
Directory Server Developer's Guide
/ OpenDJ 3.5

Latest update: 3.5.3

Mark Craig

ForgeRock AS
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2015-2017 ForgeRock AS.

Abstract

Hands-on guide to using OpenDJ directory server with an emphasis on command-line tools.
The OpenDJ project offers open source LDAP directory services in Java.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, http://fontawesome.io.

This Font Software is licensed under the SIL Open Font License, Version 1.1. This license is available with a FAQ at: http://scripts.sil.org/OFL

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
http://fontawesome.io
http://scripts.sil.org/OFL

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. iii

Table of Contents
Preface .. v

1. Using This Guide ... v
2. Formatting Conventions ... vi
3. Accessing Documentation Online .. vi
4. Using the ForgeRock.org Site ... vi

1. Performing RESTful Operations .. 1
1.1. About ForgeRock Common REST ... 2
1.2. Selecting an API Version .. 17
1.3. Authenticating Over REST .. 17
1.4. Creating Resources .. 19
1.5. Reading a Resource .. 20
1.6. Updating Resources .. 21
1.7. Deleting Resources ... 24
1.8. Patching Resources .. 27
1.9. Using Actions ... 32
1.10. Querying Resource Collections ... 34
1.11. Working With Alternative Content Types .. 43

2. Performing RESTful Operations (3.0) .. 47
2.1. Authenticating Over REST (3.0) .. 48
2.2. Creating Resources (3.0) .. 49
2.3. Reading a Resource (3.0) ... 50
2.4. Updating Resources (3.0) ... 51
2.5. Deleting Resources (3.0) .. 53
2.6. Patching Resources (3.0) .. 56
2.7. Using Actions (3.0) ... 61
2.8. Querying Resource Collections (3.0) ... 64

3. Performing LDAP Operations .. 74
3.1. Command-Line Tools .. 74
3.2. Searching the Directory ... 79
3.3. Comparing Attribute Values ... 92
3.4. Updating the Directory ... 93
3.5. Changing Passwords ... 103
3.6. Configuring Default Settings .. 105
3.7. Authenticating To the Directory Server .. 105
3.8. Configuring Proxied Authorization .. 108
3.9. Authenticating Using a Certificate .. 111

4. Using LDAP Schema .. 124
4.1. Getting Schema Information ... 124
4.2. Respecting LDAP Schema ... 127
4.3. Abusing LDAP Schema ... 131
4.4. Standard Schema Included With OpenDJ Server ... 131

5. Working With Groups of Entries .. 134
5.1. Creating Static Groups ... 135
5.2. Creating Dynamic Groups ... 137

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. iv

5.3. Creating Virtual Static Groups .. 139
5.4. Looking Up Group Membership .. 140
5.5. Nesting Groups Within Groups ... 141
5.6. Configuring Referential Integrity .. 143

6. Working With Virtual and Collective Attributes ... 145
6.1. Virtual Attributes .. 145
6.2. Collective Attributes ... 148

7. Working With Referrals ... 155
7.1. About Referrals .. 155
7.2. Managing Referrals .. 156

8. Writing an OpenDJ Server Plugin .. 158
8.1. About OpenDJ Directory Server Plugins .. 158
8.2. Trying the Example Server Plugin .. 160
8.3. About the Example Plugin Project Files .. 162

Index ... 167

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. v

Preface
This guide shows you how to develop scripts that use OpenDJ tools.

If you are building a Java-based LDAP client application, refer to the OpenDJ LDAP SDK Developer's
Guide instead.

In reading and following the instructions in this guide, you will learn how to:

• Access OpenDJ directory server by using REST APIs over HTTP

• Access OpenDJ directory server using the LDAP tools delivered with the server

• Use LDAP schema

• Work with standard LDAP groups and OpenDJ-specific groups

• Work with LDAP collective attributes and OpenDJ virtual attributes

• Work with LDAP referrals in search results

1. Using This Guide
This guide is intended for directory administrators who write scripts that use OpenDJ directory
services.

This guide is written with the expectation that you already have basic familiarity with the following
topics:

• Installing OpenDJ directory server, if the server is not yet installed

If you are not yet familiar with OpenDJ directory server installation, read the Installation Guide
first.

• Using command-line tools

• LDAP and directory services

• Basic OpenDJ server configuration

Some examples in this guide require OpenDJ configuration steps.

• HTTP, JavaScript Object Notation (JSON), and web applications

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. vi

2. Formatting Conventions
Most examples in the documentation are created in GNU/Linux or Mac OS X operating environments.
If distinctions are necessary between operating environments, examples are labeled with the
operating environment name in parentheses. To avoid repetition file system directory names are
often given only in UNIX format as in /path/to/server, even if the text applies to C:\path\to\server as
well.

Absolute path names usually begin with the placeholder /path/to/. This path might translate to /opt/,
C:\Program Files\, or somewhere else on your system.

Command-line, terminal sessions are formatted as follows:
$ echo $JAVA_HOME
/path/to/jdk

Command output is sometimes formatted for narrower, more readable output even though formatting
parameters are not shown in the command.

Program listings are formatted as follows:
class Test {
 public static void main(String [] args) {
 System.out.println("This is a program listing.");
 }
}

3. Accessing Documentation Online
ForgeRock publishes comprehensive documentation online:

• The ForgeRock Knowledge Base offers a large and increasing number of up-to-date, practical
articles that help you deploy and manage ForgeRock software.

While many articles are visible to community members, ForgeRock customers have access to much
more, including advanced information for customers using ForgeRock software in a mission-critical
capacity.

• ForgeRock product documentation, such as this document, aims to be technically accurate and
complete with respect to the software documented. It is visible to everyone and covers all product
features and examples of how to use them.

4. Using the ForgeRock.org Site
The ForgeRock.org site has links to source code for ForgeRock open source software, as well as links
to the ForgeRock forums and technical blogs.

https://backstage.forgerock.com/knowledge/kb
https://forgerock.org

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. vii

If you are a ForgeRock customer, raise a support ticket instead of using the forums. ForgeRock
support professionals will get in touch to help you.

Performing RESTful Operations

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 1

Chapter 1

Performing RESTful Operations

OpenDJ lets you access directory data as JSON resources over HTTP. OpenDJ maps JSON resources
onto LDAP entries. As a result, REST clients perform many of the same operations as LDAP clients
with directory data.

This chapter demonstrates RESTful client operations by using the default configuration and sample
directory data imported into OpenDJ directory server as described in "To Import LDIF Data" in the
Administration Guide, from the LDIF file Example.ldif.

Note

The default configuration has changed in OpenDJ 3.5. For details, see "Important Changes to Existing
Functionality" in the Release Notes.

If you are using OpenDJ 3.0, see "Performing RESTful Operations (3.0)" and "REST to LDAP Configuration
(3.0)" in the Reference.

In this chapter, you will learn how to use the OpenDJ REST API that provides access to directory data
over HTTP. In particular, you will learn how to:

• Create a resource that does not yet exist

• Read a single resource

• Update an existing resource

• Delete an existing resource

• Patch part of an existing resource

• Perform a predefined action

• Query a set of resources

• Work with other MIME types for resources like photos

Before trying the examples, enable HTTP access to OpenDJ directory server as described in "To
Set Up REST Access to User Data" in the Administration Guide. (If you are using OpenDJ 3.0, see
"RESTful Client Access (3.0)" in the Administration Guide instead.) The examples in this chapter use
HTTP, but the procedure also shows how to set up HTTPS access to the server.

Interface stability: Evolving (See "ForgeRock Product Interface Stability" in the Reference.)

http://json.org

Performing RESTful Operations
About ForgeRock Common REST

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 2

The OpenDJ REST API is built on a common ForgeRock HTTP-based REST API for interacting with
JSON Resources. All APIs built on this common layer let you perform the following operations.

1.1. About ForgeRock Common REST
For many REST APIs that are not defined by external standards, ForgeRock products provide
common ways to access web resources and collections of resources. This section covers what is
common across products. Adapt the examples to your types of resources and to your deployment.

1.1.1. Common REST Resources

Servers generally return JSON-format resources, though resource formats can depend on the
implementation.

Resources in collections can be found by their unique identifiers (IDs). IDs are exposed in the
resource URIs. For example, if a server has a user collection under /users, then you can access a user
at /users/user-id. The ID is also the value of the _id field of the resource.

Resources are versioned using revision numbers. A revision is specified in the resource's _rev field.
Revisions make it possible to figure out whether to apply changes without resource locking and
without distributed transactions.

1.1.2. Common REST Verbs

The common REST APIs use the following verbs, sometimes referred to collectively as CRUDPAQ. For
details and HTTP-based examples of each, follow the links to the sections for each verb.

Create

Add a new resource.

This verb maps to HTTP PUT or HTTP POST.

For details, see "Create".

Read

Retrieve a single resource.

This verb maps to HTTP GET.

For details, see "Read".

Update

Replace an existing resource.

Performing RESTful Operations
Common REST Parameters

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 3

This verb maps to HTTP PUT.

For details, see "Update".

Delete

Remove an existing resource.

This verb maps to HTTP DELETE.

For details, see "Delete".

Patch

Modify part of an existing resource.

This verb maps to HTTP PATCH.

For details, see "Patch".

Action

Perform a predefined action.

This verb maps to HTTP POST.

For details, see "Action".

Query

Search a collection of resources.

This verb maps to HTTP GET.

For details, see "Query".

1.1.3. Common REST Parameters
Common REST reserved query string parameter names start with an underscore, _.

Reserved query string parameters include, but are not limited to, the following names:

_action
_fields
_mimeType
_pageSize
_pagedResultsCookie
_pagedResultsOffset
_prettyPrint
_queryExpression
_queryFilter

Performing RESTful Operations
Common REST Extension Points

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 4

_queryId
_sortKeys
_totalPagedResultsPolicy

Note

Some parameter values are not safe for URLs, so URL-encode parameter values as necessary.

Continue reading for details about how to use each parameter.

1.1.4. Common REST Extension Points

The action verb is the main vehicle for extensions. For example, to create a new user with HTTP
POST rather than HTTP PUT, you might use /users?_action=create. A server can define additional
actions. For example, /tasks/1?_action=cancel.

A server can define stored queries to call by ID. For example, /groups?_queryId=hasDeletedMembers. Stored
queries can call for additional parameters. The parameters are also passed in the query string. Which
parameters are valid depends on the stored query.

1.1.5. Create

There are two ways to create a resource, either with an HTTP POST or with an HTTP PUT.

To create a resource using POST, perform an HTTP POST with the query string parameter
_action=create and the JSON resource as a payload. Accept a JSON response. The server creates the
identifier if not specified:

POST /users?_action=create HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
{ JSON resource }

To create a resource using PUT, perform an HTTP PUT including the case-sensitive identifier for
the resource in the URL path, and the JSON resource as a payload. Use the If-None-Match: * header.
Accept a JSON response:

PUT /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-None-Match: *
{ JSON resource }

Performing RESTful Operations
Read

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 5

The _id and content of the resource depend on the server implementation. The server is not required
to use the _id that the client provides. The server response to the create request indicates the
resource location as the value of the Location header.

If you include the If-None-Match header, its value must be *. In this case, the request creates the object
if it does not exist, and fails if the object does exist. If you include the If-None-Match header with any
value other than *, the server returns an HTTP 400 Bad Request error. For example, creating an
object with If-None-Match: revision returns a bad request error. If you do not include If-None-Match: *,
the request creates the object if it does not exist, and updates the object if it does exist.

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

1.1.6. Read
To retrieve a single resource, perform an HTTP GET on the resource by its case-sensitive identifier
(_id) and accept a JSON response:

GET /users/some-id HTTP/1.1
Host: example.com
Accept: application/json

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

Performing RESTful Operations
Update

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 6

_mimeType=mime-type

Some resources have fields whose values are multi-media resources such as a profile photo for
example.

By specifying both a single field and also the mime-type for the response content, you can read a
single field value that is a multi-media resource.

In this case, the content type of the field value returned matches the mime-type that you specify,
and the body of the response is the multi-media resource.

The Accept header is not used in this case. For example, Accept: image/png does not work. Use the
_mimeType query string parameter instead.

1.1.7. Update
To update a resource, perform an HTTP PUT including the case-sensitive identifier (_id) for the
resource with the JSON resource as a payload. Use the If-Match: _rev header to check that you are
actually updating the version you modified. Use If-Match: * if the version does not matter. Accept a
JSON response:

PUT /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-Match: _rev
{ JSON resource }

When updating a resource, include all the attributes to be retained. Omitting an attribute in the
resource amounts to deleting the attribute unless it is not under the control of your application.
Attributes not under the control of your application include private and read-only attributes. In
addition, virtual attributes and relationship references might not be under the control of your
application.

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

Performing RESTful Operations
Delete

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 7

1.1.8. Delete
To delete a single resource, perform an HTTP DELETE by its case-sensitive identifier (_id) and accept
a JSON response:

DELETE /users/some-id HTTP/1.1
Host: example.com
Accept: application/json

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

1.1.9. Patch
To patch a resource, send an HTTP PATCH request with the following parameters:

• operation

• field

• value

• from (optional with copy and move operations)

You can include these parameters in the payload for a PATCH request, or in a JSON PATCH file. If
successful, you'll see a JSON response similar to:

PATCH /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-Match: _rev
{ JSON array of patch operations }

PATCH operations apply to three types of targets:

• single-valued, such as an object, string, boolean, or number.

Performing RESTful Operations
Patch

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 8

• list semantics array, where the elements are ordered, and duplicates are allowed.

• set semantics array, where the elements are not ordered, and duplicates are not allowed.

ForgeRock PATCH supports several different operations. The following sections show each of these
operations, along with options for the field and value:

1.1.9.1. Patch Operation: Add
The add operation ensures that the target field contains the value provided, creating parent fields as
necessary.

If the target field is single-valued, then the value you include in the PATCH replaces the value of the
target. Examples of a single-valued field include: object, string, boolean, or number.

An add operation has different results on two standard types of arrays:

• List semantic arrays: you can run any of these add operations on that type of array:

• If you add an array of values, the PATCH operation appends it to the existing list of values.

• If you add a single value, specify an ordinal element in the target array, or use the {-} special
index to add that value to the end of the list.

• Set semantic arrays: The list of values included in a patch are merged with the existing set of
values. Any duplicates within the array are removed.

As an example, start with the following list semantic array resource:
{
 "fruits" : ["orange", "apple"]
}

The following add operation includes the pineapple to the end of the list of fruits, as indicated by the
- at the end of the fruits array.
{
 "operation" : "add",
 "field" : "/fruits/-",
 "value" : "pineapple"
}

The following is the resulting resource:
{
 "fruits" : ["orange", "apple", "pineapple"]
}

1.1.9.2. Patch Operation: Copy
The copy operation takes one or more existing values from the source field. It then adds those same
values on the target field. Once the values are known, it is equivalent to performing an add operation
on the target.

Performing RESTful Operations
Patch

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 9

The following copy operation takes the value from the source named /hot/potato, and then runs a
replace operation on the target value, /hot/tamale.
[
 {
 "operation" : "copy",
 "field" : "/hot/potato",
 "value" : "/hot/tamale"
 }
]

If the source and value are configured as arrays, the result depends on whether the array has list
semantics or set semantics, as described in "Patch Operation: Add".

1.1.9.3. Patch Operation: Increment

The increment operation changes the value or values of the target field by the amount you specify. The
value that you include must be one number, and may be positive or negative. The value of the target
field must accept numbers. The following increment operation adds 1000 to the target value of /user/
payment.
[
 {
 "operation" : "increment",
 "field" : "/user/payment",
 "value" : "1000"
 }
]

Since the value of the increment is a single number, arrays do not apply.

1.1.9.4. Patch Operation: Move

The move operation removes existing values on the source field. It then adds those same values on
the target field. It is equivalent to performing a remove operation on the source, followed by an add
operation with the same values, on the target.

The following move operation is equivalent to a remove operation on the source named /hot/potato,
followed by a replace operation on the target value, /hot/tamale.
[
 {
 "operation" : "move",
 "field" : "/hot/potato",
 "value" : "/hot/tamale"
 }
]

To apply a move operation on an array, you need a compatible single-value, list semantic array, or set
semantic array on both the source and the target. For details, see the criteria described in "Patch
Operation: Add".

Performing RESTful Operations
Patch

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 10

1.1.9.5. Patch Operation: Remove
The remove operation ensures that the target field no longer contains the value provided. If the remove
operation does not include a value, the operation removes the field. The following remove deletes the
value of the phoneNumber, along with the field.
[
 {
 "operation" : "remove",
 "field" : "phoneNumber"
 }
]

If the object has more than one phoneNumber, those values are stored as an array.

A remove operation has different results on two standard types of arrays:

• List semantic arrays: A remove operation deletes the specified element in the array. For example, the
following operation removes the first phone number, based on its array index (zero-based):
[
 {
 "operation" : "remove",
 "field" : "/phoneNumber/0"
 }
]

• Set semantic arrays: The list of values included in a patch are removed from the existing array.

1.1.9.6. Patch Operation: Replace
The replace operation removes any existing value(s) of the targeted field, and replaces them with the
provided value(s). It is essentially equivalent to a remove followed by a add operation. If the arrays are
used, the criteria is based on "Patch Operation: Add". However, indexed updates are not allowed,
even when the target is an array.

The following replace operation removes the existing telephoneNumber value for the user, and then adds
the new value of +1 408 555 9999.
[
 {
 "operation" : "replace",
 "field" : "/telephoneNumber",
 "value" : "+1 408 555 9999"
 }
]

A PATCH replace operation on a list semantic array works in the same fashion as a PATCH remove
operation. The following example demonstrates how the effect of both operations. Start with the
following resource:
{
 "fruits" : ["apple", "orange", "kiwi", "lime"],
}

Performing RESTful Operations
Patch

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 11

Apply the following operations on that resource:
[
 {
 "operation" : "remove",
 "field" : "/fruits/0",
 "value" : ""
 },
 {
 "operation" : "replace",
 "field" : "/fruits/1",
 "value" : "pineapple"
 }
]

The PATCH operations are applied sequentially. The remove operation removes the first member of
that resource, based on its array index, (fruits/0), with the following result:
[
 {
 "fruits" : ["orange", "kiwi", "lime"],
 }
]

The second PATCH operation, a replace, is applied on the second member (fruits/1) of the
intermediate resource, with the following result:
[
 {
 "fruits" : ["orange", "pineapple", "lime"],
 }
]

1.1.9.7. Patch Operation: Transform

The transform operation changes the value of a field based on a script or some other data
transformation command. The following transform operation takes the value from the field named /
objects, and applies the something.js script as shown:
[
 {
 "operation" : "transform",
 "field" : "/objects",
 "value" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "something.js"
 }
 }
 },
]

Performing RESTful Operations
Action

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 12

1.1.9.8. Patch Operation Limitations

Some HTTP client libraries do not support the HTTP PATCH operation. Make sure that the library you
use supports HTTP PATCH before using this REST operation.

For example, the Java Development Kit HTTP client does not support PATCH as a valid HTTP method.
Instead, the method HttpURLConnection.setRequestMethod("PATCH") throws ProtocolException.

Parameters

You can use the following parameters. Other parameters might depend on the specific action
implementation:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

1.1.10. Action

Actions are a means of extending common REST APIs and are defined by the resource provider, so
the actions you can use depend on the implementation.

The standard action indicated by _action=create is described in "Create".

Parameters

You can use the following parameters. Other parameters might depend on the specific action
implementation:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

Performing RESTful Operations
Query

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 13

1.1.11. Query

To query a resource collection (or resource container if you prefer to think of it that way), perform an
HTTP GET and accept a JSON response, including at least a _queryExpression, _queryFilter, or _queryId
parameter. These parameters cannot be used together:

GET /users?_queryFilter=true HTTP/1.1
Host: example.com
Accept: application/json

The server returns the result as a JSON object including a "results" array and other fields related to
the query string parameters that you specify.

Parameters

You can use the following parameters:

_queryFilter=filter-expression

Query filters request that the server return entries that match the filter expression. You must
URL-escape the filter expression.

The string representation is summarized as follows. Continue reading for additional explanation:

Expr = OrExpr
OrExpr = AndExpr ('or' AndExpr) *
AndExpr = NotExpr ('and' NotExpr) *
NotExpr = '!' PrimaryExpr | PrimaryExpr
PrimaryExpr = '(' Expr ')' | ComparisonExpr | PresenceExpr | LiteralExpr
ComparisonExpr = Pointer OpName JsonValue
PresenceExpr = Pointer 'pr'
LiteralExpr = 'true' | 'false'
Pointer = JSON pointer
OpName = 'eq' | # equal to
 'co' | # contains
 'sw' | # starts with
 'lt' | # less than
 'le' | # less than or equal to
 'gt' | # greater than
 'ge' | # greater than or equal to
 STRING # extended operator
JsonValue = NUMBER | BOOLEAN | '"' UTF8STRING '"'
STRING = ASCII string not containing white-space
UTF8STRING = UTF-8 string possibly containing white-space

Note that white space, double quotes ("), parentheses, and exclamation characters need URL
encoding in HTTP query strings.

A simple filter expression can represent a comparison, presence, or a literal value.

Performing RESTful Operations
Query

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 14

For comparison expressions use json-pointer comparator json-value, where the comparator is one
of the following:

eq (equals)
co (contains)
sw (starts with)
lt (less than)
le (less than or equal to)
gt (greater than)
ge (greater than or equal to)

For presence, use json-pointer pr to match resources where the JSON pointer is present.

Literal values include true (match anything) and false (match nothing).

Complex expressions employ and, or, and ! (not), with parentheses, (expression), to group
expressions.

_queryId=identifier

Specify a query by its identifier.

Specific queries can take their own query string parameter arguments, which depend on the
implementation.

_pagedResultsCookie=string

The string is an opaque cookie used by the server to keep track of the position in the search
results. The server returns the cookie in the JSON response as the value of pagedResultsCookie.

In the request _pageSize must also be set and non-zero. You receive the cookie value from the
provider on the first request, and then supply the cookie value in subsequent requests until the
server returns a null cookie, meaning that the final page of results has been returned.

The _pagedResultsCookie parameter is supported when used with the _queryFilter parameter. The
_pagedResultsCookie parameter is not guaranteed to work when used with the _queryExpression and
_queryId parameters.

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually exclusive, and not to be
used together.

_pagedResultsOffset=integer

When _pageSize is non-zero, use this as an index in the result set indicating the first page to
return.

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually exclusive, and not to be
used together.

Performing RESTful Operations
HTTP Status Codes

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 15

_pageSize=integer

Return query results in pages of this size. After the initial request, use _pagedResultsCookie or
_pageResultsOffset to page through the results.

_totalPagedResultsPolicy=string

When a _pageSize is specified, and non-zero, the server calculates the "totalPagedResults",
in accordance with the totalPagedResultsPolicy, and provides the value as part of the
response. The "totalPagedResults" is either an estimate of the total number of paged results
(_totalPagedResultsPolicy=ESTIMATE), or the exact total result count (_totalPagedResultsPolicy=EXACT).
If no count policy is specified in the query, or if _totalPagedResultsPolicy=NONE, result counting is
disabled, and the server returns value of -1 for "totalPagedResults".

_sortKeys=[+-]field[,[+-]field...]

Sort the resources returned based on the specified field(s), either in + (ascending, default) order,
or in - (descending) order.

The _sortKeys parameter is not supported for predefined queries (_queryId).

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in each element of the "results" array in the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

1.1.12. HTTP Status Codes

When working with a common REST API over HTTP, client applications should expect at least the
following HTTP status codes. Not all servers necessarily return all status codes identified here:

200 OK

The request was successful and a resource returned, depending on the request.

201 Created

The request succeeded and the resource was created.

204 No Content

The action request succeeded, and there was no content to return.

Performing RESTful Operations
HTTP Status Codes

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 16

304 Not Modified

The read request included an If-None-Match header, and the value of the header matched the
revision value of the resource.

400 Bad Request

The request was malformed.

401 Unauthorized

The request requires user authentication.

403 Forbidden

Access was forbidden during an operation on a resource.

404 Not Found

The specified resource could not be found, perhaps because it does not exist.

405 Method Not Allowed

The HTTP method is not allowed for the requested resource.

406 Not Acceptable

The request contains parameters that are not acceptable, such as a resource or protocol version
that is not available.

409 Conflict

The request would have resulted in a conflict with the current state of the resource.

410 Gone

The requested resource is no longer available, and will not become available again. This can
happen when resources expire for example.

412 Precondition Failed

The resource's current version does not match the version provided.

415 Unsupported Media Type

The request is in a format not supported by the requested resource for the requested method.

428 Precondition Required

The resource requires a version, but no version was supplied in the request.

500 Internal Server Error

The server encountered an unexpected condition that prevented it from fulfilling the request.

Performing RESTful Operations
Selecting an API Version

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 17

501 Not Implemented

The resource does not support the functionality required to fulfill the request.

503 Service Unavailable

The requested resource was temporarily unavailable. The service may have been disabled, for
example.

1.2. Selecting an API Version
OpenDJ REST APIs can be versioned. If there is more than one version of the API, then you must
select the version by setting a version header that specifies which version of the resource is
requested:
Accept-API-Version: resource=version

Here, version is the value of the version field in the mapping configuration file for the API. For details,
see "Mapping Configuration File" in the Reference.

If you do not set a version header, then the latest version is returned.

The default example configuration includes only one API, whose version is 1.0. In this case, the
header can be omitted. If used in the examples below, the appropriate header would be Accept-API-
Version: resource=1.0.

1.3. Authenticating Over REST
When you first try to read a resource that can be read as an LDAP entry with an anonymous search,
you learn that you must authenticate as shown in the following example:

$ curl http://opendj.example.com:8080/api/users/bjensen
{
 "code" : 401,
 "reason" : "Unauthorized",
 "message" : "Unauthorized"
}

HTTP status code 401 indicates that the request requires user authentication.

To prevent OpenDJ directory server from requiring authentication, set the Rest2ldap endpoint
authorization-mechanism to map anonymous HTTP requests to LDAP requests performed by an
authorized user, as in the following example that uses Kirsten Vaughan's identity:

Performing RESTful Operations
Authenticating Over REST

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 18

$ dsconfig \
 set-http-authorization-mechanism-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --mechanism-name "HTTP Anonymous" \
 --set enabled:true \
 --set user-dn:uid=kvaughan,ou=people,dc=example,dc=com \
 --no-prompt \
 --trustAll

$ dsconfig \
 set-http-endpoint-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --endpoint-name "/api" \
 --set authorization-mechanism:"HTTP Anonymous" \
 --no-prompt \
 --trustAll

By default, both the Rest2ldap endpoint and also the REST to LDAP gateway allow HTTP Basic
authentication and HTTP header-based authentication in the style of OpenIDM. The authentication
mechanisms translate HTTP authentication to LDAP authentication to the directory server.

When you install OpenDJ either with generated sample user entries or with data from Example.ldif,
the relative distinguished name (DN) attribute for sample user entries is the user ID (uid) attribute.
For example, the DN and user ID for Babs Jensen are:

dn: uid=bjensen,ou=People,dc=example,dc=com
uid: bjensen

Given this pattern in the user entries, the default REST to LDAP configuration translates the
HTTP user name to the LDAP user ID. User entries are found directly under ou=People,dc=example
,dc=com.1 In other words, Babs Jensen authenticates as bjensen (password: hifalutin) over HTTP. The
corresponding LDAP bind DN is uid=bjensen,ou=People,dc=example,dc=com.

HTTP Basic authentication works as shown in the following example:

1 In general, REST to LDAP mappings require that LDAP entries mapped to JSON resources be immediate subordinates of the
mapping's baseDN.

Performing RESTful Operations
Creating Resources

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 19

$ curl \
 --user bjensen:hifalutin \
 http://opendj.example.com:8080/api/users/bjensen
{
 "_rev" : "000000009ce6c3c3",
 ...
}

The alternative HTTP Basic username:password@ form in the URL works as shown in the following
example:

$ curl \
 http://bjensen:hifalutin@opendj.example.com:8080/api/users/bjensen
{
 "_rev" : "000000009ce6c3c3",
 ...
}

HTTP header based authentication works as shown in the following example:

$ curl \
 --header "X-OpenIDM-Username: bjensen" \
 --header "X-OpenIDM-Password: hifalutin" \
 http://opendj.example.com:8080/api/users/bjensen
{
 "_rev" : "000000009ce6c3c3",
 ...
}

If the directory data is laid out differently or if the user names are email addresses rather than user
IDs, for example, then you must update the configuration in order for authentication to work.

The REST to LDAP gateway can also translate HTTP user name and password authentication to LDAP
PLAIN SASL authentication. Likewise, the gateway falls back to proxied authorization as necessary,
using a root DN authenticated connection to LDAP servers. See "REST to LDAP Configuration" in the
Reference for details on all configuration choices.

1.4. Creating Resources
There are two alternative ways to create resources:

• To create a resource using an ID that you specify, perform an HTTP PUT request with headers
Content-Type: application/json and If-None-Match: *, and the JSON content of your resource.

The following example shows you how to create a new user entry with ID newuser:

Performing RESTful Operations
Reading a Resource

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 20

$ curl \
 --request PUT \
 --user kvaughan:bribery \
 --header "Content-Type: application/json" \
 --header "If-None-Match: *" \
 --data '{
 "_id": "newuser",
 "_schema":"frapi:opendj:rest2ldap:user:1.0",
 "contactInformation": {
 "telephoneNumber": "+1 408 555 1212",
 "emailAddress": "newuser@example.com"
 },
 "name": {
 "familyName": "New",
 "givenName": "User"
 },
 "displayName": ["New User"],
 "manager": {
 "_id": "kvaughan",
 "displayName": "Kirsten Vaughan"
 }
 }' \
 http://opendj.example.com:8080/api/users/newuser
{
 "_id": "newuser",
 "_rev": "0000000023257469",
 "_schema": "frapi:opendj:rest2ldap:user:1.0",
 "_meta": {
 "created": "2016-06-24T12:20:45Z"
 },
 "userName": "newuser@example.com",
 "displayName": ["New User"],
 "name": {
 "givenName": "User",
 "familyName": "New"
 },
 "contactInformation": {
 "telephoneNumber": "+1 408 555 1212",
 "emailAddress": "newuser@example.com"
 },
 "manager": {
 "_id": "kvaughan",
 "displayName": "Kirsten Vaughan"
 }
}

• To create a resource and let the server choose the ID, perform an HTTP POST with _action=create as
described in "Using Actions".

1.5. Reading a Resource
To read a resource, perform an HTTP GET as shown in the following example:

Performing RESTful Operations
Updating Resources

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 21

$ curl \
 --request GET \
 --user kvaughan:bribery \
 http://opendj.example.com:8080/api/users/newuser
{
 "_id": "newuser",
 "_rev": "0000000023257469",
 "_schema": "frapi:opendj:rest2ldap:user:1.0",
 "_meta": {
 "created": "2016-06-24T12:20:45Z"
 },
 "userName": "newuser@example.com",
 "displayName": ["New User"],
 "name": {
 "givenName": "User",
 "familyName": "New"
 },
 "contactInformation": {
 "telephoneNumber": "+1 408 555 1212",
 "emailAddress": "newuser@example.com"
 },
 "manager": {
 "_id": "kvaughan",
 "displayName": "Kirsten Vaughan"
 }
}

1.6. Updating Resources
To update a resource, perform an HTTP PUT with the changes to the resource. Use an If-Match header
to ensure the resource already exists. For read-only fields, either include unmodified versions, or omit
them from your updated version.

To update a resource regardless of the revision, use an If-Match: * header. The following example
writes a new entry with an additional display name for Sam Carter:

$ curl \
 --request PUT \
 --user kvaughan:bribery \
 --header "Content-Type: application/json" \
 --header "If-Match: *" \
 --data '{
 "contactInformation": {
 "telephoneNumber": "+1 408 555 4798",
 "emailAddress": "scarter@example.com"
 },
 "name": {
 "familyName": "Carter",
 "givenName": "Sam"
 },
 "userName": "scarter@example.com",
 "displayName": ["Sam Carter", "Samantha Carter"],

Performing RESTful Operations
Updating Resources

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 22

 "groups": [
 {
 "_id": "Accounting Managers"
 }
],
 "manager": {
 "_id": "trigden",
 "displayName": "Torrey Rigden"
 },
 "uidNumber": 1002,
 "gidNumber": 1000,
 "homeDirectory": "/home/scarter"
 }' \
 http://opendj.example.com:8080/api/users/scarter
{
 "_id": "scarter",
 "_rev": "00000000e77ccae6",
 "_schema": "frapi:opendj:rest2ldap:posixUser:1.0",
 "_meta": {
 "lastModified": "2016-06-24T12:35:53Z"
 },
 "userName": "scarter@example.com",
 "displayName": ["Sam Carter", "Samantha Carter"],
 "name": {
 "givenName": "Sam",
 "familyName": "Carter"
 },
 "contactInformation": {
 "telephoneNumber": "+1 408 555 4798",
 "emailAddress": "scarter@example.com"
 },
 "uidNumber": 1002,
 "gidNumber": 1000,
 "homeDirectory": "/home/scarter",
 "groups": [{
 "_id": "Accounting Managers"
 }],
 "manager": {
 "_id": "trigden",
 "displayName": "Torrey Rigden"
 }
}

To update a resource only if the resource matches a particular version, use an If-Match: revision
header as shown in the following example:

$ curl \
 --user kvaughan:bribery \
 http://opendj.example.com:8080/api/users/scarter?_fields=_rev
{"_id":"scarter","_rev":"revision"}

$ curl \
 --request PUT \
 --user kvaughan:bribery \
 --header "If-Match: revision" \
 --header "Content-Type: application/json" \
 --data '{

Performing RESTful Operations
Updating Resources

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 23

 "contactInformation": {
 "telephoneNumber": "+1 408 555 4798",
 "emailAddress": "scarter@example.com"
 },
 "name": {
 "familyName": "Carter",
 "givenName": "Sam"
 },
 "userName": "scarter@example.com",
 "displayName": ["Sam Carter", "Samantha Carter"],
 "groups": [
 {
 "_id": "Accounting Managers"
 }
],
 "manager": {
 "_id": "trigden",
 "displayName": "Torrey Rigden"
 },
 "uidNumber": 1002,
 "gidNumber": 1000,
 "homeDirectory": "/home/scarter"
 }' \
 http://opendj.example.com:8080/api/users/scarter
{
 "_id": "scarter",
 "_rev": "new-revision",
 "_schema": "frapi:opendj:rest2ldap:posixUser:1.0",
 "_meta": {
 "lastModified": "2016-06-24T12:35:53Z"
 },
 "userName": "scarter@example.com",
 "displayName": ["Sam Carter", "Samantha Carter"],
 "name": {
 "givenName": "Sam",
 "familyName": "Carter"
 },
 "contactInformation": {
 "telephoneNumber": "+1 408 555 4798",
 "emailAddress": "scarter@example.com"
 },
 "uidNumber": 1002,
 "gidNumber": 1000,
 "homeDirectory": "/home/scarter",
 "groups": [{
 "_id": "Accounting Managers"
 }],
 "manager": {
 "_id": "trigden",
 "displayName": "Torrey Rigden"
 }
}

Performing RESTful Operations
Deleting Resources

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 24

1.7. Deleting Resources
To delete a resource, perform an HTTP DELETE on the resource URL. The operation returns the
resource you deleted as shown in the following example:

$ curl \
 --request DELETE \
 --user kvaughan:bribery \
 http://opendj.example.com:8080/api/users/newuser
{
 "_id": "newuser",
 "_rev": "0000000023257469",
 "_schema": "frapi:opendj:rest2ldap:user:1.0",
 "_meta": {
 "created": "2016-06-24T12:20:45Z"
 },
 "userName": "newuser@example.com",
 "displayName": ["New User"],
 "name": {
 "givenName": "User",
 "familyName": "New"
 },
 "contactInformation": {
 "telephoneNumber": "+1 408 555 1212",
 "emailAddress": "newuser@example.com"
 },
 "manager": {
 "_id": "kvaughan",
 "displayName": "Kirsten Vaughan"
 }
}

To delete a resource only if the resource matches a particular version, use an If-Match: revision
header as shown in the following example:

$ curl \
 --user kvaughan:bribery \
 http://opendj.example.com:8080/api/users/newuser?_fields=_rev
{"_id":"newuser","_rev":"revision"}

$ curl \
 --request DELETE \
 --user kvaughan:bribery \
 --header "If-Match: revision" \
 http://opendj.example.com:8080/api/users/newuser
{
 "_id": "newuser",
 "_rev": "revision",
 "_schema": "frapi:opendj:rest2ldap:user:1.0",
 "_meta": {
 "created": "2016-06-24T12:20:45Z"
 },
 "userName": "newuser@example.com",
 "displayName": ["New User"],

Performing RESTful Operations
Deleting Resources

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 25

 "name": {
 "givenName": "User",
 "familyName": "New"
 },
 "contactInformation": {
 "telephoneNumber": "+1 408 555 1212",
 "emailAddress": "newuser@example.com"
 },
 "manager": {
 "_id": "kvaughan",
 "displayName": "Kirsten Vaughan"
 }
}

To delete a resource and all of its children, you must change the configuration, get the REST to
LDAP gateway or Rest2ldap endpoint to reload its configuration, and perform the operation as a user
who has the access rights required. The following steps show one way to do this with the Rest2ldap
endpoint.

In this example, the LDAP view of the user to delete shows two child entries as seen in the following
example:

$ ldapsearch --port 1389 --baseDN uid=nbohr,ou=people,dc=example,dc=com "(&)" dn
dn: uid=nbohr,ou=People,dc=example,dc=com

dn: cn=quantum dot,uid=nbohr,ou=People,dc=example,dc=com

dn: cn=qubit generator,uid=nbohr,ou=People,dc=example,dc=com

1. If you are using the gateway, this requires the default setting of true for useSubtreeDelete in WEB-INF/
classes/rest2ldap/endpoints/rest2ldap.json.

Note

Only users who have access to request a tree delete can delete resources with children.

2. Force the Rest2ldap to reread its configuration as shown in the following dsconfig commands:

Performing RESTful Operations
Deleting Resources

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 26

$ dsconfig \
 set-http-endpoint-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --endpoint-name /api \
 --set enabled:false \
 --no-prompt \
 --trustAll

$ dsconfig \
 set-http-endpoint-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --endpoint-name /api \
 --set enabled:true \
 --no-prompt \
 --trustAll

3. Request the delete as a user who has rights to perform a subtree delete on the resource as shown
in the following example:

$ curl \
 --request DELETE \
 --user kvaughan:bribery \
 http://opendj.example.com:8080/api/users/nbohr
{
 "_id": "nbohr",
 "_rev": "00000000bb5d8b25",
 "_schema": "frapi:opendj:rest2ldap:posixUser:1.0",
 "_meta": {},
 "userName": "nbohr@example.com",
 "displayName": ["Niels Bohr"],
 "name": {
 "givenName": "Niels",
 "familyName": "Bohr"
 },
 "contactInformation": {
 "telephoneNumber": "+1 408 555 1212",
 "emailAddress": "nbohr@example.com"
 },
 "uidNumber": 1111,
 "gidNumber": 1000,
 "homeDirectory": "/home/nbohr"
}

Performing RESTful Operations
Patching Resources

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 27

1.8. Patching Resources
OpenDJ lets you patch JSON resources, updating part of the resource rather than replacing it. For
example, you could change Babs Jensen's email address by issuing an HTTP PATCH request as in the
following example:

$ curl \
 --user kvaughan:bribery \
 --request PATCH \
 --header "Content-Type: application/json" \
 --data '[
 {
 "operation": "replace",
 "field": "/contactInformation/emailAddress",
 "value": "babs@example.com"
 }
]' \
 http://opendj.example.com:8080/api/users/bjensen
{
 "_id": "bjensen",
 "_rev": "000000005253e02b",
 "_schema": "frapi:opendj:rest2ldap:posixUser:1.0",
 "_meta": {
 "lastModified": "2016-06-24T12:41:59Z"
 },
 "userName": "babs@example.com",
 "displayName": ["Barbara Jensen", "Babs Jensen"],
 "name": {
 "givenName": "Barbara",
 "familyName": "Jensen"
 },
 "description": "Original description",
 "contactInformation": {
 "telephoneNumber": "+1 408 555 1862",
 "emailAddress": "babs@example.com"
 },
 "uidNumber": 1076,
 "gidNumber": 1000,
 "homeDirectory": "/home/bjensen",
 "manager": {
 "_id": "trigden",
 "displayName": "Torrey Rigden"
 }
}

Notice in the example that the data sent specifies the type of patch operation, the field to change,
and a value that depends on the field you change and on the operation. A single-valued field takes an
object, boolean, string, or number depending on its type, whereas a multi-valued field takes an array
of values. Getting the type wrong results in an error. Also notice that the patch data is itself an array.
This makes it possible to patch more than one part of the resource by using a set of patch operations
in the same request.

OpenDJ supports four types of patch operations:

Performing RESTful Operations
Patching Resources

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 28

add

The add operation ensures that the target field contains the value provided, creating parent fields
as necessary.

If the target field is single-valued and a value already exists, then that value is replaced with the
value you provide. Note that you do not get an error when adding a value to a single-valued field
that already has a value. A single-valued field is one whose value is not an array (an object, string,
boolean, or number).

If the target field is multi-valued, then the array of values you provide is merged with the set of
values already in the resource. New values are added, and duplicate values are ignored. A multi-
valued field takes an array value.

remove

The remove operation ensures that the target field does not contain the value provided. If you do
not provide a value, the entire field is removed if it already exists.

If the target field is single-valued and a value is provided, then the provided value must match the
existing value to remove, otherwise the field is left unchanged.

If the target field is multi-valued, then values in the array you provide are removed from the
existing set of values.

replace

The replace operation removes existing values on the target field, and replaces them with the
values you provide. It is equivalent to performing a remove on the field, then an add with the
values you provide.

increment

The increment operation increments or decrements the value or values in the target field by the
amount you specify, which is positive to increment and negative to decrement. The target field
must take a number or a set of numbers. The value you provide must be a single number.

One key nuance in how a patch works with OpenDJ concerns multi-valued fields. Although JSON
resources represent multi-valued fields as arrays, OpenDJ treats those values as sets. In other words,
values in the field are unique, and the ordering of an array of values is not meaningful in the context
of patch operations. If you reference array values by index, OpenDJ returns an error.2

Perform patch operations as if arrays values were sets. The following example includes Barbara
Jensen in a group by adding her to the set of members:

2 OpenDJ does allow use of a hyphen to add an element to a set. Include the hyphen as the last element of the field JSON
pointer path. For example: curl --user kvaughan:bribery --request PATCH --header "Content-Type: application/json" --data
'[{ "operation" : "add", "field" : "/members/-", "value" : { "_id" : "bjensen" } }]' http://opendj.example.com:8080/api/groups/
Directory%20Administrators.

Performing RESTful Operations
Patching Resources

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 29

$ curl \
 --user kvaughan:bribery \
 --request PATCH \
 --header "Content-Type: application/json" \
 --data '[
 {
 "operation": "add",
 "field": "/members",
 "value": [
 {
 "_id": "bjensen"
 }
]
 }
]' \
 http://opendj.example.com:8080/api/groups/Directory%20Administrators
{
 "_id": "Directory Administrators",
 "_rev": "000000002d1087d8",
 "_schema": "frapi:opendj:rest2ldap:group:1.0",
 "_meta": {
 "lastModified": "2016-06-24T12:43:30Z"
 },
 "displayName": "Directory Administrators",
 "members": [{
 "_id": "kvaughan",
 "displayName": "Kirsten Vaughan"
 }, {
 "_id": "bjensen",
 "displayName": ["Barbara Jensen", "Babs Jensen"]
 }, {
 "_id": "rdaugherty",
 "displayName": "Robert Daugherty"
 }, {
 "_id": "hmiller",
 "displayName": "Harry Miller"
 }]
}

The following example removes Barbara Jensen from the group:

$ curl \
 --user kvaughan:bribery \
 --request PATCH \
 --header "Content-Type: application/json" \
 --data '[
 {
 "operation": "remove",
 "field": "/members",
 "value": [
 {
 "_id": "bjensen"
 }
]
 }
]' \
 http://opendj.example.com:8080/api/groups/Directory%20Administrators

Performing RESTful Operations
Patching Resources

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 30

{
 "_id": "Directory Administrators",
 "_rev": "000000008977793d",
 "_schema": "frapi:opendj:rest2ldap:group:1.0",
 "_meta": {
 "lastModified": "2016-06-24T12:44:35Z"
 },
 "displayName": "Directory Administrators",
 "members": [{
 "_id": "kvaughan",
 "displayName": "Kirsten Vaughan"
 }, {
 "_id": "rdaugherty",
 "displayName": "Robert Daugherty"
 }, {
 "_id": "hmiller",
 "displayName": "Harry Miller"
 }]
}

To change the value of more than one attribute in a patch operation, include multiple operations in
the body of the JSON patch, as shown in the following example:

$ curl \
 --user kvaughan:bribery \
 --request PATCH \
 --header "Content-Type: application/json" \
 --data '[
 {
 "operation": "replace",
 "field": "/contactInformation/telephoneNumber",
 "value": "+1 408 555 9999"
 },
 {
 "operation": "add",
 "field": "/contactInformation/emailAddress",
 "value": "barbara.jensen@example.com"
 }
]' \
 http://opendj.example.com:8080/api/users/bjensen
{
 "_id": "bjensen",
 "_rev": "00000000c5a6e425",
 "_schema": "frapi:opendj:rest2ldap:posixUser:1.0",
 "_meta": {
 "lastModified": "2016-06-24T12:45:58Z"
 },
 "userName": "barbara.jensen@example.com",
 "displayName": ["Barbara Jensen", "Babs Jensen"],
 "name": {
 "givenName": "Barbara",
 "familyName": "Jensen"
 },
 "description": "Original description",
 "contactInformation": {
 "telephoneNumber": "+1 408 555 9999",
 "emailAddress": "barbara.jensen@example.com"

Performing RESTful Operations
Patching Resources

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 31

 },
 "uidNumber": 1076,
 "gidNumber": 1000,
 "homeDirectory": "/home/bjensen",
 "manager": {
 "_id": "trigden",
 "displayName": "Torrey Rigden"
 }
}

Notice that for a multi-valued attribute, the value field takes an array, whereas the value field takes a
single value for a single-valued field. Also notice that for single-valued fields, an add operation has the
same effect as a replace operation.

You can use resource revision numbers in If-Match: revision headers to patch the resource only if the
resource matches a particular version, as shown in the following example:

$ curl \
 --user kvaughan:bribery \
 http://opendj.example.com:8080/api/users/bjensen?_fields=_rev
{"_id":"bjensen","_rev" : "revision"}

$ curl \
 --user kvaughan:bribery \
 --request PATCH \
 --header "If-Match: revision" \
 --header "Content-Type: application/json" \
 --data '[
 {
 "operation": "add",
 "field": "/contactInformation/emailAddress",
 "value": "babs@example.com"
 }
]' \
 http://opendj.example.com:8080/api/users/bjensen
{
 "_id": "bjensen",
 "_rev": "new-revision",
 "_schema": "frapi:opendj:rest2ldap:posixUser:1.0",
 "_meta": {
 "lastModified": "2016-06-24T12:45:58Z"
 },
 "userName": "barbara.jensen@example.com",
 "displayName": ["Barbara Jensen", "Babs Jensen"],
 "name": {
 "givenName": "Barbara",
 "familyName": "Jensen"
 },
 "description": "Original description",
 "contactInformation": {
 "telephoneNumber": "+1 408 555 9999",
 "emailAddress": "babs@example.com"
 },
 "uidNumber": 1076,
 "gidNumber": 1000,
 "homeDirectory": "/home/bjensen",

Performing RESTful Operations
Using Actions

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 32

 "manager": {
 "_id": "trigden",
 "displayName": "Torrey Rigden"
 }
}

The resource revision changes when the patch is successful.

1.9. Using Actions
OpenDJ REST to LDAP implements the actions described in this section.

1.9.1. Using the Create Resource Action

OpenDJ implements an action that lets the server set the resource ID on creation. To use this action,
perform an HTTP POST with header Content-Type: application/json, and the JSON content of the
resource.

The _action=create in the query string is optional.

The following example creates a new user entry:

$ curl \
 --request POST \
 --user kvaughan:bribery \
 --header "Content-Type: application/json" \
 --data '{
 "_id": "newuser",
 "contactInformation": {
 "telephoneNumber": "+1 408 555 1212",
 "emailAddress": "newuser@example.com"
 },
 "name": {
 "familyName": "New",
 "givenName": "User"
 },
 "displayName": "New User",
 "manager": [
 {
 "_id": "kvaughan",
 "displayName": "Kirsten Vaughan"
 }
]
 }' \
 http://opendj.example.com:8080/api/users
{
 "_id": "newuser",
 "_rev": "000000000ace733a",
 "_schema": "frapi:opendj:rest2ldap:user:1.0",
 "_meta": {
 "created": "2016-06-24T12:51:25Z"

Performing RESTful Operations
Using the Modify Password and Reset Password Actions

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 33

 },
 "userName": "newuser@example.com",
 "displayName": ["New User"],
 "name": {
 "givenName": "User",
 "familyName": "New"
 },
 "contactInformation": {
 "telephoneNumber": "+1 408 555 1212",
 "emailAddress": "newuser@example.com"
 },
 "manager": {
 "_id": "kvaughan",
 "displayName": "Kirsten Vaughan"
 }
}

1.9.2. Using the Modify Password and Reset Password Actions

OpenDJ implements actions for resetting and changing passwords.

These actions require HTTPS to avoid sending passwords over insecure connections. Before trying
the examples that follow, enable HTTPS on the HTTP connection handler as described in "RESTful
Client Access Over HTTP" in the Administration Guide. Notice that the following examples use the
exported server certificate, server-cert.pem, generated in that procedure. If the connection handler
uses a certificate signed by a well-known CA, then you can omit the --cacert option.

1.9.2.1. Changing Passwords

The modifyPassword action lets a user modify their password given the old password and a new
password.

To use this action, perform an HTTP POST over HTTPS with header Content-Type: application/json,
_action=modifyPassword in the query string, and the old and new passwords in JSON format as the POST
data.

The JSON must include the following fields:

oldPassword

The value of this field is the current password as a UTF-8 string.

newPassword

The value of this field is the new password as a UTF-8 string.

The following example demonstrates a user changing their own password. On success, the HTTP
status code is 200 OK, and the response body is an empty JSON resource:

Performing RESTful Operations
Querying Resource Collections

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 34

$ curl \
 --request POST \
 --cacert server-cert.pem \
 --user bjensen:hifalutin \
 --header "Content-Type: application/json" \
 --data '{"oldPassword": "hifalutin", "newPassword": "password"}' \
 https://opendj.example.com:8443/users/bjensen?_action=modifyPassword
{}

1.9.2.2. Resetting Passwords

The resetPassword action lets a user or password administrator reset a password to a generated
password value.

To use this action, perform an HTTP POST over HTTPS with header Content-Type: application/json,
_action=resetPassword in the query string, and an empty JSON document ({}) as the POST data.

The following example demonstrates an administrator changing a user's password. Before trying
this example, make sure the password administrator user has been given the password-reset privilege
as shown in "To Add Privileges on an Individual Entry" in the Administration Guide. Otherwise, the
password administrator has insufficient access. On success, the HTTP status code is 200 OK, and the
response body is a JSON resource with a generatedPassword containing the new password:

$ curl \
 --request POST \
 --cacert server-cert.pem \
 --user kvaughan:bribery \
 --header "Content-Type: application/json" \
 --data '{}' \
 https://opendj.example.com:8443/users/bjensen?_action=passwordModify
{"generatedPassword":"qno66vyz"}

The password administrator communicates the new, generated password to the user.

This feature could be used in combination with a password policy that forces the user to change their
password after a reset. For an example of such a policy, see "Require Password Change on Add or
Reset" in the Administration Guide.

1.10. Querying Resource Collections
To query resource collections, perform an HTTP GET with a _queryFilter=expression parameter in the
query string. For details about the query filter expression, see "Query".

The _queryId, _sortKeys, and _totalPagedResultsPolicy parameters described in "Query" are not used in
OpenDJ software at present.

Performing RESTful Operations
Querying Resource Collections

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 35

The following table shows some LDAP search filters with corresponding examples of query filter
expressions.

LDAP Search and REST Query Filters

LDAP Filter REST Filter
(&) _queryFilter=true
(uid=*) _queryFilter=_id+pr
(uid=bjensen) _queryFilter=_id+eq+'bjensen'
(uid=*jensen*) _queryFilter=_id+co+'jensen'
(uid=jensen*) _queryFilter=_id+sw+'jensen'
(&(uid=*jensen*)(cn=babs*)) _queryFilter=(_id+co+'jensen'+and+displayName

+sw+'babs')
(|(uid=*jensen*)(cn=sam*)) _queryFilter=(_id+co+'jensen'+or+displayName+sw

+'sam')
(!(uid=*jensen*)) _queryFilter=!(_id+co+'jensen')
(uid<=jensen) _queryFilter=_id+le+'jensen'
(uid>=jensen) _queryFilter=_id+ge+'jensen'

For query operations, the filter expression is constructed from the following building blocks. Make
sure you URL-encode the filter expressions, which are shown here without URL-encoding to make
them easier to read.

In filter expressions, the simplest json-pointer is a field of the JSON resource, such as userName or id. A
json-pointer can also point to nested elements as described in the JSON Pointer Internet-Draft:

Comparison expressions

Build filters using the following comparison expressions:

json-pointer eq json-value

Matches when the pointer equals the value, as in the following example:

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/api/users?_queryFilter=userName+eq+'bjensen@example.com'"
{
 "result": [{
 "_id": "bjensen",
 "_rev": "00000000620de18f",
 "_schema": "frapi:opendj:rest2ldap:posixUser:1.0",
 "_meta": {
 "lastModified": "2016-06-24T12:55:49Z"
 },
 "userName": "bjensen@example.com",

http://tools.ietf.org/html/draft-ietf-appsawg-json-pointer

Performing RESTful Operations
Querying Resource Collections

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 36

 "displayName": ["Barbara Jensen", "Babs Jensen"],
 "name": {
 "givenName": "Barbara",
 "familyName": "Jensen"
 },
 "description": "Original description",
 "contactInformation": {
 "telephoneNumber": "+1 408 555 9999",
 "emailAddress": "bjensen@example.com"
 },
 "uidNumber": 1076,
 "gidNumber": 1000,
 "homeDirectory": "/home/bjensen",
 "manager": {
 "_id": "trigden",
 "displayName": "Torrey Rigden"
 }
 }],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

json-pointer co json-value

Matches when the pointer contains the value, as in the following example:

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/api/users?_queryFilter=userName+co+'jensen'&_fields=userName"
{
 "result": [{
 "_id": "ajensen",
 "_rev": "000000004f02a83b",
 "userName": "ajensen@example.com"
 }, {
 "_id": "bjensen",
 "_rev": "00000000620de18f",
 "userName": "bjensen@example.com"
 }, {
 "_id": "gjensen",
 "_rev": "00000000d180a393",
 "userName": "gjensen@example.com"
 }, {
 "_id": "jjensen",
 "_rev": "000000003e0ba1b4",
 "userName": "jjensen@example.com"
 }, {
 "_id": "kjensen",
 "_rev": "000000001c6ba52e",
 "userName": "kjensen@example.com"
 }, {
 "_id": "rjensen",
 "_rev": "0000000019d8a547",

Performing RESTful Operations
Querying Resource Collections

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 37

 "userName": "rjensen@example.com"
 }, {
 "_id": "tjensen",
 "_rev": "00000000b362a0b3",
 "userName": "tjensen@example.com"
 }],
 "resultCount": 7,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

json-pointer sw json-value

Matches when the pointer starts with the value, as in the following example:

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/api/users?_queryFilter=userName+sw+'ab'&_fields=userName"
{
 "result": [{
 "_id": "abarnes",
 "_rev": "000000002e13a516",
 "userName": "abarnes@example.com"
 }, {
 "_id": "abergin",
 "_rev": "00000000bf829aed",
 "userName": "abergin@example.com"
 }],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

json-pointer lt json-value

Matches when the pointer is less than the value, as in the following example:

Performing RESTful Operations
Querying Resource Collections

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 38

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/api/users?_queryFilter=userName+lt+'ac'&_fields=userName"
{
 "result": [{
 "_id": "abarnes",
 "_rev": "000000002e13a516",
 "userName": "abarnes@example.com"
 }, {
 "_id": "abergin",
 "_rev": "00000000bf829aed",
 "userName": "abergin@example.com"
 }],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

json-pointer le json-value

Matches when the pointer is less than or equal to the value, as in the following example:

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/api/users?_queryFilter=userName+le+'ad'&_fields=userName"
{
 "result": [{
 "_id": "abarnes",
 "_rev": "000000002e13a516",
 "userName": "abarnes@example.com"
 }, {
 "_id": "abergin",
 "_rev": "00000000bf829aed",
 "userName": "abergin@example.com"
 }, {
 "_id": "achassin",
 "_rev": "00000000309da2e7",
 "userName": "achassin@example.com"
 }],
 "resultCount": 3,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

json-pointer gt json-value

Matches when the pointer is greater than the value, as in the following example:

Performing RESTful Operations
Querying Resource Collections

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 39

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/api/users?_queryFilter=userName+gt+'tt'&_fields=userName"
{
 "result": [{
 "_id": "ttully",
 "_rev": "00000000542fa3e9",
 "userName": "ttully@example.com"
 }, {
 "_id": "tward",
 "_rev": "00000000da539fc9",
 "userName": "tward@example.com"
 }, {
 "_id": "wlutz",
 "_rev": "000000006ff69e74",
 "userName": "wlutz@example.com"
 }],
 "resultCount": 3,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

json-pointer ge json-value

Matches when the pointer is greater than or equal to the value, as in the following example:

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/api/users?_queryFilter=userName+ge+'tw'&_fields=userName"
{
 "result": [{
 "_id": "tward",
 "_rev": "00000000da539fc9",
 "userName": "tward@example.com"
 }, {
 "_id": "wlutz",
 "_rev": "000000006ff69e74",
 "userName": "wlutz@example.com"
 }],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

Presence expression

json-pointer pr matches any resource on which the json-pointer is present, as in the following
example:

Performing RESTful Operations
Querying Resource Collections

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 40

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/api/users?_queryFilter=userName+pr&_fields=userName"
{
 "result": [{
 "_id": "abarnes",
 "_rev": "000000002e13a516",
 "userName": "abarnes@example.com"
 }, ... {
 "_id": "newuser",
 "_rev": "000000000ace733a",
 "userName": "newuser@example.com"
 }],
 "resultCount": 153,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

Literal expressions

true matches any resource in the collection.

false matches no resource in the collection.

In other words, you can list all resources in a collection as in the following example:

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/api/groups?_queryFilter=true&_fields=displayName"
{
 "result": [{
 "_id": "Accounting Managers",
 "_rev": "00000000faf95c89",
 "displayName": "Accounting Managers"
 }, {
 "_id": "Directory Administrators",
 "_rev": "000000008977793d",
 "displayName": "Directory Administrators"
 }, {
 "_id": "HR Managers",
 "_rev": "00000000123d557d",
 "displayName": "HR Managers"
 }, {
 "_id": "PD Managers",
 "_rev": "000000002b415792",
 "displayName": "PD Managers"
 }, {
 "_id": "QA Managers",
 "_rev": "000000004ecc54fa",
 "displayName": "QA Managers"
 }],
 "resultCount": 5,
 "pagedResultsCookie": null,

Performing RESTful Operations
Querying Resource Collections

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 41

 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

Complex expressions

Combine expressions using boolean operators and, or, and ! (not), and by using parentheses
(expression) with group expressions. The following example queries resources with last name
Jensen and manager name starting with Bar:

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/api/users?_queryFilter=\
(userName+co+'jensen'+and+manager/displayName+sw+'Sam')&_fields=displayName"
{
 "result": [{
 "_id": "jjensen",
 "_rev": "000000003e0ba1b4",
 "displayName": ["Jody Jensen"]
 }, {
 "_id": "tjensen",
 "_rev": "00000000b362a0b3",
 "displayName": ["Ted Jensen"]
 }],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

Notice that the filters use the JSON pointers name/familyName and manager/displayName to identify the
fields nested inside the name and manager objects.

You can page through search results using the following query string parameters that are further
described in "Query":

• _pagedResultsCookie=string

• _pagedResultsOffset=integer

• _pageSize=integer

The following example demonstrates how paged results are used:

Request five results per page, and retrieve the first page.
$ curl \
 --user bjensen:hifalutin \
 "http://opendj.example.com:8080/api/users?_queryFilter=true&_fields=userName&_pageSize=5"
{
 "result": [{
 "_id": "abarnes",

Performing RESTful Operations
Querying Resource Collections

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 42

 "_rev": "000000002e13a516",
 "userName": "abarnes@example.com"
 }, {
 "_id": "abergin",
 "_rev": "00000000bf829aed",
 "userName": "abergin@example.com"
 }, {
 "_id": "achassin",
 "_rev": "00000000309da2e7",
 "userName": "achassin@example.com"
 }, {
 "_id": "ahall",
 "_rev": "00000000f3b39d13",
 "userName": "ahall@example.com"
 }, {
 "_id": "ahel",
 "_rev": "0000000066f49b88",
 "userName": "ahel@example.com"
 }],
 "resultCount": 5,
 "pagedResultsCookie": "AAAAAAAAAA8=",
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

Provide the cookie to request the next five results.
$ curl \
 --user bjensen:hifalutin \
 "http://opendj.example.com:8080/api/users?_queryFilter=true&_fields=userName&_pageSize=5\
&_pagedResultsCookie=AAAAAAAAAA8="
{
 "result": [{
 "_id": "ahunter",
 "_rev": "0000000097c4a2ec",
 "userName": "ahunter@example.com"
 }, {
 "_id": "ajensen",
 "_rev": "000000004f02a83b",
 "userName": "ajensen@example.com"
 }, {
 "_id": "aknutson",
 "_rev": "0000000008ababe4",
 "userName": "aknutson@example.com"
 }, {
 "_id": "alangdon",
 "_rev": "00000000fce1a809",
 "userName": "alangdon@example.com"
 }, {
 "_id": "alutz",
 "_rev": "000000003bbfa434",
 "userName": "alutz@example.com"
 }],
 "resultCount": 5,
 "pagedResultsCookie": "AAAAAAAAABQ=",
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

Performing RESTful Operations
Working With Alternative Content Types

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 43

Request the tenth page of five results.
$ curl \
 --user bjensen:hifalutin \
 "http://opendj.example.com:8080/api/users?_queryFilter=true&_fields=userName\
&_pageSize=5&_pagedResultsOffset=10"
{
 "result": [{
 "_id": "ewalker",
 "_rev": "000000007aaea177",
 "userName": "ewalker@example.com"
 }, {
 "_id": "eward",
 "_rev": "00000000bd8e9e65",
 "userName": "eward@example.com"
 }, {
 "_id": "falbers",
 "_rev": "000000004a35a1ee",
 "userName": "falbers@example.com"
 }, {
 "_id": "gfarmer",
 "_rev": "00000000535fa1cb",
 "userName": "gfarmer@example.com"
 }, {
 "_id": "gjensen",
 "_rev": "00000000d180a393",
 "userName": "gjensen@example.com"
 }],
 "resultCount": 5,
 "pagedResultsCookie": "AAAAAAAAAEE=",
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

Notice the following features of the responses:

• "remainingPagedResults" : -1 means that the number of remaining results is unknown.

• "totalPagedResults" : -1 means that the total number of paged results is unknown.

• "totalPagedResultsPolicy" : "NONE" means that result counting is disabled.

1.11. Working With Alternative Content Types
OpenDJ generally maps JSON resources to LDAP entries. Some resources such as profile photos,
however, are best expressed with other MIME types. ForgeRock common REST lets your applications
make HTTP multipart requests, so you can work with other MIME types differently from regular
JSON resources. This is done using the _mimeType parameter described in "Read".

This section includes the following procedures:

• "To Map an Alternative Content Type"

Performing RESTful Operations
Working With Alternative Content Types

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 44

• "To Update a Non-JSON Resource"

• "To Read a Non-JSON Resource"

Note

The default configuration described in "To Set Up REST Access to User Data" in the Administration Guide does
not include any mappings that require alternative content types. You must therefore add a mapping to use an
alternative content type and disable and then enable the Rest2ldap endpoint for the change to take effect.

To Map an Alternative Content Type

To add a mapping to the configuration, follow these steps:

1. Edit the attributes section for a resource in the configuration file /path/to/opendj/config/rest2ldap/
endpoints/api/example-v1.json to include a property that maps to a MIME type.

The following line adds a simple mapping from the photo property to the jpegPhoto LDAP attribute:

"photo" : { "type": "simple", "ldapAttribute" : "jpegPhoto" },

2. Force the Rest2ldap endpoint to reread the updated configuration file.

You can force the Rest2ldap endpoint to reread its configuration by disabling it and then enabling
it:

$ dsconfig \
 set-http-endpoint-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --endpoint-name /api \
 --set enabled:false \
 --no-prompt \
 --trustAll
$ dsconfig \
 set-http-endpoint-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --endpoint-name /api \
 --set enabled:true \
 --no-prompt \
 --trustAll

Performing RESTful Operations
Working With Alternative Content Types

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 45

To Update a Non-JSON Resource

With a mapping configured as described in "To Map an Alternative Content Type", REST client
applications can update MIME resources with form-based content as described in the following steps:

1. Ensure that the application has a resource to upload.

For example, copy a JPEG photo picture.jpg to the current directory.

2. Upload the non-JSON resource with its metadata as a multipart form.

The following example patches Babs Jensen’s resource to add a profile photo:

$ curl \
 --request PATCH \
 --form 'json=[{"operation": "add", "field": "/photo",
 "value": {"$ref":"cid:picture#content"}}];type=application/json' \
 --form 'picture=@picture.jpg;type=image/jpeg' \
 'http://bjensen:hifalutin@opendj.example.com:8080/api/users/bjensen'
{
 "_id": "bjensen",
 ...
 "photo": "_9j_4RZJRXhpZg...AA",
 ...
}

Notice the curl command form data. When you specify the reference to the content ID, the
reference takes the form:

{"$ref":"cid:identifier#(content|filename|mimetype)"}

If you want other attributes to hold the filename (picture.jpg) and MIME type (image
/jpeg) of the file you upload, you can reference those as well. In the example above,
{"$ref":"cid:picture#filename"} is picture.jpg and {"$ref":"cid:picture#mimetype"} is image/jpeg.

To Read a Non-JSON Resource

With a mapping configured as described in "To Map an Alternative Content Type", REST client
applications can read MIME resources as described in the following step:

• Read the non-JSON resource using a single value for each of the _fields and _mimeType parameters.

The following example reads Babs Jensen’s profile photo:

Performing RESTful Operations
Working With Alternative Content Types

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 46

$ curl "http://bjensen:hifalutin@opendj.example.com:8080/api/users/bjensen
\
?_fields=photo&_mimeType=image/jpeg"
... binary data ...

Performing RESTful Operations (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 47

Chapter 2

Performing RESTful Operations (3.0)

OpenDJ lets you access directory data as JSON resources over HTTP. OpenDJ maps JSON resources
onto LDAP entries. As a result, REST clients perform many of the same operations as LDAP clients
with directory data.

This chapter demonstrates RESTful client operations by using the default configuration and sample
directory data imported into OpenDJ directory server as described in "To Import LDIF Data" in the
Administration Guide, from the LDIF file Example.ldif.

Note

The default configuration has changed in OpenDJ 3.5.0. For details, see "Important Changes to Existing
Functionality" in the Release Notes.

If you are using OpenDJ 3.5, see "Performing RESTful Operations" and "REST to LDAP Configuration" in the
Reference.

In this chapter, you will learn how to use the OpenDJ REST API that provides access to directory data
over HTTP. In particular, you will learn how to:

• Create a resource that does not yet exist

• Read a single resource

• Update an existing resource

• Delete an existing resource

• Patch part of an existing resource

• Perform a predefined action

• Query a set of resources

Before trying the examples, enable HTTP access to OpenDJ directory server as described in "RESTful
Client Access (3.0)" in the Administration Guide. The examples in this chapter use HTTP, but the
procedure also shows how to set up HTTPS access to the server.

Interface stability: Evolving (See "ForgeRock Product Interface Stability" in the Reference.)

The OpenDJ REST API is built on a common ForgeRock HTTP-based REST API for interacting with
JSON Resources. All APIs built on this common layer let you perform the following operations. For an
overview of ForgeRock common REST APIs, see "About ForgeRock Common REST".

http://json.org

Performing RESTful Operations (3.0)
Authenticating Over REST (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 48

2.1. Authenticating Over REST (3.0)
When you first try to read a resource that can be read as an LDAP entry with an anonymous search,
you learn that you must authenticate as shown in the following example:

$ curl http://opendj.example.com:8080/users/bjensen
{
 "code" : 401,
 "reason" : "Unauthorized",
 "message" : "Unauthorized"
}

HTTP status code 401 indicates that the request requires user authentication.

To prevent OpenDJ directory server from requiring authentication, set the HTTP connection handler
property authentication-required to false, as in the following example:

$ dsconfig \
 set-connection-handler-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --handler-name "HTTP Connection Handler" \
 --set authentication-required:false \
 --no-prompt \
 --trustAll

By default, both the HTTP connection handler and also the REST to LDAP gateway allow HTTP Basic
authentication and HTTP header-based authentication in the style of OpenIDM. The authentication
mechanisms translate HTTP authentication to LDAP authentication to the directory server.

When you install OpenDJ either with generated sample user entries or with data from Example.ldif,
the relative distinguished name (DN) attribute for sample user entries is the user ID (uid) attribute.
For example, the DN and user ID for Babs Jensen are:

dn: uid=bjensen,ou=People,dc=example,dc=com
uid: bjensen

Given this pattern in the user entries, the default REST to LDAP configuration translates the
HTTP user name to the LDAP user ID. User entries are found directly under ou=People,dc=example
,dc=com.1 In other words, Babs Jensen authenticates as bjensen (password: hifalutin) over HTTP. The
corresponding LDAP bind DN is uid=bjensen,ou=People,dc=example,dc=com.

HTTP Basic authentication works as shown in the following example:
1 In general, REST to LDAP mappings require that LDAP entries mapped to JSON resources be immediate subordinates of the
mapping's baseDN.

Performing RESTful Operations (3.0)
Creating Resources (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 49

$ curl \
 --user bjensen:hifalutin \
 http://opendj.example.com:8080/users/bjensen
{
 "_rev" : "0000000016cbb68c",
 ...
}

The alternative HTTP Basic username:password@ form in the URL works as shown in the following
example:

$ curl \
 http://bjensen:hifalutin@opendj.example.com:8080/users/bjensen
{
 "_rev" : "0000000016cbb68c",
 ...
}

HTTP header based authentication works as shown in the following example:

$ curl \
 --header "X-OpenIDM-Username: bjensen" \
 --header "X-OpenIDM-Password: hifalutin" \
 http://opendj.example.com:8080/users/bjensen
{
 "_rev" : "0000000016cbb68c",
 ...
}

If the directory data is laid out differently or if the user names are email addresses rather than user
IDs, for example, then you must update the configuration in order for authentication to work.

The REST to LDAP gateway can also translate HTTP user name and password authentication to LDAP
PLAIN SASL authentication. Likewise, the gateway falls back to proxied authorization as necessary,
using a root DN authenticated connection to LDAP servers. See "REST to LDAP Configuration (3.0)"
in the Reference for details on all configuration choices.

2.2. Creating Resources (3.0)
There are two alternative ways to create resources:

• To create a resource using an ID that you specify, perform an HTTP PUT request with headers
Content-Type: application/json and If-None-Match: *, and the JSON content of your resource.

The following example shows you how to create a new user entry with ID newuser:

Performing RESTful Operations (3.0)
Reading a Resource (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 50

$ curl \
 --request PUT \
 --user kvaughan:bribery \
 --header "Content-Type: application/json" \
 --header "If-None-Match: *" \
 --data '{
 "_id": "newuser",
 "contactInformation": {
 "telephoneNumber": "+1 408 555 1212",
 "emailAddress": "newuser@example.com"
 },
 "name": {
 "familyName": "New",
 "givenName": "User"
 },
 "displayName": "New User",
 "manager": [
 {
 "_id": "kvaughan",
 "displayName": "Kirsten Vaughan"
 }
]
 }' \
 http://opendj.example.com:8080/users/newuser
{
 "_rev" : "000000005b337348",
 "schemas" : ["urn:scim:schemas:core:1.0"],
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 1212",
 "emailAddress" : "newuser@example.com"
 },
 "_id" : "newuser",
 "name" : {
 "familyName" : "New",
 "givenName" : "User"
 },
 "userName" : "newuser@example.com",
 "displayName" : "New User",
 "meta" : {
 "created" : "2013-04-11T09:58:27Z"
 },
 "manager" : [{
 "_id" : "kvaughan",
 "displayName" : "Kirsten Vaughan"
 }]
}

• To create a resource and let the server choose the ID, perform an HTTP POST with _action=create as
described in "Using Actions (3.0)".

2.3. Reading a Resource (3.0)
To read a resource, perform an HTTP GET as shown in the following example:

Performing RESTful Operations (3.0)
Updating Resources (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 51

$ curl \
 --request GET \
 --user kvaughan:bribery \
 http://opendj.example.com:8080/users/newuser
{
 "_rev" : "000000005b337348",
 "schemas" : ["urn:scim:schemas:core:1.0"],
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 1212",
 "emailAddress" : "newuser@example.com"
 },
 "_id" : "newuser",
 "name" : {
 "familyName" : "New",
 "givenName" : "User"
 },
 "userName" : "newuser@example.com",
 "displayName" : "New User",
 "meta" : {
 "created" : "2013-04-11T09:58:27Z"
 },
 "manager" : [{
 "_id" : "kvaughan",
 "displayName" : "Kirsten Vaughan"
 }]
}

2.4. Updating Resources (3.0)
To update a resource, perform an HTTP PUT with the changes to the resource. Use an If-Match header
to ensure the resource already exists. For read-only fields, either include unmodified versions, or omit
them from your updated version.

To update a resource regardless of the revision, use an If-Match: * header. The following example
adds a manager for Sam Carter:

$ curl \
 --request PUT \
 --user kvaughan:bribery \
 --header "Content-Type: application/json" \
 --header "If-Match: *" \
 --data '{
 "contactInformation": {
 "telephoneNumber": "+1 408 555 4798",
 "emailAddress": "scarter@example.com"
 },
 "name": {
 "familyName": "Carter",
 "givenName": "Sam"
 },
 "userName": "scarter@example.com",
 "displayName": "Sam Carter",

Performing RESTful Operations (3.0)
Updating Resources (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 52

 "groups": [
 {
 "_id": "Accounting Managers"
 }
],
 "manager": [
 {
 "_id": "trigden",
 "displayName": "Torrey Rigden"
 }
]
 }' \
 http://opendj.example.com:8080/users/scarter
{
 "_rev" : "00000000a1923db2",
 "schemas" : ["urn:scim:schemas:core:1.0"],
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 4798",
 "emailAddress" : "scarter@example.com"
 },
 "_id" : "scarter",
 "name" : {
 "familyName" : "Carter",
 "givenName" : "Sam"
 },
 "userName" : "scarter@example.com",
 "displayName" : "Sam Carter",
 "manager" : [{
 "_id" : "trigden",
 "displayName" : "Torrey Rigden"
 }],
 "meta" : {
 "lastModified" : "2015-09-29T10:24:01Z"
 },
 "groups" : [{
 "_id" : "Accounting Managers"
 }]
}

To update a resource only if the resource matches a particular version, use an If-Match: revision
header as shown in the following example:

$ curl \
 --user kvaughan:bribery \
 http://opendj.example.com:8080/users/scarter?_fields=_rev
{"_id":"scarter","_rev":"revision"}

$ curl \
 --request PUT \
 --user kvaughan:bribery \
 --header "If-Match: revision" \
 --header "Content-Type: application/json" \
 --data '{
 "contactInformation": {
 "telephoneNumber": "+1 408 555 1212",
 "emailAddress": "scarter@example.com"
 },

Performing RESTful Operations (3.0)
Deleting Resources (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 53

 "name": {
 "familyName": "Carter",
 "givenName": "Sam"
 },
 "userName": "scarter@example.com",
 "displayName": "Sam Carter",
 "groups": [
 {
 "_id": "Accounting Managers"
 }
],
 "manager": [
 {
 "_id": "trigden",
 "displayName": "Torrey Rigden"
 }
]
 }' \
 http://opendj.example.com:8080/users/scarter
{
 "_rev" : "00000000a1ee3da3",
 "schemas" : ["urn:scim:schemas:core:1.0"],
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 1212",
 "emailAddress" : "scarter@example.com"
 },
 "_id" : "scarter",
 "name" : {
 "familyName" : "Carter",
 "givenName" : "Sam"
 },
 "userName" : "scarter@example.com",
 "displayName" : "Sam Carter",
 "meta" : {
 "lastModified" : "2015-09-29T10:23:27Z"
 },
 "groups" : [{
 "_id" : "Accounting Managers"
 }],
 "manager" : [{
 "_id" : "trigden",
 "displayName" : "Torrey Rigden"
 }]
}

2.5. Deleting Resources (3.0)
To delete a resource, perform an HTTP DELETE on the resource URL. The operation returns the
resource you deleted as shown in the following example:

Performing RESTful Operations (3.0)
Deleting Resources (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 54

$ curl \
 --request DELETE \
 --user kvaughan:bribery \
 http://opendj.example.com:8080/users/newuser
{
 "_rev" : "000000003a5f3cb2",
 "schemas" : ["urn:scim:schemas:core:1.0"],
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 1212",
 "emailAddress" : "newuser@example.com"
 },
 "_id" : "newuser",
 "name" : {
 "familyName" : "New",
 "givenName" : "User"
 },
 "userName" : "newuser@example.com",
 "displayName" : "New User",
 "meta" : {
 "created" : "2013-04-11T09:58:27Z"
 },
 "manager" : [{
 "_id" : "kvaughan",
 "displayName" : "Kirsten Vaughan"
 }]
}

To delete a resource only if the resource matches a particular version, use an If-Match: revision
header as shown in the following example:

$ curl \
 --user kvaughan:bribery \
 http://opendj.example.com:8080/users/newuser?_fields=_rev
{"_id":"newuser","_rev":"revision"}

$ curl \
 --request DELETE \
 --user kvaughan:bribery \
 --header "If-Match: revision" \
 http://opendj.example.com:8080/users/newuser
{
 "_rev" : "00000000383f3cae",
 "schemas" : ["urn:scim:schemas:core:1.0"],
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 1212",
 "emailAddress" : "newuser@example.com"
 },
 "_id" : "newuser",
 "name" : {
 "familyName" : "New",
 "givenName" : "User"
 },
 "userName" : "newuser@example.com",
 "displayName" : "New User",
 "meta" : {

Performing RESTful Operations (3.0)
Deleting Resources (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 55

 "created" : "2013-04-11T12:48:48Z"
 },
 "manager" : [{
 "_id" : "kvaughan",
 "displayName" : "Kirsten Vaughan"
 }]
}

To delete a resource and all of its children, you must change the configuration, get the REST to LDAP
gateway or HTTP connection handler to reload its configuration, and perform the operation as a
user who has the access rights required. The following steps show one way to do this with the HTTP
connection handler.

In this example, the LDAP view of the user to delete shows two child entries as seen in the following
example:

$ ldapsearch --port 1389 --baseDN uid=nbohr,ou=people,dc=example,dc=com "(&)" dn
dn: uid=nbohr,ou=People,dc=example,dc=com

dn: cn=quantum dot,uid=nbohr,ou=People,dc=example,dc=com

dn: cn=qubit generator,uid=nbohr,ou=People,dc=example,dc=com

1. In the configuration file for the HTTP connection handler, by default /path/to/opendj/config/http-
config.json, set "useSubtreeDelete" : true.

Note

After this change, only users who have access to request a tree delete can delete resources.

2. Force the HTTP connection handler to reread its configuration as shown in the following dsconfig
commands:

Performing RESTful Operations (3.0)
Patching Resources (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 56

$ dsconfig \
 set-connection-handler-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --handler-name "HTTP Connection Handler" \
 --set enabled:false \
 --no-prompt \
 --trustAll

$ dsconfig \
 set-connection-handler-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --handler-name "HTTP Connection Handler" \
 --set enabled:true \
 --no-prompt \
 --trustAll

3. Request the delete as a user who has rights to perform a subtree delete on the resource as shown
in the following example:

$ curl \
 --request DELETE \
 --user kvaughan:bribery \
 http://opendj.example.com:8080/users/nbohr
{
 "_rev" : "000000003d912113",
 "schemas" : ["urn:scim:schemas:core:1.0"],
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 1212",
 "emailAddress" : "nbohr@example.com"
 },
 "_id" : "nbohr",
 "name" : {
 "familyName" : "Bohr",
 "givenName" : "Niels"
 },
 "userName" : "nbohr@example.com",
 "displayName" : "Niels Bohr"
}

2.6. Patching Resources (3.0)
OpenDJ lets you patch JSON resources, updating part of the resource rather than replacing it. For
example, you could change Babs Jensen's email address by issuing an HTTP PATCH request as in the
following example:

Performing RESTful Operations (3.0)
Patching Resources (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 57

$ curl \
 --user kvaughan:bribery \
 --request PATCH \
 --header "Content-Type: application/json" \
 --data '[
 {
 "operation": "replace",
 "field": "/contactInformation/emailAddress",
 "value": "babs@example.com"
 }
]' \
 http://opendj.example.com:8080/users/bjensen
{
 "_rev" : "00000000f3fdd370",
 "schemas" : ["urn:scim:schemas:core:1.0"],
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 1862",
 "emailAddress" : "babs@example.com"
 },
 "_id" : "bjensen",
 "name" : {
 "familyName" : "Jensen",
 "givenName" : "Barbara"
 },
 "userName" : "babs@example.com",
 "displayName" : "Barbara Jensen",
 "meta" : {
 "lastModified" : "2013-05-13T14:35:31Z"
 },
 "manager" : [{
 "_id" : "trigden",
 "displayName" : "Torrey Rigden"
 }]
}

Notice in the example that the data sent specifies the type of patch operation, the field to change,
and a value that depends on the field you change and on the operation. A single-valued field takes an
object, boolean, string, or number depending on its type, whereas a multi-valued field takes an array
of values. Getting the type wrong results in an error. Also notice that the patch data is itself an array.
This makes it possible to patch more than one part of the resource by using a set of patch operations
in the same request.

OpenDJ supports four types of patch operations:

add

The add operation ensures that the target field contains the value provided, creating parent fields
as necessary.

If the target field is single-valued and a value already exists, then that value is replaced with the
value you provide. Note that you do not get an error when adding a value to a single-valued field
that already has a value. A single-valued field is one whose value is not an array (an object, string,
boolean, or number).

Performing RESTful Operations (3.0)
Patching Resources (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 58

If the target field is multi-valued, then the array of values you provide is merged with the set of
values already in the resource. New values are added, and duplicate values are ignored. A multi-
valued field takes an array value.

remove

The remove operation ensures that the target field does not contain the value provided. If you do
not provide a value, the entire field is removed if it already exists.

If the target field is single-valued and a value is provided, then the provided value must match the
existing value to remove, otherwise the field is left unchanged.

If the target field is multi-valued, then values in the array you provide are removed from the
existing set of values.

replace

The replace operation removes existing values on the target field, and replaces them with the
values you provide. It is equivalent to performing a remove on the field, then an add with the
values you provide.

increment

The increment operation increments or decrements the value or values in the target field by the
amount you specify, which is positive to increment and negative to decrement. The target field
must take a number or a set of numbers. The value you provide must be a single number.

One key nuance in how a patch works with OpenDJ concerns multi-valued fields. Although JSON
resources represent multi-valued fields as arrays, OpenDJ treats those values as sets. In other words,
values in the field are unique, and the ordering of an array of values is not meaningful in the context
of patch operations. If you reference array values by index, OpenDJ returns an error.2

Perform patch operations as if arrays values were sets. The following example includes Barbara
Jensen in a group by adding her to the set of members:

$ curl \
 --user kvaughan:bribery \
 --request PATCH \
 --header "Content-Type: application/json" \
 --data '[
 {
 "operation": "add",
 "field": "/members",
 "value": [
 {
 "_id": "bjensen"

2 OpenDJ does allow use of a hyphen to add an element to a set. Include the hyphen as the last element of the field JSON
pointer path. For example: curl --user kvaughan:bribery --request PATCH --header "Content-Type: application/json" --data
'[{ "operation" : "add", "field" : "/members/-", "value" : { "_id" : "bjensen" } }]' http://opendj.example.com:8080/groups/Directory
%20Administrators.

Performing RESTful Operations (3.0)
Patching Resources (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 59

 }
]
 }
]' \
 http://opendj.example.com:8080/groups/Directory%20Administrators
{
 "_rev" : "00000000b70c881a",
 "schemas" : ["urn:scim:schemas:core:1.0"],
 "_id" : "Directory Administrators",
 "displayName" : "Directory Administrators",
 "meta" : {
 "lastModified" : "2013-05-13T16:40:23Z"
 },
 "members" : [{
 "_id" : "kvaughan",
 "displayName" : "Kirsten Vaughan"
 }, {
 "_id" : "rdaugherty",
 "displayName" : "Robert Daugherty"
 }, {
 "_id" : "bjensen",
 "displayName" : "Barbara Jensen"
 }, {
 "_id" : "hmiller",
 "displayName" : "Harry Miller"
 }]
}

The following example removes Barbara Jensen from the group:

$ curl \
 --user kvaughan:bribery \
 --request PATCH \
 --header "Content-Type: application/json" \
 --data '[
 {
 "operation": "remove",
 "field": "/members",
 "value": [
 {
 "_id": "bjensen"
 }
]
 }
]' \
 http://opendj.example.com:8080/groups/Directory%20Administrators
{
 "_rev" : "00000000e241797e",
 "schemas" : ["urn:scim:schemas:core:1.0"],
 "_id" : "Directory Administrators",
 "displayName" : "Directory Administrators",
 "meta" : {
 "lastModified" : "2013-05-13T16:40:55Z"
 },
 "members" : [{
 "_id" : "kvaughan",
 "displayName" : "Kirsten Vaughan"

Performing RESTful Operations (3.0)
Patching Resources (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 60

 }, {
 "_id" : "rdaugherty",
 "displayName" : "Robert Daugherty"
 }, {
 "_id" : "hmiller",
 "displayName" : "Harry Miller"
 }]
}

To change the value of more than one attribute in a patch operation, include multiple operations in
the body of the JSON patch, as shown in the following example:

$ curl \
 --user kvaughan:bribery \
 --request PATCH \
 --header "Content-Type: application/json" \
 --data '[
 {
 "operation": "replace",
 "field": "/contactInformation/telephoneNumber",
 "value": "+1 408 555 9999"
 },
 {
 "operation": "add",
 "field": "/contactInformation/emailAddress",
 "value": "barbara.jensen@example.com"
 }
]' \
 http://opendj.example.com:8080/users/bjensen
{
 "contactInformation": {
 "emailAddress": "barbara.jensen@example.com",
 "telephoneNumber": "+1 408 555 9999"
 },
 "displayName": "Barbara Jensen",
 "manager": [
 {
 "displayName": "Torrey Rigden",
 "_id": "trigden"
 }
],
 "meta": {
 "lastModified": "2015-04-07T10:19:41Z"
 },
 "schemas": [
 "urn:scim:schemas:core:1.0"
],
 "_rev": "00000000e68ef438",
 "name": {
 "givenName": "Barbara",
 "familyName": "Jensen"
 },
 "_id": "bjensen",
 "userName": "barbara.jensen@example.com"
}

Performing RESTful Operations (3.0)
Using Actions (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 61

Notice that for a multi-valued attribute, the value field takes an array, whereas the value field takes a
single value for a single-valued field. Also notice that for single-valued fields, an add operation has the
same effect as a replace operation.

You can use resource revision numbers in If-Match: revision headers to patch the resource only if the
resource matches a particular version, as shown in the following example:

$ curl \
 --user kvaughan:bribery \
 http://opendj.example.com:8080/users/bjensen?_fields=_rev
{"_id":"bjensen","_rev" : "revision"}

$ curl \
 --user kvaughan:bribery \
 --request PATCH \
 --header "If-Match: revision" \
 --header "Content-Type: application/json" \
 --data '[
 {
 "operation": "add",
 "field": "/contactInformation/emailAddress",
 "value": "babs@example.com"
 }
]' \
 http://opendj.example.com:8080/users/bjensen
{
 "_rev" : "00000000f946d377",
 "schemas" : ["urn:scim:schemas:core:1.0"],
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 1862",
 "emailAddress" : "babs@example.com"
 },
 "_id" : "bjensen",
 "name" : {
 "familyName" : "Jensen",
 "givenName" : "Barbara"
 },
 "userName" : "babs@example.com",
 "displayName" : "Barbara Jensen",
 "meta" : {
 "lastModified" : "2013-05-13T16:56:33Z"
 },
 "manager" : [{
 "_id" : "trigden",
 "displayName" : "Torrey Rigden"
 }]
}

The resource revision changes when the patch is successful.

2.7. Using Actions (3.0)
OpenDJ REST to LDAP implements the actions described in this section.

Performing RESTful Operations (3.0)
Using the Create Resource Action (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 62

2.7.1. Using the Create Resource Action (3.0)

OpenDJ implements an action that lets the server set the resource ID on creation. To use this action,
perform an HTTP POST with header Content-Type: application/json, _action=create in the query string,
and the JSON content of the resource.

The following example creates a new user entry:

$ curl \
 --request POST \
 --user kvaughan:bribery \
 --header "Content-Type: application/json" \
 --data '{
 "_id": "newuser",
 "contactInformation": {
 "telephoneNumber": "+1 408 555 1212",
 "emailAddress": "newuser@example.com"
 },
 "name": {
 "familyName": "New",
 "givenName": "User"
 },
 "displayName": "New User",
 "manager": [
 {
 "_id": "kvaughan",
 "displayName": "Kirsten Vaughan"
 }
]
 }' \
 http://opendj.example.com:8080/users?_action=create
{
 "_rev" : "0000000034a23ca7",
 "schemas" : ["urn:scim:schemas:core:1.0"],
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 1212",
 "emailAddress" : "newuser@example.com"
 },
 "_id" : "newuser",
 "name" : {
 "familyName" : "New",
 "givenName" : "User"
 },
 "userName" : "newuser@example.com",
 "displayName" : "New User",
 "meta" : {
 "created" : "2013-04-11T11:19:08Z"
 },
 "manager" : [{
 "_id" : "kvaughan",
 "displayName" : "Kirsten Vaughan"
 }]
}

Performing RESTful Operations (3.0)
Using the Password Modify Action (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 63

2.7.2. Using the Password Modify Action (3.0)

OpenDJ implements an action for resetting and changing passwords.

Note

This section describes the password modify action available in OpenDJ 3.0. In OpenDJ 3.5, this action was split
into separate actions for modifying passwords and resetting passwords. For details, see "OpenDJ Compatibility"
in the Release Notes.

This action requires HTTPS to avoid sending passwords over insecure connections. Before trying the
examples that follow, enable HTTPS on the HTTP connection handler as described in "RESTful Client
Access (3.0)" in the Administration Guide. Notice that the following examples use the exported server
certificate, server-cert.pem, generated in that procedure. If the connection handler uses a certificate
signed by a well-known CA, then you can omit the --cacert option.

To use this action, perform an HTTP POST with header Content-Type: application/json,
_action=passwordModify in the query string, and the password reset information in JSON format as the
POST data.

The JSON can include the following fields:

oldPassword

The value of this field is the current password as a UTF-8 string.

Users provide this value when changing their own passwords.

Administrators can omit this field when resetting another user's password.

newPassword

The value of this field is the new password as a UTF-8 string.

If this field is omitted, OpenDJ returns a generated password on success.

The following example demonstrates a user changing their own password. On success, the HTTP
status code is 200 OK, and the response body is an empty JSON resource:

$ curl \
 --request POST \
 --cacert server-cert.pem \
 --user bjensen:hifalutin \
 --header "Content-Type: application/json" \
 --data '{"oldPassword": "hifalutin", "newPassword": "password"}' \
 https://opendj.example.com:8443/users/bjensen?_action=passwordModify
{}

Performing RESTful Operations (3.0)
Querying Resource Collections (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 64

The following example demonstrates an administrator changing a user's password. Before trying
this example, make sure the password administrator user has been given the password-reset privilege
as shown in "To Add Privileges on an Individual Entry" in the Administration Guide. Otherwise, the
password administrator has insufficient access. On success, the HTTP status code is 200 OK, and the
response body is a JSON resource with a generatedPassword containing the new password:

$ curl \
 --request POST \
 --cacert server-cert.pem \
 --user kvaughan:bribery \
 --header "Content-Type: application/json" \
 --data '{}' \
 https://opendj.example.com:8443/users/bjensen?_action=passwordModify
{"generatedPassword":"qno66vyz"}

The password administrator communicates the new, generated password to the user.

2.8. Querying Resource Collections (3.0)
To query resource collections, perform an HTTP GET with a _queryFilter=expression parameter in the
query string. For details about the query filter expression, see "Query".

The _queryId, _sortKeys, and _totalPagedResultsPolicy parameters described in "Query" are not used in
OpenDJ software at present.

The following table shows some LDAP search filters with corresponding examples of query filter
expressions.

LDAP Search and REST Query Filters

LDAP Filter REST Filter
(&) _queryFilter=true
(uid=*) _queryFilter=_id+pr
(uid=bjensen) _queryFilter=_id+eq+'bjensen'
(uid=*jensen*) _queryFilter=_id+co+'jensen'
(uid=jensen*) _queryFilter=_id+sw+'jensen'
(&(uid=*jensen*)(cn=babs*)) _queryFilter=(_id+co+'jensen'+and+displayName

+sw+'babs')
(|(uid=*jensen*)(cn=sam*)) _queryFilter=(_id+co+'jensen'+or+displayName+sw

+'sam')
(!(uid=*jensen*)) _queryFilter=!(_id+co+'jensen')
(uid<=jensen) _queryFilter=_id+le+'jensen'

Performing RESTful Operations (3.0)
Querying Resource Collections (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 65

LDAP Filter REST Filter
(uid>=jensen) _queryFilter=_id+ge+'jensen'

For query operations, the filter expression is constructed from the following building blocks. Make
sure you URL-encode the filter expressions, which are shown here without URL-encoding to make
them easier to read.

In filter expressions, the simplest json-pointer is a field of the JSON resource, such as userName or id. A
json-pointer can also point to nested elements as described in the JSON Pointer Internet-Draft:

Comparison expressions

Build filters using the following comparison expressions:

json-pointer eq json-value

Matches when the pointer equals the value, as in the following example:

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/users?_queryFilter=userName+eq+'bjensen@example.com'"
{
 "result" : [{
 "_id" : "bjensen",
 "_rev" : "00000000cf71e05d",
 "schemas" : ["urn:scim:schemas:core:1.0"],
 "userName" : "bjensen@example.com",
 "displayName" : "Barbara Jensen",
 "name" : {
 "givenName" : "Barbara",
 "familyName" : "Jensen"
 },
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 9999",
 "emailAddress" : "bjensen@example.com"
 },
 "meta" : {
 "lastModified" : "2015-09-23T14:09:13Z"
 },
 "manager" : [{
 "_id" : "trigden",
 "displayName" : "Torrey Rigden"
 }]
 }],
 "resultCount" : 1,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

json-pointer co json-value

Matches when the pointer contains the value, as in the following example:

http://tools.ietf.org/html/draft-ietf-appsawg-json-pointer

Performing RESTful Operations (3.0)
Querying Resource Collections (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 66

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/users?_queryFilter=userName+co+'jensen'&_fields=userName"
{
 "result" : [{
 "_id" : "ajensen",
 "_rev" : "00000000c899a6da",
 "userName" : "ajensen@example.com"
 }, {
 "_id" : "bjensen",
 "_rev" : "000000001431e1ef",
 "userName" : "bjensen@example.com"
 }, {
 "_id" : "gjensen",
 "_rev" : "00000000cba2a3c3",
 "userName" : "gjensen@example.com"
 }, {
 "_id" : "jjensen",
 "_rev" : "0000000046f5a1a2",
 "userName" : "jjensen@example.com"
 }, {
 "_id" : "kjensen",
 "_rev" : "00000000a9e0a59d",
 "userName" : "kjensen@example.com"
 }, {
 "_id" : "rjensen",
 "_rev" : "00000000f54ea4d2",
 "userName" : "rjensen@example.com"
 }, {
 "_id" : "tjensen",
 "_rev" : "0000000095d1a096",
 "userName" : "tjensen@example.com"
 }],
 "resultCount" : 7,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

json-pointer sw json-value

Matches when the pointer starts with the value, as in the following example:

Performing RESTful Operations (3.0)
Querying Resource Collections (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 67

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/users?_queryFilter=userName+sw+'ab'&_fields=userName"
{
 "result" : [{
 "_id" : "abarnes",
 "_rev" : "00000000b84ba3b0",
 "userName" : "abarnes@example.com"
 }, {
 "_id" : "abergin",
 "_rev" : "0000000011db996e",
 "userName" : "abergin@example.com"
 }],
 "resultCount" : 2,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

json-pointer lt json-value

Matches when the pointer is less than the value, as in the following example:

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/users?_queryFilter=userName+lt+'ac'&_fields=userName"
{
 "result" : [{
 "_id" : "abarnes",
 "_rev" : "00000000b84ba3b0",
 "userName" : "abarnes@example.com"
 }, {
 "_id" : "abergin",
 "_rev" : "0000000011db996e",
 "userName" : "abergin@example.com"
 }],
 "resultCount" : 2,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

json-pointer le json-value

Matches when the pointer is less than or equal to the value, as in the following example:

Performing RESTful Operations (3.0)
Querying Resource Collections (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 68

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/users?_queryFilter=userName+le+'ad'&_fields=userName"
{
 "result" : [{
 "_id" : "abarnes",
 "_rev" : "00000000b84ba3b0",
 "userName" : "abarnes@example.com"
 }, {
 "_id" : "abergin",
 "_rev" : "0000000011db996e",
 "userName" : "abergin@example.com"
 }, {
 "_id" : "achassin",
 "_rev" : "00000000cddca3ec",
 "userName" : "achassin@example.com"
 }],
 "resultCount" : 3,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

json-pointer gt json-value

Matches when the pointer is greater than the value, as in the following example:

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/users?_queryFilter=userName+gt+'tt'&_fields=userName"
{
 "result" : [{
 "_id" : "ttully",
 "_rev" : "00000000d07da286",
 "userName" : "ttully@example.com"
 }, {
 "_id" : "tward",
 "_rev" : "0000000083419fa3",
 "userName" : "tward@example.com"
 }, {
 "_id" : "wlutz",
 "_rev" : "00000000a4f29dfa",
 "userName" : "wlutz@example.com"
 }],
 "resultCount" : 3,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

Performing RESTful Operations (3.0)
Querying Resource Collections (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 69

json-pointer ge json-value

Matches when the pointer is greater than or equal to the value, as in the following example:

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/users?_queryFilter=userName+ge+'tw'&_fields=userName"
{
 "result" : [{
 "_id" : "tward",
 "_rev" : "0000000083419fa3",
 "userName" : "tward@example.com"
 }, {
 "_id" : "wlutz",
 "_rev" : "00000000a4f29dfa",
 "userName" : "wlutz@example.com"
 }],
 "resultCount" : 2,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

Presence expression

json-pointer pr matches any resource on which the json-pointer is present, as in the following
example:

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/users?_queryFilter=userName+pr&_fields=userName"
{
 "result" : [{
 "_id" : "abarnes",
 "_rev" : "00000000b84ba3b0",
 "userName" : "abarnes@example.com"
 }, ... {
 "_id" : "newuser",
 "_rev" : "00000000fca77472",
 "userName" : "newuser@example.com"
 }],
 "resultCount" : 152,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

Literal expressions

true matches any resource in the collection.

Performing RESTful Operations (3.0)
Querying Resource Collections (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 70

false matches no resource in the collection.

In other words, you can list all resources in a collection as in the following example:

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/groups?_queryFilter=true&_fields=displayName"
{
 "result" : [{
 "_id" : "Directory Administrators",
 "_rev" : "0000000060b85b8b",
 "displayName" : "Directory Administrators"
 }, {
 "_id" : "Accounting Managers",
 "_rev" : "0000000053e97a0a",
 "displayName" : "Accounting Managers"
 }, {
 "_id" : "HR Managers",
 "_rev" : "000000005ff5730a",
 "displayName" : "HR Managers"
 }, {
 "_id" : "PD Managers",
 "_rev" : "000000001e1e75a0",
 "displayName" : "PD Managers"
 }, {
 "_id" : "QA Managers",
 "_rev" : "00000000e0747323",
 "displayName" : "QA Managers"
 }],
 "resultCount" : 5,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

Complex expressions

Combine expressions using boolean operators and, or, and ! (not), and by using parentheses
(expression) with group expressions. The following example queries resources with last name
Jensen and manager name starting with Bar:

Performing RESTful Operations (3.0)
Querying Resource Collections (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 71

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/users?_queryFilter=\
(userName+co+'jensen'+and+manager/displayName+sw+'Sam')&_fields=displayName"
{
 "result" : [{
 "_id" : "jjensen",
 "_rev" : "000000003ef3a150",
 "displayName" : "Jody Jensen"
 }, {
 "_id" : "tjensen",
 "_rev" : "000000009367a0b6",
 "displayName" : "Ted Jensen"
 }],
 "resultCount" : 2,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

Notice that the filters use the JSON pointers name/familyName and manager/displayName to identify the
fields nested inside the name and manager objects.

You can page through search results using the following query string parameters that are further
described in "Query":

• _pagedResultsCookie=string

• _pagedResultsOffset=integer

• _pageSize=integer

The following example demonstrates how paged results are used:

Request five results per page, and retrieve the first page.
$ curl \
 --user bjensen:hifalutin \
 "http://opendj.example.com:8080/users?_queryFilter=true&_fields=userName&_pageSize=5"
{
 "result" : [{
 "_id" : "abarnes",
 "_rev" : "00000000b589a3d4",
 "userName" : "abarnes@example.com"
 }, {
 "_id" : "abergin",
 "_rev" : "00000000131199bd",
 "userName" : "abergin@example.com"
 }, {
 "_id" : "achassin",
 "_rev" : "00000000aaf8a2ac",
 "userName" : "achassin@example.com"
 }, {
 "_id" : "ahall",

Performing RESTful Operations (3.0)
Querying Resource Collections (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 72

 "_rev" : "0000000023e19cdc",
 "userName" : "ahall@example.com"
 }, {
 "_id" : "ahel",
 "_rev" : "0000000033309a22",
 "userName" : "ahel@example.com"
 }],
 "resultCount" : 5,
 "pagedResultsCookie" : "AAAAAAAAAA8=",
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

Provide the cookie to request the next five results.
$ curl \
 --user bjensen:hifalutin \
 "http://opendj.example.com:8080/users?_queryFilter=true&_fields=userName&_pageSize=5\
&_pagedResultsCookie=AAAAAAAAAA8="
{
 "result" : [{
 "_id" : "ahunter",
 "_rev" : "00000000ec1aa3bb",
 "userName" : "ahunter@example.com"
 }, {
 "_id" : "ajensen",
 "_rev" : "00000000d4b9a728",
 "userName" : "ajensen@example.com"
 }, {
 "_id" : "aknutson",
 "_rev" : "000000002135ab65",
 "userName" : "aknutson@example.com"
 }, {
 "_id" : "alangdon",
 "_rev" : "000000009bc5a8e3",
 "userName" : "alangdon@example.com"
 }, {
 "_id" : "alutz",
 "_rev" : "0000000060b9a4bd",
 "userName" : "alutz@example.com"
 }],
 "resultCount" : 5,
 "pagedResultsCookie" : "AAAAAAAAABQ=",
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

Request the tenth page of five results.
$ curl \
 --user bjensen:hifalutin \
 "http://opendj.example.com:8080/users?_queryFilter=true&_fields=userName\
&_pageSize=5&_pagedResultsOffset=10"
{
 "result" : [{
 "_id" : "ewalker",
 "_rev" : "00000000848ea196",
 "userName" : "ewalker@example.com"
 }, {

Performing RESTful Operations (3.0)
Querying Resource Collections (3.0)

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 73

 "_id" : "eward",
 "_rev" : "000000004ca19dc5",
 "userName" : "eward@example.com"
 }, {
 "_id" : "falbers",
 "_rev" : "0000000026d9a211",
 "userName" : "falbers@example.com"
 }, {
 "_id" : "gfarmer",
 "_rev" : "00000000e1bda2b1",
 "userName" : "gfarmer@example.com"
 }, {
 "_id" : "gjensen",
 "_rev" : "00000000ce6fa415",
 "userName" : "gjensen@example.com"
 }],
 "resultCount" : 5,
 "pagedResultsCookie" : "AAAAAAAAAEE=",
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

Notice the following features of the responses:

• "remainingPagedResults" : -1 means that the number of remaining results is unknown.

• "totalPagedResults" : -1 means that the total number of paged results is unknown.

• "totalPagedResultsPolicy" : "NONE" means that result counting is disabled.

Performing LDAP Operations
Command-Line Tools

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 74

Chapter 3

Performing LDAP Operations
OpenDJ directory server includes the OpenDJ control panel browser and also command-line tools for
performing LDAP operations. In this chapter, you will learn how to use the command-line tools to
perform LDAP operations.

3.1. Command-Line Tools
Before you try the examples in this guide, set your PATH to include the OpenDJ directory server tools.
The location of the tools depends on the operating environment and on the packages used to install
OpenDJ. "Paths To Administration Tools" indicates where to find the tools.

Paths To Administration Tools

OpenDJ running on... OpenDJ installed from... Default path to tools...
Apple Mac OS X, Linux
distributions, Oracle Solaris

.zip /path/to/opendj/bin

Linux distributions .deb, .rpm /opt/opendj/bin

Microsoft Windows .zip C:\path\to\opendj\bat

Oracle Solaris SVR4 /usr/opendj/bin

You find the installation and upgrade tools, setup, upgrade, and uninstall, in the parent directory of
the other tools, as these tools are not used for everyday administration. For example, if the path to
most tools is /path/to/opendj/bin you can find these tools in /path/to/opendj. For instructions on how to
use the installation and upgrade tools, see the Installation Guide.

All OpenDJ command-line tools take the --help option.

All commands call Java programs and therefore involve starting a JVM.

"Tools and Server Constraints" indicates the constraints, if any, that apply when using a command-
line tool with a directory server.

Tools and Server Constraints

Commands Constraints
backendstat
create-rc-script

These commands must be used with the local OpenDJ
directory server in the same installation as the tools.

Performing LDAP Operations
Command-Line Tools

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 75

Commands Constraints
dsjavaproperties
encode-password
list-backends
setup
start-ds
upgrade
windows-service

These commands are not useful with non-OpenDJ
directory servers.

control-panel
dsconfig
export-ldif
import-ldif
manage-account
manage-tasks
rebuild-index
restore
status
stop-ds
uninstall
verify-index

These commands must be used with OpenDJ directory
server having the same version as the command.

These commands are not useful with non-OpenDJ
directory servers.

dsreplication With one exception, this command can be used
with current and previous OpenDJ directory server
versions. The one exception is the dsreplication reset-
change-number subcommand, which requires OpenDJ
directory server version 3.0.0 or later.

This commands is not useful with other types of
directory servers.

make-ldif This command depends on template files. The
template files can make use of configuration files
installed with OpenDJ directory server under config/
MakeLDIF/.

The LDIF output can be used with OpenDJ and other
directory servers.

base64
ldapcompare
ldapdelete
ldapmodify
ldappasswordmodify
ldapsearch
ldif-diff
ldifmodify
ldifsearch

These commands can be used independently of
OpenDJ directory server, and so are not tied to a
specific version.

The following list uses the UNIX names for the commands. On Windows all command-line tools have
the extension .bat:

Performing LDAP Operations
Command-Line Tools

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 76

backendstat

Debug databases for pluggable backends.

For details see backendstat(1) in the Reference.

backup

Back up or schedule backup of directory data.

For details see backup(1) in the Reference.

base64

Encode and decode data in base64 format.

Base64-encoding represents binary data in ASCII, and can be used to encode character strings in
LDIF, for example.

For details see base64(1) in the Reference.

create-rc-script (UNIX)

Generate a script you can use to start, stop, and restart the server either directly or at system
boot and shutdown. Use create-rc-script -f script-file.

For details see create-rc-script(1) in the Reference.

dsconfig

The dsconfig command is the primary command-line tool for viewing and editing an OpenDJ
configuration. When started without arguments, dsconfig prompts you for administration
connection information. Once connected it presents you with a menu-driven interface to the
server configuration.

When you pass connection information, subcommands, and additional options to dsconfig, the
command runs in script mode and so is not interactive.

You can prepare dsconfig batch scripts by running the command with the --commandFilePath option
in interactive mode, then reading from the batch file with the --batchFilePath option in script
mode. Batch files can be useful when you have many dsconfig commands to run and want to avoid
starting the JVM for each command.

Alternatively, you can read commands from standard input by using the --batch option.

For details see dsconfig(1) in the Reference.

dsjavaproperties

Apply changes you make to opendj/config/java.properties, which sets Java runtime options.

For details see dsjavaproperties(1) in the Reference.

Performing LDAP Operations
Command-Line Tools

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 77

dsreplication

Configure data replication between directory servers to keep their contents in sync.

For details see dsreplication(1) in the Reference.

encode-password

Encode a cleartext password according to one of the available storage schemes.

For details see encode-password(1) in the Reference.

export-ldif

Export directory data to LDIF, the standard, portable, text-based representation of directory
content.

For details see export-ldif(1) in the Reference.

import-ldif

Load LDIF content into the directory, overwriting existing data. It cannot be used to append data
to the backend database.

For details see import-ldif(1) in the Reference.

ldapcompare

Compare the attribute values you specify with those stored on entries in the directory.

For details see ldapcompare(1) in the Reference.

ldapdelete

Delete one entry or an entire branch of subordinate entries in the directory.

For details see ldapdelete(1) in the Reference.

ldapmodify

Modify the specified attribute values for the specified entries.

Use the ldapmodify command with the -a option to add new entries.

For details see ldapmodify(1) in the Reference.

ldappasswordmodify

Modify user passwords.

For details see ldappasswordmodify(1) in the Reference.

Performing LDAP Operations
Command-Line Tools

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 78

ldapsearch

Search a branch of directory data for entries that match the LDAP filter you specify.

For details see ldapsearch(1) in the Reference.

ldif-diff

Display differences between two LDIF files, with the resulting output having LDIF format.

For details see ldif-diff(1) in the Reference.

ldifmodify

Similar to the ldapmodify command, modify specified attribute values for specified entries in an
LDIF file.

For details see ldifmodify(1) in the Reference.

ldifsearch

Similar to the ldapsearch command, search a branch of data in LDIF for entries matching the
LDAP filter you specify.

For details see ldifsearch(1) in the Reference.

list-backends

List backends and base DNs served by OpenDJ directory server.

For details see list-backends(1) in the Reference.

make-ldif

Generate directory data in LDIF based on templates that define how the data should appear.

The make-ldif command is designed to help generate test data that mimics data expected in
production, but without compromising real, potentially private information.

For details see make-ldif(1) in the Reference.

manage-account

Lock and unlock user accounts, and view and manipulate password policy state information.

For details see manage-account(1) in the Reference.

manage-tasks

View information about tasks scheduled to run in the server, and cancel specified tasks.

For details see manage-tasks(1) in the Reference.

Performing LDAP Operations
Searching the Directory

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 79

rebuild-index

Rebuild an index stored in an indexed backend.

For details see rebuild-index(1) in the Reference.

restore

Restore data from backup.

For details see restore(1) in the Reference.

start-ds

Start OpenDJ directory server.

For details see start-ds(1) in the Reference.

status

Display information about the server.

For details see status(1) in the Reference.

stop-ds

Stop OpenDJ directory server.

For details see stop-ds(1) in the Reference.

verify-index

Verify that an index stored in an indexed backend is not corrupt.

For details see verify-index(1) in the Reference.

windows-service (Windows)

Register OpenDJ as a Windows Service.

For details see windows-service(1) in the Reference.

3.2. Searching the Directory
Searching the directory is akin to searching for a phone number in a paper phone book. You can look
up a phone number because you know the last name of a subscriber's entry. In other words, you use
the value of one attribute of the entry to find entries that have another attribute you want.

Whereas a paper phone book has only one index (alphabetical order by name), the directory has
many indexes. When performing a search, you always specify which index to use, by specifying which
attribute(s) you are using to lookup entries.

Performing LDAP Operations
Searching the Directory

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 80

Your paper phone book might be divided into white pages for residential subscribers and yellow
pages for businesses. If you are looking up an individual's phone number, you limit your search to the
white pages. Directory services divide entries in various ways, often to separate organizations, and
to separate groups from user entries from printers, for example, but potentially in other ways. When
searching you therefore also specify where in the directory to search.

The ldapsearch command, described in ldapsearch(1) in the Reference, thus takes at minimum a
search base DN option and an LDAP filter. The search base DN identifies where in the directory to
search for entries that match the filter. For example, if you are looking for printers, you might specify
the base DN as ou=Printers,dc=example,dc=com. Perhaps you are visiting the GNB00 office and are looking
for a printer as shown in the following example:

$ ldapsearch --baseDN ou=Printers,dc=example,dc=com "(printerLocation=GNB00)"

In the example, the LDAP filter indicates to the directory that you want to look up printer entries
where the printerLocation attribute is equal to GNB00.

You also specify the host and port to access directory services, and the type of protocol to use (for
example, LDAP/SSL, or StartTLS to protect communication). If the directory service does not allow
anonymous access to the data you want to search, you also identify who is performing the search and
provide their credentials, such as a password or certificate. Finally, you can specify a list of attributes
to return. If you do not specify attributes, then the search returns all user attributes for the entry.

Review the following examples in this section to get a sense of how searches work:

• "Search: Using Simple Filters"

• "Search: Using Complex Filters"

• "Search: Return Operational Attributes"

• "Search: Returning Attributes for an Object Class"

• "Search: Finding an Approximate Match"

• "Search: Escaping Search Filter Characters"

• "Search: Listing Active Accounts"

• "Search: Performing a Persistent Search"

• "Search: Using Language Subtypes"

Search: Using Simple Filters

The following example searches for entries with user IDs (uid) containing jensen, returning only DNs
and user ID values:

Performing LDAP Operations
Searching the Directory

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 81

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(uid=*jensen*)" uid
dn: uid=ajensen,ou=People,dc=example,dc=com
uid: ajensen

dn: uid=bjensen,ou=People,dc=example,dc=com
uid: bjensen

dn: uid=gjensen,ou=People,dc=example,dc=com
uid: gjensen

dn: uid=jjensen,ou=People,dc=example,dc=com
uid: jjensen

dn: uid=kjensen,ou=People,dc=example,dc=com
uid: kjensen

dn: uid=rjensen,ou=People,dc=example,dc=com
uid: rjensen

dn: uid=tjensen,ou=People,dc=example,dc=com
uid: tjensen

Result Code: 0 (Success)

Search: Using Complex Filters

The following example returns entries with uid containing jensen for users located in San Francisco:

Performing LDAP Operations
Searching the Directory

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 82

$ ldapsearch \
 --port 1389 \
 --baseDN ou=people,dc=example,dc=com \
 "(&(uid=*jensen*)(l=San Francisco))" \
 @person
dn: uid=bjensen,ou=People,dc=example,dc=com
sn: Jensen
cn: Barbara Jensen
cn: Babs Jensen
objectClass: top
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: organizationalPerson
objectClass: person
description: Original description
telephoneNumber: +1 408 555 9999

dn: uid=rjensen,ou=People,dc=example,dc=com
sn: Jensen
cn: Richard Jensen
objectClass: top
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: organizationalPerson
objectClass: person
telephoneNumber: +1 408 555 5957

The command returns the attributes associated with the person object class.

Complex filters can use both "and" syntax, (&(filtercomp)(filtercomp)), and "or" syntax, (|(filtercomp)
(filtercomp)).

Search: Return Operational Attributes

Use + in the attribute list after the filter to return all operational attributes, as in the following
example:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com uid=bjensen +
dn: uid=bjensen,ou=People,dc=example,dc=com
modifyTimestamp: 20160608165444Z
modifiersName: uid=kvaughan,ou=People,dc=example,dc=com
entryUUID: 887732e8-3db2-31bb-b329-20cd6fcecc05
subschemaSubentry: cn=schema
hasSubordinates: false
numSubordinates: 0
etag: 0000000086c6e3b5
structuralObjectClass: inetOrgPerson
entryDN: uid=bjensen,ou=People,dc=example,dc=com

Alternatively, specify operational attributes by name.

Performing LDAP Operations
Searching the Directory

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 83

Search: Returning Attributes for an Object Class

Use @objectClass in the attribute list after the filter to return the attributes associated with a
particular object class as in the following example:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com uid=bjensen @person
dn: uid=bjensen,ou=People,dc=example,dc=com
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: top
cn: Barbara Jensen
cn: Babs Jensen
telephoneNumber: +1 408 555 1862
sn: Jensen

Search: Finding an Approximate Match

OpenDJ directory server supports searches looking for an approximate match of the filter.
Approximate match searches use the ~= comparison operator, described in "LDAP Filter Operators".
They rely on approximate type indexes, which are configured as shown in "Configure an Approximate
Index" in the Administration Guide.

The following example configures an approximate match index for the surname (sn) attribute, and
then rebuilds the index:

$ dsconfig \
 set-backend-index-prop \
 --port 4444 \
 --hostname opendj.example.com \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --backend-name userRoot \
 --index-name sn \
 --set index-type:approximate \
 --trustAll \
 --no-prompt

$ rebuild-index \
 --port 4444 \
 --hostname opendj.example.com \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --baseDN dc=example,dc=com \
 --index sn \
 --start 0 \
 --trustAll

Performing LDAP Operations
Searching the Directory

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 84

Once the index is built, it is ready for use in searches. The following example shows a search using
the approximate comparison operator:

$ ldapsearch \
 --port 1389 \
 --baseDN dc=example,dc=com \
 "(sn~=jansen)" \
 sn
dn: uid=ajensen,ou=People,dc=example,dc=com
sn: Jensen

dn: uid=bjense2,ou=People,dc=example,dc=com
sn: Jensen

dn: uid=bjensen,ou=People,dc=example,dc=com
sn: Jensen

dn: uid=ejohnson,ou=People,dc=example,dc=com
sn: Johnson

dn: uid=gjensen,ou=People,dc=example,dc=com
sn: Jensen

dn: uid=jjensen,ou=People,dc=example,dc=com
sn: Jensen

dn: uid=kjensen,ou=People,dc=example,dc=com
sn: Jensen

dn: uid=rjense2,ou=People,dc=example,dc=com
sn: Jensen

dn: uid=rjensen,ou=People,dc=example,dc=com
sn: Jensen

dn: uid=tjensen,ou=People,dc=example,dc=com
sn: Jensen

Notice that jansen matches Jensen and Johnson, for example.

Search: Escaping Search Filter Characters

RFC 4515: Lightweight Directory Access Protocol (LDAP): String Representation of Search Filters
mentions a number of characters that you must handle with care when using them in search filters.

For a filter like (attr=value), the following list indicates characters that you must replace with a
backslash (\) followed by two hexadecimal digits when using them as part of the value string:

• Replace * with \2a.

• Replace (with \28.

• Replace) with \29.

http://tools.ietf.org/html/rfc4515

Performing LDAP Operations
Searching the Directory

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 85

• Replace \ with \5c.

• Replace NUL (0x00) with \00.

The following example shows a filter with escaped characters matching an actual value:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com \
 "(description=\28*\5c*\2a\29)" description
dn: uid=bjensen,ou=People,dc=example,dc=com
description: (A \great\ description*)

Search: Listing Active Accounts

OpenDJ directory server supports extensible matching rules, meaning you can pass in filters
specifying a matching rule OID that extends your search beyond what you accomplish with standard
LDAP.

OpenDJ directory server supports three generalized time-based matching rules described in
"Configure an Extensible Match Index" in the Administration Guide:

• A partial date and time matching rule

• A greater-than relative time matching rule

• A less-than relative time matching rule

You can use these matching rules to list, for example, all users who have authenticated recently.

First set up an attribute to store a last login timestamp. You can do this by adding a schema file for
the attribute as in the following example:

$ ldapmodify \
 --port 1389 \
 --hostname opendj.example.com \
 --bindDN "cn=Directory Manager" \
 --bindPassword password
dn: cn=schema
changetype: modify
add: attributeTypes
attributeTypes: (lastLoginTime-oid
 NAME 'lastLoginTime'
 DESC 'Last time the user logged in'
 EQUALITY generalizedTimeMatch
 ORDERING generalizedTimeOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
 SINGLE-VALUE
 NO-USER-MODIFICATION
 USAGE directoryOperation
 X-ORIGIN 'OpenDJ example documentation')

Processing MODIFY request for cn=schema
MODIFY operation successful for DN cn=schema

Performing LDAP Operations
Searching the Directory

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 86

Configure the applicable password policy to write the last login timestamp when a user authenticates.
The following command configures the default password policy to write the timestamp in generalized
time format to the lastLoginTime operational attribute on the user's entry:

$ dsconfig \
 set-password-policy-prop \
 --port 4444 \
 --hostname opendj.example.com \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --policy-name "Default Password Policy" \
 --set last-login-time-attribute:lastLoginTime \
 --set last-login-time-format:"yyyyMMddHH'Z'" \
 --trustAll \
 --no-prompt

Configure an extensible matching rule index for time-based searches on the lastLoginTime attribute:

$ dsconfig \
 create-backend-index \
 --port 4444 \
 --hostname opendj.example.com \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --backend-name userRoot \
 --set index-type:extensible \
 --set index-extensible-matching-rule:1.3.6.1.4.1.26027.1.4.5 \
 --set index-extensible-matching-rule:1.3.6.1.4.1.26027.1.4.6 \
 --set index-extensible-matching-rule:1.3.6.1.4.1.26027.1.4.7 \
 --index-name lastLoginTime \
 --trustAll \
 --no-prompt

Make sure you have some users who have authenticated recently:

Performing LDAP Operations
Searching the Directory

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 87

$ ldapsearch \
 --port 1389 \
 --bindDN uid=bjensen,ou=people,dc=example,dc=com \
 --bindPassword hifalutin \
 --baseDN dc=example,dc=com \
 "(uid=bjensen)" \
 sn
dn: uid=bjensen,ou=People,dc=example,dc=com
sn: Jensen

$ ldapsearch \
 --port 1389 \
 --bindDN uid=kvaughan,ou=people,dc=example,dc=com \
 --bindPassword bribery \
 --baseDN dc=example,dc=com \
 "(uid=bjensen)" \
 sn
dn: uid=bjensen,ou=People,dc=example,dc=com
sn: Jensen

The following search returns users who have authenticated in the last three months (13 weeks)
according to the last login timestamps:

$ ldapsearch \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --baseDN dc=example,dc=com \
 "(lastLoginTime:1.3.6.1.4.1.26027.1.4.6:=13w)" \
 mail
dn: uid=bjensen,ou=People,dc=example,dc=com
mail: bjensen@example.com

dn: uid=kvaughan,ou=People,dc=example,dc=com
mail: kvaughan@example.com

The following search returns users who have authenticated in May 2016 according to the last login
timestamps:

$ ldapsearch \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --baseDN dc=example,dc=com \
 "(lastLoginTime:1.3.6.1.4.1.26027.1.4.7:=2016Y05M)" \
 mail
dn: uid=bjensen,ou=People,dc=example,dc=com
mail: bjensen@example.com

dn: uid=kvaughan,ou=People,dc=example,dc=com
mail: kvaughan@example.com

Performing LDAP Operations
Searching the Directory

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 88

Search: Performing a Persistent Search

OpenDJ directory server and other LDAP servers support the Internet-Draft for Persistent Search:
A Simple LDAP Change Notification Mechanism. A persistent search is like a search that never
stops. Every time there is a change to an entry matching the search criteria, the search returns an
additional response. Applications can also get change notifications by using OpenDJ directory server's
external change log as described in "Change Notification For Your Applications" in the Administration
Guide.

In order to use the persistent search control with OpenDJ directory server, the user performing
the search must be given access to use the control. Persistent searches consume server resources,
so directory administrators often limit permission to perform persistent searches to specific
applications. If the user does not have access to use the control, the request to use the control causes
the search operation to fail with a message such as the following:

SEARCH operation failed
Result Code: 12 (Unavailable Critical Extension)
Additional Information: The request control with Object Identifier (OID)
 "2.16.840.1.113730.3.4.3" cannot be used due to insufficient access rights

An example of the ACI required is shown in "ACI Required For LDAP Operations" in the
Administration Guide. The following command adds the permission for My App to perform persistent
searches under dc=example,dc=com:

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password
dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetcontrol = "2.16.840.1.113730.3.4.3")(version 3.0;acl
 "Request Persistent Search"; allow (read)(userdn =
 "ldap:///cn=My App,ou=Apps,dc=example,dc=com");)

Processing MODIFY request for dc=example,dc=com
MODIFY operation successful for DN dc=example,dc=com

To perform a persistent search, use the persistent search control, and optionally specify the type
of changes for which to receive notifications, whether the server should return existing entries as
well as changes, and whether to return additional entry change information with each notification.
The additional entry change information returned is that of the entry change notification response
control defined in the Internet-Draft. The response control indicates what type of change led to
the notification, what the previous DN was if the change was a modify DN operation, and the
change number if the LDAP server supports change numbers. For details about the options, see the
description for the --persistentSearch option in ldapsearch(1) in the Reference.

http://tools.ietf.org/html/draft-ietf-ldapext-psearch
http://tools.ietf.org/html/draft-ietf-ldapext-psearch

Performing LDAP Operations
Searching the Directory

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 89

The following example initiates a persistent search, indicating that notifications should be sent for
all update operations, only notifications about changed entries should be returned, and no additional
information should be returned:

$ ldapsearch \
 --port 1389 \
 --bindDN "cn=My App,ou=Apps,dc=example,dc=com" \
 --bindPassword password \
 --baseDN dc=example,dc=com \
 --persistentSearch ps:all:true:false \
 "(&)"

Notice the search filter, (&), which is always true, meaning that it matches all entries.

The following modification:

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=People,dc=example,dc=com" \
 --bindPassword bribery
dn: uid=bjensen,ou=People,dc=example,dc=com
changetype: modify
replace: description
description: Updated description
-
add: description
description: Additional description

Processing MODIFY request for uid=bjensen,ou=People,dc=example,dc=com
MODIFY operation successful for DN uid=bjensen,ou=People,dc=example,dc=com

Results in the following response to the persistent search:
dn: uid=bjensen,ou=People,dc=example,dc=com
objectClass: posixAccount
objectClass: top
objectClass: organizationalPerson
objectClass: person
objectClass: inetOrgPerson
mail: bjensen@example.com
roomNumber: 0209
preferredLanguage: en, ko;q=0.8
manager: uid=trigden, ou=People, dc=example,dc=com
ou: Product Development
ou: People
givenName: Barbara
telephoneNumber: +1 408 555 1862
sn: Jensen
cn: Barbara Jensen
cn: Babs Jensen
homeDirectory: /home/bjensen
facsimileTelephoneNumber: +1 408 555 1992
gidNumber: 1000
userPassword: {SSHA}S5pMziC+j1j09EnWyhj0okSSSX6howVvu1OdwQ==
uidNumber: 1076

Performing LDAP Operations
Searching the Directory

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 90

description: Updated description
description: Additional description
uid: bjensen
l: San Francisco

dn: dc=example,dc=com
objectClass: top
objectClass: domain
dc: example

Although it is not visible in this output, the replication-related ds-sync-* operational attributes have
been updated on the entry with DN dc=example,dc=com. The entry therefore shows up in the persistent
search results.

The following deletion:

$ ldapdelete \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=People,dc=example,dc=com" \
 --bindPassword bribery \
 uid=tpierce,ou=People,dc=example,dc=com
Processing DELETE request for uid=tpierce,ou=People,dc=example,dc=com
DELETE operation successful for DN uid=tpierce,ou=People,dc=example,dc=com

Results in the following response to the persistent search:
dn: uid=tpierce,ou=People,dc=example,dc=com
objectClass: top
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: organizationalPerson
objectClass: person
mail: tpierce@example.com
roomNumber: 1383
manager: uid=scarter, ou=People, dc=example,dc=com
ou: Accounting
ou: People
givenName: Tobias
telephoneNumber: +1 408 555 1531
sn: Pierce
cn: Tobias Pierce
homeDirectory: /home/tpierce
facsimileTelephoneNumber: +1 408 555 9332
gidNumber: 1000
userPassword: {SSHA}Ydw21vOP9GuYdt1nkkV8L+3sGDBa6TYL5JFC/A==
uidNumber: 1042
uid: tpierce
l: Bristol
departmentNumber: 1000
preferredLanguage: en-gb
street: 60 Queen Square

dn: dc=example,dc=com
objectClass: top
objectClass: domain
dc: example

Performing LDAP Operations
Searching the Directory

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 91

To terminate the persistent search, interrupt the command with CTRL+C, for example.

Search: Using Language Subtypes

OpenDJ directory server supports many language subtypes. For a list see "Localization" in the
Reference.

When you perform a search you can request the language subtype by OID or by language subtype
string. For example, the following search gets the French version of a common name. The example
uses the base64 command provided with OpenDJ directory server to decode the attribute value:

$ ldapsearch \
 --port 1389 \
 --baseDN dc=example,dc=com \
 "(givenName:fr:=Fréderique)" cn\;lang-fr
dn: uid=fdupont,ou=People,dc=example,dc=com
cn;lang-fr:: RnJlZMOpcmlxdWUgRHVwb250

$ base64 decode -d RnJlZMOpcmlxdWUgRHVwb250
Fredérique Dupont

At the end of the OID or language subtype, further specify the matching rule as follows:

• Add .1 for less than

• Add .2 for less than or equal to

• Add .3 for equal to (default)

• Add .4 for greater than or equal to

• Add .5 for greater than

• Add .6 for substring

The following table describes the operators you can use in LDAP search filters.

LDAP Filter Operators

Operator Definition Example
= Equality comparison, as in (sn=Jensen).

This can also be used with substring matches.
For example, to match last names starting
with Jen, use the filter (sn=Jen*). Substrings
are more expensive for the directory server to
index. Substring searches therefore might not
be permitted for many attributes.

"(cn=My App)" matches entries with common
name My App.

"(sn=Jen*)" matches entries with surname
starting with Jen.

Performing LDAP Operations
Comparing Attribute Values

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 92

Operator Definition Example
<= Less than or equal to comparison, which

works alphanumerically.
"(cn<=App)" matches entries with commonName
up to those starting with App (case-
insensitive) in alphabetical order.

>= Greater than or equal to comparison, which
works alphanumerically.

"(uidNumber>=1151)" matches entries with
uidNumber greater than 1151.

=* Presence comparison. For example, to match
all entries having a userPassword, use the filter
(userPassword=*).

"(member=*)" matches entries with a member
attribute.

~= Approximate comparison, matching attribute
values similar to the value you specify.

"(sn~=jansen)" matches entries with a
surname that sounds similar to Jansen
(Johnson, Jensen, and other surnames).

[:dn][:oid]:= Extensible match comparison.

At the end of the OID or language subtype,
you further specify the matching rule as
follows:

• Add .1 for less than

• Add .2 for less than or equal to

• Add .3 for equal to (default)

• Add .4 for greater than or equal to

• Add .5 for greater than

• Add .6 for substring

(uid:dn:=bjensen) matches entries where uid
having the value bjensen is a component of the
entry DN.

(lastLoginTime: 1.3.6.1.4.1.26027.1.4.5:=
-13w) matches entries with a last login time
more recent than 13 weeks.

You also use extensible match filters with
localized values. Directory servers like
OpenDJ support a variety of internationalized
locales, each of which has an OID for collation
order, such as 1.3.6.1.4.1.42.2.27.9.4.76
.1 for French. OpenDJ also lets you use the
language subtype, such as fr, instead of the
OID.

"(cn:dn:=My App)" matches entries who have
My App as the common name and also as the
value of a DN component.

! NOT operator, to find entries that do not
match the specified filter component.

Take care to limit your search when using !
to avoid matching so many entries that the
server treats your search as unindexed.

'!(objectclass=person)' matches non-person
entries.

& AND operator, to find entries that match all
specified filter components.

'(&(l=San Francisco)(!(uid=bjensen)))'
matches entries for users in San Francisco
other than the user with ID bjensen.

| OR operator, to find entries that match one of
the specified filter components.

"|(sn=Jensen)(sn=Johnson)" matches entries
with surname Jensen or surname Johnson.

3.3. Comparing Attribute Values

Performing LDAP Operations
Updating the Directory

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 93

The compare operation checks whether an attribute value you specify matches the attribute value
stored on one or more directory entries.

Compare: Checking authPassword

In this example, Kirsten Vaughan uses the ldapcompare command, described in ldapsearch(1) in the
Reference, to check whether the hashed password value matches the stored value on authPassword:

$ ldapcompare \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 'authPassword:MD5$dFHgpDxXUT8=$qlC4xMXvmVlusJLz9/WJ5Q==' \
 uid=kvaughan,ou=people,dc=example,dc=com
Comparing type authPassword with value
 MD5$dFHgpDxXUT8=$qlC4xMXvmVlusJLz9/WJ5Q== in entry
 uid=kvaughan,ou=people,dc=example,dc=com
Compare operation returned true for entry
 uid=kvaughan,ou=people,dc=example,dc=com

3.4. Updating the Directory
Authorized users can change directory data using the LDAP add, modify, modify DN, and delete
operations. You can use the ldapmodify command to make changes. For details see ldapmodify(1) in
the Reference.

3.4.1. Adding Entries

With the ldapmodify -a command, authorized users can add entire entries from the same sort of LDIF
file used to import and export data.

Adding Two New Users

The following example adds two new users:

Performing LDAP Operations
Modifying Entry Attributes

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 94

$ cat new-users.ldif
dn: cn=Arsene Lupin,ou=Special Users,dc=example,dc=com
objectClass: person
objectClass: top
cn: Arsene Lupin
telephoneNumber: +33 1 23 45 67 89
sn: Lupin

dn: cn=Horace Velmont,ou=Special Users,dc=example,dc=com
objectClass: person
objectClass: top
cn: Horace Velmont
telephoneNumber: +33 1 12 23 34 45
sn: Velmont

$ ldapmodify \
 --defaultAdd \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 --filename new-users.ldif
Processing ADD request for cn=Arsene Lupin,ou=Special Users,dc=example,dc=com
ADD operation successful for DN
 cn=Arsene Lupin,ou=Special Users,dc=example,dc=com
Processing ADD request for cn=Horace Velmont,ou=Special Users,dc=example,dc=com
ADD operation successful for DN
 cn=Horace Velmont,ou=Special Users,dc=example,dc=com

3.4.2. Modifying Entry Attributes

With the ldapmodify command, authorized users can change the values of attributes in the directory
using LDIF as specified in RFC 2849.

Modify: Adding Attributes

The following example shows you how to add a description and JPEG photo to Sam Carter's entry:

http://tools.ietf.org/html/rfc2849

Performing LDAP Operations
Modifying Entry Attributes

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 95

$ cat scarter-mods.ldif
dn: uid=scarter,ou=people,dc=example,dc=com
changetype: modify
add: description
description: Accounting Manager
-
add: jpegphoto
jpegphoto:<file:///tmp/Samantha-Carter.jpg

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 --filename scarter-mods.ldif
Processing MODIFY request for uid=scarter,ou=people,dc=example,dc=com
MODIFY operation successful for DN uid=scarter,ou=people,dc=example,dc=com

Modify: Changing an Attribute Value

The following example replaces the description on Sam Carter's entry:

$ cat scarter-newdesc.ldif
dn: uid=scarter,ou=people,dc=example,dc=com
changetype: modify
replace: description
description: Accounting Director

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 --filename scarter-newdesc.ldif
Processing MODIFY request for uid=scarter,ou=people,dc=example,dc=com
MODIFY operation successful for DN uid=scarter,ou=people,dc=example,dc=com

Modify: Deleting an Attribute Value

The following example deletes the JPEG photo on Sam Carter's entry:

Performing LDAP Operations
Modifying Entry Attributes

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 96

$ cat /path/to/scarter-deljpeg.ldif
dn: uid=scarter,ou=people,dc=example,dc=com
changetype: modify
delete: jpegphoto

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 --filename scarter-deljpeg.ldif
Processing MODIFY request for uid=scarter,ou=people,dc=example,dc=com
MODIFY operation successful for DN uid=scarter,ou=people,dc=example,dc=com

Modify: Using Optimistic Concurrency

Imagine you are writing an application that lets end users update user profiles through a browser.
You store user profiles as OpenDJ entries. Your end users can look up user profiles and modify them.
Your application assumes that the end users can tell the right information when they see it, and
updates profiles exactly as users see them on their screens.

Consider two users, Alice and Bob, both busy and often interrupted. Alice has Babs Jensen's new
phone and room numbers. Bob has Babs's new location and description. Both assume that they have
all the information that has changed. What can you do to make sure that your application applies the
right changes when Alice and Bob simulaneously update Babs Jensen's profile?

OpenDJ directory server includes two features to help you in this situation. One of the features is
the LDAP Assertion Control, described in Assertion request control in the Reference, used to tell
the directory server to perform the modification only if an assertion you make stays true. The other
feature is OpenDJ's support for entity tag (ETag) attributes, making it easy to check whether the
entry in the directory is the same as the entry you read.

Alice and Bob both get Babs's entry. In LDIF, the relevant attributes from the entry look like this.
Notice the ETag:
dn: uid=bjensen,ou=People,dc=example,dc=com
telephoneNumber: +1 408 555 1862
roomNumber: 0209
l: San Francisco
ETag: 000000007a1999df

Bob prepares his changes in your application. Bob is almost ready to submit the new location and
description when Carol stops by to ask Bob a few questions.

Alice starts just after Bob, but manages to submit her changes without interruption. Now Babs's entry
looks like this:

http://tools.ietf.org/html/rfc2616#section-3.11

Performing LDAP Operations
Filtering Add and Modify Operations

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 97

dn: uid=bjensen,ou=People,dc=example,dc=com
description: Updated by Alice
telephoneNumber: +47 2108 1746
roomNumber: 1389
l: San Francisco
ETag: 00000000aec2c1e9

In your application, you use the ETag attribute value with the assertion control to prevent Bob's
update from succeeding although the ETag value has changed. Your application tries the equivalent
of the following commands with Bob's updates:

$ cat /path/to/bobs.ldif
dn: uid=bjensen,ou=People,dc=example,dc=com
changetype: modify
replace: l
l: Grenoble
-
add: description
description: Employee of the Month

$ ldapmodify \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --port 1389 \
 --filename /path/to/bobs.ldif \
 --assertionFilter "(ETag=000000007a1999df)"
Processing MODIFY request for uid=bjensen,ou=People,dc=example,dc=com
MODIFY operation failed
Result Code: 122 (Assertion Failed)
Additional Information: Entry uid=bjensen,ou=People,dc=example,dc=com
 cannot be modified because the request contained an LDAP assertion control
 and the associated filter did not match the contents of the that entry

Your application reloads Babs's entry, gets the new ETag value 00000000aec2c1e9, and lets Bob try
again. This time Bob's changes do not collide with other changes. Babs's entry is successfully
updated:
dn: uid=bjensen,ou=People,dc=example,dc=com
description: Employee of the Month
telephoneNumber: +47 2108 1746
roomNumber: 1389
l: Grenoble
ETag: 00000000e882c35e

3.4.3. Filtering Add and Modify Operations

Some client applications send updates including attributes with names that differ from the attribute
names defined in OpenDJ. Other client applications might try to update attributes they should
not update, such as the operational attributes creatorsName, createTimestamp, modifiersName, and
modifyTimestamp. Ideally, you would fix the client application behavior, but that is not always feasible.

Performing LDAP Operations
Filtering Add and Modify Operations

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 98

You can configure the attribute cleanup plugin to filter add and modify requests, rename attributes in
requests using incorrect names, and remove attributes that applications should not change.

Renaming Incoming Attributes

The following example renames incoming email attributes to mail attributes. First, configure the
attribute cleanup plugin to rename the inbound attribute:

$ dsconfig \
 create-plugin \
 --port 4444 \
 --hostname opendj.example.com \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --type attribute-cleanup \
 --plugin-name "Rename email to mail" \
 --set enabled:true \
 --set rename-inbound-attributes:email:mail \
 --trustAll \
 --no-prompt

Next, confirm that it worked as expected:

$ cat email.ldif
dn: uid=newuser,ou=People,dc=example,dc=com
uid: newuser
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: top
cn: New User
sn: User
ou: People
email: newuser@example.com
userPassword: changeme

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --defaultAdd \
 --filename email.ldif
Processing ADD request for uid=newuser,ou=People,dc=example,dc=com
ADD operation successful for DN uid=newuser,ou=People,dc=example,dc=com

$ ldapsearch --port 1389 --baseDN dc=example,dc=com uid=newuser mail
dn: uid=newuser,ou=People,dc=example,dc=com
mail: newuser@example.com

Performing LDAP Operations
Filtering Add and Modify Operations

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 99

Removing Incoming Attributes

The following example prevents client applications from adding or modifying creatorsName,
createTimestamp, modifiersName, and modifyTimestamp attributes. First, set up the attribute cleanup plugin:

$ dsconfig \
 create-plugin \
 --port 4444 \
 --hostname opendj.example.com \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --type attribute-cleanup \
 --plugin-name "Remove attrs" \
 --set enabled:true \
 --set remove-inbound-attributes:creatorsName \
 --set remove-inbound-attributes:createTimestamp \
 --set remove-inbound-attributes:modifiersName \
 --set remove-inbound-attributes:modifyTimestamp \
 --trustAll \
 --no-prompt

Next, confirm that it worked as expected:

$ cat badattrs.ldif
dn: uid=badattr,ou=People,dc=example,dc=com
uid: newuser
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: top
cn: Bad Attr
sn: Attr
ou: People
mail: badattr@example.com
userPassword: changeme
creatorsName: cn=Bad Attr
createTimestamp: Never in a million years.
modifiersName: cn=Directory Manager,cn=Root DNs,cn=config
modifyTimestamp: 20110930164937Z

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --defaultAdd \
 --filename badattrs.ldif
Processing ADD request for uid=badattr,ou=People,dc=example,dc=com
ADD operation successful for DN uid=badattr,ou=People,dc=example,dc=com

$ ldapsearch --port 1389 --baseDN dc=example,dc=com uid=badattr +
dn: uid=badattr,ou=People,dc=example,dc=com
numSubordinates: 0
structuralObjectClass: inetOrgPerson

Performing LDAP Operations
Renaming Entries

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 100

pwdPolicySubentry: cn=Default Password Policy,cn=Password Policies,cn=config
subschemaSubentry: cn=schema
hasSubordinates: false
entryDN: uid=badattr,ou=people,dc=example,dc=com
entryUUID: 35e5cb0e-e929-49d8-a50f-2df036d60db9
pwdChangedTime: 20110930165959.135Z
creatorsName: cn=Directory Manager,cn=Root DNs,cn=config
createTimestamp: 20110930165959Z

3.4.4. Renaming Entries

The Relative Distinguished Name (RDN) refers to the part of an entry's DN that differentiates it from
all other DNs at the same level in the directory tree. For example, uid=bjensen is the RDN of the entry
with the DN uid=bjensen,ou=People,dc=example,dc=com.

With the ldapmodify command, authorized users can rename entries in the directory.

When you change the RDN of the entry, you are renaming the entry, modifying the value of the
naming attribute, and the entry's DN.

Rename: Modifying the DN

Sam Carter is changing her last name to Jensen, and changing her login from scarter to sjensen. The
following example shows you how to rename and change Sam Carter's entry. Notice the boolean
field, deleteoldrdn: 1, which indicates that the previous RDN, uid: scarter, should be removed. (Setting
deleteoldrdn: 0 instead would preserve uid: scarter on the entry.)

Performing LDAP Operations
Moving Entries

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 101

$ cat /path/to/scarter-sjensen.ldif
dn: uid=scarter,ou=people,dc=example,dc=com
changetype: modrdn
newrdn: uid=sjensen
deleteoldrdn: 1

dn: uid=sjensen,ou=people,dc=example,dc=com
changetype: modify
replace: cn
cn: Sam Jensen
-
replace: sn
sn: Jensen
-
replace: homeDirectory
homeDirectory: /home/
sjensen
-
replace: mail
mail: sjensen@example.com

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 --filename /path/to/scarter-sjensen.ldif
Processing MODIFY DN request for uid=scarter,ou=people,dc=example,dc=com
MODIFY DN operation successful for DN uid=scarter,ou=people,dc=example,dc=com
Processing MODIFY request for uid=sjensen,ou=people,dc=example,dc=com
MODIFY operation successful for DN uid=sjensen,ou=people,dc=example,dc=com

3.4.5. Moving Entries
When you rename an entry with child entries, the directory has to move all the entries underneath it.

Note

The modify DN operation only works when moving entries in the same backend, under the same suffix. Also,
depending on the number of entries you move, this can be a resource-intensive operation.

With the ldapmodify command, authorized users can move entries in the directory.

Move: Merging Customer and Employees Under ou=People

The following example moves ou=Customers,dc=example,dc=com to ou=People,dc=example,dc=com, then moves
each employee under ou=Employees,dc=example,dc=com under ou=People,dc=example,dc=com as well, and
finally removes the empty ou=Employees,dc=example,dc=com container. Here, deleteoldrdn: 1 indicates that
the old RDN, ou: Customers, should be removed from the entry. For employees, deleteoldrdn: 0 indicates
that old RDNs, in this case, uid attribute values, should be preserved:

Performing LDAP Operations
Moving Entries

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 102

$ cat move-customers.ldif
dn: ou=Customers,dc=example,dc=com
changetype: modrdn
newrdn: ou=People
deleteoldrdn: 1
newsuperior: dc=example,dc=com

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --filename move-customers.ldif
Processing MODIFY DN request for ou=Customers,dc=example,dc=com
MODIFY DN operation successful for DN ou=Customers,dc=example,dc=com

$ cat move-employees.pl
#!/usr/bin/perl -w

For each employee, construct a spec to move under ou=People.
while (<>)
{
 # Next line folded for readability only. Should not be split.
 $_ =~ s/dn: (.*?)(,.*)/dn: $1$2\nchangetype: moddn\nnewrdn: $1\n
 deleteoldrdn: 0\nnewsuperior: ou=People,dc=example,dc=com/;
 print;
}

$ ldapsearch --port 1389 --baseDN ou=Employees,dc=example,dc=com uid=* - \
 | move-employees.pl > /tmp/move-employees.ldif

$ head -n 6 /tmp/move-employees.ldif
dn: uid=abarnes,ou=Employees,dc=example,dc=com
changetype: moddn
newrdn: uid=abarnes
deleteoldrdn: 0
newsuperior: ou=People,dc=example,dc=com

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --filename /tmp/move-employees.ldif
Processing MODIFY DN request for uid=abarnes,ou=Employees,dc=example,dc=com
MODIFY DN operation successful for DN uid=abarnes,ou=Employees,dc=example,dc=com
Processing MODIFY DN request for uid=abergin,ou=Employees,dc=example,dc=com
MODIFY DN operation successful for DN uid=abergin,ou=Employees,dc=example
,dc=com
...
Processing MODIFY DN request for uid=wlutz,ou=Employees,dc=example,dc=com
MODIFY DN operation successful for DN uid=wlutz,ou=Employees,dc=example,dc=com

$ ldapdelete \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 ou=Employees,dc=example,dc=com
Processing DELETE request for ou=Employees,dc=example,dc=com
DELETE operation successful for DN ou=Employees,dc=example,dc=com

Performing LDAP Operations
Deleting Entries

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 103

3.4.6. Deleting Entries

With the ldapmodify command, authorized users can delete entries from the directory.

Delete: Removing a Subtree

The following example shows you how to use the subtree delete option to remove all special users
from the directory:

$ ldapdelete \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --deleteSubtree "ou=Special Users,dc=example,dc=com"
Processing DELETE request for ou=Special Users,dc=example,dc=com
DELETE operation successful for DN ou=Special Users,dc=example,dc=com

3.5. Changing Passwords
With the ldappasswordmodify command, described in ldappasswordmodify(1) in the Reference,
authorized users can change and reset user passwords.

Resetting Passwords

The following example shows Kirsten Vaughan resetting Sam Carter's password. Kirsten has the
appropriate privilege to reset Sam's password:

$ ldappasswordmodify \
 --useStartTLS \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 --authzID "dn:uid=scarter,ou=people,dc=example,dc=com" \
 --newPassword ChangeMe
The LDAP password modify operation was successful

Tip

The ldappasswordmodify command uses the LDAP Password Modify extended operation. If this extended
operation is performed on a connection that is already associated with a user (in other words, when a user
first does a bind on the connection, then requests the LDAP Password Modify extended operation), then the
operation is performed as the user associated with the connection. If the user associated with the connection is
not the same user whose password is being changed, then OpenDJ considers it a password reset.

Performing LDAP Operations
Changing Passwords

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 104

Whenever one user changes another user's password, OpenDJ considers it a password reset. Often password
policies specify that users must change their passwords again after a password reset.

If you want your application to change a user's password, rather than reset a user's password, have your
application request the password change as the user whose password is changing.

To change the password as the user, bind as the user whose password should be changed, and use the LDAP
Password Modify extended operation with an authorization ID but without performing a bind, or use proxied
authorization. For instructions on using proxied authorization, see "Configuring Proxied Authorization".

You could also accomplish a password reset with the manage-account command, described in
manage-account(1) in the Reference, although set-password-is-reset is a hidden option, supported
only for testing:

$ manage-account \
 set-password-is-reset \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --targetDN uid=scarter,ou=people,dc=example,dc=com \
 --operationValue true
Password Is Reset: true

Changing One's Own Password

You can use the ldappasswordmodify command to change your password, as long as you know your
current password:

$ ldappasswordmodify \
 --port 1389 \
 --authzID "dn:uid=bjensen,ou=people,dc=example,dc=com" \
 --currentPassword hifalutin \
 --newPassword secret12
The LDAP password modify operation was successful

The same operation works for cn=Directory Manager:

$ ldappasswordmodify \
 --port 1389 \
 --authzID "dn:cn=Directory Manager" \
 --currentPassword password \
 --newPassword secret12
The LDAP password modify operation was successful

Changing Passwords With Special Characters

OpenDJ expects passwords to be UTF-8 encoded (base64-encoded when included in LDIF):

http://tools.ietf.org/html/rfc3062
http://tools.ietf.org/html/rfc3062

Performing LDAP Operations
Configuring Default Settings

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 105

$ echo $LANG
en_US.utf8

$ ldappasswordmodify \
 --port 1389 \
 --bindDN uid=bjensen,ou=People,dc=example,dc=com \
 --bindPassword hifalutin \
 --currentPassword hifalutin \
 --newPassword pàsswȏrd
The LDAP password modify operation was successful

$ ldapsearch \
 --port 1389 \
 --bindDN uid=bjensen,ou=People,dc=example,dc=com \
 --bindPassword pàsswȏrd \
 --baseDN dc=example,dc=com \
 "(uid=bjensen)" cn
dn: uid=bjensen,ou=People,dc=example,dc=com
userPassword: {SSHA}k0eEeCxj9YRXUp8yJn0Z/mwqe+wrcFb1N1gg2g==
cn: Barbara Jensen
cn: Babs Jensen

3.6. Configuring Default Settings
You can use ~/.opendj/tools.properties to set the defaults for bind DN, host name, and port number as
in the following example:
hostname=directory.example.com
port=1389
bindDN=uid=kvaughan,ou=People,dc=example,dc=com

ldapcompare.port=1389
ldapdelete.port=1389
ldapmodify.port=1389
ldappasswordmodify.port=1389
ldapsearch.port=1389

The location on Windows is %UserProfile%/.opendj/tools.properties.

3.7. Authenticating To the Directory Server
Authentication is the act of confirming the identity of a principal. Authorization is the act of
determining whether to grant or to deny access to a principal. Authentication is performed to make
authorization decisions.

As explained in "Configuring Privileges and Access Control" in the Administration Guide, OpenDJ
directory server implements fine-grained access control for authorization. Authorization for an
operation depends on who is requesting the operation. In LDAP, directory servers must therefore

Performing LDAP Operations
Authenticating To the Directory Server

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 106

authenticate a principal before they can authorize or deny access for particular operations. In LDAP,
the bind operation authenticates the principal. The first LDAP operation in every LDAP session is
generally a bind.

Clients bind by providing both a means to find their principal's entry in the directory and also by
providing some credentials that the directory server can check against their entry.

In the simplest bind operation, the client provides a zero-length name and a zero-length password.
This results in an anonymous bind, meaning the client is authenticated as an anonymous user of
the directory. In the simplest examples in "Searching the Directory", notice that no authentication
information is provided. The examples work because the client commands default to requesting
anonymous binds when no credentials are provided, and because access controls for the sample data
allow anonymous clients to read, search, and compare some directory data.

In a simple bind operation, the client provides an LDAP name, such as the DN identifying its entry,
and the corresponding password stored on the userPassword attribute of the entry. In "Updating the
Directory", notice that to change directory data, the client provides the bind DN and bind password of
a user who has permission to change directory data. The commands do not work with a bind DN and
bind password because access controls for the sample data only let authorized users change directory
data.

Users rarely provide client applications with DNs, however. Instead, users might provide a client
application with an identity string like a user ID or an email address. Depending on how the DNs are
constructed, the client application can either build the DN directly from the user's identity string,
or use a session where the bind has been performed with some other identity to search for the user
entry based on the user's identity string. Given the DN constructed or found, the client application
can then perform a simple bind.

For example, suppose Babs Jensen enters her email address, bjensen@example.com, and her password in
order to log in. The client application might search for the entry matching (mail=bjensen@example.com)
under base DN dc=example,dc=com. Alternatively, the client application might know to extract the user
ID bjensen from the address, then build the corresponding DN, uid=bjensen,ou=people,dc=example,dc=com in
order to bind.

When an identifier string provided by the user can be readily mapped to the user's entry DN, OpenDJ
directory server can translate between the identifier string and the entry DN. This translation is the
job of a component called an identity mapper. Identity mappers are used to perform PLAIN SASL
authentication (with a user name and password), SASL GSSAPI authentication (Kerberos V5), SASL
CRAM MD5, and DIGEST MD5 authentication. They also handle authorization IDs during password
modify extended operations and proxied authorization.

One use of PLAIN SASL is to translate user names from HTTP Basic authentication to LDAP
authentication. The following example shows PLAIN SASL authentication using the default Exact
Match identity mapper. In this (contrived) example, Babs Jensen reads the hashed value of her
password. (According to the access controls in the example data, Babs must authenticate to read her
password.) Notice the authentication ID is her user ID, u:bjensen, rather than the DN of her entry:

Performing LDAP Operations
Authenticating To the Directory Server

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 107

$ ldapsearch \
 --port 1389 \
 --useStartTLS \
 --baseDN dc=example,dc=com \
 --saslOption mech=PLAIN \
 --saslOption authid=u:bjensen \
 --bindPassword hifalutin \
 "(cn=Babs Jensen)" cn userPassword
dn: uid=bjensen,ou=People,dc=example,dc=com
cn: Barbara Jensen
cn: Babs Jensen
userPassword: {SSHA}7S4Si+vPE513cYQ7otiqb8hjiCzU7XNTv0RPBA==

The Exact Match identity mapper searches for a match between the string provided (here, bjensen)
and the value of a specified attribute (by default the uid attribute). If you know users are entering
their email addresses, you could create an exact match identity mapper for email addresses, then use
that for PLAIN SASL authentication as in the following example:

$ dsconfig \
 create-identity-mapper \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --mapper-name "Email Mapper" \
 --type exact-match \
 --set match-attribute:mail \
 --set enabled:true \
 --no-prompt

$ dsconfig \
 set-sasl-mechanism-handler-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --handler-name PLAIN \
 --set identity-mapper:"Email Mapper" \
 --no-prompt

$ ldapsearch \
 --port 1389 \
 --useStartTLS \
 --baseDN dc=example,dc=com \
 --saslOption mech=PLAIN \
 --saslOption authid=u:bjensen@example.com \
 --bindPassword hifalutin \
 "(cn=Babs Jensen)" cn userPassword
dn: uid=bjensen,ou=People,dc=example,dc=com
cn: Barbara Jensen
cn: Babs Jensen
userPassword: {SSHA}7S4Si+vPE513cYQ7otiqb8hjiCzU7XNTv0RPBA==

Performing LDAP Operations
Configuring Proxied Authorization

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 108

OpenDJ directory server's Regular Expression identity mapper uses a regular expression to extract a
substring from the string provided, then searches for a match between the substring and the value of
a specified attribute. In the case of example data where an email address is user ID + @ + domain,
you can use the default Regular Expression identity mapper in the same way as the email mapper
from the previous example. The default regular expression pattern is ^([^@]+)@.+$, and the part of the
identity string matching ([^@]+) is used to find the entry by user ID:

$ dsconfig \
 set-sasl-mechanism-handler-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --handler-name PLAIN \
 --set identity-mapper:"Regular Expression" \
 --no-prompt

$ ldapsearch \
 --port 1389 \
 --useStartTLS \
 --baseDN dc=example,dc=com \
 --saslOption mech=PLAIN \
 --saslOption authid=u:bjensen@example.com \
 --bindPassword hifalutin \
 "(cn=Babs Jensen)" cn userPassword
dn: uid=bjensen,ou=People,dc=example,dc=com
cn: Barbara Jensen
cn: Babs Jensen
userPassword: {SSHA}7S4Si+vPE513cYQ7otiqb8hjiCzU7XNTv0RPBA==

Try the dsconfig command interactively to experiment with match-pattern and replace-pattern settings
for the Regular Expression identity mapper. The match-pattern can be any regular expression
supported by javax.util.regex.Pattern.

3.8. Configuring Proxied Authorization
Proxied authorization provides a standard control as defined in RFC 4370 (and an earlier Internet-
Draft) for binding with the user credentials of a proxy, who carries out LDAP operations on behalf
of other users. You might use proxied authorization, for example, to bind your application with its
credentials, then carry out operations as the users who login to the application.

Proxied authorization is similar to the UNIX sudo command. The proxied operation is performed
as if it were requested not by the user who did the bind, but by the proxied user. "Whether Proxy
Authorization Allows an Operation on the Target" shows how this affects permissions.

Whether Proxy Authorization Allows an Operation on the Target

 Bind DN no access Bind DN has access
Proxy ID no access No No

http://tools.ietf.org/html/rfc4370

Performing LDAP Operations
Configuring Proxied Authorization

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 109

 Bind DN no access Bind DN has access
Proxy ID has access Yes Yes

Note

When you configure resource limits as described in "Setting Resource Limits" in the Administration Guide,
know that the resource limits do not change when the user proxies as another user. In other words, resource
limits depend on the bind DN, not the proxy authorization identity.

Suppose you have an administrative directory client application that has an entry in the directory
with DN cn=My App,ou=Apps,dc=example,dc=com. You can give that application the access rights and
privileges to use proxied authorization. The default access control for OpenDJ lets authenticated
users use the proxied authorization control.

Suppose also that when directory administrator, Kirsten Vaughan, logs in to your application
to change Babs Jensen's entry, your application looks up Kirsten's entry, and finds that she has
DN uid=kvaughan,ou=People,dc=example,dc=com. For the example commands in "To Configure Proxied
Authorization", My App uses proxied authorization to make a change to Babs's entry as Kirsten.

To Configure Proxied Authorization

In order to carry out LDAP operations on behalf of another user, the user binding to OpenDJ directory
server needs:

• Permission to use the LDAP Proxy Authorization Control.

Permissions are granted using access control instructions (ACIs). This calls for an ACI with a
targetcontrol list that includes the Proxy Authorization Control OID 2.16.840.1.113730.3.4.18 that
grants allow(read) permission to the user binding to the directory.

• Permission to proxy as the given authorization user.

This calls for an ACI with a target scope that includes the entry of the authorization user that
grants allow(proxy) permission to the user binding to the directory.

• The privilege to use proxied authorization.

Privileges are granted using the ds-privilege-name attribute.

Follow these steps to configure proxied authorization for applications with DNs that match cn=*
,ou=Apps,dc=example,dc=com:

1. (Optional) If the global ACIs do not allow access to use the Proxy Authorization Control, grant
access to applications to use the control.

The control has OID 2.16.840.1.113730.3.4.18:

Performing LDAP Operations
Configuring Proxied Authorization

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 110

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password
dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetcontrol="2.16.840.1.113730.3.4.18") (version 3.0; acl
 "Apps can use the Proxy Authorization Control"; allow(read)
 userdn="ldap:///cn=*,ou=Apps,dc=example,dc=com";)

 Processing MODIFY request for dc=example,dc=com
 MODIFY operation successful for DN dc=example,dc=com

2. Grant access to applications that can use proxied authorization:

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password
dn: dc=example,dc=com
changetype: modify
add: aci
aci: (target="ldap:///dc=example,dc=com") (targetattr ="*
 ")(version 3.0; acl "Allow apps proxied auth"; allow(proxy
)(userdn = "ldap:///cn=*,ou=Apps,dc=example,dc=com");)

Processing MODIFY request for dc=example,dc=com
MODIFY operation successful for DN dc=example,dc=com

This ACI allows any user whose DN matches cn=*,ou=Apps,dc=example,dc=com to proxy as any user
under the ACI target of dc=example,dc=com.

For example, cn=My App,ou=Apps,dc=example,dc=com can proxy as any user defined in the Example.com
sample data, but cannot proxy as cn=Directory Manager. This is because all the users defined in the
Example.com sample data have their accounts under dc=example,dc=com, and the target of the ACI
includes dc=example,dc=com. cn=Directory Manager is defined in the configuration, however, under
cn=config. The target of the ACI does not include cn=config.

3. Grant the privilege to use proxied authorization to My App:

Performing LDAP Operations
Authenticating Using a Certificate

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 111

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password
dn: cn=My App,ou=Apps,dc=example,dc=com
changetype: modify
add: ds-privilege-name
ds-privilege-name: proxied-auth

Processing MODIFY request for cn=My App,ou=Apps,dc=example,dc=com
MODIFY operation successful for DN cn=My App,ou=Apps,dc=example,dc=com

4. Test that My App can use proxied authorization:

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=My App,ou=Apps,dc=example,dc=com" \
 --bindPassword password \
 --proxyAs "dn:uid=kvaughan,ou=People,dc=example,dc=com"
dn: uid=bjensen,ou=People,dc=example,dc=com
changetype: modify
replace: description
description: Changed through proxied auth

Processing MODIFY request for uid=bjensen,ou=People,dc=example,dc=com
MODIFY operation successful for DN uid=bjensen,ou=People,dc=example,dc=com

If you need to map authorization identifiers using the u: form rather than using dn:, you can set
the identity mapper with the global configuration setting, proxied-authorization-identity-mapper.
For example, if you get user ID values from the client, such as bjensen, you can configure OpenDJ
directory server to use the exact match identity mapper to match those to DNs based on an attribute
of the entry. Use the dsconfig command interactively to determine the settings you need.

3.9. Authenticating Using a Certificate
One alternative to simple binds with user name/password combinations consists of storing a digital
certificate on the user entry, then using the certificate as credentials during the bind. You can use
this mechanism, for example, to let applications bind without using passwords.

By setting up a secure connection with a certificate, the client is in effect authenticating to the
server. The server must close the connection if it cannot trust the client certificate. However, the
process of establishing a secure connection does not in itself identify the client to OpenDJ directory
server.

Instead, when binding with a certificate, the client must request the SASL External mechanism by
which OpenDJ directory server maps the certificate to the client entry in the directory. When it finds
a match, OpenDJ sets the authorization identity for the connection to that of the client, and the bind
is successful.

Performing LDAP Operations
Authenticating Using a Certificate

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 112

For the whole process of authenticating with a certificate to work smoothly, OpenDJ and the client
must trust each others' certificates, the client certificate must be stored on the client entry in the
directory, and OpenDJ must be configured to map the certificate to the client entry.

This section includes the following procedures and examples:

• "To Add Certificate Information to an Entry"

• "To Use a PKCS #12 Truststore"

• "To Configure Certificate Mappers"

• "Authenticating With Client Certificates"

To Add Certificate Information to an Entry

Before you try to bind to OpenDJ directory server using a certificate, create a certificate, then add the
certificate attributes to the entry.

Example.ldif includes an entry for cn=My App,ou=Apps,dc=example,dc=com. Examples in this section use that
entry, and use the Java keytool command to manage the certificate:

1. Create a certificate using the DN of the client entry as the distinguished name string:

$ keytool \
 -genkey \
 -alias myapp-cert \
 -keyalg rsa \
 -dname "cn=My App,ou=Apps,dc=example,dc=com" \
 -keystore keystore \
 -storepass changeit \
 -keypass changeit

2. Get the certificate signed.

If you cannot get the certificate signed by a Certificate Authority, self-sign the certificate:

$ keytool \
 -selfcert \
 -alias myapp-cert \
 -validity 7300 \
 -keystore keystore \
 -storepass changeit \
 -keypass changeit

3. Make note of the certificate fingerprints.

Later in this procedure you update the client application entry with the MD5 fingerprint, which in
this example is 48:AC:F9:13:11:E0:AB:C4:65:A2:83:9E:DB:FE:0C:37:

Performing LDAP Operations
Authenticating Using a Certificate

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 113

$ keytool \
 -list \
 -v \
 -alias myapp-cert \
 -keystore keystore \
 -storepass changeit
Alias name: myapp-cert
Creation date: Jan 18, 2013
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
Owner: CN=My App, OU=Apps, DC=example, DC=com
Issuer: CN=My App, OU=Apps, DC=example, DC=com
Serial number: 5ae2277
Valid from: Fri Jan 18 18:27:09 CET 2013 until: Thu Jan 13 18:27:09 CET 2033
Certificate fingerprints:
 MD5: 48:AC:F9:13:11:E0:AB:C4:65:A2:83:9E:DB:FE:0C:37
 SHA1: F9:61:54:37:AA:C1:BC:92:45:07:64:4B:23:6C:BC:C9:CD:1D:44:0F
 SHA256: 2D:B1:58:CD:33:40:E9:...:FD:61:EA:C9:FF:6A:19:93:FE:E4:84:E3
 Signature algorithm name: SHA256withRSA
 Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 54 C0 C5 9C 73 37 85 4B F2 3B D3 37 FD 45 0A AB T...s7.K.;.7.E..
0010: C9 6B 32 95 .k2.
]
]

4. Export the certificate to a file in binary format:

$ keytool \
 -export \
 -alias myapp-cert \
 -keystore keystore \
 -storepass changeit \
 -keypass changeit \
 -file myapp-cert.crt
Certificate stored in file </path/to/myapp-cert.crt>

5. Modify the entry to add attributes related to the certificate.

By default, you need the userCertificate value.

If you want OpenDJ to map the certificate to its fingerprint, use the ds-certificate-fingerprint
attribute. This example uses the MD5 fingerprint, which corresponds to the default setting for the
fingerprint certificate mapper.

If you want to map the certificate subject DN to an attribute of the entry, use the ds-certificate-
subject-dn attribute:

Performing LDAP Operations
Authenticating Using a Certificate

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 114

$ cat addcert.ldif
dn: cn=My App,ou=Apps,dc=example,dc=com
changetype: modify
add: objectclass
objectclass: ds-certificate-
user
-
add: ds-certificate-fingerprint
ds-certificate-fingerprint:
 48:AC:F9:13:11:E0:AB:C4:65:A2:83:9E:DB:FE:0C:37
-
add: ds-certificate-subject-dn
ds-certificate-subject-dn: CN=My App, OU=Apps, DC=example,
 DC=com
-
add: userCertificate;binary
userCertificate;binary:<file:///path/to/myapp-cert.crt

$ ldapmodify \
 --port 1389 \
 --hostname opendj.example.com \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --filename addcert.ldif
Processing MODIFY request for cn=My App,ou=Apps,dc=example,dc=com
MODIFY operation successful for DN cn=My App,ou=Apps,dc=example,dc=com

6. Check your work:

$ ldapsearch \
 --port 1389 \
 --hostname opendj.example.com \
 --baseDN dc=example,dc=com \
 "(cn=My App)"
dn: cn=My App,ou=Apps,dc=example,dc=com
ds-certificate-fingerprint: 4B:F5:CF:2C:2D:B3:86:14:FF:43:A8:37:17:DD:E7:55
userCertificate;binary:: MIIDOzCCAiOgAwIBAgIESfC6IjANBgkqhkiG9w0BAQsFADBOMRMwEQY
 KCZImiZPyLGQBGRYDY29tMRcwFQYKCZImiZPyLGQBGRYHZXhhbXBsZTENMAsGA1UECxMEQXBwczEPMA
 0GA1UEAxMGTXkgQXBwMB4XDTEzMDExNzE3MTEwM1oXDTEzMDQxNzE3MTEwM1owTjETMBEGCgmSJomT8
 ixkARkWA2NvbTEXMBUGCgmSJomT8ixkARkWB2V4YW1wbGUxDTALBgNVBAsTBEFwcHMxDzANBgNVBAMT
 Bk15IEFwcDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAJQYq+jG4ZQdNkyBT4OQBZ0sFkl
 X5o2yBViDMGl1sSWIRGLpFwu6iq1chndPBJYTC+FkT66yEEOwWOpSfcYdFHkMQP0qp5A8mgP6bYkeH1
 ROvQ1nhLs0ILuksR10CVIQ5b1zv6bGEFhA9gSKmpHfQOSt9PXq8+kuz+4RgZk9Il28tgDNMm91wSJr7
 kqi5g7a2a7Io5s9L2FeLhVSBYwinWQnASk8nENrhcE0hHkrpGsaxdhIQBQQvm+SRC0dI4E9iwBGI3Lw
 lV3a4KTa5DlYD6cDREI6B8XlSdc1DaIhwC8CbsE0WJQoCERSURdjkuHrPck6f69HKUFRiC7JMT3dFbs
 CAwEAAaMhMB8wHQYDVR0OBBYEFFTAxZxzN4VL8jvTN/1FCqvJazKVMA0GCSqGSIb3DQEBCwUAA4IBAQ
 BXsAIEw7I5XUzLFHvXb2N0hmW/Vmhb/Vlv9LTT8JcCRJy4zaiyS9Q+Sp9zQUkrXauFnNAhJLwpAymjZ
 MCOq1Th1bw9LnIzbccPQ/1+ZHLKDU5pgnc5BcvaV6Zl6COLLH2OOt0XMZ/OrODBV1M6STfhChqcowff
 xp72pWMQe+kpZfzjeDBk4kK2hUNTZsimB9qRyrDAMCIXdmdmFv1o07orxjy8c/6S1329swiiVqFckBR
 aXIa8wCcXjpQbZacDODeKk6wZIKxw4miLg1YByCMa7vkUfz+Jj+JHgbHjyoT/G82mtDbX02chLgXbDm
 xJPFN3mwAC7NEkSPbqd35nJlf3
objectClass: person
objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: ds-certificate-user

Performing LDAP Operations
Authenticating Using a Certificate

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 115

objectClass: top
ds-certificate-subject-dn: CN=My App, OU=Apps, DC=example, DC=com
cn: My App
sn: App

7. When using a self-signed certificate, import the client certificate into the truststore for OpenDJ.

When the client presents its certificate to OpenDJ, by default OpenDJ must trust the client
certificate before it can accept the connection. If OpenDJ cannot trust the client certificate, it
cannot establish a secure connection:

$ keytool \
 -import \
 -alias myapp-cert \
 -file /path/to/myapp-cert.crt \
 -keystore /path/to/opendj/config/truststore \
 -storepass `cat /path/to/opendj/config/keystore.pin`
Owner: CN=My App, OU=Apps, DC=example, DC=com
Issuer: CN=My App, OU=Apps, DC=example, DC=com
Serial number: 5ae2277
Valid from: Fri Jan 18 18:27:09 CET 2013 until: Thu Jan 13 18:27:09 CET 2033
Certificate fingerprints:
 MD5: 48:AC:F9:13:11:E0:AB:C4:65:A2:83:9E:DB:FE:0C:37
 SHA1: F9:61:54:37:AA:C1:BC:92:45:07:64:4B:23:6C:BC:C9:CD:1D:44:0F
 SHA256: 2D:B1:58:CD:33:40:E9:...:FD:61:EA:C9:FF:6A:19:93:FE:E4:84:E3
 Signature algorithm name: SHA256withRSA
 Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 54 C0 C5 9C 73 37 85 4B F2 3B D3 37 FD 45 0A AB T...s7.K.;.7.E..
0010: C9 6B 32 95 .k2.
]
]

Trust this certificate? [no]: yes
Certificate was added to keystore

8. When using a certificate signed by a CA whose certificate is not delivered with the Java runtime
environment1, import the CA certificate either into the Java runtime environment truststore, or
into the OpenDJ trust store as shown in the following example:

1$JAVA_HOME/jre/lib/security/cacerts holds the certificates for many CAs. To get the full list, use the following command:

$ keytool \
 -list \
 -v \
 -keystore $JAVA_HOME/jre/lib/security/cacerts \
 -storepass changeit

Performing LDAP Operations
Authenticating Using a Certificate

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 116

$ keytool \
 -import \
 -alias ca-cert \
 -file ca.crt \
 -keystore /path/to/opendj/config/truststore \
 -storepass `cat /path/to/opendj/config/keystore.pin`
Owner: EMAILADDRESS=admin@example.com, CN=Example CA, O=Example Corp, C=FR
Issuer: EMAILADDRESS=admin@example.com, CN=Example CA, O=Example Corp, C=FR
Serial number: d4586ea05c878b0c
Valid from: Tue Jan 29 09:30:31 CET 2013 until: Mon Jan 24 09:30:31 CET 2033
Certificate fingerprints:
 MD5: 8A:83:61:9B:E7:18:A2:21:CE:92:94:96:59:68:60:FA
 SHA1: 01:99:18:38:3A:57:D7:92:7B:D6:03:8C:7B:E4:1D:37:45:0E:29:DA
 SHA256: 5D:20:F1:86:CC:CD:64:50:1E:54:...:DF:15:43:07:69:44:00:FB:36:CF
 Signature algorithm name: SHA1withRSA
 Version: 3

Extensions:

#1: ObjectId: 2.5.29.35 Criticality=false
AuthorityKeyIdentifier [
KeyIdentifier [
0000: 30 07 67 7D 1F 09 B6 E6 90 85 95 58 94 37 FD 31 0.g........X.7.1
0010: 03 D4 56 7B ..V.
]
[EMAILADDRESS=admin@example.com, CN=Example CA, O=Example Corp, C=FR]
SerialNumber: [d4586ea0 5c878b0c]
]

#2: ObjectId: 2.5.29.19 Criticality=false
BasicConstraints:[
 CA:true
 PathLen:2147483647
]

#3: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 30 07 67 7D 1F 09 B6 E6 90 85 95 58 94 37 FD 31 0.g........X.7.1
0010: 03 D4 56 7B ..V.
]
]

Trust this certificate? [no]: yes
Certificate was added to keystore

9. If you updated the OpenDJ truststore to add a certificate, restart OpenDJ to make sure it reads
the updated truststore and recognizes the certificate:

$ stop-ds --restart
Stopping Server..
.
..
.
... The Directory Server has started successfully

Performing LDAP Operations
Authenticating Using a Certificate

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 117

To Use a PKCS #12 Truststore

The Java keytool command does not support importing trusted certificates into a PKCS #12 format
store. Yet, Java does support creating a PKCS #12 format keystore, and using an existing PKCS #12
format store as a truststore. You can use a PKCS #12 store as an OpenDJ truststore.

1. Add the PKCS #12 format store to OpenDJ's configuration.

By default, OpenDJ expects the store to be /path/to/opendj/config/truststore.p12. The following
example uses that default:

$ cp /path/to/pkcs12-store /path/to/opendj/config/truststore.p12

Here, pkcs12-store is the file name of the PKCS #12 format store.

2. Configure the OpenDJ PKCS12 trust manager provider to use the PKCS #12 store, and restart
OpenDJ server to force it to read the store.

In the following example, the store password is changeit:

$ dsconfig \
 set-trust-manager-provider-prop \
 --port 4444 \
 --hostname opendj.example.com \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --provider-name PKCS12 \
 --set enabled:true \
 --set trust-store-pin:changeit \
 --no-prompt \
 --trustAll
$ stop-ds --restart

3. Configure a connection handler to use the PKCS12 trust manager provider.

The following example configures the LDAPS connection handler:

$ dsconfig \
 set-connection-handler-prop \
 --port 4444 \
 --hostname opendj.example.com \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --handler-name "LDAPS Connection Handler" \
 --set trust-manager-provider:PKCS12 \
 --no-prompt \
 --trustAll

Performing LDAP Operations
Authenticating Using a Certificate

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 118

4. Verify SSL mutual authentication to check your work.

The following example assumes the client certificate for My App is present in the PKCS #12
store, and that the certificate has been added to the entry for My App as in "To Add Certificate
Information to an Entry":

$ ldapsearch \
 --port 1636 \
 --hostname opendj.example.com \
 --baseDN dc=example,dc=com \
 --useSSL \
 --useSASLExternal \
 --certNickName myapp-cert \
 --keyStorePath keystore \
 --keyStorePassword changeit \
 --trustStorePath /path/to/opendj/config/keystore \
 --trustStorePasswordFile /path/to/opendj/config/keystore.pin \
 "(cn=My App)" userPassword
dn: cn=My App,ou=Apps,dc=example,dc=com
userPassword: {SSHA}9jjvsv9wlTW7Ikflzc2/wMNBjAN6G4CbbTKYIw==

To Configure Certificate Mappers

OpenDJ uses certificate mappers during binds to establish a mapping between a client certificate and
the entry that corresponds to that certificate. The certificate mappers provided out of the box include
the following:

Fingerprint Certificate Mapper

Looks for the MD5 (default) or SHA1 certificate fingerprint in an attribute of the entry (default: ds
-certificate-fingerprint).

Subject Attribute To User Attribute Mapper

Looks for a match between an attribute of the certificate subject and an attribute of the entry
(default: match cn in the certificate to cn on the entry, or match emailAddress in the certificate to
mail on the entry).

Subject DN to User Attribute Certificate Mapper

Looks for the certificate subject DN in an attribute of the entry (default: ds-certificate-subject-dn).

Subject Equals DN Certificate Mapper

Looks for an entry whose DN matches the certificate subject DN.

If the default configurations for the certificate mappers are acceptable, you do not need to change
them. They are enabled by default.

The following steps demonstrate how to change the Fingerprint Mapper default algorithm of MD5 to
SHA1:

Performing LDAP Operations
Authenticating Using a Certificate

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 119

1. List the certificate mappers to retrieve the correct name:

$ dsconfig \
 list-certificate-mappers \
 --port 4444 \
 --hostname opendj.example.com \
 --bindDN "cn=Directory Manager" \
 --bindPassword password

Certificate Mapper : Type : enabled
------------------------------------:-------------------------------------:--------
Fingerprint Mapper : fingerprint : true
Subject Attribute to User Attribute : subject-attribute-to-user-attribute : true
Subject DN to User Attribute : subject-dn-to-user-attribute : true
Subject Equals DN : subject-equals-dn : true

2. Examine the current configuration:

$ dsconfig \
 get-certificate-mapper-prop \
 --port 4444 \
 --hostname opendj.example.com \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --mapper-name "Fingerprint Mapper"

Property : Value(s)
----------------------:---------------------------
enabled : true
fingerprint-algorithm : md5
fingerprint-attribute : ds-certificate-fingerprint
user-base-dn : -

3. Change the configuration as necessary:

$ dsconfig \
 set-certificate-mapper-prop \
 --port 4444 \
 --hostname opendj.example.com \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --mapper-name "Fingerprint Mapper" \
 --set fingerprint-algorithm:sha1 \
 --no-prompt

4. Set the External SASL Mechanism Handler to use the appropriate certificate mapper (default:
Subject Equals DN).

Client applications use the SASL External mechanism during the bind to have OpenDJ set the
authorization identifier based on the entry that matches the client certificate:

Performing LDAP Operations
Authenticating Using a Certificate

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 120

$ dsconfig \
 set-sasl-mechanism-handler-prop \
 --port 4444 \
 --hostname opendj.example.com \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --handler-name External \
 --set certificate-mapper:"Fingerprint Mapper" \
 --no-prompt

Authenticating With Client Certificates

Instead of providing a bind DN and password as for simple authentication, use the SASL EXTERNAL
authentication mechanism, and provide the certificate. As a test with example data, you can try an
anonymous search, then try with certificate-based authentication.

Before you try this example, make sure OpenDJ is set up to accept StartTLS from clients, and that you
have set up the client certificate as described above. Next, create a password .pin file for your client
key store:

$ echo changeit > keystore.pin
$ chmod 400 keystore.pin

Also, if OpenDJ directory server uses a certificate for StartTLS that was not signed by a well-known
CA, import the appropriate certificate into the client keystore, which can then double as a truststore.
For example, if OpenDJ uses a self-signed certificate, import the server certificate into the keystore:

$ keytool \
 -export \
 -alias server-cert \
 -file server-cert.crt \
 -keystore /path/to/opendj/config/keystore \
 -storepass `cat /path/to/opendj/config/keystore.pin`

$ keytool \
 -import \
 -trustcacerts \
 -alias server-cert \
 -file server-cert.crt \
 -keystore keystore \
 -storepass `cat keystore.pin`

If OpenDJ directory server uses a CA-signed certificate, but the CA is not well-known, import the CA
certificate into your keystore:

Performing LDAP Operations
Authenticating Using a Certificate

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 121

$ keytool \
 -import \
 -trustcacerts \
 -alias ca-cert \
 -file ca-cert.crt \
 -keystore keystore \
 -storepass `cat keystore.pin`

Now that you can try the example, notice that OpenDJ does not return the userPassword value for an
anonymous search:

$ ldapsearch \
 --port 1389 \
 --hostname opendj.example.com \
 --baseDN dc=example,dc=com \
 --useStartTLS \
 --trustStorePath keystore \
 --trustStorePasswordFile keystore.pin \
 "(cn=My App)" userPassword
dn: cn=My App,ou=Apps,dc=example,dc=com

OpenDJ does let users read the values of their own userPassword attributes after they bind successfully:

$ ldapsearch \
 --port 1389 \
 --hostname opendj.example.com \
 --baseDN dc=example,dc=com \
 --useStartTLS \
 --useSASLExternal \
 --certNickName myapp-cert \
 --keyStorePath keystore \
 --keyStorePasswordFile keystore.pin \
 --trustStorePath keystore \
 --trustStorePasswordFile keystore.pin \
 "(cn=My App)" userPassword
dn: cn=My App,ou=Apps,dc=example,dc=com
userPassword: {SSHA}vy/vTthOQoV/wH3MciTOBKKR4OX+0dSN/a09Ew==

You can also try the same test with other certificate mappers:

Performing LDAP Operations
Authenticating Using a Certificate

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 122

Fingerprint mapper
$ dsconfig \
 set-sasl-mechanism-handler-prop \
 --port 4444 \
 --hostname opendj.example.com \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --handler-name External \
 --set certificate-mapper:"Fingerprint Mapper" \
 --no-prompt

$ ldapsearch \
 --port 1389 \
 --hostname opendj.example.com \
 --baseDN dc=example,dc=com \
 --useStartTLS \
 --useSASLExternal \
 --certNickName myapp-cert \
 --keyStorePath keystore \
 --keyStorePasswordFile keystore.pin \
 --trustStorePath keystore \
 --trustStorePasswordFile keystore.pin \
 "(cn=My App)" userPassword
dn: cn=My App,ou=Apps,dc=example,dc=com
userPassword: {SSHA}vy/vTthOQoV/wH3MciTOBKKR4OX+0dSN/a09Ew==

Subject Attribute to User Attribute mapper
$ dsconfig \
 set-sasl-mechanism-handler-prop \
 --port 4444 \
 --hostname opendj.example.com \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --handler-name External \
 --set certificate-mapper:"Subject Attribute to User Attribute" \
 --no-prompt

$ ldapsearch \
 --port 1389 \
 --hostname opendj.example.com \
 --baseDN dc=example,dc=com \
 --useStartTLS \
 --useSASLExternal \
 --certNickName myapp-cert \
 --keyStorePath keystore \
 --keyStorePasswordFile keystore.pin \
 --trustStorePath keystore \
 --trustStorePasswordFile keystore.pin \
 "(cn=My App)" userPassword
dn: cn=My App,ou=Apps,dc=example,dc=com
userPassword: {SSHA}vy/vTthOQoV/wH3MciTOBKKR4OX+0dSN/a09Ew==

Performing LDAP Operations
Authenticating Using a Certificate

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 123

Subject DN to User Attribute mapper
$ dsconfig \
 set-sasl-mechanism-handler-prop \
 --port 4444 \
 --hostname opendj.example.com \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --handler-name External \
 --set certificate-mapper:"Subject DN to User Attribute" \
 --no-prompt

$ ldapsearch \
 --port 1389 \
 --hostname opendj.example.com \
 --baseDN dc=example,dc=com \
 --useStartTLS \
 --useSASLExternal \
 --certNickName myapp-cert \
 --keyStorePath keystore \
 --keyStorePasswordFile keystore.pin \
 --trustStorePath keystore \
 --trustStorePasswordFile keystore.pin \
 "(cn=My App)" userPassword
dn: cn=My App,ou=Apps,dc=example,dc=com
userPassword: {SSHA}vy/vTthOQoV/wH3MciTOBKKR4OX+0dSN/a09Ew==

Using LDAP Schema
Getting Schema Information

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 124

Chapter 4

Using LDAP Schema

LDAP services are based on X.500 Directory Services, which are telecommunications standards. In
telecommunications, interoperability is paramount. Competitors must cooperate to the extent that
they use each others' systems. For directory services, the protocols for exchanging data and the
descriptions of the data are standardized. LDAP defines schema that describe both what attributes a
given LDAP entry must have and may optionally have, and also what attribute values can contain and
how they can be matched. Formal schema definitions protect interoperability when many applications
read and write to the same directory service. Directory data are much easier to share as long as you
understand how to use LDAP schema.

"Managing Schema" in the Administration Guide covers LDAP schema from the server administrator's
perspective. Administrators can update LDAP directory schema. OpenDJ directory server includes a
large number of standard schema definitions available by default. Administrators can also adjust how
strictly OpenDJ directory server applies schema definitions.

This chapter covers LDAP schema from the script developer's perspective. As a script developer,
you use the available schema and accept the server's application of schema when updating directory
entries.

In this chapter you will learn how to:

• Look up available schemas

• Understand what the schemas allow

• Understand and resolve errors that arise due to schema violations

4.1. Getting Schema Information
Directory servers publish information about services they provide as operational attributes of the
root DSE. The root DSE is the entry with an empty string DN, "". DSE is an acronym for DSA-Specific
Entry. DSA is an acronym for Directory System Agent. The DSE differs by server, but is generally
nearly identical for replicas.

OpenDJ directory server publishes the DN of the entry holding schema definitions as the value of the
attribute subschemaSubentry as shown in "Finding the Schema Entry".

Using LDAP Schema
Getting Schema Information

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 125

Finding the Schema Entry

Look up the schema DN:

$ ldapsearch --port 1389 --baseDN "" --searchScope base "(&)" subschemaSubentry
dn:
subschemaSubentry: cn=schema

By default, the DN for the schema entry is cn=schema.

The schema entry has the following attributes whose values are schema definitions:

attributeTypes

Attribute type definitions describe attributes of directory entries, such as givenName or mail.

objectClasses

Object class definitions identify the attribute types that an entry must have, and may have.
Examples of object classes include person and organizationalUnit. Object classes inherit from other
object classes. For example, inetOrgPerson inherits from person.

Object classes are specified as values of an entry's objectClass attribute.

An object class can be one of the following:

• Structural object classes define the core structure of the entry, generally representing a real-
world object.

By default, OpenDJ directory entries have a single structural object class or at least a single line
of structural object class inheritance.

The person object class is structural, for example.

• Auxiliary object classes define additional characteristics of entries.

The posixAccount object class is auxiliary, for example.

• Abstract object classes define base characteristics for other object classes to inherit, and
cannot themselves inherit from other object classes.

The top object class from which others inherit is abstract, for example.

ldapSyntaxes

An attribute syntax constrains what directory clients can store as attribute values.

Using LDAP Schema
Getting Schema Information

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 126

matchingRules

A Matching rule determines how the directory server compares attribute values to assertion values
for LDAP search and LDAP compare operations.

For example, in a search having the filter (uid=bjensen) the assertion value is bjensen.

nameForms

A name form specifies which attribute can be used as the relative DN (RDN) for a structural
object class.

dITStructureRules

A DIT structure rule defines a relationship between directory entries by identifying the name
form allowed for subordinate entries of a given superior entry.

Reading an Object Class Schema Definition

The schema entry in OpenDJ directory server is large because it contains all of the schema
definitions. Filter the results when reading a specific schema definition. As schema definitions
themselves are long strings, pass the --dontWrap option to the ldapsearch command when reading one.

The example below reads the definition for the person object class:

$ ldapsearch \
 --port 1389 \
 --baseDN "cn=schema" \
 --searchScope base \
 --dontWrap \
 "(&)" \
 objectClasses \
 | grep \'person\'
 objectClasses: (2.5.6.6 NAME 'person' SUP top STRUCTURAL MUST (sn $ cn)
 MAY (userPassword $ telephoneNumber $ seeAlso $ description)
 X-ORIGIN 'RFC 4519')

Notice the use of the object class name in grep \'person\' to filter search results. The actual result
would not be wrapped.

The object class defines which attributes an entry of that object class must have and which attributes
the entry may optionally have. A person entry must have a cn and an sn attribute. A person entry may
optionally have userPassword, telephoneNumber, seeAlso, and description attributes.

To determine definitions of those attributes, read the LDAP schema as demonstrated in "Reading
Schema Definitions for an Attribute".

Reading Schema Definitions for an Attribute

The following example shows you how to read the schema definition for the cn attribute:

Using LDAP Schema
Respecting LDAP Schema

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 127

$ ldapsearch \
 --port 1389 \
 --baseDN "cn=schema" \
 --searchScope base \
 --dontWrap \
 "(&)" \
 attributeTypes \
 | grep \'cn\'
 attributeTypes: (2.5.4.3 NAME ('cn' 'commonName') SUP name X-ORIGIN 'RFC 4519')

The cn attribute inherits its definition from the name attribute. That attribute definition indicates
attribute syntax and matching rules as shown in the following example:

$ ldapsearch \
 --port 1389 \
 --baseDN "cn=schema" \
 --searchScope base \
 --dontWrap \
 "(&)" \
 attributeTypes \
 | grep \'name\'
attributeTypes: (2.5.4.41 NAME 'name' EQUALITY caseIgnoreMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{32768} X-ORIGIN 'RFC 4519')

This means that the server ignores case when matching a common name value. Use the OID to read
the syntax as shown in the following example:

$ ldapsearch \
 --port 1389 \
 --baseDN "cn=schema" \
 --searchScope base \
 --dontWrap \
 "(&)" \
 ldapSyntaxes \
 | grep 1.3.6.1.4.1.1466.115.121.1.15
ldapSyntaxes: (1.3.6.1.4.1.1466.115.121.1.15 DESC 'Directory String')

Taken together with the information for the name attribute, the common name attribute value
is a Directory String of at most 32,768 characters. For details about syntaxes, read RFC 4517,
Lightweight Directory Access Protocol (LDAP): Syntaxes and Matching Rules. That document
describes a Directory String as one or more UTF-8 characters.

4.2. Respecting LDAP Schema
For the sake of interoperability and to avoid polluting directory data, scripts and applications should
respect LDAP schema. In the simplest case, scripts and applications can use the schemas already
defined.

http://tools.ietf.org/html/rfc4517
http://tools.ietf.org/html/rfc4517

Using LDAP Schema
Respecting LDAP Schema

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 128

OpenDJ directory server does accept updates to schema definitions over LDAP while the server
is running. This means that when a new application calls for attributes that are not yet defined
by existing directory schemas, the directory administrator can easily add them as described in
"Updating Directory Schema" in the Administration Guide as long as the new definitions do not
conflict with existing definitions.

General purpose applications handle many different types of data. Such applications must manage
schema compliance at run time. Software development kits such as the Java-based OpenDJ LDAP SDK
provide mechanisms for reading schema definitions at run time and checking whether entry data is
valid according to the schema definitions.

Many scripts do not require run time schema checking. In such cases it is enough properly to handle
schema-related LDAP result codes when writing to the directory:

LDAP result code: 17 (Undefined attribute type)

The requested operation failed because it referenced an attribute that is not defined in the server
schema.

LDAP result code: 18 (Inappropriate matching)

The requested operation failed because it attempted to perform an inappropriate type of
matching against an attribute.

LDAP result code: 20 (Attribute or value exists)

The requested operation failed because it would have resulted in a conflict with an existing
attribute or attribute value in the target entry.

For example, the request tried to add a second value to a single-valued attribute.

LDAP result code: 21 (Invalid attribute syntax)

The requested operation failed because it violated the syntax for a specified attribute.

LDAP result code: 34 (Invalid DN syntax)

The requested operation failed because it would have resulted in an entry with an invalid or
malformed DN.

LDAP result code: 64 (Naming violation)

The requested operation failed because it would have violated the server's naming configuration.

For example, the request did not respect a name form definition.

LDAP result code: 65 (Object class violation)

The requested operation failed because it would have resulted in an entry that violated the server
schema.

Using LDAP Schema
Respecting LDAP Schema

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 129

For example, the request tried to remove a required attribute, or tried to add an attribute that is
not allowed.

LDAP result code: 69 (Object class mods prohibited)

The requested operation failed because it would have modified] the object classes associated with
an entry in an illegal manner.

When you encounter an error, take the time to read the additional information. The additional
information from OpenDJ directory server often suffices to allow you to resolve the problem directly.

"Object Class Violations" and "Invalid Attribute Syntax" show some common problems that can result
from schema violations.

Object Class Violations

A number of schema violations show up as object class violations. The following request fails to add
an undefined attribute:

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery
dn: uid=bjensen,ou=People,dc=example,dc=com
changetype: modify
add: undefined
undefined: This attribute is not defined.

Processing MODIFY request for uid=bjensen,ou=People,dc=example,dc=com
MODIFY operation failed
Result Code: 65 (Object Class Violation)
Additional Information: Entry uid=bjensen,ou=People,dc=example,dc=com cannot
 be modified because the resulting entry would have violated the server schema:
 Entry uid=bjensen,ou=People,dc=example,dc=com violates
 the Directory Server schema configuration because
 it includes attribute undefined which is not allowed
 by any of the objectclasses defined in that entry

The solution in this case is to make sure that the undefined attribute is defined and that it is allowed by
one of the object classes defined for the entry.

The following request fails to add a second structural object class:

Using LDAP Schema
Respecting LDAP Schema

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 130

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery
dn: uid=bjensen,ou=People,dc=example,dc=com
changetype: modify
add: objectClass
objectClass: organizationalUnit

Processing MODIFY request for uid=bjensen,ou=People,dc=example,dc=com
MODIFY operation failed
Result Code: 65 (Object Class Violation)
Additional Information: Entry uid=bjensen,ou=People,dc=example,dc=com cannot
 be modified because the resulting entry would have violated the server schema:
 Entry uid=bjensen,ou=People,dc=example,dc=com violates
 the Directory Server schema configuration because
 it includes multiple conflicting structural objectclasses
 inetOrgPerson and organizationalUnit.
 Only a single structural objectclass is allowed in an entry

The solution in this case is to define only one structural object class for the entry. Either Babs Jensen
is a person or an organizational unit, but not both.

Invalid Attribute Syntax

The following request fails to add an empty string as a common name attribute value:

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery
dn: uid=bjensen,ou=People,dc=example,dc=com
changetype: modify
add: cn
cn:

Processing MODIFY request for uid=bjensen,ou=People,dc=example,dc=com
MODIFY operation failed
Result Code: 21 (Invalid Attribute Syntax)
Additional Information: When attempting to modify entry
 uid=bjensen,ou=People,dc=example,dc=com to add one or more values
 for attribute cn, value "" was found to be invalid
 according to the associated syntax:
 The operation attempted to assign a zero-length value to an attribute
 with the directory string syntax

As mentioned in "Reading Schema Definitions for an Attribute", a Directory String has one or more
UTF-8 characters.

Using LDAP Schema
Abusing LDAP Schema

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 131

4.3. Abusing LDAP Schema
Follow the suggestions in "Respecting LDAP Schema" as much as possible. In particular follow these
rules of thumb:

• Test with your own copy of OpenDJ directory server to resolve schema issues before going live.

• Adapt your scripts and applications to avoid violating schema definitions.

• When existing schemas are not sufficient, request schema updates to add definitions that do not
conflict with any already in use.

When it is not possible to respect the schema definitions, you can sometimes work around LDAP
schema constraints without changing OpenDJ directory server configuration. The schema defines an
extensibleObject object class. The extensibleObject object class is auxiliary. It effectively allows entries
to hold any user attribute, even attributes that are not defined in the schema.

Working Around Restrictions With ExtensibleObject

The following example adds one attribute that is undefined and another that is not allowed:

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery
dn: uid=bjensen,ou=People,dc=example,dc=com
changetype: modify
add: objectClass
objectClass: extensibleObject
-
add: undefined
undefined: This attribute is not defined in the LDAP schema
.
-
add: serialNumber
serialNumber: This attribute is not allowed according to the object classes.

Processing MODIFY request for uid=bjensen,ou=People,dc=example,dc=com
MODIFY operation successful for DN uid=bjensen,ou=People,dc=example,dc=com

Use of the extensibleObject object class opens the door to abuse and can prevent interoperability.
Restrict its use to cases where no better alternative is available.

4.4. Standard Schema Included With OpenDJ Server
OpenDJ directory server provides many standard schema definitions in these LDIF files under /path/
to/opendj/config/schema:

Using LDAP Schema
Standard Schema Included With OpenDJ Server

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 132

00-core.ldif

This file contains a core set of attribute type and object class definitions from the following
Internet-Drafts, RFCs, and standards:

draft-ietf-boreham-numsubordinates
draft-findlay-ldap-groupofentries
draft-furuseth-ldap-untypedobject
draft-good-ldap-changelog
draft-ietf-ldup-subentry
draft-wahl-ldap-adminaddr
RFC 1274
RFC 2079
RFC 2256
RFC 2798
RFC 3045
RFC 3296
RFC 3671
RFC 3672
RFC 4512
RFC 4519
RFC 4523
RFC 4524
RFC 4530
RFC 5020
X.501

01-pwpolicy.ldif

This file contains schema definitions from draft-behera-ldap-password-policy (Draft 09), which
defines a mechanism for storing password policy information in an LDAP directory server.

02-config.ldif

This file contains the attribute type and objectclass definitions for use with the directory server
configuration.

03-changelog.ldif

This file contains schema definitions from draft-good-ldap-changelog, which defines a mechanism
for storing information about changes to directory server data.

03-rfc2713.ldif

This file contains schema definitions from RFC 2713, which defines a mechanism for storing
serialized Java objects in the directory server.

03-rfc2714.ldif

This file contains schema definitions from RFC 2714, which defines a mechanism for storing
CORBA objects in the directory server.

https://tools.ietf.org/html/draft-ietf-boreham-numsubordinates
https://tools.ietf.org/html/draft-findlay-ldap-groupofentries
https://tools.ietf.org/html/draft-furuseth-ldap-untypedobject
https://tools.ietf.org/html/draft-good-ldap-changelog
https://tools.ietf.org/html/draft-ietf-ldup-subentry
https://tools.ietf.org/html/draft-wahl-ldap-adminaddr
https://tools.ietf.org/html/rfc1274
https://tools.ietf.org/html/rfc2079
https://tools.ietf.org/html/rfc2256
https://tools.ietf.org/html/rfc2798
https://tools.ietf.org/html/rfc3045
https://tools.ietf.org/html/rfc3296
https://tools.ietf.org/html/rfc3671
https://tools.ietf.org/html/rfc3672
https://tools.ietf.org/html/rfc4512
https://tools.ietf.org/html/rfc4519
https://tools.ietf.org/html/rfc4523
https://tools.ietf.org/html/rfc4524
https://tools.ietf.org/html/rfc4530
https://tools.ietf.org/html/rfc5020
https://www.itu.int/rec/T-REC-X.501
https://tools.ietf.org/html/draft-behera-ldap-password-policy-09
https://tools.ietf.org/html/draft-good-ldap-changelog
https://tools.ietf.org/html/rfc2713
https://tools.ietf.org/html/rfc2714

Using LDAP Schema
Standard Schema Included With OpenDJ Server

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 133

03-rfc2739.ldif

This file contains schema definitions from RFC 2739, which defines a mechanism for storing
calendar and vCard objects in the directory server. Note that the definition in RFC 2739 contains
a number of errors, and this schema file has been altered from the standard definition in order to
fix a number of those problems.

03-rfc2926.ldif

This file contains schema definitions from RFC 2926, which defines a mechanism for mapping
between Service Location Protocol (SLP) advertisements and LDAP.

03-rfc3112.ldif

This file contains schema definitions from RFC 3112, which defines the authentication password
schema.

03-rfc3712.ldif

This file contains schema definitions from RFC 3712, which defines a mechanism for storing
printer information in the directory server.

03-uddiv3.ldif

This file contains schema definitions from RFC 4403, which defines a mechanism for storing
UDDIv3 information in the directory server.

04-rfc2307bis.ldif

This file contains schema definitions from draft-howard-rfc2307bis, which defines a mechanism
for storing naming service information in the directory server.

05-rfc4876.ldif

This file contains schema definitions from RFC 4876, which defines a schema for storing
Directory User Agent (DUA) profiles and preferences in the directory server.

05-samba.ldif

This file contains schema definitions required when storing Samba user accounts in the directory
server.

05-solaris.ldif

This file contains schema definitions required for Solaris and OpenSolaris LDAP naming services.

06-compat.ldif

This file contains the attribute type and objectclass definitions for use with the directory server
configuration.

https://tools.ietf.org/html/rfc2739
https://tools.ietf.org/html/rfc2926
https://tools.ietf.org/html/rfc3112
https://tools.ietf.org/html/rfc3712
https://tools.ietf.org/html/rfc4403
https://tools.ietf.org/html/draft-howard-rfc2307bis
https://tools.ietf.org/html/rfc4876

Working With Groups of Entries

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 134

Chapter 5

Working With Groups of Entries
OpenDJ supports several methods of grouping entries in the directory. Static groups list their
members, whereas dynamic groups look up their membership based on an LDAP filter. OpenDJ also
supports virtual static groups, which uses a dynamic group-style definition, but allows applications to
list group members as if the group were static.

When listing entries in static groups, you must also have a mechanism for removing entries from
the list when they are deleted or modified in ways that end their membership. OpenDJ makes that
possible with referential integrity functionality.

In this chapter you will learn how to:

• Create static (enumerated) groups

• Create dynamic groups based on LDAP URLs

• Create virtual static groups that make dynamic groups look like static groups

• Look up group membership efficiently

• Work with nested groups

• Make sure that when an entry is deleted or modified, OpenDJ also updates affected groups
appropriately

Tip

The examples in this chapter are written with the assumption that an ou=Groups,dc=example,dc=com entry
already exists. If you imported data from Example.ldif, then you already have the entry. If you generated data
during setup and did not create an organizational unit for groups yet, create the entry before you try the
examples:

Working With Groups of Entries
Creating Static Groups

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 135

$ ldapmodify \
 --defaultAdd \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password
dn: ou=Groups,dc=example,dc=com
objectClass: organizationalunit
objectClass: top
ou: Groups

Processing ADD request for ou=Groups,dc=example,dc=com
ADD operation successful for DN ou=Groups,dc=example,dc=com

5.1. Creating Static Groups
A static group is expressed as an entry that enumerates all the entries that belong to the group.
Static group entries grow as their membership increases.

Tip

Large static groups can be a performance bottleneck. The recommended way to avoid the issue is to use
dynamic groups instead as described in "Creating Dynamic Groups". If using dynamic groups is not an option
for a deployment with large static groups that are updated regularly, use an entry cache. For details, see
"Caching Large, Frequently Used Entries" in the Administration Guide.

Static group entries can take the standard object class groupOfNames where each member attribute value
is a distinguished name of an entry, or groupOfUniqueNames where each uniqueMember attribute value has
Name and Optional UID syntax.1 Like other LDAP attributes, member and uniqueMember attributes take
sets of unique values.

Static group entries can also have the object class groupOfEntries, which is like groupOfNames except that
it is designed to allow groups not to have members.

When creating a group entry, use groupOfNames or groupOfEntries where possible.

To create a static group, add a group entry such as the following to the directory:

1Name and Optional UID syntax values are a DN optionally followed by #BitString. The BitString, such as '0101111101'B,
serves to distinguish the entry from another entry having the same DN, which can occur when the original entry was deleted
and a new entry created with the same DN.

Working With Groups of Entries
Creating Static Groups

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 136

$ cat static.ldif
dn: cn=My Static Group,ou=Groups,dc=example,dc=com
cn: My Static Group
objectClass: groupOfNames
objectClass: top
ou: Groups
member: uid=ahunter,ou=People,dc=example,dc=com
member: uid=bjensen,ou=People,dc=example,dc=com
member: uid=tmorris,ou=People,dc=example,dc=com

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --defaultAdd \
 --filename static.ldif
Processing ADD request for cn=My Static Group,ou=Groups,dc=example,dc=com
ADD operation successful for DN cn=My Static Group,ou=Groups,dc=example,dc=com

To change group membership, modify the values of the membership attribute:

$ cat add2grp.ldif
dn: cn=My Static Group,ou=Groups,dc=example,dc=com
changetype: modify
add: member
member: uid=scarter,ou=People,dc=example,dc=com

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --filename add2grp.ldif
Processing MODIFY request for cn=My Static Group,ou=Groups,dc=example,dc=com
MODIFY operation successful for DN
 cn=My Static Group,ou=Groups,dc=example,dc=com

$ ldapsearch \
 --port 1389 \
 --baseDN dc=example,dc=com \
 "(cn=My Static Group)"
dn: cn=My Static Group,ou=Groups,dc=example,dc=com
ou: Groups
objectClass: groupOfNames
objectClass: top
member: uid=ahunter,ou=People,dc=example,dc=com
member: uid=bjensen,ou=People,dc=example,dc=com
member: uid=tmorris,ou=People,dc=example,dc=com
member: uid=scarter,ou=People,dc=example,dc=com
cn: My Static Group

Working With Groups of Entries
Creating Dynamic Groups

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 137

RFC 4519 says a groupOfNames entry must have at least one member. Although OpenDJ allows you to
create a groupOfNames without members, strictly speaking, that behavior is not standard. Alternatively,
you can use the groupOfEntries object class as shown in the following example:

$ cat group-of-entries.ldif
dn: cn=Initially Empty Static Group,ou=Groups,dc=example,dc=com
cn: Initially Empty Static Group
objectClass: groupOfEntries
objectClass: top
ou: Groups

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --defaultAdd \
 --filename group-of-entries.ldif
Processing ADD request for
 cn=Initially Empty Static Group,ou=Groups,dc=example,dc=com
ADD operation successful for DN
 cn=Initially Empty Static Group,ou=Groups,dc=example,dc=com

$ cat add-members.ldif
Now add some members to the group.
dn: cn=Initially Empty Static Group,ou=Groups,dc=example,dc=com
changetype: modify
add: member
member: uid=ahunter,ou=People,dc=example,dc=com
member: uid=bjensen,ou=People,dc=example,dc=com
member: uid=tmorris,ou=People,dc=example,dc=com
member: uid=scarter,ou=People,dc=example,dc=com

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --filename add-members.ldif
Processing MODIFY request for
 cn=Initially Empty Static Group,ou=Groups,dc=example,dc=com
MODIFY operation successful for DN
 cn=Initially Empty Static Group,ou=Groups,dc=example,dc=com

5.2. Creating Dynamic Groups
A dynamic group specifies members using LDAP URLs. Dynamic groups entries can stay small even
as their membership increases.

Dynamic group entries take the groupOfURLs object class, with one or more memberURL values specifying
LDAP URLs to identify group members.

To create a dynamic group, add a group entry such as the following to the directory.

Working With Groups of Entries
Creating Dynamic Groups

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 138

The following example builds a dynamic group of entries, effectively matching the filter "(l=San
 Francisco)" (users whose location is San Francisco). Change the filter if your data is different, and so
no entries have l: San Francisco:

$ cat dynamic.ldif
dn: cn=My Dynamic Group,ou=Groups,dc=example,dc=com
cn: My Dynamic Group
objectClass: top
objectClass: groupOfURLs
ou: Groups
memberURL: ldap:///ou=People,dc=example,dc=com??sub?l=San Francisco

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --defaultAdd \
 --filename dynamic.ldif
Processing ADD request for cn=My Dynamic Group,ou=Groups,dc=example,dc=com
ADD operation successful for DN cn=My Dynamic Group,ou=Groups,dc=example,dc=com

Group membership changes dynamically as entries change to match the memberURL values:

$ ldapsearch \
 --port 1389 \
 --baseDN dc=example,dc=com \
 "(&(uid=*jensen)(isMemberOf=cn=My Dynamic Group,ou=Groups,dc=example,dc=com))" \
 mail
dn: uid=bjensen,ou=People,dc=example,dc=com
mail: bjensen@example.com

dn: uid=rjensen,ou=People,dc=example,dc=com
mail: rjensen@example.com

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password
dn: uid=ajensen,ou=People,dc=example,dc=com
changetype: modify
replace: l
l: San Francisco

Processing MODIFY request for uid=ajensen,ou=People,dc=example,dc=com
MODIFY operation successful for DN uid=ajensen,ou=People,dc=example,dc=com
^D
$ ldapsearch \
 --port 1389 \
 --baseDN dc=example,dc=com \
 "(&(uid=*jensen)(isMemberOf=cn=My Dynamic Group,ou=Groups,dc=example,dc=com))" \
 mail
dn: uid=ajensen,ou=People,dc=example,dc=com
mail: ajensen@example.com

dn: uid=bjensen,ou=People,dc=example,dc=com
mail: bjensen@example.com

Working With Groups of Entries
Creating Virtual Static Groups

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 139

dn: uid=rjensen,ou=People,dc=example,dc=com
mail: rjensen@example.com

5.3. Creating Virtual Static Groups
OpenDJ lets you create virtual static groups, which let applications see dynamic groups as what
appear to be static groups.

The virtual static group takes auxiliary object class ds-virtual-static-group. Virtual static groups
also take either the object class groupOfNames, or groupOfUniqueNames, but instead of having member or
uniqueMember attributes, have ds-target-group-dn attributes pointing to other groups.

Generating the list of members can be resource-intensive for large groups, so by default, you cannot
retrieve the list of members. You can change this with the dsconfig command by setting the Virtual
 Static member or Virtual Static uniqueMember property:

$ dsconfig \
 set-virtual-attribute-prop \
 --port 4444 \
 --hostname opendj.example.com \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --name "Virtual Static member" \
 --set allow-retrieving-membership:true \
 --trustAll \
 --no-prompt

The following example creates a virtual static group, and reads the group entry with all members:

$ cat virtual.ldif
dn: cn=Virtual Static,ou=Groups,dc=example,dc=com
cn: Virtual Static
objectclass: top
objectclass: groupOfNames
objectclass: ds-virtual-static-group
ds-target-group-dn: cn=My Dynamic Group,ou=Groups,dc=example,dc=com

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --defaultAdd \
 --filename virtual.ldif
Processing ADD request for cn=Virtual Static,ou=Groups,dc=example,dc=com
ADD operation successful for DN cn=Virtual Static,ou=Groups,dc=example,dc=com

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(cn=Virtual Static)"
dn: cn=Virtual Static,ou=Groups,dc=example,dc=com
objectClass: groupOfNames

Working With Groups of Entries
Looking Up Group Membership

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 140

objectClass: ds-virtual-static-group
objectClass: top
member: uid=jwalker,ou=People,dc=example,dc=com
member: uid=jmuffly,ou=People,dc=example,dc=com
member: uid=tlabonte,ou=People,dc=example,dc=com
member: uid=dakers,ou=People,dc=example,dc=com
member: uid=jreuter,ou=People,dc=example,dc=com
member: uid=rfisher,ou=People,dc=example,dc=com
member: uid=pshelton,ou=People,dc=example,dc=com
member: uid=rjensen,ou=People,dc=example,dc=com
member: uid=jcampaig,ou=People,dc=example,dc=com
member: uid=mjablons,ou=People,dc=example,dc=com
member: uid=mlangdon,ou=People,dc=example,dc=com
member: uid=aknutson,ou=People,dc=example,dc=com
member: uid=bplante,ou=People,dc=example,dc=com
member: uid=awalker,ou=People,dc=example,dc=com
member: uid=smason,ou=People,dc=example,dc=com
member: uid=ewalker,ou=People,dc=example,dc=com
member: uid=dthorud,ou=People,dc=example,dc=com
member: uid=btalbot,ou=People,dc=example,dc=com
member: uid=tcruse,ou=People,dc=example,dc=com
member: uid=kcarter,ou=People,dc=example,dc=com
member: uid=aworrell,ou=People,dc=example,dc=com
member: uid=bjensen,ou=People,dc=example,dc=com
member: uid=ajensen,ou=People,dc=example,dc=com
member: uid=cwallace,ou=People,dc=example,dc=com
member: uid=mwhite,ou=People,dc=example,dc=com
member: uid=kschmith,ou=People,dc=example,dc=com
member: uid=mtalbot,ou=People,dc=example,dc=com
member: uid=tschmith,ou=People,dc=example,dc=com
member: uid=gfarmer,ou=People,dc=example,dc=com
member: uid=speterso,ou=People,dc=example,dc=com
member: uid=prose,ou=People,dc=example,dc=com
member: uid=jbourke,ou=People,dc=example,dc=com
member: uid=mtyler,ou=People,dc=example,dc=com
member: uid=abergin,ou=People,dc=example,dc=com
member: uid=mschneid,ou=People,dc=example,dc=com
cn: Virtual Static
ds-target-group-dn: cn=My Dynamic Group,ou=Groups,dc=example,dc=com

5.4. Looking Up Group Membership
OpenDJ lets you look up which groups a user belongs to by using the isMemberOf attribute:

$ ldapsearch \
 --port 1389 \
 --baseDN dc=example,dc=com \
 uid=bjensen \
 isMemberOf
dn: uid=bjensen,ou=People,dc=example,dc=com
isMemberOf: cn=My Static Group,ou=Groups,dc=example,dc=com
isMemberOf: cn=Virtual Static,ou=Groups,dc=example,dc=com
isMemberOf: cn=My Dynamic Group,ou=Groups,dc=example,dc=com

Working With Groups of Entries
Nesting Groups Within Groups

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 141

You must request isMemberOf explicitly.

5.5. Nesting Groups Within Groups
OpenDJ directory server lets you nest groups. The following example shows a group of groups of
managers and administrators:
$ cat /path/to/the-big-shots.ldif
dn: cn=The Big Shots,ou=Groups,dc=example,dc=com
cn: The Big Shots
objectClass: groupOfNames
objectClass: top
ou: Groups
member: cn=Accounting Managers,ou=groups,dc=example,dc=com
member: cn=Directory Administrators,ou=Groups,dc=example,dc=com
member: cn=HR Managers,ou=groups,dc=example,dc=com
member: cn=PD Managers,ou=groups,dc=example,dc=com
member: cn=QA Managers,ou=groups,dc=example,dc=com

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --defaultAdd \
 --filename /path/to/the-big-shots.ldif
Processing ADD request for cn=The Big Shots,ou=Groups,dc=example,dc=com
ADD operation successful for DN cn=The Big Shots,ou=Groups,dc=example,dc=com

Although not shown in the example above, OpenDJ lets you nest groups within nested groups, too.

OpenDJ lets you create dynamic groups of groups. The following example shows a group of other
groups. The members of this group are themselves groups, not users:
$ cat /path/to/group-of-groups.ldif
dn: cn=Group of Groups,ou=Groups,dc=example,dc=com
cn: Group of Groups
objectClass: top
objectClass: groupOfURLs
ou: Groups
memberURL: ldap:///ou=Groups,dc=example,dc=com??sub?ou=Groups

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --defaultAdd \
 --filename /path/to/group-of-groups.ldif
Processing ADD request for cn=Group of Groups,ou=Groups,dc=example,dc=com
ADD operation successful for DN cn=Group of Groups,ou=Groups,dc=example,dc=com

Use the isMemberOf attribute to determine what groups a member belongs to, as described in "Looking
Up Group Membership". The following example requests groups that Kirsten Vaughan belongs to:

Working With Groups of Entries
Nesting Groups Within Groups

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 142

$ ldapsearch \
 --port 1389 \
 --baseDN dc=example,dc=com \
 uid=kvaughan \
 isMemberOf
dn: uid=kvaughan,ou=People,dc=example,dc=com
isMemberOf: cn=Directory Administrators,ou=Groups,dc=example,dc=com
isMemberOf: cn=HR Managers,ou=groups,dc=example,dc=com
isMemberOf: cn=The Big Shots,ou=Groups,dc=example,dc=com

Notice that Kirsten is a member of the group of groups of managers and administrators.

Notice also that Kirsten does not belong to the group of groups. The members of that group are
groups, not users. The following example requests the groups that the directory administrators group
belongs to:

$ ldapsearch \
 --port 1389 \
 --baseDN dc=example,dc=com \
 "(cn=Directory Administrators)" \
 isMemberOf
dn: cn=Directory Administrators,ou=Groups,dc=example,dc=com
isMemberOf: cn=Group of Groups,ou=Groups,dc=example,dc=com
isMemberOf: cn=The Big Shots,ou=Groups,dc=example,dc=com

The following example shows which groups each group belong to:

$ ldapsearch \
 --port 1389 \
 --baseDN dc=example,dc=com \
 ou=Groups \
 isMemberOf
dn: ou=Groups,dc=example,dc=com

dn: cn=Accounting Managers,ou=groups,dc=example,dc=com
isMemberOf: cn=Group of Groups,ou=Groups,dc=example,dc=com
isMemberOf: cn=The Big Shots,ou=Groups,dc=example,dc=com

dn: cn=Directory Administrators,ou=Groups,dc=example,dc=com
isMemberOf: cn=Group of Groups,ou=Groups,dc=example,dc=com
isMemberOf: cn=The Big Shots,ou=Groups,dc=example,dc=com

dn: cn=HR Managers,ou=groups,dc=example,dc=com
isMemberOf: cn=Group of Groups,ou=Groups,dc=example,dc=com
isMemberOf: cn=The Big Shots,ou=Groups,dc=example,dc=com

dn: cn=PD Managers,ou=groups,dc=example,dc=com
isMemberOf: cn=Group of Groups,ou=Groups,dc=example,dc=com
isMemberOf: cn=The Big Shots,ou=Groups,dc=example,dc=com

dn: cn=QA Managers,ou=groups,dc=example,dc=com
isMemberOf: cn=Group of Groups,ou=Groups,dc=example,dc=com
isMemberOf: cn=The Big Shots,ou=Groups,dc=example,dc=com

Working With Groups of Entries
Configuring Referential Integrity

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 143

dn: cn=My Static Group,ou=Groups,dc=example,dc=com
isMemberOf: cn=Group of Groups,ou=Groups,dc=example,dc=com

dn: cn=My Dynamic Group,ou=Groups,dc=example,dc=com

dn: cn=The Big Shots,ou=Groups,dc=example,dc=com
isMemberOf: cn=Group of Groups,ou=Groups,dc=example,dc=com

dn: cn=Group of Groups,ou=Groups,dc=example,dc=com

Notice that the group of groups is not a member of itself.

5.6. Configuring Referential Integrity
When you delete or rename an entry that belongs to static groups, that entry's DN must be removed
or changed in the list of each group to which it belongs. You can configure OpenDJ to resolve
membership on your behalf after the change operation succeeds by enabling referential integrity.

Referential integrity functionality is implemented as a plugin. The referential integrity plugin is
disabled by default. To enable the plugin, use the dsconfig command:

$ dsconfig \
 set-plugin-prop \
 --port 4444 \
 --hostname opendj.example.com \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --plugin-name "Referential Integrity" \
 --set enabled:true \
 --trustAll \
 --no-prompt

With the plugin enabled, you can see OpenDJ referential integrity resolving group membership
automatically:

Working With Groups of Entries
Configuring Referential Integrity

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 144

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(cn=My Static Group)"
dn: cn=My Static Group,ou=Groups,dc=example,dc=com
ou: Groups
objectClass: groupOfNames
objectClass: top
member: uid=ahunter,ou=People,dc=example,dc=com
member: uid=bjensen,ou=People,dc=example,dc=com
member: uid=tmorris,ou=People,dc=example,dc=com
member: uid=scarter,ou=People,dc=example,dc=com
cn: My Static Group

$ ldapdelete \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 uid=scarter,ou=People,dc=example,dc=com
Processing DELETE request for uid=scarter,ou=People,dc=example,dc=com
DELETE operation successful for DN uid=scarter,ou=People,dc=example,dc=com

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(cn=My Static Group)"
dn: cn=My Static Group,ou=Groups,dc=example,dc=com
ou: Groups
objectClass: groupOfNames
objectClass: top
cn: My Static Group
member: uid=ahunter,ou=People,dc=example,dc=com
member: uid=bjensen,ou=People,dc=example,dc=com
member: uid=tmorris,ou=People,dc=example,dc=com

By default, the referential integrity plugin is configured to manage member and uniqueMember attributes.
These attributes take values that are DNs, and are indexed for equality by default for the default
backend. Before you add an additional attribute to manage, make sure that it has DN syntax and that
it is indexed for equality. OpenDJ directory server requires that the attribute be indexed because
an unindexed search for integrity would potentially consume too many of the server's resources.
Attribute syntax is explained in "Managing Schema" in the Administration Guide. For instructions on
indexing attributes, see "Configuring and Rebuilding Indexes" in the Administration Guide.

You can also configure the referential integrity plugin to check that new entries added to groups
actually exist in the directory by setting the check-references property to true. You can specify
additional criteria once you have activated the check. To ensure that entries added must match a
filter, set the check-references-filter-criteria to identify the attribute and the filter. For example, you
can specify that group members must be person entries by setting check-references-filter-criteria to
member:(objectclass=person). To ensure that entries must be located in the same naming context, set
check-references-scope-criteria to naming-context.

Working With Virtual and Collective Attributes
Virtual Attributes

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 145

Chapter 6

Working With Virtual and Collective Attributes
OpenDJ supports virtual attributes with dynamically generated values. Virtual attributes are used
by the server. You can also define your own. OpenDJ also supports standard collective attributes as
described in RFC 3671, allowing entries to share common, read-only attribute values.

In this chapter you will learn how to define virtual and collective attributes.

6.1. Virtual Attributes
Virtual attributes augment directory entries with attribute values that OpenDJ directory server
computes or obtains dynamically. Virtual attribute values do not exist in persistent storage. They help
to limit the amount of data that needs to be stored and are great for some uses, such as determining
the groups a users belongs to or adding an ETag to an entry.

Do not index virtual attributes. Virtual attribute values generated by the server when they are read.
They are not designed to be stored in a persistent index.

Since you do not index virtual attributes, searching on a virtual attribute can result in an unindexed
search. For an unindexed search OpenDJ directory server potentially has to go through all entries to
look for candidate matches. Looking through all entries is resource-intensive for large directories. By
default, OpenDJ directory server allows only the Directory Manager superuser to perform unindexed
searches. Generally avoid searches that use a simple filter with a virtual attribute. Instead, consider
the alternatives. You can assign a password policy to a group as described in "To Assign a Password
Policy to a Group" in the Administration Guide. The procedure uses a virtual attribute only in a
subtree specification filter. If you must use a virtual attribute in a search filter, use it in a complex
search filter after narrowing the search by filtering on an indexed attribute. For example, the
following filter first narrows the search based on the user's ID before checking group membership.
Make sure that the user performing the search has access to read isMemberOf in the results:

(&(uid=user-id)(isMemberOf=group-dn))

Two virtual attributes, entryDN and isMemberOf, can also be used in simple equality filters. The following
example shows how to add access to read isMemberOf and then run a search that returns the common
names for members of a group:

$ ldapmodify \
 --hostname opendj.example.com \
 --port 1389 \

http://tools.ietf.org/html/rfc3671

Working With Virtual and Collective Attributes
Virtual Attributes

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 146

 --bindDN "cn=Directory Manager" \
 --bindPassword password
dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="isMemberOf")(version 3.0;
 acl "See isMemberOf"; allow (read,search,compare) groupdn=
 "ldap:///cn=Directory Administrators,ou=Groups,dc=example,dc=com";)

Processing MODIFY request for dc=example,dc=com
MODIFY operation successful for DN dc=example,dc=com
$ ldapsearch \
 --hostname opendj.example.com \
 --port 1389 \
 --baseDN dc=example,dc=com \
 --bindDN uid=kvaughan,ou=people,dc=example,dc=com \
 --bindPassword bribery \
 "(isMemberOf=cn=Directory Administrators,ou=Groups,dc=example,dc=com)" \
 cn
dn: uid=hmiller,ou=People,dc=example,dc=com
cn: Harry Miller

dn: uid=kvaughan,ou=People,dc=example,dc=com
cn: Kirsten Vaughan

dn: uid=rdaugherty,ou=People,dc=example,dc=com
cn: Robert Daugherty

OpenDJ defines the following virtual attributes by default:

entryDN

The value is the DN of the entry.

entryUUID

Provides a universally unique identifier for the entry.

etag

Entity tag as defined in RFC 2616, useful for checking whether an entry has changed since you
last read it from the directory.

hasSubordinates

Boolean. Indicates whether the entry has children.

numSubordinates

Provides the number of direct child entries.

isMemberOf

Identifies groups the entry belongs to.

http://tools.ietf.org/html/rfc2616#section-3.11

Working With Virtual and Collective Attributes
Virtual Attributes

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 147

By default OpenDJ generates isMemberOf on user entries (entries that have the object class
person), and on group entries (entries that have the object class groupOfNames, groupOfUniqueNames, or
groupOfEntries). You can change this by editing the filter property of the isMemberOf virtual attribute
configuration.

member

Generated for virtual static groups.

uniqueMember

Generated for virtual static groups.

pwdPolicySubentry

Identifies the password policy that applies to the entry.

By default, OpenDJ directory server assigns root DN users the password policy with DN cn=Root
 Password Policy,cn=Password Policies,cn=config, and regular users the password policy with DN
cn=Default Password Policy,cn=Password Policies,cn=config. See "Configuring Password Policy" in the
Administration Guide for information on configuring and assigning password policies.

The default global access control instructions prevent this operational attribute from being visible
to normal users.

subschemaSubentry

References the schema definitions.

collectiveAttributeSubentries

References applicable collective attribute definitions.

governingStructureRule

References the rule on what type of subordinates the entry can have.

structuralObjectClass

References the structural object class for the entry.

These virtual attributes are typically operational, so you get them back from a search only when you
request them:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com dc=example
dn: dc=example,dc=com
dc: example
objectClass: domain
objectClass: top

$ ldapsearch --port 1389 --baseDN dc=example,dc=com dc=example numSubordinates
dn: dc=example,dc=com
numSubordinates: 12

Working With Virtual and Collective Attributes
Collective Attributes

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 148

You can use the existing virtual attribute types to create your own virtual attributes, and you can also
use the user-defined type to create your own virtual attribute types. The virtual attribute is defined by
the server configuration, which is not replicated:

$ dsconfig \
 create-virtual-attribute \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --name "Served By Description" \
 --type user-defined \
 --set enabled:true \
 --set attribute-type:description \
 --set base-dn:dc=example,dc=com \
 --set value:"Served by OpenDJ.Example.com" \
 --trustAll \
 --no-prompt

$ ldapsearch --port 1389 --baseDN dc=example,dc=com uid=bjensen description
dn: uid=bjensen,ou=People,dc=example,dc=com
description: Served by OpenDJ.Example.com

Collective attributes cover many use cases better than virtual attributes.

6.2. Collective Attributes
Collective attributes provide a standard mechanism for defining attributes that appear on all the
entries in a subtree potentially filtered by object class. Standard collective attribute type names have
the prefix c-.

OpenDJ extends collective attributes to make them easier to use. You can define any OpenDJ
attribute as collective using the ;collective attribute option. You can use LDAP filters in your subtree
specification for fine-grained control over which entries have the collective attributes.

You can have entries inherit attributes from other entries through collective attributes. You establish
the relationship between entries either by indicating the attribute holding the DN of the entry from
which to inherit the attributes, or by specifying how to construct the RDN of the entry from which to
inherit the attributes.

"To Add Privileges For a Group of Administrators" in the Administration Guide demonstrates setting
administrative privileges in OpenDJ using collective attributes. The following examples demonstrate
additional ways to use collective attributes:

• "Class of Service With Collective Attributes"

• "Inheriting an Attribute From the Manager's Entry"

Working With Virtual and Collective Attributes
Collective Attributes

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 149

• "Inheriting Attributes From the Locality"

Class of Service With Collective Attributes

This example defines attributes that specify services available to a user depending on their service
level.

Note

The following example depends on the cos object class, and the classOfService attribute type defined but
commented out in the file imported as sample data. To try this example for yourself, add the attribute type and
object class definitions in comments near the top of the file, and then uncomment the objectClass: cos and
classOfService attribute lines in Example.ldif before importing the data into OpenDJ.

This example positions collective attributes that depend on the classOfService attribute values:

• For entries with classOfService: bronze, mailQuota is set to 1 GB, and diskQuota is set to 10 GB.

• For entries with classOfService: silver, mailQuota is set to 5 GB, and diskQuota is set to 50 GB.

• For entries with classOfService: gold, mailQuota is set to 10 GB, and diskQuota is set to 100 GB.

You define collective attributes in the user data using a subentry. In other words, collective attributes
can be replicated. Collective attributes use attributes defined in the directory schema. First, add the
mailQuote and diskQuota attributes, and adjust the definition of the cos object class to allow the two
quota attributes:

$ cat quotas.ldif
dn: cn=schema
changetype: modify
add: attributeTypes
attributeTypes: (example-class-of-service-attribute-type NAME 'classOfService
 ' EQUALITY caseIgnoreMatch ORDERING caseIgnoreOrderingMatch SUBSTR caseIgnore
 SubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 SINGLE-VALUE USAGE user
 Applications X-ORIGIN 'OpenDJ Documentation
 Examples')
-
add: attributeTypes
attributeTypes: (example-class-of-service-disk-quota NAME 'diskQuota
 ' EQUALITY caseIgnoreMatch ORDERING caseIgnoreOrderingMatch SUBSTR case
 IgnoreSubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE user
 Applications X-ORIGIN 'OpenDJ Documentation
 Examples')
-
add: attributeTypes
attributeTypes: (example-class-of-service-mail-quota NAME 'mailQuota
 ' EQUALITY caseIgnoreMatch ORDERING caseIgnoreOrderingMatch SUBSTR case
 IgnoreSubstringsMatch SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE user
 Applications X-ORIGIN 'OpenDJ Documentation
 Examples')
-
add: objectClasses

Working With Virtual and Collective Attributes
Collective Attributes

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 150

objectClasses: (example-class-of-service-object-class NAME 'cos' SUP top AUX
 ILIARY MAY (classOfService $ diskQuota $ mailQuota) X-ORIGIN 'OpenDJ Doc
 umentation Examples')

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --filename quotas.ldif
Processing MODIFY request for cn=schema
MODIFY operation successful for DN cn=schema

Use the following collective attribute definitions to set the quotas depending on class of service:

cos.ldif: quotas by class of service
dn: cn=Bronze Class of Service,dc=example,dc=com
objectClass: collectiveAttributeSubentry
objectClass: extensibleObject
objectClass: subentry
objectClass: top
cn: Bronze Class of Service
diskQuota;collective: 10 GB
mailQuota;collective: 1 GB
subtreeSpecification: { base "ou=People", specificationFilter "(classOfService=
 bronze)" }

dn: cn=Silver Class of Service,dc=example,dc=com
objectClass: collectiveAttributeSubentry
objectClass: extensibleObject
objectClass: subentry
objectClass: top
cn: Silver Class of Service
diskQuota;collective: 50 GB
mailQuota;collective: 5 GB
subtreeSpecification: { base "ou=People", specificationFilter "(classOfService=
 silver)" }

dn: cn=Gold Class of Service,dc=example,dc=com
objectClass: collectiveAttributeSubentry
objectClass: extensibleObject
objectClass: subentry
objectClass: top
cn: Gold Class of Service
diskQuota;collective: 100 GB
mailQuota;collective: 10 GB
subtreeSpecification: { base "ou=People", specificationFilter "(classOfService=
 gold)" }

You can add the collective attribute subentries by using the ldapmodify command:

Working With Virtual and Collective Attributes
Collective Attributes

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 151

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --defaultAdd \
 --filename cos.ldif
Processing ADD request for cn=Bronze Class of Service,dc=example,dc=com
ADD operation successful for DN cn=Bronze Class of Service,dc=example,dc=com
Processing ADD request for cn=Silver Class of Service,dc=example,dc=com
ADD operation successful for DN cn=Silver Class of Service,dc=example,dc=com
Processing ADD request for cn=Gold Class of Service,dc=example,dc=com
ADD operation successful for DN cn=Gold Class of Service,dc=example,dc=com

With the collective attributes defined, you can see the results on user entries:

$ ldapsearch \
 --port 1389 \
 --baseDN dc=example,dc=com \
 uid=bjensen \
 classOfService mailQuota diskQuota
dn: uid=bjensen,ou=People,dc=example,dc=com
mailQuota: 1 GB
classOfService: bronze
diskQuota: 10 GB

$ ldapsearch \
 --port 1389 \
 --baseDN dc=example,dc=com \
 uid=kvaughan \
 classOfService mailQuota diskQuota
dn: uid=kvaughan,ou=People,dc=example,dc=com
mailQuota: 5 GB
classOfService: silver
diskQuota: 50 GB

$ ldapsearch \
 --port 1389 \
 --baseDN dc=example,dc=com \
 uid=scarter \
 classOfService mailQuota diskQuota
dn: uid=scarter,ou=People,dc=example,dc=com
mailQuota: 10 GB
classOfService: gold
diskQuota: 100 GB

Inheriting an Attribute From the Manager's Entry

This example demonstrates how to instruct OpenDJ to set an employee's department number using
the manager's department number. To try the example, first import into OpenDJ in order to load the
appropriate sample data.

Working With Virtual and Collective Attributes
Collective Attributes

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 152

For this example, the relationship between employee entries and manager entries is based on the
manager attributes on employee entries. Each manager attribute on an employee's entry specifies the
DN of the manager's entry. OpenDJ retrieves the department number from the manager's entry to
populate the attribute on the employee's entry.

The collective attribute subentry that specifies the relationship looks like this:

dn: cn=Inherit Department Number From Manager,dc=example,dc=com
objectClass: top
objectClass: subentry
objectClass: inheritedCollectiveAttributeSubentry
objectClass: inheritedFromDNCollectiveAttributeSubentry
cn: Inherit Department Number From Manager
subtreeSpecification: { base "ou=People" }
inheritFromDNAttribute: manager
inheritAttribute: departmentNumber

This entry specifies that users inherit department number from their manager.

As seen in Example.ldif, Babs Jensen's manager is Torrey Rigden:

dn: uid=bjensen,ou=People,dc=example,dc=com
manager: uid=trigden, ou=People, dc=example,dc=com

Torrey's department number is 3001:

dn: uid=trigden,ou=People,dc=example,dc=com
departmentNumber: 3001

Babs inherits her department number from Torrey:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com uid=bjensen departmentNumber
dn: uid=bjensen,ou=People,dc=example,dc=com
departmentNumber: 3001

Inheriting Attributes From the Locality

This example demonstrates how to instruct OpenDJ to set a user's language preferences and
street address based on locality. To try the example, first import into OpenDJ in order to load the
appropriate sample data.

For this example, the relationship between entries is based on locality. The collective attribute
subentry specifies how to construct the RDN of the object holding the attribute values to inherit:

Working With Virtual and Collective Attributes
Collective Attributes

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 153

dn: cn=Inherit From Locality,dc=example,dc=com
objectClass: top
objectClass: subentry
objectClass: inheritedCollectiveAttributeSubentry
objectClass: inheritedFromRDNCollectiveAttributeSubentry
cn: Inherit From Locality
subtreeSpecification: { base "ou=People" }
inheritFromBaseRDN: ou=Locations
inheritFromRDNAttribute: l
inheritFromRDNType: l
inheritAttribute: preferredLanguage
inheritAttribute: street
collectiveConflictBehavior: real-overrides-virtual

This specifies that the RDN of the entry to inherit attributes from is like l=localityName,ou=Locations,
where localityName is the value of the l (localityName) attribute on the user's entry.

In other words, if the user's entry has l: Bristol, then the RDN of the entry from which to inherit
attributes starts with l=Bristol,ou=Locations. The actual entry looks like this:

dn: l=Bristol,ou=Locations,dc=example,dc=com
objectClass: top
objectClass: locality
objectClass: extensibleObject
l: Bristol
street: 60 Queen Square
preferredLanguage: en-gb

The subentry also specifies two attributes to inherit for preferred language and street address.

The object class extensibleObject is added to allow the entry to take a preferred language.1

Notice the last line of the collective attribute subentry:
collectiveConflictBehavior: real-overrides-virtual

This line indicates that if a collective attribute clashes with a real attribute, the real value takes
precedence over the virtual, collective value. You can also set collectiveConflictBehavior to virtual-
overrides-real for the opposite precedence, or to merge-real-and-virtual to keep both sets of values.

Here, users can set their own language preferences. When users set language preferences manually,
the collective attribute subentry is configured to give the user's settings precedence over the locality-
based setting, which is only a default guess.

Sam Carter is located in Bristol. Sam has specified no preferred languages:
1The object class extensibleObject means, "Let me add whatever attributes I want." It is usually better practice to add your
own auxiliary object class if you need to decorate an entry with more attributes. The shortcut is taken here as the focus of this
example is not schema extension, but instead how to use collective attributes.

Working With Virtual and Collective Attributes
Collective Attributes

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 154

dn: uid=scarter,ou=People,dc=example,dc=com
l: Bristol

Sam inherits both the street address and also preferred language from the Bristol locality:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com uid=scarter \
 preferredLanguage street
dn: uid=scarter,ou=People,dc=example,dc=com
preferredLanguage: en-gb
street: 60 Queen Square

Babs's locality is San Francisco. Babs prefers English, but also knows Korean:

dn: uid=bjensen,ou=People,dc=example,dc=com
preferredLanguage: en, ko;q=0.8
l: San Francisco

Babs inherits the street address from the San Francisco locality, but keeps her language preferences:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com uid=bjensen \
 preferredLanguage street
dn: uid=bjensen,ou=People,dc=example,dc=com
preferredLanguage: en, ko;q=0.8
street: 500 3rd Street

Working With Referrals
About Referrals

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 155

Chapter 7

Working With Referrals

Referrals point directory clients to another directory container, which can be another directory server
running elsewhere, or another container on the same server. The client receiving a referral must then
connect to the other container to complete the request.

Note

Some clients follow referrals on your behalf by default. The OpenDJ ldapsearch command does not follow
referrals.

Referrals are used, for example, when some directory data are temporarily unavailable due to
maintenance. Referrals can also be used when a container holds only some of the directory data for a
suffix and points to other containers for branches whose data is not available locally.

In this chapter you will learn how to:

• Add referrals with the ldapmodify command

• Remove referrals with the ldapmodify command

You can also use the Manage Entries window of the control panel to handle referrals.

7.1. About Referrals
Referrals are implemented as entries with LDAP URL ref attribute values that point elsewhere.
The ref attribute type is required by the referral object class. The referral object class is structural,
however, and therefore cannot by default be added to an entry that already has a structural object
class defined. When adding a ref attribute type to an existing entry, you can use the extensibleObject
auxiliary object class.

When a referral is set, OpenDJ returns the referral to client applications requesting the affected entry
or child entries. Client applications must be capable of following the referral returned. When the
directory server responds, for example, to your search with referrals to one or more LDAP URLs, your
client then constructs new searches from the LDAP URLs returned, and tries again.

http://tools.ietf.org/html/rfc4516

Working With Referrals
Managing Referrals

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 156

7.2. Managing Referrals
To create an LDAP referral, either create a referral entry, or add the extensibleObject object class and
the ref attribute with an LDAP URL to an existing entry. This section demonstrates use of the latter
approach:

$ cat referral.ldif
dn: ou=People,dc=example,dc=com
changetype: modify
add: objectClass
objectClass: extensibleObject
-
add: ref
ref: ldap://opendj.example.com:2389/ou=People,dc=example,dc=com

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --filename referral.ldif
Processing MODIFY request for ou=People,dc=example,dc=com
MODIFY operation successful for DN ou=People,dc=example,dc=com

The example above adds a referral to ou=People,dc=example,dc=com. OpenDJ can now return a referral for
operations under the People organizational unit:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com uid=bjensen description

SearchReference(referralURLs=
 {ldap://opendj.example.com:2389/ou=People,dc=example,dc=com??sub?})

$ ldapsearch --port 1389 --baseDN dc=example,dc=com ou=people

SearchReference(referralURLs=
 {ldap://opendj.example.com:2389/ou=People,dc=example,dc=com??sub?})

To access the entry instead of the referral, use the Manage DSAIT control:

$ ldapsearch \
 --port 1389 \
 --baseDN dc=example,dc=com \
 --control ManageDSAIT:true \
 ou=people \
 ref
dn: ou=People,dc=example,dc=com
ref: ldap://opendj.example.com:2389/ou=People,dc=example,dc=com

$ cat people.ldif
dn: ou=People,dc=example,dc=com
changetype: modify
delete: ref
ref: ldap://opendj.example.com:2389/ou=People,dc=example,dc=com

Working With Referrals
Managing Referrals

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 157

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --filename people.ldif
Processing MODIFY request for ou=People,dc=example,dc=com
MODIFY operation successful for DN ou=People,dc=example,dc=com
A referral entry ou=People,dc=example,dc=com indicates that the operation must
 be processed at a different server
[ldap://opendj.example.com:2389/ou=People,dc=example,dc=com]

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --control ManageDSAIT \
 --filename people.ldif
Processing MODIFY request for ou=People,dc=example,dc=com
MODIFY operation successful for DN ou=People,dc=example,dc=com

$ ldapsearch --port 1389 --baseDN dc=example,dc=com ou=people
dn: ou=People,dc=example,dc=com
ou: People
objectClass: organizationalunit
objectClass: extensibleObject
objectClass: top

The example above shows how to remove the referral using the Manage DSAIT control with the
ldapmodify command.

Writing an OpenDJ Server Plugin
About OpenDJ Directory Server Plugins

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 158

Chapter 8

Writing an OpenDJ Server Plugin

OpenDJ directory server has many features that are implemented as server plugins. A server plugin is
a library that can be plugged in to an installed server and immediately configured for use.

In this chapter you will learn:

• Enough about the OpenDJ plugin architecture to begin writing plugins

• How to build and use the example plugin delivered with the directory server

• How the parts of the example plugin project fit together

Important

ForgeRock supports customers using standard plugins delivered as part of OpenDJ directory server.

If you deploy with custom plugins and need support in production, contact info@forgerock.com in advance to
determine how your deployment can be supported.

8.1. About OpenDJ Directory Server Plugins
OpenDJ directory server plugins are Java libraries compiled against the OpenDJ Java API. Plugins are
built to be configured as part of the server and to be invoked at specific points in the lifecycle of a
client request, or in the server process lifecycle.

Note

The OpenDJ server Java API has interface stability: Evolving, as described in "ForgeRock Product Interface
Stability" in the Reference.

This means that a server plugin built with one version of OpenDJ directory server will not necessarily work or
even compile with a different version of the server.

8.1.1. Plugin Types

Plugin types correspond to the points where the server invokes the plugin.

mailto:info@forgerock.com
../javadoc/index.html

Writing an OpenDJ Server Plugin
Plugin Configuration

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 159

For the full list of plugin invocation points, see the Javadoc for PluginType. The following list
summarizes the plugin invocation points:

• At server startup and shutdown

• Before and after data export and import

• Immediately after a client connection is established or is closed

• Before processing begins on an LDAP operation (to change an incoming request before it is
decoded)

• Before core processing for LDAP operations (to change the way the server handles the operation)

• After core processing for LDAP operations (where the plugin can access all information about the
operation including the impact it has on the targeted entry)

• When a subordinate entry is deleted as part of a subtree delete or moved or renamed as part of a
modify DN operation

• Before sending intermediate and search responses

• After sending a result

A plugin's types are specified in its configuration, and can therefore be modified at runtime.

8.1.2. Plugin Configuration

Server plugin configuration is managed with the same configuration framework that is used for
OpenDJ directory server configuration.

The OpenDJ configuration framework has these characteristics:

• LDAP schemas govern what attributes can be used in plugin configuration entries.

For all configuration attributes that are specific to a plugin, the plugin should have its own object
class and attributes defined in the server LDAP schema. Having configuration entries governed by
schemas makes it possible for the server to identify and prevent configuration errors.

For plugins, having schema for configuration attributes means that an important part of plugin
installation is making the schema definitions available to OpenDJ directory server.

• The plugin configuration is declared in XML files.

The XML specifies configuration properties and their documentation, and also inheritance
relationships.

The XML Schema Definition files (.xsd files) for the namespaces used in these documents are part
of the OpenDJ Maven Plugin. They are published as part of the source code of that module, not in
the locations corresponding to their namespace identifiers.

../javadoc/index.html?org/opends/server/api/plugin/PluginType.html

Writing an OpenDJ Server Plugin
Trying the Example Server Plugin

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 160

In other words, you can find admin.xsd, for example, in the OpenDJ source code. Its XML namespace
identifier (http://opendj.forgerock.org/admin) is not a URL that you can browse to.

For details, see also "Configuration".

• Compilation generates the server-side and client-side APIs to access the plugin configuration from
the XML.

To use the server-side APIs in a plugin project, first generate and compile them, and include the
classes on the project classpath. You can see how the opendj-maven-plugin is used to generate sources
from the XML in the example plugin project sources. The process is described in "Maven Project".

When a plugin is loaded in OpenDJ directory server, the client-side APIs are available to
configuration tools like the dsconfig command. Directory administrators can configure a custom
plugin in the same way they configure other directory server components.

• The framework supports internationalization.

A complete plugin project, such as the example plugin, therefore includes LDAP schema definitions,
XML configuration definitions, Java plugin code, and Java resource bundles.

8.2. Trying the Example Server Plugin
The example plugin is bundled with OpenDJ directory server as example-plugin.zip, which holds a
Maven-based project. The example plugin is a startup plugin that displays a "Hello World" message
when the directory server starts. For general information about OpenDJ directory server plugins,
read "About OpenDJ Directory Server Plugins". For more specific information, read "About the
Example Plugin Project Files".

Note

This version of the example plugin is new in OpenDJ directory server 3.5.

Follow these steps to try the example plugin:

1. Install OpenDJ directory server as described in "Installing OpenDJ Servers" in the Installation
Guide.

2. Install Apache Maven 3.0.5 or later.

When you finish, make sure mvn is on your PATH:

$ mvn -version
Apache Maven version
Maven home: /path/to/maven
Java version: ...

Writing an OpenDJ Server Plugin
Trying the Example Server Plugin

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 161

3. Unpack the example plugin project sources:

$ unzip /path/to/opendj/example-plugin.zip
Archive: /path/to/opendj/example-plugin.zip
 creating: opendj-server-example-plugin
/
...

4. Build the example plugin:

$ cd opendj-server-example-plugin/
$ mvn install
...
[INFO] --
[INFO] BUILD SUCCESS
[INFO] ---
-
...

5. Install the example plugin in OpenDJ directory server:

$ cd /path/to/opendj

Stop the server before installing the example plugin:
$ bin/stop-ds

Unpack the plugin files into the proper locations of the server layout,
skipping the base directory.
The following example works with bsdtar,
which might require installing a bsdtar package.
$ bsdtar -xvf \
 /path/to/opendj-server-example-plugin/target/opendj-server-example-plugin-3.5.3.zip \
 -s'|[^/]*/||'
x README.example.plugin
x config/
x config/schema/
x config/example-plugin.ldif
x config/schema/99-example-plugin.ldif
x lib/
x lib/extensions/
x lib/extensions/opendj-server-example-plugin-3.5.3.jar
x lib/extensions/...

Start the server and create the plugin configuration:
$ bin/start-ds
$ bin/dsconfig \
 create-plugin \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --plugin-name "Example Plugin" \
 --type example \
 --set enabled:true \

Writing an OpenDJ Server Plugin
About the Example Plugin Project Files

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 162

 --set plugin-type:startup \
 --trustAll \
 --no-prompt
...
INFO: Loaded extension from file
 '/path/to/opendj/lib/extensions/opendj-server-example-plugin-3.5.3.jar'
 (build <unknown>, revision <unknown>)

Notice the locations where the example plugin files are unpacked. The locations must follow the
server conventions in order for OpenDJ directory server to recognize the plugin.

For the example plugin, you see that:

• Schema definitions are unpacked into config/schema/.

• Plugin .jar files and the .jar files they depend on are unpacked into lib/extensions/.

Also notice that after the plugin configuration is created OpenDJ directory server has loaded the
plugin as an extension.

6. Restart OpenDJ directory server to see the startup message from the plugin:

$ bin/stop-ds --restart
..
.
... msg=Example plugin message 'HELLO WORLD'
.
...

7. Now that you have seen the example plugin display its message, see "About the Example Plugin
Project Files" to understand the key parts of the example plugin project.

8.3. About the Example Plugin Project Files
The example plugin project builds a server plugin that displays a "Hello World" message when
OpenDJ directory server starts, as shown in "Trying the Example Server Plugin". This section
describes the example plugin project. For general information about OpenDJ directory server plugins,
read "About OpenDJ Directory Server Plugins" instead.

Note

This version of the example plugin project is new in OpenDJ directory server 3.5.

8.3.1. Maven Project

The OpenDJ example server plugin is an Apache Maven project.

Writing an OpenDJ Server Plugin
Configuration

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 163

As you can see in the pom.xml file for the project, the plugin depends on the OpenDJ directory server
module.

The plugin project uses these ForgeRock Maven plugins:

• The i18n-maven-plugin generates message source files from properties files in the resource bundle.

This plugin must run in order to resolve static imports from com.example.opendj.ExamplePluginMessages.

• The opendj-maven-plugin generates source files, manifest files, and resource bundles from the
configuration declarations in the XML configuration files.

This plugin must run in order to resolve imports from com.example.opendj.server.ExamplePluginCfg.

8.3.2. Configuration

The example plugin has the following configuration files:

src/main/assembly/descriptor.xml

This defines how to bundle the different components of the plugin in a layout appropriate for
installation into OpenDJ directory server.

src/main/assembly/config/example-plugin.ldif

This shows an example configuration entry for the plugin.

src/main/assembly/config/schema/99-example-plugin.ldif

This defines all object classes and attribute types that are specific to the example plugin
configuration. The XML file that defines the configuration also specifies how configuration
properties map to the object class and attribute type defined here for the LDAP representation of
the configuration, using the definitions from this addition to the LDAP schema.

If your plugin has no configuration attributes of its own, then there is no need to extend the LDAP
schema.

For more information on defining your own LDAP schemas, see "Managing Schema" in the
Administration Guide.

src/main/java/com/example/opendj/ExamplePluginConfiguration.xml

This defines the configuration interface to the example plugin, and an LDAP profile that maps the
plugin configuration to an LDAP entry.

Notice that the name ends in Configuration.xml, which is the expected suffix for configuration files.

The configuration definition has these characteristics:

Writing an OpenDJ Server Plugin
Implementation Code

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 164

• The attributes of the <managed-object> element define XML namespaces, a (singular) name and
plural name for the plugin, and the Java-related inheritance of the implementation to generate.
A managed object is a configurable component of OpenDJ directory server.

A managed object definition covers the object's structure and inheritance, and is like a class in
Java. The actual managed object is like an instance of an object in Java. Its configuration maps
to a single LDAP entry in the configuration backend cn=config.

Notice that the <profile> element defines how the whole object maps to an LDAP entry in the
configuration. The <profile> element is mandatory, and should include an LDAP profile.

The name and plural-name properties are used to identify the managed object definition. They are
also used when generating Java class names. Names must be a lowercase sequence of words
separated by hyphens.

The package property specifies the Java package name for generated code.

The extends property identifies a parent definition that the current definition inherits.

• The mandatory <synopsis> element provides a brief description of the managed object.

If a longer description is required, add a <description>, which can include XHTML markup. The
<description> is used in addition to the synopsis, so there is no need to duplicate the synopsis in
the description.

• The <property> element defines a property specific to this example plugin, including its
purpose, its the default value, its type, and how the property maps to an LDAP attribute in the
configuration entry.

The name attribute is used to identify the property in the configuration.

• The <property-override> element sets the pre-defined property java-class to a specific value,
namely that of the fully qualified implementation class.

The XML-based configuration files are more powerful than this short explanation suggests.
See the documentation in the XML schema definitions for more details about the elements and
attributes.

When the example plugin project is built, generated Java properties files are written in target/
generated-resources/, and generated Java source files are written in target/generated-sources/.

src/main/java/com/example/opendj/Package.xml

This defines the package-level short description used in generated package-info.java source files.

8.3.3. Implementation Code

The plugin implementation is found in src/main/java/com/example/opendj/ExamplePlugin.java. It relies on
the OpenDJ directory server Java API.

Writing an OpenDJ Server Plugin
Implementation Code

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 165

Note

The OpenDJ server Java API has interface stability: Evolving, as described in "ForgeRock Product Interface
Stability" in the Reference.

This means that a server plugin built with one version of OpenDJ directory server will not necessarily work or
even compile with a different version of the server.

ExamplePlugin statically imports everything from the generated message implementation sources.
Resolution of ExamplePluginMessages.* fails until the implementation is generated by the i18n-maven-
plugin.

ExamplePlugin extends DirectoryServerPlugin with its own type of configuration, ExamplePluginCfg. The
implementation for ExamplePluginCfg is generated from the configuration declared in XML. Therefore,
resolution of ExamplePluginCfg fails until the sources are generated by the opendj-maven-plugin.

ExamplePlugin implements ConfigurationChangeListener so the plugin can be notified of changes to its
configuration. The plugin can then potentially update its configuration without the need to restart the
plugin or OpenDJ directory server.

The example plugin stores a reference to its configuration in the private config object. Your plugins
should follow this example.

When the server first configures the plugin, it does so by calling the initializePlugin method. This
method must do the following things:

• Perform checks that the configuration framework cannot do for the plugin, such as checking
dependencies between properties or checking system state (whether some file is writable, or if
there is sufficient disk space, for example).

The example plugin checks that its type is startup.

• Initialize the plugin, if necessary.

The example plugin has nothing to initialize.

• Register to receive configuration change notifications by using the addExampleChangeListener()
method.

• Cache the current state of the configuration.

The example plugin assigns the configuration to its private config object.

On subsequent configuration changes, the server calls the isConfigurationChangeAcceptable() method. If
the method returns true because the configuration is valid, the server calls applyConfigurationChange()
method.

Although the example plugin's isConfigurationChangeAcceptable() method always returns true, other
plugins might need to perform checks that the framework cannot, in the same way they perform
checks during initialization.

../javadoc/index.html?org/opends/server/api/plugin/DirectoryServerPlugin.html

Writing an OpenDJ Server Plugin
Internationalization

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 166

In the applyConfigurationChange() method the plugin must modify its configuration as necessary. The
example plugin can handle configuration changes without further intervention by the administrator.
Other plugins might require administrative intervention because changes can be made that can only
be taken into account at plugin initialization.

In the example plugin, the method that extends the server's behavior is the doStartup() method. Which
method is implemented depends on what class the plugin extends. For example, a password validator
extending PasswordValidator would implement a passwordIsAcceptable() method.

8.3.4. Internationalization

In the example plugin, localized messages are found in the resource bundle under src/main/resources/
com/example/opendj/.

The LocalizedLogger in the plugin implementation is capable of selecting the right messages from the
resource bundle based on the locale for the server.

If the server runs in a French locale, then the plugin can log messages in French when a translation
exists. Otherwise, it falls back to English messages, as those are the messages defined for the default
locale.

../javadoc/index.html?org/opends/server/api/PasswordValidator.html

Directory Server Developer's Guide OpenDJ 3.5 (2020-11-05T15:49:48.311517)
Copyright © 2015-2017 ForgeRock AS. All rights reserved. 167

Index

A
Authenticating, 105

C
Certificates, 111
Changing passwords, 33, 63, 104, 104
Collective attributes, 148
Commands, 74
Comparing attribute values, 92

E
Extending OpenDJ directory server, 158

G
Groups

Dynamic, 137
Membership, 140
Nested, 141
Referential integrity, 143
Static, 135
Virtual static, 139

H
HTTP, 1, 47

I
Identity mappers, 106

J
JSON, 1, 47

L
LDIF

Examples, 93

P
Passwords

Changing, 103
Plugins, 158

Ports
Settings for tools, 105

Proxied authorization, 108

R
Referrals, 155
Replication

Not for virtual attributes, 148
Resetting passwords, 34, 64, 103
REST, 1, 47

MIME types, 43

S
Schema, 124

Bundled definitions, 131
Reading definitions, 124
Respecting definitions, 127

Searching data, 79
SSL, 111
StartTLS, 111

U
Updating data, 93

Filtering, 97

V
Virtual attributes, 145

	Directory Server Developer's Guide
	Table of Contents
	Preface
	1. Using This Guide
	2. Formatting Conventions
	3. Accessing Documentation Online
	4. Using the ForgeRock.org Site

	Chapter 1. Performing RESTful Operations
	1.1. About ForgeRock Common REST
	1.1.1. Common REST Resources
	1.1.2. Common REST Verbs
	1.1.3. Common REST Parameters
	1.1.4. Common REST Extension Points
	1.1.5. Create
	1.1.6. Read
	1.1.7. Update
	1.1.8. Delete
	1.1.9. Patch
	1.1.9.1. Patch Operation: Add
	1.1.9.2. Patch Operation: Copy
	1.1.9.3. Patch Operation: Increment
	1.1.9.4. Patch Operation: Move
	1.1.9.5. Patch Operation: Remove
	1.1.9.6. Patch Operation: Replace
	1.1.9.7. Patch Operation: Transform
	1.1.9.8. Patch Operation Limitations

	1.1.10. Action
	1.1.11. Query
	1.1.12. HTTP Status Codes

	1.2. Selecting an API Version
	1.3. Authenticating Over REST
	1.4. Creating Resources
	1.5. Reading a Resource
	1.6. Updating Resources
	1.7. Deleting Resources
	1.8. Patching Resources
	1.9. Using Actions
	1.9.1. Using the Create Resource Action
	1.9.2. Using the Modify Password and Reset Password Actions
	1.9.2.1. Changing Passwords
	1.9.2.2. Resetting Passwords

	1.10. Querying Resource Collections
	1.11. Working With Alternative Content Types

	Chapter 2. Performing RESTful Operations (3.0)
	2.1. Authenticating Over REST (3.0)
	2.2. Creating Resources (3.0)
	2.3. Reading a Resource (3.0)
	2.4. Updating Resources (3.0)
	2.5. Deleting Resources (3.0)
	2.6. Patching Resources (3.0)
	2.7. Using Actions (3.0)
	2.7.1. Using the Create Resource Action (3.0)
	2.7.2. Using the Password Modify Action (3.0)

	2.8. Querying Resource Collections (3.0)

	Chapter 3. Performing LDAP Operations
	3.1. Command-Line Tools
	3.2. Searching the Directory
	3.3. Comparing Attribute Values
	3.4. Updating the Directory
	3.4.1. Adding Entries
	3.4.2. Modifying Entry Attributes
	3.4.3. Filtering Add and Modify Operations
	3.4.4. Renaming Entries
	3.4.5. Moving Entries
	3.4.6. Deleting Entries

	3.5. Changing Passwords
	3.6. Configuring Default Settings
	3.7. Authenticating To the Directory Server
	3.8. Configuring Proxied Authorization
	3.9. Authenticating Using a Certificate

	Chapter 4. Using LDAP Schema
	4.1. Getting Schema Information
	4.2. Respecting LDAP Schema
	4.3. Abusing LDAP Schema
	4.4. Standard Schema Included With OpenDJ Server

	Chapter 5. Working With Groups of Entries
	5.1. Creating Static Groups
	5.2. Creating Dynamic Groups
	5.3. Creating Virtual Static Groups
	5.4. Looking Up Group Membership
	5.5. Nesting Groups Within Groups
	5.6. Configuring Referential Integrity

	Chapter 6. Working With Virtual and Collective Attributes
	6.1. Virtual Attributes
	6.2. Collective Attributes

	Chapter 7. Working With Referrals
	7.1. About Referrals
	7.2. Managing Referrals

	Chapter 8. Writing an OpenDJ Server Plugin
	8.1. About OpenDJ Directory Server Plugins
	8.1.1. Plugin Types
	8.1.2. Plugin Configuration

	8.2. Trying the Example Server Plugin
	8.3. About the Example Plugin Project Files
	8.3.1. Maven Project
	8.3.2. Configuration
	8.3.3. Implementation Code
	8.3.4. Internationalization

	Index

