.2",

"bundleName": "org.forgerock.openicf.connectors.xml-connector",
"displayName": "XML Connector",
"connectorName": "org.forgerock.openicf.connectors.xml.XMLConnector"
}
F AN

"https://localhost:8443/openidm/system? action=createFullConfig"

Note

Notice the single quotes around the argument to the --data option in the preceding command. For most UNIX
shells, single quotes around a string prevent the shell from executing the command when encountering a
newline in the content. You can therefore pass the --data '...' option on a single line, or including line feeds.

OpenIDM attempts to read the schema, if available, from the external resource in order to generate
output. OpenIDM then iterates through schema objects and attributes, creating JSON representations
for "objectTypes" and "operationOptions" for supported objects and operations.

The output includes the basic --data input, along with operationOptions and objectTypes.

Because OpenIDM produces a full property set for all attributes and all object types in the schema
from the external resource, the resulting configuration can be large. For an LDAP server, OpenIDM
can generate a configuration containing several tens of thousands of lines, for example. You might
therefore want to reduce the schema to a minimum on the external resource before you run the
createFullConfig command.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 178

Connecting to External Resources

(" FORGEROCK Checking the Status of External Systems Over REST

11.7. Checking the Status of External Systems Over REST

After a connection has been configured, external systems are accessible over the REST interface at
the URL https://localhost:8443/openidm/system/connector-name. Aside from accessing the data objects
within the external systems, you can test the availability of the systems themselves.

To list the external systems that are connected to an OpenIDM instance, use the test action on the
URL https://localhost:8443/openidm/system/. The following example shows the connector configuration
for an external LDAP system.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/openidm/system?_action=test"
[
{
"ok": true,
"connectorRef": {
"bundleVersion": "[1.4.0.0,2.0.0.0)",
"bundleName": "org.forgerock.openicf.connectors.ldap-connector",
"connectorName": "org.identityconnectors.ldap.LdapConnector"
1,
"objectTypes": [
"group",
"account"
I,
"config": "config/provisioner.openicf/ldap",
"enabled": true,
llnamell : Illdapll

The status of the system is provided by the ok parameter. If the connection is available, the value of
this parameter is true.

To obtain the status for a single system, include the name of the connector in the URL, for example:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

179

Connecting to External Resources

(" FORGEROCK Checking the Status of External Systems Over REST

$ curl \
--cacert self-signed.crt \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request POST \
"https://localhost:8443/openidm/system/ldap?_action=test"
{
"ok": true,
"connectorRef": {
"bundleVersion": "[1.4.0.0,2.0.0.0)",
"bundleName": "org.forgerock.openicf.connectors.ldap-connector",
"connectorName": "org.identityconnectors.ldap.LdapConnector"
1
"objectTypes": [
"group”,
"account"
I,
"config": "config/provisioner.openicf/ldap",
"enabled": true,
llnamell : ".l.dap"

If there is a problem with the connection, the "ok" parameter returns false, with an indication of the
error. In the following example, the LDAP server named ldap, running on localhost:1389, is down.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/openidm/system/ldap?_action=test"

"ok": false,

"error": "localhost:1389",

"connectorRef": {
"bundleVersion": "[1.4.0.0,2.0.0.0)",
"bundleName": "org.forgerock.openicf.connectors.ldap-connector",
"connectorName": "org.identityconnectors.ldap.LdapConnector"

1,
"objectTypes": [
"group",
"account"
Us
"config": "config/provisioner.openicf/ldap",

"enabled": true,
"name": "ldap"

To test the validity of a connector configuration, use the testConfig action and include the
configuration in the command. For example:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 180

’, Connecting to External Resources
" FORGEROCK Checking the Status of External Systems Over REST
--data '{
"name" : "xmlfile",
"connectorRef" : {
"bundleName" "org.forgerock.openicf.connectors.xml-connector",
"bundleVersion" "1.1.0.2",
"connectorName" "org.forgerock.openicf.connectors.xml.XMLConnector"
1,
"producerBufferSize" : 100,
"connectorPoolingSupported" : true,
"poolConfigOption" {

"max0Objects"
"maxIdle" : 10,

10,

"maxWait" : 150000,

"minEvictableIdleTimeMillis" : 120000,
"minIdle" : 1
1,
"operationTimeout" {
"CREATE" : -1,
"TEST" : -1,
"AUTHENTICATE" -1,
"SEARCH" : -1,
"VALIDATE" : -1,
"GET" : -1,
"UPDATE" : -1,
"DELETE" : -1,
"SCRIPT ON_CONNECTOR" : -1,
"SCRIPT ON RESOURCE" : -1,
"SYNC" : -1,
"SCHEMA" -1
1,
"configurationProperties" : {
"xsdIcfFilePath" : "samples/samplel/data/resource-schema-1.xsd",
"xsdFilePath" "samples/samplel/data/resource-schema-extension.xsd",
"xmlFilePath" "samples/samplel/data/xmlConnectorData.xml"
1,
"syncFailureHandler" : {
"maxRetries" : 5,
"postRetryAction" : "logged-ignore"
1,
"objectTypes" : {
"account" : {
"$schema" "http://json-schema.org/draft-03/schema",
"id" : " ACCOUNT ",
"type" : "object",
"nativeType" : " ACCOUNT_ ",
"properties" : {
"description" : {
"type" : "string",
"nativeName" : " DESCRIPTION_ ",
"nativeType" : "string"
H
"firstname" : {
"type" : "string",
"nativeName" : "firstname",
"nativeType" : "string"
+
"email" {
"type" : "string",
"nativeName" : "email",

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

181

’, Connecting to External Resources
" FORGEROCK Checking the Status of External Systems Over REST

"nativeType" : "string"

+

'oid" o {
"type" : "string",
"nativeName" : " UID "

+

"password" : {
"type" : "string",
"nativeName" : "password",
"nativeType" : "string"

+

"name" : {
"type" : "string",
"required" : true,
"nativeName" : " NAME_ ",
"nativeType" : "string"

1,

"lastname" : {
"type" : "string",
"required" : true,
"nativeName" : "lastname",
"nativeType" : "string"

+

"mobileTelephoneNumber" : {
"type" : "string",
"required" : true,
"nativeName" : "mobileTelephoneNumber",
"nativeType" : "string"

+

"securityQuestion" : {
"type" : "string",
"required" : true,
"nativeName" : "securityQuestion",
"nativeType" : "string"

+

"securityAnswer" : {
"type" : "string",
"required" : true,
"nativeName" : "securityAnswer",
"nativeType" : "string"

+

"roles" : {
"type" : "string",
"required" : false,
"nativeName" : "roles",
"nativeType" : "string"

}

}
}
1,
"operationOptions" : { }
A

--request POST \
"https://localhost:8443/openidm/system? action=testConfig"

If the configuration is valid, the command returns "ok": true, for example:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

182

’ Connecting to External Resources
‘,' FORGEROCK Adding Attributes to Connectors
"ok": true,
"name": "xmlfile"
}

If the configuration is not valid, the command returns an error, indicating the problem with the
configuration. For example, the following result is returned when the LDAP connector configuration
is missing a required property (in this case, the baseContexts to synchronize):

{
"error": "org.identityconnectors.framework.common.exceptions.ConfigurationException:
The list of base contexts cannot be empty",
"name": "OpenDJ]",
"ok": false
}

The testConfig action requires a running OpenIDM instance, as it uses the REST API, but does not
require an active connector instance for the connector whose configuration you want to test.

11.8. Adding Attributes to Connectors

You can add the attributes of your choice to a connector configuration file. Specifically, if you want to
set up Property Level Extensions to one of the objectTypes such as account, use the format shown under
Object Types.

You can configure connectors to enable provisioning of arbitrary property level extensions (such
as image files) to system resources. For example, if you want to set up image files such as account
avatars, open the appropriate provisioner file. Look for an account section similar to:

"account" : {
"$schema" : "http://json-schema.org/draft-03/schema",
"id" : "__ACCOUNT__",
"type" : "object",
"nativeType" : “__ACCOUNT__",
“"properties" : {

Under "properties”, add one of the following code blocks. The first block works for a single photo
encoded as a base64 string. The second block would address multiple photos encoded in the same
way.

“attributeByteArray" : {

"type" : "string",
“"nativeName" : “"attributeByteArray",
"nativeType" : "JAVA_TYPE BYTE_ARRAY"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 183

Connecting to External Resources

(" FORGEROCK Adding Attributes to Connectors

"attributeByteArrayMultivalue": {
"type": “array",
“"items": {
“"type": "string",
“nativeType": "JAVA_TYPE_BYTE_ARRAY"
1,
"nativeName": "attributeByteArrayMultivalue"
+

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 184

Configuring Synchronization

(" FORGEROCK Types of Synchronization

Chapter 12

Configuring Synchronization

One of the core services of OpenIDM is synchronizing identity data from different resources. This
chapter explains what you must know to get started configuring OpenIDM's flexible synchronization
mechanism, and illustrates the concepts with examples.

12.1. Types of Synchronization

Synchronization happens either when OpenIDM receives a change directly, or when OpenIDM
discovers a change on an external resource.

For direct changes to OpenIDM, OpenIDM immediately pushes updates to all external resources
configured to receive the updates. A direct change can originate not only as a write request through
the REST interface, but also as an update resulting from reconciliation with another resource.

OpenIDM discovers and synchronizes changes from external resources through reconciliation and
LiveSync.

In contrast, OpenIDM synchronizes changes from internal resources to external targets using
automatic sync.

Reconciliation

In identity management, reconciliation is the process of bidirectional synchronization of objects
between different data stores. Reconciliation applies mainly to user objects, although OpenIDM
can reconcile any objects, including groups and roles.

To perform reconciliation, OpenIDM analyzes both source and target systems to uncover the
differences that it must reconcile. Reconciliation can therefore be a heavyweight process. When
working with large data sets, finding all changes can be more work than processing the changes.

Reconciliation is, however, thorough. It recognizes system error conditions and catches changes
that might be missed by the more lightweight LiveSync mechanism. Reconciliation therefore
serves as the basis for compliance and reporting functionality.

LiveSync

LiveSync captures the changes that occur on a remote system, then pushes those changes to
OpenIDM. OpenIDM uses the defined mappings to replay the changes where they are required

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 185

Configuring Synchronization

(" FORGEROCK Flexible Data Model

- either in the OpenIDM repository, or on another remote system, or both. Unlike reconciliation,
LiveSync uses a polling system, and is intended to react quickly to changes as they happen.

To perform this polling, LiveSync relies on a change detection mechanism on the external
resource to determine which objects have changed. The change detection mechanism is specific
to the external resource, and can be a time stamp, a sequence number, a change vector or
other any method of recording changes that have occurred on the system. For example, OpenD]J
implements a change log that provides OpenIDM with a list of objects that have changed since
the last request. Active Directory implements a change sequence number, and certain databases
might have a lastChange attribute.

Implicit synchronization

Implicit synchronization automatically pushes changes made in the OpenIDM internal repository
to external systems.

Note that implicit synchronization only pushes changes out to the external data sources. To
synchronize a complete data set, you should start with a reconciliation operation.

To disable implicit synchronization, see Section 12.11, "Disabling Automatic Synchronization
Operations".

To determine what to synchronize, and how to carry out synchronization, OpenIDM relies on
mappings configured in the /path/to/conf/sync.json file. LiveSync and implicit sync rely on the
mappings configured once per OpenIDM server.

For reconciliation or LiveSync, you can schedule changes as described in Chapter 13, "Scheduling
Tasks and Events".

12.2. Flexible Data Model

Identity management software tends to favor either a meta-directory data model, where all data are
mirrored in a central repository, or a virtual data model, where only a minimum set of attributes
are stored centrally, and most are loaded on demand from the external resources in which they are
stored. The meta-directory model offers fast access at the risk of getting outdated data. The virtual
model guarantees fresh data, but pays for that guarantee in terms of performance.

OpenIDM leaves the data model choice up to you. You determine the right trade offs for a particular
deployment. OpenIDM does not hard code any particular schema or set of attributes stored in the
repository. Instead, you define how external system objects map onto managed objects, and OpenIDM
dynamically updates the repository to store the managed object attributes that you configure.

You can, for example, choose to follow the data model defined in the Simple Cloud Identity
Management (SCIM) specification. The following object represents a SCIM user.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 186

http://www.simplecloud.info/specs/draft-scim-core-schema-00.html

Configuring Synchronization

(" FORGEROCK Basic Data Flow Configuration

"userName": "jamesl",
"familyName": "Berg",
"givenName": "James",
"email": [
"jamesl@example.com"
1,
“"description": "Created by OpenIDM REST.",
"password": "asdfkj23",
"displayName": "James Berg",
"phoneNumber": "12345",
"employeeNumber": "12345",
"userType": "Contractor",
“"title": "Vice President",
"active": true

Note

Avoid using the dash character (-) in property names, like last-name, as dashes in names make JavaScript
syntax more complex. If you cannot avoid the dash, then write source['last-name'] instead of source.last-name
in your JavaScript

12.3. Basic Data Flow Configuration

Data flow for synchronization involves the following elements:

* Connector configuration files (conf/provisioner-*.json), with one file per external resource.
» Synchronization mappings file (conf/sync.json), with one file per OpenIDM instance.

* A links table that OpenIDM maintains in its repository.

» The scripts required to check objects and manipulate attributes.

12.3.1. Connector Configuration Files

Connector configuration files map external resource objects to OpenIDM objects, and are described
in detail in Chapter 11, "Connecting to External Resources". Connector configuration files are named
openidm/conf/provisioner.resource-name.json, where resource-name reflects the connector technology and
external resource, such as openicf-xml.

An excerpt from an example connector configuration follows. The example shows the name for the
connector and two attributes of an account object type. In the attribute mapping definitions, the
attribute name is mapped from the nativeName, the attribute name used on the external resource,
to the attribute name used in OpenIDM. Thus the example shows that the sn attribute in LDAP is
mapped to lastName in OpenIDM. The homePhone attribute can have multiple values.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 187

Configuring Synchronization

(" FORGEROCK' Synchronization Mappings File

{
"name": "MyLDAP",
"objectTypes": {
"account": {
"lastName": {
"type": "string",
"required": true,
“nativeName": "sn",
"nativeType": "string"
I
"homePhone" : {
"type": "array",
“"items": {
“"type": "string",
"nativeType": "string"
Y
"nativeName": "homePhone",
"nativeType": "string"
}
}
}
}

In order for OpenIDM to access external resource objects and attributes, the object and its attributes
must match the connector configuration. Note that the connector file only maps external resource
objects to OpenIDM objects. To construct attributes and to manipulate their values, you use the
synchronization mappings file.

12.3.2. Synchronization Mappings File

The synchronization mappings file (openidm/conf/sync.json) represents the core configuration for
OpenIDM synchronization.

The sync.json file describes a set of mappings. Each mapping specifies how attributes from source
objects correspond to attributes on target objects. The source and target indicate the direction for
the data flow, so you must define a separate mapping for each data flow. For example, if you want
data flows from an LDAP server to the repository and also from the repository to the LDAP server,
you must define two separate mappings.

You identify external resource sources and targets as system/name/object-type, where name is

the name used in the connector configuration file, and object-type is the object defined in the
connector configuration file list of object types. For objects in OpenIDM's internal repository, you use
managed/object-type, where object-type is defined in openidm/conf/managed.json. The name for the mapping
by convention is set to a string of the form source target, as shown in the following example.

{
“mappings": [
{
"name": "systemLdapAccounts_managedUser",
"source": "system/MyLDAP/account",
"target": "managed/user",

“properties": [

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 188

’ Configuring Synchronization
‘,' FORGEROCK' Synchronization Mappings File
{
“target": "sn",
"source": "lastName"
i
{
"target": "telephoneNumber",
"source": "homePhone"
H
{

“target": "phoneExtension",
"default": "0047"

o
{
“target": "mail",
“comment": “Set mail if non-empty.",
"source": "email",
“condition": {
“type": "“text/javascript",
“source": "(object.email != null)"
}
o
{
“target": "displayName",
"source": "",
"transform": {
“type": "“text/javascript",
"source": "source.lastName +', ' + source.firstName;"
}
}

}

In this example, the source is the external resource, MyLDAP, and the target is OpenIDM's repository,
specifically the managed user objects. The properties reflect OpenIDM attribute names. For example,
the mapping has the attribute lastName defined in the MyLDAP connector configuration file mapped to
sn in the OpenIDM managed user object. Notice that the attribute names come from the connector
configuration, rather than the external resource itself.

You can create attributes on the target as part of the mapping. In the preceding example, a
phoneExtension attribute with a default value of 0047 is created on the target.

You can also use the "default" property to specify a value that should be assigned to the target
property. When determining the value of the target property, any associated conditions are evaluated
first, followed by the transform script, if present. The default value is applied (for update and

create actions) if the "source" property and the "transform" script yield a null value. The default value
overrides the target value, if one exists.

You can also set up conditions under which OpenIDM maps attributes as shown for the email
attribute in the example. By default, OpenIDM synchronizes all attributes. In the example, the mail
attribute is set only if the script for the condition returns true.

OpenIDM also enables you to transform attributes. In the example, the value of the displayName
attribute is set using a combination of the lastName and firstName attribute values from the source.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 189

Configuring Synchronization

(" FORGEROCK' Synchronization Mappings File

For transformations, the source property is optional. However, the source object is only available
when you specify the source property. Therefore, in order to use source.lastName and source. firstName to
calculate the displayName, the example specifies "source" : "".

To add a flow from the repository to MyLDAP, you would define a mapping with source managed/user and
target system/MyLDAP/account, named for example managedUser systemLdapAccounts.

The following image shows the paths to objects in the OpenIDM namespace.

lopenidm
Jopenidm/audit

idm/config

|

— /openidm/endpoint

|

— /openidm/external

lopenidm/external/rest

\

|—/openidm/managed

Jopenidm/managed/user

W

lopenidm/managed/role

[

— /openidm/policy

|

— /openidm/recon

|

— /openidm/repo

|

— /openidm/scheduler

|

[— /openidm/script

|

— /openidm/security

lopenidm/security/keystore

T[

lopenidm/security/truststore

{

— /openidm/sync

|

— \Iopenidm/syslem

|

— /openidm/system/LDAP/account

L— /openidm/system/MySQL/account

— /openidm/taskscanner

|

— \Iopenidm/workﬂow

|

— or b

— /openi kflow/prc i ce

— /openidm/workflow/task

— kflo ition

L— /openidm/workflow/taskinstance

OpenIDM stores managed objects in the repository, and exposes them under /openidm
/managed. System objects on external resources are exposed under /openidm/system.

By default, OpenIDM synchronizes all objects that match those defined in the connector configuration
for the resource. Many connectors allow you to limit the scope of objects that the connector accesses.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 190

Configuring Synchronization

(" FORGEROCK' Synchronization Mappings File

For example, the LDAP connector allows you to specify base DNs and LDAP filters so that you do
not need to access every entry in the directory. OpenIDM also allows you to filter what is considered
a valid source or valid target for synchronization by using scripts. To apply these filters, use the
validSource, and validTarget properties in your mapping.

validSource

A script that determines if a source object is valid to be mapped. The script yields a boolean
value: true indicates that the source object is valid; false can be used to defer mapping until some
condition is met. In the root scope, the source object is provided in the "source" property. If the
script is not specified, then all source objects are considered valid.

{
"validSource": {
“type": "text/javascript",
"source": "source.ldapPassword != null"
}
}
validTarget

A script, used during reconciliation's second phase, that determines if a target object is valid to
be mapped. The script yields a boolean value: true indicates that the target object is valid; false
indicates that the target object should not be included in reconciliation. In the root scope, the
source object is provided in the "target" property. If the script is not specified, then all target
objects are considered valid for mapping.

{
"validTarget": {
"type": "text/javascript",
"source": "target.employeeType == 'internal'"
}
}

During synchronization, your scripts always have access to a source object and a target object.
Examples already shown in this section use source.attributeName to retrieve attributes from the source
objects. Your scripts can also write to target attributes using target.attributeName syntax.

{
"onUpdate": {
“type": "text/javascript",
“source": "if (source.email != null) {target.mail = source.email;}"
}
}

For more information about scripting, see Appendix F, "Scripting Reference".

If a source resource is empty, the default behavior is for a reconciliation operation to exit, without
failure, and to log a warning, similar to the following:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 191

Configuring Synchronization

(" FORGEROCK' Using Encrypted Values

2014-03-20 10:41:18:918 WARN Cannot perform reconciliation with an empty source
object set, unless explicitly configured to allow it.

The reconciliation summary is also logged in the reconciliation audit log.

This behavior prevents reconciliation operations from accidentally deleting everything in a target
resource. For example, in the event that a source system is unavailable but erroneously reporting its
status as "up", the absence of source objects should not result in objects being removed on the target
resource.

There might be situations in which you do want reconciliations of an empty source resource to
proceed. In this case, you can override the default behavior by setting the "allowEmptySourceSet"
property to true in the mapping. For example:

{
"mappings" : [
"name" : "systemXmlfileAccounts managedUser",
"source" : "system/xmlfile/account",

"allowEmptySourceSet" : true,

Reconciliation of an empty source effectively wipes out the target.

You can update mappings in the synchronization configuration file (sync.json) while the server is
running, provided you do not update a mapping that is currently in use by a reconciliation process.

12.3.3. Using Encrypted Values

OpenIDM supports reversible encryption of attribute values for managed objects. Attribute values
to encrypt include passwords, authentication questions, credit card numbers, and social security
numbers. If passwords are already encrypted on the external resource, they are generally excluded
from the synchronization process. For more information, see Chapter 14, "Managing Passwords".

You configure encryption in the managed object configuration (in the openidm/conf/managed. json file).
The following extract of that file shows a managed object configuration that encrypts and decrypts
securityAnswer, ssn, and password attributes using the default symmetric key, and additional scripts for
extra passwords.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 192

Configuring Synchronization

(" FORGEROCK Restricting HTTP Access to Sensitive Data
{
"objects": [
{
“name": "user",

“"properties": [

{
“"name": “securityAnswer",
“encryption": {
"key": "openidm-sym-default"
}
1
{
“"name": "ssn",
“encryption": {
"key": "openidm-sym-default"
}
1
{
"name": "password",
“"encryption": {
"key": "openidm-sym-default"
}
}

Do not use the default symmetric key, openidm-sym-default, in production. For instructions on adding
your own symmetric key, see Chapter 16, "Securing & Hardening OpenIDM".

12.3.4. Restricting HTTP Access to Sensitive Data
You can protect specific sensitive data stored in the repository by marking the corresponding
properties as "private". Private data, whether it is encrypted or not, is not accessible over the REST

interface. Properties that are marked as private are removed from an object when that object is
retrieved over REST.

To mark a property as private, set its "scope" to "private" in the conf/managed.json file.

The following extract of the managed.json file shows how HTTP access is prevented on the password and
securityAnswer properties.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 193

Configuring Synchronization

(" FORGEROCK' Constructing and Manipulating Attributes

“"properties" : [
{
"name" : "securityAnswer",
“encryption" : {
"key" : "openidm-sym-default"
Y
"scope" : "private"
I
{
"name" : "password",
“encryption" : {
"key" : "openidm-sym-default"
Y
"scope" : "private"

A potential caveat with using private properties is that such properties are removed if an object is
updated by using an HTTP puT request. A PUT request replaces the entire object in the repository.
Because properties that are marked as private are ignored in HTTP requests, these properties are
effectively removed from the object when the update is done. To work around this limitation, do not
use PUT requests if you have configured private properties. Instead, use a PATCH request to update only
those properties that need to be changed.

For example, to update the givenName of user jdoe, you could run the following command:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
--data '[

{

"operation":"replace”,
"field":"/givenName",
"value":"Jon"

}
1"\
"https://localhost:8443/openidm/managed/user?_action=patch&_queryId=for-userName&uid=jdoe"

Note

The filtering of private data applies only to direct HTTP read and query calls on managed objects. No automatic
filtering is done for internal callers, and the data that these callers choose to expose.

12.3.5. Constructing and Manipulating Attributes

OpenIDM enables you to construct and manipulate attributes using scripts that are triggered when
an object is created (onCreate), updated (onUpdate), retrieved (onRetrieve), or deleted (onDelete).
Additional scripts are available when a managed object requires validation (onValidate), and when an

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 194

Configuring Synchronization

(" FORGEROCK' Reusing Links

object is about to be stored in the repository (onStore). Similar scripts are available for when a link is
created (onLink) or removed (onUnlink).

The following example derives a DN for an LDAP entry when the entry is created in the internal
repository.

{
"onCreate": {
“type": "text/javascript",
"source":
“target.dn = 'uid=' + source.uid + ', ou=people,dc=example,dc=com'"
}
}

In addition, OpenIDM supports the use of post-action scripts, including after the creation of an
object is complete (postCreate), after the update of an object is complete (postUpdate), and after the
deletion of an object (postDelete).

12.3.6. Reusing Links

When two mappings exist to synchronize the same objects bidirectionally, you can use the links
property in one mapping to have OpenIDM use the same internally managed link for both mappings.
Otherwise, if no links property is specified, OpenIDM maintains a link for each mapping.

The following excerpt shows two mappings, one from MyLDAP accounts to managed users, and
another from managed users to MyLDAP accounts. In the second mapping, the link property tells
OpenIDM to reuse the links created in the first mapping, rather than create new links.

{
"mappings": [
"name" : "systemMyLDAPAccounts_managedUser",
"source": "system/MyLDAP/account",
"target": "managed/user"
+
{
"name" : "managedUser_systemMyLDAPAccounts",
"'source": "managed/user",
"target": "system/MyLDAP/account",
"links": "systemMyLDAPAccounts_managedUser"
}
1
}

12.4. Managing Reconciliation Over REST

You can trigger, cancel, and monitor reconciliation operations over REST, using the REST endpoint
https://localhost:8443/openidm/recon.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 195

Configuring Synchronization

(" FORGEROCK Triggering a Reconciliation Run

12.4.1. Triggering a Reconciliation Run

The following example triggers a reconciliation operation based on the systemLdapAccounts managedUser
mapping. The mapping is defined in the file conf/sync.json.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/openidm/recon? action=recon&mapping=systemLdapAccounts managedUser"

By default, an assigned reconciliation run ID is returned immediately when the reconciliation
operation is initiated. Clients can make subsequent calls to the reconciliation service, using this
reconciliation run ID to query its state and to call operations on it.

For example, the reconciliation run initiated previously would return something similar to the
following:

{"_id":"0890ad62-4738-4a3f-8b8e-f3c83bbf212e", "state": "ACTIVE"}

To have the entire reconciliation run complete before the reconciliation run ID is returned, set the
waitForCompletion property to true when the reconciliation is initiated. For example:

$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--header "Content-Type: application/json" \

--request POST \

"https://localhost:8443/openidm/recon?
_action=recon&mapping=systemLdapAccounts managedUser&waitForCompletion=true"

12.4.2. Obtaining the Details of a Reconciliation Run

You can display the details of a particular reconciliation run over REST by specifying the
reconciliation run ID in the URL. For example, the following call shows the details of the
reconciliation run initiated in the previous section:

$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--request GET \
"https://localhost:8443/openidm/recon/0890ad62-4738-4a3f-8b8e-f3c83bbf212e"

{
"ended": "2014-03-06T07:00:32.094Z",
" id": "7a07c100-4f11-4d7e-bf8e-fad4594f99d58",
"mapping": "systemLdapAccounts managedUser",
"state": "SUCCESS",
"stage": "COMPLETED SUCCESS",

"stageDescription": "reconciliation completed.",
"progress": {
"links": {

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 196

Configuring Synchronization

(" FORGEROCK' Canceling a Reconciliation Run

"created": 0,
"existing": {
"total": "1",
"processed": 1
}

},

"target": {
"created": 0,
"existing": {

"total": "3",
"processed": 3

}
}
"source": {
"existing": {
“total®: "1",
"processed": 1
}

}

1

"situationSummary": {
"UNASSIGNED": 2,
"TARGET IGNORED": O,
"SOURCE_IGNORED": 0,
"MISSING": 0,
"FOUND": O,
"AMBIGUOUS": 0,
"UNQUALIFIED": 0,
"CONFIRMED": 1,
"SOURCE_MISSING": O,
"ABSENT": 0

1

"started": "2014-03-06T07:00:31.907Z"

}

12.4.3. Canceling a Reconciliation Run

You can cancel a reconciliation run by sending a REST call with the cancel action, specifying the
reconciliation run ID. For example, the following call cancels the reconciliation run initiated in the
previous section:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/openidm/recon/0890ad62-4738-4a3f-8b8e-f3c83bbf212e? action=cancel"

The output for a reconciliation cancellation request is similar to the following:

{
"status":"SUCCESS",
"action":"cancel",
" id":"0890ad62-4738-4a3f-8b8e-f3c83bbf212e"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 197

(/’ FORGEROCK

Configuring Synchronization
Listing Reconciliation Runs

If you specified that the call should wait for completion before the ID is returned, you can obtain the

reconciliation run ID from the list of active reconciliations, as described in the following section.

12.4.4. Listing Reconciliation Runs

You can display a list of reconciliation processes that have completed, and those that are in progress,
by running a RESTful GET on "https://localhost:8443/openidm/recon". The following example displays all
reconciliation runs.

$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/recon"

The output of such a request is similar to the following, with one item for each reconciliation run.

{

"reconciliations": [

{

H

"ended": "2014-03-06T06:14:11.845Z",
" id": "4286510e-986a-4521-bfa4-8cdle®39a7f5",
"mapping": "systemLdapAccounts managedUser",

“state": "SUCCESS"

’

“stage": "COMPLETED_ SUCCESS",

"stageDescription":

"progress": {
"links": {
"created": 1,
"existing": {
"total": "0",
"processed": 0
}
|
"target": {
"created": 1,
"existing": {
"total": "2",
"processed": 2
}
|
"source": {
"existing": {
"total": "1",

"processed": 1

¥
}

"situationSummary":

"UNASSIGNED": 2,
“TARGET_IGNORED":
“SOURCE_IGNORED":
“MISSING": O,
“FOUND": O,

0,
0,

"reconciliation completed.",

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

198

Configuring Synchronization

(" FORGEROCK' Listing Reconciliation Runs

"AMBIGUOUS": O,
"UNQUALIFIED": 0,
“CONFIRMED": O,
“SOURCE_MISSING": O,
"ABSENT": 1
I
“started": "2014-03-06T06:14:04.722Z"
+
1
}

Each reconciliation run has the following properties:
_id
The ID of the reconciliation run.
mapping
The name of the mapping, defined in the conf/sync.json file.
state
The high level state of the reconciliation run. Values can be as follows:
* ACTIVE
The reconciliation run is in progress.
* CANCELED
The reconciliation run was successfully canceled.
* FAILED
The reconciliation run was terminated because of failure.
* SUCCESS
The reconciliation run completed successfully.
stage
The current stage of the reconciliation run's progress. Values can be as follows:
* ACTIVE INITIALIZED
The initial stage, when a reconciliation run is first created.

* ACTIVE_ QUERY_ENTRIES

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 199

Configuring Synchronization

(" FORGEROCK Listing Reconciliation Runs

Querying the source, target and possibly link sets to reconcile.
ACTIVE RECONCILING SOURCE

Reconciling the set of IDs retrieved from the mapping source.
ACTIVE RECONCILING TARGET

Reconciling any remaining entries from the set of IDs retrieved from the mapping target, that
were not matched or processed during the source phase.

ACTIVE LINK CLEANUP

Checking whether any links are now unused and should be cleaned up.
ACTIVE PROCESSING RESULTS

Post-processing of reconciliation results.

ACTIVE CANCELING

Attempting to abort a reconciliation run in progress.
COMPLETED_SUCCESS

Successfully completed processing the reconciliation run.
COMPLETED_CANCELED

Completed processing because the reconciliation run was aborted.
COMPLETED FAILED

Completed processing because of a failure.

stageDescription

A description of the stages described previously.

progress

The progress object has the following structure (annotated here with comments):

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 200

Configuring Synchronization

(" FORGEROCK' Triggering LiveSync Over REST

"progress":{
"source": { // Progress on set of existing entries in the mapping source
"existing":{
"processed":1001,

"total":"1001" // Total number of entries in source set, if known, “?” otherwise
}
¥
"target":{ // Progress on set of existing entries in the mapping target
"existing":{
"processed":1001,
"total":"1001" // Total number of entries in target set, if known, “?” otherwise
k.,
"created":0 // New entries that were created
¥
"links":{ // Progress on set of existing links between source and target
"existing":{
"processed":1001,
"total":"1001" // Total number of existing links, if known, “?” otherwise
L,
"created": 0 // Denotes new links that were created
}

+

12.4.5. Triggering LiveSync Over REST

The ability to trigger LiveSync operations over REST, or by using the resource API, enables you to
use an external scheduler to trigger a LiveSync operation, rather than using the OpenIDM scheduling
mechanism.

There are two ways in which to trigger a LiveSync operation over REST.

* Use the action=liveSync parameter directly on the resource. This is the recommended method. The
following example calls a LiveSync operation on the user accounts in an external LDAP system.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/openidm/system/1ldap/account? action=1liveSync"

» Target the system endpoint and supply a source parameter to identify the object that should be
synchronized. This method matches the scheduler configuration and can therefore be used to test
schedules before they are implemented.

The following example calls the same LiveSync operation as the previous example.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 201

Configuring Synchronization

(" FORGEROCK' Restricting Reconciliation by Using Queries

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/openidm/system?_action=1liveSync&source=system/ldap/account"

A successful LiveSync operation returns the following response:

{
" _rev": "4",
" id": "SYSTEMLDAPACCOUNT",
"connectorData": {
"nativeType": "integer",
"syncToken": 1
}
}

Do not run two identical LiveSync operations simultaneously - rather, ensure that the first operation
has completed before a second similar operation is launched.

To troubleshoot a LiveSync operation that has not succeeded, you can include an optional parameter
(detailedFailure) to return additional information. For example:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/openidm/system/ldap/account? action=1liveSync&detailedFailure=true"

Note

The first time that a LiveSync operation is called, no synchronization token exists in the database to establish
which changes have already been processed. The default LiveSync behavior is to locate the last existing entry
in the change log, and to store that entry in the database as the current starting position from which changes
should be applied. This behavior prevents LiveSync from processing changes that might already have been
processed during an initial data load. Subsequent LiveSync operations will pick up and process any new
changes.

Typically, in setting up LiveSync on a new system, you would load the data initially (by using reconciliation, for
example) and then enable LiveSync, starting from that base point.

12.5. Restricting Reconciliation by Using Queries

Every reconciliation operation performs a query on the source, and on the target resource, to
determine which records should be reconciled. The default source and target queries are query-all-
ids, which means that all records in both the source and the target are considered candidates for that
reconciliation operation.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 202

Configuring Synchronization

(" FORGEROCK' Restricting Reconciliation by Using Queries

You can restrict reconciliation to specific entries by defining explicit source or target queries in the
mapping configuration.

For example, to restrict reconciliation to only those records whose employeeType on the source resource
is permanent, you might specify a source query as follows:

"mappings" : [

"name" : "managedUser_systemLdapAccounts",
"source" : "managed/user",
"target" : "system/ldap/account",
"sourceQuery" : : {
"queryFilter" : "employeeType eq \|"Permanent\""

The format of the query can be any query type that is supported by the resource, and can include
additional parameters, if applicable. OpenIDM 3.1 supports the following query types.

For queries on managed objects:

e queryld for arbitrary predefined, parameterized queries

* queryFilter for arbitrary filters, in common filter notation

* queryExpression for client-supplied queries, in native query format

For queries on system objects:

* queryId=query-all-ids (the only supported predefined query)

e queryFilter for arbitrary filters, in common filter notation

The source and target queries send the query to the resource that is defined for that source or target,
by default. You can override the resource to which the query is sent by specifying a resourceName in the

query. For example, to query a specific endpoint instead of the source resource, you might modify the
preceding source query as follows:

“"mappings" : [
{

"name" : "managedUser_systemLdapAccounts",

"source" : "managed/user",

"target" : "system/ldap/account",

"sourceQuery" : {
"resourceName" : "endpoint/scriptedQuery"
"queryFilter" : "employeeType eq \"Permanent\""

I

To override a source or target query that is defined in the mapping, you can specify the query when
you call the reconciliation operation. For example, if you wanted to reconcile all employee entries,
and not just the permanent employees, you would run the reconciliation operation as follows:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 203

Configuring Synchronization

(" FORGEROCK' Improving Reconciliation Query Performance

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
--data '{"sourceQuery": {" queryId" : "query-all-ids"}}' \
"https://localhost:8443/openidm/recon? action=recon&mapping=managedUser systemlLdapAccounts"

By default, a reconciliation operation runs both the source and target phase. To avoid queries on
the target resource, set runTargetPhase to false in the mapping configuration (conf/sync.json file). For
example, to prevent the target resource from being queried during the reconciliation operation
configured in the previous example, amend the mapping configuration as follows:

{

"mappings" : [

"name" : "systemLdapAccounts managedUser",
"source" : "system/ldap/account",
"target" : "managed/user",
"sourceQuery" : {
"queryFilter" : "employeeType eq \"Permanent\""

’

"runTargetPhase" : false,

12.5.1. Improving Reconciliation Query Performance

In most reconciliation configurations, source and target queries make a read call to every record on
the source and target systems, to determine candidates for reconciliation. On slow source or target
systems, these frequent calls can incur a substantial performance cost.

To improve query performance in these situations, you can preload the entire result set into memory
on the source or target system, or on both systems. Subsequent read queries on known IDs are made
against the data in memory, rather than the data on the remote system. For this optimization to

be effective, the entire result set must fit into the available memory on the system for which it is
enabled.

The optimization works by defining a sourceQuery or targetQuery in the synchronization mapping that
returns not just the ID, but the complete object.

The following example query loads the full result set into memory during the source phase of the
reconciliation. The example uses a common filter expression, called with the queryFilter keyword.
The query returns the complete object for all entries that include a uid (uid sw "").

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 204

Configuring Synchronization

(" FORGEROCK' Restricting Reconciliation to a Specific ID

"mappings" : [
{
"name" : "systemLdapAccounts_managedUser",
"source" : "system/ldap/account",
"target" : "managed/user",
"sourceQuery" : {
"_queryFilter" : "uid sw |"\""
H

OpenIDM automatically attempts to detect what has been returned. The auto-detection mechanism
assumes that a result set that includes three or more fields per object (apart from the id and rev
fields) contains the complete object.

You can explicitly state whether a query is configured to return complete objects by setting the value
of sourceQueryFullEntry Or targetQueryFullEntry in the mapping. The setting of these properties overrides
the auto-detection mechanism.

Setting these properties to false, indicates that the returned object is not the complete object. This
might be required if a query returns more than three fields of an object, but not the complete object.
Without this setting, the auto-detect logic would assume that the complete object was being returned
in this case. OpenIDM uses only the IDs from this query result. If the complete object is required, the
object is queried on demand.

Setting these properties to true indicates that the complete object is returned. This setting is typically
required only for very small objects, for which the number of returned fields does not reach the
threshold required for the auto-detection mechanism to assume that it is a full object. In this case, the
query result includes all the details required to pre-load the full object.

The following excerpt of the synchronization mapping file indicates that the full objects are returned
and that OpenIDM should not autodetect the result set.

“"mappings" : [
"name" : "systemLdapAccounts_managedUser",
"source" : "system/ldap/account",
"target" : "managed/user",

"sourceQueryFullEntry" : true,
"sourceQuery" : {

" _queryFilter" : "uid sw \"\""
B

12.6. Restricting Reconciliation to a Specific ID

In the same way that you can restrict reconciliation operations to specific records by using queries,
you can specify an ID to restrict a reconciliation operation to a particular record.

To restrict reconciliation to a specific ID, use the reconById action, instead of the recon action when you
call the reconciliation operation. Specify the ID with the ids parameter. Currently reconciling more
than one ID with the reconById action is not supported.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 205

Configuring Synchronization

(" FORGEROCK' Querying the Reconciliation Audit Log

The following example is based on the data from Sample 2b, which maps an LDAP server
with the OpenIDM repository. The example reconciles only the user bjensen, using the
managedUser systemLdapAccounts mapping to update the user account in LDAP with the data from the
OpenIDM repository. The id for bjensen in this example is b3c2f414-e7b3-46aa-8ce6-f4ableg9288c. The
example assumes that implicit synchronization has been disabled and that a reconciliation operation
is required to copy changes made in the repository to the LDAP system.
$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/openidm/recon?
_action=reconById&mapping=managedUser systemlLdapAccounts&ids=b3c2f414-e7b3-46aa-8ce6-f4able89288c"

A reconciliation by ID takes the default reconciliation options that are specified in the mapping, so
the source and target queries, and source and target phases described in the previous section apply
equally to reconciliation by ID.

12.7. Querying the Reconciliation Audit Log

Reconciliation operations are logged in the file /path/to/openidm/audit/recon.csv and in the repository.
You can read and query the reconciliation audit logs over the REST interface, as outlined in the
following examples.

By default all audit/recon query responses are formatted based on the entryType of the entry. Fields
that are not required for the specific entry type are stripped away from the response. For example,
a summary entry would not need to include a null targetobjectid field, as this would not add information
to a summary. You can specify that this auto-formatting be disabled and return the full entry for all
entry types. To disable entry formatting, include formatted=false as a query parameter in the request.

To return all reconciliation operations logged in the audit log, run a RESTful GET on the audit/recon
endpoint. For example:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/audit/recon"

The following code sample shows an extract of the audit log after the first reconciliation operation in
Sample 1.

“"entries": [
{
"mapping": "systemXmlfileAccounts_managedUser",
“targetObjectId": “managed/user/scarter",
“"sourceObjectId": “system/xmlfile/account/scarter",
“"situation": "ABSENT",
“reconciling": “source",

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 206

(/’ FORGEROCK

Configuring Synchronization
Querying the Reconciliation Audit Log

“ambiguousTargetObjectIds": "",

“action": "CREATE",

"actionId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
“exception": "",

" _id": "fe250514-d3el-477a-bb90-88bd4525d70b",
"entryType": "entry",

“timestamp": "2014-09-08T08:57:47.575Z",

"reconId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"rootActionId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"status": "SUCCESS",

"message": null,

"messageDetail": null

"mapping": "systemXmlfileAccounts_managedUser",
“exception": "",

" id": "10e4195b-7b38-4b99-9916-a6d2del37c11",
"entryType": "start",

"timestamp": "2014-09-08T08:57:47.218Z",

"reconId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"rootActionId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"status": "SUCCESS",

"message": "Reconciliation initiated by openidm-admin",
"messageDetail": null

"mapping": "systemXmlfileAccounts_managedUser",
“exception": "",

" id": "d8634325-78f6-4504-b9f4-ba7b9103e391",
"entryType": "summary",

"timestamp": "2014-09-08T08:57:47.607Z",

"reconId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"rootActionId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"status": "SUCCESS",

"message": "SOURCE_IGNORED: 0 MISSING: 0 FOUND: 0 AMBIGUOUS: 0 UNQUALIFIED: 0 CONFIRMED:

SOURCE_MISSING: © ABSENT: 2 TARGET_IGNORED: 0 UNASSIGNED: 0 ",

"messageDetail": {
"stage": "COMPLETED_SUCCESS",
"stageDescription": “reconciliation completed.",
"progress": {
"links": {
"created": 2,
“existing": {
"processed": 0,

"total": "0"
}
I
"source": {
“existing": {
"processed": 2,
"total": "2"
}
I
"target": {

"created": 2,

“existing": {
"processed": 0,
wtotal™: "@"

}

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

207

Configuring Synchronization

(" FORGEROCK' Querying the Reconciliation Audit Log

}
I
"duration": 388,
“situationSummary": {
"SOURCE_MISSING": 0,
"FOUND": ©,
"SOURCE_IGNORED": 0,
"UNQUALIFIED": 0,
"UNASSIGNED": O,
"TARGET_IGNORED": 0,
"CONFIRMED": 0,
"AMBIGUOUS": 0,
“"ABSENT": 2,
"MISSING": ©
I
"statusSummary": {
“"FAILURE": 0,
"SUCCESS": 2
I
"state": "SUCCESS",
"mapping": "systemXmlfileAccounts_managedUser",
"started": "2014-09-08T08:57:47.218Z",
“"ended": "2014-09-08T08:57:47.606Z"

}

o

{
"mapping": "systemXmlfileAccounts_managedUser",
“targetObjectId": “managed/user/bjensen",
“"sourceObjectId": “system/xmlfile/account/bjensen",
“"situation": “ABSENT",
“reconciling": “source",
“ambiguousTargetObjectIds": "",
“action": "CREATE",
"actionId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
“exception": "",
" id": "939fd113-1158-4f5c-a7f7-6c4b005dce2f",
"entryType": "entry",
“timestamp": "2014-09-08T08:57:47.579Z",
"reconId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"rootActionId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"status": "SUCCESS",
"message": null,
"messageDetail": null

}

Most of the fields in this audit log are self-explanatory. Each distinct reconciliation operation is
identified by its reconid. Each entry in the log is identified by a unique id. The first log entry indicates
the status for the complete reconciliation operation. Successive entries indicate the status for each
record affected by the reconciliation.

To obtain information on a specific audit log entry, include its entry id in the URL. For example:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 208

(/’ FORGEROCK

Configuring Synchronization
Querying the Reconciliation Audit Log

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/audit/recon/fe250514-d3el-477a-bb90-88bd4525d70b"

The following sample output shows the results of a read operation on a specific reconciliation audit
entry.

{

}

"mapping": "systemXmlfileAccounts_managedUser",
“"targetObjectId": "managed/user/scarter",
"sourceObjectId": "system/xmlfile/account/scarter",
“"situation": "ABSENT",

“reconciling": “source",
“ambiguousTargetObjectIds": "",

“"action": "CREATE",

"actionId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
“exception": "",

" _id": "fe250514-d3el-477a-bb90-88bd4525d70b",
"entryType": "entry",

“"timestamp": "2014-09-08T08:57:47.575Z",

"reconId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"rootActionId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"status": "SUCCESS",

"message": null,

"messageDetail": null

To query the audit log for a particular reconciliation operation, use the audit-by-recon-id keyword,
specifying the reconciliation ID, as follows:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/audit/recon?_queryId=audit-by-recon-id&reconId=<reconID>"

Output similar to the following is returned, for the specified reconciliation operation:

{

“remainingPagedResults": -1,
"pagedResultsCookie": null,
"resultCount": 4,

"result": [

{

"mapping": "systemXmlfileAccounts_managedUser",
“exception": "",

" id": "d8634325-78f6-4504-b9f4-ba7b9103e391",
"entryType": "summary",

"timestamp": "2014-09-08T08:57:47.607Z",

"reconId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"rootActionId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"status": "SUCCESS",

"message": "SOURCE_IGNORED: 0 MISSING: 0 FOUND: 0 AMBIGUOUS: 0 UNQUALIFIED:
CONFIRMED: O SOURCE_MISSING: O ABSENT: 2 TARGET IGNORED: © UNASSIGNED:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

209

(/’ FORGEROCK

Configuring Synchronization
Querying the Reconciliation Audit Log

"messageDetail": {
"stage": "COMPLETED_SUCCESS",
"stageDescription": “reconciliation completed.",
"progress": {
"links": {
"created": 2,
“existing": {
"processed": 0,

"total": "0"
}
I
"source": {
“existing": {
"processed": 2,
"total": "2"
}
I
"target": {
""created": 2,
“existing": {
"processed": 0,
"total": "0"
}
}
I

"duration": 388,
“situationSummary": {
"SOURCE_MISSING": 0,
"FOUND": ©,
"SOURCE_IGNORED": 0,
"UNQUALIFIED": O,
"UNASSIGNED": O,
"TARGET_IGNORED": 0,
"CONFIRMED": 0,
"AMBIGUOUS": 0,
“"ABSENT": 2,
"MISSING": ©
I
"statusSummary": {
“"FAILURE": 0,
"SUCCESS": 2
I
"state": "SUCCESS",
"mapping": "systemXmlfileAccounts_managedUser",
"started": "2014-09-08T08:57:47.218Z",
“"ended": "2014-09-08T08:57:47.606Z"

"mapping": "systemXmlfileAccounts_managedUser",
“exception": "",

" id": "10e4195b-7b38-4b99-9916-a6d2del37c11",
"entryType": "start",

"timestamp": "2014-09-08T08:57:47.218Z",

"reconId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"rootActionId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"status": "SUCCESS",

"message": "Reconciliation initiated by openidm-admin",
"messageDetail": null

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

210

(/’ FORGEROCK

Configuring Synchronization
Querying the Reconciliation Audit Log

"mapping": "systemXmlfileAccounts_managedUser",
“targetObjectId": “managed/user/scarter",
“"sourceObjectId": “system/xmlfile/account/scarter",
“"situation": "ABSENT",

“reconciling": “source",
“ambiguousTargetObjectIds": "",

“action": "CREATE",

"actionId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
“exception": "",

" _id": "fe250514-d3el-477a-bb90-88bd4525d70b",
"entryType": "entry",

"timestamp": "2014-09-08T08:57:47.575Z",

"reconId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"rootActionId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"status": "SUCCESS",

"message": null,

"messageDetail": null

"mapping": "systemXmlfileAccounts_managedUser",
“targetObjectId": “managed/user/bjensen",
“"sourceObjectId": “system/xmlfile/account/bjensen",
“"situation": “ABSENT",

“reconciling": “source",
“ambiguousTargetObjectIds": "",

“action": "CREATE",

"actionId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
“exception": "",

" id": "939fd113-1158-4f5c-a7f7-6c4b005dce2f",
"entryType": "entry",

“timestamp": "2014-09-08T08:57:47.579Z",

"reconId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"rootActionId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"status": "SUCCESS",

"message": null,

"messageDetail": null

To query the audit log for a specific reconciliation situation, use the audit-by-recon-id-situation
keyword, specifying the reconciliation ID and the situation that you want to query. For example, the
following query returns all ABSENT records found during the specified reconciliation operation:

$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--request GET \
"https://localhost:8443/openidm/audit/recon?_queryId=audit-by-recon-id-
situation&situation=ABSENT&reconId=e5f3190d-41d9-4bea-907d-b287a9436a45"

Output similar to the following is returned, with one entry for each record that matches the situation
queried:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

211

Configuring Synchronization
Querying the Activity Audit Log

(/’ FORGEROCK

"remainingPagedResults": -1,
"pagedResultsCookie": null,
"resultCount": 2,
"result": [

{

"mapping": "systemXmlfileAccounts_managedUser",
“"targetObjectId": "“managed/user/scarter",
"sourceObjectId": "“system/xmlfile/account/scarter",
“"situation": "ABSENT",
"reconciling": "source",
“ambiguousTargetObjectIds":
“"action": "CREATE",
"actionId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"exception": "",

"_id": "fe250514-d3el-477a-bb90-88bd4525d70b",
"entryType": "entry",

“"timestamp": "2014-09-08T08:57:47.575Z",

"reconId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"rootActionId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"status": "SUCCESS",

"message": null,

"messageDetail": null

un
’

+

{
"mapping": "systemXmlfileAccounts_managedUser",
"targetObjectId": "“managed/user/bjensen",
"sourceObjectId": "“system/xmlfile/account/bjensen",
“"situation": "ABSENT",
"reconciling": "source",
“ambiguousTargetObjectIds": "",
“"action": "CREATE",
"actionId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"exception": "",
" _id": "939fd113-1158-4f5c-a7f7-6c4b005dce2f",
"entryType": "entry",
“"timestamp": "2014-09-08T08:57:47.579Z",
"reconId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"rootActionId": "e5f3190d-41d9-4bea-907d-b287a9436a45",
"status": "SUCCESS",
"message": null,
"messageDetail": null

}

12.8. Querying the Activity Audit Log
The activity logs track all operations on internal (managed) and external (system) objects. Entries in
the activity log contain identifiers for the reconciliation or synchronization action that triggered the

activity, and for the original caller and the relationships between related actions.

You can access the activity logs over REST with the following call:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)

Copyright © 2011-2017 ForgeRock AS. All rights reserved. 212

Configuring Synchronization

(" FORGEROCK Querying the Activity Audit Log

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/audit/activity"

The following extract of the activity log shows the last entry in the log, which was a password change
for user bjensen.

"entries": [

i

"before": null,
"requester": “openidm-admin",
“"parentActionId": "“c2c102bhc-7b32-4020-b5aa-9a7d63652ch6",
"_id": "bbaffle0-923b-48f0-b053-b1614chb3647",
“"activityId": "c2c102bc-7b32-4020-b5aa-9a7d63652ch6",
“"timestamp": "2014-03-13T16:20:54.811Z",
“"action": "CREATE",
"message": 'create",
"objectId": "managed/user/4f2f5eea-918a-4efl-9244-be4ldcf1i28a4",
"rev": "1",
"rootActionId": "c2c102bc-7b32-4020-b5aa-9a7d63652ch6"

Ve

{

"passwordChanged": true,
"changedFields": [
"/password"

"status": "SUCCESS",

"after": {
"securityAnswer": {
"$crypto": {
"value": {

"key": “openidm-sym-default",

"iv": "8CvlA6rWNO3MAhLSKImbvw==",

“cipher": "AES/CBC/PKCS5Padding",

"data": "oJBTrrX+wFAygFZkLuGPrhB/jAIICcdIBuCX1eEbpSO="
s
"type": "x-simple-encryption"

I

To return activity information for a specific action, include the id of the action in the endpoint, for
example:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/audit/activity/22ef6d20-bd84-4267-9db8-745825a46adl"

Results similar to the following are returned:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 213

(/’ FORGEROCK

Configuring Synchronization
Querying the Activity Audit Log

"passwordChanged": true,
"changedFields": [
"/password"

1,

"status": "SUCCESS",

"after": {

"securityAnswer": {
"$crypto": {
"value": {

"key": "openidm-sym-default",

"iv": "HpsyTtTXc2pfNrXlYbro7Q==",

“cipher": "AES/CBC/PKCS5Padding",

"data": "OM607geNjalJ7e0EGSGIBIOeaeF8zIuogdL74hcAIRg="
+
"type": "x-simple-encryption"

}

¥

"userName": "bjensen@example.com",

“"stateProvince": "",

"postalAddress": "",

“"effectiveAssignments": {},

"roles": "openidm-authorized",

"telephoneNumber": "1234567",

"accountStatus": "active",

"password": {

"$crypto": {
"value": {
"key": "openidm-sym-default",
"iv": "dkRjURz761HaObBuLl1+EkA=="",
“cipher": "AES/CBC/PKCS5Padding",
"data": "9chNPULXotHyl95ERj6vlg=="
+
"type": "x-simple-encryption"
}
¥
"effectiveRoles": [
"openidm-authorized"
1,
"givenName": "Barbara",

"lastPasswordAttempt": "Thu Mar 13 2014 07:23:12 GMT-0800 (GMT-08:00)",

"address2": "",
"passwordAttempts": "0",

"sn": “"Jensen",

"mail": "bjensen@example.com",
"securityQuestion": "1",
"City": Illl,

“country": "",

" revt: "7",
"lastPasswordSet": "",
"postalCode": "",

"_id": "bjensen",
"description": "Created By XML1"

"before": {

"securityAnswer": "“Some security answer",
"userName": "bjensen@example.com",
“stateProvince": "",

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

214

’ Configuring Synchronization
‘,' FORGEROCK Querying the Activity Audit Log
"postalAddress": "",
“roles": "openidm-authorized",

"telephoneNumber": "1234567",
"password": {
"$crypto": {
"value": {
“"key": "“openidm-sym-default",
"iv": "bqhRyLW11I+KZROcpgyukg==",
“cipher": "AES/CBC/PKCS5Padding",
"data": "qO08A76GqgNqftVVwOlasyPw=="

+
“type": "x-simple-encryption",
“"securityQuestion": "1",
“givenName": “Barbara",
"address2": "",

"lastPasswordAttempt": "Thu Mar 13 2014 07:23:12 GMT-0800 (GMT-08:00)",

"passwordAttempts": "0",

"sn": "Jensen",

"mail": “bjensen@example.com",

“country": "",

“city": ",

"_rev": "7",

"lastPasswordSet": "",

"postalCode": "",

" _id": "bjensen",

“description": “Created By XML1",

“"accountStatus": “active"
1
“requester": "“openidm-admin",
“parentActionId": "7lddeed8-9006-4578-b869-13el5a3ce6b5",
" _id": "ee88adb8-3329-4f81-a8f2-d9c8e0fbf72b",
"activityId": "“7lddeed8-9006-4578-b869-13el5a3ceb6b5",
“timestamp": "2014-03-13T16:21:27.086Z",
“action": "UPDATE",

"message": "update",

“"objectId": "“managed/user/bjensen",

“revt: "7,

"rootActionId": "71ddeed8-9006-4578-b869-13el5a3ce6b5"
}

Each action in the activity log has a rootActionId and a parentActionId. The rootActionId is the ID that
was assigned to the incoming or initiating request. The parentActionId is the ID that is associated
with the overall action. So, for example, if an HTTP request invokes a script that changes a user's
password, the HTTP request is assigned the rootActionId and the action taken by the script is assigned
the parentActionId. You can query the activity log for the details of a specific action by including the
parentActionId in the query. For example:
$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/audit/activity?_queryId=audit-by-activity-parent-
action&parentActionId=0aaba292-1dd3-4e98-abe2-04bec9ae5209"

The following sample output shows the result of a query that requests details of the password change
for bjensen.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 215

’ Configuring Synchronization
‘,' FORGEROCK Querying the Activity Audit Log

"remainingPagedResults": -1,
"pagedResultsCookie": null,
"resultCount": 2,
"result": [
{
"rootActionId": "7lddeed8-9006-4578-b869-13el5a3ce6b5",
"changedFields": [
"/password"

“"action": "UPDATE",
"objectId": "managed/user/bjensen",

"before": {
"securityAnswer": "Some security answer",
"userName": "bjensen@example.com",
"stateProvince": "",
"postalAddress": "",
"roles": "openidm-authorized",

"telephoneNumber": "1234567",
"password": "CAngetinl",

"securityQuestion": "1",
"givenName": "Barbara",
"address2": "",

"lastPasswordAttempt": "Thu Mar 13 2014 07:23:12 GMT-0800 (GMT-08:00)",
"passwordAttempts": "0",

"sn": "Jensen",

"mail": "bjensen@example.com",
“country": "",

“city": "",

"_rev": "7",
"lastPasswordSet": "",
"postalCode": "",

"_id": "bjensen",
“description": "Created By XML1",

"accountStatus": "“active"
Yo
"status": "SUCCESS",
" rey": "1",

":id": "ee88adb8-3329-4181-a8f2-d9c8e0fbf72b",
"parentActionId": "71ddeed8-9006-4578-b869-13el5a3ce6b5",
“"timestamp": "2014-03-13T16:21:27.0862Z",

"message": "update",
"activityId": "71ddeed8-9006-4578-b869-13el5a3ce6b5",
“"after": {
"securityAnswer": {
"$crypto": {
"value": {

"key": "openidm-sym-default",

"iv": "HpsyTtTXc2pfNrXlYbro7Q==",

“cipher": "AES/CBC/PKCS5Padding",

"data": "OM607geNjalJ7eOEGSGIB9OeaeF8zIuogdL74hcAIRg="
Yo

"type": "x-simple-encryption"

}

o

"userName": "bjensen@example.com",

"stateProvince": "",

"postalAddress": "",

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)

Copyright © 2011-2017 ForgeRock AS. All rights reserved. 216

(/’ FORGEROCK

Configuring Synchronization
Querying the Synchronization Audit Log

1
}

Iy

“effectiveAssignments": {},

"roles": “"openidm-authorized",
"telephoneNumber": "1234567",
"accountStatus": "active",
"password": {
"$crypto": {
"value": {

"key": “openidm-sym-default",
"iv": "dkRjURz761HaObBuLl1+EkA==",
“cipher": "AES/CBC/PKCS5Padding",
“data": "9chNPUlXotHyl95ERj6vig=="
Io
“type": "x-simple-encryption"
}
To
"effectiveRoles": [
“openidm-authorized"

1,

“givenName": “Barbara",

"lastPasswordAttempt": "Thu Mar 13 2014 07:23:12 GMT-0800 (GMT-08

"address2": "",

"passwordAttempts": "0",

"sn": "Jensen",

"mail": "bjensen@example.com",

"securityQuestion": "1",

“city": "“,

“country": "",

" _rev": "7",

"lastPasswordSet": "",

"postalCode": "",

" _id": "bjensen",

“description": “Created By XML1"

nreyt: M7M,
“requester": “openidm-admin",
"passwordChanged": true

}

Note

:00)",

For audit logs in the repository, you can define custom queries using the parameterized query mechanism. For
more information, see Section 7.3.2, "Parameterized Queries".

For more information about the entries in these logs, see Chapter 18, "Using Audit Logs".

12.9. Querying the Synchronization Audit Log

LiveSync and implicit sync operations are logged in the file /path/to/openidm/audit/sync.csv and in the
repository. You can read the synchronization audit logs over the REST interface, as outlined in the
following examples.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

217

Configuring Synchronization

(" FORGEROCK Querying the Synchronization Audit Log

To return all synchronization operations logged in the audit log, run a RESTful GET on the audit/sync
endpoint. For example:
$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \

--request GET \
"https://localhost:8443/openidm/audit/sync"

Most of the fields in the synchronization audit log are self-explanatory. Each distinct synchronization
operation is identified by its actionId. The rootActionId is the ID that was assigned to the incoming or
initiating request - so if a modification to a user entry triggers an implicit synchronization operation,
the sync operation is assigned an actionId and rootActionId refers to the original change operation.
Each entry in the log is identified by a unique id.

To obtain information on a specific audit log entry, include its entry id in the URL. For example:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/audit/sync/a311b656-508c-4f56-9df4-f907364184f1"

The following sample output shows the results of a read operation on a specific synchronization audit
entry.

"entries": [
{
"mapping": "systemAdAccounts_managedUser",
“targetObjectId": “7e5eb90b-f643-4858-803e-a01931f9cl2e",
"sourceObjectId": “"system/ad/account/rheath",

“situation": "“CONFIRMED",

"actionId": "ea6a8le0-a98a-4e72-8c77-50b5756belf6",

" _id": "b3e3190c-9e9d-4cdl-8fec-01705ad54109",
“timestamp": "2014-10-30T14:48:58.415Z",
"rootActionId": "ea6a8le0-a98a-4e72-8c77-50b5756belf6",
"status": "SUCCESS",

"message": null,

"messageDetail": null,

“exception": "",

“action": "UPDATE"

"mapping": "managedUser_systemLdapAccounts",
“targetObjectId": “uid=rheath,ou=People,dc=example,dc=com",
“"sourceObjectId": “managed/user/7e5eb90b-f643-4858-803e-a01931f9cl2e",
“situation": "“CONFIRMED",

"actionId": "ea6a8le0-a98a-4e72-8c77-50b5756belf6",

" _id": "105a39f7-f071-481a-ae82-e233e556cc5a",

“timestamp": "2014-10-30T14:48:58.402Z",

"rootActionId": "ea6a8le0-a98a-4e72-8c77-50b5756belf6",
"status": "SUCCESS",

"message": null,

"messageDetail": null,

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 218

Configuring Synchronization

(" FORGEROCK' Configuring the LiveSync Retry Policy

“exception": "",
"action": "UPDATE"

}
1
}

The output shows two records that originated from the same LiveSync action. The first record
indicates a change on the system/ad entry, which triggered a LiveSync to update the corresponding
managed/user entry. The second record indicates an implicit sync from managed/user to the corresponding
entry in system/ldap. Note that the rootActionId is the same for both these records.

12.10. Configuring the LiveSync Retry Policy

OpenIDM enables you to specify what should happen if a LiveSync operation reports a failure for

an operation. By configuring the LiveSync retry policy, you can specify how many times a failed
modification should be reattempted and what should happen in the event that the modification

is unsuccessful after the specified number of attempts. If no retry policy is configured, OpenIDM
reattempts the change an infinite number of times, until the change is successful. This behavior can
increase data consistency in the case of transient failures (for example, when the connection to the
database is temporarily lost). However, in situations where the cause of the failure is permanent (for
example, if the change does not meet certain policy requirements) the change will never succeed,
regardless of the number of attempts. In this case, the infinite retry behavior can effectively block
subsequent LiveSync operations from starting.

Generally, a scheduled reconciliation operation will eventually force consistency. However, to
prevent repeated retries that block the LiveSync mechanism, you should restrict the number of
times OpenIDM reattempts the same modification. You can then specify what OpenIDM does with
failed LiveSync changes. The failed modification can be stored in a "dead letter queue", discarded,
or reapplied. Alternatively, an administrator can be notified of the failure by email or by some other
means. This behavior can be scripted. The default configuration, in the samples provided with
OpenlDY, is to retry a failed modification five times, and then to log and ignore the failure.

The LiveSync retry policy is configured in the connector configuration file (provisioner.openicf-*.json).
The sample connector configuration files have a retry policy defined as follows:

“syncFailureHandler" : {

"maxRetries" : 5,

"postRetryAction" : "“logged-ignore"
Yo

The maxRetries field specifies the number of attempts that OpenIDM should make to process the failed
modification. The value of this property must be a positive integer, or -1. A value of zero indicates
that failed modifications should not be reattempted. In this case, the post retry action is executed
immediately when a LiveSync operation fails. A value of -1 (or omitting the maxRetries property, or the
entire syncFailureHandler from the configuration) indicates that failed modifications should be retried
an infinite number of times. In this case, no post retry action is executed.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 219

Configuring Synchronization

(" FORGEROCK' Configuring the LiveSync Retry Policy

The default retry policy relies on the scheduler, or whatever invokes the LiveSync operation.
Therefore, if retries are enabled and a LiveSync modification fails, OpenIDM will retry the
modification the next time that LiveSync is invoked.

The postRetryAction field indicates what action OpenIDM should take in the event that the maximum
number of retries has been reached (or if maxRetries has been set to zero). The post retry action can be
one of the following:

* logged-ignore indicates that OpenIDM should ignore the failed modification, and log its occurrence.

* dead-letter-queue indicates that OpenIDM should save the details of the failed modification in a table
in the repository (accessible over REST at repo/synchronisation/deadlLetterQueue/provisioner-name).

* script specifies a custom script that should be executed when the maximum number of retries has
been reached. For information about using custom scripts in the configuration, see Appendix F,
"Scripting Reference".

In addition to the regular objects described in the Scripting Reference, the following objects are
available in the script scope:

® syncFailure

Provides details about the failed record. The structure of the syncFailure object is as follows:

"syncFailure" :

{
"token" : the ID of the token,
"systemIdentifier" : a string identifier that matches the "name" property in

provisioner.openicf.json,
"objectType" : the object type being synced, one of the keys in the
"objectTypes" property in provisioner.openicf.json,

"uid" : the UID of the object (for example uid=joe, ou=People, dc=example,dc=com),
"failedRecord", the record that failed to synchronize

1,

To access these fields, include syncFailure. fieldname in your script.

* failureCause
Provides the exception that caused the original LiveSync failure.

¢ failureHandlers
OpenIDM currently provides two synchronization failure handlers "out of the box". loggedIgnore
indicates that the failure should be logged, after which no further action should be taken.
deadLetterQueue indicates that the failed record should be written to a specific table in the

repository, where further action can be taken. To invoke one of the internal failure handlers from
your script, use a call similar to the following (shown here for JavaScript):

failureHandlers.deadlLetterQueue.invoke(syncFailure, failureCause);

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 220

Configuring Synchronization

(" FORGEROCK' Configuring the LiveSync Retry Policy

Two sample scripts are provided in path/to/openidm/samples/syncfailure/script, one that logs failures,
and one that sends them to the dead letter queue in the repository.

The following sample provisioner configuration file extract shows a LiveSync retry policy that
specifies a maximum of four retries before the failed modification is sent to the dead letter queue.

“connectorName" : “org.identityconnectors.ldap.LdapConnector"
1,
"syncFailureHandler" : {
"maxRetries" : 4,

"postRetryAction" : dead-letter-queue

+
"poolConfigOption" : {

In the case of a failed modification, a message similar to the following is output to the log file:

INFO: sync retries = 1/4, retrying

OpenlDM reattempts the modification, the specified number of times. If the modification is still
unsuccessful, a message similar to the following is logged:

INFO: sync retries = 4/4, retries exhausted

Jul 19, 2013 11:59:30 AM
org.forgerock.openidm.provisioner.openicf.syncfailure.DeadLetterQueueHandler invoke

INFO: uid=jdoe,ou=people,dc=example,dc=com saved to dead letter queue

The log message indicates the entry for which the modification failed (uid=jdoe, in this example).

You can view the failed modification in the dead letter queue, over the REST interface, as follows:

$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--request GET \
"https://localhost:8443/openidm/repo/synchronisation/deadLetterQueue/ldap?_queryId=query-all-ids"

{
"query-time-ms": 2,
"result":
[
{
"oid": 4",
" rev": "O"
}
1,
"conversion-time-ms": 0
}

To view the details of a specific failed modification, include its ID in the URL:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 221

Configuring Synchronization

(" FORGEROCK' Disabling Automatic Synchronization Operations

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/repo/synchronisation/deadLetterQueue/ldap/4"

"objectType": "account",

"systemIdentifier": "ldap",

"failureCause": "org.forgerock.openidm.sync.SynchronizationException:
org.forgerock.openidm.objset.ConflictException:
org.forgerock.openidm.sync.SynchronizationException:
org.forgerock.openidm.script.ScriptException:
ReferenceError: \"bad\" is not defined.
(PropertyMapping/mappings/0/properties/3/condition#1)",

"token": 4,

"failedRecord": "complete record, in xml format"
"uid": "uid=jdoe,ou=people,dc=example,dc=com",

" rev': "@",

WTign. ngn

12.11. Disabling Automatic Synchronization Operations

By default, all mappings participate in automatic synchronization operations, that is, a change to

a managed object is automatically synchronized to all resources for which the managed object is
configured as a source. Similarly, if LiveSync is enabled for a system, changes to an object on that
system are automatically propagated to the managed object repository. You can prevent a specific
mapping from participating in this automatic synchronization by setting the "enableSync" property of
that mapping to false. In the following example, implicit synchronization is disabled. This means that
changes to objects in the internal repository are not automatically propagated to the LDAP directory.
To propagate changes to the LDAP directory, reconciliation must be launched manually.

{
"mappings" : [
"name" : "managedUser_systemLdapAccounts",
"source" : "managed/user",
"target" : "system/ldap/account",
"enableSync" : false,
}

If enableSync is set to false for a system to managed user mapping (for example
"systemLdapAccounts managedUser"), LiveSync is disabled for that mapping.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 222

Configuring Synchronization

(" FORGEROCK' Configuring Synchronization Failure Compensation

12.12. Configuring Synchronization Failure Compensation

When implicit synchronization is used to push a large number of changes from the managed object
repository to several external repositories, the process can take some time. Problems such as lost
connections might happen, resulting in the changes being only partially synchronized.

For example, if a Human Resources manager adds a group of new employees in one database, a
partial synchronization might mean that some of those employees do not have access to their email or
other systems.

You can configure implicit synchronization such that the system reverts an entire synchronization
operation, in the event that it was not completely successful. An example of such a configuration

is illustrated in Section 3.11, "Sample 5b - Failure Compensation With Multiple Resources" in the
Installation Guide. That sample demonstrates how OpenIDM compensates when synchronization to
an external resource fails.

Failure compensation works by using the optional onsync hook, which can be specified in the conf/
managed. json file. The onSync hook can be used to provide failure compensation as follows:

"onDelete" : {
"type" : "text/javascript",
“"file" : "ui/onDelete-user-cleanup.js"
1,
"onSync" : {
"type" : "text/javascript",
"file" : "compensate.js"
1,
“"properties" : [

The onsync hook references a script (compensate.js), that is located in the /path/to/openidm/bin/defaults/
script directory.

When a managed object is changed, an implicit synchronization operation attempts to synchronize
the change (and any other pending changes) with any external data store(s) for which a mapping is
configured.

The implicit synchronization process proceeds with each mapping, in the order in which the
mappings are specified in sync.json.

The compensate.js script is designed to avoid partial synchronization. If synchronization is successful,
for all configured mappings, OpenIDM exits from the script.

If an implicit synchronization operation fails for a particular resource, the onSync hook invokes the
compensate. js script. This script attempts to revert the original change by performing another update
to the managed object. This change, in turn, triggers another implicit synchronization operation to all
external resources for which mappings are configured.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 223

Configuring Synchronization

(" FORGEROCK' Synchronization Situations and Actions

If the synchronization operation fails again, the compensate.js script is triggered again. This time,

however, the script recognizes that the change was originally called as a result of a compensation

and aborts. OpenIDM logs warning messages related to the sync action (notifyCreate, notifyUpdate,
notifyDelete), along with the error that caused the sync failure.

If failure compensation is not configured, any issues with connections to an external resource can
lead to data stores that are out of sync, such as the example cited earlier where some new employees
do not have access to their corporate email accounts.

With the compensate. js script, any such errors will result in each data store using the information
it had before the implicit synchronization operation started. OpenIDM stores that information,
temporarily, in properties such as oldobject and oldTarget.

In this particular example, human resource managers should see that new employees are not shown
in their database. Then, the administrators of the OpenIDM system can check log files for errors,
address them, and then restart the implicit synchronization process with a new REST call.

12.13. Synchronization Situations and Actions

During synchronization, OpenIDM categorizes objects according to their situation. Situations

are characterized by whether an object exists on a source or target system, whether OpenIDM

has registered a link between the source object and the target object, and whether the object is
considered valid, as assessed by the validSource and validTarget scripts. OpenIDM then takes a specific
action, depending on the situation.

You can define actions for particular situations in the policies section of a synchronization mapping,
as shown in the following excerpt.

{
"policies": [
{
“"situation": "CONFIRMED",
"action": "UPDATE"

Iy
{
"situation": "FOUND",
"action": "UPDATE"
Iy
{
“"situation": "ABSENT",
"action": "CREATE"
Iy
{
“"situation": "AMBIGUOUS",
"action": "EXCEPTION"
Iy
{
"situation": "MISSING",
"action": "EXCEPTION"
Iy
{

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 224

Configuring Synchronization

(" FORGEROCK Synchronization Situations

"situation": "UNQUALIFIED",
"action": "DELETE"

H

{
“situation": "UNASSIGNED",
“action": “EXCEPTION"

}

If you do not define a policy for a particular situation, OpenIDM takes the default action for the
situation.

The following sections describe the possible situations and their default corresponding actions.

12.13.1. Synchronization Situations

OpenIDM performs a reconciliation operation in two phases:

1.

Source reconciliation, where OpenIDM accounts for source objects and associated links, based on
the configured mapping.

Target reconciliation, where OpenIDM iterates over the target objects that were not processed in
the first phase.

During the source reconciliation phase, OpenIDM builds three lists, assigning values to the objects to
reconcile.

1.

All valid objects from the source

OpenIDM assigns valid source objects qualifies=1. Invalid objects, including those that were
not found in the source system, and those that were filtered out by the script specified in the
validSource property, are assigned qualifies=0.

All records from the appropriate links table

Objects that have a corresponding link in the links table of the repository are assigned link=1.
Objects that do not have a corresponding link are assigned 1link=0.

All valid objects on the target system

Objects that are found in the target system are assigned target=1. Objects that are not found in the
target system are assigned target=0.

Based on the values assigned to objects during source reconciliation, OpenIDM assigns situations,
listed here with default and appropriate alternative actions.

"CONFIRMED" (qualifies=1, link=1, target=1)

The source object qualifies for a target object, and a link to an existing target object was found.
This situation is detected during change events and during reconciliation.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 225

Configuring Synchronization

(" FORGEROCK Synchronization Situations

Default action: UPDATE the target object.
Other valid actions: IGNORE, REPORT, NOREPORT, ASYNC
"FOUND" (qualifies=1, link=0, target=1)

The source object qualifies for a target object and there is no link to an existing target object.
There is a single target object, that correlates with this source object, according to the logic in
the correlation query. This situation is detected during change events and reconciliation.

Default action: UPDATE the target object.
Other valid actions: EXCEPTION, IGNORE, REPORT, NOREPORT, ASYNC
"FOUND_ALREADY LINKED" (qualifies=1, link=1, target=1)

The source object qualifies for a target object and there is no link from that source object to an
existing target object. There is a single target object, that correlates with this source object,
according to the logic in the correlation query, but that target object is already linked to a
different source object. This situation is detected during change events and reconciliation.

Default action: log an EXCEPTION.
Other valid actions: IGNORE, REPORT, NOREPORT, ASYNC
"ABSENT" (qualifies=1, link=0, target=0)
The source object qualifies for a target object, there is no link to an existing target object, and
there is no correlated target object found. This situation is detected during change events and
reconciliation.
Default action: CREATE a target object.
Other valid actions: EXCEPTION, IGNORE, REPORT, NOREPORT, ASYNC

"AMBIGUOUS" (qualifies=1, link=0, target>1)

The source object qualifies for a target object, there is no link to an existing target object, but
there is more than one correlated target object (that is, more than one possible match on the
target system). This situation is detected during source object changes and reconciliation.

Default action: log an EXCEPTION.
Other valid actions: IGNORE, REPORT, NOREPORT, ASYNC
"MISSING" (qualifies=1, link=1, target=0)
The source object qualifies for a target object, and there is a link to a target object, but the target

object is missing. This situation is detected during reconciliation operations and during source
object changes.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 226

’, : Configuring Synchronization
{4 FORGEROCK

Synchronization Situations

Default action: log an EXCEPTION.
Other valid actions: CREATE, UNLINK, IGNORE, REPORT, NOREPORT. ASYNC
"UNQUALIFIED" (qualifies=0, link=0 or 1, target=1 or >1)
The source object is unqualified (by the "validSource" script). One or more target objects

are found through the correlation logic. This situation is detected during change events and
reconciliation.

Default action: DELETE the target object or objects.
Other valid actions: EXCEPTION, IGNORE, REPORT, NOREPORT, ASYNC
"TARGET_IGNORED" (qualifies=0, link=0 or 1, target=1)

The source object is unqualified (by the "validSource" script). One or more target objects are
found through the correlation logic. This situation is detected only during source object changes.

It is different from "UNQUALIFIED", based on the status of the link and target. If there is a link,
the target is not valid. If there is no link and exactly one target, that target is not valid.

Default action: 1GNORE the target object until the next full reconciliation operation.
Other valid actions: DELETE, UNLINK, EXCEPTION, REPORT, NOREPORT, ASYNC

"SOURCE_IGNORED" (qualifies=0, link=0, target=0)

The source object is unqualified (by the "validSource" script), no link is found, and no correlated
target exists. This situation is detected during source object changes and reconciliation.

Default action: 1GNORE the source object.
Other valid actions: EXCEPTION, REPORT, NOREPORT, ASYNC
"LINK_ONLY" (qualifies=n/a, link=1, target=0)

The source may or may not be qualified, a link is found, but no target object is found. This
situation is detected only during source object changes.

Default action: Log an EXCEPTION.
Other valid actions: UNLINK, IGNORE, REPORT, NOREPORT, ASYNC
"ALL_GONE" (qualifies=n/a, link=0, cannot-correlate)

The source object has been removed. No link is found. Correlation is not possible, for one of the
following reasons:

* No previous source value can be found

* There is no correlation query

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 227

Configuring Synchronization

(" FORGEROCK Synchronization Situations

* A previous value was found, and a correlation query exists, but no corresponding target was
found

This situation is detected only during source object changes.
Default action: "IGNORE" the source object.

Other valid actions: EXCEPTION, REPORT, NOREPORT, ASYNC

During the target reconciliation phase, OpenIDM assigns the following values as it iterates through
the target objects that were not accounted for during the source reconciliation.

1.

Valid objects from the target

OpenIDM assigns valid target objects qualifies=1. Invalid objects, including those that are filtered
out by the script specified in the validTarget property, are assigned qualifies=0.

All records from the appropriate links table

Objects that have a corresponding link in the links table of the repository are assigned link=1.
Objects that do not have a corresponding link are assigned 1ink=0.

All valid objects on the source system

Objects that are found in the source system are assigned source=1. Objects that are not found in
the source system are assigned source=0.

Based on the values that are assigned to objects during the target reconciliation phase, OpenIDM
assigns situations, listed here with their default actions.

"TARGET_IGNORED" (qualifies=0)

During target reconciliation, the target becomes unqualified by the "validTarget" script. This
situation is detected only during reconciliation operations.

Default action: 1GNORE the target object.

Other valid actions: DELETE, UNLINK, REPORT, NOREPORT, ASYNC

"UNASSIGNED" (qualifies=1, link=0)

A valid target object exists, for which there is no link. This situation is detected only during
reconciliation operations.

Default action: log an EXCEPTION.

Other valid actions: IGNORE, REPORT, NOREPORT, ASYNC

"CONFIRMED" (qualifies=1, link=1, source=1)

The target object qualifies, and a link to a source object exists. This situation is detected only
during reconciliation operations.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 228

Configuring Synchronization

(" FORGEROCK Source Reconciliation

Default action: UPDATE the target object.
Other valid actions: IGNORE, REPORT, NOREPORT
"UNQUALIFIED" (qualifies=0, link=1, source=1, but source does not qualify)

The target object is unqualified, (by the "validTarget" script), but there is a link to an existing
source object, which is also unqualified. This situation is detected during change events and
reconciliation.

Default action: DELETE the target object.
Other valid actions: UNLINK, EXCEPTION, IGNORE, REPORT, NOREPORT, ASYNC
SOURCE_MISSING (qualifies=1, link=1, source=0)

The target object qualifies and a link is found. But the source object is missing. This situation is
detected during change events and reconciliation.

Default action: log an "EXCEPTION".
Other valid actions: DELETE, UNLINK, IGNORE, REPORT, NOREPORT, ASYNC

The following sections reiterate in detail how OpenIDM assigns situations during each of the two
synchronization phases.

12.13.2. Source Reconciliation

OpenlDM starts reconciliation and LiveSync by reading a list of objects from the resource. For
reconciliation, the list includes all objects that are available through the connector. For LiveSync, the
list contains only changed objects. The connector can filter objects out of the list, too, by using the
script specified in the validSource property.

OpenIDM then iterates over the list, checking each entry against the validsource filter, and classifying
objects according to their situations as described in Section 12.13.1, "Synchronization Situations".
OpenIDM uses the list of links for the current mapping to classify objects. Finally, OpenIDM executes
the action that is configured for each situation.

The following table shows how OpenIDM assigns the appropriate situation during source
reconciliation, depending on whether a valid source exists (Source Qualifies), whether a link exists in
the repository (Link Exists), and how many target objects are found, based either on links or on the
results of the correlation query.

Table 12.1. Resolving Source Reconciliation Situations

Source Qualifies? Link Exists? Target Objects Found® Situation
Yes No Yes No 0 1 >1
X X X SOURCE_MISSING

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 229

’,] Configuring Synchronization
" FORGEROCK Target Reconciliation
Source Qualifies? Link Exists? Target Objects Found® Situation
Yes No Yes No 0 1 >1
X X X UNQUALIFIED
X X X UNQUALIFIED
X X X TARGET IGNORED
X X X UNQUALIFIED
X X X ABSENT
X X X FOUND
X xP X FOUND ALREADY LINKED
X X X AMBIGUOUS
X X X MISSING
X X X CONFIRMED

If no link exists for the source object, then OpenIDM executes a correlation query. If no previous object is available, OpenIDM
cannot correlate.

DA link does exist from the target object but it not for this specific source object.

12.13.3. Target Reconciliation

During source reconciliation, OpenIDM cannot detect situations where no source object exists, such
as the UNASSIGNED situation. When no source object exists, OpenIDM detects the situation during
the second reconciliation phase, target reconciliation. During target reconciliation, OpenIDM iterates
over all target objects that do not have a representation on the source, checking each object against
the validTarget filter, determining the appropriate situation, and executing the action configured for
the situation.

The following table shows how OpenIDM assigns the appropriate situation during target
reconciliation, depending on whether a valid target exists (Target Qualifies), whether a link with an
appropriate type exists in the repository (Link Exists), whether a source object exists (Source Exists),
and whether the source object qualifies (Source Qualifies). Not all situations assigned during source
reconciliation are assigned during target reconciliation.

Table 12.2. Resolving Target Reconciliation Situations

Target Qualifies? Link Exists? Source Exists? Source Qualifies? Situation
Yes No Yes No Yes No Yes No
X TARGET IGNORED
X X X UNASSIGNED
X X X X CONFIRMED
X X X X UNQUALIFIED
X X X SOURCE_MISSING

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 230

Configuring Synchronization

(,' FORGEROCK Situations Specific to Implicit Synchronization and LiveSync

12.13.4. Situations Specific to Implicit Synchronization and LiveSync
Certain situations occur only during implicit synchronization (when OpenIDM pushes changes made
in the repository out to external systems) and LiveSync (when OpenIDM polls external system change

logs for changes and updates the repository).

The following table shows the situations that pertain only to implicit sync and LiveSync, when records
are deleted from the source or target resource.

Table 12.3. Resolving Implicit Sync and LiveSync Delete Situations

Source Qualifies? Link Exists? Target Objects Found * Situation

Yes No Yes No 0 1 >1

N/A N/A X X LINK ONLY

N/A N/A X X ALL GONE

X X X AMBIGUOUS
X X X UNQUALIFIED

2 If no link exists for the source object, then OpenIDM executes a correlation query. If no previous object is available, OpenIDM
cannot correlate.

12.13.5. Synchronization Actions
Once OpenIDM has assigned a situation to an object, OpenIDM takes the actions configured in
the mapping. If no action is configured, then OpenIDM takes the default action for the situation.
OpenIDM supports the following actions.
"CREATE"
Create and link a target object.
"UPDATE"
Link and update a target object.
"DELETE"
Delete and unlink the target object.
"LINK"
Link the correlated target object.

"UNLINK"

Unlink the linked target object.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 231

Configuring Synchronization

(" FORGEROCK Providing a Script as an Action

"EXCEPTION"
Flag the link situation as an exception.
You should not use this action for LiveSync mappings.
"IGNORE"
Do not change the link or target object state.
"REPORT"
Do not perform any action but report on what would happen if the default action were performed.
"NOREPORT"
Do not perform any action or generate any report.
"ASYNC"

An asynchronous process has been started so do not perform any action or generate any report.

12.13.6. Providing a Script as an Action

In addition to the static synchronization actions described in the previous section, you can provide

a script that is run in specific synchronization situations. The following extract of a sample sync.json
file specifies that when a synchronization operation assesses an entry as ABSENT, the workflow named
managedUserApproval is invoked. The parameters for the workflow are passed in as properties of the
action parameter.

{
“"situation" : "ABSENT",
"action" : {
"workflowName" : "managedUserApproval",
"type" : "text/javascript",
"file" : "workflow/triggerWorkflowFromSync.js"
}
}

The variables available to these scripts are described in Appendix F, "Scripting Reference".

12.14. Asynchronous Reconciliation

Reconciliation can work in tandem with workflows to provide additional business logic to the
reconciliation process. You can define scripts to determine the action that should be taken for

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 232

Configuring Synchronization

(" FORGEROCK Asynchronous Reconciliation

a particular reconciliation situation. A reconciliation process can launch a workflow after it has
assessed a situation, and then perform the reconciliation, or some other action.

For example, you might want a reconciliation process to assess new user accounts that need to

be created on a target resource. However, new user account creation might require some kind of
approval from a manager before the accounts are actually created. The initial reconciliation process
can assess the accounts that need to be created, launch a workflow to request management approval
for those accounts, and then relaunch the reconciliation process to create the accounts, once the
management approval has been received.

In this scenario, the defined script returns 16NORE for new accounts and the reconciliation engine does
not continue processing the given object. The script then initiates an asynchronous process which
calls back and completes the reconciliation process at a later stage.

A sample configuration for this scenario is available in openidm/samples/sample9, and described in
Section 3.15, "Sample 9 - Asynchronous Reconciliation Using Workflows" in the Installation Guide.

Configuring asynchronous reconciliation involves the following steps:

1. Create the workflow definition file (.xml or .bar file) and place it in the openidm/workflow directory.
For more information about creating workflows, see Chapter 17, "Integrating Business Processes
and Workflows".

2. Modify the conf/sync.json file for the situation or situations that should call the workflow.
Reference the workflow name in the configuration for that situation.

For example, the following sync.json extract calls the managedUserApproval workflow if the situation is
assessed as ABSENT:

{
"situation" : "ABSENT",
"action" : {
"workflowName" : "managedUserApproval",
“type" : “text/javascript",
"file" : “workflow/triggerWorkflowFromSync.js"
}
+

3. In the sample configuration, the workflow calls a second, explicit reconciliation process as a final
step. This reconciliation process is called on the sync context path, with the performAction action
(openidm.action('sync', 'performAction', params)).

You can also use this kind of explicit reconciliation to perform a specific action on a source or
target record, regardless of the assessed situation.

You can call such an operation over the REST interface, specifying the source, and/or target

IDs, the mapping, and the action to be taken. The action can be any one of the supported
reconciliation actions, that is, CREATE, UPDATE, DELETE, LINK, UNLINK, EXCEPTION, REPORT, NOREPORT, ASYNC
, IGNORE. In addition, if you specify a reconld, the action that is taken is logged in the audit/recon
log, along with the the other audit data for that reconciliation run.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 233

Configuring Synchronization

(" FORGEROCK' Configuring Case Sensitivity for Data Stores

The following sample command calls the DELETE action on user bjensen, whose id in the LDAP
directory is uid=bjensen,ou=People,dc=example,dc=com. The user is deleted in the target resource, in
this case, the OpenIDM repository.

Note that the id must be URL-encoded in the REST call.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/openidm/sync?_action=performAction&sourceId=uid%3Dbjensen%2Cou%3DPeople%2Cdc
%3Dexample%2Cdc%s3Dcom&mapping=
systemLdapAccounts_ManagedUser&action=DELETE"
{}

12.15. Configuring Case Sensitivity for Data Stores

By default, OpenIDM is case-sensitive, which means that case is taken into account when comparing
IDs during reconciliation. For data stores that are case-insensitive, such as OpenD], IDs and links that
are created by a reconciliation process may be stored with a different case to the way in which they
are stored in the OpenIDM repository. Such a situation can cause problems during a reconciliation
operation, as the links for these IDs may not match.

For such data stores, you can configure OpenIDM to ignore case during reconciliation operations.
With case sensitivity turned off in OpenIDM, for those specific mappings, comparisons are done
without regard to case.

To specify that data stores are not case-sensitive, set the "sourceldsCaseSensitive" or
"targetIdsCaseSensitive" property to false in the mapping for those links. For example, if the LDAP data
store is case-insensitive, set the mapping from the LDAP store to the managed user repository as
follows:

"mappings" : [

"name" : "systemLdapAccounts_managedUser",
"source" : "system/ldap/account",
"sourceIdsCaseSensitive" : false,

"target" : "managed/user",

“"properties" : [

If a mapping inherits links by using the "links" property, it is not necessary to set case sensitivity,
because the mapping uses the setting of the referred links.

Note that configuring OpenIDM to be case-insensitive when comparing links does not make the
OpenlCF provisioner case-insensitive when it requests data. For example, if a user entry is stored

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 234

Configuring Synchronization

(/’ FORGEROCK

Reconciliation Optimization

with the ID testuser and you make a request for https://localhost:8443/openidm/managed/TESTuser, most
provisioners will filter out the match because of the difference in case, and will indicate that the
record is not found. To prevent the provisioner from performing this secondary filtering, set the
enableFilteredResultsHandler property to false in the provisioner configuration. For example:

"resultsHandlerConfig" :

"enableFilteredResultsHandler":false,
+

Caution

Do not disable the filtered results handler for the CSV file connector. The CSV file connector does not perform
filtering so if you disable the filtered results handler for this connector, the full CSV file will be returned for
every request.

12.16. Reconciliation Optimization

By default, reconciliation is configured to function in an optimized way. Some of these optimizations
might, however, be unsuitable for your environment. The following sections describe the
optimizations and how they can be configured.

12.16.1. Correlating Empty Target Sets

To optimize a reconciliation operation, the reconciliation process does not attempt to correlate
source objects to target objects if the set of target objects is empty when the correlation is started.
This considerably speeds up the process the first time the reconciliation is run. You can change
this behavior for a specific mapping by adding the correlateEmptyTargetSet property to the mapping
definition and setting it to true. For example:

{
"mappings": [
"name"' : "systemMyLDAPAccounts_managedUser",
"'source" . "system/MyLDAP/account",
"target" : "managed/user",
"correlateEmptyTargetSet" : true
I
1
}

Be aware that this setting will have a performance impact on the reconciliation process.

12.16.2. Prefetching Links

All links are queried at the start of a correlation and the results of that query are used. You can
disable the prefetching of links, so that the correlation process looks up each link in the database

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

235

Configuring Synchronization

(" FORGEROCK Parallel Reconciliation Threads

as it processes each source or target object. You can disable the prefetching of links by adding the
prefetchLinks property to the mapping, and setting it to false, for example:

{
"mappings": [
{
"name": "systemMyLDAPAccounts_managedUser",
"source": "system/MyLDAP/account",
"target": "managed/user"
"prefetchLinks" : false
}
1
}

Be aware that this setting will have a performance impact on the reconciliation process.

12.16.3. Parallel Reconciliation Threads

By default, reconciliation is executed in a multi-threaded manner, that is, numerous threads are
dedicated to the same reconciliation run. Multithreading generally improves reconciliation run
performance. The default number of threads for a single reconciliation run is ten (plus the main
reconciliation thread). Under normal circumstances, you should not need to change this number,
however the default might not be appropriate in the following situations:

* The hardware has many cores and supports more concurrent threads. As a rule of thumb for
performance tuning, start with setting the thread number to two times the number of cores.

» The source or target is an external system with high latency or slow response times. Threads may
then spend considerable time waiting for a response from the external system. Increasing the
available threads enables the system to prepare or continue with additional objects.

To change the number of threads, set the taskThreads property in the conf/sync.json file, for example:

“"mappings" : [
{
"name" : "systemXmlfileAccounts_managedUser",
"source" : “system/xmlfile/account",
"target" : "managed/user",

"taskThreads" : 20
}

A value of o specifies that reconciliation is run on the main reconciliation thread, that is, in a serial
manner.

12.17. Correlation Queries

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 236

Configuring Synchronization

(" FORGEROCK Correlation Queries

Every time OpenIDM creates an object through synchronization, it creates a link between the source
and target objects. OpenIDM then uses the link to determine the object's situation during later
synchronization operations.

Initial, full synchronization operations can involve correlating many objects that exist on both source
and target systems. In this case, OpenIDM uses correlation queries to find target objects that already
exist, and that correspond to source objects. For the target objects that match a correlation query,
OpenIDM needs only to create a link, rather than a new target object.

Correlation queries are accomplished by using script to construct the actual query map. The content
of the query is generated dynamically, using values from the source object. Each source object results
in a new query being sent to the target system, using (possibly transformed) values from the source
object for its execution.

Correlation queries are defined as part of the mapping (in sync.json) and run against target resources,
either managed or system objects, depending on the mapping. Correlation queries on system objects
access the connector, which executes the query on the external resource.

The preferred syntax for a correlation query is a filtered query, using the queryFilter keyword,
although predefined queries (using queryId) and native queries (using queryExpression) are also
supported for correlation queries.

A correlation query must return a map that holds a generic query, with the following elements:
* A condition, such as "Equals", "Starts with", or "Greater than".

For examples of query conditions, see Section 7.3.4, "Constructing Queries".
* The element that is being compared, on the target object, for example, uid.

Note that this element on the target object is not necessarily a single attribute. Your query filter
can be as simple, or as complex, as you need it to be, from a single operator to an entire boolean
expression tree.

When the target object is a system object, this attribute must be referred to by its OpenIDM name,
rather than its native (OpenICF) name. For example, in the following provisioner configuration
excerpt, the name to use would be uid and not NAME_:
"uid" : {

"type" : "string",

"nativeName" : "__ NAME__",

"required" : true,

"nativeType" : "string"

» The value to search for in the query.

This value is generally based on one or more values from the source object, but is not necessarily
the value of a single source object property. The way in which your script uses the values from

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 237

Configuring Synchronization

(" FORGEROCK Correlation Queries

the source object to find a matching record in the target system is up to you. It might be a
transformation of a source object property (for example, toUpperCase()), concatenated with other
strings or properties. You can also use this value to call an external REST endpoint, the response
from which would be the final "value" portion of the query.

The following query finds objects on the target whose uid is the same as the userName of a source
object.

“correlationQuery" : {

"type" : "text/javascript",

"source" : "var qry = {'_queryFilter': 'uid eq \"' + source.userName + '\"'}; qry"
1

The query can return zero or more objects. The situation that OpenIDM assigns to the source object
depends on the number of target objects that are returned.

Correlation queries that do not use common query filter syntax must be defined in the configuration
file for the repository, either openidm/conf/repo.jdbc.json Or openidm/conf/repo.orientdb.json, and must be
referenced in the mapping (sync.json) file.

The following example shows a query, defined in the OrientDB repository configuration (openidm/conf/
repo.orientdb.json), that can be used as the basis for a correlation query.

"for-userName" : "SELECT * FROM ${unquoted: resource} WHERE userName = ${uid}"

By default, a ${value} token replacement is assumed to be a quoted string. If the value is not a quoted
string, use the unquoted: prefix, as shown above.

You would call this query in the mapping (sync.json) file as follows:

“correlationQuery": {
“type": “text/javascript",
"source":
“var qry = {'_queryId' : 'for-userName', 'uid' : source.name}; qry;"

The queryld property value (for-userName) matches the name of the query specified in openidm/
conf/repo.orientdb.json. The source.name value replaces s${uid} in the query. OpenIDM replaces
${unquoted: resource} in the query with the name of the table that holds managed objects.

OpenlIDM 3.1 offers a new declarative correlation option, named the expression builder, that makes
it easier to configure correlation queries. The easiest way to use the expression builder to build up

a correlation query is by using the Admin UI. The following image shows how the expression builder
is used to build up a correlation query for a mapping from system/ldap/accounts to managed/user objects.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 238

Configuring Synchronization

(" FORGEROCK' Advanced Data Flow Configuration

The query essentially states that, in order for a match to exist between the source (LDAP) object and
the target (managed) object, both the userName and telephoneNumber of those objects must match.

£ Resources 9 Mappings

« Back to Mappings
systemLdapAccounts_managedUser

Source Target
system/ldap/account > managed/user
Idap managed

P Completed: Last Synced November 13, 2014 09:54

i= Properties G Correlation @ Sync

Association Rules B

~ No Correlation Query
O Expression Builder

List the fields which will be used to match existing items in your source to items in your target:

All of the below fieids j ﬂ
givenName AND ﬂ

telephoneNumber

O Script

The resulting correlation query, in the mapping configuration (sync.json) is as follows:

“correlationQuery" : {
“type" : “text/javascript",
“"expressionTree" : {
"all" : [
"givenName" ,
""telephoneNumber"
1
Fo
"mapping" : "systemlLdapAccounts_managedUser",
“file" : “ui/correlateTreeToQueryFilter.js"

b

The logic in the expression builder is in the script openidm/bin/defaults/script/ui/
correlateTreeToQueryFilter.js which converts the expression into the required query filter.

12.18. Advanced Data Flow Configuration

Integrator's Guide OpenIDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 239

Configuring Synchronization

(" FORGEROCK' Advanced Data Flow Configuration

Section 12.3, "Basic Data Flow Configuration" shows how to trigger scripts when objects are created
and updated. Other situations require you to trigger scripts in response to other synchronization
actions. For example, you might not want OpenIDM to delete a managed user directly when an
external account is deleted, but instead unlink the objects and deactivate the user in another
resource. (Alternatively, you might delete the object in OpenIDM but nevertheless execute a script.)
The following example shows a more advanced mapping configuration.

1

2 “mappings": [

3 {

4 "name": "systemLdapAccount_managedUser",

5 "'source": "system/ldap/account",

6 "target": "managed/user",

7 "validSource": {

8 “type": “text/javascript",

9 “file": “script/isValid.js"

10 +

11 “correlationQuery" : {

12 “type" : “text/javascript",

13 "source" : "var map = {'_queryFilter': 'uid eq \"' +
14 source.userName + '\"'}; map;"

15 +

16 “properties": [

17 {

18 "source": "uid",

19 "transform": {
20 “type": "text/javascript",
21 "source": "source.tolLowerCase()"
22 +
23 "target": "userName"
24 1,
25 {
26 "source": "",
27 "transform": {
28 “type": "text/javascript",
29 "source": "if (source.myGivenName)
30 {source.myGivenName;} else {source.givenName;}"
31 I
32 “target": "givenName"
33 1,
34 {
35 "source": "",
36 "transform": {
37 "type": "text/javascript",
38 “source": "if (source.mySn)
39 {source.mySn;} else {source.sn;}"
40 },
41 “target": "familyName"
42 1,
43 {
44 "source": "cn",
45 "target": "fullname"
46 },
47 {
48 “comment": "Multi-valued in LDAP, single-valued in AD.
49 Retrieve first non-empty value.",
50 "source": "title",
51 "transform": {

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 240

’ Configuring Synchronization
‘,' FORGEROCK Advanced Data Flow Configuration

52 “type": "text/javascript",

53 “"file": "script/getFirstNonEmpty.js"

54 },

55 “target": "title"

56 1,

57 {

58 “condition": {

59 “type": "text/javascript",

60 "source": "var clearObj = openidm.decrypt(object);

61 ((clearObj.password != null) &&

62 (clearObj.ldapPassword != clearObj.password))"

63 +

64 "transform": {

65 “type": "text/javascript",

66 "'source": "source.password"

67 I

68 “target": "__PASSWORD__"

69 }

70 1,

71 "onCreate": {

72 “type": “text/javascript",

73 "source": "target.ldapPassword = null;

74 target.adPassword = null;

75 target.password = null;

76 target.ldapStatus = 'New Account'"

77 o

78 "onUpdate": {

79 “type": “text/javascript",

80 "source": "target.ldapStatus = 'OLD'"

81 +

82 “onUnlink": {

83 “type": “text/javascript",

84 “file": “script/triggerAdDisable.js"

85 +

86 "policies": [

87 {

88 “"situation": "CONFIRMED",

89 “"action": "UPDATE"

90 o

91 {

92 "situation": "FOUND",

93 “"action": "UPDATE"

94 },

95 {

96 “"situation": "ABSENT",

97 “"action": "CREATE"

98 o

99 {

100 “"situation": "AMBIGUOUS",

101 “action": "EXCEPTION"

102 o

103 {

104 "situation": "MISSING",

105 “action": "EXCEPTION"

106 o

107 {

108 "situation": "UNQUALIFIED",

109 “"action": "UNLINK"

110 i

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

241

Configuring Synchronization

(" FORGEROCK' Scheduling Synchronization

111 {

112 “"situation": "UNASSIGNED",
113 “action": "EXCEPTION"

114 }

115]

116 }

117]

118 }

The following list shows the properties that you can use as hooks in mapping configurations to call
scripts.

Triggered by Situation
onCreate, onUpdate, onDelete, onLink, onUnlink
Object Filter
vaildSource, validTarget
Correlating Objects
correlationQuery
Triggered on Reconciliation
result
Scripts Inside Properties
condition, transform

Your scripts can get data from any connected system at any time by using the openidm. read(id)
function, where id is the identifier of the object to read.

The following example reads a managed user object from the repository.
repoUser = openidm.read("managed/user/ddoe");
The following example reads an account from an external LDAP resource.
externalAccount = openidm.read("system/ldap/account/uid=ddoe, ou=People,dc=example,dc=com") ;
Note that the query targets a DN rather than a UID, as it did in the previous example. The attribute
that is used for the id is defined in the connector configuration file and, in this example, is set to

"uidAttribute" : "dn". Although it is possible to use a DN (or any unique attribute) for the id, as a best
practice, you should use an attribute that is both unique and immutable.

12.19. Scheduling Synchronization

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 242

Configuring Synchronization

(" FORGEROCK Configuring Scheduled Synchronization

You can schedule synchronization operations, such as LiveSync and reconciliation, using cron-like
syntax.

This section describes scheduling for reconciliation and LiveSync, however, you can also use
OpenIDM's scheduler service to schedule any other event by supplying a link to a script file, in which
that event is defined. For information about scheduling other events, and for a deeper understanding
of the OpenIDM scheduler service, see Chapter 13, "Scheduling Tasks and Events".

12.19.1. Configuring Scheduled Synchronization

Each scheduled reconciliation and LiveSync task requires a schedule configuration file in
openidm/conf. By convention, files are named openidm/conf/schedule-schedule-name .json, where
schedule-name is a logical name for the scheduled synchronization operation, such as
reconcile systemXmlAccounts_managedUser.

Schedule configuration files have the following format:

“enabled" : true,

"persisted" : false,

"type" : "cron",

"startTime" : "(optional) time"“,

"endTime" : "(optional) time"“,

"schedule" : "cron expression",
"misfirePolicy" : "“optional, string",

"timeZone" : "(optional) time zone",
"invokeService" : "service identifier",
"invokeContext" : "service specific context info"

For an explanation of each of these properties, see Chapter 13, "Scheduling Tasks and Events".

To schedule a reconciliation or LiveSync task, set the invokeService property to either "sync" (for
reconciliation) or "provisioner" for LiveSync.

The value of the invokeContext property depends on the type of scheduled event. For reconciliation, the
properties are set as follows:

{
"invokeService": "sync",
"invokeContext": {
"action": "reconcile",
"mapping": "systemLdapAccount_managedUser"
}
}

The "mapping" is either referenced by its name in the openidm/conf/sync.json file, or defined inline by
using the "mapping" property, as shown in the example in Section 12.19.2, "Alternative Mappings".

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 243

Configuring Synchronization

(" FORGEROCK' Alternative Mappings

For LiveSync, the properties are set as follows:

{
“"invokeService": "“provisioner",
"invokeContext": {
“action": "liveSync",
"source": "system/OpenDJ/__ACCOUNT__"
}
}

The "source" property follows OpenIDM's convention for a pointer to an external resource object and
takes the form system/resource-name/object-type.

12.19.2. Alternative Mappings

Mappings for synchronization are usually stored in openidm/conf/sync.json for reconciliation, LiveSync,
and for pushing changes made to managed objects to external resources. You can, however,

provide alternative mappings for scheduled reconciliation by adding the mapping to the schedule
configuration instead of referencing a mapping in sync.json.

"enabled": true,
“"type": "“cron",
"schedule": "0 08 16 * * ?",
"invokeService": "sync",
"invokeContext": {
"action": "reconcile",
"mapping": {
"name": "CSV_XML",
"source": "system/Ldap/account",
"target": "managed/user",
"properties": [
{
"source": "firstname",
"target": "firstname"
}'
]l
"policies": [...]

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 244

Scheduling Tasks and Events

(" FORGEROCK Scheduler Configuration

Chapter 13

Scheduling Tasks and Events

OpenIDM enables you to schedule reconciliation and synchronization tasks. You can also use
scheduling to trigger scripts, collect and run reports, trigger workflows, perform custom logging, and
so forth.

OpenIDM supports cron-like syntax to schedule events and tasks, based on expressions supported by
the Quartz Scheduler (bundled with OpenIDM).

If you use configuration files to schedule tasks and events, you must place the schedule files in

the openidm/conf directory. By convention, OpenIDM uses file names of the form schedule-schedule-
name.json, where schedule-name is a logical name for the scheduled operation, for example, schedule-
reconcile systemxmlAccounts managedUser.json. There are several example schedule configuration files in
the openidm/samples/schedules directory.

You can configure OpenIDM to pick up changes to scheduled tasks and events dynamically, during
initialization and also at runtime. For more information, see Section 6.2, "Changing the Default
Configuration".

In addition to the fine-grained scheduling facility, you can perform a scheduled batch scan for a
specified date in OpenIDM data, and then automatically execute a task when this date is reached. For
more information, see Section 13.5, "Scanning Data to Trigger Tasks".

13.1. Scheduler Configuration

Schedules are configured through JSON objects. The schedule configuration involves three files:

* The openidm/conf/boot/boot.properties file, where you can enable the execution of persistent schedules
* The openidm/conf/scheduler.json file, that configures the overall scheduler service

* One openidm/conf/schedule-schedule-name.json file for each configured schedule

In the boot properties configuration file (openidm/conf/boot/boot.properties), the instance type is
standalone and persistent schedules are enabled by default:

valid instance types for node include standalone, clustered-first, and clustered-additional
openidm.instance.type=standalone

enables the execution of persistent schedulers
openidm.scheduler.execute.persistent.schedules=true

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 245

Scheduling Tasks and Events

(" FORGEROCK' Scheduler Configuration

The scheduler service configuration file (openidm/conf/scheduler.json) governs the configuration for a
specific scheduler instance, and has the following format:

"threadPool" : {

"threadCount" : "10"
1
"'scheduler" : {
"executePersistentSchedules" : "&{openidm.scheduler.execute.persistent.schedules}"
}
}

The properties in the scheduler.json file relate to the configuration of the Quartz Scheduler.

* threadCount specifies the maximum number of threads that are available for the concurrent
execution of scheduled tasks.

* executePersistentSchedules allows you to disable persistent schedule execution for a specific node.
If this parameter is set to false, the Scheduler Service will support the management of persistent
schedules (CRUD operations) but it will not execute any persistent schedules. The value of this
property can be a string or boolean and is true by default.

Note that changing the value of the openidm.scheduler.execute.persistent.schedules property in the
boot.properties file changes the scheduler that manages scheduled tasks on that node. Because
the persistent and in-memory schedulers are managed separately, a situation can arise where two
separate schedules have the same schedule name.

* advancedProperties (optional) enables you to configure additional properties for the Quartz Scheduler.

Note

In clustered environments, the scheduler service obtains an instanceID and checkin and timeout settings from
the cluster management service (defined in the openidm/conf/cluster.json file). This behavior differs from
OpenIDM 2.1.0 (in which the scheduler service specified the instance ID and checkin and timeout settings).
Therefore, if you used the scheduler service in OpenIDM 2.1.0, you will need to migrate any reference to
assigned instance IDs, allowing them to be provided by the cluster management service.

For details of all the configurable properties for the Quartz Scheduler, see the Quartz Scheduler
Configuration Reference.

Each schedule configuration file, openidm/conf/schedule-schedule-name.json, has the following format:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 246

http://www.quartz-scheduler.org/documentation/quartz-2.1.x/configuration/ConfigMain
http://www.quartz-scheduler.org/documentation/quartz-2.1.x/configuration/ConfigMain

’,) Scheduling Tasks and Evepts
" FORGEROCK Scheduler Configuration

{

"enabled" : true,

"persisted" : false,

"concurrentExecution" : false,

"type" : “cron",

“"startTime" : "(optional) time",

"endTime" : "(optional) time",

"'schedule" : "cron expression",

"misfirePolicy" : "optional, string",

"timeZone" : "(optional) time zone"“,

"invokeService" : "service identifier",

"invokeContext" : "service specific context info",

"invokelLoglLevel" : "(optional) level"

}

The schedule configuration properties are defined as follows:
enabled

Set to true to enable the schedule. When this property is set to false, OpenIDM considers the
schedule configuration dormant, and does not allow it to be triggered or executed.

If you want to retain a schedule configuration, but do not want it used, set enabled to false for task
and event schedulers, instead of changing the configuration or cron expressions.

persisted (optional)

Specifies whether the schedule state should be persisted or stored in RAM. Boolean (true or
false), false by default.

In a clustered environment, this property must be set to true to have the schedule fire only once
across the cluster. For more information, see Section 13.2, "Configuring Persistent Schedules".

concurrentExecution

Specifies whether multiple instances of the same schedule can run concurrently. Boolean (true
or false), false by default. Multiple instances of the same schedule cannot run concurrently

by default. This setting prevents a new scheduled task from being launched before the same
previously launched task has completed. For example, under normal circumstances you would
want a liveSync operation to complete its execution before the same operation was launched
again. To enable concurrent execution of multiple schedules, set this parameter to true. The
behavior of "missed" scheduled tasks is governed by the misfirePolicy.

type
Currently OpenIDM supports only cron.
startTime (optional)

Used to start the schedule at some time in the future. If this parameter is omitted, empty, or set
to a time in the past, the task or event is scheduled to start immediately.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 247

Scheduling Tasks and Events

(" FORGEROCK Scheduler Configuration

Use ISO 8601 format to specify times and dates (YYYY-MM-DD Thh:mm :ss).
endTime (optional)
Used to plan the end of scheduling.

schedule

Takes cron expression syntax. For more information, see the CronTrigger Tutorial and Lesson 6:
CronTrigger.

misfirePolicy

For persistent schedules, this optional parameter specifies the behavior if the scheduled task is
missed, for some reason. Possible values are as follows:

* fireAndProceed. The first execution of a missed schedule is immediately executed when the
server is back online. Subsequent executions are discarded. After this, the normal schedule is
resumed.

 doNothing, all missed schedules are discarded and the normal schedule is resumed when the
server is back online.

timeZone (optional)
If not set, OpenIDM uses the system time zone.
invokeService

Defines the type of scheduled event or action. The value of this parameter can be one of the
following:

¢ "sync" for reconciliation

* "provisioner" for LiveSync

* "script" to call some other scheduled operation defined in a script
invokeContext

Specifies contextual information, depending on the type of scheduled event (the value of the
invokeService parameter).

The following example invokes reconciliation.

{
“"invokeService": "sync",
"invokeContext": {
"action": "reconcile",
"mapping": "systemlLdapAccount_managedUser"
}

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 248

http://www.quartz-scheduler.org/docs/tutorials/crontrigger.html
http://www.quartz-scheduler.org/docs/tutorial/TutorialLesson06.html
http://www.quartz-scheduler.org/docs/tutorial/TutorialLesson06.html

Scheduling Tasks and Events

(" FORGEROCK Scheduler Configuration

For a scheduled reconciliation task, you can define the mapping in one of two ways:

* Reference a mapping by its name in sync.json, as shown in the previous example. The mapping
must exist in the openidm/conf/sync.json file.

* Add the mapping definition inline by using the "mapping" property, as shown in the example in
Section 12.19.2, "Alternative Mappings".

The following example invokes a LiveSync action.

{
“invokeService": "“provisioner",
"invokeContext": {
"action": "liveSync",
"source": "system/OpenDJ/__ACCOUNT__"
}
}

For scheduled LiveSync tasks, the "source" property follows OpenIDM's convention for a pointer
to an external resource object and takes the form system/resource-name /object-type.

The following example invokes a script, which prints the string Hello World to the OpenIDM log (/
openidm/logs/openidm@.log.X).

{
“invokeService": "“script",
"invokeContext": {
"script": {
“type": "text/javascript",
"source": "console.log('Hello World');"
}
}
}

Note that these are sample configurations only. Your own schedule configuration will differ
according to your specific requirements.

invokeLogLevel (optional)
Specifies the level at which the invocation will be logged. Particularly for schedules that run very
frequently, such as LiveSync, the scheduled task can generate significant output to the log file,
and the log level should be adjusted accordingly. The default schedule log level is info. The value
can be set to any one of the SLF4] log levels:
* "trace"

® "debug"

e "info"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 249

http://www.slf4j.org/apidocs/org/apache/commons/logging/Log.html

Scheduling Tasks and Events

(" FORGEROCK Configuring Persistent Schedules

®* "warn"
* "error"

e "fatal"

13.2. Configuring Persistent Schedules

By default, scheduling information, such as schedule state and details of the schedule execution, is
stored in RAM. This means that such information is lost when OpenIDM is rebooted. The schedule
configuration itself (defined in the openidm/conf/schedule- schedule-name.json file) is not lost when
OpenIDM is shut down, and normal scheduling continues when the server is restarted. However,
there are no details of missed schedule executions that should have occurred during the period the
server was unavailable.

You can configure schedules to be persistent, which means that the scheduling information is stored
in the internal repository rather than in RAM. With persistent schedules, scheduling information

is retained when OpenIDM is shut down. Any previously scheduled jobs can be rescheduled
automatically when OpenIDM is restarted.

Persistent schedules also enable you to manage scheduling across a cluster (multiple OpenIDM
instances). When scheduling is persistent, a particular schedule will be executed only once across
the cluster, rather than once on every OpenIDM instance. For example, if your deployment
includes a cluster of OpenIDM nodes for high availability, you can use persistent scheduling to
start a reconciliation action on only one node in the cluster, instead of starting several competing
reconciliation actions on each node.

You can use persistent schedules with the default OrientDB repository, or with the MySQL repository
(see Chapter 4, "Installing a Repository For Production" in the Installation Guide).

To configure persistent schedules, set the "persisted" property to true in the schedule configuration
file (schedule-schedule-name.json).

If OpenIDM is down when a scheduled task was set to occur, one or more executions of that schedule
might be missed. To specify what action should be taken if schedules are missed, set the misfirePolicy
in the schedule configuration file. The misfirePolicy determines what OpenIDM should do if scheduled
tasks are missed. Possible values are as follows:

* fireAndProceed. The first execution of a missed schedule is immediately executed when the server is
back online. Subsequent executions are discarded. After this, the normal schedule is resumed.

e doNothing. All missed schedules are discarded and the normal schedule is resumed when the server
is back online.

13.3. Schedule Examples

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 250

Scheduling Tasks and Events

(" FORGEROCK' Managing Schedules Over REST

The following example shows a schedule for reconciliation that is not enabled. When enabled
("enabled" : true,), reconciliation runs every 30 minutes, starting on the hour.

"enabled": false,
"persisted": false,
"type": "cron",
"schedule": "0 0/30 * * * 2",
"invokeService": "sync",
"invokeContext": {
"action": "reconcile",
"mapping": "systemLdapAccounts_managedUser"

}

The following example shows a schedule for LiveSync enabled to run every 15 seconds, starting
at the beginning of the minute. The schedule is persisted, that is, stored in the internal repository
rather than in memory. If one or more LiveSync executions are missed, as a result of OpenIDM being
unavailable, the first execution of the LiveSync action is executed when the server is back online.
Subsequent executions are discarded. After this, the normal schedule is resumed.
{
"enabled": false,
"persisted": true,
"misfirePolicy" : “fireAndProceed",
utype®: “cron",
"schedule": "0/15 * * * * v,
“"invokeService": "“provisioner",
"invokeContext": {
“action": "liveSync",
"source": "system/ldap/account"

13.4. Managing Schedules Over REST

OpenIDM exposes the scheduler service under the /openidm/scheduler context path. The following
examples show how schedules can be created, read, updated, and deleted, over REST, like any other

object.

13.4.1. Creating a Schedule

You can create a schedule with a PUT request, which allows you to specify the ID of the schedule, or
with a POST request, in which case the server assigns an ID automatically.

The following example uses a PUT request to create a schedule that fires a script (script/testlog.js)
every second. The schedule configuration is as described in Section 13.1, "Scheduler Configuration".

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 251

Scheduling Tasks and Events

(" FORGEROCK Creating a Schedule

--header "Content-Type: application/json" \
--request PUT \
--data '{
"enabled":true,
"type":"cron",
"schedule":"0/1 * * * * 2u
"persisted":true,
"misfirePolicy":"fireAndProceed",
"invokeService":"script",
"invokeContext": {
"script": {
"type":"text/javascript",
"file":"script/testlog.js"

}
}
F AN
"https://localhost:8443/openidm/scheduler/testlog-schedule"
{
"type": "cron",
"invokeService": "script",
"persisted": true,
" id": "testlog-schedule",
"schedule": "0/1 * * * x 2"
"misfirePolicy": "fireAndProceed",
"enabled": true,
"invokeContext": {
"script": {
"file": "script/testlog.js",
"type": "text/javascript"
}
}
}

The following example uses a POST request to create an identical schedule to the one created in the
previous example, but with a server-assigned ID.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
--data '{
"enabled":true,
"type":"cron",
"schedule":"0/1 * * *x * 2u
"persisted":true,
"misfirePolicy":"fireAndProceed",
"invokeService":"script",
"invokeContext": {
"script": {
"type":"text/javascript",
"file":"script/testlog.js"

}
}
A
"https://localhost:8443/openidm/scheduler?_action=create"
{
"type": "cron",

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 252

(/’ FORGEROCK

Scheduling Tasks and Events
Obtaining the Details of a Schedule

"invokeService": "script",
"persisted": true,

" id": "d6d1b256-7e46-486e-af88-169b4blad57a",

"schedule": "0/1 * * * x 2"
"misfirePolicy": "fireAndProceed",
"enabled": true,
"invokeContext": {
"script": {
"file": "script/testlog.js",
"type": "text/javascript"
}
}
}

The output includes the id of the schedule, in this case " id": "d6d1b256-7e46-486e-af88-169b4blad57a".

13.4.2. Obtaining the Details of a Schedule

The following example displays the details of the schedule created in the previous section. Specify the

schedule ID in the URL.

$ curl \
--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \

--request GET \

"https://localhost:8443/openidm/scheduler/d6d1b256-7e46-486e-af88-169b4blad57a"

{
" id": "d6d1lb256-7e46-486e-af88-169b4blad57a",
"schedule": "Q/1 * * * x 7",
"misfirePolicy": "fireAndProceed",
"startTime": null,
"invokeContext": {
"script": {
"file": "script/testlog.js",
"type": "text/javascript"
}
1,
"enabled": true,
"concurrentExecution": false,
"persisted": true,
"timeZone": null,
"type": "cron",
"invokeService": "org.forgerock.openidm.script",
"endTime": null,
"invokeLogLevel": "info"
}

13.4.3. Updating a Schedule

To update a schedule definition, use a PUT request and update all properties of the object. Note that
PATCH requests are currently supported only for managed objects. The following example disables
the schedule created in the previous section.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

253

Scheduling Tasks and Events

(" FORGEROCK' Listing Configured Schedules

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request PUT \
--data '{
"enabled": false,
"type":"cron",
"schedule":"0/1 * * * *x 2u,
"persisted":true,
"misfirePolicy":"fireAndProceed",
"invokeService":"script",
"invokeContext": {
"script": {
"type":"text/javascript",
"file":"script/testlog.js"

}
A
"https://localhost:8443/openidm/scheduler/d6d1b256-7e46-486e-af88-169b4blad57a"
null

13.4.4. Listing Configured Schedules

To display a list of all configured schedules, query the openidm/scheduler context path as shown in the
following example:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/scheduler?_queryId=query-all-ids"
{
"remainingPagedResults": -1,
"pagedResultsCookie": null,
"resultCount": 2,
"result": [

" id": "d6d1b256-7e46-486e-af88-169b4blad57a"
N
{

" id": "recon"
}

1
}

13.4.5. Deleting a Schedule

To deleted a configured schedule, call a DELETE request on the schedule ID. For example:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 254

Scheduling Tasks and Events

(" FORGEROCK' Scanning Data to Trigger Tasks

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request DELETE \
"https://localhost:8443/openidm/scheduler/d6d1b256-7e46-486e-af88-169b4blad57a"
null

13.5. Scanning Data to Trigger Tasks

In addition to the fine-grained scheduling facility described previously, OpenIDM provides a task
scanning mechanism. The task scanner enables you to perform a batch scan on a specified property
in OpenIDM, at a scheduled interval, and then to execute a task when the value of that property
matches a specified value.

When the task scanner identifies a condition that should trigger the task, it can invoke a script
created specifically to handle the task.

For example, the task scanner can scan all managed/user objects for a "sunset date" and can invoke a
script that executes a "sunset task" on the user object when this date is reached.

13.5.1. Configuring the Task Scanner

The task scanner is essentially a scheduled task that queries a set of managed users. The task
scanner is configured in the same way as a regular scheduled task, in a schedule configuration

file named (schedule-task-name.json), with the "invokeService" parameter set to "taskscanner". The
"invokeContext" parameter defines the details of the scan, and the task that should be executed when
the specified condition is triggered.

The following example defines a scheduled scanning task that triggers a sunset script. The schedule
configuration file is provided in openidm/samples/taskscanner/conf/schedule-taskscan sunset.json. To use
this sample file, copy it to the openidm/conf directory.

{
"enabled" : true,
"type" : "cron",
"schedule" : "0 0 * * * 7",
"concurrentExecution" : false,
"invokeService" : "taskscanner",
"invokeContext" : {
“"waitForCompletion" : false,
"maxRecords" : 2000,
"number0fThreads" : 5,
"scan" : {
"_queryId" : "scan-tasks",
"object" : “managed/user",
"property" : "sunset/date",
“condition" : {
"before" : "${Time.now}"
H

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)

Copyright © 2011-2017 ForgeRock AS. All rights reserved. 255

Scheduling Tasks and Events

(" FORGEROCK' Configuring the Task Scanner

"taskState" : {

"started" : "sunset/task-started",
"completed" : "sunset/task-completed"
H
"recovery" : {
"timeout" : "16m"
}
T
“"task" : {
"script" : {
“type" : “text/javascript",
"file" : “script/sunset.js"
}
}

The schedule configuration calls a script (script/sunset.js). To test the sample, copy this script
file from openidm/samples/taskscanner/script/sunset.js to the openidm/script directory. The remaining
properties in the schedule configuration are as follows:
The "invokeContext" parameter takes the following properties:
"waitForCompletion" (optional)
This property specifies whether the task should be performed synchronously. Tasks are
performed asynchronously by default (with waitForCompletion set to false). A task ID (such as
{" id":"354ec41f-c781-4b61-85ac-93c28c180e46"}) is returned immediately. If this property is set to
true, tasks are performed synchronously and the ID is not returned until all tasks have completed.

"maxRecords" (optional)
The maximum number of records that can be processed. This property is not set by default so the
number of records is unlimited. If a maximum number of records is specified, that number will be
spread evenly over the number of threads.

“number0fThreads" (optional)
By default, the task scanner runs in a multi-threaded manner, that is, numerous threads are
dedicated to the same scanning task run. Multi-threading generally improves the performance of
the task scanner. The default number of threads for a single scanning task is ten. To change this
default, set the "numberofThreads" property.

"scan"
Defines the details of the scan. The following properties are defined:

"_queryId"

Specifies the predefined query that is performed to identify the entries for which this task
should be run.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 256

Scheduling Tasks and Events

(" FORGEROCK' Configuring the Task Scanner

The query that is referenced here must be defined in the database configuration file (conf/
repo.orientdb.json Or conf/repo.jdbc.json). A sample query for a scanned task ("scan-tasks") is
defined in the JDBC repository configuration file as follows:

"scan-tasks" : "SELECT fullobject FROM ${ dbSchema}.${ mainTable}

obj INNER JOIN ${ dbSchema}.${ propTable}

prop ON obj.id = prop.${ mainTable} id

LEFT OUTER JOIN ${ dbSchema}.${ propTable}

complete ON obj.id = complete.${ mainTable} id

AND complete.propkey=${taskState.completed}

INNER JOIN ${ dbSchema}.objecttypes objtype

ON objtype.id = obj.objecttypes id

WHERE (prop.propkey=${property} AND prop.propvalue < ${condition.before}

AND objtype.objecttype = ${ resource})

AND (complete.propvalue is NULL)",

Note that this query identifies records for which the value of the specified property is smaller
than the condition. The sample query supports only time-based conditions, with the time
specified in ISO 8601 format (Zulu time). You can write any query to target the records that
you require.

"object"

Defines the managed object type against which the query should be performed, as defined in
the managed. json file.

"property"

Defines the property of the managed object, against which the query is performed. In the
previous example, the “property" : "sunset/date" indicates a JSON pointer that maps to the
object attribute, and can be understood as sunset: {"date" : "date"}. For more information
about JSON pointer syntax, see RFC 6901.

If you are using a JDBC repository, with a generic mapping, you must explicitly set this
property as searchable so that it can be queried by the task scanner. For more information,
see Section 5.2.1, "Using Generic Mappings".

“condition" (optional)
Indicates the conditions that must be matched for the defined property.

In the previous example, the scanner scans for users for whom the property sunset/date is
prior to the current timestamp (at the time the script is executed).

You can use these fields to define any condition. For example, if you wanted to limit the
scanned objects to a specified location, say, London, you could formulate a query to compare
against object locations and then set the condition to be:

“"condition" : {
"location" : "London"

b

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 257

http://tools.ietf.org/html/rfc6901

Scheduling Tasks and Events

(" FORGEROCK' Configuring the Task Scanner

For time-based conditions, the "condition" property supports macro syntax, based on the
Time.now object (which fetches the current time). You can specify any date/time in relation
to the current time, using the + or - operator, and a duration modifier. For example: "${Time
.now + 1d}" would return all user objects whose sunset/date is the following day (current time
plus one day). You must include space characters around the operator (+ or -). The duration
modifier supports the following unit specifiers:

s - second
m - minute
h - hour

d - day

M - month
y - year

"taskState"

Indicates the names of the fields in which the start message and the completed message are
stored. These fields are used to track the status of the task.

"started" specifies the field that stores the timestamp for when the task begins.

"completed" specifies the field that stores the timestamp for when the task completes its
operation. The "completed" field is present as soon as the task has started, but its value is null
until the task has completed.

“recovery" (optional)

Specifies a configurable timeout, after which the task scanner process ends. In a scenario
with clustered OpenIDM instances, there might be more than one task scanner running

at a time. A task cannot be executed by two task scanners at the same time. When one

task scanner "claims" a task, it indicates that the task has been started. That task is then
unavailable to be claimed by another task scanner and remains unavailable until the end of
the task is indicated. In the event that the first task scanner does not complete the task by the
specified timeout, for whatever reason, a second task scanner can pick up the task.

"task"

Provides details of the task that is performed. Usually, the task is invoked by a script, whose
details are defined in the "script" property:

"type" - the type of script. Currently, only JavaScript is supported.

"file" - the path to the script file. The script file takes at least two objects (in addition to

the default objects that are provided to all OpenIDM scripts): "input" which is the individual
object that is retrieved from the query (in the example, this is the individual user object)

and "objectID" which is a string that contains the full identifier of the object. The objectID is
useful for performing updates with the script as it allows you to target the object directly, for
example: openidm.update(objectID, input[' rev'], input);. A sample script file is provided in openidm/
samples/taskscanner/script/sunset.js. To use this sample file, you must copy it to the openidm/

script directory. The sample script marks all user objects that match the specified conditions

as "inactive". You can use this sample script to trigger a specific workflow, or any other task

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 258

Scheduling Tasks and Events

(" FORGEROCK' Managing Scanning Tasks Over REST

associated with the sunset process. For more information about using scripts in OpenIDM, see
Appendix F, "Scripting Reference".

13.5.2. Managing Scanning Tasks Over REST

You can trigger, cancel, and monitor scanning tasks over the REST interface, using the REST
endpoint https://localhost:8443/openidm/taskscanner.

13.5.2.1. Triggering a Scanning Task

The following REST command executes a task named "taskscan sunrise". The task itself is defined in
a file named openidm/conf/schedule-taskscan sunset.json.

$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--header "Content-Type: application/json" \

--request POST \
"https://localhost:8443/openidm/taskscanner?_action=execute&name=schedule/taskscan_sunset"

By default, a scanning task ID is returned immediately when the task is initiated. Clients can
make subsequent calls to the task scanner service, using this task ID to query its state and to call
operations on it.

For example, the scanning task initiated previously would return something similar to the following,
as soon as it was initiated:

{"_id":"edfaf59c-aadl-442a-adf6-3620b24f8385"}

To have the scanning task complete before the ID is returned, set the waitForCompletion property to
true in the task definition file (schedule-taskscan sunset.json). You can also set the property directly over
the REST interface when the task is initiated. For example:

$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--header "Content-Type: application/json" \

--request POST \
"https://localhost:8443/openidm/taskscanner?_action=execute&name=schedule/
taskscan_sunset&waitForCompletion=true"

13.5.2.2. Canceling a Scanning Task

You can cancel a scanning task by sending a REST call with the cancel action, specifying the task ID.
For example, the following call cancels the scanning task initiated in the previous section.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 259

Scheduling Tasks and Events

(" FORGEROCK Managing Scanning Tasks Over REST

$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--header "Content-Type: application/json" \

--request POST \
"https://localhost:8443/openidm/taskscanner/edfaf59c-aadl-442a-adf6-3620b24f83857_action=cancel"

The output for a scanning task cancellation request is similar to the following:

{"_id":"edfaf59c-aadl-442a-adf6-3620b24f8385",

"action":"cancel",
"status":"SUCCESS"}

13.5.2.3. Listing Scanning Tasks

You can display a list of scanning tasks that have completed, and those that are in progress, by
running a RESTful GET on the openidm/taskscanner" context. The following example displays all
scanning tasks.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/taskscanner"

The output of such a request is similar to the following, with one item for each scanning task.

"tasks": [
{
"ended": 1352455546182
"started": 1352455546149,
"progress": {
"failures": 0
"successes": 2400,
"total": 2400,
"processed": 2400,
"state": "COMPLETED",
+
" id": "edfaf59c-aadl-442a-adf6-3620b24f8385",
}

1
}

Each scanning task has the following properties:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 260

Scheduling Tasks and Events

(" FORGEROCK Managing Scanning Tasks Over REST

ended

The time at which the scanning task ended.
started

The time at which the scanning task started.

progress

The progress of the scanning task, summarised in the following fields:

failures - the number of records not able to be processed

successes - the number of records processed successfully

total - the total number of records

processed - the number of processed records

state - the overall state of the task, INITIALIZED, ACTIVE, COMPLETED, CANCELLED, Or ERROR

_id
The ID of the scanning task.

The number of processed tasks whose details are retained is governed by the "openidm. taskscanner

.maxcompletedruns" property in the conf/system.properties file. By default, the last one hundred
completed tasks are retained.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 261

Managing Passwords

(" FORGEROCK' Enforcing Password Policy

Chapter 14

Managing Passwords

OpenIDM provides password management features that help you enforce password policies, limit the
number of passwords users must remember, and let users reset and change their passwords.

14.1. Enforcing Password Policy

A password policy is a set of rules defining what sequence of characters constitutes an acceptable
password. Acceptable passwords generally are too complex for users or automated programs to
generate or guess.

Password policies set requirements for password length, character sets that passwords must contain,
dictionary words and other values that passwords must not contain. Password policies also require
that users not reuse old passwords, and that users change their passwords on a regular basis.

OpenIDM enforces password policy rules as part of the general policy service. For more information
about the policy service, see Chapter 9, "Using Policies to Validate Data". The default password policy
applies the following rules to passwords when they are created and updated:

* A password property is required for any user object.

» The value of a password cannot be empty.

» The password must include at least one capital letter.

* The password must include at least one number.

* The minimum length of a password is 8 characters.

* The password cannot contain the user name, given name, or family name.

You can remove these validation requirements, or include additional requirements, by configuring the
policy for passwords. For more information, see Section 9.1, "Configuring the Default Policy".

The password validation mechanism can apply in many situations.
Password change and password reset

Password change involves changing a user or account password in accordance with password
policy. Password reset involves setting a new user or account password on behalf of a user.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 262

Managing Passwords

(" FORGEROCK' Creating a Password History Policy

By default, OpenIDM controls password values as they are provisioned.

For instructions on changing the default administrative user password, openidm-admin, see
Procedure 16.2, "To Replace the Default User & Password".

Password recovery

Password recovery involves recovering a password or setting a new password when the password
has been forgotten.

OpenIDM provides a self-service end user interface for password changes, password recovery,
and password reset. For more information, see Section 4.3.1, "Enabling Self-Registration".

Password comparisons with dictionary words
You can add dictionary lookups to prevent use of password values that match dictionary words.
Password history

You can add checks to prevent reuse of previous password values. For more information, see
Section 14.1.1, "Creating a Password History Policy".

Password expiration

You can configure OpenIDM to call a workflow that ensures users are able to change expiring or
to reset expired passwords.

14.1.1. Creating a Password History Policy

To minimize password reuse, you can set up a password history policy. One way to do so is with a
custom javascript file for the onCreate trigger. You can then add a reference to that javascript file in
the conf/managed. json file.

You would then add a scripted policy in a custom javascript file, ready to be called out in appropriate
JSON configuration files.

The following procedure retains a record of the last four passwords for each user. Any attempt to
reuse one of those passwords is rejected.

This procedure takes advantage of the directories configured in the conf/script.json file. If you started
OpenIDM with files in some customconfig subdirectory, you would need to make sure such files exist

in that directory tree. For more information, see Section 6.7, "Default and Custom Configuration
Directories".

Procedure 14.1. Configuring Limits on Password History

1. Create a custom onCreate javascript file. One way to do so is with a copy of the onCreate-user-set-
default-files.js file in the bin/defaults/script/ui directory. You can save the custom file in the

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 263

Managing Passwords

(" FORGEROCK' Creating a Password History Policy

script directory. For example, the following commands create an onCreate-user-custon. js file in the
default script directory defined in conf/script.json:

$ cd /path/to/openidm/bin/defaults/script/ui
$ cp onCreate-user-set-default-fields.js /path/to/openidm/script/onCreate-user-custom.js
2. In the newly created custom Javascript file, include the cipher for password encryption:

var cipher
alias

"AES/CBC/PKCS5Padding",
identityServer.getProperty("openidm.config.crypto.alias", "true", true);

3. Next, declare a new lastPass attribute. For example, to prevent reuse of the last four passwords,
you would add the following line:

object.lastPass = new Array(4);

4. After the new array is declared, the following lines would increment the previous password:

if (object.password) {
object.lastPass.shift();
object.lastPass.push(object.password);

5. Now create a new file with a script that increments passwords in the array with each new
password. This procedure uses the following file name: onUpdate-user-pwpolicy.js, written to the
same directory as the onCreate-user-custonm.js file, in this case, script.

6. Add the following content to the newly created onUpdate-user-pwpolicy.js file:

/*global newObject, oldObject */
var cipher = "AES/CBC/PKCS5Padding",
alias = identityServer.getProperty("openidm.config.crypto.alias", "true", true);

if (openidm.isEncrypted(newObject.lastPass)) {
newObject.lastPass = openidm.decrypt(newObject.lastPass);
}

if (typeof newObject.lastPass === "undefined") {
newObject.lastPass = new Array(4);
}

if (newObject.password !== oldObject.password) {
newObject.lastPass.shift();
newObject.lastPass.push(newObject.password);

}

newObject.lastPass = openidm.encrypt(newObject.lastPass, cipher, alias);

}

7. In the existing conf/managed.json file, add appropriate lines that point to the files just created in the
script directory. Given the default directories previously described in the conf/script.json file, you
do not need to add a directory path to the newly created files. The following is an excerpt of the
modified conf/managed. json file:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 264

Managing Passwords

(" FORGEROCK' Creating a Password History Policy

{
"objects" : [
"name" : "user"
"onCreate" : {
"type" : "text/javascript",
"file" : "onCreate-user-custom.js"
I
"onUpdate" {
"type" : "text/javascript",
"file" : "onUpdate-user-pwpolicy.js"
I
"onDelete" : {
"type" : "text/javascript",
"file" : "ui/onDelete-user-cleanup.js"
+

8. Now extend the policy service to all users by adding a scripted policy. One way to do so is by
adding the following information to a custom javascript file. For this procedure, call that file
pwpolicy.js, also in the script subdirectory.

As you can see from the comments to the file, it is designed to ignore new users, users without a
password history, and users for whom passwords have not changed.

The last part of the file decrypts encrypted passwords prior to making the comparison, and makes
sure the password has a non-zero length.

/*global addPolicy, request, openidm */

addPolicy({
"policyId" : "is-new",
"policyExec" : "isNew",

"policyRequirements" : ["IS NEW"]
1)

function isNew(fullObject, value, params, property) {
var currentObject, lastPass, 1i;

// don't do a read if the resource ends with "/*", which indicates that

// this is a create with a server-supplied id

if (!request.resourceName || request.resourceName.match('/*$')) {
return [];

}
currentObject = openidm.read(request.resourceName);

// don't try this policy if the resource being evaluated wasn't found. Happens in the
// case of a create with a client-supplied id.

if (currentObject === null) {
return [];

}

// don't try this policy is there is no history object available

if (currentObject.lastPass === null || currentObject.lastPass === undefined) {
return [];

}

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 265

Managing Passwords

(" FORGEROCK' Creating a Password History Policy

if (currentObject[property] !== null && currentObject[property] !== undefined &&
openidm.isEncrypted(currentObject[propertyl)) {
currentObject[property] = openidm.decrypt(currentObject[property]);

}
// if the password hasn't changed, then we aren't interested in checking the history
if (currentObject[property] === value) {
return [];
}

if (openidm.isEncrypted(currentObject.lastPass)) {
lastPass = openidm.decrypt(currentObject.lastPass);
} else {
lastPass = currentObject.lastPass;

}
for(i=0; i < lastPass.length; i++) {
if (lastPass[i] === value) {
return [{"policyRequirement": "IS NEW"}1;
}
return [];

9. Now open the conf/policy.json file. Add the following lines to call the newly created pwpolicy.js
script, right after the existing line that calls the policy.js script:

"file" : "policy.js",
"additionalFiles" : [
"script/pwpolicy.js"1,

10. Later in the same conf/policy.json file, in the password configuration block, add the newly created is
-new policyId:

{
"name" : "password",
"policies" : [
{
"policyId" : "not-empty"
},
{
"policyId" : "is-new"
}

11. Reopen the conf/managed. json file. Add the following code to the properties section to encrypt the
new lastPass attribute, and to prevent REST retrievals of such passwords:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 266

I Managing Passwords
‘,' FORGEROCK Password Synchronization
"properties" : [
{
"name" : "lastPass",
"encryption" : {
"key" : "openidm-sym-default"
H
"scope" : "private"

14.2. Password Synchronization

Password synchronization intercepts user password changes, and ensures uniform password
changes across resources that store the password. Following password synchronization, the user
authenticates using the same password on each resource. No centralized directory or authentication
server is required for performing authentication. Password synchronization reduces the number of
passwords users need to remember, so they can use fewer, stronger passwords.

OpenIDM can propagate passwords to the resources that store a user's password, and can intercept
and synchronize passwords that are changed natively in OpenD] and Active Directory.

When you use password synchronization, set up password policy enforcement on OpenD]J or Active
Directory rather than on OpenIDM. Alternatively, ensure that all password policies that are enforced
are identical to prevent password updates on one resource from being rejected by OpenIDM or by
another resource.

The password synchronization plugins intercept password changes on the resource before the
passwords are stored in encrypted form. The plugins then send intercepted password values to
OpenIDM over an encrypted channel.

In the event that the OpenIDM instance is unavailable when a password is changed, the plugin
intercepts the change, encrypts the password, and stores the encrypted password in a JSON file.
The plugin then checks whether the OpenIDM instance is available, at a predefined interval. When
OpenIDM becomes available, the plugin performs a PATCH on the user record, to replace the
password with the encrypted password stored in the JSON file.

To be able to synchronize the passwords, the plugin requires that the managed/user object exist in the
OpenIDM repository. Users have typically been created by a reconciliation or liveSync process.

The OpenDJ password sync plugin is supported for OpenD]J versions 2.4.6, 2.5, and 2.6. The Active
Directory password sync plugin is supported on Windows 2003, Windows 2008 R2, and Windows
2012 R2.

The procedures in this section assume that you have set up OpenD]J to communicate over the secure
LDAP protocol (LDAPS), as described in the OpenD]J documentation. The procedures use the standard
ports for regular and LDAP communictions, 389 and 636, or possibly corresponding alternative ports,
1389 and 1636.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 267

https://backstage.forgerock.com/#!/docs/opendj

Managing Passwords

(" FORGEROCK Password Synchronization

The procedures in this section also assume that you have a working instance of Active Directory.
Procedure 14.2. Prepare OpenlDM for Password Synchronization

The following instructions describe the steps you should take to prepare OpenIDM to synchronize
passwords between an instance of OpenD]J and an instance of Active Directory.

1. Include the attributes shown in /path/to/openidm/samples/misc/managed.json to enable password
synchronization between OpenIDM, OpenD], and Active Directory.

To do so, include the contents of that managed. json file in the one you use when starting OpenIDM.
For reference, the password attributes for the three systems are as follows:

ldapPassword for OpenD]J
adPassword for Active Directory
password for the internal OpenIDM password

2. If you want to incorporate the OpenD] self-signed certificate into the OpenIDM keystore, add
that information to the appropriate authentication.json file. For example, if you use the version
of this file in the /path/to/openidm/conf directory, you might add "CN=localhost, 0=0penDJ Self-Signed

Certificate", as shown in the following excerpt:

“name" : "CLIENT_CERT",
“"properties" : {
"queryOnResource" : "security/truststore",
"defaultUserRoles" : [
"openidm-cert"
Il
"allowedAuthenticationIdPatterns" : [
"CN=localhost, 0=0penDJ Self-Signed Certificate"
1
+
"enabled" : true

In production, you should use a certificate that has been issued by a Certificate Authority.
Procedure 14.3. To Install the OpenDJ Password Synchronization Plugin

Before you start:

* Make sure that OpenD] is configured to communicate over LDAPS as described in the OpenD]
documentation.

* OpenIDM must be running.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 268

https://backstage.forgerock.com/#!/docs/opendj/3.5/admin-guide#chap-connection-handlers
https://backstage.forgerock.com/#!/docs/opendj/3.5/admin-guide#chap-connection-handlers

Managing Passwords

(" FORGEROCK Password Synchronization

The following steps install the plugin on an OpenD]J directory server that is running on the same host
as OpenIDM. If you run OpenD]J on a different host, use the fully qualified domain name rather than
localhost, and use your certificates rather than the generated OpenIDM certificate.

1.

OpenIDM generates a self-signed certificate the first time it starts up. You must import this self-
signed certificate into OpenD]'s truststore so that the OpenD] agent can make SSL requests to
the OpenIDM endpoints.

Export OpenIDM's generated self-signed certificate to a file, as follows (UNIX):

$ cd /path/to/openidm/security
$ keytool \
-export \
-alias openidm-localhost \
-file openidm-localhost.crt \
-keystore keystore.jceks \
-storetype jceks
Enter keystore password: <changeit>
Certificate stored in file <openidm-localhost.crt>

Import the self-signed certificate into the trust store for OpenD] (UNIX).

$ cd /path/to/OpenDJ/config
$ keytool \
-importcert \
-alias openidm-localhost \
-keystore truststore \
-storepass ‘cat keystore.pin® \
-file /path/to/openidm/security/openidm-localhost.crt
Owner: CN=localhost, 0=0penIDM Self-Signed Certificate, OU=None, L=None, ST=None, C=None
Issuer: CN=localhost, 0=0penIDM Self-Signed Certificate, OU=None, L=None, ST=None, C=None
Serial number: 149168335c9
Valid from: Mon Sep 15 18:12:18 PDT 2014 until: Tue Oct 15 18:12:18 PDT 2024
Certificate fingerprints:
MD5: OC:BF:08:06:F0:69:E8:E6:6F:39:38:B8:CC:9A:C1:60
SHA1l: B0:40:17:0A:6E:3A:3B:BB:82:39:A1:97:04:00:BC:7C:94:63:76:E7
Signature algorithm name: SHA512withRSA
Version: 3
Trust this certificate? [no]: vyes
Certificate was added to keystore

Download the OpenD]J password synchronization plugin from ForgeRock's Backstage site.
OpenlIDM 3.1 supports version 1.0 of the plugin.

Unzip the module delivery.

$ unzip ~/Downloads/opendj-accountchange-handler-1.0.0.zip

creating: opendj/

Copy the files to the directory where OpenD] is installed.

$ cd opendj
$ cp -r * /path/to/OpenDl/

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 269

https://backstage.forgerock.com/downloads/browse/idm/archive?path=%2FPassword%20Sync%20Plugins

Managing Passwords

(" FORGEROCK Password Synchronization

5. Restart OpenD] to load the additional schema from the module.

$ cd /path/to/OpenDJ/bin
$./stop-ds --restart

6. Add the plugin configuration to OpenD]'s configuration (UNIX).

$./ldapmodify \
--port 1389 \
--hostname ‘hostname® \
--bindDN "cn=Directory Manager" \
--bindPassword "password" \
--defaultAdd \
--filename ../config/openidm-pwsync-plugin-config.ldif
Processing ADD request for cn=0penIDM Notification Handler,
cn=Account Status Notification Handlers,cn=config
ADD operation successful for DN cn=0penIDM Notification Handler,
cn=Account Status Notification Handlers,cn=config

7. Restart OpenD].
$./stop-ds --restart

[20/Nov/2013:08:55:47 +0100] category=EXTENSIONS severity=INFORMATION
msgID=1049147 msg=Loaded extension from file '/path/to/OpenDJ/lib/extensions
/opendj-accountchange-handler-1.0.0.jar' (build <unknown>,

revision <unknown>)

[20/Nov/2013:08:55:51 +0100] category=CORE severity=NOTICE msgID=458891
msg=The Directory Server has sent an alert notification generated by class
org.opends.server.core.DirectoryServer (alert type
org.opends.server.DirectoryServerStarted, alert ID 458887):

The Directory Server has started successfully

8. Enable the plugin for the appropriate password policy.

The following command enables the plugin for the default password policy (UNIX).

$./dsconfig \

set-password-policy-prop \

--port 4444 \

--hostname “hostname™ \

--bindDN "cn=Directory Manager" \

--bindPassword password \

--policy-name "Default Password Policy" \

--set account-status-notification-handler:"OpenIDM Notification Handler" \
--trustStorePath ../config/admin-truststore \

--no-prompt

9. If the password attribute does not exist in the managed/user object on OpenIDM, the password sync
service will return an error when the password is updated in OpenD]. To prevent this, add the
following onCreate script to the OpenD] > Managed Users mapping in the sync.json file:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 270

’, Managing Passwords
" FORGEROCK Password Synchronization
"mappings" : [
"name" : "systemLdapAccounts_managedUser",
"source" : "system/ldap/account",
"target" : "managed/user",
“"properties" : [
{
"source" : "uid",
"target" : "userName"
}
1,
"onCreate" : {
“"type" : "text/javascript",
"source" : "target.password='"'"

+

The onCreate script creates an empty password in the managed/user object, so that the attribute
exists and can be patched.

Procedure 14.4. To Install the Active Directory Password Synchronization Plugin

Use the Active Directory password synchronization plugin to synchronize passwords between
OpenIDM and Active Directory (on systems running at least Microsoft Windows Server 2003).

Install the plugin on Active Directory domain controllers (DCs) to intercept password changes, and
send the password values to OpenIDM over an encrypted channel. You must have Administrator
privileges to install the plugin. In a clustered Active Directory environment, you must install the
plugin on all DCs.

1. Download the Active Directory password synchronization plugin from Forgerock's Backstage site.
2. + Double-click the setup file to launch the installation wizard.

* Alternatively, from a command line, start the installation wizard with the setup.exe command.
If you want to save the settings in a configuration file, you can use the /saveinf switch as
follows.

C:\Path\To > setup.exe /saveinf=C:\temp\adsync.inf

* Ifyou have a configuration file with installation parameters, you can install the password
plugin in silent mode as follows:

C:\Path\To > setup.exe /verysilent /loadinf=C:\temp\adsync.inf

3. Provide the following information during the installation. You must accept the license agreement
shown to proceed with the installation.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 271

https://backstage.forgerock.com/#!/downloads/OpenIDM/Password%20Sync%20Plugins#browse

Managing Passwords

(" FORGEROCK Password Synchronization

OpenIDM Connection information

* OpenIDM URL. Enter the URL where OpenIDM is deployed, including the query that
targets each user account. For example:

https://localhost:8443/openidm/managed/user? action=patch& queryId=for-userName&uid=
${samaccountname}

For mutual authentication, the default URL is

https://localhost:8444/openidm/managed/user? action=patch& queryId=for-userName&uid=
${samaccountname}

For this query to work, you must set a mapping from sAMAccountname to userName in the /path/
to/openidm/conf/sync.json file, for example:

{

"mappings" : [

"name" : "systemAdAccounts_managedUser",
"source" : "system/ad/account",

"target" : "managed/user",

“properties" : [

{
"source" : "sAMAccountName",
"“target" : "userName"

b

* OpenIDM User Password attribute. The password attribute for the managed/user object, such
as Password.

If the password attribute does not exist in the managed/user object, the password sync service
will return an error when the password is updated in Active Directory. To prevent this, add
the following script to the Active Directory > Managed Users mapping in the sync.json file:

"onCreate" : {

“type" : “text/javascript",

"'source" : "target.password='"'; target.adPassword='"';"
+

The onCreate script creates an empty password in the managed/user object, so that the
attribute exists and can be patched.

OpenIDM Authentication Parameters

Provide the following information:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 272

Managing Passwords

(" FORGEROCK Password Synchronization

* User name. Enter the user name that is used to authenticate to OpenIDM, for example,
openidm-admin.

* Password. Enter the password of the user that authenticates to OpenIDM, for example,
openidm-admin.

» Select authentication type. Select the type of authentication that Active Directory will use
to authenticate to OpenIDM.

For plain HTTP authentication, select openIDM Header. For mutual authentication, select
Certificate.

Certificate authentication settings

If you selected certificate as the authentication type on the previous screen, specify the
details of the certificate that will be used for authentication.

» Select Certificate file. Browse to select the certificate file that Active Directory will use
to authenticate to OpenIDM. The certificate file must be configured with an appropriate
encoding, cryptographic hash function, and digital signature. The plugin can read a public
or a private key from a PKCS12 archive file.

For production purposes, you should use a certificate that has been issued by a Certificate
Authority. For testing purposes, you can generate a self-signed certificate. Whichever
certificate you use, the certificate must be imported into OpenIDM's trust store.

To generate a self-signed certificate for Active Directory, follow these steps:

1. On the Active Directory host, generate a private key, which is then used to generate a
self-signed certificate with the alias ad-pwd-plugin-localhost (Windows).

> keytool.exe *
-genkey *
-alias ad-pwd-plugin-localhost *
-keyalg rsa *
-dname "CN=localhost, 0=AD-pwd-plugin Self-Signed Certificate" *
-keystore keystore.jceks *
-storetype JCEKS
Enter keystore password: changeit
Re-enter new password: changeit
Enter key password for <ad-pwd-plugin-localhost>
<RETURN if same as keystore password>

2. Now use the private key, stored in the keystore.jceks file, to generate the self-signed
certificate (Windows).

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 273

Managing Passwords

(" FORGEROCK Password Synchronization

~

> keytool.exe
-selfcert *
-alias ad-pwd-plugin-localhost *
-validity 365 ©
-keystore keystore.jceks
-storetype JCEKS *
-storepass changeit

~

3. Export the certificate. In this case, the keytool command exports the certificate in a
PKCS12 archive file format, used to store a private key with a certificate (Windows).

> keytool.exe *
-importkeystore *©
-srckeystore keystore.jceks *
-srcstoretype jceks ©
-srcstorepass changeit ~
-srckeypass changeit ©
-srcalias ad-pwd-plugin-localhost ©
-destkeystore ad-pwd-plugin-localhost.pl2 *
-deststoretype PKCS12 ~
-deststorepass changeit
-destkeypass changeit ©
-destalias ad-pwd-plugin-localhost ~
-noprompt

4. The PKCS12 archive file is named ad-pwd-plugin-localhost.pl2. Import the contents of the
keystore contained in this file to the system that hosts OpenIDM. To do so, import the
PKCS12 file into the OpenIDM keystore file, named truststore, in the /path/to/openidm/
security directory (UNIX).

$ keytool \
-importkeystore \
-srckeystore /path/to/ad-pwd-plugin-localhost.pl2
-srcstoretype PKCS12
-destkeystore truststore
-deststoretype JKS

» Password to open the archive file with the private key and certificate. Specify the keystore
password (changeit, in the previous example).
Password Encryption settings
Provide the details of the certificate that will be used to encrypt password values.

» Archive file with certificate. Browse to select the archive file that will be used for password
encryption. That file is normally set up in PKCS12 format.

For evaluation purposes, you can use a self-signed certificate, as described earlier. For
production purposes, you should use a certificate that has been issued by a Certificate
Authority.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 274

Managing Passwords

(" FORGEROCK Password Synchronization

Whichever certificate you use, the certificate must be imported into OpenIDM's keystore, so
that OpenIDM can locate the key with which to decrypt the data. To import the certificate

into OpenIDM's keystore, keystore.jceks, run the following command on the OpenIDM host
(UNIX):

$ keytool \
-importkeystore \
-srckeystore /path/to/ad-pwd-plugin-localhost.pl2 \
-srcstoretype PKCS12 \
-destkeystore /path/to/openidm/security/keystore.jceks \
-deststoretype jceks

* Private key alias. Specify the alias for the certificate, such as ad-pwd-plugin-localhost.

» Password to open certificate file. Specify the password to access the PFX keystore file, such
as changeit, from the previous example.

» Select encryption standard. Specify the encryption standard that will be used when
encrypting the password value (AES-128, AES-192, or AES-256).

Data storage

Provide the details for the storage of encrypted passwords in the event that OpenIDM is not
available when a password modification is made.

* Select a secure directory in which the JSON files that contain encrypted passwords are
queued. The server should prevent access to this folder, except access by the Password Sync
service. The path name cannot include spaces.

* Directory poll interval (seconds). Enter the number of seconds between calls to check
whether OpenIDM is available, for example, 60, to poll OpenIDM every minute.

Log storage
Provide the details of the messages that should be logged by the plugin.

* Select the location to which messages should be logged. The path name cannot include
spaces.

» Select logging level. Select the severity of messages that should be logged, either error,
info, warning, fatal, Or debug.

Select Destination Location

Setup installs the plugin in the location you select, by default C:\Program Files\OpenIDM Password
Sync.

4. After running the installation wizard, restart the computer.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 275

Managing Passwords

(" FORGEROCK Password Synchronization

5. Ifyou need to change any settings after installation, access the settings using the Registry Editor
under HKEY LOCAL MACHINE > SOFTWARE > ForgeRock > OpenIDM > PasswordSync.

If you have configured SSL access, make sure authType is set to idm.

6. Ifyou selected to authenticate over plain HTTP in the previous step, your setup is now complete.

If you selected to authenticate with mutual authentication, complete this step.

» The Password Sync Service uses Windows certificate stores to verify OpenIDM's identity. The
certificate that OpenIDM uses must therefore be added to the list of trusted certificates on
the Windows machine.

For production purposes, you should use a certificate that has been issued by a certificate
authority. For test purposes, you can use the self-signed certificate that is generated by
OpenlIDM on first startup.

To add the OpenIDM certificate to the list of trusted certificates, use the Microsoft
Management Console.

1.

2.

Select Start and type mmc in the Search field.

In the Console window, select File > Add/Remove Snap-in.

From the left hand column, select Certificates and click Add.

Select My user account, and click Finish.

Repeat the previous two steps for Service account and Computer account.

For Service account, select Local computer, then select OpenIDM Password Sync Service.

Select a service account to manage on the local computer.

Service account:

Net. Tcp Listener Adapter d
Net. Tep Port Sharing Service

Metlogon

Network Access Protection Agent

Network Connections

Network List Service

Network Location Awareness |

Performance Logs & Alerts

Plug and Play

PnP-X IP Bus Enumerator

Portable Device Enumerator Service LI

< Back Finish Cancel

For Computer account, select Local computer.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 276

Managing Passwords

(" FORGEROCK Password Synchronization

10.

11.
12.

13.

Click Finish when you have added the three certificate snap-ins.

Still in the mmc Console, expand Certificates - Current User > Personal and select
Certificates.

Select Action > All Tasks > Import to open the Certificate Import Wizard.

Browse for the OpenIDM certificate (openidm-localhost.crt by default, if you use OpenIDM's
self-signed certificate).

Enter the Password for the certificate (changeit by default, if you use OpenIDM's self-
signed certificate).

Accept the default for the Certificate Store.

Click Finish to complete the import.

Repeat the previous six steps to import the certificate for:

Certificates - Current User > Trusted Root Certification Authorities

Certificates - Service > OpenIDM Password Sync\Personal

Certificates - Service > OpenIDM Password Sync\Trusted Root Certification Authorities

Certificates > Local Computer > Personal
Certificates > Local Computer > Trusted Root Certification Authorities

Procedure 14.5. To Set Up OpenIDM to Handle Password Changes

Follow these steps to configure OpenIDM to access password changes from OpenD]J and Active
Directory.

1.

You must add the OpenDJ/Active Directory server certificates that you have used to
OpenIDM's trust store so that OpenIDM knows to trust OpenD]/Active Directory during mutual
authentication.

Use the Java keytool command to import the certificate into the OpenIDM trust store. You may
have already done so in previous procedures.

Add the configuration to managed objects to handle password synchronization.

An example for synchronization with both OpenD]J and Active Directory is provided in the samples/
misc/managed.json file, JavaScript lines folded for readability:

"objects": [

{
“name": “user",
"properties": [
{

"name": "ldapPassword",

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 277

Managing Passwords

(" FORGEROCK Password Synchronization

“encryption": {
“"key": "openidm-sym-default"

}
i
{
"name": "adPassword",
“encryption": {
“"key": "openidm-sym-default"
}
H
{
"name": "password",
“encryption": {
“"key": "openidm-sym-default"
}
}
1P
"onUpdate": {
“type": "text/javascript",
"'source":

"if (newObject.ldapPassword != oldObject.ldapPassword) {
newObject.password = newObject.ldapPassword

} else if (newObject.adPassword !'= oldObject.adPassword) {
newObject.password = newObject.adPassword

3o

This sample assumes you define the password as ldapPassword for OpenD]J, and adPassword for Active
Directory.

3. Update the connector configuration files to add the password property to the account object type.

For OpenD], update provisioner.openicf-ldap.json, as follows:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 278

’ Managing Passwords
‘,' FORGEROCK Password Synchronization
"objectTypes" :
{
"account" :
{
"$schema" : "http://json-schema.org/draft-03/schema",
"id" : “__ACCOUNT__",
"type" . "object",
"nativeType" : "__ACCOUNT__",
“"properties"
{
ven"
"type" : “string",
"nativeName" : "cn",
"nativeType" : "string"
+
"ldapPassword" :
"type" : “string",
"nativeName" : "userPassword",
"nativeType" : "string"
+

For Active Directory, update provisioner.openicf-ad.json, as follows:

"objectTypes" :
{
"account" :
{
"$schema" : "http://json-schema.org/draft-03/schema",
"id" : "__ACCOUNT__",
"type" . "object",
"nativeType" : "__ ACCOUNT__",
“"properties"
P
{
"type" : "string",
"nativeName" : "“cn",
“nativeType" : "string"
+
"adPassword" :
{
"type" : "string",
"nativeName" : "_PASSWORD_ ",

"nativeType" : "“JAVA_TYPE_GUARDEDSTRING"
I

4. When you change a password in OpenD], you will notice that the value changes in OpenIDM.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 279

Managing Passwords

(" FORGEROCK Password Synchronization

$ tail -f openidm/audit/activity.csv | grep bjensen
...userName=bjensen, ... password={$crypto={...data=tEsy7ZXo6nZtEqzW/uVE/A==. ..
...userName=bjensen, ... password={$crypto={...data=BReT791nQEPcvfQG3ibLpg==...

Be aware that the plugin is patching the password value of the managed user in OpenIDM. The
target password property must exist for the patch to work.

To configure implicit synchronization, that is the password is updated in Active Directory
automatically when it is changed in OpenIDM, you must complete the following three steps:

* Define a mapping from managed/user to system/ad/account in your /path/to/openidm/conf/sync.json file.
* Specify the {"source" : "password", "target" : "adPassword"} property as part of this mapping.

* Make sure that implicit synchronization is enabled for that mapping. By default, all mappings
participate in implicit synchronization operations so you should not have to enable this

operation manually unless you have specifically set the "enableSync" property of the mapping to
false.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 280

Managing Authentication, Authorization and Role-Based Access Control

(" FORGEROCK OpenlIDM Users

Chapter 15

Managing Authentication, Authorization and
Role-Based Access Control

OpenlIDM provides a flexible authentication and authorization mechanism, based on REST interface
URLs and on roles which may be stored in the repository.

15.1. OpenlIDM Users

While OpenIDM authenticates internal and managed users with the DELEGATED module, there are
differences between these two types of users.

15.1.1. Internal Users

OpenIDM creates two internal users by default: anonymous and openidm-admin. These accounts are
separated from other user accounts to protect them from any reconciliation or synchronization
processes.

OpenIDM stores internal users and their role membership in a table in the repository. For the
way internal users are mapped, see the discussion on the explicitMapping property to "internal/user
described in Section 5.2.3, "Using Explicit Mappings".

For more information on storage mechanisms for managed users in OrientDB and JDBC, see
Section 8.1, "Working with Managed Users".

anonymous

This user enables anonymous access to OpenIDM, for users who do not have their own accounts.
The anonymous user, configured by default with the openidm-reg role, has limited rights within
OpenIDM. It can be used to allow self-registration. For more information on the process, see
Section 4.3.1, "Enabling Self-Registration".

openidm-admin
This user serves as the top-level administrator. After installation, the openidm-admin user has full

access, and provides a fallback mechanism in case other users are locked out. Do not use openidm-
admin for regular tasks. Under normal circumstances, the openidm-admin account does not represent

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 281

Managing Authentication, Authorization and Role-Based Access Control

(" FORGEROCK Internal Users

a regular user, so any audit log records for this account do not represent the actions of any real
person.

OpenIDM encrypts the default administrative password, openidm-admin. Change the password
immediately after installation. For instructions, see Procedure 16.2, "To Replace the Default User
& Password".

15.1.1.1. Managing Internal Users Over REST

To list the internal users over REST, query the repo endpoint as follows:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/repo/internal/user?_queryId=query-all-ids"

"remainingPagedResults": -1,
"pagedResultsCookie": null,
"resultCount": 2,

"result": [
{
" rev': "@",
" id": "openidm-admin"
1,
{
" rev': "@",
" id": "anonymous"
}

To query the details of an internal user, include the user's ID in the request, for example:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/repo/internal/user/openidm-admin"
{
"password": "openidm-admin",
"userName": "openidm-admin",
"roles": "openidm-admin,openidm-authorized",
" reyt: "1",
" id": "openidm-admin"

}

To change the username or password of the default administrative user, send a PUT request to the
user object. The following example changes the password of the openidm-admin user to Password:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 282

Managing Authentication, Authorization and Role-Based Access Control

(" FORGEROCK Managed Users

$ curl \
--cacert self-signed.crt \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request PUT \
--data '{
"password": "PasswOrd",
"userName": "openidm-admin",
"roles": "openidm-admin,openidm-authorized",
"_id": "openidm-admin"
A\
"https://localhost:8443/openidm/repo/internal/user/openidm-admin"
"roles": "openidm-admin,openidm-authorized",
"password": {
"$crypto": {
"value": {
"key": "openidm-sym-default",
"iv": "USTN9kARk4QjoyjGa/r8wA==",
"cipher": "AES/CBC/PKCS5Padding",
"data": "27tDQg49z8nWqvIOEh7VAg=="

I
"type": "x-simple-encryption"
}
1
" id": "openidm-admin",
"userName": "openidm-admin",
" reyt: "2°

15.1.2. Managed Users

External users managed by OpenIDM are known as managed users.

The location of managed users depends on the type of repository. For JDBC repositories, OpenIDM
stores managed users in the managed objects table, named managedobjects. OpenIDM may access an
index table managedobjectproperties as well.

For the OrientDB repository, managed objects are stored in the table managed user.

By default, the attribute names for managed user login and password are userName and password,
respectively.

15.2. Authentication

OpenIDM does not allow access to the REST interface without authentication.

User self-registration requires anonymous access. For that purpose, OpenIDM includes an anonymous
user, with the following password: anonymous. For more information, see Section 15.1.1, "Internal
Users".

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 283

Managing Authentication, Authorization and Role-Based Access Control

(" FORGEROCK Authentication

In production, only applications are expected to access the REST interface.

OpenIDM supports an improved authentication mechanism on the REST interface. Unlike basic
authentication or form-based authentication, the OpenIDM authentication mechanism is compatible
with the AJAX framework. You can configure authentication with standard or OpenIDM-specific
header fields, as follows:

OpenIDM authentication with standard header fields

$ curl --user userName:password

This method uses standard basic authentication. However, it does not prompt for missing
credentials.

OpenIDM authentication with OpenIDM header fields
$ curl

--header "X-OpenIDM-Username: openidm-admin"
--header "X-OpenIDM-Password: openidm-admin"

Note

This document uses the OpenIDM authentication options for all REST calls. Where no OpenIDM-specific options
exist, the "long-form" option such as --data is used. In contrast, the README files that accompany OpenIDM
generally use "short-form" options such as -X (instead of --request) and -H (instead of --header).

For more information about the OpenIDM authentication mechanism, see Section 16.2.4, "Use
Message Level Security".

You can change the attributes used by OpenIDM to store user login and password values. Attribute
names are shown in a database query listed in openidm/conf/repo.repo-type.json.

Two queries are defined by default.
credential-internaluser-query

Uses the openidm id attribute for login
credential-query

Uses the userName attribute for login

The openidm/conf/authentication.json file defines the active query with the queryId property. In
the following example, credential-query is the queryId identifier used in a queryRequest to validate
credentials.

"queryId" : "credential-query",
"queryOnResource" : "managed/user",

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 284

Managing Authentication, Authorization and Role-Based Access Control
Supported Authentication Modules

(/’ FORGEROCK

You can explicitly define the properties that constitute passwords or roles with the propertyMapping
object in the conf/authentication.json file. The default property mapping is shown here:

“"propertyMapping" : {

"authenticationId" : "username",
"userCredential" : "password",
"userRoles" : "roles"

H

15.3. Supported Authentication Modules

OpenlIDM supports a variety of modules, including those available from the Common Authentication
Framework (CAF). The CAF modules available to OpenIDM include JwT SESSION, OPENAM SESSION, and IWA.
OpenlIDM also provides two additional authentication modules: DELEGATED and CLIENT CERT.

OpenIDM evaluates authentication modules in the order in which they are placed in the
authentication.json file.

JWT_SESSION

The JSON Web Token authentication module includes session information. For details on this
common authentication module, see the following Javadoc page: Class JwtSessionModule.

CLIENT_CERT

The client certificate module accommodates users who authenticate with a client certificate.

DELEGATED
The DELEGATED module validates client requests with the help of one of the following entities:
* MANAGED USER, a managed user object
* INTERNAL USER, an internal user object
* PASSTHROUGH, an OpenlICF connector.

OPENAM_SESSION
The OPENAM_SESSION module allows you to protect a deployment of OpenIDM with
ForgeRock's OpenAM Access Management product. For an example of how you might use the

OPENAM SESSION module, see Section 3.16, "Sample - Configuring Authentication Management
With OpenAM" in the Installation Guide.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)

Copyright © 2011-2017 ForgeRock AS. All rights reserved. 285

http://commons.forgerock.org/forgerock-auth-filters/forgerock-authn-filter/forgerock-jaspi-modules/forgerock-jaspi-jwt-session-module/apidocs/org/forgerock/jaspi/modules/session/jwt/JwtSessionModule.html
https://forgerock.org/openam/

Managing Authentication, Authorization and Role-Based Access Control

(" FORGEROCK' Using Delegated Authentication

IWA

The IWA module supports Integrated Windows Authentication. In other words, the IWA module
supports the use of an LDAP connector for an Active Directory server. For an example of how you
can set that up with a Kerberos server, see Section 15.5, "Kerberos Configuration Example".

15.4. Using Delegated Authentication

In addition to the internal and managed user authentication modules, OpenIDM 3.1 supports a
delegated authentication mechanism. With delegated authentication, the username and password
included with the REST request are validated against those stored in a remote system, such as an
LDAP server.

The samples listed in Chapter 3, "More OpenIDM Samples" in the Installation Guide include multiple
options for authentication mechanisms.

You can add the delegated authentication module to the conf/authentication.json file. For example, the
following excerpt illustrates one way to implement the DELEGATED configuration object. For descriptive
purposes, you can substitute the PASSTHROUGH alias for DELEGATED.

"authModules" : [
{
"name" : "DELEGATED",
"properties" : {
"augmentSecurityContext": {
"type" : "text/javascript",
"file" : "auth/populateAsManagedUser.js"
T
""queryOnResource" : "system/ldap/account",
“"propertyMapping" : {
"authenticationId" : "uid",
"groupMembership" : "memberOf"

T
"groupRoleMapping" : {

"openidm-admin" : ["cn=admins"]
T
"managedUserLink" : "systemlLdapAccounts_managedUser",
"defaultUserRoles" : [

"openidm-authorized"
|
}

"enabled" : true

The properties shown from this excerpt are defined in Section 15.7.3, "Properties for Authentication
and Roles"

The content of the delegated authentication object varies. Samples 2/2b/2c¢/2d, 3, 5, and 6 include
slightly different versions of the conf/authentication.json file.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 286

Managing Authentication, Authorization and Role-Based Access Control

(" FORGEROCK' Kerberos Configuration Example

Samples 2, 2b, 2c, 2d (LDAP)

Samples 2, 2b, 2¢, and 2d relate to connections from an LDAP server. Samples 5 and 5b are quite
similar, as they uses XML information to masquerade as an LDAP server. The authentication.json
file is identical in each of these samples.

In the common authentication.json file, the queryonResource endpoint is system/ldap/account. The
managedUserlLink iS systemLdapAccounts managedUser.

Sample 3 (Scripted SQL)

Sample 3 relates to a connection to a scripted SQL database. As such, the queryonResource endpoint
is system/scriptedsql/account. The managedUserLink iS systemHrdb managedUser.

Sample 5, 5b (Synchronization of two resources)

The XML files used in samples 5 and 5b simulate a connection between LDAP servers. For that
reason, the conf/authentication.json file used in these samples are identical to that for sample
2/2b/2c/2d.

Sample 6 (LiveSync)

The queryonResource endpoint is system/ad/account. The autheticationId matches the AD attribute used
for account names. The associated managedUserLink iS systemAdAccounts managedUser.

15.5. Kerberos Configuration Example

This section assumes that you have an active Kerberos server acting as a Key Distribution Center
(KDC). If you're running Active Directory in your deployment, that service includes a Kerberos KDC
by default.

To take advantage of a Kerberos KDC, you need to do two things: first include at least the 1wA and
possibly the PASSTHROUGH modules in the authentication.json file. Second, modify the system.properties file
to take advantage of the noted modules.

For 1wa, based on Integrated Windows Authentication, this section assumes you have configured an
LDAP connector for an Active Directory server. To confirm, identify the following mapping source in
the sync.json configuration file:

system/ad/account
You could then include the following code block in the authentication.json file. Include appropriate

values for the kerberosRealm and kerberosServerName. For a list of definitions, see Section 15.5.1,
"Kerberos Definitions".

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 287

Managing Authentication, Authorization and Role-Based Access Control

(" FORGEROCK' Kerberos Configuration Example

"authModules" : |

{

"name" : "IWA",
“"properties": {
"servicePrincipal" :
"keytabFileName" : "security/name.HTTP.keytab",
"kerberosRealm" : "",
"kerberosServerName"
"queryOnResource" : "system/ad/account",
"propertyMapping" : {

"authenticationId" : "sAMAccountName",
"groupMembership" : “memberOf"

¥

"groupRoleMapping" : { "openidm-admin": [] },
"groupComparisonMethod": "ldap",
"defaultUserRoles" : [

"openidm-authorized"

1

¥

"enabled" : true

}

To grant different roles to users who are authenticated through the iwA module, list them with their
groupRoleMapping.

You could pair the 1wA module with the pAssTHROUGH module. When paired, a failure in the 1wA module
allows users to revert to forms-based authentication.

You could add the pASSTHROUGH module as follows, in the authentication.json file:
{
“"name" : "PASSTHROUGH",
“"properties": {

"queryOnResource" : "system/AD/account",
“"propertyMapping" : {

"authenticationId" : "sAMAccountName",
“"groupMembership" : “memberOf" },

"groupRoleMapping" : { "openidm-admin": [] },
"groupComparisonMethod": "ldap",
"defaultUserRoles" : [

“openidm-authorized"

]

e

"enabled" : true

}

Once you have included at least the 1wA module, edit the system.properties file. Include the following
entry to point to a JAAS configuration file. Substitute if desired for gssapi jaas.conf

java.security.auth.login.config=/path/to/openidm/conf/gssapi jaas.conf

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 288

Managing Authentication, Authorization and Role-Based Access Control

(" FORGEROCK Kerberos Definitions

In the gssapi jaas.conf file, include the following information related to the LDAP connector:

org.identityconnectors.ldap.LdapConnector {
com.sun.security.auth.module.Krb5LoginModule required client=TRUE
principal="bjensen@EXAMPLE.COM" useKeyTab=true keyTab="/path/to/bjensen.keytab";

T

15.5.1. Kerberos Definitions

The Windows Desktop authentication module uses Kerberos. The user presents a Kerberos token
to the ForgeRock product, through the Simple and Protected GSS-API Negotiation Mechanism
(SPNEGO) protocol. The Windows Desktop authentication module enables desktop single sign

on such that a user who has already authenticated with a Kerberos Key Distribution Center can
authenticate without having to provide the login information again. Users might need to set up
Integrated Windows Authentication in Internet Explorer to benefit from single sign on when logged
on to a Windows desktop.

The Kerberos attributes shown may correspond to a ssoadm attribute for OpenAM or a JSON
attribute for OpenIDM.

Service Principal

Specify the Kerberos principal for authentication in the following format.

HTTP/host.domain@dc-domain-name

Here, host and domain correspond to the host and domain names of the installed ForgeRock
product, and dc-domain-name is the domain name of the Windows Kerberos domain controller
server. The dc-domain-name can differ from the domain name for the installed ForgeRock
product.

You set up the account on the Windows domain controller, creating a computer account for the
installed ForgeRock product and associating the new account with a service provider name.

ssoadm attribute: iplanet-am-auth-windowsdesktopsso-principal-name
JSON attribute: servicePrincipal
Keytab File Name

Specify the full path of the keytab file for the Service Principal. You generate the keytab file using
the Windows ktpass utility.

ssoadm attribute: iplanet-am-auth-windowsdesktopsso-keytab-file

JSON attribute: keytabFileName

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 289

Managing Authentication, Authorization and Role-Based Access Control

(" FORGEROCK Kerberos Definitions

Kerberos Realm

Specify the Kerberos Key Distribution Center realm. For the Windows Kerberos service this is the
domain controller server domain name.

ssoadm attribute: iplanet-am-auth-windowsdesktopsso-kerberos-realm
JSON attribute: kerberosRealm
Kerberos Server Name

Specify the fully qualified domain name of the Kerberos Key Distribution Center server, such as
that of the domain controller server.

ssoadm attribute: iplanet-am-auth-windowsdesktopsso-kdc
JSON attribute: kerberosServerName
Return Principal with Domain Name

When enabled, OpenAM automatically returns the Kerberos principal with the domain controller's
domain name during authentication.

ssoadm attribute: iplanet-am-auth-windowsdesktopsso-returnRealm
JSON attribute: returnRealm
Authentication Level

Sets the authentication level used to indicate the level of security associated with the module. The
value can range from O to any positive integer.

ssoadm attribute: iplanet-am-auth-windowsdesktopsso-auth-level
JSON attribute: authLevel
Search for the user in the realm

Validates the user against the configured data stores. If the user from the Kerberos token is
not found, authentication will fail. If an authentication chain is set, the user will be able to
authenticate through another module.

ssoadm attribute: iplanet-am-auth-windowsdesktopsso-lookupUserInRealm

JSON attribute: lookupUserInRealm

Note

Note: For Windows 7 and later, you will need to disable the "Enable Integrated Windows Authentication"
option in Internet Explorer. In addition, you will need to add and activate the DisableNTMLPreAuth key to the

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 290

Managing Authentication, Authorization and Role-Based Access Control

(" FORGEROCK Roles and Authentication

Windows Registry. For detailed instructions, see the Microsoft KB article on when You cannot post data to a
non-NTLM-authenticated Web site

15.6. Roles and Authentication

OpenIDM includes a number of default roles, and supports the configuration of managed roles,
enabling you to customize the roles mechanism as needed.

The following roles are configured by default:
openidm-reg

Role assigned to users who access OpenIDM with the default anonymous account.

The openidm-reg role is excluded from the reauthorization required policy definition by default.
openidm-admin

OpenIDM administrator role, excluded from the reauthorization required policy definition by
default.

openidm-authorized

Default role for any user who has authenticated with a user name and password.
openidm-cert

Default role for any user authenticated with mutual SSL authentication.

This role applies only for mutual authentication. Furthermore, the shared secret (certificate)
must be adequately protected. The openidm-cert role is excluded from the reauthorization required
policy definition by default.

OpenIDM begins the process of assigning the roles of a user with the roles property. OpenIDM then
proceeds in the following sequence to define user roles:

» If the defaultRoles property is set, OpenIDM assigns those roles to the given user. The defaultRoles
property must be configured in an array.

* The userRoles property is a string that defines the attribute. The value of the attribute may be
either a comma-delimited string or a list of strings. You can identify the list with a REST call to a
queryOnResource endpoint such as system/ldap/account

e If the groupRoleMapping and groupMembership properties are defined, OpenIDM assigns additional roles
to users depending on any existing group membership.

The roles calculated in sequence are cumulative. In other words, if all of the above properties
are defined, OpenIDM would assign roles from defaultRoles and userRoles. It would also use a
MappingRoleCalculator to define roles from the groupRoleMapping and groupMembership properties.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 291

http://support.microsoft.com/kb/251404
http://support.microsoft.com/kb/251404

Managing Authentication, Authorization and Role-Based Access Control

(" FORGEROCK Authorization

For users who have authenticated with mutual SSL authentication, the module is CLIENT CERT and the
default role for such users is openidm-cert.

{ "name" : "CLIENT_CERT",
“"properties" : {
"queryOnResource": "managed/user",
"defaultUserRoles": ["openidm-cert"],
"allowedAuthenticationPatterns" : []

}

"enabled" : "true"

}

Access control for such users is configured in the access. js file. For more information, see
Section 15.7, "Authorization".

15.7. Authorization

OpenlIDM provides role-based authorization that restricts direct HTTP access to REST interface
URLs. The default authorization configuration grants different access rights to users that are
assigned the roles "openidm-admin", "openidm-cert", "openidm-authorized", and "openidm-reg".

Note that this access control applies to direct HTTP calls only. Access for internal calls (for example,
calls from scripts) is not affected by this mechanism.

Authorization is configured in two script files:
® openidm/bin/defaults/script/router-authz.js
® openidm/script/access.js

OpenIDM calls these scripts for each request, via the onRequest hook that is defined in the default
router.json file. The scripts either throw the string Access denied, or nothing. If Access denied is thrown,
OpenIDM denies the request.

15.7.1. router-authz.js

This file provides the functions that enforce access rules. For example, the following function controls
whether users with a certain role can start a specified process.

function isAllowedToStartProcess() {
var processDefinitionId = request.content. processDefinitionId;
return isProcessOnUsersList(processDefinitionId);

}

There are certain authorization-related functions in router-authz.js that should not be altered, as
described in a comment in the file.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 292

Managing Authentication, Authorization and Role-Based Access Control

("FORGEROCK’ access.js

15.7.2. access.js

This file defines the access configuration for HTTP requests and references the methods defined in
router-authz.js. Each entry in the configuration contains a pattern to match against the incoming
request ID, and the associated roles, methods, and actions that are allowed for requests on that
pattern.

The options shown in the default version of the file do not include all of the actions available at each
endpoint.

The following sample configuration entry indicates the configurable parameters and their purpose.

{
"pattern" g e
"roles" : "openidm-admin",
"methods" : "kt // default to all methods allowed
"actions" : "kt // default to all actions allowed
“customAuthz" : “disallowQueryExpression()",
"excludePatterns": "system/*"

I

As shown, this entry affects users with the openidm-admin role. Such users have HTTP access to all but
system endpoints. The parameters are as follows:

» "pattern" - the REST endpoint to which access is being controlled. "*" indicates access to all
endpoints. "managed/user/*" would indicate access to all managed user objects.

* "roles" - a list of the roles to which this access configuration applies.

* "methods" - a comma separated list of the methods to which access is being granted. The method can
be one or more of create, read, update, delete, patch, action, query. A value of "*" indicates that all
methods are allowed. A value of "" indicates that no methods are allowed.

* "actions" - a comma separated list of the allowed actions. The possible values depend on the service
(URL) that is being exposed. The following list indicates the possible actions for each service.

openidm/info/* - (no action parameter applies)
openidm/authentication - reauthenticate
openidm/config/ui/* - (no action parameter applies)
openidm/endpoint/securityQA - securityQuestionForUserName, checkSecurityAnswerForUserName,
setNewPasswordForUserName
openidm/endpoint/getprocessforuser - create, complete
openidm/endpoint/gettaskview - create, complete
openidm/external/email - send
openidm/external/rest - (no action parameter applies)
openidm/managed - patch, triggerSyncCheck
openidm/managed/user - validateObject, validateProperty
openidm/policy - validateObject, validateProperty
openidm/recon - recon, reconByQuery, reconById, cancel

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 293

Managing Authentication, Authorization and Role-Based Access Control

(" FORGEROCK Properties for Authentication and Roles

openidm/repo - updateDbCredentials

openidm/script/* - eval

openidm/security/keystore - generateCert, generateCSR
openidm/security/truststore - generateCert, generateCSR

openidm/sync - notifyCreate, notifyUpdate, notifyDelete, recon, performAction
openidm/system - test, testConfig, availableConnectors, createCoreConfig, createFullConfig, liveSync,
authenticate

openidm/system/<name> - script, test, liveSync

openidm/system/<name>/{id} - authenticate, liveSync

openidm/taskscanner - execute, cancel

openidm/workflow/processdefinition - create, complete
openidm/workflow/processinstance - create, complete
openidm/workflow/taskinstance - claim, create, complete

A value of "+" indicates that all actions exposed for that service are allowed. A value of "" indicates
that no actions are allowed.

e "customAuthz" - an optional parameter that enables you to specify a custom function for additional
authorization checks. These functions are defined in router-authz.js.

The allowedPropertiesForManagedUser variable, declared at the beginning of the file, enables you to
create a white list of attributes that users are able to modify on their own accounts.

* "excludePatterns" - an optional parameter that enables you to specify particular endpoints to which
access should not be given.

15.7.3. Properties for Authentication and Roles

The properties in this section define how users and groups may be associated with roles and
certain authentication mechanisms. Some of these properties are included in the excerpt of the
authentication.json file shown in Section 15.4, "Using Delegated Authentication".

Different authentication modules may apply. In files such as authentication.json, you may assign an
authentication module to the name property. Just be sure to include enabled=true or enabled=false for the
configured module(s). For a list of available modules, see Section 15.3, "Supported Authentication
Modules".

queryOnResource

The system endpoint against which the user authenticates, such as system/ldap/account, system/
scriptedsql/account, system/ad/account, managed/user, and repo/internal/user.

augmentSecurityContext (optional)

This parameter points to a script, executed only after a successful authentication request to
provide additional information, based on the security context.

For delegated (pass-through authentication), OpenIDM uses the populateAsManagedUser.js Script.
This script uses authentication details returned from the pass-through authentication module.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 294

Managing Authentication, Authorization and Role-Based Access Control

(" FORGEROCK Extending the Authorization Mechanism

Those details can point to a linked managed user record. If a linked record is found, the script
adjusts the details of the security context to match that managed user object. The adjusted
security context enables additional operations for the authenticated user, such as the ability to
access the default user interface.

The script must be either JavaScript ("type": "text/javascript") or Groovy ("type":"groovy"), and can
be provided inline ("source":"script source") or in a file ("file":"filename").

propertyMapping (optional)

A list that enables you to map the following OpenIDM properties to fields in the system resource
used for the authentication.

authenticationId
Specifies the authentication property, such as "uid", "sAMAccountName", and "username"
groupMembership

Specifies the name of the property in the remote system that contains the list of groups of which
the authenticated user is a member, such as member0f, or ldapGroups.

groupRoleMapping (optional)

Enables you to assign roles to users, based on their group membership in the system resource. In
this example, users who are members of the "cn=admins" group in the LDAP directory automatically
acquire the "openidm-admin" role. Group membership is determined, based on the groupMembership
property, described previously.

managedUserLink (optional)

Used by the script specified in "augmentSecurityContext" to switch the context of an authenticated
user from their original security context to a context that is based on the related managed/user
account. The value is based on the name of the mapping in the associated sync.json file.

The value of this property is the "links" entry (usually the mapping name defined in sync.json) that
was used to relate the remote system users with the managed users.

defaultUserRoles (optional)

Can be defined for any authentication module. OpenIDM assigns such roles (or an empty set) to
the security context of a user.

enabled

Specifies whether the given authentication module is enabled (true) or disabled (fatse).

15.7.4. Extending the Authorization Mechanism

You can extend the default authorization mechanism by defining additional functions in router-
authz.js and by creating new access control configuration definitions in access.js.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 295

Managing Authentication, Authorization and Role-Based Access Control

(" FORGEROCK Building Role-Based Access Control (RBAC)

15.8. Building Role-Based Access Control (RBAC)

In OpenIDM, role assignments can be configured with different authentication options. Roles can be
assigned in a number of ways. The roles assigned to specific users are cumulative.

The roles for each user are calculated based on the process depicted here:

is defined(
defaultUserRoles

)

v

Assign Default
Roles

|

is defined(

userRoles,
property

)

Assign Roles
from object

dﬁJ

is defined(

groupMembership,
groupRoleMapping
[groupComparison]

Assign User
Roles per

groupMapping

-+
-

Y

context.security
Sanity Check

Assign Roles from
object

In OpenIDM, RBAC incorporates authentication and authorization options from roles configured for
clients, for managed / internal users, as well as for group memberships.

For information on the properties listed in this section, see Section 15.7.3, "Properties for
Authentication and Roles".

Roles and authentication options can be configured for users in three stages:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 296

Managing Authentication, Authorization and Role-Based Access Control

(" FORGEROCK' Roles, Authentication, and the Security Context

Client Controlled

The defaultUserRoles may be added to authentication modules configured in the applicable
authentication.json file. Default roles are listed in Section 15.6, "Roles and Authentication".

If you see the following entry in authentication.json, the cited authentication property applies to all
authenticated users:

"defaultUserRoles" : []

Managed / Internal

Accumulated roles for users are collected in the userRoles property.

For a definition of managed and internal users, see Section 15.1, "OpenIDM Users".
Group roles

OpenIDM also uses group roles as input. Options include groupMembership, groupRoleMapping, and
groupComparison

context.security

Once OpenIDM assigns roles and authentication modules to a user, OpenIDM then evaluates the
result based on the context.security map, based on the scripts in the policy.js file. Details require
an extended discussion in the next section.

15.8.1. Roles, Authentication, and the Security Context

The Security Context, written into the code as context.security, consists of a principal defined by the
authenticationId, along with access control defined through the authorizationId.

If authentication is successful, Common Authentication Framework (CAF) modules set a principal.
OpenlIDM stores that principal as the authenticationId. For more information, see the authentication
components defined in Section 15.3, "Supported Authentication Modules".

The authorizationId includes two roles-related components, generated by OpenIDM:
roles

Discussed in Section 15.6, "Roles and Authentication"
component

Resources defined through properties defined in Section 15.7.3, "Properties for Authentication
and Roles". The authorizationId component is set to the value references in the queryonResource
property.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 297

Securing & Hardening OpeniDM

(" FORGEROCK Accessing the Security Management Service

Chapter 16

Securing & Hardening OpenIDM

OpenIDM provides a security management service, that manages keystore and truststore files.
The security service is accessible over the REST interface, enabling you to read and import SSL
certificates, and to generate certificate signing requests.

This chapter describes the security management service and its REST interface.

In addition, the chapter outlines the specific security procedures that you should follow before
deploying OpenIDM in a production environment.

Note

In a production environment, we recommend that you avoid the use of: communications over insecure HTTP,
self-signed certificates, and certificates associated with insecure ciphers.

16.1. Accessing the Security Management Service

OpenlIDM stores keystore and truststore files in a folder named /path/to/openidm/security. These files
can be managed by using the keytool command, or over the REST interface, at the URL https:/
/localhost:8443/openidm/security. For information about using the keytool command, see http://
docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html.

The following sections describe how to manage certificates and keys over REST.

16.1.1. Displaying the Contents of the Keystore

OpenIDM generates a symmetric key and a private key the first time the server is started. After
startup, display the contents of the keystore over REST, as follows:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 298

http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html
http://docs.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html

’ Securing & Hardening OpenIDM
‘,' FORGEROCK' Generating a Certificate Signing Request Over REST

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/security/keystore"

"type" : "JCEKS",

"provider" : {
"Cipher.Blowfish SupportedKeyFormats" : "RAW",
"AlgorithmParameters.DESede" : "com.sun.crypto.provider.DESedeParameters",
"AlgorithmParameters.DES" : "com.sun.crypto.provider.DESParameters",

3,
"aliases" : ["openidm-sym-default", "openidm-localhost"]

By default, OpenIDM includes the following aliases:

* openidm-sym-default - the default symmetric key that is used, for example, to encrypt the
configuration.

* openidm-localhost - the default alias that is used by the Jetty web server to service SSL requests. This
alias references a private key and a self-signed certificate. You can use the self-signed certificate
for testing purposes. When you deploy OpenIDM in a production environment, you should replace
the self-signed certificate with a certificate that has been signed by a certificate authority.

16.1.2. Generating a Certificate Signing Request Over REST

To request a signed certificate, generate a certificate signing request (CSR) over REST, as described
in this section. The details of the CSR are specified in JSON format, for example:

{

"DN" : "www.example.com",
"oU™ : "HR",

"L" : “Cupertino",

uen . nyst

}

For information about the complete contents of a CSR, see http://www.sslshopper.com/what-is-a-csr-
certificate-signing-request.html.

To generate a CSR over the REST interface, include the private key alias in the URL. The following
example, uses the default alias (openidm-locatlhost). If you have created your own private key for this
request, specify its alias instead of openidm-localhost. Set "returnPrivateKey" : true to return the private
key along with the request.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 299

http://www.sslshopper.com/what-is-a-csr-certificate-signing-request.html
http://www.sslshopper.com/what-is-a-csr-certificate-signing-request.html

Securing & Hardening OpeniDM

(" FORGEROCK Generating a Certificate Signing Request Over REST

--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \

--data '{"CN" : "www.example.com",
"ou" : "HR",

“L" : “"Cupertino",

¢t ¢ “ust,

"returnPrivateKey" : true,

"alias" : "openidm-localhost"}' \

"https://localhost:8443/openidm/security/keystore?_action=generateCSR"

{

" id": "openidm-localhost",

tesrtr Me---- BEGIN CERTIFICATE REQUEST----- \n
MIICmzCCAYMCAQAWWDEZMBCcGA1UEAwwQd3d3MS5
1eGFtcGx1LmNvbTELMAKGALIUE\NNnCwwCSFIXDTALBgNVBAOMBES5vbmUXE jAQBgNVBACMCUN1cGVyd
GlubzELMAKGALUE\nBhMCVVMwggEiMAOGCSqGSIb3DQEBAQUAA4IBDWAWgYEKAOIBAQDAjCjTt1b
00WKH\nP/4PR/Td3A1E1To4/3/707eWf10qs8vW5d76SMcIFKO0Q6Fho0cOHRNewch+a@DBK\njKF
aRCE1cOPuXiIlr07wsF4dFTtTZKAhrpFdM+0hU4LeyCDxQQ5UDga3rmyVIvC8\nL1PvW+sZEcZ9r
T67X0V03cwUpjvG4W58FCUKd6UAIOSsz fIrFdvIp4q4LkkBNkk9I\nUf+MXsSVuHzZrqvghX900Is
al9mXD6/P9Cq18KmwEzzbg1GFf6uYAK33F71Kx409\nTeS85s jmBbyJwUVwhgQOR35H3HC6 jex4P
jx1rSTfPmsi61IBx9kyGu6rnSv5F0QGy\nBQpgQFnJAgMBAAEWDQYJKoZIhvcNAQENBQADggEBAKC
yInfo2d7/12jUr0jL4Bqt\nStuQS/Hk02KAsc/zUnlpJyd3RPI7Gs1C6FxIRVCzi4Via5QzE06Nn2
F8HHkingcbm\nBWhIcf50mk6fSqGOaw7 fqn20XWDKRm+I4vtm8P8CuWftUj5qv5kmyUt rcQ3+YPD
0\nL+cK4cfuCkjLQ3h4GIgBIP+gfWX8fTmCHyaHEFjLTM]j1hZYEx+3f8aw0VFoNmr3/\nB8LIINH
UiFHOGEED7LDOwa/z32mTRETONK5DV060H80ISWXxzdWYZQV/IzHzm8ST4\n6j6VvUuheBZiG59ZR2V
FOXx5XoudQrSg71pVs1XBHNeiM85+HO8RMQh8Am2bp+Xstw=\n",

----- END CERTIFICATE REQUEST-----\n",

"publicKey": {

"format": "X.509",

"encoded": "----- BEGIN PUBLIC KEY----- \n
MIIBIjANBgkqhkiG9wOBAQEFAAOCAQS8AMIIBCgKCAQEAr
ALtYU662bNbQZG73Z3M\no0OUmVPI9cPP3+DhQ5HOVOQqB+9YjE4XUtuwUGgaUmuT+mrXHwGpLAqvUm
NsVyXJj9s\nJhX6PCyXz03RdKBVC8pphMfKXodjBC57efO0kWj05ZRAqCRWS3BXkoCfu6/ZXRpk\
ncc/A1IRmLZdPmcuKmN5vQl4E3Z6F4YyG7MOg7TE54dhgPvGNS9c04r0Vom9373MDh\n+8QSfmLCC
94Ro+VUAF9Q6nk2j0PgTi+QZ01i93jbKAWWX57w6S517CpEptKyeP9iG\ncFnJddSICPHkbQJ73gu
1yZYkbcBb1NUXIhODZV5bJ00xn9qgYvz1xJupldYsYkBo\ncwIDAQAB\n

----- END PUBLIC KEY-----\n",

"algorithm": "RSA"

1
"privateKey": {

"format": "PKCS#8",

"encoded": "----- BEGIN RSA PRIVATE KEY----- \n
MIIEpAIBAAKCAQEArALtYU662bNbQZG7JZ3Mo0OU
VP9cPP3+DhQ5HOVOQB+9Y jE4\nXUtuwUGgaUmuT+mrXHwGpLAqvUmNsVyXJj9sJIhX6PCyXz03RdK
BVC8pphMfKXodj\nBC57efO0kWj05ZRAqCRWS3BXkoCfub/ZXRpkcc/A1RmLZdPmcuKmN5vQl4E3
20193 bKAWWX57w6S517CpEptKyeP9iGcFnJddSICPHkbQJ73gulyZYkbcBb\n1lNUXIhODZV5bJ0
Z6F4\nYyG7MOg7TE54dhqPvGNS9c04roVom9373MDh+8QSfmLCCI4Ro+VUAF9Q6nk2jOPg\nTi+Q
oxn9qgYvz1lxJupldYsYkBocwIDAQABAOIBAGmfpopRIPWbaBb8\nWNIBcuz9qSsaX1ZolP+qNwVZ
bgfq7YOFMlo/ frQXEYBzqSETGIHC6WVNO+bF6scV\nVw86dLtyVWVr8I77HdoitfZ2hZLuz/rh4d
BohpPi63YoyJs7DPTy4y2/v1alLuwoy\nMiQO16c3bm6sr+eIVgMH4A9XKk5/jzAHVTCBrvfTYZnh6
gD4Qmiuj8pQn79HQVBNK\nLt/5kmV1+uGj78jg7NRO6NjNsa4L3mNZSiqgsn2haPXZAnBjKfWApxe
GugURgNBCO\NcmYqCDZLvpMy4S/qoRBu+6qdYGprb+tHshBYNywuDkrgszhwgr5yRm8VQ60T9tM/
\nceKM+TECQYEA2Az2DkpC9TjIHPIG7x4boRRVQV5YRgPf5MrU+7PxDMb+EauXXUXg\nsch9Eeon
30yINqSV6FWATLV1kzQpZLkkJ6GIgAXxUmPjRs1AuosiSJIgKaWamDUDbz\nSu/7iANIWvRGayqZsa
GQqFwMOXpfp/EiBGe757k0D02u8sAv94A75bsCgYEAYy9FQ\nMwDU3CaDzgvOqgR10jXkSWOdCbve
QPEKKZ2Ik7JbXzwVGzfdv2VUVrzRKBGReYzn\nGg/s4HbZkYy40+SJ044n/5i02pgKG5MEDFHSpw
X54Rm+qabT2fQ21FJ/myWKsPgJ\n4gZ9bUvcemCcLLzsiAphueulQp49e0LnkzP1QKkCgYEAYy7A0
jrZuuDjoStUUET5G\neC/urvZWrPPcMxOTfZZhTVWS LWABHWDS /WnymGA1ZS4HQdAUOTxH16mwe rp

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

300

’ Securing & Hardening OpenIDM
‘,' FORGEROCK To Import a Signed Certificate into the Keystore

C/8ckn\nEAIZAQIW/L2hHcbAORINOET+1kedmJO1/mGQt+05Vfn1IfYM3s5ezouyPhBsfK43\nDw
Ypvsb6E0+BYDXXQzVvwx8CgYB9067LcfTFLNzZNFCO0i9pLIBm20MbvXtOwPCFch\nbCG34hdfMntU
RvDjvgPqYASSrZm+kvQW5cBAciMWDO0e4y91ovAW+En31FBo0+2Zg\nbcPr/8wUTblxfQxU660Fa4
GLOU2Wv5/f+94v1Lb5nTpIfcFU7wl1AXTjBwafOUet\nPy1P2QKBgQDPoyJqPi2TdN7ZQYcoXAM4
G15Yv90016RC917XH6SLV]j0ePmdLgBXo\nrR6aAm0jLzFp9jiytWZqVRIDbAWd2YNpvQav4Gude3
1teew@2UT+GNv/gC71bXCw\ncFTxnmKjP8YYIBBqZXzuk9wEaHN70dGybUWOdsBCGXxTXwDKe8XiA
6w==\n--- - - END RSA PRIVATE KEY----- \n",
"algorithm": "RSA"
}

This sample request returns the CSR, the private key associated with the request, and the public

key. The security management service stores the private key in the repository. When the signed
certificate is returned by the certificate authority and you import the certificate into the keystore, you
do not need to supply the private key. The security management service locates the private key in the
repository, adds the certificate chain, and loads it into the keystore.

If you will be importing the signed certificate into the keystore of an OpenIDM instance that is not
connected to the repository in which this private key was stored, you must include the private key
when you import the signed certificate. Setting "returnPrivatekey" : true in the CSR enables you to
maintain a copy of the private key for this purpose.

Send the output from
Mespte Moo BEGIN CERTIFICATE REQUEST-----

to your certificate authority for signature.

16.1.3. To Import a Signed Certificate into the Keystore

When a signed certificate is returned by the certificate authority, import it into the keystore

by running a RESTful puT command on the keystore alias. Include the CA root certificate in the
command. If you are not importing the certificate into the same keystore as the one from which the
CSR was generated, include the private key in the PUT request.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request PUT \

--data '{
"alias": "openidm-localhost",
"fromCSR": true,
"certs": [

BEEEEE BEGIN CERTIFICATE----- \n
MIIGcDCCBVigAwIBAGIDC23tMAOGCSqGSIb3DQEBBQUAMIGMMQswCQYDVQQGEWIJI\n
TDEWMBQGA1UEChMNU3RhcnRDb20gTHRKL jErMCkGALUECXMiU2VjdXJ1IERpZ210\n
YWwgQ2VydGlmaWNhdGUgU21nbmluZzE4MDYGALUEAXMvU3RhcnRDb20gQ2xhc3Mg\n
MSBQcmltYXJ5IEludGVybWVkaWFOZSBTZXJ2ZXIgQOEwHhcNMTMwODA3MTMyODAZ\n
WhcNMTQwODA4MDYONTM5Wj B2MRkwFwYDVQQNEXBwZ3BDaGU4cEJPZnptVE9KMQsw\n
CQYDVQQGEwJHQjEjMCEGALUEAXMadGVzdC1jb25uZWNOLmZvcmdlcm9jay5jb20x\n
JzA1BgkqhkiG9wOBCQEWGHBVC3RtYXNOZXIAZmIyZ2Vyb2NrLmNvbTCCASIwDQYJ\n

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 301

(/’ FORGEROCK

Securing & Hardening OpeniDM
To Import a Signed Certificate into the Keystore

KoZIhvcNAQEBBQADggEPADCCAQoCggEBAJRWGbnMGs+uGKU6Zr1TaaFdPczLgZnv\n
D37TOF0c/X3XXHxSVH94FDk7N4ansP206BsDWttIkM2AXkX3efMRaNpgxg714+DL\n
opV6H1RkrRba2Lom6Hp2pgkqvOBfd1ZMOmLbjUHtOjhypnIzu7 TVwtTH7Ywsrx9F\n
uR9d4veYdW70IeQ64EhUG3RIBGG++AYJIZCOjgEfbCwAYe/NoX/YVu+aMreHMR/+0\n
CVOYXKvHZgytcwZIc5WkQYaSWQA91DWZzt5Xj CErCATfiGEQOk02QgpE fFNTXxwQs\n
kfxh//0/qbfOWmloGwVU/2NY+523ZW8/eCksmilL1gGAYQAd+9+WI7BsCAWEAAaOC\n
AudwggLgMAkGA1UdEwQCMAAWCWYDVROPBAQDAgO0oMBMGA1UdJIQQMMA0GCCSGAQUF\n
BwMBMBOGA1UdDgQWBBR2zHzh71Z0HSwDZk28L9It3PvOtzAfBgNVHSMEGDAWGBT r\n
QjTQmLCrn/Qbawj3zGQu7w4sRTAOBgNVHREELTArghp0ZXNOLWNvbm51Y3QuZm9y\n
Z2Vyb2NrLmNvbYINZm9yZ2Vyb2NrLmNvbTCCAVYGA1UdIASCAUOwggFIMAgGBmeB\n
DAECATCCATsGCysGAQQBgbU3AQIDMIIBKjAuBggrBgEFBQcCARYiaHROcDovL3d3\n
dy5zdGFydHNzbC5jb20vcG9saWN5LnBkZjCBO9wYIKwYBBQUHAgIwgeowIxYgU3Rh\n
cnRDb20gQ2VydGlmaWNhdGlvbiBBdXRob3IpdHkwAwIBARqBvV1R0oaXMgY2VydGlm\n
aWNhdGUgd2FzIGlzc3V1ZCBhY2NvcmRpbmcgdG8gdGh1lIENsYXNzIDEgVmFsaWRh\n
dGlvbiByZXF1laXJ1bWVudHMgh2YgdGhlIFNOYXJ0Q29tIENBIHBvhGLljeSwgcmVs\n
aWFuY2Ugbh25seSBmb3IgdGh1IGludGVuZGVkIHB1lcnBvc2UgaW4gY29tcGxpYW5j\n
ZSBvZiB0aGUgcmVseWluZyBwYXJ0eSBvYmxpZ2F0aW9ucy4wNQYDVROfBC4wLDAG\n
oCigJoYkaHROcDovL2NybC5zdGFydHNzbC5jb20vY3J0OMS1jcmwuY3IsMIGOBggr\n
BgEFBQcBAQSBgTB/MDkGCCsGAQUFBzABhilodHRwOi8vb2NzcC5zdGFydHNzbC5j\n
b20vc3ViL2NsYXNzMS9zZXJ2ZXIvY2EwQgYIKwYBBQUHMAKGNmhOdHA6LY9haWEu\n
c3RhcnRzc2wuY29tL2N1cnRzL3N1Yi5jbGFzczEuc2VydmVyLmNhLmNydDAjBgNV\n
HRIEHDAahhhodHRw0i8vd3d3LnNOYXJ0c3NsLmNvbS8wDQYJKoZIhvcNAQEFBQAD\n
ggEBAKVOAHtXTrgISj7XvE4/1LxAfIP56nlhpoLu8CqV1LK6eK4zCQRyTiFYx3xq\n
VQMSNVgQIdimjEsMz805/fDrCrozsT6sqxIPFsdgdskPyz9YyC9Y/AVBUECxabQr\n
B//0STicfdPg8PuDYtI64/INA47d/gth57RaTFYxKs6bU8vtObinDICwT33x4tvt\n
0b18DwB3/PeTbhWyVUIxBOnvfm89dys0SF2alaA/bLuy0B7 rdlppd4dOMpmiDOtnI\n
DORtr5HOD1xGiixZWzA1V2pTmF/hJZbhmEgBUSIyPK5Z9pZPephMf+/KrovbQqKr\n
6SEjgs7dGwpo6fA2mfCH5cCrid0=\n

----- END CERTIFICATE-----",

TR BEGIN CERTIFICATE----- \n
MIIDdTCCA12gAwIBAgILBAAAAAABFUtaw5QwDQYJKoZIhvcNAQEFBQAWVZELMAKG\n
A1UEBhMCQkUxGTAXBgNVBAOTEEdsb2JhbFNpZ24gbnYtc2EXEDAOBgGNVBASTB1Jv\n
b3QgQOExGzAZBgNVBAMTEkdsb2JhbFNpZ24gUm9vdCBDQTAeFw050DA5MDEXMjAw\n
MDBaFw0yODAXMjgxMjAwMDBaMFcxCzAJBgNVBAYTAKJFMRkwFwYDVQQKEXBHbG9i\n
YWxTaWduIG52LXNhMRAwWDgYDVQQLEwdSh290IENBMRswGQYDVQQDEXxJHbGIiYWXT\n
aWduIFJvb3QgQOEwggEiMAOGCSqGSIb3DQEBAQUAA4IBDWAWggEKA0IBAQDaDuaz\n
jc6j40+KfvvxidMla+pIH/EqsLmVEQS98GPR4AmdmzxzdzxtIK+6NiY6arymAZavp\n
xy0Sy6scTHAHoTOKMMOVjU/43dSMUBUC71DuxC73/01S8pF94G3VNTCOXkNz8kHp\n
1Wrjsok6Vjk4bwY8iGlbKk3Fp1S4bInMm/k8yuX9ifUSPJJ41tbcdG6TRGHR]cdG\n
snUOhugZitVtbNV4FpWi6cgK0OvyJBNPc1STE4U6G7weNLWLBYy5d4ux2x8gkasi\n
U26Qzns3dL1wR5EiUWMWeabx rkEmCMgZK9FGqkjWZCrXgzT/LCrBbB1DSgeF59N8\n
9iFo7+ryUp9/k5DPAgMBAAG]QjBAMA4GA1UdDWEB/wQEAWIBBjAPBgNVHRMBATSE\n
BTADAQH/MBOGA1UdDgQWBBRge2YaRQ2XyolQL30EzTSo//z95zANBgkqhkiGOwOB\n
AQUFAAOCAQEA1LNPNnfE920I2/7Lqivj TFKDK1fPxsnCwrvQmeU79rXqoRSLb1CKOz\n
yj1hTdNGCbM+w6DjY1Ub8rrvrTnhQ7k40+YviiY776BQVvnGCv04zcQLcFGUL5gE\n
38Nf1INUVYRRBNMRddWQVDf9VMOyYGj/8N7yy5YOb2qvzfvGnILhIIZIrglfCm7ymP\n
AbEVtQwdpf5pLGkkeB6zpxxxYu7KyJesF12KwvhHhm4qxFYx1dBniYUr+WymXUad\n
DKqC5J1R3XC321Y9YeRq4VzW9v493kHMB65jUr9TU/Qr6cf9tveCX4XSQRjbgbME\n
HMUfpIBVFSDJI3gyICh3WZ1X1i/EjJIKSZp4A==

----- END CERTIFICATE-----"

]!

"privateKey": "----- BEGIN RSA PRIVATE KEY----- \n
zDot5q3vP9YjCihMZMkSa0zT2Zt+8S+mCOEVUYuTVhVpqrVNtkP1mlt+CYqmDffY\n
sGuD6SMrT6+SeAzX2uYFgY4+s8yaRWBcr0C527yihilM6BK+IJ4is9kaW5VFr1Ph\n
WRKvSeFHBGh2wLNpjVSNPzLMDZBtkVi9Ny/xD5C3M1GahOPGmnrPGCP8triLshv4\n
PxYJwzHzouTdQDKLY1CjMN++NmIYfx7zrbEYV4VzXMxgNq7d3+d5d1VFE8XpAjSR\n
Lglamib+doeloW0Q2WiS6baBAH+Gw5rgqfwhJbCY/UlbCpul6kl7TLVTrFp8YpvB\n
Iv1GDOyuwSued3a+AxMFuIzTBYd2rC6rHg+eF4eHd/Q/Sbm9+9VuW/h8dW3LGvbE\n

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)

Copyright © 2011-2017 ForgeRock AS. All rights reserved.

302

’ Securing & Hardening OpenIDM
‘,' FORGEROCK' Generating a Self-Signed Certificate Over REST

5SUUhNw6uSk0ZmZ0z/+FLbwoLPCASukY9biSd+12KJf4N42WZxID+9mITplj/Bv7\n
n290GfZ3vav8PqG+F987hSyWEIdGTMfIxwaUrdYelfmbUCxvOsuMcYTRbAs9g3cm\n
eCNxbZBYC/fL+N1j5NjZ+gxA/tEXV7wWynPZW3mZny6fQpDTDMs1qsoFZR+rAUzH\n
ViePuLbCdxIC5heUyqvDBbe0zgQWOu6SZjX+mAQpoODPKt1KDP4DKVIEW92sIwW3\n
AnFg98sje0DZ+zfsnevGioQMIrG0ISnqTYADxHaauu7NWndkfMZis fNIKAOu+ajU\n
AbP8xFXIP5JU804tWmlbxAbMOYfrZHabFNZx4DH10V0JqdJIVxOKEROGSZd50D6W\n
QBzCfEbwM1J170B0AgWzNrbaak3MCmWlmh70ecjQwgelajy7ho+JtQ==\n

----- END RSA PRIVATE KEY-----"

A

"https://localhost:8443/openidm/security/keystore/cert"

" id": "openidm-localhost"

If the import is successful, the command returns the alias of the keystore to which the signed
certificate was added.

16.1.4. Generating a Self-Signed Certificate Over REST

To generate a self-signed X.509 certificate, use the generateCert action on the keystore endpoint. This
action must be performed as an authenticated administrative user. The generated certificate is
returned in the response to the request, and stored in the OpenIDM keystore.

Specify the details of the certificate in the JSON payload. For example:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \

--data '{
"algorithm" : "RSA",
"signatureAlgorithm" : "SHA512WithRSAEncryption",
"keySize" : 2048,
"domainName" : "www.example.com",
"validFrom" : "2014-08-13T07:59:44.497+02:00",
"validTo" : "2015-08-13T07:59:44.497+02:00",
"returnPrivateKey" : true,
"alias" : "new-alias"

LAY

"https://localhost:8443/openidm/security/keystore?_action=generateCert"

{
"publicKey": {
"algorithm": "RSA",

"encoded": "----- BEGIN PUBLIC KEY----- \nMIIBIjANBgkqhkiGO9wOBAQEFAAOCAQSAMIIB
iﬁ:----END PUBLIC KEY----- \n",
“format": "X.509"

2éert": EEEE T BEGIN CERTIFICATE----- \nMIIDSDCCAjCgAwIBAgIGAUT003GVvMAOGCSqGSIb3
iﬁ:----END CERTIFICATE----- \n"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 303

Securing & Hardening OpeniDM

(" FORGEROCK' Security Management Service Endpoints

"type": "X.509",
" id": "new-alias"

}

The following certificate details can be specified:

* "algorithm" (optional) - the public key algorithm, for example, rsA. If no algorithm is specified, a
default of rRsA is used.

* "signatureAlgorithm" (optional) - the signature type, for example, SHA512withRSAEncryption. If no
algorithm is specified, a default of SHAS12withRSAEncryption is used.

"keySize" (optional) - the size of the key (in bits) used in the cryptographic algorithm, for example
2048. If no key size is specified, a default of 2048 is used.

* "domainName" - the fully qualified domain name (FQDN) of your server, for example www.example. com.
* "validFrom" and "validTo" (optional) - the validity period of the certificate, in UTC time format, for
example 2014-08-13T07:59:44.497+02:00. If no values are specified, the certificate is valid for one year,

from the current date.

* "returnPrivateKey" (optional) - set this to true to return the private key along with the request.

"alias" - the keystore alias or string that identifies the certificate, for example openidm-localhost.

16.1.5. Security Management Service Endpoints

The OpenIDM security management service includes the following endpoints:

* openidm/security/keystore

* openidm/security/truststore

You can use these endpoints to READ the contents on the keystore and truststore.

In addition, you can use these endpoints to perform related actions such as generateCert and
generateCSR.

When you set up an action request on either endpoint, you need to include all properties, including
alias, in the request data.

The alias is not provided in the URL; it is available in the data object. For example, you might include
"alias" : "openidm-localhost" within a --data '{ "alias" : "openidm-localhost" }' option.

Certificates and private keys are associated with the following endpoints: openidm/security/keystore/
cert, openidm/security/keystore/privatekey, and openidm/security/truststore/cert.

All CRUD requests on such certificates and private/public keys use these endpoints.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 304

Securing & Hardening OpeniDM

(" FORGEROCK' Security Precautions for a Production Environment

16.2. Security Precautions for a Production Environment

Out of the box, OpenIDM is set up for ease of development and deployment. When you deploy
OpenIDM in production, there are specific precautions you should take to minimize security
breaches. After following the guidance in this section, make sure that you test your installation to
verify that it behaves as expected before putting it into production.

16.2.1. Use SSL and HTTPS

You should disable plain HTTP access, as described in Section 16.2.6, "Secure Jetty".

Use TLS/SSL to access OpenIDM, ideally with mutual authentication so that only trusted systems
can invoke each other. TLS/SSL protects data on the network. Mutual authentication with strong
certificates, imported into the trust and keystores of each application, provides a level of confidence

for trusting application access.

Augment this protection with message level security where appropriate.

16.2.2. Restrict REST Access to the HTTPS Port

When possible, use a certificate to secure REST access, over HTTPS. For production, that certificate
should be signed by a certificate authority.

OpenIDM generates a self-signed certificate when it first starts up. You can use this certificate to test
secure REST access.

While not recommended for production, you can test secure REST access using the default self-
signed certificate. To do so, you can create a self-signed certificate file, self-signed.crt, using the
following procedure:

1. Extract the certificate that is generated when OpenIDM starts up.

$ openssl s _client -showcerts -connect localhost:8443 </dev/null

This command outputs the entire certificate to the terminal.

2. Using any text editor, create a file named self-signed.crt. Copy the portion of the certificate from
----- BEGIN CERTIFICATE----- tO ----END CERTIFICATE----- and paste it into the self-signed.crt file, which
should appear similar to the following:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 305

Securing & Hardening OpeniDM

(" FORGEROCK Encrypt Data Internally and Externally

$ more self-signed.crt

————— BEGIN CERTIFICATE-----
MIIB8zCCAVygAwIBAgIETkvDjjANBgkqhkiGO9wOBAQUFADA+MSgwIgYDVQQKEX9P
CGVUSURNIFN1bGYtU21nbmVkIENTcnRpZmljYXRIMRIWEAYDVQQDEwWlsb2NhbGhv
¢c3QwHhcNMTEwODE3MTMzNTEwWhcNMj EwODE3MTMzNTEWWj A+MSgwJgYDVQQKEX9P
CGVUSURNIFN1bGYtU21nbmVKIENTcnRpZmljYXRIMRIWEAYDVQQDEwWlsb2NhbGhv
€c3QwgZ8wDQYJKoZIhvcNAQEBBQADGYOAMIGIA0GBAKWMKYVHS5yHANI7+tXUIbTI
nQfhcTChpWNPTHc/cli/+TalInTpN8vRScPoBGOB]jCaIKnVV12zZ5ya74UKgwAVe
0JQOxDZvIyeC9P1lvGoqsdtH/Ihi+T+zzZ140Vxn74qWoxZcvkG6rWEQd42QzpVhg
wMBzX9851xk0ZhGOIdRXAgMBAAEWDQYJKoZIhvcNAQEFBQADgYEAS04qMIOaxEKZ
m0jU4yJejLBHydWozZVZ8fKcHV1D/ rTirtVgWsVgvdr3yUr@IdklrH1nEF47Tzn+V
UCq79JZ75HnIIeVrZgmfTx8169paAKAaNF/KRhTE6ZII8+awst02L86shSSWqWz3
s5xPB2YTaZHWWdz rPVv90gL8IL/N7/

3. Test REST access on the HTTPS port, referencing the self-signed certificate in the command. For
example:
$ curl \
--header "X-OpenIDM-Username:openidm-admin" \
--header "X-OpenIDM-Password:openidm-admin" \
--cacert self-signed.crt \

--request GET \
"https://localhost:8443/openidm/managed/user/?_queryId=query-all-ids"

"result": [1,
"resultCount": 0,
"pagedResultsCooke": null,
"remainingPagedResuts": -1

16.2.3. Encrypt Data Internally and Externally

Beyond relying on end-to-end availability of TLS/SSL to protect data, OpenIDM also supports explicit
encryption of data that goes on the network. This can be important if the TLS/SSL termination
happens prior to the final endpoint.

OpenIDM also supports encryption of data stored in the repository, using a symmetric key. This
protects against some attacks on the data store. Explicit table mapping is supported for encrypted
string values.

OpenIDM automatically encrypts sensitive data in configuration files, such as passwords. OpenIDM
replaces clear text values when the system first reads the configuration file. Take care with
configuration files having clear text values that OpenIDM has not yet read and updated.

16.2.4. Use Message Level Security

OpenIDM supports message level security, forcing authentication before granting access.
Authentication works by means of a filter-based mechanism that lets you use either an HTTP Basic

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 306

Securing & Hardening OpeniDM

(" FORGEROCK' Use Message Level Security

like mechanism or OpenIDM-specific headers, setting a cookie in the response that you can use for
subsequent authentication. If you attempt to access OpenIDM URLs without the appropriate headers
or session cookie, OpenIDM returns HTTP 401 Unauthorized, or HTTP 403 Forbidden, depending on
the situation. If you use a session cookie, you must include an additional header that indicates the
origin of the request.

16.2.4.1. Message Level Security with Logins

The following examples show successful authentications.

$ curl \

--cacert self-signed.crt \

--dump-header /dev/stdout \

--user openidm-admin:openidm-admin \
"https://localhost:8443/openidm/managed/user?_queryId=query-all-ids"

HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8

Cache-Control: no-cache

Set-Cookie: session-jwt=210zobpuk6éstlb2m7gvhg5zas ... ;Path=/
Expires: Thu, 01 Jan 1970 00:00:00 GMT

Vary: Accept-Encoding, User-Agent

Content-Length: 82

Server: Jetty(8.y.z-SNAPSHOT)

{"result":[1,"resultCount":"0", "pagedResultsCookie":null, "remainingPagedResults":-1}

$ curl \

--cacert self-signed.crt \

--dump-header /dev/stdout \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \
"https://localhost:8443/openidm/managed/user?_queryId=query-all-ids"

HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8

Cache-Control: no-cache

Set-Cookie: session-jwt=210zobpuk6éstlb2m7gvhg5zas ... ;Path=/
Expires: Thu, 01 Jan 1970 00:00:00 GMT

Vary: Accept-Encoding, User-Agent

Content-Length: 82

Server: Jetty(8.y.z-SNAPSHOT)

{"result":[],"resultCount":"0", "pagedResultsCookie":null, "remainingPagedResults":-1}

$ curl \
--dump-header /dev/stdout \
--cacert self-signed.crt \
--header "Cookie: session-jwt=210zobpuk6stlb2m7gvhg5zas ..." \
--header "X-Requested-With: OpenIDM Plugin" \
"https://localhost:8443/openidm/managed/user?_queryId=query-all-ids"

Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: application/json; charset=UTF-8

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 307

Securing & Hardening OpeniDM

(" FORGEROCK' Replace Default Security Settings

Cache-Control: no-cache

Vary: Accept-Encoding, User-Agent
Content-Length: 82

Server: Jetty(8.y.z-SNAPSHOT)

Notice that the last example uses the cookie OpenIDM set in the response to the previous request,
and includes the X-Requested-with header to indicate the origin of the request. The value of the header
can be any string, but should be informative for logging purposes. If you do not include the x-Requested
-with header, OpenIDM returns HTTP 403 Forbidden.

Note

The careful readers among you may notice that the expiration date of the JWT cookie, January 1, 1970,
corresponds to the start of UNIX time. Since that time is in the past, browsers will not store that cookie after
the browser is closed.

You can also request one-time authentication without a session.

$ curl \
--dump-header /dev/stdout \
--cacert self-signed.crt \
--header "X-OpenIDM-NoSession: true" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
"https://localhost:8443/openidm/managed/user?_queryId=query-all-ids"

HTTP/1.1 200 OK

Content-Type: application/json; charset=UTF-8
Cache-Control: no-cache

Vary: Accept-Encoding, User-Agent
Content-Length: 82

Server: Jetty(8.y.z-SNAPSHOT)

{"result":[1,"resultCount":"0", "pagedResultsCookie":null, "remainingPagedResults":-1}

16.2.4.2. Logout By Removing the JWT Cookie

OpenIDM maintains sessions with a JWT session cookie, stored in a client browser. To log out and
destroy the session, you would access and remove that cookie from the client browser.

The JWT session cookie is based on the jwr SEssioN module documented in Supported Authentication
Modules.

16.2.5. Replace Default Security Settings

The default security settings are adequate for evaluation purposes. For production, change the
default encryption key, and then replace the default user password.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 308

Securing & Hardening OpeniDM

(" FORGEROCK' Replace Default Security Settings

Procedure 16.1. To Change Default Encryption Keys

By default, OpenIDM uses a symmetric encryption key with alias openidm-sym-default. Change this
default key before deploying OpenIDM in production.

As noted in the section on the keytool command, the default keystore password is changeit.

1.

Add the new key to the keystore.

$ cd /path/to/openidm/
$ keytool \
-genseckey \
-alias new-sym-key \
-keyalg AES \
-keysize 128 \
-keystore security/keystore.jceks \
-storetype JCEKS
Enter keystore password:
Enter key password for <new-sym-key>
(RETURN if same as keystore password):
Re-enter new password:

Additional options associated with the keytool command in OpenIDM are shown in the following
file: openidm/samples/security/keystore readme.txt.

Change the alias used in openidm/conf/boot/boot.properties.

Procedure 16.2. To Replace the Default User & Password

After changing the default encryption key, change at least the default user password.

1.

Use the encrypt command to obtain the encrypted version of the new password.

$ cd /path/to/openidm/
$ cli.sh encrypt newpwd

{
"$crypto" : {
"value" : {
"iv" : "TCoC/YrmiRmINw6jCPB5LQ==",
"data" : "nCFvBIApIQ7C6k+UPzosaA==",
"cipher" : "AES/CBC/PKCS5Padding",
"key" : "openidm-sym-default"
1,
"type" : "x-simple-encryption"
}

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 309

Securing & Hardening OpeniDM

(" FORGEROCK' Secure Jetty

2. Replace the user object in the openidm/db/database/scripts/openidm.sql script before setting up your
JDBC repository for OpenIDM.

Alternatively, replace the user in the internal user table.

16.2.6. Secure Jetty

If you do not want to use regular HTTP on a production OpenIDM system, you need to make two
changes.

First, edit the openidm/conf/jetty.xml configuration file. Comment out the line that enables regular
HTTP.

The following excerpt includes the Java comment code that you would add around the openidm
.port.http argument. The value of this argument (8080 by default) is taken from the conf/boot/
boot.properties file.

<Call name="addConnector>
<Arg>
<New class="org.eclipse.jetty.server.nio.SelectChannelConnector">
<Set name="host"><Property name="jetty.host" /></Set>
<!-- <Set name="port"><Call class="org.forgerock.openidm.jetty.Param"
name="getProperty"<Arg>openidm.port.http</Arg></Call></Set> -->
<Set name="maxIdleTime">300000</Set>
<Set name="Acceptors">2</Set>
<Set name="statsOn">false</Set>
<Set name="confidentialPort">
<Call class="org.forgerock.openidm.jetty.Param" name="getProperty">
<Arg>openidm.port.https</Arg>
</Call>
</Set>
</New>
</Arg>
</Call>

Second, edit the openidm/conf/config.properties configuration file. Set the org.osgi.service.http.enabled
property to false, as shown in the following excerpt:
Enable pax web http/https services to enable jetty

org.osgi.service.http.enabled=false
org.osgi.service.http.secure.enabled=true

16.2.7. Protect Sensitive REST Interface URLs

Anything attached to the router is accessible with the default policy, including the repository. If you
do not need such access, deny it in the authorization policy to reduce the attack surface.

In addition, you can deny direct HTTP access to system objects in production, particularly access to
action. As a rule of thumb, do not expose anything that is not used in production. The main public

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 310

Securing & Hardening OpeniDM

(" FORGEROCK Protect Sensitive Files & Directories

interfaces over HTTP are /openidm/managed/ and /openidm/config/. Other URIs are triggered indirectly, or
are used for internal consumption.

OpenIDM supports native query expressions on the repository, and it is possible to enable these over
HTTP, for example, the following query should identify managed users in an OrientDB repository:

$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \
"https://localhost:8443/openidm/managed/user?_queryExpression=select+*+from+managed_user"

By default, direct HTTP access to native queries is disallowed, and should remain so in production
systems.

For testing or development purposes, it can be helpful to enable native queries on the repository over
HTTP. To do so, edit the access control configuration file (access.js). In that file, remove any instances
of "disallowQueryExpression()" such as the following:

{
"pattern" p ke
"roles" : “openidm-admin",
"methods" ;o "xM o // default to all methods allowed
"actions" o "xM o // default to all actions allowed
// "customAuthz" : "disallowQueryExpression()",
"excludePatterns": "system/*"
I
{
"pattern" . "system/*",
"roles" : “openidm-admin",
"methods" . "create, read,update,delete,patch,query", // restrictions on ‘action'
“actions" g OT
// "customAuthz" : "disallowQueryExpression()"
I
"customAuthz" : "ownDataOnly() &&

managedUserRestrictedToAllowedProperties (' "+allowedPropertiesForManagedUser+"')",
// && disallowQueryExpression()"

See the chapter on Managing Authentication, Authorization & RBAC for an example showing how to
protect sensitive URLs.

16.2.8. Protect Sensitive Files & Directories

Protect OpenIDM files from access by unauthorized users.

In particular, prevent other users from reading files in at least the openidm/conf/boot/ and openidm/
security/ directories.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 311

Securing & Hardening OpeniDM

(" FORGEROCK' Obfuscate Bootstrap Information

The objective is to limit access to the user that is running the service. Depending on the operating
system and configuration, that user might be root, Administrator, openidm, or something similar.

Procedure 16.3. Protecting key files in Unix

1. For the target directory, and the files therein, make sure user and group ownership is limited to
the user that is running the OpenIDM service.

2. Disable access of any sort for other users. One simple command for that purpose, from the /path/
to/openidm directory, is:

chmod -R o-rwx .

Procedure 16.4. Protecting key files in Windows
1. The OpenIDM process in Windows is normally run by the Adninistrator user.

2. Ifyou are concerned about the security of the administrative account, you can Deny permissions
on the noted directories to existing users, or alternatively the Users group.

16.2.9. Obfuscate Bootstrap Information

OpenIDM uses the information in conf/boot/boot.properties, including the keystore password, to start
up. The keystore password is changeit by default, and is stored in clear text in the boot.properties file.
To set an obfuscated version of the keystore password in the boot.properties file, follow these steps.

1. Generate an obfuscated version of the password, by using the crypto bundle provided with
OpenIDM:

$ $ java -jar /path/to/openidm/bundle/openidm-crypto-3.1.0-6.jar

This utility helps obfuscate passwords to prevent casual observation.

It is not securely encrypted and needs further measures to prevent disclosure.
Please enter the password:

0BF:1vn2lugulsajlv9ilv941lsarlugwlvo0

CRYPT:a8b5a01ba48a306f300b62a1541734c7

2. Paste either the obfuscated password (0BF:xxxxxxx) or the encrypted password (CRYPT: xxxxxxx) into
the conf/boot/boot.properties file. Comment out the regular keystore password and remove the
comment tag, either from the line that contains the obfuscated password or from the line that
contains the encrypted password:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 312

’ Securing & Hardening OpenIDM
‘,' FORGEROCK’ Remove or Protect Development & Debug Tools

$ more conf/boot/boot.properties

Keystore password, adjust to match your keystore and protect this file

openidm.keystore.password=changeit

openidm.truststore.password=changeit

Optionally use the crypto bundle to obfuscate the password and set one of these:
openidm.keystore.password=0BF:1vn2lugulsajlv9ilv941sarlugwlvo0

openidm.keystore
.password=CRYPT:a8b5a01ba48a306f300b62a1541734c7

3. Restart OpenIDM.
$./startup.sh

16.2.10. Remove or Protect Development & Debug Tools

Before deploying OpenIDM in production, remove or protect development and debug tools, including
the OSGi console exposed under /system/console. Authentication for this console is not integrated with
authentication for OpenIDM.

To remove the OSGi console, remove the web console bundle, org.apache.felix.webconsole-version.jar.

If you cannot remove the OSGi console, then protect it by overriding the default admin:admin
credentials. Create a file called openidm/conf/org.apache.felix.webconsole.internal.servlet.0sgiManager.cfg
containing the user name and password to access the console in Java properties file format.

username=user-name
password=password

16.2.11. Protect the OpenIDM Repository
Use the JDBC or MSSQL repositories. OrientDB is not yet supported for production use.
Use a strong password for the JDBC connection. Do not rely on default passwords.

Use a case sensitive database, particularly if you work with systems with different identifiers that
match except for case. Otherwise correlation queries can pick up identifiers that should not be
considered the same.

16.2.12. Adjust Log Levels

Leave log levels at INFO in production to ensure that you capture enough information to help diagnose
issues. See the chapter on Configuring Server Logs for more information.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 313

Securing & Hardening OpeniDM

(" FORGEROCK' Set Up Restart At System Boot

At start up and shut down, INFO can produce many messages. Yet, during stable operation, INFO
generally results in log messages only when coarse-grain operations such as scheduled reconciliation
start or stop.

16.2.13. Set Up Restart At System Boot

You can run OpenIDM in the background as a service (daemon), and add startup and shutdown
scripts to manage the service at system boot and shutdown. For more information, see Starting and
Stopping OpenIDM.

See your operating system documentation for details on adding a service such as OpenIDM to be
started at boot and shut down at system shutdown.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 314

Integrating Business Processes and Workflows

(" FORGEROCK BPMN 2.0 and the Activiti Tools

Chapter 17

Integrating Business Processes and Workflows

Key to any identity management solution is the ability to provide workflow-driven provisioning
activities, whether for self-service actions such as requests for entitlements, roles or resources,
running sunrise or sunset processes, handling approvals with escalations, or performing
maintenance.

OpenIDM provides an embedded workflow and business process engine based on Activiti and the
Business Process Model and Notation (BPMN) 2.0 standard.

More information about Activiti and the Activiti project can be found at http://www.activiti.org.

17.1. BPMN 2.0 and the Activiti Tools

Business Process Model and Notation 2.0 is the result of consensus among Business Process
Management (BPM) system vendors. The Object Management Group (OMG) has developed and
maintained the BPMN standard since 2004.

The first version of the BPMN specification focused only on graphical notation, and quickly became
popular with the business analyst audience. BPMN 1.x defines how constructs such as human tasks,
executable scripts, and automated decisions are visualized in a vendor-neutral, standard way. The
second version of BPMN extends that focus to include execution semantics, and a common exchange
format. Thus, BPMN 2.0 process definition models can be exchanged not only between different
graphical editors, but can also be executed as is on any BPMN 2.0-compliant engine, such as the
engine embedded in OpenIDM.

Using BPMN 2.0, you can add artifacts describing workflow and business process behavior to
OpenIDM for provisioning and other purposes. For example, you can craft the actual artifacts
defining business processes and workflow in a text editor, or using the Activiti Eclipse Designer
plugin. Eclipse Designer provides visual design capabilities, simplifying packaging and deployment
of the artifact to OpenIDM. For instructions on installing Eclipse Designer, see the Activiti
documentation.

Also, read the documentation covering BPMN 2.0 Constructs, which describes in detail the graphical
notations and XML representations for events, flows, gateways, tasks, and process constructs.

With the latest version of Activiti, JavaScript tasks can be added to workflow definitions. However,
OpenIDM functions cannot be called from a JavaScript task in a workflow. Therefore, you can use
JavaScript for non-OpenIDM workflow tasks, but you must use the activiti:expression construct to call
OpenlIDM functions.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 315

http://www.activiti.org
http://omg.org/
http://www.omg.org/spec/BPMN/
https://www.activiti.org/userguide/#activitiDesigner
https://www.activiti.org/userguide/#activitiDesigner
http://www.activiti.org/userguide/#bpmnConstructs

Integrating Business Processes and Workflows

(" FORGEROCK' Setting Up Activiti Integration With OpenIDM

17.2. Setting Up Activiti Integration With OpenIDM

OpenIDM embeds an Activiti Process Engine that is started in the OpenIDM OSGi container.

After you have installed OpenIDM, as described in Chapter 1, "Installing OpenIDM Services" in the
Installation Guide, start OpenIDM, and run the scr list command at the console to check that the
workflow bundle is active.

-> OpenIDM ready

scr list
Id State Name
[39] [active 1 org.forgerock.openidm.workflow

OpenIDM reads workflow definitions from the /path/to/openidm/workflow directory. To test workflow
integration, at least one workflow definition must exist in this directory.

A sample workflow (example.bpmn20.xml) is provided in the /path/to/openidm/samples/misc directory. Copy
this workflow to the /path/to/openidm/workflow directory to test the workflow integration.

$ cd /path/to/openidm
$ cp samples/misc/example.bpmn20.xml workflow/

Verify the workflow integration by using the REST API. The following REST call lists the defined
workflows:
$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \

--request GET \
"https://localhost:8443/openidm/workflow/processdefinition?_queryId=query-all-ids"

The sample workflow definition that you copied in the previous step is named osgiProcess. The result
of the preceding REST call therefore includes output similar to the following:

{
"result":[
{
"key": "osgiProcess",
"name":"0sgi process",
" id":"osgiProcess:1:3",
}
1
}

The osgiProcess workflow calls OpenIDM, queries the available workflow definitions from Activiti, then
prints the list of workflow definitions to the OpenIDM logs. Invoke the osgiProcess workflow with the
following REST call:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 316

Integrating Business Processes and Workflows

(" FORGEROCK' Setting Up Activiti Integration With OpenIDM

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
--data '{"_key":"osgiProcess"}"' \
"https://localhost:8443/openidm/workflow/processinstance?_action=create"

The workflow prints the list of workflow definitions to the OpenIDM console. With the default sample,
you should see something like this on the console:

script task using resolver: [
pagedResultsCookie:null,
remainingPagedResults: -1,
result:[
[
tenantlId:,
candidateStarterGroupIdExpressions:[],
candidateStarterUserIdExpressions:[],
participantProcess:null,
processDiagramResourceName:null,
historyLevel:null,
hasStartFormKey: false,
laneSets:[],
version:1, id:osgiProcess:1:3,
description:null,
name:0sgi process,
executionListeners:[:1],
key:osgiProcess,
resourceName:0SGI-INF/activiti/example.bpmn20.xml,
ioSpecification:null,
taskDefinitions:null,
suspensionState:1,
deploymentId:1,
properties:[:1],
startFormHandler:null,
suspended: false,
variables:null,
_rev:l,
revisionNext:2,
category:Examples,
eventSupport:[:1],
graphicalNotationDefined: false
]
]
]
script task using expression resolver: [
pagedResultsCookie:null,
remainingPagedResults:-1,
result:[
[
tenantId:,
candidateStarterGroupIdExpressions:[],

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 317

Integrating Business Processes and Workflows

(" FORGEROCK' Configuring the Activiti Engine

17.2.1. Configuring the Activiti Engine

The OpenIDM Activiti module is configured in a file named conf/workflow.json. If this file is absent from
the configuration, the workflow module is unavailable for use. In the default OpenIDM installation,
the workflow.json file has the following basic configuration:

"enabled" : true

You can disable the workflow module by setting the "enabled" property to fatse.

There are several additional configuration properties for the Activiti module. A sample workflow.json
file that includes all configurable properties, is provided in samples/misc. To configure an Activiti
engine beyond the default configuration, edit this sample file and copy it to the /path/to/openidm/conf
directory.

The sample workflow.json file contains the following configuration:

{

"enabled" : true,

"location" : “"remote",

“engine" : {
"url" : "http://localhost:9090/openidm-workflow-remote-3.1",
“username" : “youractivitiuser",
“"password" : “youractivitipassword"

1,

"mail" : {
"host" : "yourserver.smtp.com",
"port" : 587,
"username" : "yourusername",
"password" : "yourpassword",
"starttls" : true

1,

“history" : "audit"

These fields have the following meaning:

e enabled. Indicates whether the Activiti module is enabled for use. Possible values are true or false.
The default value is true.

* mail. Specifies the details of the mail server that Activiti will use to send email notifications. By
default, Activiti uses the mail server localhost:25. To specify a different mail server, enter the details
of the mail server here.

* host. The host of the mail server.
¢ port. The port number of the mail server.

e username. The user name of the account that connects to the mail server.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 318

Integrating Business Processes and Workflows

(" FORGEROCK Defining Activiti Workflows

* password. The password for the user specified above.
e startTLS. Whether startTLS should be used to secure the connection.

* history. Determines the history level that should be used for the Activiti engine. For more
information, see Section 17.2.1.1, "Configuring the Activiti History Level".

17.2.1.1. Configuring the Activiti History Level

The Activiti history level determines how much historical information is retained when workflows are
executed. You can configure the history level by setting the history property in the workflow.json file,
for example:

"history" : "audit"

The following history levels can be configured:

* none. No history archiving is done. This level results in the best performance for workflow execution,
but no historical information is available.

activity. Archives all process instances and activity instances. No details are archived.

* audit. This is the default level. All process instances, activity instances and submitted form
properties are archived so that all user interaction through forms is traceable and can be audited.

e full. This is the highest level of history archiving and has the greatest performance impact. This
history level stores all the information that is stored for the audit level, as well as any process
variable updates.

17.2.2. Defining Activiti Workflows

The following section outlines the process to follow when you create an Activiti workflow for
OpenIDM. Before you start creating workflows, you must configure the Activiti engine, as described
in Section 17.2.1, "Configuring the Activiti Engine".

1. Define your workflow in a text file, either using an editor, such as Activiti Eclipse BPMN 2.0
Designer, or a simple text editor.

2. Package the workflow definition file as a .bar file (Business Archive File). If you are using Eclipse
to define the workflow, a .bar file is created when you select "Create deployment artifacts". A .bar
file is essentially the same as a .zip file, but with the .bar extension.

3. Copy the .bar file to the openidm/workflow directory.

4. Invoke the workflow using a script (in openidm/script/) or directly using the REST interface. For
more information, see Section 17.2.3, "Invoking Activiti Workflows".

You can also schedule the workflow to be invoked repeatedly, or at a future time. For more
information, see Chapter 13, "Scheduling Tasks and Events".

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 319

Integrating Business Processes and Workflows

(" FORGEROCK Invoking Activiti Workflows

17.2.3. Invoking Activiti Workflows

You can invoke workflows and business processes from any trigger point within OpenIDM, including
reacting to situations discovered during reconciliation. Workflows can be invoked from script files,
using the openidm.create() function, or directly from the REST interface.

The following sample script extract shows how to invoke a workflow from a script file:

/*
* Calling 'myWorkflow' workflow
Y

var params = {
" _key": "myWorkflow"
};

openidm.create('workflow/processinstance', null, params);

The null in this example indicates that you do not want to specify an ID as part of the create call. For
more information, see Section F.3.1, "openidm.create(container, id, value)".

You can invoke the same workflow from the REST interface by sending the following REST call to
OpenIDM:
$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--header "Content-Type: application/json" \

--request POST \

--data '{"_key":"myWorkflow"}"' \

"https://localhost:8443/openidm/workflow/processinstance?_action=create"

There are two ways in which you can specify the workflow definition that is used when a new
workflow instance is started.

* key specifies the id attribute of the workflow process definition, for example:

<process id="sendNotificationProcess" name="Send Notification Process">

If there is more than one workflow definition with the same key parameter, the latest deployed
version of the workflow definition is invoked.

* processDefinitionId specifies the ID that is generated by the Activiti Process Engine when a
workflow definition is deployed, for example:

"sendNotificationProcess:1:104";

You can obtain the processbefinitionId by querying the available workflows, for example:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 320

’ Integrating Business Processes and Workflows
‘,' FORGEROCK' Querying Activiti Workflows
"result": [
{

"name": "Process Start Auto Generated Task Auto Generated",
" _id": "ProcessSAGTAG:1:728"

I

{

"name": "Process Start Auto Generated Task Empty",
" _id": "“ProcessSAGTE:1:725"
i

If you specify a key and a processDefinitionId, the processDefinitionId is used because it is more
precise.

You can use the optional businesskey parameter to add specific business logic information to the
workflow when it is invoked. For example, the following workflow invocation assigns the workflow a
business key of "neworder". This business key can later be used to query "newOrder" processes.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request POST \
--data '{"_key":"myWorkflow", "_businessKey":"newOrder"}' \
"https://localhost:8443/openidm/workflow/processinstance?_action=create"

17.2.4. Querying Activiti Workflows

The Activiti implementation supports filtered queries that enable you to query the running process
instances and tasks, based on specific query parameters. To perform a filtered query send a GET
request to the workflow/processinstance context path, including the query in the URL.

For example, the following query returns all process instances with the business key "neworder", as
invoked in the previous example.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/workflow/processinstance?_queryId=filtered-
query&processInstanceBusinessKey=newOrder"

Any Activiti properties can be queried using the same notation, for example,
processDefinitionId=managedUserApproval:1:6405. The query syntax applies to all queries with
_queryId=filtered-query. The following query returns all process instances that were started by the user
openidm-admin:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 321

Integrating Business Processes and Workflows

(" FORGEROCK' Using Custom Templates for Activiti Workflows

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/workflow/processinstance?_queryId=filtered-query&startUserId=openidm-
admin"

You can also query process instances based on the value of any process instance variable, by
prefixing the variable name with var-. For example:

var-processvariablename=processvariablevalue

17.3. Using Custom Templates for Activiti Workflows

The embedded Activiti engine is integrated with the default user interface. For simple workflows,
you can use the standard Activiti form properties, and have the UI render the corresponding generic
forms automatically. If you require a more complex form template, (including input validation, rich
input field types, complex CSS, and so forth) you must define a custom form template.

There are two ways in which you can define custom form templates for your workflows:
* Create an HTML template, and refer to that template in the workflow definition.

This is the recommended method of creating custom form templates. To refer to the
HTML template in the workflow definition, use the activiti:formkey attribute, for example
activiti:formKey="nUCStartForm.xhtml"

The HTML file must be deployed as part of the workflow definition. Create a .zip file that contains
the HTML template and the workflow definition file. Rename the .zip file with a .bar extension.

For a sample workflow that uses external, referenced form templates, see samples/usecase/workflow/
newUserCreate.bpmn20.xml. The HTML templates, and the corresponding .bar file are included in that
directory.

* Use an embedded template within the workflow definition.

This method is not ideal, because the HTML code must be escaped, and is difficult to read, edit,

or maintain, as a result. Also, sections of HTML code will most likely need to be duplicated if your
workflow includes multiple task stages. However, you might want to use this method if your form is
small, not too complex and you do not want to bother with creating a separate HTML file and .bar
deployment.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 322

(/’ FORGEROCK

Integrating Business Processes and Workflows
Managing Workflows Over the REST Interface

17.4. Managing Workflows Over the REST Interface

In addition to the queries described previously, the following examples show the context paths that
are exposed for managing workflows over the REST interface. The example output is based on the

sample workflow that is provided in openidm/samples/sample9.

openidm/workflow/processdefinition

¢ List the available workflow definitions:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \

"https://localhost:8443/openidm/workflow/processdefinition?_queryId=query-all-ids"

"result" : [{
"tenantId" : "",
"candidateStarterGroupIdExpressions" : [1,
"candidateStarterUserIdExpressions" : [1,
"participantProcess" : null,
"processDiagramResourceName" : null,
"historyLevel" : null,
"hasStartFormKey" : false,
"laneSets" : [1,
"version" : 1,
" id" : "managedUserApproval:1:3",
"description" : null,
"name" : "Managed User Approval Workflow",
"executionListeners" : { },
"key" : "managedUserApproval",

"resourceName" : "OSGI-INF/activiti/managedUserApproval.bpmn20.xml",

"ioSpecification" : null,
"taskDefinitions" : null,
"suspensionState" : 1,
"deploymentId" : "1",
"properties" : { },
"startFormHandler" : null,
"suspended" : false,
"variables" : null,
" rev" : 1,
"revisionNext" : 2,
"category" : "Examples",
"eventSupport" : { },
"graphicalNotationDefined" : false
1,
"resultCount" : 1,
"pagedResultsCookie" : null,
"remainingPagedResults" : -1

» List the workflow definitions, based on certain filter criteria:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

323

(/’ FORGEROCK

Integrating Business Processes and Workflows
openidm/workflow/processdefinition/{id}

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \

"https://localhost:8443/openidm/workflow/processdefinition?_queryId=filtered-query&category=Examples"

{
"result": [
{
"name": "Managed User Approval Workflow",
" id": "managedUserApproval:1:3",
"category" : "Examples",
}
]
}

openidm/workflow/processdefinition/{id}

* Obtain detailed information for a process definition, based on the ID. You can determine the ID by
querying all the available process definitions, as described in the first example in this section.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \

"https://localhost:8443/openidm/workflow/processdefinition/managedUserApproval:1:3"

"tenantId" : "",
"candidateStarterGroupIdExpressions" : [1,
"candidateStarterUserIdExpressions" : [1,
"participantProcess" : null,
"processDiagramResourceName" : null,
"historyLevel" : null,
"hasStartFormKey" : false,
"laneSets" : [1,
"version" : 1,
"formProperties" : [1,
" id" : "managedUserApproval:1:3",
"description" : null,
"name" : "Managed User Approval Workflow",
"executionListeners" : {

“end" : [{}]
o
"key" : "managedUserApproval",

"resourceName" : "OSGI-INF/activiti/managedUserApproval.bpmn20.xml",

"ioSpecification" : null,
"taskDefinitions" : {

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

324

(/’ FORGEROCK

Integrating Business Processes and Workflows
openidm/workflow/processdefinition/{id}

"evaluateRequest" : {
"assigneeExpression" : {
"expressionText"

b

"candidateGroupIdExpressions" : [
"candidateUserIdExpressions"
null,
null,
null,
"evaluateRequest",

"categoryExpression"
"descriptionExpression"
"dueDateExpression"
"key"
"nameExpression" : {
"expressionText"
I
"ownerExpression"
"priorityExpression"
"taskFormHandler" : {
"deploymentId" ",
"formKey" null,
"formPropertyHandlers"
"defaultExpression"
wign
"name"
"readable" : true,
"required" false,
"type" : null,
"variableExpression"
"expressionText"

null,

1,
"variableName"
"writable"

null,
false

"defaultExpression"
wign
"name"
"readable"
"required"
“type" @ {
"name" "enum",
"values" : {
"true" "Yes",
"false" "No"

}

: true,
: true,

1,
"variableExpression"
"variableName" null,
"writable" : true
1
H
"taskListeners" : {
"assignment" [{} 1,
"create" [{1} 1]
}
}
I
"suspensionState"
"deploymentId"
"properties" : {
"documentation"

b

I
nyw,

null

"openidm-admin"

I,
[1,

"Evaluate request"

null,

[{

null,
"requesterName",
"Requester's name",

{

;${source1d}"

null,
"requestApproved",
"Do you approve the request?",

null,

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

325

Integrating Business Processes and Workflows

(" FORGEROCK' openidm/workflow/processinstance

"startFormHandler" : {
"deploymentId" : "1",
"formKey" : null,
"formPropertyHandlers" : [1

I

"suspended" : false,

"variables" : { },

" rev" : 2,

"revisionNext" : 3,

"category" : "Examples",

"eventSupport" : { },

"graphicalNotationDefined" : false

* Delete a workflow process definition, based on its ID. Note that you cannot delete a process
definition if there are currently running instances of that process definition.

OpenIDM picks up workflow definitions from the files located in the /path/to/openidm/workflow
directory. If you delete the workflow definition (.xml file) from this directory, the OSGI bundle
is deleted. However, deleting this file does not remove the workflow definition from the Activiti
engine. You must therefore delete the definition over REST, as shown in the following example.

Note that, although there is only one representation of a workflow definition in the file system,
there might be several versions of the same definition in Activiti. If you want to delete redundant
process definitions, delete the definition over REST, making sure that you do not delete the latest
version.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "If-Match: *" \
--request DELETE \
"https://localhost:8443/openidm/workflow/processdefinition/managedUserApproval:1:3"

The delete request returns the contents of the deleted workflow definition.

openidm/workflow/processinstance

» Start a workflow process instance. For example:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

326

Integrating Business Processes and Workflows

(" FORGEROCK' openidm/workflow/processinstance

$ curl \
--cacert self-signed.crt \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--data '{"_key":"managedUserApproval"}' \
--request POST \
"https://localhost:8443/openidm/workflow/processinstance?_action=create"

{

" id" : "4",

"processInstanceId" : "4",

"status" : "suspended",

"businessKey" : null,

"processDefinitionId" : "managedUserApproval:1:3"
}

* Obtain the list of running workflows (process instances). The query returns a list of IDs. For
example:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/workflow/processinstance?_queryId=query-all-ids"

{

"result" : [{
"tenantId" : "",
"businessKey" : null,
"queryVariables" : null,
"durationInMillis" : null,
"processVariables" : { },
"endTime" : null,
"superProcessInstanceId" : null,
"startActivityId" : "start",
"startTime" : "2014-04-25T09:54:30.035+02:00",
"startUserId" : "openidm-admin",
" id" : "4,
"endActivityId" : null,
"processInstanceId" : "4",
"processDefinitionId" : "managedUserApproval:1:3",
"deleteReason" : null

b s

"resultCount" : 1,

"pagedResultsCookie" : null,

"remainingPagedResults" : -1

}

* Obtain the list of running workflows based on specific filter criteria.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 327

(/’ FORGEROCK

Integrating Business Processes and Workflows
openidm/workflow/processinstance/{id}

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \

"https://localhost:8443/openidm/workflow/processinstance?_queryId=filtered-

query&businessKey=myBusinessKey"

openidm/workflow/processinstance/{id}

* Obtain the details of the specified process instance. For example:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/workflow/processinstance/4"

: null,

: null,

: null,
{1}

{
"tenantId"
"businessKey"
"queryVariables"
"durationInMillis"
"processVariables"
"endTime" : null,
"superProcessInstanceId" : null,
"startActivityId" : "start",

"startTime" "2014-05-12T720:56:25.415+02:00",
"startUserId" "openidm-admin",

" id" : "4,
"endActivityId"
"processInstanceId"
"processDefinitionId"
"deleteReason" : null

: null,
g
"managedUserApproval:1:3",

* Stop the specified process instance. For example:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

328

(/’ FORGEROCK

Integrating Business Processes and Workflows
openidm/workflow/processdefinition/{id }/taskdefinition

$ curl \
--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \

--request DELETE \

"https://localhost:8443/openidm/workflow/processinstance/4"

"deleteReason": null,

"processDefinitionId": "managedUserApproval:1:3",

"processInstanceld": "4",
"endActivityId": null,
"idn: "4n,

"startUserId": "openidm-admin®,
"startTime": "2014-06-18T10:33:40.955+02:00",

"tenantId": "",
"businessKey": null,
"queryVariables": null,
"durationInMillis": null,
"processVariables": {},
"endTime": null,

"superProcessInstanceId": null,
"startActivityId": "start"

The delete request returns the contents of the deleted process instance.

openidm/workflow/processdefinition/{id}/taskdefinition

* Query the list of tasks defined for a specific process definition. For example:

$ curl \
--cacert self-signed.crt \

--header X-OpenIDM-Username: openidm-admin™ \
--header "X-OpenIDM-Password: openidm-admin" \

--request GET \

"https://localhost:8443/openidm/workflow/processdefinition/managedUserApproval:1:3/taskdefinition?

_queryId=query-all-ids"

"result" : [{
"taskCandidateGroup"

"ownerExpression" : null,

"assignee" : {

"expressionText" : "openidm-admin"

H
"categoryExpression"
"taskListeners" : {

"assignment" : [{ } 1,

"create" : [{ } 1]

o

"formProperties" : {
"deploymentId" : "1",
"formKey" : null,

"formPropertyHandlers"
" id" : "requesterName",

"HefaultExpression"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

329

Integrating Business Processes and Workflows

(" Fo RGEROCK openidm/workflow/processdefinition/{id }/taskdefinition

"name" : "Requester's name",

"readable" : true,

"required" : false,

"type" : null,

"variableExpression" : {
"expressionText" : "${sourceld}"

+

"variableName" : null,

"writable" : false

" id" : "requestApproved",
"defaultExpression" : null,
"name" : "Do you approve the request?",
"readable" : true,
"required" : true,
“type" : {
"name" : "enum",
"values" : {
"true" : "Yes",
"false" : "No"
}
+
"variableExpression" : null,
"variableName" : null,
"writable" : true
}]
H
"taskCandidateUser" : [1,
"formResourceKey" : null,
" id" : "evaluateRequest",
"priority" : null,
"descriptionExpression" : null,
"name" : {
"expressionText" : "Evaluate request"
H
"dueDate" : null
1,
"resultCount" : 1,
"pagedResultsCookie" : null,
"remainingPagedResults" : -1

* Query a task definition based on the process definition ID and the task name (taskDefinitionKey). For
example:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/workflow/processdefinition/managedUserApproval:1l:3/taskdefinition/evaluateRequest"

"taskCandidateGroup" : [],

"ownerExpression" : null,
"formProperties" : {
"deploymentId" : "1",

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 330

Integrating Business Processes and Workflows

(" FORGEROCK openidm/workflow/taskinstance

"formKey" : null,
"formPropertyHandlers" : [{
" id" : "requesterName",
"defaultExpression" : null,
"name" : "Requester's name",
"readable" : true,
"required" : false,
"type" : null,
"variableExpression" : {
"expressionText" : "${sourceId}"
}
"variableName" : null,
"writable" : false

" id" : "requestApproved",
"defaultExpression" : null,
"name" : "Do you approve the request?",
"readable" : true,
"required" : true,
"type" : {
"name" : "enum",
"values" : {
"true" : "Yes",
"false" : "No"
}
}
"variableExpression" : null,
"variableName" : null,
"writable" : true

1
I

"taskCandidateUser" : [],
" id" : "evaluateRequest",
"priority" : null,
"name" : {

"expressionText" : "Evaluate request"
1,
"descriptionExpression" : null,
"categoryExpression" : null,
"assignee" : {

"expressionText" : "openidm-admin"
1,
"taskListeners" : {

"assignment" : [{ } 1,

"create" : [{ } 1
1,
"dueDate" : null

openidm/workflow/taskinstance

* Query all running task instances. For example:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 331

Integrating Business Processes and Workflows

(" FORGEROCK openidm/workflow/taskinstance

--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/workflow/taskinstance?_queryId=query-all-ids"

{
"result" : [{
"tenantId" : "",
"createTime" : "2014-05-12T21:17:10.054+02:00",
"executionId" : "10",
"delegationStateString" : null,
"processVariables" : { },
" id" : "15",
"processInstanceId" : "10",
"description" : null,
"priority" : 50,
"name" : "Evaluate request",
"dueDate" : null,
"parentTaskId" : null,
"processDefinitionId" : "managedUserApproval:1:3",
"taskLocalVariables" : { },
"suspensionState" : 1,
"assignee" : "openidm-admin",
"cachedElContext" : null,
"queryVariables" : null,
"activityInstanceVariables" : { },
"deleted" : false,
"suspended" : false,
" rev" : 1,
"revisionNext" : 2,
"category" : null,
"taskDefinitionKey" : "evaluateRequest",
"owner" : null,
"eventName" : null,
"delegationState" : null
1,
"resultCount" : 1,
"pagedResultsCookie" : null,
"remainingPagedResults" : -1

* Query task instances based on candidate users or candidate groups. For example:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/workflow/taskinstance?_queryId=filtered-
query&taskCandidateUser=managerl"

or

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 332

Integrating Business Processes and Workflows

(" FORGEROCK' openidm/workflow/taskinstance/{id}

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/workflow/taskinstance?_queryId=filtered-
query&taskCandidateGroup=management"

Note that you can include both users and groups in the same query.

openidm/workflow/taskinstance/{id}

* Obtain detailed information for a running task, based on the task ID. For example:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/workflow/taskinstance/15"

"dueDate": null,

"processDefinitionId": "managedUserApproval:1:3",
"owner": null,

"taskDefinitionKey": "evaluateRequest",

"name": "Evaluate request"

* Update task-related data stored in the Activiti workflow engine. For example:

$ curl \
--cacert self-signed.crt \
--header "Content-Type: application/json™ \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "If-Match : *" \
--request PUT \
--data '{"description":"Evaluate the new managed user request"}' \
"https://localhost:8443/openidm/workflow/taskinstance/15"

» Complete the specified task. The variables required by the task are provided in the request body.
For example:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 333

Integrating Business Processes and Workflows

(" FORGEROCK' Example Activiti Workflows With OpeniDM

$ curl \
--cacert self-signed.crt \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request POST \
--data '{"requestApproved":"true"}' \
"https://localhost:8443/openidm/workflow/taskinstance/15?_action=complete"

* Claim the specified task. A user who claims a task has that task inserted into his list of pending
tasks. The ID of the user who claims the task is provided in the request body. For example:

$ curl \
--cacert self-signed.crt \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request POST \
--data '{"userId":"managerl"}' \
"https://localhost:8443/openidm/workflow/taskinstance/15?_action=claim"

17.5. Example Activiti Workflows With OpenIDM

This section describes two example workflows - an email notification workflow, and a workflow that
demonstrates provisioning, using the browser-based user interface.
17.5.1. Example Email Notification Workflow

This example uses the Activiti Eclipse BPMN 2.0 Designer to set up an email notification business
process. The example relies on an SMTP server listening on localhost, port 25.

The example sets up a workflow that can accept parameters used to specify the sender and recipient
of the mail.

${fromSender}

Specifies the sender
${toEmail}

Specifies the recipient

Create a new BPMN2 diagram in Eclipse, then drag and drop components to create the workflow.
This simple example uses a StartEvent, MailTask, and EndEvent.

. Mail Task .

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 334

Integrating Business Processes and Workflows

(" FORGEROCK' Example Email Notification Workflow

When you have created the workflow definition, edit the generated XML source code, adding the
<extensionElements> to the <serviceTask> tag, as follows.

<?xml version="1.0" encoding="UTF-8"7?>
<definitions
xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:activiti="http://activiti.org/bpmn"
xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
xmlns:omgdc="http://www.omg.org/spec/DD/20100524/DC"
xmlns:omgdi="http://www.omg.org/spec/DD/20100524/DI"
typelLanguage="http://www.w3.0rg/2001/XMLSchema"
expressionLanguage="http://www.w3.0rg/1999/XPath"
targetNamespace="http://www.activiti.org/test">
<process id="EmailNotification" name="emailNotification">
<documentation>Simple Email Notification Task</documentation>
<startEvent id="starteventl" name="Start"></startEvent>
<sequenceFlow id="flowl" name="" sourceRef="starteventl"
targetRef="mailtaskl"></sequenceFlow>
<endEvent id="endeventl" name="End"></endEvent>
<sequenceFlow id="flow2" name="" sourceRef="mailtaskl"
targetRef="endeventl"></sequenceFlow>
<serviceTask id="mailtaskl" name="Email Notification"
activiti:type="mail">
<extensionElements>
<activiti:field name="to" expression="${toEmail}"
></activiti:field>
<activiti:field name="from" expression="${fromSender}"
></activiti:field>
<activiti:field name="subject" expression="Simple Email Notification"
></activiti:field>
<activiti:field name="text">
<activiti:expression><![CDATA[Here is a simple Email Notification
from ${fromSender}.]]></activiti:expression>
</activiti:field>
</extensionElements>
</serviceTask>
</process>
<bpmndi:BPMNDiagram id="BPMNDiagram_EmailNotification">
<bpmndi:BPMNPlane bpmnElement="EmailNotification"
id="BPMNPlane_EmailNotification">
<bpmndi:BPMNShape bpmnElement="starteventl" id="BPMNShape_starteventl">
<omgdc:Bounds height="35" width="35" x="170" y="250"></omgdc:Bounds>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="endeventl" id="BPMNShape_endeventl">
<omgdc:Bounds height="35" width="35" x="410" y="250"></omgdc:Bounds>
</bpmndi:BPMNShape>
<bpmndi:BPMNShape bpmnElement="mailtaskl" id="BPMNShape_mailtaskl"'>
<omgdc:Bounds height="55" width="105" x="250" y="240"></omgdc:Bounds>
</bpmndi: BPMNShape>
<bpmndi:BPMNEdge bpmnElement="flowl" id="BPMNEdge_flowl">
<omgdi:waypoint x="205" y="267"></omgdi:waypoint>
<omgdi:waypoint x="250" y="267"></omgdi:waypoint>
</bpmndi:BPMNEdge>
<bpmndi:BPMNEdge bpmnElement="flow2" id="BPMNEdge_flow2">
<omgdi:waypoint x="355" y="267"></omgdi:waypoint>
<omgdi:waypoint x="410" y="267"></omgdi:waypoint>
</bpmndi:BPMNEdge>

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 335

Integrating Business Processes and Workflows

(" FORGEROCK' Example Email Notification Workflow

</bpmndi:BPMNPlane>
</bpmndi:BPMNDiagram>
</definitions>

Save the workflow definition as a bpmn20.xml file (email-notification.bpmn20.xml) in the openidm/workflow
directory.

After you have deployed the workflow, create a script named openidm/script/triggerEmailNotification.js.
The script invokes the workflow.

/*
* Calling 'EmailNotification' workflow
*/

var params = {
" key" : "EmailNotification",
“fromSender" : "noreply@openidm",
“toEmail" : "jdoe@example.com"

T

openidm.action('workflow/processinstance', {"_action" : "createProcessInstance"}, params);

You can also invoke the workflow over the REST interface with the following REST command:

$ curl \
--cacert self-signed.crt \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--data '{
" _key":"EmailNotification",
"fromSender" : "noreply@openidm",
"toEmail":"jdoe@example.com"
) A
--request POST \
"https://localhost:8443/openidm/workflow/processinstance?_action=create"

To schedule the workflow to be invoked regularly, create a schedule configuration object named
openidm/conf/schedule-EmailNotification.json. The following schedule invokes the workflow once per
minute.

{
"enabled" : true,
"type" : "cron",
"schedule" : "0 0/1 * * * ?",
"invokeService" : “script",
"invokeContext" : {
"script" : {
"type" : "text/javascript",
"file" : “script/triggerEmailNotification.js"
H
}
}

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 336

Integrating Business Processes and Workflows

(,' FORGEROCK‘ Sample Workflow - Provisioning User Accounts

17.5.2. Sample Workflow - Provisioning User Accounts

This example, provided in openidm/samples/workflow, uses workflows to provision user accounts. The
example demonstrates the use of the browser-based user interface to manage workflows.

17.5.2.1. Overview of the Sample

The sample starts with a reconciliation process that loads user accounts from an XML file into the
managed users repository. The reconciliation creates two users, with UIDs userl and managerl. Both
users have the same password (Welcomel).

The sample adds two new business roles to the configuration - employee (assigned to user1) and manager
(assigned to managerl).

As part of the provisioning, employees are required to initiate a "Contract Onboarding" process. This
process is a request to add a contractor to the managed users repository, with an option to include
the contractor in the original data source (the XML file).

When the employee has completed the required form, the request is sent to the manager for
approval. Any user with the role "manager" can claim the approval task. If the request is approved, the
user is created in the managed users repository. If a request was made to add the user to the original
data source (the XML file) this is done in a subsequent step.

The workflow uses embedded templates to build a more sophisticated input form. The form is
validated with the server-side policy rules, described in Chapter 9, "Using Policies to Validate Data".

17.5.2.2. Running the Sample

1. Start OpenIDM with the configuration for the workflow sample.

$ cd /path/to/openidm
$./startup.sh -p samples/workflow

2. Run reconciliation over the REST interface.

$ curl \
--cacert self-signed.crt \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request POST \
"https://localhost:8443/openidm/recon? action=recon&mapping=systemXmlfileAccounts managedUser"

Successful reconciliation returns an " _id" object, such as the following:
{"_id":"aead93f5-29ee-423d-b4bl-10449c60886c", "state": "ACTIVE"}

The two users are added to the repository. You can test this with the following REST query, which
shows the two users, managerl and userl.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 337

Integrating Business Processes and Workflows

(,' FORGEROCK’ Sample Workflow - Provisioning User Accounts

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/managed/user/?_queryId=query-all-ids"

{

"result" : [{

" id" : "managerl",

"revt : Q"

" id" : "userl",

"revt : Q"
5o
"resultCount" : 2,
"pagedResultsCookie" : null,
"remainingPagedResults" : -1

3. Log into the user interface as userl, with password welcomel. For information about logging in to
the user interface, see Section 4.2, "Overview of the User View UI".

4. Under "Processes" click "Contractor onboarding process".

,‘\ user! | Profile | Change Security Data | Log out
FORGEROCK
i= Dashboard
My tasks Notifications
You do not have any tasks assigned to you right now. You have no notifications right now.
Processes

Contractor onboarding process

5. Complete the details of the new user, then click Start.

Integrator's Guide OpenIiDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 338

Integrating Business Processes and Workflows

(,' FORGEROCK’ Sample Workflow - Provisioning User Accounts

Contractor onboarding process

Contractor Details

Username
johnb .

Email address

johnb@example.com -
First Name
John -
Last Name
Brand -
Mobile Phone
8934794578 -
Password # Confirmation matches password
- Cannot be blank
sessssne ’
« At least 1 capital letters
Confirm Password At loast 1 numbers
ssssssse - + At least 8 characters
« Cannot contain values from:
userName,givenName,sn

Provision to XML

Yes d
Department

Finance
Job Title

Contract Accountant

6. Log out of the UI.
7. Log into the Ul as managerl, with password Welcomel.

8. Under "Tasks that are in my group's queue" click "Contractor Approval".

i= Dashboard

My tasks

“You do not have any iasks assigned fo you right now.

Tasks that are in my group's queue

» Contractor Approval 1 request
Processes

Contractor onboarding process

9. From the drop-down list, select "Assign to me".
Note that the "Contractor Approval" task has now moved under "My tasks".

10. Under "My tasks" click "Contractor Approval".

Integrator's Guide OpenIiDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 339

Integrating Business Processes and Workflows

(,' FORGEROCK’ Sample Workflow - Provisioning User Accounts

My tasks
= Contractor Approval 1 request
Initiator Key Requested In Actions
queue
Ordinary null May 13, 5 Details
Employee 2014 minutes
Processes

Contractor onboarding process

11. Under Actions, click Details.
The form containing the details of the contractor is displayed.

12. At the bottom of the form, select a decision from the drop-down list (either "Accept" or "Reject"),
then click Complete.
Job Title
Contract Accountant
Description
Accountant
Start Date
05/13/2014
End Date
06/13/2014
Decision
Accept d

e

When you Accept the new contractor details, the user account is created in the repository. You
can check the new account by running the following REST command:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 340

Integrating Business Processes and Workflows

(,' FORGEROCK‘ Sample Workflow - Provisioning User Accounts

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/managed/user/?_queryId=query-all-ids"

{
"result" : [{
" id" : "managerl",
"revt ; "0
oA
" id" : "userl",
"revt ; "0
oA
" id" : "96a9513b-7896-4d22-83cc-6b35a709f0a8",
"revt ; "0
¥ 1,
"resultCount" : 3,
"pagedResultsCookie" : null,
"remainingPagedResults" : -1
}

Display the details of the new user, by running a REST query on the user ID, as follows:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/managed/user/96a9513b-7896-4d22-83cc-6b35a709f0a8"

" id" : "96a9513b-7896-4d22-83cc-6b35a709f0a8",
" rev" : "1",

"startDate" : "05/13/2014",

"manager" : "userl",

"passwordAttempts" : "0",

"department" : "Finance",

"address2" : "",

"endDate" : "06/13/2014",

"givenName" : "John",

"effectiveRoles" : ["openidm-authorized" 1],
"city" : "",

"lastPasswordSet" : "",

"postalCode" : "",

"description" : "Accountant",
"accountStatus" : "active",

"userName" : "johnb",

"stateProvince" : "",

"jobTitle" : "Contract Accountant",

"mail" : "johnb@example.com",

"sn" : "Brand",

"provisionToXML" : "1",
"lastPasswordAttempt" : "Tue May 13 2014 09:56:49 GMT+0200 (SAST)",
"country" : "",

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 341

’, Integrating Business Processes and Workflows
" FORGEROCK' Workflow Use Cases
"telephoneNumber" : "8934794578",
"roles" : ["openidm-authorized"]
"effectiveAssignments" : { },
"postalAddress" : ""
}

You can now log into the Ul as the new user (with the details that you specified in Step 5). Under
"Notifications" you will see a welcome message indicating the working dates of the new user. If
you log in as userl you are notified of the result of the manager's decision.

If you specified that the new user should be added to the original data source, you will see that
the account was added to the XML file:

$ cd /path/to/openidm
$ cat samples/workflow/data/xmlConnectorData.xml

<ri: ACCOUNT_ >
<icf:_ DESCRIPTION__>Accountant</icf: DESCRIPTION__ >
<ri:roles>openidm-authorized</ri:roles>
<ri:mobileTelephoneNumber>8934794578</ri:mobileTelephoneNumber>
<ri:firstname>John</ri:firstname>
<ri:manager>userl</ri:manager>
<ri:startDate>05/13/2014</ri:startDate>
<ri:jobTitle>Contract Accountant</ri:jobTitle>
<icf: UID >67b6bb5f-5457-4ac6-bb49-5d98f2b1f3f8</icf: UID >
<icf: NAME_>johnb</icf: NAME_ >
<ri:email>johnb@example.com</ri:email>
<icf: PASSWORD >Welcomel</icf: PASSWORD >
<ri:department>Finance</ri:department>
<ri:endDate>06/13/2014</ri:endDate>
<ri:lastname>Brand</ri:lastname>

</

ri: ACCOUNT >

If you declined the approval request, the user will not be created in either data source.

You can see the details of the workflow definition in samples/workflow/workflow/
contractorOnboarding.bpmn20.xml.

17.6. Workflow Use Cases

This section describes a number of sample workflows, that demonstrate typical use cases for
OpenIDM. The use cases, provided in /path/to/openidm/samples/usecase, work together to provide a
complete business story, with the same set of sample data. Each of the use cases is integrated with
the default UL

These use cases use OrientDB as a repository by default. Alternative repository configuration

files are provided in /path/to/openidm/samples/usecase/db. If you want to use one of these alternative
repositories, remove the repo.orientdb.json file from the conf/ directory of the use case you are
testing (for example, samples/usecase/usecasel/conf/repo.orientdb.json) and copy the appropriate JDBC

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 342

Integrating Business Processes and Workflows

(" FORGEROCK Use Case 1 - Initial Reconciliation

repository configuration file (repo.jdbc.json) into that conf/ directory. For more information on using
an alternative repository, see Chapter 4, "Installing a Repository For Production" in the Installation
Guide.

The use cases can be run independently, but rely on the data set that is imported during use case 1 -
so you must run use case 1 before running any of the other use cases.

The use cases assume an initial data set of twenty "ordinary" managed users in OpenIDM (user.0 -
user.19). The users are divided as follows:

Users Department Manager Employees Contractors
user.0-user.4 Human Resources user.0 user.0-user.3 user.4
user.5-user.9 Production Planning user.5 user.5-user.8 user.9
user.10-user.14 Sales & Distribution user.10 user.10-user.13 user.14
user.15-user.19 Treasury & Payments user.15 user.15-user.18 user.19

In addition, the following "special" users are defined:

* hradmin - represents the human interaction of the HR department

* systemadmin - represents the human interaction of the populated systems (Business and Project)
* superadmin - represents the manager of the managers

Note that the curl commands in this section use the secure port for OpenIDM (8443) and assume

a self-signed certificate named self-signed.crt, located in the directory from which the command is
launched. For instructions on using the self-signed certificate that is generated when OpenIDM first
starts up, see Section 16.2.2, "Restrict REST Access to the HTTPS Port".

17.6.1. Use Case 1 - Initial Reconciliation

This use case assumes an OpenD]J server and populates the managed user repository with users from
OpenD].

To prepare the sample:
* Download and install OpenD], as described in the OpenD] Install Guide.

This sample assumes that OpenD] is listening on port 1389, the standard LDAP port for users who
cannot use privileged ports.

* During the install, import the user data from the LDIF file /path/to/openidm/samples/usecase/data/
hr data.ldif.

* The use case assumes a user with DN cn=Directory Manager and password password who will bind to
the directory server.

The OpenD]J server now contains the users required for all the workflow use cases.

1. Start OpenIDM with the configuration for use case 1.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 343

https://backstage.forgerock.com/#!/docs/opendj/current/install-guide#gui-install

Integrating Business Processes and Workflows

(" FORGEROCK Use Case 1 - Initial Reconciliation

$ cd /path/to/openidm
$./startup.sh -p samples/usecase/usecasel

2. Run reconciliation to populate the managed user repository with the users from the OpenD]
server.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/openidm/recon? action=recon&mapping=systemHRAccounts managedUser"

3. Query the managed users that were created by the reconciliation process.

$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--request GET \
"https://localhost:8443/openidm/managed/user?_queryId=query-all-ids"

{
"result" : [{

" id" : "user.5",
"rev" : Q"

oA
" id" : "user.10",
"rev" : Q"

oA
" id" : "user.1l",
"rev" : Q"

1,

{
" id" : "hradmin",
"rev" : Q"

oA
" id" : "systemadmin",
"rev" : Q"

oA
" id" : "superadmin",
"rev" : Q"

11,

"resultCount" : 23,
"pagedResultsCookie" : null,
"remainingPagedResults" : -1

23 users will have been created by the reconciliation process. The default password of all the
newly created users is Password.

4. Shut down OpenIDM before you proceed with the next use case.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 344

Integrating Business Processes and Workflows

(" FORGEROCK Use Case 2 - New User Onboarding

$ cd /path/to/openidm
$./shutdown.sh

17.6.2. Use Case 2 - New User Onboarding

This use case demonstrates a new user onboarding process. The process can be initiated by any of
the users created in the previous reconciliation process. In this example, we use user.1 to initiate the
process. user.1 captures the details of a new user, and then submits the new user entry for approval
by the prospective manager of that new user.

The use case includes three separate workflows - onboarding (creation of the new user), sunrise
(commencement of the new user work period) and sunset (termination of the user contract).

The use case also demonstrates email notification with the optional configuration of an external
email service. If you want to use email notification, you must configure the external email service, as
described in Procedure 17.2, "Configuring Email Notification", before you start the workflow.

The use case works with the OpenIDM UI, accessible at the following URL by default: https://
localhost:8443/openidmui/.

Procedure 17.1. Initiating the Onboarding Workflow

1. Start OpenIDM with the configuration for use case 2.

$ cd /path/to/openidm
$./startup.sh -p samples/usecase/usecase2

2. Log into the Ul as user.1 with password password.

Login user.1

Password csssnses

& Remember my usemame ﬁ

3. In this use case, the processes associated with the new user onboarding workflow are visible to
any user who logs into the UI.

My tasks

‘You do not have any tasks assigned 10 you right now.

Processes

User onboarding process

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 345

Integrating Business Processes and Workflows

(" FORGEROCK Use Case 2 - New User Onboarding

Click on the User Onboarding Process and complete the fields for a sample new user. Complete at
least all mandatory fields.

Department. Specifies one of four departments to which the new user will belong (Human
Resources, Production Planning, Sales & Distribution, or Treasury & Payments). The value you
select here determines the "manager" of the new user, to which the request will be sent for
approval. (See the previous table of users for a list of the managers of the various departments.)

User Type. Governs user access to specific accounts. If the User Type is "Employee", the new
user will have access to an account named "Business". This access is represented as an attribute
of the managed user entry in the OpenIDM repository, as follows: accounts : ["Business"]. If the
User Type is "Contractor”, the new user will have no accounts associated with its managed user
representation in OpenIDM.

Send Email Notification. Indicates whether an email should be sent to alert the manager of
the new required approval. The email details used here are defined when you configure email
notification, as described in Procedure 17.2, "Configuring Email Notification". If you select not
to send an email notification, the notification is simply added to the OpenIDM repository, and
appears when the manager logs into the UlI.

4. Click Start to initiate the onboarding workflow.

This action sends the new user request to the corresponding "management" users (the
department manager, as well as the superadmin user, who is an overall manager).

5. Log out of the U, and log back in as the management user of the department that you selected
when you completed the new user form. For example, if you selected "Human Resources", log
in as user.0, which simulates the management user for the HR department. All users have the
password PasswOrd.

Notice that this user now has an Onboarding Approval task in the queue of tasks assigned to his
group.
My tasks

You do not have any tasks assigned to you right now.

Tasks that are in my group's queue

+ Onboarding Approval 1 request
Processes

User onboarding process

6. Click on the Onboarding Approval task and select "Assign to Me".

This action "claims" the task for user.0, removes it from the group queue, and places it in the list
of pending tasks for user.o.

7. Click on the Onboarding Approval task under the My Tasks list and click Details.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 346

Integrating Business Processes and Workflows

(" FORGEROCK Use Case 2 - New User Onboarding

The complete new user request is displayed for the manager's approval. As the manager, you can
add any information that was missing from the original request.

In addition, you can specify the following information for the new user.

» Start Date. Completing this field results in the user being created, with a "startbate" added to
that user's managed user entry. The status of the user is inactive. This field is optional, and is
used by the task scanner to trigger the Sunrise workflow.

* End Date. Completing this field results in the user being created, with an "endbate" added to
that user's managed user entry. The field is optional, and is used by the task scanner to trigger
the Sunset workflow.

* Manager. Selecting "Yes" here adds a "title" property, with a value of "manager", to the new
managed user entry.

* Decision. Selecting "Reject" here terminates the workflow and sends a notification to the user
who initiated the workflow. Selecting "Accept" creates the managed user entry in OpenIDM.
The password of the new user is Password.

Two notifications are created when the request is accepted - one for the user who initiated the
workflow, and one for the newly created user. The notifications are visible in the UI after login.
If you selected email notification, one email is sent to the user defined when you configured
email notification, as described in Procedure 17.2, "Configuring Email Notification".

8. At the bottom of the form, there is an option either to Requeue the request or to Complete it.
Click Complete.

If you click Requeue here, the task is removed from the list of My Tasks for that user, and
returned to the list of tasks pending for that group. The task can then be claimed by any member
of that group.

When the new user request has been approved, the user is created in the OpenIDM repository. If
you did not include a Start Date in the manager approval, you should now be able to log into the

UI with the details of the new user. If you included a Start Date, you need to complete the sunrise
workflow before the user account is active (which will enable you to log in as this user).

Procedure 17.2. Configuring Email Notification
This step is optional, and required only if you want to use email notification with this workflow.

1. Edit the settings in the file /path/to/openidm/samples/usecase/usecase2/conf/external.email.json to
match the settings of your mail server. For example:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 347

Integrating Business Processes and Workflows

(" FORGEROCK Use Case 2 - New User Onboarding

$ cd /path/to/openidm
$ more samples/usecase/usecase2/conf/external.email.json

{
"host" : "smtp.gmail.com",
"port" : "587",
"username" : "my-username"
"password" : "my-password",
"mail.smtp.auth" : "true",
"mail.smtp.starttls.enable" : "true"

2. Change the notification email parameters in the workflow definition file. To edit the workflow
definition file:

1. Copy the workflow archive (.bar) file (samples/usecase/usecase2/workflow/newlUserCreate.bar) to a
temporary location.

2. Unzip the temporary workflow .bar file. This step extracts the workflow definition file
(newUserCreate.bpmn20.xml) and two xhtml templates required by the workflow.

$ unzip newUserCreate.bar

Archive: newUserCreate.bar
inflating: nUCDecideApprovalForm.xhtml
inflating: nUCStartForm.xhtml
inflating: newUserCreate.bpmn20.xml

3. Edit the extracted workflow definition file (newUserCreate.bpmn26.xml). The email parameters are
towards the end of this file:

$ cd /path/to/openidm/samples/usecase/usecase2/workflow

$ grep emailParams newUserCreate.bpmn20.xml
emailParams = [from : 'usecasetest@forgerock.com', to : 'notification@example.com'

’

Change the from and to parameters to reflect valid email addresses.

4. Zip up the amended workflow definition file, and the xhtml templates into a workflow .bar file.
$ zip newUserCreate.bar newUserCreate.bpmn20.xml nUCDecideApprovalForm.xhtml nUCStartForm.xhtml
updating: nUCDecideApprovalForm.xhtml (deflated 82%)
updating: nUCStartForm.xhtml (deflated 82%)
updating: newUserCreate.bpmn20.xml (deflated 85%)

5. Copy the new .bar file to the workflow directory, overwriting the existing .bar file.

$ cp /tmp/newUserCreate.bar /path/to/openidm/samples/usecase/usecase2/workflow

Procedure 17.3. Initiating the Sunrise Workflow

If a sunrise date is specified for the new user, the user is created in the repository, with an inactive
account status.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 348

Integrating Business Processes and Workflows

(" FORGEROCK Use Case 2 - New User Onboarding

To trigger the sunrise workflow (which activates the account), enable the sunrise task scanning
schedule. The schedule is disabled by default.

Modify the schedule configuration file (samples/usecase/usecase2/conf/schedule-taskscan sunrise.json),
setting the "enabled" property to true.
$ cd /path/to/openidm

$ grep "enabled" samples/usecase/usecase2/conf/schedule-taskscan_sunrise.json
"enabled" : true,

The scan runs every minute, and checks the repository for users that have a sunrise date that is
anything up to one day after the current date. When the scan is triggered, it locates the newly
created user and starts the sunrise workflow on this user. The workflow takes the following
actions:

* Changes the account status of the user to active.

* Generates a notification for the new user, which is visible when the user logs into the UL

Notifications

)]

Procedure 17.4. Initiating the Sunset Workflow

If a sunset date is set for the new user, you can trigger the sunset workflow to deactivate the user
account when the end of his work period is reached.

1.

To trigger the sunset workflow, enable the sunset task scanning schedule. The schedule is
disabled by default.

Modify the schedule configuration file (samples/usecase/usecase2/conf/schedule-taskscan sunset.json),
setting the "enabled" property to true.

$ cd /path/to/openidm
$ grep "enabled" samples/usecase/usecase2/conf/schedule-taskscan_sunset.json

"enabled" : true,

The scan runs every minute, and checks the repository for users that have a sunset date that is
anything up to one day after the current date. When the scan is triggered, it locates users whose
contracts are about to end, and starts the sunset workflow on these users. When the workflow

is initiated, it assigns a task to the manager of the affected user. In this example, the task is
assigned to user.o.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 349

Integrating Business Processes and Workflows

(" FORGEROCK' Use Case 3 - User Access Request

2. When the sunset schedule has been enabled, log into OpenIDM UI as user.0 (with password
Password). If the user's sunset date is within one day of the current date, a "Contract Termination"
task becomes available under the 'My tasks' section for the manager of that user.

Select the contract termination task and click Details.

3. In the Decision field, select either "Accept termination" or "Modify date", then click Complete.
When you accept the termination, the user's account status is set to inactive and the HR
administrative user receives a notification to that effect, next time that user logs into the UI. The
deactivated user is no longer able to log into the UI.

If you select to modify the date, the sunset date of that user is changed to the value that you
specify in the End Date field on that form. The management user receives a Ul notification that

the employee's contract has been extended.

4. Shut down OpenIDM before you proceed with the next use case.

$ cd /path/to/openidm
$./shutdown.sh

17.6.3. Use Case 3 - User Access Request

This use case simulates a user access request, with two levels of approval for the request.

If you want to use email notification with this workflow, follow the instructions in Procedure 17.2,
"Configuring Email Notification" before you start the workflow, substituting usecase3/conf/
external.email.json and usecase3/workflow/accessRequest.bpmn20.xml for the files described in that

procedure.

1. Start OpenIDM with the configuration for use case 3.
$ cd /path/to/openidm

$./startup.sh -p samples/usecase/usecase3
2. Log into the Ul as user.1 with password Password.

user.1 belongs to the HR department and, in this workflow, is requesting access to a Project
system.

3. Click on the Access Request Process in the list of available processes and click Start to start the
workflow.

A User Access Request appears in the list of tasks for user.1.
4. Select the User Access Request task and click Details.

The resulting form indicates the various systems to which the user may request access.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 350

Integrating Business Processes and Workflows

(" FORGEROCK' Use Case 3 - User Access Request

Access to Business system. This field reflects the current value of the "accounts" property for that
user in the repository. If the value includes "Business" this field is True.

Access to Project system. Set this field to True to request Project access for user.1.

Send Email Notification. Indicates whether an email should be sent to alert the manager of
the new access request. The email details used here are defined when you configure email
notification, as described in Procedure 17.2, "Configuring Email Notification". If you select not
to send an email notification, the notification is simply added to the OpenIDM repository, and
appears when the manager logs into the Ul

Select either Cancel, to terminate the process, or Request, to start a user task, assigned to the
manager of the user requesting access (user.0 in this example).

5. Log out of the Ul and log back in as the manager (user.0 with password Password).

6. Under "Tasks that are in my group's queue" click "User Access Request Approval" and select
"Assign to me".

Note that the "User Access Request Approval" task has now moved under "My tasks".
7. Under "My tasks" click "User Access Request Approval" and click Details.

8. The details of the access request are displayed. The manager is able to modify the access rights.
Select Accept or Reject to approve or deny the request.

Rejecting the request results in a notification being sent to the user who made the request. If you
have enabled email notification, a single email is sent to the account defined when you configure
email notification, as described in Procedure 17.2, "Configuring Email Notification".

Accepting the request initiates a second approval task, assigned to the systemadmin user.

Usemame user!
First Name ~Aarika
Last Name Atpco

Email user1 @maildomain.net

Access to Business | True =l
system:
Access to Project system: | True =l
Decision | Accept =l |-

g @

Click Complete to complete the task.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 351

Integrating Business Processes and Workflows

(" FORGEROCK Use Case 4 - Orphan Account Detection

9. Log out of the UI and log in as the systemadmin user (with password Password).
This user now has one User Access Request Approval task in his queue.

10. Select the task and click Details.
This task interface is similar to that of the task that was assigned to the manager.
Rejecting the request results in a notification being sent to the user who made the request.

Accepting the request updates the managed/user record in OpenIDM, to reflect the approved
access changes.

If you have enabled email notification, a single email is sent to the account defined when you
configured the external email service (Procedure 17.2, "Configuring Email Notification"),
indicating whether the request has been accepted or rejected.

Note that this sample includes an escalation step that is attached to the manager approval task. If
the manager does not complete assessment of the user task within ten minutes of its initiation, a
new user task is created and assigned to the superadmin user. This task has the same interface and
functionality as the task assigned to the manager. Accordingly, when the superadmin user completes
the task, the execution is passed to the systemadmin user for approval.

Shut down OpenIDM before you proceed with the next use case.

$ cd /path/to/openidm
$./shutdown.sh

17.6.4. Use Case 4 - Orphan Account Detection

This use case demonstrates two asynchronous tasks, started from a reconciliation process:
* Detecting orphan accounts on a target object set

* Handling ambiguous results during correlation

This use case relies on a customized synchronization configuration (mapping) file, named
syncManagedBusiness.json, in the /path/to/openidm/samples/usecase/usecase4/conf djrectory.

This file defines a mapping (recon managedUser systemBusiness) between a source (managed users) and a
target object set. The target object set is defined in the file samples/usecase/usecase4/data/business.csv.
The business.csv file includes all users from the initial reconciliation (described in Section 17.6.1, "Use
Case 1 - Initial Reconciliation"). These users are categorized as employees, and therefore include the
property "accounts" : ["Business"] in their managed user entry (see Section 17.6.2, "Use Case 2 - New
User Onboarding" for an explanation of the User Type).

The mapping includes the following "validSource" field:

"validSource" : {

"type" : "text/javascript",

"file" : "script/isSourceValidBusiness.js"
h

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 352

Integrating Business Processes and Workflows

(" FORGEROCK Use Case 4 - Orphan Account Detection

This field references a script which specifies that only those users who are employees are taken into
account during the reconciliation.

In addition, the business.csv file includes the following users:

* user.50. This user is defined only in the .csv file, and not in the managed/user repository. When a
reconciliation operation is run, this user is detected as an orphan account. The orphan account
workflow is triggered when an "UNQUALIFIED" or "UNASSIGNED" situation is encountered, as
indicated in this section of the mapping:

{
"situation" : "UNQUALIFIED",
"action" : {
"workflowName" : "orphanAccountReport",
"type" : "text/javascript",
"file" : "workflow/triggerWorkflowFromSync.js"
}
I
{
"situation" : "UNASSIGNED",
"action" : {
"workflowName" : "orphanAccountReport",
"type" : "text/javascript",
"file" : "workflow/triggerWorkflowFromSync.js"
}
}

¢ user.33. This user has a "userName" attribute of "user.3" (which is the same as the "userName" attribute
of the user, user.3). The correlation query of the reconciliation operation is based on the "userName"
attribute. During the correlation query, two candidate users are therefore correlated with the same
managed user (user.3), and the result is ambiguous. The manual match workflow is triggered when
an "AMBIGUOUS" situation is encountered, as indicated in this section of the mapping:
{
“situation" : "AMBIGUOUS",
"action" : {
"workflowName" : "manualMatch",
"type" : "text/javascript",
"file" : "workflow/triggerWorkflowFromSync.js"

1. Before you start with this use case, rename the mapping file to sync.json.

$ cd /path/to/openidm/samples/usecase/usecase4/conf
$ mv syncManagedBusiness.json sync.json

2. Start OpenIDM with the configuration for use case 4.

$ cd /path/to/openidm
$./startup.sh -p samples/usecase/usecase4

You will see a warning in the Felix console about a password not being defined in the CSV file
(WARN Password attribute is not defined. [CSVFileConfiguration]). You can ignore this warning.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 353

Integrating Business Processes and Workflows

(" FORGEROCK Use Case 5 - Certification

3. Run a reconciliation operation, according to the mapping defined in sync.json.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/openidm/recon? action=recon&mapping=recon_managedUser systemBusiness"

When the reconciliation operation finds the ambiguous entry (user.3) and the orphan
entry (user.50) in the CSV file, two asynchronous workflows are launched (manualMatch and
orphanAccountReport), as indicated in the mapping file, described previously.

4. Log into the UI as the systemadmin user, with password Password.
5. Select the Manual Linking task from the My tasks list and click Details.

The Possible targets field presents a list of target entries to which the ambiguous record can be
linked. In this example, user.3 - Atrc, Aaron and user.33 - Atrc, Aaron are the two candidate users
found in the target object set by the correlation query. When you select one of these values, the
workflow manually links the managed user (user.3) to the selected user.

If you select Ignore, here, no action is taken (no link is created), and the workflow terminates.
6. Select the Orphan Account task from the My tasks list and click Details.

The Link to field enables you to enter an existing managed user ID to which this orphan account
should be linked. For the purposes of this example, enter user.5.

The Delete option deletes the user from the target object set (the CSV file in this case) and
terminates the workflow.

7. Shut down OpenIDM before you proceed with the next use case.

$ cd /path/to/openidm
$./shutdown.sh

17.6.5. Use Case 5 - Certification

This use case includes two scheduled tasks that demonstrate a certification workflow.

The first scheduled task fetches all the managed users and begins a certification workflow for each
user. The workflow shows the roles that are assigned to each user and allows you to accept (certify)
or change those role assignments. The second scheduled task fetches all the defined managed

roles and begins a certification workflow for the roles. The workflow demonstrates managed role
assignment.

In this use case, four managed roles are defined, based on the departments to which the managed
users belong. The managed roles are Human Resources, Production Planning, Sales and Distribution, and

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 354

Integrating Business Processes and Workflows

(" FORGEROCK Use Case 5 - Certification

Treasury and Payments. Every user is assigned a dynamic role by default, which corresponds to that
user's department.

Note

By default the scheduled tasks used in this workflow run every minute, so you will need to wait a minute

before logging into the UI, after enabling the schedules. You can change the frequency by editing the
"schedule" property in the schedule configuration files (schedule-certification.json and schedule-
certificationEntitlements.json). This property takes standard cron syntax. Every minute, a new task is created
for each user or role, so you will see several tasks in the group queue if you log in to the UI after some time. In
a live deployment, this kind of workflow would probably only run once every few months.

1. Start OpenIDM with the configuration for use case 5.

$ cd /path/to/openidm
$./startup.sh -p samples/usecase/usecase5

2. Define the four managed roles over the REST interface, by sending the following PUT requests to
the managed/role endpoint.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "If-None-Match: *" \
--request PUT \
--data '{
"properties": {
"description"”: "Role for Human Resources department"

}
"assignments": {
"adl": {
"attributes": [
{
"value": [
"CN=cisco_vpn,DC=example,DC=com"
1,
"assignmentOperation": "mergeWithTarget",
"unassignmentOperation": "removeFromTarget",
"name": "memberOf"
}
1
}
}
"name": "Human Resources"
1 AN
"https://localhost:8443/openidm/managed/role/human-resources"
$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "If-None-Match: *" \

--request PUT \

--data '{

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 355

(/’ FORGEROCK

Integrating Business Processes and Workflows
Use Case 5 - Certification

"properties": {

"description”: "Role for Production Planning department"
}'
"assignments": {
"adl": {
"attributes": [
"value": [
"CN=intranet,DC=example,DC=com",
"CN=email, DC=example,DC=com",
"CN=radius_dialin,DC=example,DC=com"
]l
"assignmentOperation": "mergeWithTarget",
"unassignmentOperation": "removeFromTarget",
"name": "memberOf"
}
1
}
}'
"name": "Production Planning"
A
"https://localhost:8443/openidm/managed/role/production-planning”
$ curl \

--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "If-None-Match: *" \
--request PUT \
--data '{
"properties”: {

"description”: "Role for Sales and Distribution department"
}’
"assignments": {

"adl": {

"attributes": [

"value": [
"CN=intranet,DC=example,DC=com",
"CN=email,DC=example,DC=com"

]l

"assignmentOperation": "mergeWithTarget",
"unassignmentOperation": "removeFromTarget",
"name": "memberOf"
}
1
}
}'
"name": "Sales and Distribution"
A
"https://localhost:8443/openidm/managed/role/sales-distribution"
$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "If-None-Match: *" \

--request PUT \

--data '{

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

356

Integrating Business Processes and Workflows

(" FORGEROCK Use Case 5 - Certification

"properties": {
"description”: "Role for Treasury and Payments department"
}'
"assignments": {
"adl": {
"attributes": [
{
"value": [
"CN=intranet,DC=example,DC=com"
]l
"assignmentOperation": "mergeWithTarget",
"unassignmentOperation": "removeFromTarget",
"name": "memberOf"

}
1
}
}’

"name": "Treasury and Payments"
A
"https://localhost:8443/openidm/managed/role/treasury-payments"

3. To trigger the user certification scheduled task, enable the schedule in the schedule configuration
file (schedule-certification.json).

$ cd /path/to/openidm/samples/usecase/usecase5/conf/
$ more schedule-certification.json

"enabled" : true,
"type" : "cron"

4. Log into the UI as user.0 with password Password.
user.0 represents the manager of the users who are being certified.

5. Under "Tasks that are in my group's queue" click "Role Status Check". A scheduled task has been
started for each managed user. Choose one of the users, for example, user.1, and select "Assign
to me" under the Actions column.

The "Role Status Check" task for that user moves under "My tasks".

6. Under "My tasks" click "Role Status Check" and click Details.

7. The Access Status Check window shows the details of the user for whom the certification is being
processed, and a list of roles that can be assigned.

An x in the first column indicates that the role is currently assigned to the user. A value in the
second column indicates the roles that will be assigned to the user when the certification process
is complete.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 357

Integrating Business Processes and Workflows
Use Case 5 - Certification

(/’ FORGEROCK

If the role is dynamic, that is, assigned to the user based on the department to which the user
belongs, the value is read-only. user.1 has the human-resources role assigned dynamically, as a
function of the department to which this user belongs.

Access Status Check

UserName | user.1
Family Name | Atp
Given Name | Aaren
Email | user.1@maildomain.net
Department | Human Resources
Role name Managed user
Current value New value
human-resources X X

production-planning - O
sales-distribution - @)

treasury-payments - @]

Change j

Certification result:

Close

8. Select the appropriate roles that should be assigned to this user, then select one of the following
options from the "Certification result" list:

* Change. The user's role assignments are updated, based on the values specified in the second
column.

* Certify. The user's role assignments are not updated. In other words, the user's current role
assignments are certified.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)

Copyright © 2011-2017 ForgeRock AS. All rights reserved. 358

Integrating Business Processes and Workflows

(" FORGEROCK Use Case 5 - Certification

10.

11.

12.

13.

» Escalate. The task is reassigned to the superadmin user. To test this, log out, and log in again
as the superadmin. The superadmin can select whether to change or certify the role assignments.

When you have completed the role selection, and the action to be taken, click Complete.
Clicking Requeue here simply returns the task to the list of pending tasks in that group's queue.
Log out of the Ul

This is the end of the first scheduled task.

Trigger the managed role certification by enabling the scheduled task in the schedule
configuration file (schedule-certificationEntitlements.json).

$ cd /path/to/openidm/samples/usecase/usecase5/conf/
$ more schedule-certificationEntitlements.json

"enabled" : true,
"type" : "cron"

Log into the UI as systemadmin with password Password.
Under "My tasks" select "Entitlement Status Check".

Under the "Key" column, you will see the names of the various managed roles whose entitlements
are being certified in this workflow.

Select one of the entitlement check tasks (for example, for the human-resources role) and click
Details.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 359

Integrating Business Processes and Workflows

(" FORGEROCK Use Case 5 - Certification

Role Status Check

Role Name | Human Resources
Role ID | human-resources

Role description | Role for Human Resources departi

Assignment Name ad1
Name memberOf
Assignment Operation mergeWithTarget
Unassignment Operation removeFromTarget
Value CN=cisco_vpn,DC=example,DC=com
Certification result: | Certify j

-

14. The Role Status Check panel shows the name, ID and description of the role whose assignments

15.

or entitlements you are certifying. For each assignment, the name of the attribute whose value is
assigned, and the assignment and unassignment operations are indicated.

The only field that can be edited on this panel is the "Value" field, which specifies the value that
should be used for the named attribute when this role is assigned to a user. To edit the value,
click in the field and either replace the existing value or press Enter at the end of the existing
value to add a new value. Because this attribute is multivalued, multiple values are indicated by
typing them on separate lines.

For more information about managed roles and assignment and unassignment operations, see
Section 8.3, "Configuring Custom Roles".

Enter the values that should be used for this attribute, then select one of the following options
from the "Certification result" list:

» Update. The role definition is updated to use the attribute value or values that you specified in
the "Value" field.

* Certify. The role definition is not updated and the current assignment value is certified.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 360

Integrating Business Processes and Workflows

(" FORGEROCK Use Case 6 - Password Change Reminder

When you have completed the role selection, and the action to be taken, click Complete.
This is the end of the role entitlement workflow.

16. Shut down OpenIDM before you proceed with the next use case.

$ cd /path/to/openidm
$./shutdown.sh

17.6.6. Use Case 6 - Password Change Reminder

This use case demonstrates using the task scanner to trigger a password change reminder workflow
for managed users.

In this example, each managed user entry in OpenIDM has a dedicated attribute, lastPasswordSet, that
stores the date on which the password was last changed. The value of this attribute is updated by an
onstore script, defined in the managed user configuration file (conf/managed.json), as follows:

"onStore" : {

"type" : "text/javascript",

"file" : "script/onStoreManagedUser.js"
+

When a new password is stored for a user, the script sets the date on which this change was
made. The task scanner periodically scans the lastPasswordSet attribute, and starts the workflow if
the password was changed more than an hour ago. This condition is configured in the schedule
configuration file (schedule-taskscan passwordchange.json):

$ cd /path/to/openidm
$ more samples/usecase/usecase6/conf/schedule-taskscan_passwordchange.json

"condition" : {
"before" : "${Time.now - 1h}"

}

’

Obviously, in a real deployment, the period between required password changes would be longer, and
this value would need to be set accordingly. For the purposes of testing this use case, you might want
to set the value to a shorter period, such as "${Time.now - 1m}", which will send the notification one
minute after a password change.

By default, the workflow sends notifications to the user entry, visible when the user logs into the UI.
If you want notifications sent by email, configure the external email service, as follows:

1. Edit the settings in the file /path/to/openidm/samples/usecase/usecase6/conf/external.email.json to
match the settings of your mail server. For example:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 361

Integrating Business Processes and Workflows

(" FORGEROCK Use Case 6 - Password Change Reminder

$ cd /path/to/openidm
$ more samples/usecase/usecase6/conf/external.email.json

{
"host" : "smtp.gmail.com",
"port" : "587",
"username" : "my-username"
"password" : "my-password",
"mail.smtp.auth" : "true",
"mail.smtp.starttls.enable" : "true"

2. Enable email notification in the script file that starts the workflow (samples/usecase/usecase6/script/
passwordchange.js). For example:

$ cd /path/to/openidm
$ more samples/usecase/usecase6/script/passwordchange.js

/*global objectID*/

(function () {
var params = {
"userId" : objectID,
"emailEnabled" : "true",
" key": "passwordChangeReminder"

’

3. Make sure that all users have a valid email address as the value of their mail attribute, in the
OpenIDM repository.

The task scanning schedule is disabled by default. To test this use case, follow these steps:

1. Enable the task scanning schedule by setting enabled to true in the schedule configuration file
(schedule-taskscan passwordchange.json).

$ cd /path/to/openidm
$ more samples/usecase/usecase6/conf/schedule-taskscan_passwordchange.json

"enabled" : true

2. Start OpenIDM with the configuration for use case 6.

$ cd /path/to/openidm
$./startup.sh -p samples/usecase/usecaseb

3. Log into the Ul as any of the users listed in the introduction to this section (for example, user.4,
with password Password).

The user sees the following notification upon login:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 362

Integrating Business Processes and Workflows

(" FORGEROCK' Use Case 6 - Password Change Reminder

Notifications

If the password has not been changed after five minutes, a second notification is sent to the user.
Notifications

If the password has not been changed two minutes after this second notification, the user's
account is deactivated and that user is no longer able to log into the UlI.

4. (Optional) To avoid the second notification, or the account deactivation, you can change the user
password through the UI, as follows:

a. Log into the Ul as the user whose password you want to change and click Change Security
Data at the top right of the page.

b. Enter the existing password (in this case Password).

c. Enter a new password that conforms to the requirements of the password policy.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 363

Using Audit Logs

(" FORGEROCK Audit Log Types

Chapter 18

Using Audit Logs

OpenIDM auditing can publish and log all relevant system activity to the targets you specify. Auditing
can include data from reconciliation as a basis for reporting, access details, and activity logs that
capture operations on internal (managed) objects and external (system) objects. Auditing provides
the data for all the relevant reports, including orphan account reports.

The auditing interface allows you to push auditing data to local files, to the OpenIDM repository, and
to a remote system.

18.1. Audit Log Types

This section describes the types of audit log OpenIDM provides.
Access Log
OpenIDM writes messages concerning access to the REST API in this log.
Default file: openidm/audit/access.csv
Activity Log
OpenIDM logs operations on internal (managed) and external (system) objects to this log type.

Entries in the activity log contain identifiers, both for the action that triggered the activity, and
also for the original caller and the relationships between related actions.

Default file: openidm/audit/activity.csv

Reconciliation Log
OpenIDM logs the results of a reconciliation run, including situations and the resulting actions
taken to this log type. The activity log contains details about the actions, where log entries
display parent activity identifiers, recon/reconIb.

Default file: openidm/audit/recon.csv

Where an action happens related to a higher level business function, the log entry points to a parent
activity for that function. The relationships are hierarchical. For example, a synchronization operation

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 364

Using Audit Logs

(" FORGEROCK Audit Log Formats

could result from scheduled reconciliation for an object type. OpenIDM also logs the top level root
activity with each entry, making it possible to query related activities.

18.2. Audit Log Formats

This section describes the audit log formats to help you map these to the reports you generate.

Access Log Fields
The access log includes the following information:
" ig
UUID for the message object, such as "0419d364-1b3d-4e4f-b769-555c3cad98b0"
"action"
Action requested, such as "authenticate"
nipe

IP address of the client. For access from the local host, this can appear for example as
"0:0:0:0:0:0:0:1%0".

"principal”
Principal (username) requesting the operation, such as "openidm-admin"
"roles"
Roles associated with the principal, such as "[openidm-admin, openidm-authorized]"
"status"
Result of the operation, such as "Success"
"timestamp"
The time that OpenIDM logged the message, in UTC format, for example "2012-11-18708:48:00.1602"
"userid"

The ID (_id) of the user requesting the operation, such as openidm-admin, jdoe or a UUID that has
been generated by the server, such as "0d7532e2-2b45-420e-b10e-c35684c633fd".

Activity Log Fields

The activity log includes the following information for each entry:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 365

Using Audit Logs

(" FORGEROCK' Audit Log Formats

" jgn
UUID for the message object, such as "0419d364-1b3d-4e4f-b769-555c3cad98b0"
"action"
Action performed on that entry, such as "create".
"activityId"
UUID for the activity corresponding to the UUID of the resource context
"after"
JSON representation of the object resulting from the activity
"before"
JSON representation of the object prior to the activity
"changedFields"

List of the fields that were changed as a result of the activity. This list takes into consideration
only those fields that have been configured as "watchedFields" in the conf/audit.json file.

"message"

Human readable text about the activity
"objectId"

Object identifier, such as "managed/user/jdoe" Or "managed/user/38e29216-4b0e-4701-8a6f-ed8bf69692c7".
"parentActionId"

UUID of the action leading to the activity
"passwordChanged"

Boolean (true or false) indicating whether the action resulted in a password change.
"requester"”

Principal requesting the operation
"rev"

Object revision number

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 366

Using Audit Logs

(" FORGEROCK' Audit Log Formats

"rootActionId"

UUID of the root cause for the activity. This matches a corresponding "rootActionId" in a
reconciliation message.

"status"
Result of the operation, such as "SuUCCESS"
"timestamp"

Time when OpenIDM logged the message, in UTC format, for example "2012-11-18T08:48:00.160Z"

Reconciliation Log Fields

Reconciliation messages include the following information:

" ggn
UUID for the message object, such as "0419d364-1b3d-4e4f-b769-555c3cad98b0"

"action"
Synchronization action, such as "CReATE". For a list of possible actions, see Section 12.13.5,
"Synchronization Actions".

"actionID"

The unique ID assigned to the action.
"ambiguousTargetObjectIds"

When the situation is AMBIGUOUS or UNQUALIFIED and OpenIDM cannot distinguish between
more than one target object, OpenIDM logs the identifiers of the objects in this field in comma-
separated format. This makes it possible to figure out what was ambiguous afterwards.

"entryType"

The type of reconciliation log entry, such as "start", or "summary".
"exception"

The stack trace of the exception, if any.
"mapping"

The name of the mapping used for the reconciliation (defined in conf/sync.json, for example
"systemLdapAccounts managedUser"

"message"”

Human readable text about the reconciliation action that was taken.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 367

Using Audit Logs

(" FORGEROCK Audit Log Formats

"messageDetail”

For the "summary" entry type, this field contains details about that specific stage of the
reconciliation run, such as the stage name and description, start and end time, and so forth.

When script exceptions are encountered during a reconciliation run, the error details can also be
stored in this property.

For script exception details to be pulled in, the script exception must take the following format:

"throw {
'openidmCode' : HTTP error code,
‘message' : error message,
'detail' : {
details
}
Ttk
"reconId"

UUID for the reconciliation operation, which is the same for all entries pertaining to the
reconciliation run.

"reconciling"
What OpenIDM is reconciling, "source" for the first phase, "target" for the second phase
"rootActionId"

UUID of the root cause for the activity. This matches a corresponding "rootActionId" in an activity
message.

"situation"

The situation encountered. For a list of possible situations, see Section 12.13.1, "Synchronization
Situations".

"sourceObjectId"

The object identifier on the source system, such as "system/xmlfile/account/bjensen" Or "managed/user/
bjensen" (depending on the resource configured as the source in the mapping).

"status"
Result of the operation, such as "Success"
"targetObjectId"

The object identifier on the target system, such as "system/xmlfile/account/bjensen” OT "managed/user/
bjensen" (depending on the resource configured as the target in the mapping).

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 368

Using Audit Logs

(" FORGEROCK Audit Configuration

"timestamp"

Time when OpenIDM logged the message, in UTC format, for example "2012-11-18T08:48:00.160Z"

18.3. Audit Configuration

OpenIDM exposes the audit logging configuration under https://localhost:8443/openidm/config/audit for
the REST API, and in the file conf/audit.json where you installed OpenIDM. A sample conf/audit.json
configuration file follows:

{
"eventTypes" : {
“"activity" : {
“filter" : {
"actions" : [
"create",
"update",
"delete",
"patch",
“action"
1
Iro
"watchedFields" : [],
"passwordFields" : ["password" |
Iy
"recon" : { }
o
"logTo" : [
{
"logType" : "csv",
"location" : "audit",
"recordDelimiter" : ";",
"ignorelLoggingFailures" : true
+
{
"logType" : "repository",
"useForQueries" : true,
"ignorelLoggingFailures" : true
}
1,
“"exceptionFormatter" : {
“type" : “text/javascript",
“"file" : "“bin/defaults/script/audit/stacktraceFormatter.js"
}
}

18.3.1. Event Types

The eventTypes configuration specifies what events OpenIDM writes to audit logs. OpenIDM supports
the following event types: access, activity, synchronization, and reconciliation. The filter for actions
under activity logging shows the actions on managed or system objects for which OpenIDM writes to
the activity log.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 369

Using Audit Logs

(" FORGEROCK' Event Types

The filter actions list enables you to configure the conditions that result in actions being written to
the activity log.

read

When an object is read by using its identifier. By default, read actions are not logged. Add the
"read" action to the list of actions to log all read actions.

Note that, due to the potential result size in the case of read operations on system/ endpoints, only

the read is logged, and not the resource detail. If you really need to log the complete resource
detail, add the following line to your conf/boot/boot.properties file:

openidm.audit.logFullObjects=true

create
When an object is created.
update
When an object is updated.
delete
When an object is deleted.
patch
When an object is partially modified.
query

When a query is performed on an object. By default, query actions are not logged. Add the "query"
action to the list of actions to log all query actions.

Note that, due to the potential result size in the case of query operations on system/ endpoints,
only the query is logged, and not the resource detail. If you really need to log the complete
resource detail, add the following line to your conf/boot/boot.properties file:

openidm.audit.logFullObjects=true

action
When an action is performed on an object.
You can optionally add a filter triggers list that specifies the actions that are logged for a particular

trigger. For example, the following addition to the audit.json file specifies that only create and update
actions are logged for an activity that was triggered by a recon.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 370

Using Audit Logs

(" FORGEROCK Log To List

“filter" : {
"actions" : [
"create",
"update",
"delete",
"patch",
“action"
I
“"triggers" : {

"recon" : [
"create",
"update"
1
}
1
"watchedFields" : [],

If a trigger is provided, but no actions are specified, nothing is logged for that trigger. If a trigger
is omitted, all actions are logged for that trigger. In the current OpenIDM release, only the recon
trigger is implemented. For a list of reconciliation actions that can be logged, see Section 12.13.5,
"Synchronization Actions".

The watchedFields parameter enables you to specify a list of fields that should be "watched" for
changes. When the value of one of the fields in this list changes, the change is logged in the audit log,
under the column "changedFields". Fields are listed in comma-separated format, for example:

"watchedFields" : ["email", "address"]

The passwordFields parameter enables you to specify a list of fields that are considered passwords.
This parameter functions much like the watchedFields parameter in that changes to these field values
are logged in the audit log, under the column "changedfFields". In addition, when a password field is
changed, the boolean "passwordChanged" flag is set to true in the audit log. Fields are listed in comma-
separated format, for example:

"passwordFields" : ["password", "username"]

18.3.2. Log To List

The logTo list enables you to specify the format of the log, where it is written, and various parameters
for each log type.

logType
The format of the audit log. The log type can be one of the following:
* csv - write to a comma-separated variable format file.

The "location" property indicates the name of the directory in which the file should be written,
relative to the directory in which you installed OpenIDM.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 371

Using Audit Logs

(" FORGEROCK Log To List

Audit file names are fixed, access.csv, activity.csv, and recon.csv.
The "recordDelimiter" property enables you to specify the separator between each record.
* repository - write to the OpenIDM repository.

OpenlDM stores entries under the /openidm/repo/audit/ context. Such entries appear as audit/
access/ id, audit/activity/ id, and audit/recon/ id, where the id is the UUID of the entry, such as
0419d364-1b3d-4e4f-b769-555c3cad98bo.

In the OrientDB repository, OpenIDM stores log records in the audit access, audit activity, and
audit recon tables.

In a JDBC repository, OpenIDM stores records in the auditaccess, auditactivity, and auditrecon
tables.

The "useForQueries" boolean property indicates whether the repository logger should be used to
service reads and query requests. The value is true by default. If "useForQueries" is set to false,
the CSV file is used to service read and query requests.

* router - enables log events to be directed to any endpoint in the system, such as system/
scriptedsql Or endpoint/myhandler.

As noted with previous instances of logType, the location specifies the relative directory, and
useForQueries defines whether the logger is used to service read and query requests.

ignoreLoggingFailures

In certain situations, you might want to tolerate the inability to write to an audit log and prevent

an exception from being thrown if the logging fails. For example, a request for configuration data
might succeed, but fail to write to the activity log. Reasons for logging failures might include full

disk (for a CSV logger) or repository unavailable (for a repository logger).

For each log type, you can specify that failure to write to the log should be ignored, and should
not prevent the successful execution of the underlying request. To ignore logging failures for

a specific log type, add the "ignoreLoggingFailures" property to the log type configuration, and
set its value to true. This parameter is not included in the default audit.json file, and its value is
considered to be false by default for all log types.

You can specify a logTo location to the directory of your choice. The example shown in Example 6.2,
"Custom Audit Log Location" shows how you can configure logTo to direct audit logs to a user home
directory.

To review the audit log, see Section 12.7, "Querying the Reconciliation Audit Log". You can review
several different ways to run a RESTful GET on audit endpoints in that section.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 372

Using Audit Logs

(" FORGEROCK Log To List

18.3.2.1. Logging to a Remote System

You can configure logging to a remote system. OpenIDM exposes a useful logging configuration in the
openidm/samples/audit-sample directory, in the conf/audit.json configuration file. The logTo location stanza
differs slightly from other versions of that file, in that it includes the following excerpt:

"logTo" : [
o
{
"logType" : "router",
"location" : "system/auditdb",
"useForQueries" : true
}

To connect to an external JDBC database, you can use the location property, which is configured with
the auditdb system.

You can then set up that connection in the conf/provisioner.openicf-scriptedsql.json file. In this
particular example, that file starts with:
{

"name" : "auditdb",

You can configure remote access in that file, in the configurationProperties stanza, in the host and
jdbcConnectionurl properties. Substitute the URL or IP address of the running remote MySQL server
for localhost:

X

“"configurationProperties" : {

"host" : "localhost",

"port" : "3306",

"user" : "root",

"password" : “"password",

"database" : "audit",

"autoCommit" : false,

"reloadScriptOnExecution" : false,

“"jdbcDriver" : “com.mysql.jdbc.Driver",

"jdbcConnectionUrl" : “jdbc:mysql://localhost:3306/audit",

"jdbcUrlTemplate" : "“jdbc:mysql://%h:%p/%d",

"createScriptFileName" : "&{launcher.project.location}/tools/CreateScript.groovy",

"testScriptFileName" : "&{launcher.project.location}/tools/TestScript.groovy",

"searchScriptFileName" : "&{launcher.project.location}/tools/SearchScript.groovy"
X

After you change the localhost entries, start OpenIDM with the configuration associated with your
audit configuration. The following command is based on the openidm/samples/audit-sample that comes
with OpenIDM.

$./setup.sh -p samples/audit-sample

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 373

Using Audit Logs

(" FORGEROCK Exception Formatter

18.3.3. Exception Formatter

The exceptionFormatter property specifies the name and type of file that handles the formatting and
display of exceptions thrown by the audit logger. Supported types include "text/javascript" and
"groovy".

The "file" property provides the path to the script file that performs the formatting. The default
exception formatter is "bin/defaults/script/audit/stacktraceFormatter.js"

18.4. Generating Reports

When generating reports from audit logs, you can correlate information from activity and
reconciliation logs by matching the "rootActionId" on entries in both logs.

The following MySQL query shows a join of the audit activity and audit reconciliation tables using
root action ID values.

mysql> select distinct auditrecon.activity,auditrecon.sourceobjectid,
auditrecon.targetobjectid,auditactivity.activitydate,auditrecon.status
from auditactivity inner join auditrecon
auditactivity.rootactionid=auditrecon.rootactionid

where auditrecon.activity is not null group by auditrecon.sourceobjectid;

Fommmmme - - B B B e +
| activity | sourceobjectid | targetobjectid | activitydate | status

Fommmmme - - B B B e +
CREATE	system/xmlfile/account/1	managed/user/juser	2012-01-17T07:59:12	SUCCESS
CREATE	system/xmlfile/account/2	managed/user/ajensen	2012-01-17T07:59:12	SUCCESS
CREATE	system/xmlfile/account/3	managed/user/bjensen	2012-01-17T07:59:12	SUCCESS
Fommmmme - - B B B e +

3 rows in set (0.00 sec)

18.5. Filtering Data for Audits

With OpenIDM, you can collect large amounts of data on each transaction, subdivided in several
different eventTypes: access, activity, reconciliation, and synchronization.

In some cases, you may want to minimize the amount of data collected with one or more filters. As
with other Section 18.3, "Audit Configuration" options, you can do so in the conf/audit.json file, based
on the event type.

For example, the following entry under eventTypes refers to the auditfilter.js file to script limits to
reconciliation information:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 374

Using Audit Logs

(" FORGEROCK Purging Obsolete Audit Information

"eventTypes" : {

"recon" : {

“filter" : {
"script" : {
“"type" : "“text/javascript",
"file" : "auditfilter.js"
}
}
}

You can create a script for filtering. As it does for other scripts, OpenIDM makes the create request
and the context objects available to the script. Before the audit record is written, it can be accessed
as a request.content object. For guidance, see Section F.1, "Scripting Configuration".

For example, if you want to set up a script to log just the summary records for mapping managed
users in an LDAP data store, you could include the following entry in the auditfilter.js script:

return request.content.entryType == 'summary' &&
request.content.mapping == 'systemLdapAccounts_managedUser'

The script must return true to include the log entry; false to exclude it.

18.6. Purging Obsolete Audit Information

If audit records grow "excessively" large, any subsequent reconciliations and queries to audit tables
may become "sluggish". In a deployment with limited resources, a lack of disk space may affect
system performance.

You may have already run through the process of Section 18.5, "Filtering Data for Audits". If desired,
you can also purge audit records with specific queries. Alternatively, you can also purge audit records
older than a specific date, using timestamps.

OpenIDM includes a preconfigured purge script, autoPurgeRecon.js in the bin/defaults/script/audit
directory. This script purges audit log entries from the repositoyr only, not from the corresponding
CSV files.

You will also want to set up a schedule. For that purpose, you can find a pre-configured schedule-
autoPurgeAuditRecon.json file in the samples/schedules subdirectory. You can configure that file as desired
and then copy it to the conf/ subdirectory for your deployment.

Examine the contents of the schedule-autoPurgeAuditRecon.json file:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 375

Using Audit Logs

(" FORGEROCK Purging Obsolete Audit Information

{
"enabled" : false,
"type" : "cron",
"schedule" : "0 0 */12 * * 2",
"persisted" : true,
"misfirePolicy" : "doNothing",
"invokeService" : "script",
"invokeContext" : {
"script" : {
"type" : "text/javascript",
"file" : "audit/autoPurgeAuditRecon.js",
"input" : {
"mappings" : ["%" 1,
"purgeType" : "purgeByNumOfReconsToKeep",
"numOfRecons" : 1,
"intervalUnit" : "minutes",
"intervalValue" : 1
}
}
}
}

For more information on the schedule-related properties in this file, see Section 12.19, "Scheduling
Synchronization".

Beyond scheduling, you may also be interested in the following parameters:
input
Input information; the parameters below specify different kinds of input.
mappings
An array of mappings to prune. Each element in the array can be either a string or an object.

Strings must contain the mapping(s) name and can use "%" as a wild card value that will be used
in a LIKE condition.

Objects provide the ability to specify mapping(s) to include/exclude and must be of the form:
{

"include" : "mappingl",
"exclude" : "mapping2"
purgeType
The type of purge to perform, Can be set to one of two values:

purgeByNumOfReconsToKeep

Uses the deleteFromAuditReconByNumOf function and the numofRecons config variable.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 376

Using Audit Logs

(" FORGEROCK Purging Obsolete Audit Information

purgeByExpired

Uses the deleteFromAuditReconByExpired function and the config variables intervalunit and
intervalValue.

num-of-recons
The number of recon summary records to keep for a given mapping, including all child records.
intervalUnit

The type of time interval when using purgeByExpired. Acceptable values include: minutes, hours, or
days.

intervalValue
The value of the time interval when using purgeByExpired. Set to an integer value.

Once you have filtered and purged unneeded log information from the database, you can use log
rotation services to limit the size of individual log files, and archive them as needed. Some log
rotation services also support archiving to remote log servers. Details vary by the service and the
operating system.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 377

Configuring OpenIDM to Work in a Cluster

(/’ FORGEROCK

Chapter 19

Configuring OpenlDM to Work in a Cluster

To ensure availability of the identity management service, you can deploy multiple OpenIDM
instances in a cluster. In a clustered environment, all instances point to the same external database.
The database itself might or might not be clustered, depending on your particular availability
strategy.

In a clustered environment, if one instance of OpenIDM becomes unavailable or does not check in
with the cluster management service, another instance of OpenIDM detects this situation. If the
unavailable instance did not complete one or more tasks, the available instance attempts to recover
and rerun those tasks.

For example, if instancel goes down while executing a scheduled task, the cluster manager notifies
the scheduler service that instancel is not available. The scheduler service then attempts to clean up
any jobs that instancel was running when it went down.

This chapter describes what changes you need to make to OpenIDM to configure multiple instances
that point to a database.

The following diagram depicts a relatively simple cluster configuration. You do need to do more than
just set a unique value for openidm.node.id

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 378

’ Configuring OpenIDM to Work in a Cluster
‘,' FORGEROCK' Configuring an OpenIDM Instance as Part of a Cluster

g ™
OpenIDM Cluster
OpenlDM 1 OpenlDM 2
openidm.node.id=instance1 openidm.node.id=instance2
ete. etc.
. vy

' I
Database Cluster
Configuration depends on
database software
Database 1 Database 2
A Iy

The default installation of OpenIDM is pre-configured to enable the cluster service. The conf/
cluster.json file includes the "enabled" : true directive. All you need to do with multiple instances of
OpenIDM on the same subnet is modify each boot.properties file. Pay attention to the openidm.node.id
and openidm.instance.type properties in that file.

When you configure a cluster, check the configuration files for each instance of OpenIDM. Except for
boot.properties, the configuration files should be identical.

19.1. Configuring an OpenIDM Instance as Part of a Cluster

Before you configure an instance of OpenIDM to work in a cluster, make sure that OpenIDM is
stopped. If someone had previously run that instance of OpenIDM, delete the /path/to/openidm/felix-
cache directory.

All OpenIDM instances that form part of a single cluster must be configured to use the same
repository type. Note that OrientDB is not supported in production environments.

To configure an individual OpenIDM instance as a part of a clustered deployment, follow these steps.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 379

Configuring OpenIDM to Work in a Cluster

(" FORGEROCK Edit the Boot Configuration

1. Configure OpenIDM for a MySQL repository, as described in Chapter 4, "Installing a Repository
For Production" in the Installation Guide.

You need only import the data definition language script for OpenIDM into MySQL once, not
repeatedly for each OpenIDM instance.

2. Section 19.1.1, "Edit the Boot Configuration"
3. Section 19.1.2, "Edit the Cluster Configuration"
4. Ifyou are using scheduled tasks, do configure persistent schedules to ensure that they fire

only once across the cluster. For more information, see Section 13.2, "Configuring Persistent
Schedules".

19.1.1. Edit the Boot Configuration

Each participating instance in a cluster must have its own unique node or instance ID, and must be
attributed a role in the cluster. Specify these parameters in the conf/boot/boot.properties file of each
instance.

* Specify a unique identifier for the instance, such as:

openidm.node.id=instancel
On subsequent instances, the openidm.node.id can be set to instance2, instance3, and so forth. You can
choose any value, as long as it is unique within the cluster.

In the cluster manager configuration file, cluster.json, the clustering service is enabled by default
with the following setting:

"enabled": true

The cluster manager specifies the OpenIDM instance ID from the boot.properties file as follows:

"instanceId" : "&{openidm.node.id}",

The scheduler uses the instance ID to claim and execute pending jobs. If multiple nodes have
the same instance ID, problems will arise with multiple nodes attempting to execute the same
scheduled jobs.

The cluster manager requires nodes to have unique IDs to ensure that it is able to detect when a
node becomes unavailable.

* Specify the instance type in the cluster.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 380

Configuring OpenIDM to Work in a Cluster

(" FORGEROCK Edit the Cluster Configuration

On the primary instance, revise the following line in the boot.properties file as follows:

openidm.instance.type=clustered-first

On subsequent instances, revise the following line in the boot.properties file as follows:

openidm.instance.type=clustered-additional

The instance type is used during the setup process. When the primary node has been configured,
additional nodes are bootstrapped with the security settings (keystore and truststore) of the
primary node. After all nodes have been configured, they are all considered equal in the cluster,
that is, there is no concept of a "master" node.

If no instance type is specified, the default value for this property is openidm.instance.type=standalone,
which indicates that the instance will not be part of a cluster.

19.1.2. Edit the Cluster Configuration

The cluster configuration file is /path/to/openidm/conf/cluster.json. To enable a cluster, you should not
have to make changes to this file:

“"instanceId" : "&{openidm.node.id}",
"instanceTimeout" : "30000",
"instanceRecoveryTimeout" : "30000",
"instanceCheckInInterval™ : "5000",
"instanceCheckInOffset" : "0",
"enabled" : true

}

* The instanceld is set to the value of openidm.node.id, as configured in the conf/boot/boot.properties file.

* instanceTimeout specifies the length of time (in milliseconds) that an instance can be "down" before
the instance is considered to be in recovery mode.

Recovery mode implies that the instanceTimeout of an instance has expired, and that another instance
of OpenIDM in the cluster has detected that event. That second instance of OpenIDM is now
attempting to recover the instance. The logic behind the recovery mechanism differs, depending

on the component within OpenIDM. The scheduler component has well-defined recovery logic, and
attempts to move any jobs that had been acquired by the unavailable instance back into the pool of
waiting jobs.

* instanceRecoveryTimeout specifies the length of time (in milliseconds) that an instance can be in
recovery mode before that instance is considered to be offline.

The purpose of the recovery timeout is to prevent an instance from attempting to recover an
unavailable instance indefinitely.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 381

Configuring OpenIDM to Work in a Cluster

(" FORGEROCK Managing Scheduled Tasks Across a Cluster

* instanceCheckInInterval specifies the frequency (in milliseconds) that this instance checks in with the
cluster manager to indicate that it is still online.

* instanceCheckInOffset specifies an offset (in milliseconds) for the checkin timing, per instance, when a
number of instances in a cluster are started simultaneously.

Specifying a checkin offset prevents a situation in which all the instances in a cluster check in at
the same time, and place a strain on the cluster manager resource.

* enabled notes whether or not the clustering service should be enabled when you start OpenIDM.

If the default cluster configuration is not suitable for your deployment, edit the cluster.json file for
each instance.

19.2. Managing Scheduled Tasks Across a Cluster

In a clustered environment, the scheduler service looks for pending jobs and handles them as follows:
* Non-persistent (in-memory) jobs will fire on each node in the cluster.
» Persistent scheduled jobs are picked up and executed by a single node in the cluster.

* Jobs that are configured as persistent but not concurrent will fire only once across the cluster and
will not fire again at the scheduled time, on the same node, or on a different node, until the current
job has completed.

For example, a reconciliation operation that runs for longer than the time between scheduled
intervals will not trigger a duplicate job while it is still running.

The order in which nodes in a cluster claim jobs is random. If a node goes down, the cluster manager
will automatically fail over jobs that have been claimed by that node, but not yet started. For
example, if node A claims a job but does not start it, and then goes down, node B can reclaim that job.
If node A claims and job, starts it, and then goes down, the job cannot be reclaimed by another node
in the cluster. That specific job will never be completed. Instance B can claim the next iteration (or
scheduled occurrence) of the job.

Note that this failover behavior is different to the behavior in OpenIDM 2.1.0, in which an unavailable
node would need to come up again to free a job that it had already claimed.

If a number of changes are made as a result of a LiveSync action, a single instance will claim the
action, and will process all the changes related to that action.

To prevent a specific instance from claiming pending jobs, "executePersistentSchedules" should be set
to false in the scheduler configuration for that instance. Because all nodes in a cluster read their
configuration from a single repository you must use token substitution, via the boot.properties file, to
define a specific scheduler configuration for each node.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 382

Configuring OpenIDM to Work in a Cluster

(" FORGEROCK' Managing Nodes Over REST

So, if you want certain nodes to participate in processing clustered schedules (such as LiveSync)
and other nodes not to participate, you can specify this information in the conf/boot/boot.properties
file of each node. For example, to prevent a node from participating, add the following line to the
boot.properties file of that node:

execute.clustered.schedules=false

The initial scheduler configuration that is loaded into the repository must point to the relevant
property in boot.properties. So, the initial scheduler.json file would include a token such as the
following:

"executePersistentSchedules" : "&{execute.clustered.schedules}",

You do not want to allow changes to a configuration file to overwrite the global configuration in
the repository. To prevent this, start each instance of OpenIDM and then disable the file-based
configuration view in a clustered deployment. For more information, see Section 6.3.2, "Disabling
Automatic Configuration Updates".

19.3. Managing Nodes Over REST

You can manage clusters and individual nodes over the REST interface, at the URL https://
localhost:8443/openidm/cluster/. The following sample REST commands demonstrate the cluster
information that is available over REST.

Example 19.1. Displaying the Nodes in the Cluster

The following REST request displays the nodes configured in the cluster, and their status.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 383

Configuring OpenIDM to Work in a Cluster

(" FORGEROCK' Managing Nodes Over REST

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/cluster”

"results": [

{
"shutdown": "",
"startup": "2013-10-28T11:48:29.026+02:00",
"instanceIld": "instancel",
"state": "running"
¥
{
"shutdown": "",
"startup": "2013-10-28T11:51:31.639+02:00",
"instanceIld": "instance2",
"state": "running"
}

Example 19.2. Checking the State of an Individual Node

To check the status of a specific node, include its instance ID in the URL, for example:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/cluster/instancel"

"results": {
"shutdown": ,
"startup": "2013-10-28T11:48:29.026+02:00",
"instanceIld": "instancel",

"state": "running"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 384

(/’ FORGEROCK

Sending Email

Chapter 20

Sending Email

This chapter shows you how to configure the outbound email service, so that you can send email
through OpenIDM either by script or through the REST API.

Procedure 20.1. To Set Up Outbound Email

The outbound email service relies on a configuration object to identify the email account used to send
messages. A sample configuration is provided in /path/to/openidm/samples/misc/external.email.json. To
set up the external email service, follow these steps.

1.

2.

Shut down OpenIDM.

Copy the sample configuration to the conf directory.

$ cd /path/to/openidm/
$ cp samples/misc/external.email.json conf/

Edit external.email.json to reflect the account that is used to send messages.

"host" : "smtp.example.com",

"port" : "25"

“username" : “openidm",

"password" : "secretl2",

"mail.smtp.auth" : "true",

"mail.smtp.starttls.enable" : "true"
OpenIDM encrypts the password you provide.
Follow these hints when editing the configuration.
"host"

SMTP server host name or IP address. This can be "localhost" if the server is on the same
system as OpenIDM.

“port"”

SMTP server port number such as 25, or 587

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 385

Sending Email

(,' FORGEROCK Sending Mail Over REST
"username"
Mail account user name needed when "mail.smtp.auth" : "true"
"password"
Mail account user password needed when "mail.smtp.auth" : "true"

"mail.smtp.auth"
If "true", use SMTP authentication
"mail.smtp.starttls.enable"
If "true", use TLS
"from"
Optional default From: address
4. Start up OpenIDM.
5. Check that the email service is active.

-> scr list

[6] [active 1 org.forgerock.openidm.external.email

Note

The REST call described in the section that follows may use the local SMTP server. For a "quick and dirty" test,
you could use the default port, disable authentication, and TLS:

"host" : "localhost",

"port" : "25,

"username" : "xXxxxxx",

"password" : "xxxxxx",
"mail.smtp.auth" : "false",
"mail.smtp.starttls.enable" : "false"

20.1. Sending Mail Over REST

Although you are more likely to send mail from a script in production, you can send email using the
REST API by sending an HTTP POST to /openidm/external/email in order to test that your configuration
works. You pass the message parameters as POST parameters, URL encoding the content as

necessary.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 386

Sending Email

(" FORGEROCK' Sending Mail From a Script

The following example sends a test email using the REST API.

$ curl \
--cacert self-signed.crt \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request POST \
--data '{"from":"openidm@example.com",
"to":"admin@example.com",
"subject":"Test",
"body":"Test"}"' \
"https://localhost:8443/openidm/external/email?_action=send"

20.2. Sending Mail From a Script

You can send email by using the resource API functions with the external/email context, as in
the following example, where params is an object that contains the POST parameters. For more
information on the resource API functions, see Section F.3, "Function Reference".

var params = new Object();

params.from = "openidm@example.com";

params.to = "admin@example.com";

params.cc = "wally@example.com,dilbert@example.com";

params.subject = "OpenIDM recon report";

params.type = "text/html";

params.body = "<html><body><p>Recon report follows...</p></body></html>";

openidm.action("external/email", "send", params);
OpenIDM supports the following POST parameters.
from
Sender mail address
to
Comma-separated list of recipient mail addresses
ccC
Optional comma-separated list of copy recipient mail addresses
bcc
Optional comma-separated list of blind copy recipient mail addresses
subject

Email subject

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 387

(/’ FORGEROCK

Sending Email
Sending Mail From a Script

body
Email body text

type

Optional MIME type. One of "text/plain”, “text/html", OT "text/xml".

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

388

Accessing External REST Services

(/’ FORGEROCK

Chapter 21

Accessing External REST Services

You can access remote REST services by using the openidm/external/rest endpoint, or by specifying
the external/rest resource in your scripts. Note that this service is not intended as a full connector
to synchronize or reconcile identity data, but as a way to make dynamic HTTP calls as part of the
OpenIDM logic. For more declarative and encapsulated interaction with remote REST services, and
for synchronization or reconciliation operations, you should rather use the scripted REST connector.

An external REST call via a script might look something like the following:

openidm.action("external/rest", "call", params);

The "call" parameter specifies the action name to be used for this invocation, and is the standard
method signature for the openidm.action method in OpenIDM 3.1.

An external REST call over REST might look something like the following:

$ curl \
--cacert self-signed.crt \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request POST \
--data '{
"url": "http://www.december.com/html/demo/hello.html",
"method": "GET",
"detectResultFormat": false,
"headers": { "custom-header": "custom-header-value" }
J AN
"https://localhost:8443/openidm/external/rest?_action=call"

"body": "<!DOCTYPE html PUBLIC \"-//IETF//DTD HTML 2.0//EN\">\r\n
<html>\r\n
<head>\r\n
<title>\r\n Hello World Demonstration Document\r\n </title>\r\n
</head>\r\n
<body>\r\n
<h1>\r\n Hello, World!\r\n </hl>

</html>\r\n",
"headers": {
"Server": "Apache",
"ETag": "\"299-4175ff09d1140\"",
"Date": "Mon, 28 Jul 2014 08:21:25 GMT",
"Content-Length": "665",
"Last-Modified": "Thu, 29 Jun 2006 17:05:33 GMT",
"Keep-Alive": "timeout=15, max=100",

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 389

Accessing External REST Services

(" FORGEROCK Invocation Parameters

"Content-Type": "text/html",
"Connection": "Keep-Alive",
"Accept-Ranges": "bytes"
}
}

Note that attributes in the POST body do not have underscore prefixes. This is different to the
OpenIDM 2.1 implementation, in which underscores were required.

HTTP 2xx responses are represented as regular, successful responses to the invocation. All other

responses, including redirections, are returned as exceptions, with the HTTP status code in the
exception "code", and the response body in the exception "detail”, within the "content" element.

21.1. Invocation Parameters

The following parameters are passed in the resource API parameters map. These parameters can
override the static configuration (if present) on a per-invocation basis.

* url. The target URL to invoke, in string format.

* method. The HTTP action to invoke, in string format.
Possible actions include "PoST", "GET", "PUT", "DELETE", "HEAD" and "OPTIONS".

* authenticate. The authentication type, and the details with which to authenticate.
OpenIDM 3.1 supports the following authentication types:

* basic authentication, with a username and password, for example:

"authenticate" : {"type": "basic", "user" : "john", "password" : "PasswOrd"}

* bearer authentication, which takes an OAuth token, instead of a username and password, for
example:

"authenticate" : {"type": "bearer", "token" : "ya29.iQDWKpn8AHy09p..... "}

If no authenticate parameter is specified, no authentication is used.

* headers. The HTTP headers to set, in a map format from string (header-name) to string (header-
value). For example, Accept-Language: en-US.

* content-type. The media type of the data that is sent, for example Content-Type: application/json or
Content-Type: application/xml.

* body. The body/resource representation to send (for PUT and POST operations), in string format.

e detectResultFormat. Specifies whether JSON or non-JSON results are expected. Boolean, defaults to
true.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 390

Accessing External REST Services

(" FORGEROCK' Support for Non-JSON Responses

For all responses other than 2xx, the result is returned as an exception, with the HTTP code in the
exception "code". Any details are returned in the exception "detail" under the "content" element. For
example:

$ curl \
--cacert self-signed.crt \
--header "Content-Type: application/json™ \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request POST \

--data '{
"url":"http://december.com/non_existing_page",
"method":"GET",

"content-type":"application/xml"

"https://localhost:8443/openidm/external/rest?_action=call"

"detail": {
"content": "<html><head><title>December Communications, Inc. Missing Page</title> (...) </html>

\n*

H

"message": "Error while processing GET request: Not Found",

"reason": "Not Found",

"code": 404
}

For more information about non-JSON results, see Section 21.2, "Support for Non-JSON
Responses".

21.2. Support for Non-JSON Responses

The external REST service supports any arbitrary payload (currently in stringified format). The
"detectResultFormat" parameter specifies whether the server should attempt to detect the response
format and, if the format is known, parse that format.

Currently, the only known response format is JSON. So, if the service that is requested returns results
in JSON format, and "detectResultFormat" is set to true (the default), the response from the call to
external/rest will be the identical JSON data that was returned from the remote system. This enables
JSON clients to interact with the external REST service with minimal changes to account for in the
response.

If the service returns results in JSON format and "detectResultFormat" is set to false, results are
represented as a stringified entry.

If "detectResultFormat" is set to true and the mime type is not recognized (currently any type other than
JSON) the result is the same as if "detectResultFormat" were set to false. Set "detectResultFormat" to false
if the remote system returns non-JSON data, or if you require details in addition to the literal JSON
response body (for example, if you need to access a specific response header, such as a cookie).

The representation as parsed JSON differs from the stringified format as follows:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 391

Accessing External REST Services

(" FORGEROCK' Support for Non-JSON Responses

* The parsed JSON representation returns the message payload directly in the body, with no
wrapper. Currently, for parsed JSON responses, additional meta-data is not returned in the body.
For example:

$ curl \
--cacert self-signed.crt \
--header "Content-Type: application/json™ \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request POST \
--data '{
"url": "http://localhost:8080/openidm/info/ping",
"method": "GET",
"detectResultFormat": true,
"headers": { "X-OpenIDM-Username": "anonymous", "X-OpenIDM-Password": "anonymous" }

"https://localhost:8443/openidm/external/rest?_action=call"

"shortDesc": "OpenIDM ready",
"state": "ACTIVE READY"
}

» The stringified format includes a wrapper that represents other meta-data, such as returned
headers. For example:

$ curl \
--cacert self-signed.crt \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request POST \
--data '{
"url": "http://localhost:8080/openidm/info/ping",
"method": "GET",
"detectResultFormat": false,
"headers": { "X-OpenIDM-Username": "anonymous", "X-OpenIDM-Password": "anonymous" }
A
"https://localhost:8443/openidm/external/rest?_action=call"

"body": "{\"state\":\"ACTIVE READY\",\"shortDesc\":\"OpenIDM ready\"}",
"headers": {

"Cache-Control": "no-cache",

"Server": "Jetty(8.y.z-SNAPSHOT)",

"Content-Type": "application/json;charset=UTF-8",

"Set-Cookie": "session-jwt=eyAiYWxn...-cQ.3QT4zT4ZZTj8LH800 zx3w;Path=/",

"Expires": "Thu, 01 Jan 1970 00:00:00 GMT",

"Content-Length": "52",

"Vary": "Accept-Encoding, User-Agent"

A sample non-JSON response would be similar:

$ curl \
--cacert self-signed.crt \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 392

(/’ FORGEROCK

Accessing External REST Services
Support for Non-JSON Responses

{

--request POST \
--data '{
"url":"http://december.com",
"method":"GET",
"content-type":"application/xml",
"detectResultFormat": false
F A
"https://localhost:8443/openidm/external/rest?_action=call"

"body": "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.01 Transitional//EN\"
\"http://www.w3.0rg/TR/html4/loose.dtd\"> \n
<html><head><title>December Communications, Inc.
december.com</title>\n
<meta http-equiv=\"Content-Type\" content=\"text/html;
charset=is0-8859-1\">

"headers": {

"Server": "Apache",

"ETag": "\"4c3c-4f06c64da3980\"",
"Date": "Mon, 28 Jul 2014 19:16:33 GMT",
"Content-Length": "19516",
"Last-Modified": "Mon, 20 Jan 2014 20:04:06 GMT",
"Keep-Alive": "timeout=15, max=100",
"Content-Type": "text/html",
"Connection": "Keep-Alive",
"Accept-Ranges": "bytes"

}

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

393

OpenIDM Project Best Practices

(" FORGEROCK Implementation Phases

Chapter 22

OpenIDM Project Best Practices

This chapter lists points to check when implementing an identity management solution with
OpenlDM.

22.1. Implementation Phases

Any identity management project should follow a set of well defined phases, where each phase
defines discrete deliverables. The phases take the project from initiation to finally going live with a
tested solution.

22.1.1. Initiation

The project's initiation phase involves identifying and gathering project background, requirements,
and goals at a high level. The deliverable for this phase is a statement of work or a mission statement.

22.1.2. Definition

In the definition phase, you gather more detailed information on existing systems, determine

how to integrate, describe account schemas, procedures, and other information relevant to the
OpenIDM deployment. The deliverable for this phase is one or more documents that define detailed
requirements for the project, and that cover project definition, the business case, use cases to solve,
and functional specifications.

The definition phase should capture at least the following.
User Administration and Management

Procedures for managing users and accounts, who manages users, what processes look like for
joiners, movers and leavers, and what is required of OpenIDM to manage users

Password Management and Password Synchronization

Procedures for managing account passwords, password policies, who manages passwords, and
what is required of OpenIDM to manage passwords

Security Policy

What security policies defines for users, accounts, passwords, and access control

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 394

OpenIDM Project Best Practices

(" FORGEROCK' Design

Target Systems

Target systems and resources with which OpenIDM must integrate. Information such as schema,
attribute mappings and attribute transformation flow, credentials and other integration specific
information.

Entitlement Management

Procedures to manage user access to resources, individual entitlements, grouping provisioning
activities into encapsulated concepts such as roles and groups

Synchronization and Data Flow

Detailed outlines showing how identity information flows from authoritative sources to target
systems, attribute transformations required

Interfaces

How to secure the REST, user and file-based interfaces, and to secure the communication
protocols involved

Auditing and Reporting

Procedures for auditing and reporting, including who takes responsibility for auditing and
reporting, and what information is aggregated and reported. Characteristics of reporting engines
provided, or definition of the reporting engine to be integrated.

Technical Requirements

Other technical requirements for the solution such as how to maintain the solution in terms

of monitoring, patch management, availability, backup, restore and recovery process. This
includes any other components leveraged such as a ConnectorServer and plug-ins for password
synchronization on Active Directory, or OpenD].

22.1.3. Design

This phase focuses on solution design including on OpenIDM and other components. The deliverables
for this phase are the architecture and design documents, and also success criteria with detailed
descriptions and test cases to verify when project goals have been met.

22.1.4. Build

This phase builds and tests the solution prior to moving the solution into production.

22.1.5. Production

This phase deploys the solution into production until an application steady state is reached and
maintenance routines and procedures can be applied.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 395

Troubleshooting

(" FORGEROCK OpenlIDM Stopped in Background

Chapter 23

Troubleshooting

When things are not working check this chapter for tips and answers.

23.1. OpenIDM Stopped in Background

When you start OpenIDM in the background without having disabled the text console, the job can
stop immediately after startup.

$./startup.sh &

[2] 346

$./startup.sh

Using OPENIDM HOME: /path/to/openidm

Using OPENIDM OPTS: -Xmx1024m -Xms1024m

Using LOGGING CONFIG:
-Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties

Using boot properties at /path/to/openidm/conf/boot/boot.properties

->

[2]+ Stopped ./startup.sh

To resolve this problem, make sure you remove openidm/bundle/org.apache.felix.shell.tui-1.4.1.jar
before starting OpenIDM, and also remove Felix cache files in openidm/felix-cache/.

23.2. Internal Server Error During Reconciliation or
Synchronization

You might see an error message such as the following returned from reconciliation or
synchronization.

"error": "Conflict",

“description": “Internal Server Error:
org.forgerock.openidm.sync.SynchronizationException:
Cowardly refusing to perform reconciliation with an
empty source object set: Cowardly refusing to perform
reconciliation with an empty source object set"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 396

Troubleshooting

(,' FORGEROCK’ The scr list Command Shows Sync Service As Unsatisfied

This error can be misleading. This usually means the connector is not able to communicate with the
target source.

Check the settings for your connector. For example, with the XML connector you get this error if the
filename for the source is invalid. With the LDAP connector, you can get this error if your connector
cannot contact the target LDAP server.

23.3. The scr list Command Shows Sync Service As
Unsatisfied

You might encounter this message in the logs.

WARNING: Loading configuration file /path/to/openidm/conf/sync.json failed
org.forgerock.openidm.config.InvalidException:
Configuration for org.forgerock.openidm.sync could not be parsed and may not
be valid JSON : Unexpected character ('}' (code 125)): expected a value
at [Source: java.io.StringReader@3951f910; line: 24, column: 6]
at org.forgerock.openidm.config.crypto.ConfigCrypto.parse...
at org.forgerock.openidm.config.crypto.ConfigCrypto.encrypt...
at org.forgerock.openidm.config.installer.JSONConfigInstaller.setConfig...

This indicates a syntax error in openidm/conf/sync.json. After fixing your configuration, change to the /
path/to/openidm/ directory, and use the cli.sh validate command to check that your configuration files
are valid.

$ cd /path/to/openidm ; ./cli.sh validate

Using boot properties at /path/to/openidm/conf/boot/boot.properties
[Validating] Load JSON configuration files from:
[Validating] /path/to/openidm/conf

[Validating] audit.jsoncciuiiniiiiniiinnnnnnn. SUCCESS
[Validating] authentication.json SUCCESS
[Validating] managed.jsonciuiniiniininnnennnans SUCCESS
[Validating] provisioner.openicf-xml.json SUCCESS
[Validating] repo.orientdb.jsoncoiviunnn. SUCCESS
[Validating] router.jsonc..ouiiuiiiiinenennnnnnns SUCCESS
[Validating] scheduler-reconcile systemXmlAccounts managedUser.json SUCCESS
[VELileEElng]) SYDECo))S@N coccoooooononoooooooocoaoooanononoe SUCCESS

23.4. JSON Parsing Error
You might encounter this error message in the logs.

"Configuration for org.forgerock.openidm.provisioner.openicf could not be
parsed and may not be valid JSON : Unexpected character ('}' (code 125)):
was expecting double-quote to start field name"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 397

Troubleshooting

(" FORGEROCK System Not Available

The error message usually indicates the precise point where the JSON file has the syntax problem.
The error above was caused by an extra comma in the JSON file, {"attributeName":{},{},}. The second
comma is redundant.

The situation usually results in the service that the specific JSON file configures being left in the
unsatisfied state.

After fixing your configuration, change to the /path/to/openidm/ directory, and use the cli.sh validate
command to check that your configuration files are valid.

23.5. System Not Available

OpenIDM throws the following error as a result of a reconciliation where the source systems
configuration can not be found.

“error": "Conflict",

"description": "Internal Server Error:
org.forgerock.openidm.sync.SynchronizationException:
org.forgerock.openidm.objset.0bjectSetException:
System: system/HR/account is not available.:
org.forgerock.openidm.objset.0ObjectSetException:
System: system/HR/account is not available.:

System: system/HR/account is not available."

}

This error occurs when the "name" property value in provisioner.resource.json is changed from Hr to
something else.

The same error occurs when a provisioner configuration fails to load due to misconfiguration, or
when the path to the data file for a CSV or XML connector is incorrectly set.

23.6. Bad Connector Host Reference in Provisioner
Configuration

You might see the following error when a provisioner configuration loads.
Wait for meta data for config org.forgerock.openidm.provisioner.openicf-scriptedsql

In this case the configuration fails to load because information is missing. One possible cause is an
incorrect value for connectorHostRef in the provisioner configuration file.

For local Java connector servers, the following rules apply.

 If the connector .jar is installed as a bundle under openidm/bundle, then the value must be
"connectorHostRef" : "osgi:service/org.forgerock.openicf.framework.api.osgi.ConnectorManager",.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 398

Troubleshooting

(" FORGEROCK' Missing Name Attribute

 If the connector .jar is installed as a connector under openidm/connectors, then the value must be
"connectorHostRef" : "#LOCAL",.

23.7. Missing Name Attribute

In this case, the situation in the audit recon log shows "NULL".

A missing name attribute error, followed by an IllegalArgumentException, points to misconfiguration of
the correlation rule, with the correlation query pointing to the external system. Such queries usually
reference the "name" field which, if empty, leads to the error below.

Jan 20, 2012 1:59:58 PM
org.forgerock.openidm.provisioner.openicf.commons.AttributeInfoHelper build
SEVERE: Failed to build name attribute out of [null]
Jan 20, 2012 1:59:58 PM
org.forgerock.openidm.provisioner.openicf.impl.OpenICFProvisionerService query
SEVERE: Operation [query, system/ad/account] failed with Exception on system
object: java.lang.IllegalArgumentException: Attribute value must be an
instance of String.
Jan 20, 2012 1:59:58 PM org.forgerock.openidm.router.JsonResourceRouterService
handle
WARNING: JSON resource exception
org.forgerock.json.resource.JsonResourceException: IllegalArgumentException
at org.forgerock.openidm.provisioner....0OpenICFProvisionerService.query...
at org.forgerock.openidm.provisioner..... OpenICFProvisionerService.handle...
at org.forgerock.openidm.provisioner.impl.SystemObjectSetService.handle...
at org.forgerock.json.resource.JsonResourceRouter.handle...

Check your correlationQuery. Another symptom of a broken correlation query is that the audit recon
log shows a situation of "NULL", and no onCreate, onUpdate or similar scripts are executed.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 399

Advanced Configuration

(" FORGEROCK Advanced Startup Configuration

Chapter 24

Advanced Configuration

OpenIDM is a highly customizable, extensible identity management system. For the most part, the
customization and configuration required for a "typical" deployment is described earlier in this book.
This chapter describes advanced configuration methods that would usually not be required in a
deployment, but that might assist in situations that require a high level of customization.

24.1. Advanced Startup Configuration

A customizable startup configuration file (named launcher.json) enables you to specify how the OSGi
Framework is started. You specify the startup configuration file with the -c option of the startup
command.

Unless you are working with a highly customized deployment, you should not modify the default
framework configuration.

If no configuration file is specified, the default configuration (defined in /path/to/openidm/bin/
launcher.json) is used. The following command starts OpenIDM with an alternative startup
configuration file:

$./startup.sh -c /Users/admin/openidm/bin/launcher.json

You can modify the default startup configuration file to specify a different startup configuration.

The customizable properties of the default startup configuration file are as follows:

* "location" : "bundle" - resolves to the install location. You can also load OpenIDM from a specified
zip file ("location" : "openidm.zip") or you can install a single jar file ("location" : "openidm-system-2.2
.jar").

e "includes" : "**/openidm-system-*.jar" - the specified folder is scanned for jar files relating to the

system startup. If the value of "includes" is *.jar, you must specifically exclude any jars in the
bundle that you do not want to install, by setting the "excludes" property.

* "start-level" : 1 - specifies a start level for the jar files identified previously.

e "action" : "install.start" - a period-separated list of actions to be taken on the jar files. Values can
be one or more of "install.start.update.uninstall®".

* "config.properties" - takes either a path to a configuration file (relative to the project location) or a
list of configuration properties and their values. The list must be in the format "string":"string", for
example:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 400

Advanced Configuration
Advanced Startup Configuration

(/) FORGEROCK

“config.properties"
“"property" : "value"
},
e "system.properties" - takes either a path to a system.properties file (relative to the project location)
p proj

or a list of system properties and their values. The list must be in the format "string":"string", for

example:

"system.properties" :

{
I

"property" : "value"

* "boot.properties” - takes either a path to a boot.properties file (relative to the project location) or a
list of boot properties and their values.The list must be in the format "string":object, for example:

“boot.properties" :

“property" : true

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 401

(/) FORGEROCK

Appendix A. File Layout

When you unpack and start OpenIDM 3.1, you create the following files and directories. Note
that the precise paths will depend on the install, project, and working directories that you have
selected during startup. For more information, see Section 2.2, "Specifying the OpenIDM Startup
Configuration".

openidm/audit/

OpenlIDM audit log directory default location, created at run time, as configured in openidm/conf/
audit.json

openidm/audit/access.csv

Default OpenIDM access audit log
openidm/audit/activity.csv

Default OpenIDM activity audit log
openidm/audit/recon.csv

Default OpenIDM reconciliation audit log
openidm/audit/sync.csv

Default OpenIDM synchronization audit log
openidm/bin/

OpenlIDM core libraries and scripts

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 402

(/’ FORGEROCK

openidm/bin/create-openidm-logrotate.sh

Script to create an openidmlog log rotation scheduler for inclusion under /etc/logrotate.d/
openidm/bin/create-openidm-rc.sh

Script to create an openidm resource definition file for inclusion under /etc/init.d/
openidm/bin/defaults/script

Default scripts required to run specific services. In general, you should not modify these scripts.
Instead, add customized scripts to the openidm/script folder.

openidm/bin/defaults/script/audit/*.js

Scripts related to the audit logging service.
openidm/bin/defaults/script/auth/*.js

Scripts related to the authentication mechanism, described in the Section 15.2, "Authentication".
openidm/bin/defaults/script/compensate.js

Script that provides the compensation functionality to assure or roll back reconciliation
operations. For more information, see Section 12.12, "Configuring Synchronization Failure
Compensation".

openidm/bin/defaults/script/info/crypto.js

A wrapper script for the openidm.encrypt function.
openidm/bin/defaults/script/info/login.js

Provides information about the current OpenIDM session.
openidm/bin/defaults/script/info/ping.js

Provides basic information about the health of an OpenIDM system
openidm/bin/defaults/script/lib/*

Internal libraries required by certain OpenIDM javascripts.
openidm/bin/defaults/script/linkedView.js

A script that returns all the records linked to a specific resource, used in reconciliation.
openidm/bin/defaults/script/policy.js

Defines each policy and specifies how policy validation is performed
openidm/bin/defaults/script/policyFilter.js

Enforces policy validation

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 403

(/' FORGEROCK

openidm/bin/defaults/script/roles/*.js

Scripts to provide the default roles functionality. For more information, see Section 8.3,
"Configuring Custom Roles".

openidm/bin/defaults/script/router-authz.js

Provides the functions that enforce access rules
openidm/bin/defaults/script/ui/*

Scripts required by the Ul
openidm/bin/defaults/script/workflow/*

Default workflow scripts

openidm/bin/felix.jar

openidm/bin/openidm.jar

openidm/bin/org.apache. felix.gogo.runtime-0.10.0.jar
openidm/bin/org.apache. felix.gogo.shell-0.10.0.jar

Files relating to the Apache Felix OSGi framework

openidm/bin/launcher.bat
openidm/bin/launcher.jar
openidm/bin/launcher.json

Files relating to the startup configuration

openidm/bin/LICENSE.TXT
openidm/bin/NOTICE.TXT

Files relating to the Apache Software License

openidm/bin/install-service.bat
openidm/bin/MonitorService.bat
openidm/bin/prunmgr.exe
openidm/bin/amd64/prunsrv.exe
openidm/bin/i386/prunsrv.exe
openidm/bin/ia64/prunsrv.exe

Files required by the user interface to monitor and configure installed services

openidm/bin/startup/

openidm/bin/startup/0S X - Run OpenIDM In Background.command
openidm/bin/startup/0S X - Run OpenIDM In Terminal Window.command
openidm/bin/startup/0S X - Stop OpenIDM.command

Clickable commands for Mac OS X

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

404

(/) FORGEROCK

openidm/bin/workflow/
Files related to the Activiti workflow engine
openidm/bundle/

OSGi bundles and modules required by OpenIDM. Upgrade can install new and upgraded bundles
here.

openidm/cli.bat
openidm/cli.sh

Management commands for operations such as validating configuration files
openidm/conf/

OpenIDM configuration files, including .properties files and JSON files. You can also access JSON
views through the REST interface.

openidm/conf/audit.json

Audit event publisher configuration file
openidm/conf/authentication.json

Authentication configuration file for access to the REST API
openidm/conf/boot/boot.properties

OpenIDM bootstrap properties
openidm/conf/cluster.json

Configuration file to enable use of this OpenIDM instance in a cluster
openidm/conf/config.properties

Felix and OSGi bundle configuration properties
openidm/conf/endpoint-*.json

Endpoint configuration files required by the UI for the default workflows
openidm/conf/info-*.json

Configuration files for the info service, described in Section 2.3, "Obtaining Information About an
OpenIDM Instance".

openidm/conf/jetty.xml

Jetty configuration controlling access to the REST interface

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 405

(/’ FORGEROCK

openidm/conf/logging.properties

OpenIDM log configuration properties
openidm/conf/managed. json

Managed object configuration file
openidm/conf/policy.json

Default policy configuration
openidm/conf/process-access.json

Workflow access configuration
openidm/conf/repo.orientdb.json

OrientDB internal repository configuration file
openidm/conf/router.json

Router service configuration file
openidm/conf/scheduler.json

Scheduler service configuration
openidm/conf/script.json

Script configuration file with default script directories.
openidm/conf/servietfilter-*.json

Sample servlet filter configuration, described in Section H.3, "Registering Additional Servlet
Filters".

openidm/conf/system.properties

System configuration properties used when starting OpenIDM services
openidm/conf/ui-configuration. json

Main configuration file for the browser-based user interface
openidm/conf/ui-countries.json

Configurable list of countries available when registering users in the user interface
openidm/conf/ui-secquestions.json

Configurable list of security questions available when registering users in the user interface

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 406

(/) FORGEROCK

openidm/conf/ui-themeconfig. json
Customizable UI theme configuration file
openidm/conf/ui.context-enduser.json
Configuration file that specifies the context root of the Ul, /openidmui by default
openidm/conf/workflow. json
Configuration of the Activiti workflow engine
openidm/connectors/

OpenICF connector libraries. OSGi enabled connector libraries can also be stored in openidm/
bundle/.

openidm/db/

Internal repository files, including OrientDB files and sample repository configurations for JDBC-
based repositories.

openidm/db/db2
Sample repository configuration and data definition language script for DB2 database.
openidm/db/h2

Sample repository configuration and data definition language script for H2 database, supported
for Activiti engine.

openidm/db/mssql
Sample repository configuration, data definition language script, and bnd file (for creating OSGi
bundle) for configuring an MS SQL repository. For more information, see Section 4.2, "To Set Up
OpenIDM With MS SQL" in the Installation Guide.

openidm/db/mysql
Sample repository configuration and data definition language scripts for configuring a MySQL
repository. For more information, see Section 4.1, "To Set Up OpenIDM With MySQL" in the
Installation Guide.

openidm/db/oracle
Sample repository configuration and data definition language script for configuring an OracleDB

repository. For more information, see Section 4.3, "To Set Up OpenIDM With Oracle Database" in
the Installation Guide.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 407

(/) FORGEROCK

openidm/db/postgresql

Sample repository configuration, data definition language script, and schema optimization scripts
for configuring a PostgreSQL repository. For more information, see Section 4.4, "To Set Up
OpenIDM With PostgreSQL" in the Installation Guide.

openidm/db/util

Files required for support of OrientDB Studio.
openidm/felix-cache/

Bundle cache directory created when the Felix framework is started
openidm/lib

Location in which third-party libraries (required, for example, by custom connectors) should be
placed.

openidm/logs/
OpenlIDM service log directory
openidm/logs/openidm0.log. *
OpenIDM service log files as configured in openidm/conf/logging.properties
openidm/samples/
OpenIDM sample configurations
openidm/samples/audit-sample/

Sample demonstrates configuring a MySQL database to receive the audit logs for access, activity,
and recon.

openidm/samples/customendpoint/

Sample custom endpoint configuration. For more information, see Section 6.6, "Adding Custom
Endpoints".

openidm/samples/infoservice/

Sample that shows how to use the configurable information service. For more information, see
Section 2.3, "Obtaining Information About an OpenIDM Instance".

openidm/samples/misc/
Sample configuration files
openidm/samples/provisioners/

Sample connector configuration files

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 408

(/) FORGEROCK

openidm/samples/samplel/

XML file connector sample
openidm/samples/sample2/

One-way reconciliation sample using OpenD] and LDAP connector
openidm/samples/sample2b/

Bi-directional reconciliation sample using OpenD]J and LDAP connector
openidm/samples/sample2c/

Sample using LDAP connector to synchronize LDAP group membership
openidm/samples/sample2d/

>Sample using LDAP connector to synchronize LDAP groups
openidm/samples/sample3/

Scripted SQL connector sample for MySQL
openidm/samples/sampled/

Sample demonstrating synchronization between two external resources (CSV and XML) without
using the OpenIDM internal repository

openidm/samples/sample5/

LDAP to OpenIDM to Active Directory attribute flow sample using XML resources rather than
actual directories

openidm/samples/sample5h/

Similar to sample 5 but also configures a compensation script that attempts to ensure either all
the synchronization or none of the synchronization is performed

openidm/samples/sample6/

LiveSync and reconciliation sample for use with two LDAP servers, using Active Directory and
OpenD]

openidm/samples/sample7/
Sample exposing identities with a SCIM-line schema
openidm/samples/sample8/

Sample demonstrating logging in scripts

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 409

(/’ FORGEROCK

openidm/samples/sample9/

Sample demonstrating how to perform an asynchronous action from a reconciliation

openidm/samples/schedules/

Sample schedule configuration files
openidm/samples/security/

Sample keystore, truststore, and certificates
openidm/samples/syncfailure/

Sample showing the sync failure handler for liveSync

openidm/samples/taskscanner/

Sample sunset scanning task. For more information, see Section 13.5, "Scanning Data to Trigger

Tasks".
openidm/samples/workflow/

Typical use case of a workflow for provisioning
openidm/samples/usecase/*

Several workflow samples to demonstrate common use cases
openidm/script/

OpenIDM location for script files referenced in the configuration
openidm/script/access.js

Default authorization policy script
openidm/security/

OpenIDM security configuration, keystore, and truststore
openidm/shutdown.sh

Script to shutdown OpenIDM services based on the process identifier
openidm/startup.bat

Script to start OpenIDM services on Windows
openidm/startup.sh

Script to start OpenIDM services on UNIX

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

410

(/’ FORGEROCK

openidm/ui/default/*

Default OpenIDM graphical UI files
openidm/ui/extension/*

Location for any UI customizations
openidm/workflow/

OpenIDM location for BPMN 2.0 workflows and .bar files

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 411

(/’ FORGEROCK

Appendix B. Ports Used

By default, OpenIDM 3.1 listens on the following ports (specified in the file /path/to/openidm/conf/boot/
boot.properties):

8080

HTTP access to the REST API, requiring OpenIDM authentication. This port is not secure,
exposing clear text passwords and all data that is not encrypted. This port is therefore not
suitable for production use.

8443

HTTPS access to the REST API, requiring OpenIDM authentication

8444

HTTPS access to the REST API, requiring SSL mutual authentication. Clients that present
certificates found in the truststore under openidm/security/ are granted access to the system.

The Jetty configuration (in openidm/conf/jetty.xml) references the ports that are specified in the
boot.properties file.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 412

(/’ FORGEROCK

Appendix C. Data Models and Objects

Reference

OpenIDM allows you to customize a variety of objects that can be addressed via a URL or URI, and
that have a common set of functions that OpenIDM can perform on them such as CRUD, query, and

action.

Depending on how you intend to use them, different objects are appropriate.

Object Type
Managed objects

Configuration objects

Repository objects

System objects

Table C.1. OpenIlDM Objects

Intended Use

Serve as targets and sources for
synchronization, and to build virtual
identities.

Ideal for look-up tables or other custom
configuration, which can be configured

externally like any other system configuration.

The equivalent of arbitrary database table
access. Appropriate for managing data
purely through the underlying data store or
repository API.

Representation of target resource objects,
such as accounts, but also resource objects
such as groups.

Special Functionality

Provide appropriate auditing,
script hooks, declarative
mappings and so forth

in addition to the REST
interface.

Adds file view, REST
interface, and so forth

Persistence and API access

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

413

(/’ FORGEROCK

Object Type Intended Use Special Functionality
Audit objects Houses audit data in the OpenIDM internal

repository.
Links Defines a relation between two objects.

C.1. Managed Objects

A managed object in OpenIDM is an object which represents the identity-related data managed by
OpenIDM. Managed objects are stored by OpenIDM in its data store. All managed objects are JSON-
based data structures.

C.1.1. Managed Object Schema

Managed objects have an associated schema to enforce a specific data structure. Schema is specified
using the JSON Schema specification. This is currently an Internet-Draft, with implementations in
multiple programming languages.

C.1.1.1. Managed Object Reserved Properties

Top-level properties in a managed object that begin with an underscore () are reserved by
OpenIDM for internal use, and are not explicitly part of its schema. Internal properties are read-only,
and are ignored when provided by the REST API client.

The following properties exist for all managed objects in OpenIDM.
_id

string

The unique identifier for the object. This value forms a part of the managed object's URI.
_rev

string

The revision of the object. This is the same value that is exposed as the object's ETag through

the REST API. The content of this attribute is not defined. No consumer should make any
assumptions of its content beyond equivalence comparison. This attribute may be provided by the
underlying data store.

_schema_id
string

The a reference to the schema object that the managed object is associated with.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 414

http://tools.ietf.org/html/draft-zyp-json-schema-03

(/’ FORGEROCK

_schema_rev
string

The revision of the schema that was used for validation when the object was last stored.

C.1.1.2. Managed Object Schema Validation

Schema validation is performed unequivocally whenever an object is stored, and conditionally
whenever an object is retrieved from the data store and exhibits a schema rev value that differs

from the rev of the schema that the OpenIDM instance currently has for that managed object type.
Whenever schema validation is performed, the schema rev of the object is updated to contain the rev
value of the current schema.

C.1.1.3. Managed Object Derived Properties

Properties can be defined to be strictly derived from other properties within the object. This allows
computed and composite values to be created in the object. Whenever an object undergoes a change,
all derived properties are recomputed. The values of derived properties are stored in the data store,
and are not recomputed upon retrieval.

C.1.2. Data Consistency

Single-object operations shall be consistent within the scope of the operation performed, limited by
capabilities of the underlying data store. Bulk operations shall not have any consistency guarantees.
OpenIDM does not expose any transactional semantics in the managed object access API.

All access through the REST API uses the ETag and associated conditional headers: 1f-Match, If-None-
Match. In operations that modify model objects, conditional headers are mandatory.

C.1.3. Managed Object Triggers

Triggers are user-definable functions that validate or modify object or property state.

C.1.3.1. State Triggers

Managed objects are resource-oriented. A set of triggers is defined to intercept the supported request
methods on managed objects. Such triggers are intended to perform authorization, redact, or modify
objects before the action is performed. The object being operated on is in scope for each trigger,
meaning that the object is retrieved by the data store before the trigger is fired.

If retrieval of the object fails, the failure occurs before any trigger is called. Triggers are executed
before any optimistic concurrency mechanisms are invoked. The reason for this is to prevent a
potential attacker from getting information about an object (including its presence in the data store)
before authorization is applied.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 415

(/’ FORGEROCK

onCreate

Called upon a request to create a new object. Throwing an exception causes the create to fail.
postCreate

Called after the creation of a new object is complete.
onRead

Called upon a request to retrieve a whole object or portion of an object. Throwing an exception
causes the object to not be included in the result. This method is also called when lists of objects
are retrieved via requests to its container object; in this case, only the requested properties are
included in the object. Allows for uniform access control for retrieval of objects, regardless of the
method in which they were requested.

onUpdate

Called upon a request to store an object. The "old" and "new" objects are in-scope for the trigger.
The "old" object represents a complete object as retrieved from the data store. The trigger

can elect to change "new" object properties. If as a result of the trigger the object's "old" and
"new" values are identical (that is, update is reverted), the update ends prematurely, though
successfully. Throwing an exception causes the update to fail.

postUpdate

Called after an update request is complete.
onDelete

Called upon a request to delete an object. Throwing an exception causes the deletion to fail.
postDelete

Called after an object is deleted.

C.1.3.2. Object Storage Triggers

An object-scoped trigger applies to an entire object. Unless otherwise specified, the object itself is in
scope for the trigger.

onValidate

Validates an object prior to its storage in the data store. Throws an exception in the event of a
validation failure.

onStore

Called just prior to when an object is stored in the data store. Typically used to transform an
object just prior to its storage (for example, encryption).

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 416

(/’ FORGEROCK

C.1.3.3. Property Storage Triggers

A property-scoped trigger applies to a specific property within an object. Only the property itself is

in scope for the trigger. No other properties in the object should be accessed during execution of the
trigger. Unless otherwise specified, the order of execution of property-scoped triggers is intentionally
left undefined.

onValidate

Validates a given property value after its retrieval from and prior to its storage in the data store.
Throws an exception in the event of a validation failure.

onRetrieve

Called in the result of a query request. Executed only when the executeOnRetrieve condition shows
a full managed object.

onStore
Called prior to when an object is stored in the data store. Typically used to transform a given
property prior to its object's storage.

C.1.3.4. Storage Trigger Sequences

Triggers are executed in the following order:

Object Retrieval Sequence
1. Retrieve the raw object from the data store

2. The executeOnRetrieve boolean is used to see if a full managed object is returned. The sequence
continues if the boolean is set to true.

3. Call object onRretrieve trigger
4. Per-property within the object:
¢ Call property onRetrieve trigger

¢ Perform schema validation if schema rev does not match (see Section C.1.1.2, "Managed Object
Schema Validation".

Object Storage Sequence
1. Per-property within the object:
» Call property onvalidate trigger

» Call object onvalidate trigger

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 417

(/’ FORGEROCK

2. Per-property trigger within the object:
¢ Call property onStore trigger
» Call object onstore trigger

¢ Store the object with any resulting changes to the data store

C.1.4. Managed Object Encryption

Sensitive object properties can be encrypted prior to storage, typically through the property onStore
trigger. The trigger has access to configuration data, which can include arbitrary attributes that you
define, such as a symmetric encryption key. Such attributes can be decrypted during retrieval from
the data store through the property onretrieve trigger.

C.1.5. Managed Object Configuration

Configuration of managed objects is provided through an array of managed object configuration

objects.

"objects": [managed-object-config object, ...]

}

objects
array of managed-object-config objects, required

Specifies the objects that the managed object service manages.

Managed-Object-Config Object Properties

Specifies the configuration of each managed object.

{
"name" : string,
"schema" . json-schema object,
"onCreate" : script object,
"postCreate": script object,
"onRead" 1 script object,
"onUpdate" : script object,
"postUpdate": script object,
"onDelete" : script object,
"postDelete": script object,
"onValidate": script object,
"onRetrieve": script object,
"onStore" 1 script object,
“"properties": [property-configuration object, ...]

}

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 418

(/’ FORGEROCK

name
string, required
The name of the managed object. Used to identify the managed object in URIs and identifiers.
schema
json-schema object, optional

The schema to use to validate the structure and content of the managed object. The schema-
object format is specified by the JSON Schema specification.

onCreate
script object, optional
A script object to trigger when the creation of an object is being requested. The object to be
created is provided in the root scope as an object property. The script may change the object. If
an exception is thrown, the create aborts with an exception.
postCreate
script object, optional
A script object to trigger after an object is created, but before any targets are synchronized.
onRead
script object, optional
A script object to trigger when the read of an object is being requested. The object being read
is provided in the root scope as an object property. The script may change the object. If an
exception is thrown, the read aborts with an exception.
onUpdate

script object, optional

A script object to trigger when an update to an object is requested. The old value of the object
being updated is provided in the root scope as an oldobject property. The new value of the object
being updated is provided in the root scope as a newObject property. The script may change the
newObject. If an exception is thrown, the update aborts with an exception.

postUpdate
script object, optional

A script object to trigger after an update to an object is complete, but before any targets are
synchronized.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 419

(/’ FORGEROCK

onDelete
script object, optional

A script object to trigger when the deletion of an object is being requested. The object being
deleted is provided in the root scope as an object property. If an exception is thrown, the deletion
aborts with an exception.

postDelete
script object, optional

A script object to trigger after a delete of an object is complete, but before any further
synchronization.

onValidate
script object, optional

A script object to trigger when the object requires validation. The object to be validated is
provided in the root scope as an object property. If an exception is thrown, the validation fails.

onRetrieve
script object, optional

A script object to trigger once an object is retrieved from the repository. The object that was
retrieved is provided in the root scope as an object property. The script may change the object. If
an exception is thrown, then object retrieval fails.

onStore
script object, optional

A script object to trigger when an object is about to be stored in the repository. The object to be
stored is provided in the root scope as an object property. The script may change the object. If an
exception is thrown, then object storage fails.

properties
array of property-config objects, optional

A list of property specifications.
Script Object Properties

{
"type" : "text/javascript",
"source": string

}

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 420

(/’ FORGEROCK

type

string, required

Specifies the type of script to be executed. Supported types include "text/javascript" and "groovy".
source, file

string, required (only one, source or file is required)

Specifies the source code of the script to be executed (if the keyword is "source"), or a pointer to

the file that contains the script (if the keyword is "file").

Property Config Properties

{
"name" : string,
"onValidate": script object,
"onRetrieve": script object,
"onStore" 1 script object,
“encryption": property-encryption object,
"scope" : string

}

name

string, required

The name of the property being configured.
onValidate

script object, optional

A script object to trigger when the property requires validation. The property to be validated is
provided in the root scope as the property property. If an exception is thrown, the validation fails.

onRetrieve
script object, optional

A script object to trigger once a property is retrieved from the repository. The property that
was retrieved is provided in the root scope as the property property. The script may change the
property value. If an exception is thrown, then object retrieval fails.

onStore
script object, optional

A script object to trigger when a property is about to be stored in the repository. The property
to be stored is provided in the root scope as the property property. The script may change the
property value. If an exception is thrown, then object storage fails.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 421

(/’ FORGEROCK

encryption
property-encryption object, optional

Specifies the configuration for encryption of the property in the repository. If omitted or null, the
property is not encrypted.

scope
string, optional

Specifies whether the property should be filtered from HTTP/external calls. The value can be
either "public" or "private". "private" indicates that the property should be filtered, "public"
indicates no filtering. If no value is set, the property is assumed to be public and thus not filtered.

Property Encryption Object

{
“cipher": string,
"key" 1 string
}
cipher

string, optional

The cipher transformation used to encrypt the property. If omitted or null, the default cipher of
"AES/CBC/PKCS5Padding” is used.

key
string, required

The alias of the key in the OpenIDM cryptography service keystore used to encrypt the property.

C.1.6. Custom Managed Objects

Managed objects in OpenIDM are inherently fully user definable and customizable. Like all OpenIDM
objects, managed objects can maintain relationships to each other in the form of links. Managed
objects are intended for use as targets and sources for synchronization operations to represent
domain objects, and to build up virtual identities. The name comes from the intention that OpenIDM
stores and manages these objects, as opposed to system objects that are present in external systems.

OpenIDM can synchronize and map directly between external systems (system objects), without
storing intermediate managed objects. Managed objects are appropriate, however, as a way to cache
the data—for example, when mapping to multiple target systems, or when decoupling the availability
of systems—to more fully report and audit on all object changes during reconciliation, and to build up
views that are different from the original source, such as transformed and combined or virtual views.
Managed objects can also be allowed to act as an authoritative source if no other appropriate source
is available.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 422

(/’ FORGEROCK

Other object types exist for other settings that should be available to a script, such as configuration
or look-up tables that do not need audit logging.

C.1.6.1. Setting Up a Managed Object Type

To set up a managed object, you declare the object in the conf/managed. json file where OpenIDM is
installed. The following example adds a simple foobar object declaration after the user object type.

{
“"objects": [
{
“name": "user"
+
{
"'name": "foobar"
}
1
}

C.1.6.2. Manipulating Managed Objects Declaratively

By mapping an object to another object, either an external system object or another internal managed
object, you automatically tie the object life cycle and property settings to the other object. For more
information, see Chapter 12, "Configuring Synchronization".

C.1.6.3. Manipulating Managed Objects Programmatically

You can address managed objects as resources using URLs or URIs with the managed/ prefix. This
works whether you address the managed object internally as a script running in OpenIDM or
externally through the REST interface.

You can use all resource API functions in script objects for create, read, update, delete operations,
and also for arbitrary queries on the object set, but not currently for arbitrary actions. For more
information, see Appendix F, "Scripting Reference".

OpenIDM supports concurrency through a multi version concurrency control (MVCC) mechanism. In
other words, each time an object changes, OpenIDM assigns it a new revision.

Objects can be arbitrarily complex as long as they use supported types, such as maps, lists, numbers,
strings, and booleans as defined in JSON.

C.1.6.3.1. Creating Objects

The following script example creates an object type.

openidm.create("managed/foobar", "myidentifier", mymap)

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 423

http://www.json.org

(/’ FORGEROCK

C.1.6.3.2. Updating Objects

The following script example updates an object type.

var expectedRev = origMap. rev
openidm.update("managed/foobar/myidentifier", expectedRev, mymap)

The MVCC mechanism requires that expectedrev be set to the expected revision of the object to
update. You obtain the revision from the object's rev property. If something else changes the object
concurrently, OpenIDM rejects the update, and you must either retry or inspect the concurrent
modification.

C.1.6.3.3. Patching Objects

You can partially update a managed object using the patch method, which changes only the specified
properties of the object. OpenIDM implements the JSON patch media type version 02, described at
http://tools.ietf.org/html/rfc6902.

The following script example updates an object type.
openidm.patch(“managed/ foobar/myidentifier", rev, value)

The patch method supports a revision of "null", which effectively disables the MVCC mechanism, that
is, changes are applied, regardless of revision. In the REST interface, this matches the 1f-Match: "*"
condition supported by patch.

The API supports patch by query, so the caller does not need to know the identifier of the object to
change.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
--data '[{
"operation":"replace",
"field":"/password",
"value":"PasswOrd"
3 A
"https://localhost:8443/openidm/managed/user?_action=patch&_queryId=for-userName&uid=DDOE"

For the syntax on how to formulate the query queryId=for-userName&uid=DDOE see Section C.1.6.3.6,
"Querying Object Sets".

C.1.6.3.4. Deleting Objects

The following script example deletes an object type.

var expectedRev = origMap. rev
openidm.delete("managed/foobar/myidentifier", expectedRev)

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 424

http://tools.ietf.org/html/rfc6902

(/’ FORGEROCK

The MVCC mechanism requires that expectedrev be set to the expected revision of the object to
update. You obtain the revision from the object's rev property. If something else changes the
object concurrently, OpenIDM rejects deletion, and you must either retry or inspect the concurrent
modification.

C.1.6.3.5. Reading Objects

The following script example reads an object type.

val = openidm.read("managed/foobar/myidentifier")

C.1.6.3.6. Querying Object Sets

You can query managed objects using common query filter syntax, or by configuring predefined
queries in your repository configuration. The following script example queries managed user objects
whose userName is Smith.

var qry = {
"_queryFilter" : “/userName eq \"smith\""
}i

val = openidm.query("managed/user", qry);

For more information, see Section 7.3, "Defining and Calling Queries".

C.1.7. Accessing Managed Objects Through the REST API

OpenIDM exposes all managed object functionality through the REST API unless you configure a
policy to prevent such access. In addition to the common REST functionality of create, read, update,
delete, patch, and query, the REST API also supports patch by query. For more information, see
Appendix E, "REST API Reference".

OpenlDM requires authentication to access the REST API. Authentication configuration is shown in
openidm/conf/authentication.json. The default authorization filter script is openidm/script/router-authz.js

C.2. Configuration Objects

OpenIDM provides an extensible configuration to allow you to leverage regular configuration
mechanisms.

Unlike native OpenIDM configuration, which OpenIDM interprets automatically and can start new
services, OpenIDM stores custom configuration objects and makes them available to your code
through the API.

For an introduction to standard configuration objects, see Chapter 6, "Configuring OpenIDM".

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 425

(/’ FORGEROCK

C.2.1. When To Use Custom Configuration Objects

Configuration objects are ideal for metadata and settings that need not be included in the data to
reconcile. In other words, use configuration objects for data that does not require audit log, and does
not serve directly as a target or source for mappings.

Although you can set and manipulate configuration objects both programmatically and manually,
configuration objects are expected to change slowly, perhaps through a mix of both manual file
updates and programmatic updates. To store temporary values that can change frequently and that
you do not expect to be updated by configuration file changes, custom repository objects might be
more appropriate.

C.2.2. Custom Configuration Object Naming Conventions
By convention custom configuration objects are added under the reserved context, config/custom.

You can choose any name under config/context. Be sure, however, to choose a value for context that
does not clash with future OpenIDM configuration names.

C.2.3. Mapping Configuration Objects To Configuration Files

If you have not disabled the file based view for configuration, you can view and edit all configuration
including custom configuration in openidm/conf/*.json files. The configuration maps to a file named
context-config-name.json, where context for custom configuration objects is custom by convention, and
config-name is the configuration object name. A configuration object named escalation thus maps to a
file named conf/custom-escalation.json.

OpenIDM detects and automatically picks up changes to the file.
OpenIDM also applies changes made through APIs to the file.

By default, OpenIDM stores configuration objects in the repository. The file view is an added
convenience aimed to help you in the development phase of your project.

C.2.4. Configuration Objects File & REST Payload Formats
By default, OpenIDM maps configuration objects to JSON representations.

OpenIDM represents objects internally in plain, native types like maps, lists, strings, numbers,
booleans, null. OpenIDM constrains the object model to simple types so that mapping objects to
external representations is trivial.

The following example shows a representation of a configuration object with a look-up map.

"CODE123" : "ALERT",
"CODE889" : "IGNORE"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 426

(/’ FORGEROCK

In the JSON representation, maps are represented with braces ({ }), and lists are represented with
brackets ([1). Objects can be arbitrarily complex, as in the following example.

"CODE123" : {
"email" : ["sample@sample.com", "john.doe@somedomain.com"],
"sms" : ["555666777"]

}

"CODE889" : "IGNORE"

C.2.5. Accessing Configuration Objects Through the REST API

You can list all available configuration objects, including system and custom configurations, using an
HTTP GET on /openidm/config.

The id property in the configuration object provides the link to the configuration details with an
HTTP GET on /openidm/config/id-value. By convention, the id-value for a custom configuration object
called escalation iS custom/escalation.

OpenIDM supports REST mappings for create, read, update, query, and delete of configuration
objects. Currently OpenIDM does not support patch operations for configuration objects.

C.2.6. Accessing Configuration Objects Programmatically

You can address configuration objects as resources using the URL or URI config/ prefix both
internally and also through the REST interface. The resource API provides script object functions for

create, read, update, query, and delete operations.

OpenIDM supports concurrency through a multi version concurrency control mechanism. In other
words, each time an object changes, OpenIDM assigns it a new revision.

Objects can be arbitrarily complex as long as they use supported types, such as maps, lists, numbers,
strings, and booleans.

C.2.7. Creating Objects

The following script example creates an object type.

openidm.create("config/custom", "myconfig", mymap)

C.2.8. Updating Objects

The following script example updates a custom configuration object type.

openidm.update("config/custom/myconfig", mymap)

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 427

(/’ FORGEROCK

C.2.9. Deleting Objects

The following script example deletes a custom configuration object type.

openidm.delete("config/custom/myconfig")

C.2.10. Reading Objects

The following script example reads an object type.

val = openidm.read("config/custom/myconfig")

C.3. System Objects

System objects are pluggable representations of objects on external systems. They follow the same
RESTful resource based design principles as managed objects. There is a default implementation for
the OpenICF framework, which allows any connector object to be represented as a system object.

C.4. Audit Objects

Audit objects house audit data selected for local storage in the OpenIDM repository. For details, see
Chapter 18, "Using Audit Logs".

C.5. Links

Link objects define relations between source objects and target objects, usually relations between
managed objects and system objects. The link relationship is established by provisioning activity that
either results in a new account on a target system, or a reconciliation or synchronization scenario
that takes a LINK action.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 428

(/’ FORGEROCK

Appendix D. Synchronization Reference

The synchronization engine is one of the core services of OpenIDM. You configure the

synchronization service through a mappings property that specifies mappings between objects that are
managed by the synchronization engine.

{

"mappings": [object-mapping object, ...]

D.1. Object-Mapping Objects

An object-mapping object specifies the configuration for a mapping of source objects to target

objects.

{

"name"
"source"
"target"
"links"
"validSource"
"validTarget"
“correlationQuery":
“"properties" :
"policies"
"onCreate"
"onUpdate"
“onLink"
"onUnlink"
"result"

: string,
: string,
: string,
: string,
1 script object,
1 script object,

script object,
[property object, ... 1,
[policy object, ... 1,

1 script object,
1 script object,
1 script object,
1 script object,
1 script object

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

429

(/’ FORGEROCK

Mapping Object Properties
name

string, required

Uniquely names the object mapping. Used in the link object identifier.
source

string, required

Specifies the path of the source object set. Example: "managed/user".
target

string, required

Specifies the path of the target object set. Example: "system/ldap/account".
links

string, optional

Enables reuse of the links created in another mapping. Example: "systemLdapAccounts managedUser"
reuses the links created by a previous mapping whose name is "systemLdapAccounts managedUser".

validSource
script object, optional

A script that determines if a source object is valid to be mapped. The script yields a boolean
value: true indicates the source object is valid; false can be used to defer mapping until some
condition is met. In the root scope, the source object is provided in the "source" property. If the
script is not specified, then all source objects are considered valid.

validTarget
script object, optional

A script used during the target phase of reconciliation that determines if a target object is valid
to be mapped. The script yields a boolean value: true indicates that the target object is valid;
false indicates that the target object should not be included in reconciliation. In the root scope,
the target object is provided in the "target" property. If the script is not specified, then all target
objects are considered valid for mapping.

correlationQuery
script object, optional

A script that yields a query object to query the target object set when a source object has no
linked target. The syntax for writing the query depends on the target system of the correlation.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 430

(/’ FORGEROCK

For examples of some common targets, see Section 12.17, "Correlation Queries". The source
object is provided in the "source" property in the script scope.

properties
array of property-mapping objects, optional

Specifies mappings between source object properties and target object properties, with optional
transformation scripts.

policies

array of policy objects, optional

Specifies a set of link conditions and associated actions to take in response.
onCreate

script object, optional

A script to execute when a target object is to be created, after property mappings have been
applied. In the root scope, the source object is provided in the "source" property, projected target
object in the "target" property and the link situation that led to the create operation in "situation".
The id property in the target object can be modified, allowing the mapping to select an identifier;
if not set then the identifier is expected to be set by the target object set. If the script throws an
exception, then target object creation is aborted.

onUpdate
script object, optional

A script to execute when a target object is to be updated, after property mappings have been
applied. In the root scope, the source object is provided in the "source" property, projected target
object in the "target" property, link situation that led to the update operation in "situation". If the
script throws an exception, then target object update is aborted.

onLink
script object, optional

A script to execute when a source object is to be linked to a target object, after property
mappings have been applied. In the root scope, the source object is provided in the "source"
property, projected target object in the "target" property. If the script throws an exception, then
target object linking is aborted.

onUnlink
script object, optional

A script to execute when a source and a target object are to be unlinked, after property mappings
have been applied. In the root scope, the source object is provided in the "source" property,

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 431

(/’ FORGEROCK

projected target object in the "target" property. If the script throws an exception, then target
object unlinking is aborted.

result
script object, optional

A script to execute on each mapping event, independent of the nature of the operation. In the
root scope, the source object is provided in the "source" property, projected target object in the
"target" property. If the script throws an exception, then target object unlinking is aborted.

The "result" script is executed only during reconciliation operations!

D.1.1. Property Objects

A property object specifies how the value of a target property is determined.

"target" : string,

"source" : string,
"transform" : script object,
“condition" : script object,
"default": value

Property Object Properties
target

string, required

Specifies the path of the property in the target object to map to.
source

string, optional

Specifies the path of the property in the source object to map from. If not specified, then the
target property value is derived from the script or default value.

transform
script object, optional

A script to determine the target property value. The root scope contains the value of the source in
the "source" property, if specified. If the "source" property has a value of "*, then the entire source
object of the mapping is contained in the root scope. The resulting value yielded by the script is
stored in the target property.

condition

script object, optional

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 432

(/’ FORGEROCK

A script to determine whether the mapping should be executed or not. The condition has an
"object" property available in root scope, which (if specified) contains the full source object. For
example "source": "(object.email != null)". The script is considered to return a boolean value.

default
any value, optional

Specifies the value to assign to the target property if a non-null value is not established by
"source" or "transform". If not specified, the default value is null.

D.1.2. Policy Objects

A policy object specifies a link condition and the associated actions to take in response.

"situation" : string,
"action" 1 string or script object
"postAction" : optional, script object

}

Policy Object Properties
situation

string, required

Specifies the situation for which an associated action is to be defined.
action

string or script object, required

Specifies the action to perform. If a script is specified, the script is executed and is expected to
yield a string containing the action to perform.

postAction
script object, optional
Specifies the action to perform after the previously specified action has completed.

Note

No postAction script is triggered if the action is either IGNORE or ASYNC.

D.1.2.1. Script Object

Script objects take the following form.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 433

(/’ FORGEROCK

{
"type" : "text/javascript",
"source": string

}
type
string, required
Specifies the type of script to be executed. Supported types include "text/javascript" and "groovy".
source
string, required

Specifies the source code of the script to be executed.

D.2. Links

To maintain links between source and target objects in mappings, OpenIDM stores an object set in
the repository. The object set identifier follows this scheme.

links/mapping

Here, mapping represents the name of the mapping for which links are managed.

Link entries have the following structure.
{

" _id":string,

"_rev":string,

"linkType":string,

“"firstId":string

"secondId":string,
_id

string

The identifier of the link object.
_rev

string, required

The value of link object's revision.

linkType

string, required

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 434

(/’ FORGEROCK

The type of the link. Usually then name of the mapping which created the link.
firstld

string, required

The identifier of the first of the two linked objects.
secondld

string

The identifier of the second of the two linked objects.

D.3. Queries

OpenIDM performs the following queries on a link object set.

1. Find link(s) for a given firstld object identifier.

SELECT * FROM links WHERE linkType
= value AND firstId = value

Although a single result makes sense, this query is intended to allow multiple results so that this

scenario can be handled as an exception.

2. Select link(s) for a given second object identifier.

SELECT * FROM links WHERE linkType
= value AND secondId = value

Although a single result makes sense, this query is intended to allow multiple results so that this

scenario can be handled as an exception.

D.4. Reconciliation

OpenIDM performs reconciliation on a per-mapping basis. The process of reconciliation for a given

mapping includes these stages.

1. Iterate through all objects for the object set specified as "source". For each source object, carry

out the following steps.

a. Look for a link to a target object in the link object set, and perform a correlation query (if

defined).

b. Determine the link condition, as well as whether a target object can be found.

c. Determine the action to perform based on the policy defined for the condition.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

(/) FORGEROCK

d. Perform the action.
e. Keep track of the target objects for which a condition and action has already been determined.
f. Write the results.

2. Iterate through all object identifiers for the object set specified as "target". For each identifier,
carry out the following steps.

a. Find the target in the link object set.
Determine if the target object was handled in the first phase.
b. Determine the action to perform based on the policy defined for the condition.
c. Perform the action.
d. Write the results.
3. Iterate through all link objects, carrying out the following steps.
a. If the reconid is "my", then skip the object.
If the reconld is not recognized, then the source or the target is missing.
b. Determine the action to perform based on the policy.
c. Perform the action.

d. Store the reconid identifer in the mapping to indicate that it was processed in this run.

Note

To optimize a reconciliation operation, the reconciliation process does not attempt to correlate source objects
to target objects if the set of target objects is empty when the correlation is started. For information on
changing this default behaviour, see Section 12.16, "Reconciliation Optimization".

D.5. REST API

External synchronized objects expose an API to request immediate synchronization. This API includes
the following requests and responses.

Request

Example:

POST /openidm/system/xml/account/jsmith? action=1iveSync HTTP/1.1

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 436

(/) FORGEROCK

Response (success)

Example:

HTTP/1.1 204 No Content

Response (synchronization failure)

Example:

HTTP/1.1 409 Conflict

[JSON representation of error]

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 437

(/’ FORGEROCK

Appendix E. REST API Reference

Representational State Transfer (REST) is a software architecture style for exposing resources, using
the technologies and protocols of the World Wide Web. REST describes how distributed data objects,

or resources, can be defined and addressed. OpenIDM provides a RESTful API for accessing managed
objects, system objects, workflows, and some elements of the system configuration.

The ForgeRock implementation of REST, known as commons REST (CREST), defines an API intended
for common use across all ForgeRock products. CREST is a framework used to access various web
resources, and for writing to RESTful resource providers (servers).

CREST is intended to support the following types of operations, described in detail in Section E.4,
"Supported Operations": Create, Read, Update, Delete, Action, and Query.

ForgeRock defines a JSON Resource core library, as a common framework to implement RESTful
APIs. That core library includes two components:

json-resource
A Maven module that provides core interfaces such as Connections, Requests, and Request Handlers.
json-resource-servlet

Provides J2EE servlet integration. Defines a common HTTP-based REST API for interacting with
JSON resources.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 438

(/’ FORGEROCK

Note

You can examine the libraries associated with ForgeRock REST at http://commons.forgerock.org/forgerock-rest.

E.1. URI Scheme

The URI scheme for accessing a managed object follows this convention, assuming the OpenIDM web
application was deployed at /openidm.

/openidm/managed/type/id

Similar schemes exist for URIs associated with all but system objects. For more information, see
Section 15.7.2, "access.js".

The URI scheme for accessing a system object follows this convention:

/openidm/system/resource-name/type/id
An example of a system object in an LDAP repository might be:

/openidm/system/ldap/account/07b46858-56eb-457c-b935-cfe6ddf769c7

Note that for LDAP resources, you should not map the LDAP dn to the OpenIDM uidAttribute (_id). The
attribute that is used for the id should be immutable. You should therefore map the LDAP entryuuId
operational attribute to the OpenIDM id, as shown in the following excerpt of the provisioner
configuration file:

"uidAttribute" : "entryUUID",

E.2. Object Identifiers

Every managed and system object has an identifier (expressed as id in the URI scheme) that is used
to address the object through the REST API. The REST API allows for client-generated and server-
generated identifiers, through PUT and POST methods. The default server-generated identifier type
is a UUID. If you create an object by using PosT, a server-assigned ID is generated in the form of a
UUID. If you create an object by using PUT, the client assigns the ID in whatever format you specify.

Most of the examples in this guide use client-assigned IDs, as it makes the examples easier to read.

For more information on whether to use PUT or POST to create managed objects, see Should You Use
PUT or POST to Create a Managed Object?.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 439

(/’ FORGEROCK

E.3. Content Negotiation

The REST API fully supports negotiation of content representation through the Accept HTTP header.
Currently, the supported content type is JSON. In most cases, you should include the following
header:

Accept: application/json

In a REST call (using the curl command, for example), you would include the following option to
specify the noted header:

--header "Content-Type: application/json"

You can also specify the default UTF-8 character set as follows:

--header "Content-Type: application/json;charset=utf-8"

The application/json content type is not needed when a REST call is made with the GET and DELETE
methods.

E.4. Supported Operations

CREST supports several types of operations for communication with web servers.
The following request parameters can be used in conjunction with the supported operations.
_debug=[true, false]

If debug=true, the HttpServiet dumps the HttpServletRequest to the embedded Jetty Servlet log file.
_prettyPrint=[true, false]

If prettyPrint=true, the HttpServlet formats the response, in a fashion similar to the JSON parser
known as jq.

For example, adding prettyPrint=true to the end of a query-all-ids request formats the output in
the following manner:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 440

http://stedolan.github.io/jq/

(/’ FORGEROCK

$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \

"https://localhost:8443/openidm/managed/user?_queryId=query-all-ids&_prettyPrint=true"

"result" : [{

" id" : "bjensen",

"rev" : @
oA

" id" : "scarter",

"rev" : "@"
oA

"id" @ "jberg",

"rev" : @
¥ 1,
"resultCount" : 3,
"pagedResultsCookie" : null,
"remainingPagedResults" : -1

}

Note that most command-line examples in this guide do not show this parameter, although the

output in the examples is formatted for readability.
_fields

The fields parameter can be used to return multiple common attributes.

For example, you can use GET to read specific attributes for a user as follows:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET
"https://localhost:8443/openidm/managed/user/james?_fields=userName,mail"

"mail": "james@example.com",
"userName": "james"

}

E.4.1. Creating an Object

Objects can be created with two different HTTP operations: PosT and PUT.

To create an object with a server-assigned ID, use the PosT operation with the create action. For

example:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

441

(/’ FORGEROCK

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
--data '{
"userName":"mike",
"sn":"Smith",
"givenName":"Mike",
"mail”: "mike@example.com",
"telephoneNumber": "082082082",
"password":"PasswOrd"

"https://localhost:8443/openidm/managed/user?_action=create"

{

"userName": "mike",

Vrey: e,

" id": "a5bed4d7-99d4-41c4-8d64-49493b48a920",
}

To create an object with a client-assigned ID, use the PUT operation, with either of the following
headers:

If-None-Match: *
If-None-Match: "*"

Specify the ID as part of the URL, for example:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "If-None-Match: *"
--request PUT \
--data '{
"userName":"james",
"sn":"Berg",
"givenName":"James",
"mail": "james@example.com",
"telephoneNumber": "082082082",
"password":"PasswOrd"
A
"https://localhost:8443/openidm/managed/user/james"

"userName": "james",
" rev': "1v,
" id": "james",

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 442

(/’ FORGEROCK

E.4.2. Reading an Object

To read the contents of an object, use the GET operation, specifying the object ID. For example:
$ curl \

{

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--request GET \
"https://localhost:8443/openidm/system/ldap/account/fc252fd9-b982-3ed6-b42a-c76d2546312c"

"givenName": "Barbara",
"telephoneNumber": "1-360-229-7105",
"dn": "uid=bjensen,ou=People,dc=example,dc=com",
"description": "Created for OpenIDM",
"mail": "bjensen@example.com",
"ldapGroups": [
"cn=openidm2, ou=Groups,dc=example,dc=com"
Us

"cn": "Babara Jensen",
"uid": "bjensen",
"sn": "Jensen",

" id": "fc252fd9-b982-3ed6-b42a-c76d2546312c"

E.4.3. Updating an Object

An update replaces some or all of the contents of an existing object. Any object can be updated over
REST with a PUT request. Managed objects can also be updated with a POST request, using the patch
action, or with a PATCH request.

To update an object with a PuT request, use the 1f-Match header, for example:

$

{

curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--header "Content-Type: application/json" \

--header "If-Match : *" \

--request PUT \

--data '{"description":"The new description for Babs Jensen"}'
"https://localhost:8443/openidm/system/ldap/account/fc252fd9-b982-3ed6-b42a-c76d2546312c"

"givenName": "Barbara",

"telephoneNumber": "1-360-229-7105",

"dn": "uid=bjensen,ou=People,dc=example,dc=com",

"description": "The new description for Babs Jensen",

"mail": "bjensen@example.com",

"ldapGroups": [
"cn=openidm2,ou=Groups,dc=example,dc=com"

1

"cn": "Babara Jensen",
"uid": "bjensen",
"sn": "Jensen",

" id": "fc252fd9-b982-3ed6-b42a-c76d2546312c"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 443

(/’ FORGEROCK

To update a managed object with a POST request, use the patch action and specify the updated fields
as an array in the data option. For example:

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
--data '[
{
"operation":"replace",
"field":"/description”,
"value":"The new description for James"
}
1"
"https://localhost:8443/openidm/managed/user/james?_action=patch"
{

"userName": "james",

" id": "james",
"description": "The new description for James",

To update a managed object with a PATCH request, use the 1f-Match header. A PATCH request can
add, remove, replace, or increment an attribute value. A replace operation replaces an existing value,
or adds a value if no value exists.

The following example shows a patch request that updates a multi-valued attribute by adding a new
value. Note the dash - character appended to the field name, which specifies that the value provided
should be added to the existing values. If the dash character is omitted, the provided value replaces
the existing values of that field.

$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--header "If-Match: *" \

--request PATCH \

--data '[
{
“operation": "add",
"field": "/roles/-",
"value": "managed/role/ldap"
}
1"\

"https://localhost:8443/openidm/managed/user/bjensen"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 444

(/’ FORGEROCK

E.4.4. Deleting an Object

A delete request is similar to an update request, and can optionally include the HTTP 1f-Match header.
To delete an object, specify its ID in the request, for example:

$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--request DELETE \
"https://localhost:8443/openidm/system/ldap/account/e81lc7f1l5-2e6d-4c3c-8005-890101070dd9"

" id": "e81lc7f15-2e6d-4c3c-8005-890101070dd9"

E.4.5. Querying Resources

Resources can be queried using the GET method, with one of the following query parameters:
For queries on managed objects:

* queryId for arbitrary predefined, parameterized queries

* queryFilter for arbitrary filters, in common filter notation

* queryExpression for client-supplied queries, in native query format

For queries on system objects:

* queryId=query-all-ids (the only supported predefined query)

* queryFilter for arbitrary filters, in common filter notation

For additional information on queries, see Section 7.3.4, "Constructing Queries".

E.5. Conditional Operations

The REST API fully supports conditional operations through the use of the ETag, If-Match and If-None
-Match HTTP headers. The use of HTTP conditional operations is the basis of OpenIDM's optimistic
concurrency control system. Clients should make requests conditional in order to prevent inadvertent
modification of the wrong version of an object.

E.6. Supported Methods

The managed object API uses standard HTTP methods to access managed objects.
GET

Retrieves a managed object in OpenIDM.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 445

(/’ FORGEROCK

Example Request

GET /openidm/managed/user/bdd793f8

Example Response

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8
Cache-Control: no-cache

Vary: Accept-Encoding, User-Agent
Set-Cookie: session-jwt=2sadf... afd5;Path=/
Expires: Thu, 01 Jan 2015 00:00:00 GMT
Content-Length: 1230

Server: Jetty(8.y.z-SNAPSHOT)

[JSON representation of the managed object]
HEAD

Returns metainformation about a managed object in OpenIDM.

Example Request

HEAD /openidm/managed/user/bdd793f8

Example Response

HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: 123

ETag: "0"

PUT
Creates or updates a managed object.

Example Request: Creating a new object

PUT /openidm/managed/user/5752c0fd9509
Content-Type: application/json
Content-Length: 123

If-None-Match: *

[JSON representation of the managed object to create]

Example Response: Creating a new object (success)

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 446

(/’ FORGEROCK

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 45

ETag: "0"

[JSON representation containing metadata (underscore-prefixed) properties]
Example Response: Creating a new object without the If-None-Match header

HTTP/1.1 404 Not Found
Content-Type: application/json
Content-Length: 83

[JSON representation of error]
Example Request: Updating an existing object

PUT /openidm/managed/user/5752c0fd9509
Content-Type: application/json
Content-Length: 123

If-Match: "1"

[JSON representation of managed object to updatel]
Example Response: Updating an existing object (success)

HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: 45

ETag: "2"

[JSON representation of updated object]
Example Response: Updating an existing object when no version is supplied

HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: 89

ETag: "3"

[JSON representation of updated object]

Example Response: Updating an existing object when an invalid version is supplied

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 447

(/) FORGEROCK

HTTP/1.1 412 Precondition Required
Content-Type: application/json
Content-Length: 89

[JSON representation of error]
Example Response: Updating an existing object with 1f-Match: *

HTTP/1.1 200 OK

Content-Type: application/json
Content-Length: 45

ETag: "0"

[JSON representation of updated object]

Should You Use PUT or POST to Create a Managed Object?

You can use PUT and POST to create managed objects. To create a managed object with a PUT, you would
include the id in the request. If you create a managed object with a POST, the server assigns the id in
the form of a UUID.

In some cases, you may want to use PUT, as POST is not idempotent. If you can specify the id to assign to
the object, use PUT.

Alternatively, POST generates a server-assigned ID in the form of a UUID. In some cases, you may prefer to
use UUIDs in production, as a POST can generate them easily in clustered environments.

POST

The POST method allows arbitrary actions to be performed on managed objects. The action query
parameter defines the action to be performed.

The create action is used to create a managed object. Because POST is neither safe nor
idempotent, PUT is the preferred method of creating managed objects, and should be used if
the client knows what identifier it wants to assign the object. The response contains the server-
generated id of the newly created managed object.

The POST method create optionally accepts an id query parameter to specify the identifier to
give the newly created object. If an id is not provided, the server selects its own identifier.

The patch action is used to update one or more attributes of a managed object, without replacing
the entire object.

Example Create Request

POST /openidm/managed/user? action=create
Content-Type: application/json;charset=UTF-8
Content-Length: 123

[JSON representation of the managed object to create]

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 448

(/’ FORGEROCK

Example Response

HTTP/1.1 201 Created

Content-Type: application/json;charset=UTF-8
Cache-Control: no-cache

Location: https://Some URI

[JSON representation containing metadata (underscore-prefixed) properties]
Example Patch Request

POST /openidm/managed/user?_action=patch
Content-Type: application/json;charset=UTF-8
Content-Length: 123

[JSON representation of the managed object to create]
Example Response (success)

HTTP/1.1 200 OK

Content-Type: application/json;charset=UTF-8
Cache-Control: no-cache

Set-Cookie: session-jwt=yAiYWxnIjogI;Path=/

DELETE
Deletes a managed object.

Example Request

DELETE /openidm/managed/user/c3471805b60f
If-Match: "0"

Example Response (success)

HTTP/1.1 200 OK

Content-Length: 405

Content-Type: application/json;charset=UTF-8
Etag: "4"

[JSON representation of the managed object that was deleted]

Example Response: Deleting an existing object when no version is supplied

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 449

(/’ FORGEROCK

HTTP/1.1 260 OK

Content-Length: 405

Content-Type: application/json;charset=UTF-8
Etag: "4"

[JSON representation of the managed object that was deleted]

Example Response: Deleting an existing object when an invalid version is supplied

HTTP/1.1 412 Precondition Required
Content-Type: application/json;charset=UTF-8
Content-Length: 89

[JSON representation of error]

PATCH
Performs a partial modification of a managed object.
See the JSON Patch Internet-Draft for details.

Example Request

PATCH /openidm/managed/user/5752c0fd9509
Content-Type: application/patch+json
Content-Length: 456

If-Match: "0"

[JSON representation of patch document to apply]
Example Response (success)

HTTP/1.1 200 OK

Set-Cookie: JSESSIONID=1kke440cyvlvivbrid6ljso7b;Path=/
Expires: Thu, 01 Jan 1970 00:00:00 GMT

Content-Type: application/json; charset=UTF-8

ETag: "1"

{" id":"5752c0fd9509","_rev":"2"}

Updating an existing object when no version is supplied (version conflict)

HTTP/1.1 409 Conflict
Content-Type: application/json;charset=UTF-8
Content-Length: 89

[JSON representation of error]

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 450

http://tools.ietf.org/html/draft-pbryan-json-patch-04

(/’ FORGEROCK

Example Response: Updating an existing object when an invalid version is supplied (version
conflict)

HTTP/1.1 412 Precondition Required
Content-Type: application/json;charset=UTF-8
Content-Length: 89

[JSON representation of error]

E.7. REST Endpoints and Sample Commands

This section describes the OpenIDM REST endpoints and provides a number of sample commands
that show the interaction with the REST interface.

E.7.1. Managing the Server Configuration Over REST

OpenIDM stores configuration objects in the repository, and exposes them under the context path /
openidm/config. Single instance configuration objects are exposed under /openidm/config/object-name.

Multiple instance configuration objects are exposed under /openidm/config/object-name/instance-name.
The following table outlines these configuration objects and how they can be accessed through the
REST interface.

URI HTTP Description
Operation
/openidm/config GET Returns a list of configuration objects
/openidm/config/audit GET Returns the current logging configuration
/openidm/config/provisioner.openicf/provisioner-name = GET Returns the configuration of the specified
connector
/openidm/config/router PUT Changes the router configuration.

Modifications are provided with the -data
option, in JSON format.

/openidm/config/object DELETE Deletes the specified configuration object.

OpenIDM supports REST mappings for create, read, update, query, and delete of configuration
objects. Currently OpenIDM does not support patch operations for configuration objects.

For an example that displays the current configuration, the current logging configuration, the
configuration with an XML connector provisioner, and how the configuration can be modified over
the router, see Section 6.4, "Configuring OpenIDM Over REST".

One entry is returned for each configuration object. To obtain additional information on the
configuration object, include its pid or id in the URL. The following example displays configuration
information on the sync object, based on OpenIDM using Sample 1.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 451

(/’ FORGEROCK

$ curl \
--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \

--request GET \

"https://localhost:8443/openidm/config/sync"

{
"mappings": [{
"target" : "managed/user",
"correlationQuery" : {
"type" : "text/javascript",
"source" : "var query = {'_queryId'
1,
"properties" [{
"target" : " _id",
"source" : " id"
oA
"target" : "description",
"source" : "description"
oA
"target" : "givenName",
"source" : "firstname"
oA
"target" : "mail",
"source" : "email"
+

E.7.2. Managing Users Over REST

'for-userName',

‘uid!

: source.name};query;"

User objects are stored in the repository and are exposed under the context path /managed/user. Many
examples of REST calls related to this context path exist throughout this document. The following
table lists available functionality associated with the /managed/user context path.

URI

/openidm/managed/user? queryld=query-all-ids

/openidm/managed/user? queryFilter=filter

/openidm/managed/user/id

/openidm/managed/user/userName

/openidm/managed/user/userName

/openidm/managed/user? action=create

HTTP
Operation
GET

GET

GET

PUT
PUT

POST

Description

List all the managed users in the
repository

Query the managed user object with the
defined filter. The value of the query filter
must be URL encoded.

Retrieve the JSON representation of a
specific user

Create a new user

Update a user entry (replaces the entire
entry)

Create a new user

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)

Copyright © 2011-2017 ForgeRock AS. All rights reserved.

452

(/’ FORGEROCK

URI HTTP Description

Operation
/openidm/managed/user? POST Update a user (can be used to replace the
_action=patch& queryld=for-userName&uid= value of one or more existing attributes)
userName
/openidm/managed/user/userName PATCH Update specified fields of a user entry
/openidm/managed/user/userName DELETE Delete a user entry

The following example retrieves the JSON representation of all users stored in the internal repository.

$ curl \

--cacert self-signed.crt

\

--header "X-OpenIDM-Username: openidm-admin"

\

--header "X-OpenIDM-Password: openidm-admin"

\

--request GET \
"https://localhost:8443/openidm/managed/user?_queryId=query-all-ids"

The following example queries the repository for managed users whose user name is Smith.

$ curl \

--cacert self-signed.crt

\

--header "X-OpenIDM-Username: openidm-admin"

\

--header "X-OpenIDM-Password: openidm-admin"

\

--request GET \
"https://localhost:8443/openidm/managed/user?_queryFilter=userName%20eq%20%22smith%22"

The following example retrieves the JSON representation of a specified user.

$ curl \

--cacert self-signed.crt \

--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
"https://localhost:8443/openidm/managed/user/user_id"

To add a user without a specified ID, see Section 2.8, "Adding Users Over REST" in the Installation
Guide.

The following example adds a user with a specific user ID.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 453

(/’ FORGEROCK

$ curl \
--cacert self-signed.crt \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request PUT \
--data '{
"userName":"james",
"sn":"Berg",
"givenName":"James",
"mail": "james@example.com",
"telephoneNumber": "082082082",
"password":"password"
A\
"https://localhost:8443/openidm/managed/user/james"

The following example checks whether a user exists, then updates the user entry. The command
replaces the telephone number with the new data provided in the request body.

$ curl \

--cacert self-signed.crt \

--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request POST \

--data '[{
"operation":"replace”,
"field":"/telephoneNumber",
"value":"1234567"
A
"https://localhost:8443/openidm/managed/user?_action=patch&_queryId=for-userName&uid=id"

E.7.3. Managing System Objects Over REST

System objects, that is, objects that are stored in remote systems, are exposed under the /openidm/
system context. OpenIDM provides access to system objects over REST, as listed in the following table.

URI HTTP Description
Operation
/openidm/system? action=action-name POST _action=availableConnectors returns a

list of the connectors that are available in
openidm/connectors or in openidm/bundle

_action=createCoreConfig takes

the supplied connector reference
(connectorRef) and adds the configuration
properties required for that connector.
This generates a core connector
configuration that you can use to

create a full configuration with the
createFullConfig action.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 454

(/) FORGEROCK

URI HTTP Description
Operation

_action=createFullConfig generates a
complete connector configuration, using
the configuration properties from the
createCoreConfig action, and retrieving
the object types and operation options
from the resource, to complete the
configuration.

_action=test returns a list of all remote
systems, with their status, and supported
object types.

action=testConfig validates the connector
configuration provided in the POST body.

_action=liveSync triggers a liveSync
operation on the specified source object.

_action=authenticate authenticates to
the specified system with the credentials

provided.
/openidm/system/system-name?_action=action-name POST _action=test tests the status of the

specified system.
/openidm/system/system-name/system-object? POST _action=liveSync triggers a liveSync
_action=action-name operation on the specified system object.

_action=script runs the specified script on
the system object.

action=authenticate authenticates to the
specified system object, with the provided
credentials.

action=create creates a new system

Bbject.
/openidm/system/system-name/system-object? GET Lists all IDs related to the specified system
_queryld=query-all-ids object, such as users, and groups.
/openidm/system/system-name/system-object? GET Lists the item(s) associated with the query
_queryFilter=filter filter.
/openidm/system/system-name/system-object/id PUT Creates a system object, or updates the

system object, if it exists (replaces the
entire object).

/openidm/system/system-name/system-object/id DELETE Deletes a system object.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 455

(/) FORGEROCK

Note

When you create a system object with a PUT request (that is, specifying a client-assigned ID), you should
specify the ID in the URL only and not in the JSON payload. If you specify a different ID in the URL and in the

JSON payload, the request will fail, with an error similar to the following:

{

"code":500,
"reason":"Internal Server Error",
"message":"The uid attribute is not single value attribute."}

The patch action is not supported on system objects.

Example E.1. Returning a list of the available connector configurations

$ curl \

--cacert self-signed.crt \

--header "Content-Type: application/json" \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--request POST \
"https://localhost:8443/openidm/system?_action=availableConnectors"

Example E.2. Returning a list of remote systems, and their status

$ curl \
--cacert self-signed.crt \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request POST \
"https://localhost:8443/openidm/system?_action=test"

[
{

"ok": true,
"connectorRef": {
"bundleVersion": "[1.4.0.0,2.0.0.0)",
"bundleName": "org.forgerock.openicf.connectors.ldap-connector",
"connectorName": "org.identityconnectors.ldap.LdapConnector"
1,
"objectTypes": [
“group",
"account"
1,
"config": "config/provisioner.openicf/ldap",
"enabled": true,
"name": "ldap"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

456

(/’ FORGEROCK

Example E.3. Two options for running a liveSync operation on a specified system object

$ curl \
--cacert
--header
--header
--header

self-signed.crt \

"Content-Type: application/json" \
"X-OpenIDM-Username: openidm-admin" \
"X-0OpenIDM-Password: openidm-admin" \

--request POST \
"https://localhost:8443/openidm/system?_action=1liveSync&source=system/ldap/account"

nyn,

" id": "SYSTEMLDAPACCOUNT",

"connectorData": {
"nativeType": "integer",
"syncToken": 0

{

" rev":
}

}
$ curl \
--cacert
--header
--header
--header

self-signed.crt \

"Content-Type: application/json" \
"X-0penIDM-Username: openidm-admin" \
"X-0penIDM-Password: openidm-admin" \

--request POST \
"https://localhost:8443/openidm/system/ldap/account?_action=1liveSync"

{

" rey":

npn,

""id": "SYSTEMLDAPACCOUNT",

"connectorData": {
"nativeType": "integer",
"syncToken": 0

}
}

Example E.4. Running a script on a system object

$ curl \
--cacert
--header
--header
--header

self-signed.crt \

"Content-Type: application/json" \
"X-OpenIDM-Username: openidm-admin" \
"X-0penIDM-Password: openidm-admin" \

--request POST \
"https://localhost:8443/openidm/system/ldap/account?_action=script&_scriptId=addUser"

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

457

(/’ FORGEROCK

Example E.5. Authenticating to a system object

$ curl \
--cacert self-signed.crt \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request POST \
"https://localhost:8443/openidm/system/ldap/account?
_action=authenticate&username=bjensen&password=PasswOrd"
{
" id": "fc252fd9-b982-3ed6-b42a-c76d2546312c"
}

Example E.6. Creating a new system object

$ curl \
--cacert self-signed.crt \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "X-OpenIDM-Username: openidm-admin" \
--data '{
"cn":"James Smith",
"dn":"uid=jsmith, ou=people, dc=example,dc=com",
"uid":"jsmith",
"sn":"Smith",
"givenName":"James",
"mail”: "jsmith@example.com",
"description":"Created by OpenIDM REST"}' \
--request POST \
"https://localhost:8443/openidm/system/ldap/account?_action=create"

"telephoneNumber":null,

"description":"Created by OpenIDM REST",
"mail":"jsmith@example.com",
"givenName":"James",

"cn":"James Smith",

"dn":"uid=jsmith, ou=people,dc=example,dc=com",
"uid":"jsmith",

"ldapGroups":[1],

"sn":"Smith",

" id":"07b46858-56eb-457c-b935-cfeb6ddf769c7"

Example E.7. Renaming a system object

You can rename a system object simply by supplying a new naming attribute value in a PUT request.
The PUT request replaces the entire object. The naming attribute depends on the external resource.

The following example renames an object on an LDAP server, by changing the DN of the LDAP object
(effectively performing a modDN operation on that object).

The example renames the user created in the previous example.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 458

(/’ FORGEROCK

$ curl \
--cacert self-signed.crt \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "If-Match: *" \
--data '{
"cn":"James Smith",
"dn":"uid=jimmysmith, ou=people,dc=example,dc=com",
"uid":"jimmysmith",

"sn":"Smith",
"givenName":"James",
"mail": "jsmith@example.com"}' \

--request PUT \
"https://localhost:8443/openidm/system/ldap/account/07b46858-56eb-457c-b935-cfe6ddf769c7"
{
"mail":"jsmith@example.com",
"cn":"James Smith",
"sn":"Smith",
"dn":"uid=jimmysmith, ou=people,dc=example,dc=com",
"ldapGroups":[],
"telephoneNumber":null,
"description":"Created by OpenIDM REST",
"givenName":"James",
"uid":"jimmysmith",
" id":"07b46858-56eb-457c-b935-cfeb6ddf769c7"

Example E.8. List the IDs associated with a specific system object

$ curl \

--cacert self-signed.crt \

--header "Content-Type: application/json" \

--header "X-OpenIDM-Password: openidm-admin" \

--header "X-OpenIDM-Username: openidm-admin" \

--request GET \

"https://localhost:8443/openidm/system/ldap/account?_queryId=query-all-ids"
{

"remainingPagedResults": -1,
"pagedResultsCookie": null,
"resultCount": 3,

"result": [
{

"dn": "uid=jdoe,ou=People,dc=example,dc=com",
" id": "1ff2e78f-4c4c-300c-b8f7-c2abl60061e0"

+

{
"dn": "uid=bjensen,ou=People,dc=example,dc=com",
" id": "fc252fd9-b982-3ed6-b42a-c76d2546312c"

+

{
"dn": "uid=jimmysmith,ou=people,dc=example,dc=com",
" id": "07b46858-56eb-457c-b935-cfebddf769c7"

}

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 459

(/’ FORGEROCK

E.7.4. Managing Workflows Over REST

Workflow objects are exposed under the /openidm/workflow context. OpenIDM provides access to the
workflow module over REST, as listed in the following table.

URI
/openidm/workflow/processdefinition? queryld=id
/openidm/workflow/processdefinition/id
/openidm/workflow/processinstance? queryld=query-

all-ids

/openidm/workflow/processinstance/id

/openidm/workflow/processdefinition/id/taskdefinition

/openidm/workflow/taskinstance? queryld=query-all-
ids

/openidm/workflow/taskinstance?
_queryld=filteredQuery&filter

/openidm/workflow/processinstance? action=create

/openidm/workflow/taskinstance/id
/openidm/workflow/processinstance/id

/openidm/workflow/taskinstance/id? action=claim

HTTP
Operation
GET

GET

GET

GET

GET

GET

GET

POST

PUT
DELETE
POST

Description

Lists workflow definitions based on
filtering criteria

Returns detailed information about the
specified process definition

Lists the available running workflows, by
IDs

Provides detailed information of a running
process instance

Returns detailed information about the
task definition, when you include an id or a
query for all IDs, ? queryId=query-all-ids

Lists all active tasks

Lists the tasks according to the specified
filter

Start a new workflow. Parameters are
included in the request body.

Update task data
Stops a process instance

Claim or complete a task. Parameters are
included in the request body. Specifically
for user tasks, a user can claim a specific
task, which will then be assigned to that
user.

The following examples list the defined workflows. For a workflow to appear in this list, the
corresponding workflow definition must be in the openidm/workflow directory.

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \

"https://localhost:8443/openidm/workflow/processdefinition?_queryId=query-all-ids"

Depending on the defined workflows, the output will be something like the following:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)

Copyright © 2011-2017 ForgeRock AS. All rights reserved.

460

(/’ FORGEROCK

{

"result":[{
"tenantId" : "",
"candidateStarterGroupIdExpressions" : [],
"candidateStarterUserIdExpressions" : [1,
"participantProcess" : null,

1

"resultCount" : 1,
"pagedResultsCookie" : null,
"remainingPagedResults" : -1

}

The following example invokes a workflow named "myWorkflow". The foo parameter is given the
value bar in the workflow invocation.

$ curl \
--cacert self-signed.crt \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request POST \

--data '{
"key":"contractorOnboarding",
"foo":"bar"

A

"https://localhost:8443/openidm/workflow/processinstance?_action=create"

E.7.5. Managing Scanned Tasks Over REST

OpenIDM provides a task scanning mechanism that enables you to perform a batch scan for a
specified date in OpenIDM data, on a scheduled interval, and then to execute a task when this date
is reached. For more information about scanned tasks, see Section 13.5, "Scanning Data to Trigger
Tasks".

OpenIDM provides REST access to the task scanner, as listed in the following table.

URI HTTP Description
Operation
/openidm/taskscanner GET Lists the all scanning tasks, past and
present.
/openidm/taskscanner/id GET Lists details of the given task.
/openidm/taskscanner? action=execute&name=name POST Triggers the specified task scan run.
/openidm/taskscanner/id? action=cancel POST Cancels the specified task scan run.

E.7.6. Accessing Log Entries Over REST

You can interact with the audit and activity logs over REST, as shown in the following table.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 461

(/’ FORGEROCK

URI HTTP Description
Operation
/openidm/audit/recon GET Displays the reconciliation audit log
/openidm/audit/recon/id GET Reads a specific reconciliation audit log
entry
/fopenidm/audit/recon? queryld=audit-by-recon- GET Queries the audit log for a particular
id&reconld=id reconciliation operation
/fopenidm/audit/recon? queryld=audit-by-recon-id- GET Queries the reconciliation audit log for a
situation&situation= situation&reconld=id specific reconciliation situation
/openidm/audit/activity GET Displays the activity log
/openidm/audit/activity/id GET Returns activity information for a specific
action
/openidm/audit/activity? queryld=audit-by-activity- GET Queries the activity log for the details of
parent-action&parentActionld=id an action
/openidm/audit/access GET Displays the full list of auditable actions.
/openidm/audit/access/id GET Displays information on the specific audit
item.

E.7.7. Managing Reconciliation Operations Over REST

You can interact with the reconciliation engine over REST, as shown in the following table.

URI HTTP Description

Operation
/openidm/recon GET Lists all completed reconciliation runs
/openidm/recon? action=recon&mapping=mapping- POST Launches a reconciliation run with the
name specified mapping
/openidm/recon/id? action=cancel POST Cancels the specified reconciliation run
/openidm/system/datastore account? action=liveSync = POST Calls a LiveSync operation.

The following example runs a reconciliation action, with the mapping systemHrdb managedUser, defined in
the sync.json file.

$ curl \

--cacert self-signed.crt \

--header "Content-Type: application/json" \

--header "X-OpenIDM-Username: openidm-admin" \

--header "X-OpenIDM-Password: openidm-admin" \

--request POST \
"https://localhost:8443/openidm/recon?_action=recon&mapping=systemHrdb_managedUser"

E.7.8. Managing the Repository over REST

You can interact with the repository engine over REST, as shown in the following table.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 462

(/’ FORGEROCK

URI

/openidm/repo/synchronisation/

deadLetterQueue/resource? queryld=query-all-ids"

/openidm/repo/link? queryld=query-all-ids"

/openidm/repo/internal/user? queryld=query-all-ids"

/openidm/repo/internal/user/username"

/openidm/repo? action=updateDbCredentials

HTTP Description

Operation

GET Lists any failed synchronisation records for
that resource, that have been placed in the
dead letter queue.

GET Lists entries in the links table

GET Lists the internal users

PUT Enables you to change the username or
password of an internal user

POST Enables you to change the database

username and password, in the case of an
OrientDB repository

For examples of queries on the repo/ endpoint, see Section 5.4, "Interacting With the Repository Over

REST".

E.8. HTTP Status Codes

The OpenIDM REST API returns the standard HTTP response codes, as described in the following

table.

HTTP Status
200 OK

201 Created

202 Accepted

204 No Content

400 Bad Request

401 Unauthorized

403 Forbidden

404 Not Found

Description

The request was successfully completed. If this request created

a new resource that is addressable with a URI, and a response
body is returned containing a representation of the new resource,
a 200 status will be returned with a Location header containing
the canonical URI for the newly created resource.

A request that created a new resource was completed. A
representation of the new resource is returned. A Location
header containing the canonical URI for the newly created
resource should also be returned.

The request has been accepted for processing, but the processing
has not been completed.

The server fulfilled the request, but does not need to return a
response message body.

The request could not be processed because it contains missing
or invalid information.

The authentication credentials included with this request are
missing or invalid.

The server recognized your credentials, but you do not possess
authorization to perform this request.

The request specified a URI of a resource that does not exist.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)

Copyright © 2011-2017 ForgeRock AS. All rights reserved.

463

(/’ FORGEROCK

HTTP Status
405 Method Not Allowed

406 Not Acceptable

409 Conflict

500 Internal Server Error

501 Not Implemented

503 Service Unavailable

Description

The HTTP verb specified in the request (DELETE, GET, HEAD,
POST, PUT) is not supported for this request URI.

The resource identified by this request is not capable of
generating a representation corresponding to one of the media
types in the Accept header of the request.

A creation or update request could not be completed, because
it would cause a conflict in the current state of the resources
supported by the server (for example, an attempt to create a
new resource with a unique identifier already assigned to some
existing resource).

The server encountered an unexpected condition which
prevented it from fulfilling the request.

The server does not (currently) support the functionality required

to fulfill the request.

The server is currently unable to handle the request due to
temporary overloading or maintenance of the server.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

464

(/’ FORGEROCK

Appendix F. Scripting Reference

Scripting allows you to customize various aspects of OpenIDM functionality, for example, by
providing custom logic between source and target mappings, defining correlation rules, filters, and
triggers, and so on.

OpenIDM 3.1 supports scripts written in JavaScript and Groovy. Script options are configured in the
conf/script.json file, described in Section F.1.1, "Script Configuration File" .

F.1. Scripting Configuration

OpenIDM includes several default scripts in the following directory: path/to/openidm/bin/defaults/
script/. Do not modify or remove any of the scripts in this directory, as OpenIDM needs these scripts
to run specific services. Scripts in this folder are not guaranteed to remain constant between product
releases.

If you develop custom scripts, copy them to the script/ directory for your project, such as path/to/
openidm/script/.

F.1.1. Script Configuration File

OpenIDM 3.1 includes a script configuration file (/path/to/openidm/conf/script.json) that enables you

to modify the parameters used by your Groovy and Java Scripts. You can also use this file to change
the default project and script directories. For more information, see Section 6.7, "Default and Custom

Configuration Directories".

The properties shown in the default version of the script.json file are described here:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 465

(/’ FORGEROCK

properties

Additional custom properties.
ECMAScript

JavaScript is an ECMAScript language.
javascript.debug

See Section F.6, "Debugging OpenIDM JavaScripts"
javascript.recompile.minimumInterval

Minimum time after which a script can be recompiled.
groovy.warnings

Specifies a log level for Groovy scripts.
groovy.source.encoding

Defines the encoding format for Groovy scripts.
groovy.target.directory

Specifies the output directory.
groovy.target.bytecode

Specifies the output bytecode.
groovy.classpath

Defines directories with Groovy class files.
groovy.output.verbose

Specifies the verbosity of stack traces.
groovy.output.debug

Sets debugging status.
groovy.errors.tolerance

Sets number of non-fatal errors before aborting a compilation.
groovy.script.extension

Defines the file extension for a Groovy script.
groovy.script.base

Defines the base class for the script.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

466

(/’ FORGEROCK

groovy.recompile
Allows a script to be recompiled.
groovy.recompile.minimumInterval
Minimum time between when Groovy scripts can be compiled.
groovy.target.indy
Defines whether a Groovy indy test can be used.
groovy.disabled.global.ast.transformations
Notes whether Groovy Abstract Syntax Transformations (AST)s are disabled.
The remaining options in the script.json file are discussed in Section 6.7, "Default and Custom

Configuration Directories".

F.1.2. Calling A Script From Another Configuration File

{
“type" : “text/javascript",
"'source": string
}
or
{
"type" : "text/javascript",
"file" : file location
}
type

string, required

Specifies the type of script to be executed. Supported types include "text/javascript" and "groovy".
source

string, required if file is not specified

Specifies the source code of the script to be executed.
file

string, required if source is not specified

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 467

(/’ FORGEROCK

Specifies the file containing the source code of the script to execute.

F.2. Examples

The following example (included in the sync.json file) returns true if the employeeType is equal to
external, otherwise returns false. This script can be useful during reconciliation to establish whether
the source object should be a part of the reconciliation, or ignored.

"validTarget": {
“type" : "“text/javascript",
"source": "target.employeeType == 'external'"

}

The following example (included in the sync.json file) sets the PASSWORD attribute to defaultpwd when
OpenIDM creates a target object.

"onCreate" : {

“"type" : “text/javascript",

"source": "target._PASSWORD__ = 'defaultpwd'"
}

The following example (included in the router.json file) shows a trigger to create Solaris home
directories using a script. The script is located in a file, /path/to/openidm/script/createUnixHomeDir.js.

"filters" : [{
“"pattern" : "~system/solaris/account$",
"methods" : ["create" 1,
"onResponse" : {
"type" : "text/javascript",
"file" : "script/createUnixHomeDir.js"
}
1

}

F.3. Function Reference

Functions (access to managed objects, system objects, and configuration objects) within OpenIDM
are accessible to scripts via the openidm object, which is included in the top-level scope provided to
each script.

OpenIDM also provides a logger object to access SLF4] facilities. The following code shows an
example:

logger.info("Parameters passed in: {} {} {}", paraml, param2, param3);

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 468

(/) FORGEROCK

To set the log level, use org. forgerock.openidm.script.javascript.JavaScript.level in openidm/conf/
logging.properties.
F.3.1. openidm.create(container, id, value)

This function creates a new resource object.

Parameters
container

string

The resource container in which the object will be created, for example, managed/user.
id

string

The identifier of the object to be created, if the client is supplying the ID. If the server should
generate an ID, pass null here.

value
object

The value of the object to be created.

Returns

* The created OpenIDM resource object.

Throws

* An exception is thrown if the object could not be created.

F.3.2. openidm.patch(id, rev, value)

This function performs a partial modification of a managed object. Unlike the update function, only the
modified attributes are provided, not the entire object.

Parameters
id

string

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 469

(/’ FORGEROCK

The identifier of the object to be updated.
rev

string

The revision of the object to be updated, or null if the object is not subject to revision control.

value
object

The value of the modifications to be applied to the object.

Returns

* The modified OpenIDM resource object.

Throws

* An exception is thrown if the object could not be updated.

F.3.3. openidm.read(id)

This function reads and returns an OpenIDM resource object.

Parameters
id
string

The identifier of the object to be read.

Returns

* The read OpenIDM resource object, or null if not found.

F.3.4. openidm.update(id, rev, value)

This function updates a resource object.
Parameters
id

string

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

470

(/’ FORGEROCK

The identifier of the resource object to be updated.
rev

string

The revision of the object to be updated, or null if the object is not subject to revision control.
value

object

The value of the object to be updated.

Returns

* The modified OpenIDM resource object.

Throws

* An exception is thrown if the object could not be updated.

F.3.5. openidm.delete(id, rev)

This function deletes a resource object.

Parameters
id

string

The identifier of the object to be deleted.
rev

string

The revision of the object to be deleted, or null if the object is not subject to revision control.

Returns

e A null value if successful.

Throws

* An exception is thrown if the object could not be deleted.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

471

(/’ FORGEROCK

Note that delete is a reserved word in JavaScript and this function can therefore not be called in the
usual manner. To call delete from a JavaScript, you must specify the call as shown in the following
example:

openidm['delete'] ('managed/user/'+ user. id, user. rev)

Calling openidm.delete() directly from a JavaScript results in an error similar to the following:

org.forgerock.openidm.script.ScriptException: missing name after . operator

F.3.6. openidm.query(id, params)

This function performs a query on the specified OpenIDM resource object.

Parameters
id

string

The identifier of the object to perform the query on.
params

object

An object containing the query ID and its parameters.

Returns
* The result of the query. A query result includes the following parameters:
"query-time-ms"
The time, in milliseconds, that OpenIDM took to process the query.
“conversion-time-ms"

(For an OrientDB repository only) the time, in milliseconds, taken to convert the data to a JSON
object.

"result"

The list of entries retrieved by the query. The result includes the revision (" rev") of the entry
and any other properties that were requested in the query.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 472

(/’ FORGEROCK

The following example shows the result of a custom query that requests the ID, user name, and
email address of managed users in the repository. For an OrientDB repository, the query would be
something like select openidm id, userName, email from managed user,.

{
"conversion-time-ms": 0,
"result": [
{
"email": "bjensen@example.com",
"userName": "bjensen",
" rev': ",
" id": "36bbb745-517f-4695-93d0-998ele7065cf"

"email": "scarter@example.com",
"userName": "scarter",
" _rev": "0",
" id": "cc3bf6f0-949e-4699-9b8e-8c78ce04a287"
}
s
"query-time-ms": 1

Throws

* An exception is thrown if the given query could not be processed.

F.3.7. openidm.action(id, params, value)

This function performs an action on the specified OpenIDM resource object.

Parameters
id
string
The identifier of the object on which the action should be performed.
params
object
An object containing the parameters to pass to the action.
value

object

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 473

(/’ FORGEROCK

A value that can be provided to the action for processing.

Returns

* The result of the action. May be null if no result is provided.

Throws

* An exception is thrown if the given action could not be executed for any reason.

F.3.8. openidm.encrypt(value, cipher, alias)

This function encrypts a value.

Parameters
value

any

The value to be encrypted.
cipher

string

The cipher with which to encrypt the value, using the form "algorithm/mode/padding" or just
"algorithm". Example: AES/ECB/PKCS5Padding.

alias
string

The key alias in the keystore with which to encrypt the node.

Returns

» The value, encrypted with the specified cipher and key.

Throws

* An exception is thrown if the object could not be encrypted for any reason.

F.3.9. openidm.decrypt(value)

This function decrypts a value.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 474

(/’ FORGEROCK

Parameters
value
any

The value to be decrypted.

Returns

* A deep copy of the value, with any encrypted value decrypted.

Throws

* An exception is thrown if the object could not be decrypted for any reason.

F.3.10. logger.debug(string message, object... params)

Logs a message at DEBUG level.

Parameters
message

string

The message format to log. Params replace {} in your message.
params

object

Arguments to include in the message.

Returns

e A null value if successful.

Throws

* An exception is thrown if the message could not be logged.

F.3.11. logger.error(string message, object... params)

Logs a message at ERROR level.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 475

(/’ FORGEROCK

Parameters
message

string

The message format to log. Params replace {} in your message.
params

object

Arguments to include in the message.

Returns

¢ A null value if successful.

Throws

* An exception is thrown if the message could not be logged.

F.3.12. logger.info(string message, object... params)

Logs a message at INFO level.

Parameters
message

string

The message format to log. Params replace {} in your message.
params

object

Arguments to include in the message.

Returns

¢ A null value if successful.

Throws

* An exception is thrown if the message could not be logged.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 476

(/’ FORGEROCK

F.3.13. logger.trace(string message, object... params)

Logs a message at TRACE level.

Parameters
message

string

The message format to log. Params replace {} in your message.
params

object

Arguments to include in the message.

Returns

¢ A null value if successful.

Throws

* An exception is thrown if the message could not be logged.

F.3.14. logger.warn(string message, object... params)

Logs a message at WARN level.

Parameters
message

string

The message format to log. Params replace {} in your message.
params

object

Arguments to include in the message.

Returns

¢ A null value if successful.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 477

(/’ FORGEROCK

Throws

* An exception is thrown if the message could not be logged.

F.4. Places to Trigger Scripts

Scripts can be triggered at different places, by different events.
In openidm/conf/sync.json
Triggered by situation
onCreate, onUpdate, onDelete, onLink, onUnlink
Object filter
vaildSource, validTarget
Correlating objects
correlationQuery
Triggered on any reconciliation
result
Scripts inside properties
condition, transform

sync.json supports only one script per hook. If multiple scripts are defined for the same hook,
only the last one is kept.

In openidm/conf/managed. json

onCreate, onRead, onUpdate, onDelete, onValidate, onRetrieve, onStore, postCreate, postUpdate,
and postDelete

managed. json supports only one script per hook. If multiple scripts are defined for the same hook,
only the last one is kept.

In openidm/conf/router.json
onRequest, onResponse, onFailure

router.json supports multiple scripts per hook.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 478

(/’ FORGEROCK

F.5. Variables Available in Scripts

The variables that are available to scripts depend on the triggers that launch the script. The following

section outlines the available variables, per trigger.
condition
object
correlationQuery
source
Custom endpoint scripts
request
onCreate, postCreate
object, source, target
onLink
source, target
onRead, onDelete
object
onRetrieve

object (when called from either an object or a property storage trigger); property (only when
called from a property storage trigger)

As a property, returns the modified property values from the script.
onStore

object, property

As a property, returns the modified property values from the script.
onUnlink

source, target
onUpdate, postUpdate

oldObject, newObject
onValidate

object, property

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

479

(/’ FORGEROCK

postDelete
oldObject
propertyName
Name of the property that is changed.
result
source, target
synchronization situation scripts

recon.actionParam - the details of the synchronization operation in progress. This variable can be
used for asynchronous callbacks to execute the action at a later stage.

sourceAction - a boolean that indicates whether the situation was assessed during the source phase
source (if found)
target (if found)
The properties from the configured script object.
taskScanner
input, objectID
transform
source
validSource
source
validTarget

target

F.6. Debugging OpenIDM JavaScripts

OpenIDM includes Eclipse JSDT libraries so you can use Eclipse to debug your OpenIDM JavaScripts
during development.

Procedure F.1. To Enable Debugging

Follow these steps to enable debugging using Eclipse.

1. Install the environment to support JavaScript development in either of the following ways.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 480

(/’ FORGEROCK

* Download and install Eclipse IDE for JavaScript Web Developers from the Eclipse download
page.

* Add the JavaScript Development Tools to your existing Eclipse installation.
2. Create an empty JavaScript project called External JavaScript Source in Eclipse.

Eclipse then uses the External JavaScript Source directory in the default workspace location to
store sources that it downloads from OpenIDM.

3. Stop OpenIDM.
4. Edit openidm/conf/boot/boot.properties to enable debugging.

a. Uncomment and edit the following line.

#openidm.script.javascript.debug=transport=socket, suspend=y,address=9888, trace=true

Here suspend=y prevents OpenIDM from starting until the remote JavaScript debugger has
connected. You might therefore choose to set this to suspend=n.

b. Uncomment and edit the following line.

#openidm.script.javascript.sources=/Eclipse/workspace/External JavaScript Source/

Adjust /Eclipse/workspace/External JavaScript Source/ to match the absolute path to this folder
including the trailing / character. On Windows, also use forward slashes, such asc:/Eclipse/
workspace/External JavaScript Source/.

Each time OpenIDM loads a new script, it then creates or overwrites the file in the External
JavaScript Source directory. Before toggling breakpoints, be sure to refresh the source
manually in Eclipse so you have the latest version.

5. Edit the openidm/conf/script.json file to enable debugging. Specifically, uncomment and edit the
following line:

"#javascript.debug": "transport=socket,suspend=y,address=9888,trace=true",

6. Prepare the Eclipse debugger to allow you to set breakpoints.

In the Eclipse Debug perspective, select the Breakpoints tab, and then click the Add Script Load
Breakpoint icon to open the list of scripts.

In the Add Script Load Breakpoint window, select your scripts, and then click OK.

7. Start OpenIDM, and connect the debugger.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 481

http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
https://www.eclipse.org/webtools/jsdt/

(/’ FORGEROCK

To create a new debug, configuration click Run > Debug Configurations... > Remote JavaScript >
New button, and then set the port to 9888 as shown above.

F.7. Validating Scripts Over REST

OpenIDM exposes a script endpoint over which scripts can be validated, by specifying the script
parameters as part of the JSON payload. This functionality enables you to test how a script will
operate in your deployment, with complete control over the inputs and outputs. Testing scripts in this
way can be useful in debugging.

In addition, the script service enables you to call out to other scripts (even scripts written in a
different language, such as from JavaScript to Groovy). For example, you might have logic written in
Javascript, but also some code available in Groovy. Ordinarily, it would be challenging to interoperate
between these two environments, but this script service enables you to call one from the other on the
OpenIDM router.

Scripts called over the script endpoint have access to the "openidm" and "context" objects. The only
supported action on the script endpoint is eval, so scripts can not be launched from this endpoint, but
merely evaluated. The last statement that is executed is the value produced by the script, and the
expected result of the REST call.

The following REST call attempts to evaluate the autoPurgeAuditRecon.js script (provided in openidm/
bin/defaults/script/audit), but provides an incorrect purge type ("purgeByNumOfRecordsTokeep" instead of
"purgeByNumOfReconsToKeep"). The error is picked up in the evaluation. The example assumes that the
script exists in the directory reserved for custom scripts (openidm/script).

$ curl \
--cacert self-signed.crt \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--request POST \
--data '{
"type": "text/javascript",
"file": "script/autoPurgeAuditRecon.js",
"globals": {
"input": {
"mappings": ["%"],
"purgeType": "purgeByNumOfRecordsToKeep",
"numOfRecons": 1
}
}
A
"https://localhost:8443/openidm/script?_action=eval"

"Must choose to either purge by expired or number of recons to keep"
Note that the variables passed into this script are namespaced with the "globals" map. It is preferable

to namespace variables passed into scripts in this way, to avoid collisions with the top-level reserved
words for script maps, such as file, source, and type.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 482

(/’ FORGEROCK

Appendix G. Router Service Reference

The OpenIDM router service provides the uniform interface to all objects in OpenIDM: managed
objects, system objects, configuration objects, and so on.

G.1. Configuration

The router object as shown in conf/router.json defines an array of filter objects.

“filters": [filter object, ...]
}

The required filters array defines a list of filters to be processed on each router request. Filters are
processed in the order in which they are specified in this array.

G.1.1. Filter Objects

Filter objects are defined as follows.

{
"pattern": string,
"methods": [string, ...],
“"condition": script object,
"onRequest": script object,
"onResponse": script object,
“"onFailure": script object

}

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 483

(/’ FORGEROCK

"pattern”
string, optional

Specifies a regular expression pattern matching the JSON pointer of the object to trigger scripts.
If not specified, all identifiers (including null) match. Pattern matching is done on the resource
name, rather than on individual objects.

"methods"
array of strings, optional

One or more methods for which the script(s) should be triggered. Supported methods are:
“create", "read", "update", "delete", "patch”, "query", "action". If not specified, all methods are
matched.

"condition"
script object, optional

Specifies a script that is called first to determine if the script should be triggered. If the condition
yields "true", the other script(s) are executed. If no condition is specified, the script(s) are called
unconditionally.

"onRequest"
script object, optional

Specifies a script to execute before the request is dispatched to the resource. If the script throws
an exception, the method is not performed, and a client error response is provided.

"onResponse"
script object, optional

Specifies a script to execute after the request is successfully dispatched to the resource and a
response is returned. Throwing an exception from this script does not undo the method already
performed.

"onFailure"
script object, optional
Specifies a script to execute if the request resulted in an exception being thrown. Throwing an
exception from this script does not undo the method already performed.

G.1.2. Script Execution Sequence

All "onRequest" and "onResponse" scripts are executed in sequence. First, the "onRequest" scripts
are executed from the top down, then the "onResponse" scripts are executed from the bottom up.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 484

(/’ FORGEROCK

client -> filter 1 onRequest -> filter 2 onRequest -> resource
client <- filter 1 onResponse <- filter 2 onResponse <- resource

The following sample router.json file shows the order in which the scripts would be executed:

{
"filters" : [
{
"onRequest" : {
"type" : "text/javascript",
“"file" : "script/router-authz.js"
}
+
{
"pattern" : "“managed/user",
"methods" : [
"read"
I
"onRequest" : {
"type" : "text/javascript",
"source" : "console.log('requestFilter 1');"
}
+
{
"pattern" : "“managed/user",
"methods" : [
"read"
I
"onResponse" : {
"type" : "text/javascript",
"source" : “console.log('responseFilter 1');"
}
+
{
"pattern" : "“managed/user",
"methods" :
"read"
I
"onRequest" : {
"type" : "text/javascript",
"source" : "“console.log('requestFilter 2');"
}
+
{
"pattern" : "“managed/user",
"methods" : [
"read"
I
"onResponse" : {
"type" : "text/javascript",
"source" : “console.log('responseFilter 2');"
}
}
]
}

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 485

(/) FORGEROCK

Will produce a log like:

requestFilter 1
requestFilter 2
responseFilter 2
responseFilter 1

G.1.3. Script Scope

Scripts are provided with the following scope.
"openidm": openidm-functions object,
"request": resource-request object,
"response": resource-response object,
"exception": exception object

"openidm"
openidm-functions object (see Section F.3, "Function Reference").
Provides access to OpenIDM resources.

"request”
resource-request object

The resource-request context, which has one or more parent contexts. Provided in the scope of
"condition", "onRequest", "onResponse" and "onFailure" scripts.

"response"

openidm-functions object (see Section F.3, "Function Reference").

The response to the resource-request. Only provided in the scope of the "onResponse" script.
"exception"

exception object

The exception value that was thrown as a result of processing the request. Only provided in the
scope of the "onFailure" script.

An exception object is defined as follows.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 486

https://wikis.forgerock.org/confluence/display/json/resource-request

(/’ FORGEROCK

"code": integer,

"reason":
"message"
"detail":

}

"COde"

integer

string,

1 string,

string

The numeric HTTP code of the exception.

"reason"

string

The short reason phrase of the exception.

"message"

string

A brief message describing the exception.

"detail"

(optional), string

A detailed description of the exception, in structured JSON format, suitable for programmatic

evaluation.

G.2. Example

The following example executes a script after a managed user object is created or updated.

"pattern": "“managed/user",
"methods": [

"create",

"update"
I
"onResponse": {

"type": "text/javascript",

"file": "scripts/afterUpdateUser.js"

{
"filters": [
{
b
]
}

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

487

(/’ FORGEROCK

Appendix H. Embedded Jetty Configuration

OpenIDM 3.1 includes an embedded Jetty web server.

To configure the embedded Jetty server, edit openidm/conf/jetty.xml. OpenIDM delegates most of the
connector configuration to jetty.xml. OSGi and PAX web specific settings for connector configuration
therefore do not have an effect. This lets you take advantage of all Jetty capabilities, as the web
server is not configured through an abstraction that might limit some of the options.

The Jetty configuration can reference configuration properties (such as port numbers and keystore
details) from OpenIDM's boot.properties configuration file.

H.1. Using OpenIDM Configuration Properties in the Jetty
Configuration

OpenIDM exposes a Param class that you can use in jetty.xml to include OpenIDM configuration. The
Param class exposes Bean properties for common Jetty settings and generic property access for other,
arbitrary settings.

H.1.1. Accessing Explicit Bean Properties

To retrieve an explicit Bean property, use the following syntax in jetty.xml.

<Get class="org.forgerock.openidm.jetty.Param" name='<bean property name>"/>

For example, to set a Jetty property for keystore password:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 488

(/) FORGEROCK

<Set name="password">
<Get class="org.forgerock.openidm.jetty.Param" name="keystorePassword"/>

</Set>

Also see the bundled jetty.xml for further examples.

The following explicit Bean properties are available.

port

Maps to openidm.

port

Maps to openidm.

port

Maps to openidm.

keystoreType

Maps to openidm.

keystoreProvider

Maps to openidm.

keystoreLocation

Maps to openidm.

keystorePassword

Maps to openidm.

port.http

port.https

port.mutualauth

keystore.type

keystore.provider

keystore.location

keystore.password

keystoreKeyPassword

Maps to openidm.

truststoreLocation

keystore.key.password, or the keystore password, if not set

Maps to openidm.truststore.location, or the keystore location, if not set

truststorePassword

Maps to openidm.truststore.password, or the keystore password, if not set

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 489

(/’ FORGEROCK

H.1.2. Accessing Generic Properties

<Call class="org.forgerock.openidm.jetty.Param" name="getProperty">
<Arg>org.forgerock.openidm.some.sample.property</Arg>
</Call>

H.2. Jetty Default Settings

By default the embedded Jetty server uses the following settings.

* The HTTP, SSL, and Mutual Authentication ports defined in OpenIDM
* The same keystore and truststore settings as OpenIDM

e Trivial sample realm, openidm/security/realm.properties to add users

The default settings are intended for evaluation only. Adjust them according to your production
requirements.

H.3. Registering Additional Servlet Filters

You can register generic servlet filters in the embedded Jetty server to perform additional filtering
tasks on requests to or responses from OpenIDM. For example, you might want to use a servlet filter
to protect access to OpenIDM with an access management product. Servlet filters are configured in
files named openidm/conf/servietfilter-name.json. These servlet filter configuration files define the filter
class, required libraries, and other settings.

A sample servlet filter configuration is provided in the servietfilter-cors.json file in the /path/to/
openidm/conf directory.

The sample servlet filter configuration file is shown below:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 490

(/’ FORGEROCK

{
"classPathURLs" : [1,
"systemProperties" : { },
"requestAttributes" : { },
"scriptExtensions" : { }.
“"initParams" : {
"allowedOrigins" : "https://localhost:8443",
"allowedMethods" : "GET,POST,PUT,DELETE,PATCH",
"allowedHeaders" : "accept,x-openidm-password,x-openidm-nosession,
x-openidm-username, content-type,origin,
x-requested-with",
"allowCredentials" : "true",
“chainPreflight" : "false"
k.,
"urlPatterns" : [
D
1,
“"filterClass" : "org.eclipse.jetty.servlets.CrossOriginFilter"
}

The sample configuration includes the following properties:
"classPathURLs"

The URLs to any required classes or libraries that should be added to the classpath used by the
servlet filter class

"systemProperties"
Any additional Java system properties required by the filter
"requestAttributes"”

The HTTP Servlet request attributes that will be set by OpenIDM when the filter is invoked.
OpenIDM expects certain request attributes to be set by any module that protects access to it, so
this helps in setting these expected settings.

"scriptExtensions"

Optional script extensions to OpenIDM. Currently only "augmentSecurityContext" is supported.

A script that is defined in augmentSecurityContext is executed by OpenIDM after a successful
authentication request. The script helps to populate the expected security context in OpenIDM.
For example, the login module (servlet filter) might select to supply only the authenticated user
name, while the associated roles and user ID can be augmented by the script.

Supported script types include "text/javascript" and "groovy". The script can be provided inline
"source":script source) or in a file ("file":filename). The sample filter extends the filter interface
with the functionality in the script script/security/populateContext.js.

"filterClass"

The servlet filter that is being registered

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 491

(/’ FORGEROCK

The following additional properties can be configured for the filter:
"httpContextId"

The HTTP context under which the filter should be registered. The default is "openidm".
"servletNames"

A list of servlet names to which the filter should apply. The default is "0penIDM REST".
"urlPatterns"

A list of URL patterns to which the filter applies. The default is ["/openidm/*", "/openidmui/*"].
"initParams"

Filter configuration initialization parameters that are passed to the servlet filter init method. For
more information, see http://docs.oracle.com/javaee/5/api/javax/servlet/FilterConfig.html.

H.4. Disabling and Enabling Secure Protocols

Secure communications are important. To that end, the embedded Jetty web server enables a number
of different protocols. To review the list of enabled protocols, run the following commands:

$ cd /path/to/openidm/logs

$ grep Enabled openidm0.log.0

openidm0@.log.0:INFO: Enabled Protocols [SSLv2Hello, TLSv1l, TLSv1l.1l, TLSv1.2] of
[SSLv2Hello, SSLv3, TLSvl, TLSv1.1, TLSvl1.2]

Note the difference between enabled and available protocols. Based on this particular output, ssLv3
is missing from the list of enabled protocols. To see how this was done, open the jetty.xml file in the /
path/to/openidm/conf directory. Note the "ExcludeProtocols" code block shown here:

<Set name="ExcludeProtocols">
<Array type="java.lang.String">
<Item>SSLv3</Item>
</Array>
</Set>

Note
As noted in the following Security Advisory, "SSL 3.0 [RFC6101] is an obsolete and insecure protocol."
To exclude another protocol from the Enabled list, just add it to the "ExcludeProtocols" XML block.

For example, if you included the following line in that XML block, your instance of Jetty would also
exclude TLSv1:

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 492

http://docs.oracle.com/javaee/5/api/javax/servlet/FilterConfig.html
https://www.openssl.org/~bodo/ssl-poodle.pdf

(/) FORGEROCK

<Item>TLSvl</Item>

You can reverse the process by removing the protocol from the "ExcludeProtocols" block.

To see if certain protocols should be included in the "ExcludeProtocols" block, review the current list of
ForgeRock Security Advisories

For more information on Jetty configuration see the following document from the developers of Jetty:
The Definitive Reference

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 493

https://forgerock.org/security-advisories/
https://forgerock.org/security-advisories/
http://www.eclipse.org/jetty/documentation/current/
http://www.eclipse.org/jetty/documentation/current/

(/’ FORGEROCK

Appendix |. Release Levels & Interface
Stability

This appendix includes ForgeRock definitions for product release levels and interface stability.

l.1. ForgeRock Product Release Levels

ForgeRock defines Major, Minor, and Maintenance product release levels. The release level is
reflected in the version number. The release level tells you what sort of compatibility changes to
expect.

Table |.1. Release Level Definitions

Release Label Version Numbers Characteristics

Major Version: x[.0.0] * Bring major new features, minor features, and bug fixes
(trailing Os are
optional) * Can include changes even to Stable interfaces

* Can remove previously Deprecated functionality, and in rare
cases remove Evolving functionality that has not been explicitly

Deprecated
* Include changes present in previous Minor and Maintenance
releases
Minor Version: x.y[.0] * Bring minor features, and bug fixes
(trailing Os are
optional)

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 494

(/’ FORGEROCK

Release Label

Maintenance

Version: x.y.z

Version Numbers Characteristics

Can include backwards-compatible changes to Stable interfaces
in the same Major release, and incompatible changes to
Evolving interfaces

Can remove previously Deprecated functionality

Include changes present in previous Minor and Maintenance
releases

Bring bug fixes

Are intended to be fully compatible with previous versions from
the same Minor release

|.2. ForgeRock Product Interface Stability

ForgeRock products support many protocols, APIs, GUIs, and command-line interfaces. Some of these
interfaces are standard and very stable. Others offer new functionality that is continuing to evolve.

ForgeRock acknowledges that you invest in these interfaces, and therefore must know when and how
ForgeRock expects them to change. For that reason, ForgeRock defines interface stability labels and
uses these definitions in ForgeRock products.

Stability Label
Stable

Evolving

Deprecated

Removed

Technology Preview

Table I.2. Interface Stability Definitions
Definition

This documented interface is expected to undergo backwards-compatible changes
only for major releases. Changes may be announced at least one minor release
before they take effect.

This documented interface is continuing to evolve and so is expected to change,
potentially in backwards-incompatible ways even in a minor release. Changes are
documented at the time of product release.

While new protocols and APIs are still in the process of standardization, they are
Evolving. This applies for example to recent Internet-Draft implementations, and
also to newly developed functionality.

This interface is deprecated and likely to be removed in a future release. For
previously stable interfaces, the change was likely announced in a previous
release. Deprecated interfaces will be removed from ForgeRock products.

This interface was deprecated in a previous release and has now been removed
from the product.

Technology previews provide access to new features that are evolving new
technology that are not yet supported. Technology preview features may

be functionally incomplete and the function as implemented is subject to
change without notice. DO NOT DEPLOY A TECHNOLOGY PREVIEW INTO A
PRODUCTION ENVIRONMENT.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 495

(/’ FORGEROCK

Stability Label Definition

Customers are encouraged to test drive the technology preview features in a non-
production environment and are welcome to make comments and suggestions
about the features in the associated forums.

ForgeRock does not guarantee that a technology preview feature will be present
in future releases, the final complete version of the feature is liable to change
between preview and the final version. Once a technology preview moves into
the completed version, said feature will become part of the ForgeRock platform.
Technology previews are provided on an “AS-IS” basis for evaluation purposes
only and ForgeRock accepts no liability or obligations for the use thereof.

Internal/Undocumented Internal and undocumented interfaces can change without notice. If you
depend on one of these interfaces, contact ForgeRock support or email
info@forgerock.com to discuss your needs.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 496

mailto:info@forgerock.com

(/’ FORGEROCK

OpeniDM Glossary

JSON

JWT

managed object

mapping

OSGi

reconciliation

JavaScript Object Notation, a lightweight data interchange format
based on a subset of JavaScript syntax. For more information, see the
JSON site.

JSON Web Token. As noted in the JSON Web Token draft IETF Memo,
"JSON Web Token (JWT) is a compact URL-safe means of representing
claims to be transferred between two parties." For OpenIDM, the JWT
is associated with the JwT SEssion authentication module.

An object that represents the identity-related data managed by
OpenIDM. Managed objects are configurable, JSON-based data
structures that OpenIDM stores in its pluggable repository. The
default configuration of a managed object is that of a user, but you
can define any kind of managed object, for example, groups or roles.

A policy that is defined between a source object and a target object
during reconciliation or synchronization. A mapping can also define a
trigger for validation, customization, filtering, and transformation of
source and target objects.

A module system and service platform for the Java programming
language that implements a complete and dynamic component model.
For a good introduction, see the OSGi site. OpenIDM services are
designed to run in any OSGi container, but OpenIDM currently runs in
Apache Felix.

During reconciliation, comparisons are made between managed
objects and objects on source or target systems. Reconciliation can
result in one or more specified actions, including, but not limited to,
synchronization.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 497

http://www.json.org
http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
http://www.osgi.org/About/WhyOSGi
http://felix.apache.org

(/’ FORGEROCK

resource

REST

source object

synchronization

system object

target object

An external system, database, directory server, or other source of
identity data to be managed and audited by the identity management
system.

Representational State Transfer. A software architecture style for
exposing resources, using the technologies and protocols of the World
Wide Web. REST describes how distributed data objects, or resources,
can be defined and addressed.

In the context of reconciliation, a source object is a data object on
the source system, that OpenIDM scans before attempting to find a
corresponding object on the target system. Depending on the defined
mapping, OpenIDM then adjusts the object on the target system
(target object).

The synchronization process creates, updates, or deletes objects on a
target system, based on the defined mappings from the source system.
Synchronization can be scheduled or on demand.

A pluggable representation of an object on an external system. For
example, a user entry that is stored in an external LDAP directory
is represented as a system object in OpenIDM for the period during
which OpenIDM requires access to that entry.System objects follow
the same RESTful resource-based design principles as managed
objects.

In the context of reconciliation, a target object is a data object on the
target system, that OpenIDM scans after locating its corresponding
object on the source system. Depending on the defined mapping,
OpenIDM then adjusts the target object to match the corresponding
source object.

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 498

(/’ FORGEROCK

Index

A

Architecture, 1

Audit logs, 364

Authentication, 281
Internal users, 281
Managed users, 281
Roles, 291

Authorization, 281, 292

Best practices, 298, 394
Business processes, 315

C

cluster management, 378
Configuration
Email, 385
Files, 402
Objects, 68
REST API, 70
Validating, 24
Connectors, 131
Generating configurations, 174
Object types, 138
Remote, 132
Correlation queries, 237

D

Data
accessing, 85

Encryption, 306, 309
External REST, 389

F

failover, 378
File layout, 402

H

healthcheck, 11

high availability, 378

K

Keytool, 24

L

LiveSync, 185
Scheduling, 243

M

Mappings, 4, 188
Hooks for scripting, 239
Scheduled reconciliation, 244

o)

Objects
Audit objects, 428
Configuration objects, 68
Links, 428

Managed objects, 3, 186, 283, 414, 438

Customizing, 422
Identifiers, 439
Passwords, 262
Object types, 413
Script access, 85, 468
System objects, 4, 428
OpenlCF, 131

P

Passwords, 262, 308
Policies, 119
Ports
8080, 412
8443, 412
8444, 412
Disabling, 310

R

Reconciliation, 4, 185
Scheduling, 243
Resources, 131
REST API, 70, 438
Listing configuration objects, 70
Roles, 291
Router service, 483

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)
Copyright © 2011-2017 ForgeRock AS. All rights reserved.

499

(/’ FORGEROCK

S

Schedule
Examples, 250
Scheduler, 242, 245
Configuration, 245
Scheduling tasks, 245
Scripting, 465
Functions, 468
Security, 298
Authentication, 306
Encryption, 306, 309
SSL, 305
Sending mail, 385
Server logs, 129
Starting OpenIDM, 6
Stopping OpenIDM, 6
Synchronization, 4, 185, 429
Actions, 224
Conditions, 189
Connectors, 187
Correlation queries, 236
Creating attributes, 189, 194
Direct (push), 185
Encryption, 192
Filtering, 190
Mappings, 188
Passwords, 263, 267
Using OpenIDM, 268
With Active Directory, 271
With OpenD], 268
Reusing links, 195
Scheduling, 243
Situations, 224
Transforming attributes, 189

T

Troubleshooting, 396

w

Workflow, 315

Integrator's Guide OpeniDM 3.1 (2018-10-12T08:33:30.546)

Copyright © 2011-2017 ForgeRock AS. All rights reserved.

500

	Integrator's Guide
	Table of Contents
	Preface
	1. Who Should Use this Guide
	2. Formatting Conventions
	3. Accessing Documentation Online
	4. Using the ForgeRock.org Site

	Chapter 1. Architectural Overview
	1.1. OpenIDM Modular Framework
	1.2. Infrastructure Modules
	1.3. Core Services
	1.4. Secure Commons REST Commands
	1.5. Access Layer

	Chapter 2. Starting and Stopping OpenIDM
	2.1. To Start and Stop OpenIDM
	2.2. Specifying the OpenIDM Startup Configuration
	2.3. Obtaining Information About an OpenIDM Instance
	2.4. Verifying the Health of an OpenIDM System
	2.5. Displaying Information About Installed Modules
	2.6. Starting OpenIDM in Debug Mode
	2.7. Running OpenIDM as a Service on Linux Systems

	Chapter 3. OpenIDM Command-Line Interface
	3.1. configexport
	3.2. configimport
	3.3. configureconnector
	3.4. encrypt
	3.5. keytool
	3.6. validate

	Chapter 4. OpenIDM Web-based User Interfaces
	4.1. Configuring OpenIDM from the Admin UI
	4.1.1. Administering Connectors from the UI
	4.1.2. Administering Managed Objects from the UI
	4.1.3. Configuring a Resource Mapping from the UI
	4.1.4. Configuring Reconciliation from the UI
	4.1.4.1. Correlation Options
	4.1.4.2. Reconciliation Options

	4.1.5. Configuring Authentication Modules from the UI

	4.2. Overview of the User View UI
	4.3. Configuring the User View UI
	4.3.1. Enabling Self-Registration
	4.3.2. Configuring Security Questions
	4.3.3. Minimum Length Security Answers
	4.3.4. Enabling Site Identification
	4.3.5. Configuring the Country List

	4.4. Managing User Accounts With the User View UI
	4.5. Managing Workflows From the User View UI
	4.6. Changing the UI Theme
	4.6.1. Changing the Default Stylesheet
	4.6.2. Changing the Default Logo
	4.6.3. Changing the Language of the UI
	4.6.4. Creating a Project-Specific UI Theme

	4.7. Using an External System for Password Reset
	4.8. Providing a Logout URL to External Applications
	4.9. Changing the UI Path
	4.10. Disabling the UI

	Chapter 5. Managing the OpenIDM Repository
	5.1. Understanding the JDBC Repository Configuration File
	5.2. Using Explicit or Generic Object Mapping With a JDBC Repository
	5.2.1. Using Generic Mappings
	5.2.2. Improving Search Performance for Generic Mappings
	5.2.3. Using Explicit Mappings

	5.3. Configuring SSL with a JDBC Repository
	5.4. Interacting With the Repository Over REST
	5.4.1. Changing the Repository Password
	5.4.2. Running Queries and Commands on the Repository

	Chapter 6. Configuring OpenIDM
	6.1. OpenIDM Configuration Objects
	6.2. Changing the Default Configuration
	6.3. Configuring an OpenIDM System for Production
	6.3.1. Configuring a Production Repository
	6.3.2. Disabling Automatic Configuration Updates

	6.4. Configuring OpenIDM Over REST
	6.5. Using Property Value Substitution in the Configuration
	6.5.1. Using Property Value Substitution With System Properties
	6.5.2. Limitations of Property Value Substitution

	6.6. Adding Custom Endpoints
	6.6.1. The Components of an Endpoint Configuration File
	6.6.2. Context Component Access Methods
	6.6.3. Custom Endpoints and request Objects
	6.6.4. Custom Endpoints, Contexts, and Chains
	6.6.5. Additional Custom Endpoint Parameters
	6.6.6. Custom Endpoint Example

	6.7. Default and Custom Configuration Directories

	Chapter 7. Accessing Data Objects
	7.1. Accessing Data Objects by Using Scripts
	7.2. Accessing Data Objects by Using the REST API
	7.3. Defining and Calling Queries
	7.3.1. Common Filter Expressions
	7.3.2. Parameterized Queries
	7.3.3. Native Query Expressions
	7.3.4. Constructing Queries
	7.3.5. Paging Query Results
	7.3.6. Sorting Query Results

	Chapter 8. Managing Users, Groups, and Roles
	8.1. Working with Managed Users
	8.2. Working With Managed Groups
	8.3. Configuring Custom Roles
	8.3.1. Creating, Assigning, and Deleting Roles
	8.3.1.1. To Create a Role Definition
	8.3.1.2. To List the Defined Roles
	8.3.1.3. To Assign a Role to a User
	8.3.1.4. To Query Role Membership
	8.3.1.5. To Remove a Role Assignment
	8.3.1.6. To Delete a Managed Role Definition

	8.3.2. Understanding Effective Roles and Effective Assignments
	8.3.2.1. A Sample Role Definition for Two Remote Systems
	8.3.2.2. Virtual Role Attributes

	8.3.3. Setting up the Role Mapping
	8.3.3.1. Creating a Mapping For Effective Assignments
	8.3.3.2. Using Roles For Conditional Mapping

	8.3.4. Testing the Roles Mechanism
	8.3.5. Adding Support for Dynamic Assignments
	8.3.6. Managed Role Object Script Hooks

	Chapter 9. Using Policies to Validate Data
	9.1. Configuring the Default Policy
	9.1.1. Policy Script File
	9.1.1.1. Policy Configuration Object
	9.1.1.2. Policy Implementation Function

	9.1.2. Policy Configuration File
	9.1.2.1. Sample Password Policy Extract
	9.1.2.2. Sample Array Policy Extract

	9.2. Extending the Policy Service
	9.3. Disabling Policy Enforcement
	9.4. Managing Policies Over REST
	9.4.1. Listing the Defined Policies
	9.4.2. Validating Objects and Properties Over REST

	Chapter 10. Configuring Server Logs
	10.1. Log Message Files
	10.2. Logging Levels
	10.3. Disabling Logs

	Chapter 11. Connecting to External Resources
	11.1. About OpenIDM and OpenICF
	11.2. Accessing Remote Connectors
	11.3. Configuring Connectors
	11.4. Installing and Configuring Remote Connector Servers
	11.4.1. Installing and Configuring a .NET Connector Server
	11.4.2. Installing and Configuring a Remote Java Connector Server

	11.5. Connectors Supported With OpenIDM 3.1
	11.5.1. XML File Connector
	11.5.1.1. Example : Using the XML Connector to Reconcile Users in a Remote XML Data Store

	11.5.2. Generic LDAP Connector
	11.5.3. Active Directory Connector
	11.5.3.1. Using PowerShell Scripts With the Active Directory Connector

	11.5.4. CSV File Connector
	11.5.5. Scripted SQL Connector
	11.5.6. Database Table Connector
	11.5.7. Groovy Connector Toolkit
	11.5.8. PowerShell Connector Toolkit
	11.5.9. Salesforce Connector
	11.5.10. Google Apps Connector

	11.6. Creating Default Connector Configurations
	11.7. Checking the Status of External Systems Over REST
	11.8. Adding Attributes to Connectors

	Chapter 12. Configuring Synchronization
	12.1. Types of Synchronization
	12.2. Flexible Data Model
	12.3. Basic Data Flow Configuration
	12.3.1. Connector Configuration Files
	12.3.2. Synchronization Mappings File
	12.3.3. Using Encrypted Values
	12.3.4. Restricting HTTP Access to Sensitive Data
	12.3.5. Constructing and Manipulating Attributes
	12.3.6. Reusing Links

	12.4. Managing Reconciliation Over REST
	12.4.1. Triggering a Reconciliation Run
	12.4.2. Obtaining the Details of a Reconciliation Run
	12.4.3. Canceling a Reconciliation Run
	12.4.4. Listing Reconciliation Runs
	12.4.5. Triggering LiveSync Over REST

	12.5. Restricting Reconciliation by Using Queries
	12.5.1. Improving Reconciliation Query Performance

	12.6. Restricting Reconciliation to a Specific ID
	12.7. Querying the Reconciliation Audit Log
	12.8. Querying the Activity Audit Log
	12.9. Querying the Synchronization Audit Log
	12.10. Configuring the LiveSync Retry Policy
	12.11. Disabling Automatic Synchronization Operations
	12.12. Configuring Synchronization Failure Compensation
	12.13. Synchronization Situations and Actions
	12.13.1. Synchronization Situations
	12.13.2. Source Reconciliation
	12.13.3. Target Reconciliation
	12.13.4. Situations Specific to Implicit Synchronization and LiveSync
	12.13.5. Synchronization Actions
	12.13.6. Providing a Script as an Action

	12.14. Asynchronous Reconciliation
	12.15. Configuring Case Sensitivity for Data Stores
	12.16. Reconciliation Optimization
	12.16.1. Correlating Empty Target Sets
	12.16.2. Prefetching Links
	12.16.3. Parallel Reconciliation Threads

	12.17. Correlation Queries
	12.18. Advanced Data Flow Configuration
	12.19. Scheduling Synchronization
	12.19.1. Configuring Scheduled Synchronization
	12.19.2. Alternative Mappings

	Chapter 13. Scheduling Tasks and Events
	13.1. Scheduler Configuration
	13.2. Configuring Persistent Schedules
	13.3. Schedule Examples
	13.4. Managing Schedules Over REST
	13.4.1. Creating a Schedule
	13.4.2. Obtaining the Details of a Schedule
	13.4.3. Updating a Schedule
	13.4.4. Listing Configured Schedules
	13.4.5. Deleting a Schedule

	13.5. Scanning Data to Trigger Tasks
	13.5.1. Configuring the Task Scanner
	13.5.2. Managing Scanning Tasks Over REST
	13.5.2.1. Triggering a Scanning Task
	13.5.2.2. Canceling a Scanning Task
	13.5.2.3. Listing Scanning Tasks

	Chapter 14. Managing Passwords
	14.1. Enforcing Password Policy
	14.1.1. Creating a Password History Policy

	14.2. Password Synchronization

	Chapter 15. Managing Authentication, Authorization and Role-Based Access Control
	15.1. OpenIDM Users
	15.1.1. Internal Users
	15.1.1.1. Managing Internal Users Over REST

	15.1.2. Managed Users

	15.2. Authentication
	15.3. Supported Authentication Modules
	15.4. Using Delegated Authentication
	15.5. Kerberos Configuration Example
	15.5.1. Kerberos Definitions

	15.6. Roles and Authentication
	15.7. Authorization
	15.7.1. router​-authz​.js
	15.7.2. access​.js
	15.7.3. Properties for Authentication and Roles
	15.7.4. Extending the Authorization Mechanism

	15.8. Building Role-Based Access Control (RBAC)
	15.8.1. Roles, Authentication, and the Security Context

	Chapter 16. Securing & Hardening OpenIDM
	16.1. Accessing the Security Management Service
	16.1.1. Displaying the Contents of the Keystore
	16.1.2. Generating a Certificate Signing Request Over REST
	16.1.3. To Import a Signed Certificate into the Keystore
	16.1.4. Generating a Self-Signed Certificate Over REST
	16.1.5. Security Management Service Endpoints

	16.2. Security Precautions for a Production Environment
	16.2.1. Use SSL and HTTPS
	16.2.2. Restrict REST Access to the HTTPS Port
	16.2.3. Encrypt Data Internally and Externally
	16.2.4. Use Message Level Security
	16.2.4.1. Message Level Security with Logins
	16.2.4.2. Logout By Removing the JWT Cookie

	16.2.5. Replace Default Security Settings
	16.2.6. Secure Jetty
	16.2.7. Protect Sensitive REST Interface URLs
	16.2.8. Protect Sensitive Files & Directories
	16.2.9. Obfuscate Bootstrap Information
	16.2.10. Remove or Protect Development & Debug Tools
	16.2.11. Protect the OpenIDM Repository
	16.2.12. Adjust Log Levels
	16.2.13. Set Up Restart At System Boot

	Chapter 17. Integrating Business Processes and Workflows
	17.1. BPMN 2.0 and the Activiti Tools
	17.2. Setting Up Activiti Integration With OpenIDM
	17.2.1. Configuring the Activiti Engine
	17.2.1.1. Configuring the Activiti History Level

	17.2.2. Defining Activiti Workflows
	17.2.3. Invoking Activiti Workflows
	17.2.4. Querying Activiti Workflows

	17.3. Using Custom Templates for Activiti Workflows
	17.4. Managing Workflows Over the REST Interface
	17.5. Example Activiti Workflows With OpenIDM
	17.5.1. Example Email Notification Workflow
	17.5.2. Sample Workflow - Provisioning User Accounts
	17.5.2.1. Overview of the Sample
	17.5.2.2. Running the Sample

	17.6. Workflow Use Cases
	17.6.1. Use Case 1 - Initial Reconciliation
	17.6.2. Use Case 2 - New User Onboarding
	17.6.3. Use Case 3 - User Access Request
	17.6.4. Use Case 4 - Orphan Account Detection
	17.6.5. Use Case 5 - Certification
	17.6.6. Use Case 6 - Password Change Reminder

	Chapter 18. Using Audit Logs
	18.1. Audit Log Types
	18.2. Audit Log Formats
	18.3. Audit Configuration
	18.3.1. Event Types
	18.3.2. Log To List
	18.3.2.1. Logging to a Remote System

	18.3.3. Exception Formatter

	18.4. Generating Reports
	18.5. Filtering Data for Audits
	18.6. Purging Obsolete Audit Information

	Chapter 19. Configuring OpenIDM to Work in a Cluster
	19.1. Configuring an OpenIDM Instance as Part of a Cluster
	19.1.1. Edit the Boot Configuration
	19.1.2. Edit the Cluster Configuration

	19.2. Managing Scheduled Tasks Across a Cluster
	19.3. Managing Nodes Over REST

	Chapter 20. Sending Email
	20.1. Sending Mail Over REST
	20.2. Sending Mail From a Script

	Chapter 21. Accessing External REST Services
	21.1. Invocation Parameters
	21.2. Support for Non-JSON Responses

	Chapter 22. OpenIDM Project Best Practices
	22.1. Implementation Phases
	22.1.1. Initiation
	22.1.2. Definition
	22.1.3. Design
	22.1.4. Build
	22.1.5. Production

	Chapter 23. Troubleshooting
	23.1. OpenIDM Stopped in Background
	23.2. Internal Server Error During Reconciliation or Synchronization
	23.3. The scr list Command Shows Sync Service As Unsatisfied
	23.4. JSON Parsing Error
	23.5. System Not Available
	23.6. Bad Connector Host Reference in Provisioner Configuration
	23.7. Missing Name Attribute

	Chapter 24. Advanced Configuration
	24.1. Advanced Startup Configuration

	Appendix A. File Layout
	Appendix B. Ports Used
	Appendix C. Data Models and Objects Reference
	C.1. Managed Objects
	C.1.1. Managed Object Schema
	C.1.1.1. Managed Object Reserved Properties
	C.1.1.2. Managed Object Schema Validation
	C.1.1.3. Managed Object Derived Properties

	C.1.2. Data Consistency
	C.1.3. Managed Object Triggers
	C.1.3.1. State Triggers
	C.1.3.2. Object Storage Triggers
	C.1.3.3. Property Storage Triggers
	C.1.3.4. Storage Trigger Sequences

	C.1.4. Managed Object Encryption
	C.1.5. Managed Object Configuration
	C.1.6. Custom Managed Objects
	C.1.6.1. Setting Up a Managed Object Type
	C.1.6.2. Manipulating Managed Objects Declaratively
	C.1.6.3. Manipulating Managed Objects Programmatically
	C.1.6.3.1. Creating Objects
	C.1.6.3.2. Updating Objects
	C.1.6.3.3. Patching Objects
	C.1.6.3.4. Deleting Objects
	C.1.6.3.5. Reading Objects
	C.1.6.3.6. Querying Object Sets

	C.1.7. Accessing Managed Objects Through the REST API

	C.2. Configuration Objects
	C.2.1. When To Use Custom Configuration Objects
	C.2.2. Custom Configuration Object Naming Conventions
	C.2.3. Mapping Configuration Objects To Configuration Files
	C.2.4. Configuration Objects File & REST Payload Formats
	C.2.5. Accessing Configuration Objects Through the REST API
	C.2.6. Accessing Configuration Objects Programmatically
	C.2.7. Creating Objects
	C.2.8. Updating Objects
	C.2.9. Deleting Objects
	C.2.10. Reading Objects

	C.3. System Objects
	C.4. Audit Objects
	C.5. Links

	Appendix D. Synchronization Reference
	D.1. Object-Mapping Objects
	D.1.1. Property Objects
	D.1.2. Policy Objects
	D.1.2.1. Script Object

	D.2. Links
	D.3. Queries
	D.4. Reconciliation
	D.5. REST API

	Appendix E. REST API Reference
	E.1. URI Scheme
	E.2. Object Identifiers
	E.3. Content Negotiation
	E.4. Supported Operations
	E.4.1. Creating an Object
	E.4.2. Reading an Object
	E.4.3. Updating an Object
	E.4.4. Deleting an Object
	E.4.5. Querying Resources

	E.5. Conditional Operations
	E.6. Supported Methods
	E.7. REST Endpoints and Sample Commands
	E.7.1. Managing the Server Configuration Over REST
	E.7.2. Managing Users Over REST
	E.7.3. Managing System Objects Over REST
	E.7.4. Managing Workflows Over REST
	E.7.5. Managing Scanned Tasks Over REST
	E.7.6. Accessing Log Entries Over REST
	E.7.7. Managing Reconciliation Operations Over REST
	E.7.8. Managing the Repository over REST

	E.8. HTTP Status Codes

	Appendix F. Scripting Reference
	F.1. Scripting Configuration
	F.1.1. Script Configuration File
	F.1.2. Calling A Script From Another Configuration File

	F.2. Examples
	F.3. Function Reference
	F.3.1. openidm.create(container, id, value)
	F.3.2. openidm.patch(id, rev, value)
	F.3.3. openidm.read(id)
	F.3.4. openidm.update(id, rev, value)
	F.3.5. openidm.delete(id, rev)
	F.3.6. openidm.query(id, params)
	F.3.7. openidm.action(id, params, value)
	F.3.8. openidm.encrypt(value, cipher, alias)
	F.3.9. openidm.decrypt(value)
	F.3.10. logger.debug(string message, object... params)
	F.3.11. logger.error(string message, object... params)
	F.3.12. logger.info(string message, object... params)
	F.3.13. logger.trace(string message, object... params)
	F.3.14. logger.warn(string message, object... params)

	F.4. Places to Trigger Scripts
	F.5. Variables Available in Scripts
	F.6. Debugging OpenIDM JavaScripts
	F.7. Validating Scripts Over REST

	Appendix G. Router Service Reference
	G.1. Configuration
	G.1.1. Filter Objects
	G.1.2. Script Execution Sequence
	G.1.3. Script Scope

	G.2. Example

	Appendix H. Embedded Jetty Configuration
	H.1. Using OpenIDM Configuration Properties in the Jetty Configuration
	H.1.1. Accessing Explicit Bean Properties
	H.1.2. Accessing Generic Properties

	H.2. Jetty Default Settings
	H.3. Registering Additional Servlet Filters
	H.4. Disabling and Enabling Secure Protocols

	Appendix I. Release Levels & Interface Stability
	I.1. ForgeRock Product Release Levels
	I.2. ForgeRock Product Interface Stability

	OpenIDM Glossary
	Index

