
Developer's Guide
/ OpenAM 13.5

Latest update: 13.5.2

Mark Craig
David Goldsmith
Gene Hirayama

Mike Jang
Chris Lee

Peter Major

ForgeRock AS
201 Mission St, Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2011-2018 ForgeRock AS.

Abstract

Guide to developing OpenAM client applications and service providers. OpenAM provides
open source Authentication, Authorization, Entitlement and Federation software.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, http://fontawesome.io.

This Font Software is licensed under the SIL Open Font License, Version 1.1. This license is available with a FAQ at: http://scripts.sil.org/OFL

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
http://fontawesome.io
http://scripts.sil.org/OFL

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. iii

Table of Contents
Preface .. v

1. Who Should Use This Guide .. v
2. Formatting Conventions .. v
3. Accessing Documentation Online .. vi
4. Using the ForgeRock.org Site ... vi
5. Getting Support and Contacting ForgeRock .. vi

1. OpenAM APIs and Protocols .. 1
1.1. OpenAM APIs ... 2
1.2. OpenAM SPIs ... 2
1.3. OpenAM, IPv4, and IPv6 .. 3

2. Developing Client Applications .. 4
2.1. Using the REST API ... 4
2.2. Using the OpenAM Java SDK .. 176
2.3. Using the OpenAM C SDK .. 199

3. Customizing OpenAM .. 202
3.1. Customizing Profile Attributes .. 202
3.2. Customizing OAuth 2.0 Scope Handling .. 205
3.3. Creating a Custom Authentication Module .. 210
3.4. Customizing Session Quota Exhaustion Actions .. 224
3.5. Customizing Policy Evaluation .. 228
3.6. Customizing Identity Data Storage ... 236

4. Extending OpenAM ... 243
4.1. Creating a Post Authentication Plugin .. 243
4.2. Extending UMA Workflow with Extension Points .. 247

5. Scripting OpenAM ... 251
5.1. The Scripting Environment ... 251
5.2. The Scripting API ... 255
5.3. Using the Default Scripts ... 265

6. Building SAML v2.0 Service Providers With Fedlets .. 281
6.1. Using Fedlets in Java Web Applications .. 281
6.2. Configuring Java Fedlets By Hand .. 302

7. Working With the Security Token Service ... 326
7.1. Publishing STS Instances .. 326
7.2. Consuming STS Instances ... 331
7.3. Querying, Validating, and Canceling Tokens ... 338
7.4. Extending STS to Support Custom Token Types .. 341

8. Using Secure Attribute Exchange .. 346
8.1. Installing the Samples .. 347
8.2. Preparing to Secure SAE Communications .. 347
8.3. Securing the Identity Provider Side .. 348
8.4. Securing the Service Provider Side .. 349
8.5. Trying It Out .. 350

A. Deprecated REST APIs .. 351
A.1. Deprecated Session Information APIs ... 351

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. iv

A.2. Deprecated Self-Service APIs ... 351
Index ... 359

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. v

Preface
This guide demonstrates how to handle sessions to permit single sign-on and single logout in
OpenAM client applications. This guide further demonstrates how to use the OpenAM APIs including
both APIs for client applications, and also SPIs for authentication, policy, service management,
delegation, and identity storage. Finally, this guide demonstrates how to write your own web policy
agent.

1. Who Should Use This Guide
This guide is written for developers who adapt client applications to use OpenAM access management
capabilities. It is also written for designers and developers extending and integrating OpenAM
services for their organizations.

You do not need to be an OpenAM wizard to learn something from this guide, though a background in
access management and developing web applications or developing for web and application servers
can help. You can nevertheless get started with this guide, and then learn more as you go along.

2. Formatting Conventions
Most examples in the documentation are created in GNU/Linux or Mac OS X operating environments.
If distinctions are necessary between operating environments, examples are labeled with the
operating environment name in parentheses. To avoid repetition file system directory names are
often given only in UNIX format as in /path/to/server, even if the text applies to C:\path\to\server as
well.

Absolute path names usually begin with the placeholder /path/to/. This path might translate to /opt/,
C:\Program Files\, or somewhere else on your system.

Command-line, terminal sessions are formatted as follows:
$ echo $JAVA_HOME
/path/to/jdk

Command output is sometimes formatted for narrower, more readable output even though formatting
parameters are not shown in the command.

Program listings are formatted as follows:

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. vi

class Test {
 public static void main(String [] args) {
 System.out.println("This is a program listing.");
 }
}

3. Accessing Documentation Online
ForgeRock publishes comprehensive documentation online:

• The ForgeRock Knowledge Base offers a large and increasing number of up-to-date, practical
articles that help you deploy and manage ForgeRock software.

While many articles are visible to community members, ForgeRock customers have access to much
more, including advanced information for customers using ForgeRock software in a mission-critical
capacity.

• ForgeRock product documentation, such as this document, aims to be technically accurate and
complete with respect to the software documented. It is visible to everyone and covers all product
features and examples of how to use them.

4. Using the ForgeRock.org Site
The ForgeRock.org site has links to source code for ForgeRock open source software, as well as links
to the ForgeRock forums and technical blogs.

If you are a ForgeRock customer, raise a support ticket instead of using the forums. ForgeRock
support professionals will get in touch to help you.

5. Getting Support and Contacting ForgeRock
ForgeRock provides support services, professional services, training through ForgeRock University,
and partner services to assist you in setting up and maintaining your deployments. For a general
overview of these services, see https://www.forgerock.com.

ForgeRock has staff members around the globe who support our international customers
and partners. For details, visit https://www.forgerock.com, or send an email to ForgeRock at
info@forgerock.com.

https://backstage.forgerock.com/knowledge/kb
https://forgerock.org
https://www.forgerock.com
https://www.forgerock.com
mailto:info@forgerock.com

OpenAM APIs and Protocols

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 1

Chapter 1

OpenAM APIs and Protocols
Although policy agents and standards support make it possible for applications to use OpenAM for
access management without changing your code, some deployments require tighter integration, or
direct use of supported protocols and OpenAM APIs.

OpenAM supports a range of protocols and APIs that allow you not only to define specifically how
access is managed in your client applications, but also to extend OpenAM capabilities to meet even
those deployment requirements not yet covered in OpenAM.

This short chapter presents an overview of the APIs and protocols that OpenAM supports.

This guide primarily covers the OpenAM client APIs and SPIs, with an emphasis on the Java APIs.

OpenAM APIs and Protocols
OpenAM APIs

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 2

1.1. OpenAM APIs
OpenAM provides client application programming interfaces for a variety of needs.

• The OpenAM Java APIs provided through the OpenAM Java SDK let your Java and Java EE
applications call on OpenAM for authentication, and authorization in both OpenAM and federated
environments.

Detailed reference information is provided in the OpenAM Java SDK API Specification.

• The C SDK also provides APIs for native applications, such as new web server policy agents. The C
SDK is delivered with OpenAM for Linux, Solaris, and Windows platforms.

• OpenAM exposes a RESTful API that can return JSON or XML over HTTP, allowing you to access
authentication, authorization, and identity services from your web applications using REST clients
in the language of your choice.

1.2. OpenAM SPIs
OpenAM provides Java based service provider interfaces to let you extend services for the
requirements of your particular deployment.

Some examples of the plugins you can write follow in the list below. This guide demonstrates how to
implement such plugins.

• Custom OAuth 2.0 scopes plugins define how OpenAM, when playing the role of authorization
server, handles scopes, including which token information to return for scopes set when
authorization was granted.

• Custom authentication plugins let OpenAM authenticate users against a new authentication service
or an authentication service specific to your deployment

• Post authentication plugins perform additional processing at the end of the authentication process,
but before the subject is authenticated. Post authentication plugins can, for example, store
information about the authentication in the user's profile, or call another system for audit logging
purposes.

• Policy evaluation plugins implement new policy conditions, send attributes from the user profile
as part of a policy response, extend the definition of the subjects to whom the policy applies, or
customize how policy management is delegated.

• Identity repository plugins let OpenAM employ a new or custom user data store, other than a
directory server or JDBC-accessible database.

../apidocs

OpenAM APIs and Protocols
OpenAM, IPv4, and IPv6

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 3

1.3. OpenAM, IPv4, and IPv6
OpenAM provides functionality for IPv4, IPv6, and a hybrid of the two. While the majority of the
interaction is done on the backend, there are a few places where the GUI requires some inputs, such
as setting up policy conditions. These areas follow the same standard that applies to IPv4 and IPv6.
IPv4 uses a 32-bit integer value, with a dot-decimal system. IPv6 uses a hexadecimal system, and the
eight groups of hexadecimal digits are separated by a colon.

Developing Client Applications
Using the REST API

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 4

Chapter 2

Developing Client Applications
Client applications access OpenAM services for authentication, authorization, and single sign-
on/single logout through the use of sessions. Client applications can also be allowed to manage
authorization policies.

Client application integration with OpenAM can be coupled loosely, as in the case of an application
running in a web server with an OpenAM policy agent to handle interaction with OpenAM service,
more directly, as in the case where the client interacts with OpenAM over protocol, or tightly, as in
the case of an application using the OpenAM Java or C API to interact with OpenAM services.

This chapter covers client interaction with OpenAM using OpenAM APIs over supported protocols.

2.1. Using the REST API
This section shows how to use the OpenAM RESTful interfaces for direct integration between web
client applications and OpenAM.

2.1.1. About the RESTful APIs
Representational State Transfer (REST) is an architectural style that sets certain constraints for
designing and building large-scale distributed hypermedia systems.

As an architectural style, REST has very broad applications. The designs of both HTTP 1.1 and
URIs follow RESTful principles. The World Wide Web is no doubt the largest and best known REST
application. Many other web services also follow the REST architectural style. Examples include
OAuth 2.0, OpenID Connect 1.0, and User-Managed Access (UMA) 1.0.

ForgeRock Common REST (CREST) applies RESTful principles to define common verbs for HTTP-
based APIs that access web resources and collections of web resources.

Native OpenAM REST APIs in version 11.0.0 and later use the CREST verbs. (In contrast, OAuth
2.0, OpenID Connect 1.0 and UMA 1.0 APIs follow their respective standards.) APIs covered in
Deprecated REST APIs predate CREST, do not use the CREST verbs, and are deprecated in OpenAM
13.5.2-15.

When using a CREST API, you use the common verbs as query string parameters in resource and
resource collection URIs.

CREST APIs use these verbs:

http://en.wikipedia.org/wiki/Representational_state_transfer

Developing Client Applications
About the RESTful APIs

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 5

create

Add a new resource.

Create maps to HTTP POST (or PUT).

read

Retrieve a single resource.

Read maps to HTTP GET.

update

Replace an existing resource.

Update maps to HTTP PUT.

delete

Remove an existing resource.

Delete maps to HTTP DELETE.

patch

Modify part of an existing resource

Patch maps to HTTP PATCH.

_action

Perform a predefined action.

Action maps to HTTP POST.

The generic _action verb extends the API's capabilities where none of the other standard CREST
verbs fit, as in _action=logout.

query

Search a collection of resources.

Query maps to HTTP GET.

CRUDPAQ is an acronym for the verbs. Notice that reserved words in CREST, such as the verbs, start
with underscores (_).

In CREST, you can address resources in collections of resources by their unique identifiers, their IDs.
IDs are exposed in the resource URIs as in /users/id and /groups/id. The ID is also in the _id field of the
resource.

Developing Client Applications
About the RESTful APIs

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 6

In CREST, resources are versioned using revision numbers. A revision is specified in the resource's
_rev field. Revisions make it possible to figure out whether to apply changes without resource locking
and without distributed transactions.

In CREST, you can explicitly request API versions. This means that OpenAM can continue to support
older API versions as well as newer API versions as developers migrate their applications to take
advantage of capabilities provided by newer APIs.

Interface Stability: Evolving

OpenAM offers RESTful APIs for access and identity management as follows:

• Authentication and Logout

• Token Validation and Session Information

• Logging

• REST Goto URL Validation

• REST Status Codes

• RESTful Authorization and Policy Management Services

• OAuth 2.0

• OpenID Connect 1.0

• User-Managed Access (UMA)

• Registering Users

• Retrieving Forgotten Usernames

• Replacing Forgotten Passwords

• Displaying Dashboard Applications

• Resetting Device Profiles

• Identity Management

• Realm Management

• Script Management

• Security Token Service

• Troubleshooting Information Recording

In this section, long URLs are wrapped to fit the printed page, as some of the output is formatted for
easier reading.

Developing Client Applications
REST API Versioning

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 7

2.1.2. REST API Versioning

In OpenAM 12.0.0 and later, REST API features are assigned version numbers.

Providing version numbers in the REST API helps ensure compatibility between OpenAM releases.
The version number of a feature increases when OpenAM introduces a non-backwards-compatible
change that affects clients making use of the feature.

OpenAM provides versions for the following aspects of the REST API.

resource

Any changes to the structure or syntax of a returned response will incur a resource version
change. For example changing errorMessage to message in a JSON response.

protocol

Any changes to the methods used to make REST API calls will incur a protocol version change.
For example changing _action to $action in the required parameters of an API feature.

2.1.2.1. Supported REST API Versions

The REST API version numbers supported in OpenAM 13.5.2-15 are as follows:

Supported protocol versions

The protocol versions supported in OpenAM 13.5.2-15 are:

1.0

Supported resource versions

The resource versions supported in OpenAM 13.5.2-15 are shown in the following table.

Supported resource Versions

Base End Point Supported Versions
/json /authenticate 1.1, 2.0

/users 1.1, 1.2, 2.0, 2.1, 3.0
/groups 1.1, 2.0, 2.1, 3.0
/agents 1.1, 2.0, 2.1, 3.0
/realms 1.0
/dashboard 1.0
/sessions 1.1
/serverinfo/* 1.1

Developing Client Applications
REST API Versioning

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 8

Base End Point Supported Versions
/users/{user}/devices/trusted 1.0
/users/{user}/uma/policies 1.0
/applications 1.0, 2.0
/resourcetypes 1.0
/policies 1.0, 2.0
/applicationtypes 1.0
/conditiontypes 1.0
/subjecttypes 1.0
/subjectattributes 1.0
/decisioncombiners 1.0
/subjectattributes 1.0

/xacml /policies 1.0
/frrest /token 1.0

/client 1.0

The OpenAM Release Notes section, "Changes and Deprecated Functionality" in the Release Notes
describes the differences between API versions.

2.1.2.2. Specifying an Explicit REST API Version

You can specify which version of the REST API to use by adding an Accept-API-Version header to the
request, as in the following example, which is requesting resource version 2.0 and protocol version
1.0:

$ curl \
 --request POST \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 https://openam.example.com:8443/openam/json/authenticate

You can configure the default behavior OpenAM will take when a REST call does not specify explicit
version information. For more information, see "Configuring REST APIs" in the Administration Guide.

2.1.2.3. REST API Versioning Messages

OpenAM provides REST API version messages in the JSON response to a REST API call. You can also
configure OpenAM to return version messages in the response headers. See "Configuring REST APIs"
in the Administration Guide.

Messages include:

Developing Client Applications
REST API Versioning

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 9

• Details of the REST API versions used to service a REST API call.

• Warning messages if REST API version information is not specified or is incorrect in a REST API
call.

The resource and protocol version used to service a REST API call are returned in the Content-API-
Version header, as shown below:

$ curl \
 -i \
 --request POST \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 https://openam.example.com:8443/openam/json/authenticate

HTTP/1.1 200 OK
Content-API-Version: protocol=1.0,resource=2.0
Server: Restlet-Framework/2.1.7
Content-Type: application/json;charset=UTF-8

{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console"
}

If the default REST API version behavior is set to None, and a REST API call does not include the
Accept-API-Version header, or does not specify a resource version, then a 400 Bad Request status code is
returned, as shown below:

$ curl \
 --header "Content-Type: application/json" \
 --header "Accept-API-Version: protocol=1.0" \
 https://openam.example.com:8443/openam/json/serverinfo/*

{
 "code":400,
 "reason":"Bad Request",
 "message":"No requested version specified and behavior set to NONE."
}

If a REST API call does include the Accept-API-Version header, but the specified resource or protocol
version does not exist in OpenAM, then a 404 Not Found status code is returned, as shown below:

$ curl \
 --header "Content-Type: application/json" \
 --header "Accept-API-Version: protocol=1.0, resource=999.0" \
 https://openam.example.com:8443/openam/json/serverinfo/*

{
 "code":404,
 "reason":"Not Found",
 "message":"Accept-API-Version: Requested version \"999.0\" does not match any routes."
}

Developing Client Applications
Token Encoding

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 10

Tip

For more information on setting the default REST API version behavior, see "Configuring REST APIs" in the
Administration Guide.

2.1.3. Token Encoding

Valid tokens in OpenAM requires configuration either in percent encoding or in C66Encode format.
C66Encode format is encouraged. It is the default token format for OpenAM, and is used in this
section. The following is an example token that has not been encoded:
AQIC5wM2LY4SfczntBbXvEAOuECbqMY3J4NW3byH6xwgkGE=@AAJTSQACMDE=#

This token includes reserved characters such as +, /, and = (The @, #, and * are not reserved characters
per se, but substitutions are still required). To c66encode this token, you would substitute certain
characters for others, as follows:

+ is replaced with -
/ is replaced with _
= is replaced with .
@ is replaced with *
is replaced with *
* (first instance) is replaced with @
* (subsequent instances) is replaced with #

In this case, the translated token would appear as shown here:
AQIC5wM2LY4SfczntBbXvEAOuECbqMY3J4NW3byH6xwgkGE.*AAJTSQACMDE.*

2.1.4. Specifying Realms in REST API Calls

This section describes how to work with realms when making REST API calls to OpenAM.

Realms can be specified in three ways when making a REST API call to OpenAM:

DNS Alias

When making a REST API call, the DNS alias of a realm can be specified in the subdomain and
domain name components of the REST endpoint.

To list all users in the top-level realm use the DNS alias of the OpenAM instance, for example the
REST endpoint would be:
https://openam.example.com:8443/openam/json/users?_queryId=*

To list all users in a realm with DNS alias suppliers.example.com the REST endpoint would be:
https://suppliers.example.com:8443/openam/json/users?_queryId=*

Developing Client Applications
Specifying Realms in REST API Calls

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 11

Path

When making a REST API call, the realm, or realm alias, can be specified in the path component
of the REST endpoint.

To authenticate a user in the top-level realm the REST endpoint would be:
https://openam.example.com:8443/openam/json/authenticate

To authenticate a user in a realm named customers the REST endpoint would be:
https://openam.example.com:8443/openam/json/customers/authenticate

Subrealms are supported and should be separated with a forward slash (/).

For example, to authenticate to a subrealm named europe of a realm named partners, the REST
endpoint would be:
https://openam.example.com:8443/openam/json/partners/europe/authenticate

Query Parameter

When making a REST API call the realm, or realm alias, can be specified as the value of a query
parameter named realm.

To list the groups in the top-level realm the REST endpoint would be:
https://openam.example.com:8443/openam/json/groups?_queryId=*

To list the groups in a realm named partners the REST endpoint would be:
https://openam.example.com:8443/openam/json/groups?realm=/partners&_queryId=*

Important

When working with a named subrealm of the top-level realm a forward slash preceeding the realm name is
required. You should not use a forward slash when using a realm alias.

Subrealms are supported and should be separated with a forward slash (/).

To authenticate a user in a subrealm named europe of a realm named partners the REST endpoint
would be:
https://openam.example.com:8443/openam/json/authenticate?realm=/partners/europe

If more than one of the above methods is used to specify realms in a REST endpoint, OpenAM applies
the following rules to determine the realm to use.

1. If realms are specified using both the DNS alias and path methods, they are concatenated
together.

For example, the following REST endpoint returns users in a subrealm named europe of a realm
with DNS alias suppliers.

Developing Client Applications
Authentication and Logout

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 12

https://suppliers.example.com:8443/openam/json/europe/users?_queryId=*

2. If realms are specified using the realm query parameter, they override anything specified in either
the DNS alias or path method.

For example, the following REST endpoint returns users in a subrealm of the customers realm,
named asia.
https://suppliers.example.com:8443/openam/json/europe/users?realm=/customers/asia&_queryId=*

2.1.5. Authentication and Logout
You can use REST-like APIs under /json/authenticate and /json/sessions for authentication and for
logout.

The /json/authenticate endpoint does not support the CRUDPAQ verbs and therefore does not
technically satisfy REST architectural requirements. The term REST-like describes this endpoint
better than REST.

The simplest user name/password authentication returns a tokenId that applications can present as
a cookie value for other operations that require authentication. The type of tokenId returned varies
depending on whether stateless sessions are enabled in the realm to which the user authenticates:

• If stateless sessions are not enabled, the tokenId is an OpenAM SSO token.

• If stateless sessions are enabled, the tokenId is an OpenAM SSO token that includes an encoded
OpenAM session.

Developers should be aware that the size of the tokenId for stateless sessions—2000 bytes or greater
—is considerably longer than for stateful sessions—approximately 100 bytes. For more information
about stateful and stateless session tokens, see "Session Cookies" in the Administration Guide.

When authenticating with a user name and password, use HTTP POST to prevent the web container
from logging the credentials. Pass the user name in an X-OpenAM-Username header, and the password in
an X-OpenAM-Password header:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 --data "{}" \
 https://openam.example.com:8443/openam/json/authenticate
{ "tokenId": "AQIC5w...NTcy*", "successUrl": "/openam/console" }

To use UTF-8 user names and passwords in calls to the /json/authenticate endpoint, base64-encode the
string, and then wrap the string as described in RFC 2047:
encoded-word = "=?" charset "?" encoding "?" encoded-text "?="

For example, to authenticate using a UTF-8 username, such as ɗëɱø, perform the following steps:

https://www.ietf.org/rfc/rfc2047.txt

Developing Client Applications
Authentication and Logout

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 13

1. Encode the string in base64 format: yZfDq8mxw7g=.

2. Wrap the base64-encoded string as per RFC 2047: =?UTF-8?B?yZfDq8mxw7g=?=.

3. Use the result in the X-OpenAM-Username header passed to the authentication endpoint as follows:
$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "X-OpenAM-Username: =?UTF-8?B?yZfDq8mxw7g=?="
 \
--header "X-OpenAM-Password: changeit"
 \
--data "{}" \
https://openam.example.com:8443/openam/json/authenticate
 {
 "tokenId": "AQIC5w...NTcy*",
 "successUrl": "/openam/console"
 }

This zero page login mechanism works only for name/password authentication. If you include a POST
body with the request, it must be an empty JSON string as shown in the example. Alternatively, you
can leave the POST body empty. Otherwise, OpenAM interprets the body as a continuation of an
existing authentication attempt, one that uses a supported callback mechanism.

The authentication service at /json/authenticate supports callback mechanisms that make it possible to
perform other types of authentication in addition to simple user name/password login.

Callbacks that are not completed based on the content of the client HTTP request are returned in
JSON as a response to the request. Each callback has an array of output suitable for displaying to the
end user, and input which is what the client must complete and send back to OpenAM. The default is
still user name/password authentication:

$ curl \
 --request POST \
 https://openam.example.com:8443/openam/json/authenticate
{
 "authId": "...jwt-value...",
 "template": "",
 "stage": "DataStore1",
 "callbacks": [
 {
 "type": "NameCallback",
 "output": [
 {
 "name": "prompt",
 "value": " User Name: "
 }
],
 "input": [
 {
 "name": "IDToken1",
 "value": ""
 }

Developing Client Applications
Authentication and Logout

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 14

]
 },
 {
 "type": "PasswordCallback",
 "output": [
 {
 "name": "prompt",
 "value": " Password: "
 }
],
 "input": [
 {
 "name": "IDToken2",
 "value": ""
 }
]
 }
]
}

The authID value is a JSON Web Token (JWT) that uniquely identifies the authentication context to
OpenAM, and so must also be sent back with the requests.

To respond to the callback, send back the JSON object with the missing values filled, as in this case
where the user name is demo and the password is changeit:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --data '{ "authId": "...jwt-value...", "template": "", "stage": "DataStore1",
 "callbacks": [{ "type": "NameCallback", "output": [{ "name": "prompt",
 "value": " User Name: " }], "input": [{ "name": "IDToken1", "value": "demo" }] },
 { "type": "PasswordCallback", "output": [{ "name": "prompt", "value": " Password: " }],
 "input": [{ "name": "IDToken2", "value": "changeit" }] }] }' \
 https://openam.example.com:8443/openam/json/authenticate

{ "tokenId": "AQIC5wM2...U3MTE4NA..*", "successUrl": "/openam/console" }

The response is a token ID holding the SSO token value.

Alternatively, you can authenticate without requesting a session using the noSession query string
parameter:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --data '{ "authId": "...jwt-value...", "template": "", "stage": "DataStore1",
 "callbacks": [{ "type": "NameCallback", "output": [{ "name": "prompt",
 "value": " User Name: " }], "input": [{ "name": "IDToken1", "value": "demo" }] },
 { "type": "PasswordCallback", "output": [{ "name": "prompt", "value": " Password: " }],
 "input": [{ "name": "IDToken2", "value": "changeit" }] }] }' \
 https://openam.example.com:8443/openam/json/authenticate?noSession=true

{ "message": "Authentication Successful", "successUrl": "/openam/console" }

Developing Client Applications
Authentication and Logout

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 15

OpenAM can be configured to return a failure URL value when authentication fails. No failure URL
is configured by default. The Default Failure Login URL can be configured for the "Configuring Core
Authentication Attributes" in the Administration Guide authentication module. Alternatively, failure
URLs can be configured per authentication chain, which your client can specify using the service
parameter described below. On failure OpenAM then returns HTTP status code 401 Unauthorized,
and the JSON in the reply indicates the failure URL:

$ curl \
 --request POST \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: badpassword" \
 https://openam.example.com:8443/openam/json/authenticate
{
 "code":401,
 "reason":"Unauthorized",
 "message":"Invalid Password!!",
 "failureUrl": "http://www.example.com/401.html"
}

To specify a realm in your request, first make sure that the name of your realm does not match an
endpoint name to avoid any potential routing errors. Then, specify the realm in one of two ways. For
example, if you have a realm titled myRealm, you can use it in your request as follows:

• Using the realm in the URI to the endpoint (preferred method):
https://openam.example.com:8443/openam/json/myRealm/authenticate

• Using the realm query string parameter:
https://openam.example.com:8443/openam/json/authenticate?realm=myRealm

You can use the authIndexType and authIndexValue query string parameters as a pair to provide
additional information about how you are authenticating. The authIndexType can be one of the following
types:

composite

Set the value to a composite advice string.

level

Set the value to the authentication level.

module

Set the value to the name of an authentication module.

resource

Set the value to a URL protected by an OpenAM policy.

role

Set the value to an OpenAM role.

Developing Client Applications
Authentication and Logout

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 16

service

Set the value to the name of an authentication chain.

user

Set the value to an OpenAM user ID.

You can use the query string parameter, sessionUpgradeSSOTokenId=tokenId, to request session upgrade.
For an explanation of session upgrade, see "Authentication Levels and Session Upgrade" in the
Administration Guide.

OpenAM uses the following callback types depending on the authentication module in use:

• ChoiceCallback: Used to display a list of choices and retrieve the selected choice.

• ConfirmationCallback: Used to ask for a confirmation such as Yes, No, or Cancel and retrieve the
selection.

• HiddenValueCallback: Used to return form values that are not visually rendered to the end user.

• HttpCallback: Used for HTTP handshake negotiations.

• LanguageCallback: Used to retrieve the locale for localizing text presented to the end user.

• NameCallback: Used to retrieve a name string.

• PasswordCallback: Used to retrieve a password value.

• RedirectCallback: Used to redirect the client user-agent.

• ScriptTextOutputCallback: Used to insert a script into the page presented to the end user. The script
can, for example, collect data about the user's environment.

• TextInputCallback: Used to retrieve text input from the end user.

• TextOutputCallback: Used to display a message to the end user.

• X509CertificateCallback: Used to retrieve the content of an x.509 certificate.

Authenticated users can log out with the token cookie value and an HTTP POST to /json/sessions/?
_action=logout:

$ curl \
 --request POST \
 --header "iplanetDirectoryPro: AQIC5wM2...U3MTE4NA..*" \
 "https://openam.example.com:8443/openam/json/sessions/?_action=logout"

{"result":"Successfully logged out"}

Developing Client Applications
Using the Session Token After Authentication

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 17

2.1.5.1. Load Balancer and Proxy Layer Requirements

When authentication depends on the client IP address and OpenAM lies behind a load balancer or
proxy layer, configure the load balancer or proxy to send the address by using the X-Forwarded-For
header, and configure OpenAM to consume and forward the header as necessary. For details, see
"Handling HTTP Request Headers" in the Installation Guide.

2.1.5.2. Windows Desktop SSO Requirements

When authenticating with Windows Desktop SSO, add an Authorization header containing the
string Basic , followed by a base64-encoded string of the username, a colon character, and the
password. In the following example, the credentials demo:changeit are base64-encoded into the string
ZGVtbzpjaGFuZ2VpdA==:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 --header "Authorization: Basic ZGVtbzpjaGFuZ2VpdA==" \
 --data "{}" \
 https://openam.example.com:8443/openam/json/authenticate

{ "tokenId": "AQIC5w...NTcy*", "successUrl": "/openam/console" }

2.1.6. Using the Session Token After Authentication

The following is a common scenario when accessing OpenAM by using REST API calls:

• First, call the /json/authenticate endpoint to log a user in to OpenAM. This REST API call returns a
tokenID value, which is used in subsequent REST API calls to identify the user:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 --data "{}" \
 https://openam.example.com:8443/openam/json/authenticate

{ "tokenId": "AQIC5w...NTcy*", "successUrl": "/openam/console" }

The returned tokenID is known as a session token (also referred to as an SSO token). REST API
calls made after successful authentication to OpenAM must present the session token in the HTTP
header as proof of authentication.

• Next, call one or more additional REST APIs on behalf of the logged-in user. Each REST API call
passes the user's tokenID back to OpenAM in the HTTP header as proof of previous authentication.

Developing Client Applications
Filtering, Sorting, and Paging Results

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 18

The following is a partial example of a curl command that inserts the token ID returned from a prior
successful OpenAM authentication attempt into the HTTP header:

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "iPlanetDirectoryPro: AQIC5w...NTcy*"
 \
--data '{
 ...

Observe that the session token is inserted into a header field named iPlanetDirectoryPro. This
header field name must correspond to the name of the OpenAM session cookie—by default,
iPlanetDirectoryPro. You can find the cookie name in the OpenAM console by navigating to
Deployment > Servers > Server Name > Security > Cookie, in the Cookie Name field of the
OpenAM console.

Once a user has authenticated, it is not necessary to insert login credentials in the HTTP header in
subsequent REST API calls. Note the absence of X-OpenAM-Username and X-OpenAM-Password headers in
the preceding example.

Users are required to have appropriate privileges in order to access OpenAM functionality using
the REST API. For example, users who lack administrative privileges cannot create OpenAM
realms. For more information on the OpenAM privilege model, see "Managing Realms" in the
Administration Guide.

• Finally, call the REST API to log the user out of OpenAM as described in "Authentication and
Logout". As with other REST API calls made after a user has authenticated, the REST API call to log
out of OpenAM requires the user's tokenID in the HTTP header.

2.1.7. Filtering, Sorting, and Paging Results

Some OpenAM endpoints support additional query string parameters when querying the REST APIs
to manipulate the returned data.

The query string parameters for manipulating returned results are:

_queryFilter

The _queryFilter parameter can take true to return every result, false to return no results, or a
filter of the following form to match field values: field operator value where field represents the
field name, operator is the operator code, value is the value to match, and the entire filter is URL-
encoded.

Developing Client Applications
Filtering, Sorting, and Paging Results

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 19

Note

Supported fields and operator codes vary depending on the endpoint.

The operators codes are as follows:

• co: contains

• eq: equals

• ge: greater than or equal to

• gt: greater than

• le: less than or equal to

• lt: less than

• pr: field exists, field is present

Note

Do not set a value when using this operator.

• sw: starts with

Filters can be composed of multiple expressions by a using boolean operator AND, OR, or ! (NOT)
and by using parentheses, (expression) to group expressions.

Regular expressions are implemented for some operators, so you can create a filter that includes
or excludes certain records.

You must URL-encode the filter expression in _queryFilter=filter.

The following example returns resource types with a name that contains Service and also has a
pattern that starts with http:

$ curl \
--header "iPlanetDirectoryPro: AQIC5..."
 \
--get
 \
--data-urlencode \
'_queryFilter=name co "Service" and patterns sw "http"' \
https://openam.example.com:8443/openam/json/resourcetypes

_fields

You can use _fields=field-name[,field-name...] to limit the fields returned in the output.

Developing Client Applications
Server Information

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 20

The following example returns the name and creationDate of all policies in the top level realm:

$ curl \
--header "iPlanetDirectoryPro: AQIC5..."
 \
--get
 \
--data-urlencode '_queryFilter=true'
 \
--data-urlencode '_fields=name,creationDate' \
https://openam.example.com:8443/openam/json/policies

_prettyPrint

You can use the query string parameters _prettyPrint=true to make the output easier to read.

_pageSize

You can use _pageSize=integer to limit the number of results returned.

_pagedResultsOffset

You can use _pagedResultsOffset=integer to return results starting at a specified result when using
paged results.

_sortKeys

You can use _sortKeys=[+-]field-name[,field-name...] to sort the results returned, where field-name
represents a field in the returned JSON. Optionally use the + prefix to sort in ascending order (the
default), or - to sort in descending order.

The following example returns all applications in the top level realm, sorted in descending
creationDate order:

$ curl \
--header "iPlanetDirectoryPro: AQIC5..."
 \
--get
 \
--data-urlencode '_queryFilter=true'
 \
--data-urlencode '_sortKeys=-creationDate' \
https://openam.example.com:8443/openam/json/applications

2.1.8. Server Information

You can retrieve OpenAM server information by using HTTP GET on /json/serverinfo/* as follows:

$ curl https://openam.example.com:8443/openam/json/serverinfo/*

Developing Client Applications
Token Validation and Session Information

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 21

{
 "domains": [
 ".example.com"
],
 "protectedUserAttributes": [],
 "cookieName": "iPlanetDirectoryPro",
 "secureCookie": false,
 "forgotPassword": "false",
 "forgotUsername": "false",
 "kbaEnabled": "false",
 "selfRegistration": "false",
 "lang": "en-US",
 "successfulUserRegistrationDestination": "default",
 "socialImplementations": [
 {
 "iconPath": "XUI/images/logos/facebook.png",
 "authnChain": "FacebookSocialAuthenticationService",
 "displayName": "Facebook",
 "valid": true
 }
],
 "referralsEnabled": "false",
 "zeroPageLogin": {
 "enabled": false,
 "refererWhitelist": [
 ""
],
 "allowedWithoutReferer": true
 },
 "realm": "/",
 "xuiUserSessionValidationEnabled": true,
 "FQDN": "openam.example.com"
}

2.1.9. Token Validation and Session Information

OpenAM provides REST APIs under /json/sessions for validating SSO tokens and getting information
about active sessions.

2.1.9.1. Validating Sessions

To check over REST whether a session token is valid, perform an HTTP POST to the resource URL, /
json/sessions/tokenId, using the validate action as shown in the following example:
$ curl \
--request POST
 \
--header "Content-Type: application/json" \
 http://openam.example.com:8080/openam/json/sessions/AQIC5...?_action=validate
{"valid":true,"uid":"demo","realm":"/myRealm"}

If the session token is not valid, a "valid": false JSON message is returned, as shown below:

Developing Client Applications
Token Validation and Session Information

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 22

$ curl \
--request POST
 \
--header "Content-Type: application/json" \
 http://openam.example.com:8080/openam/json/sessions/AQIC5...?_action=validate
{"valid":false}

Validating a session token has the tangential effect of resetting the idle timeout for a stateful
session. If session failover is enabled in your deployment, validating session tokens can trigger write
operations to the Core Token Service token store. See "Obtaining Information About Sessions" for
information about how to validate a session token without resetting the idle timeout, thereby avoiding
the overhead of writes to the token store.

Note that OpenAM does not reset the idle timeout for a stateless session.

2.1.9.2. Obtaining Information About Sessions

You can use REST API calls to:

• Identify whether a session is active

• Check the maximum remaining amount of time a session has left before the user is required to
reauthenticate

• Determine the length of time a stateful session has been idle

• Reset a stateful session's idle time to 0

For these REST endpoints, specify two token IDs. Provide the token ID for the current authenticated
user as the value of a header whose name is the name of the SSO token cookie, by default
iPlanetDirectoryPro. Specify the token ID you want information about as the tokenId query string
parameter of the REST URL. In the examples in this section, AQIC5w...NTcy* is the token ID for the
current authenticated user, while BXCCq...NX*1* is the token being queried.

To determine whether a session is active, perform an HTTP POST to the resource URL, /json/
sessions/, using the isActive action as shown in the following example:
$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "iplanetDirectoryPro: AQIC5w...NTcy*" \
 http://openam.example.com:8080/openam/json/sessions/?_action=isActive&tokenId=BXCCq...NX*1*
{"active":true}

To check the maximum remaining time (in seconds) of a session, perform an HTTP POST to the
resource URL, /json/sessions/, using the getTimeLeft action as shown in the following example:

Developing Client Applications
Token Validation and Session Information

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 23

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "iplanetDirectoryPro: AQIC5w...NTcy*" \
 http://openam.example.com:8080/openam/json/sessions/?_action=getTimeLeft&tokenId=BXCCq...NX*1*
{"maxtime":7022}

To check the time (in minutes) configured for sessions, perform an HTTP POST to the resource URL, /
json/sessions/, using the getMaxSessionTime action as shown in the following example:
$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "iplanetDirectoryPro: AQIC5w...NTcy*" \
 http://openam.example.com:8080/openam/json/sessions/?_action=getMaxSessionTime
{"maxsessiontime":120}

To check the idle time (in minutes) configured for sessions, perform an HTTP POST to the resource
URL, /json/sessions/, using the getMaxIdle action as shown in the following example:
$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "iplanetDirectoryPro: AQIC5w...NTcy*" \
 http://openam.example.com:8080/openam/json/sessions/?_action=getMaxIdle
{"maxidletime":30}

To check the amount of time (in seconds) that a stateful session has been idle, perform an HTTP
POST to the resource URL, /json/sessions/, using the getIdle action as shown in the following example:
$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "iplanetDirectoryPro: AQIC5w...NTcy*" \
 http://openam.example.com:8080/openam/json/sessions/?_action=getIdle&tokenId=BXCCq...NX*1*
{"idletime":355}

Because OpenAM does not monitor idle time for stateless sessions, do not use the tokenId of a
stateless session when using the getIdle action.

To reset a stateful session's idle time, perform an HTTP POST to the resource URL, /json/sessions/,
using the isActive action with the refresh=true option as shown in the following example:

Developing Client Applications
Token Validation and Session Information

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 24

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "iplanetDirectoryPro: AQIC5w...NTcy*" \
 http://openam.example.com:8080/openam/json/sessions/?_action=isActive&refresh=true&tokenId=BXCCq...NX*1*
{"active":true}

REST API calls to retrieve session information do not reset a stateful session's idle time if you specify
the refresh=false parameter, which is the default.

If you specify the refresh=true parameter, OpenAM resets the idle time for stateful sessions. If session
failover is enabled in your deployment, resetting a stateful session's idle time can trigger write
operations to the Core Token Service token store. Therefore, to avoid the overhead of writes to the
token store, be careful to use the refresh=true parameter only if you want to reset a stateful session's
idle time.

Because OpenAM does not monitor idle time for stateless sessions, do not use the tokenId of a
stateless session when refreshing a session's idle time.

2.1.9.3. Refreshing Stateful Sessions

To reset the idle time of a stateful session using REST, perform an HTTP POST to the /json/sessions/
endpoint, using the refresh action. The endpoint will refresh the session token provided in the
iPlanetDirectoryPro header by default. To refresh a different session token, include it as the value of
the tokenId query parameter.

The following example shows an administrative user passing their session token in the
iPlanetDirectoryPro header, and the session token of the demo user as the tokenId query parameter:
$ curl \
--request POST
 \
--header "iplanetDirectoryPro: AQIC5w...NTcy*" \
http://openam.example.com:8080/openam/json/sessions/?_action=isActive&refresh=true&tokenId=BXCCq...NX*1*
{
 "uid": "demo",
 "realm": "/",
 "idletime": 4,
 "maxidletime": 30,
 "maxsessiontime": 120,
 "maxtime": 7195
}

On success, OpenAM resets the idle time for the stateful session, and returns timeout details of the
session.

Resetting a stateful session's idle time triggers a write operation to the Core Token Service token
store. Therefore, to avoid the overhead of write operations to the token store, be careful to use the
refresh action only if you want to reset a stateful session's idle time.

Developing Client Applications
Token Validation and Session Information

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 25

Because OpenAM does not monitor idle time for stateless sessions, do not use the tokenId of a
stateless session when refreshing a session's idle time.

2.1.9.4. Invalidating Sessions

To invalidate a session, perform an HTTP POST to the /json/sessions/ endpoint using the logout action.
The endpoint will invalidate the session token provided in the iPlanetDirectoryPro header by default. To
refresh a different session token, include it as the value of the tokenId query parameter.

For example, the following shows an administrative user passing their session token in the
iPlanetDirectoryPro header, and the session token of the demo user as the tokenId query parameter:
$ curl \
--request POST
 \
--header "iplanetDirectoryPro: AQIC5w...NTcy*" \
http://openam.example.com:8080/openam/json/sessions/?_action=logout&tokenId=BXCCq...NX*1*
{
 "result": "Successfully logged out"
}

On success, OpenAM invalidates the session and returns a success message.

If the token is not valid and cannot be invalidated an error message is returned, as follows:
{
 "result": "Token has expired"
}

2.1.9.5. Session Properties

OpenAM lets you set, read, and delete properties on users' sessions using REST API calls.

Before you can perform operations on session properties using the REST API, you must first
define the properties you want to set in the Session Property Whitelist Service configuration. For
information on whitelisting session properties, see "Session Property Whitelist" in the Reference.

You can use REST API calls for the following purposes:

• To retrieve the names of the properties that you can read, set, or delete. This is the same set of
properties configured in the Session Property Whitelist Service.

• To set property values.

• To read property values.

• To delete property values. Deleting a property value sets the property to an empty string.

Session state affects the ability to set and delete properties as follows:

Developing Client Applications
Token Validation and Session Information

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 26

• You can set and delete properties on a stateful session at any time during the session's lifetime.

• You can only set and delete properties on a stateless session during the authentication process,
before the user receives the session token from OpenAM. For example, you could set or delete
properties on a stateless session from within a post-authentication plugin.

Differentiate the user who performs the operation on session properties from the session affected by
the operation as follows:

• Specify the session token of the user performing the operation on session properties in the
iPlanetDirectoryPro header.

• Specify the session token of the user whose session is to be read or modified as the tokenId
parameter to the REST API call.

• Omit the tokenId parameter from the REST API call if the session of the user performing the
operation is the session that you want to read or modify.

The following examples assume that you configured a property named LoginLocation in the Session
Property Whitelist Service configuration.

To retrieve the names of the properties you can get or set, perform an an HTTP POST to the resource
URL, /json/sessions/, using the getPropertyNames action as shown in the following example:
$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "iplanetDirectoryPro: AQIC5w...NTcy*" \
 http://openam.example.com:8080/openam/json/sessions/?_action=getPropertyNames
{"properties":["LoginLocation"]}

To set the value of a session property, perform an HTTP POST to the resource URL, /json/sessions/,
using the setProperty action. Because no tokenId parameter is present in the REST API call, the session
affected by the operation is the session specified in the iPlanetDirectoryPro header:
$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "iplanetDirectoryPro: AQIC5w...NTcy*"
 \
--data '{"LoginLocation":"40.748440, -73.984559"}' \
 http://openam.example.com:8080/openam/json/sessions/?_action=setProperty
{"success":true}

You can set multiple properties in a single REST API call by specifying a set of fields and their values
in the JSON data. For example, --data '{"property1":"value1", "property2":"value2"}'.

Developing Client Applications
Token Validation and Session Information

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 27

To set the value of a session property on another user's session, specify the session token of the
user performing the setProperty action in the iPlanetDirectoryPro, and specify the session token to be
modified as the value of the tokenId parameter:
$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "iplanetDirectoryPro: AQIC5w...NTcy*"
 \
--data '{"LoginLocation":"40.748440, -73.984559"}' \
 http://openam.example.com:8080/openam/json/sessions/?_action=setProperty&tokenId=BXCCq...NX*1*
{"success":true}

If the user attempting to modify the session does not have sufficient access privileges, the preceding
example results in a 403 Forbidden error.

To read the value of a session property, perform an HTTP POST to the resource URL, /json/sessions/,
using the getProperty action:
$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "iplanetDirectoryPro: AQIC5w...NTcy*"
 \
--data '{"properties": ["LoginLocation"]}' \
 http://openam.example.com:8080/openam/json/sessions/?_action=getProperty
{"LoginLocation":"40.748440, -73.984559"}

You can read multiple properties in a single REST API call by specifying an array of fields in the JSON
data. For example, --data '{"properties": ["property1", "property2"]}'.

To delete the value of a session property, perform an HTTP POST to the resource URL, /json/
sessions/, using the deleteProperty action:
$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "iplanetDirectoryPro: AQIC5w...NTcy*"
 \
--data '{"properties": ["LoginLocation"]}' \
 http://openam.example.com:8080/openam/json/sessions/?_action=deleteProperty
{"success":true}

You can not read or set properties internal to OpenAM sessions. If you specify an internal property in
a REST API call, a 403 Forbidden error is returned. For example:

Developing Client Applications
REST Goto URL Validation

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 28

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "iplanetDirectoryPro: AQIC5w...NTcy*"
 \
--data '{"properties": ["AuthLevel"]}' \
 http://openam.example.com:8080/openam/json/sessions/?_action=getProperty
{"code":403,"reason":"Forbidden","message":"Forbidden"}

2.1.10. REST Goto URL Validation

You can set valid goto URLs using the OpenAM console by following the instructions in "Configuring
Valid goto URL Resources" in the Administration Guide.

To validate a goto URL over REST, use the endpoint: /json/user?_action=validateGoto.

$ curl \
--request POST --header "Content-Type: application/json"
 \
--header "iPlanetDirectoryPro: AQIC5...ACMDE.*"
 \
--data "'{"goto":"http://www.example.com/"}' \
http://openam.example.com:8080/openam/json/users?_action=validateGoto

{"successURL":"http://www.example.com/"}

2.1.11. Logging

OpenAM 13.5.2-15 supports two Audit Logging Services: a new common REST-based Audit Logging
Service, and the legacy Logging Service, which is based on a Java SDK and is available in OpenAM
versions prior to OpenAM 13. The legacy Logging Service is deprecated in OpenAM 13.5.2-15.

Both audit facilities log OpenAM REST API calls.

2.1.11.1. Common Audit Logging of REST API Calls

OpenAM logs information about all REST API calls to the access topic. For more information about
OpenAM audit topics, see "Audit Log Topics" in the Administration Guide.

Locate specific REST endpoints in the http.path log file property.

2.1.11.2. Legacy Logging of REST API Calls

OpenAM logs information about REST API calls to two files:

Developing Client Applications
Logging

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 29

• amRest.access. Records accesses to a CREST endpoint, regardless of whether the request
successfully reached the endpoint through policy authorization.

An amRest.access example is as follows:

$ cat openam/openam/log/amRest.access

#Version: 1.0
#Fields: time Data LoginID ContextID IPAddr LogLevel Domain LoggedBy MessageID ModuleName
NameID HostName
"2011-09-14 16:38:17" /home/user/openam/openam/log/ "cn=dsameuser,ou=DSAME Users,o=openam"
aa307b2dcb721d4201 "Not Available" INFO o=openam "cn=dsameuser,ou=DSAME Users,o=openam"
LOG-1 amRest.access "Not Available" 192.168.56.2
"2011-09-14 16:38:17" "Hello World" id=bjensen,ou=user,o=openam 8a4025a2b3af291d01 "Not Available"
INFO o=openam id=amadmin,ou=user,o=openam "Not Available" amRest.access "Not Available"
192.168.56.2

• amRest.authz. Records all CREST authorization results regardless of success. If a request has an
entry in the amRest.access log, but no corresponding entry in amRest.authz, then that endpoint was not
protected by an authorization filter and therefore the request was granted access to the resource.

The amRest.authz file contains the Data field, which specifies the authorization decision, resource, and
type of action performed on that resource. The Data field has the following syntax:

("GRANT"||"DENY") > "RESOURCE | ACTION"

where
 "GRANT > " is prepended to the entry if the request was allowed
 "DENY > " is prepended to the entry if the request was not allowed
 "RESOURCE" is "ResourceLocation | ResourceParameter"
 where
 "ResourceLocation" is the endpoint location (e.g., subrealm/applicationtypes)
 "ResourceParameter" is the ID of the resource being touched
 (e.g., myApplicationType) if applicable. Otherwise, this field is empty
 if touching the resource itself, such as in a query.

 "ACTION" is "ActionType | ActionParameter"
 where
 "ActionType" is "CREATE||READ||UPDATE||DELETE||PATCH||ACTION||QUERY"
 "ActionParameter" is one of the following depending on the ActionType:
 For CREATE: the new resource ID
 For READ: empty
 For UPDATE: the revision of the resource to update
 For DELETE: the revision of the resource to delete
 For PATCH: the revision of the resource to patch
 For ACTION: the actual action performed (e.g., "forgotPassword")
 For QUERY: the query ID if any

Developing Client Applications
REST Status Codes

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 30

$ cat openam/openam/log/amRest.authz

#Version: 1.0
#Fields: time Data ContextID LoginID IPAddr LogLevel Domain MessageID LoggedBy NameID
ModuleName HostName
"2014-09-16 14:17:28" /var/root/openam/openam/log/ 7d3af9e799b6393301
"cn=dsameuser,ou=DSAME Users,dc=openam,dc=forgerock,dc=org" "Not Available" INFO
dc=openam,dc=forgerock,dc=org LOG-1 "cn=dsameuser,ou=DSAME Users,dc=openam,dc=forgerock,dc=org"
"Not Available" amRest.authz 10.0.1.5
"2014-09-16 15:56:12" "GRANT > sessions|ACTION|logout|AdminOnlyFilter" d3977a55a2ee18c201
id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org "Not Available" INFO dc=openam,dc=forgerock,dc=org
OAuth2Provider-2 "cn=dsameuser,ou=DSAME Users,dc=openam,dc=forgerock,dc=org" "Not Available"
amRest.authz 127.0.0.1
"2014-09-16 15:56:40" "GRANT > sessions|ACTION|logout|AdminOnlyFilter" eedbc205bf51780001
id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org "Not Available" INFO dc=openam,dc=forgerock,dc=org
OAuth2Provider-2 "cn=dsameuser,ou=DSAME Users,dc=openam,dc=forgerock,dc=org" "Not Available"
amRest.authz 127.0.0.1

OpenAM also provides additional information in its debug notifications for accesses to any endpoint,
depending on the message type (error, warning or message) including realm, user, and result of the
operation.

2.1.12. REST Status Codes

OpenAM REST APIs respond to successful requests with HTTP status codes in the 2xx range.
OpenAM REST APIs respond to error conditions with HTTP status codes in the 4xx and 5xx range.
Status codes used are described in the following list:

200 OK

The request was successful and a resource returned, depending on the request. For example,
a successful HTTP GET on /users/myUser returns a user profile and status code 200, whereas a
successful HTTP DELETE returns {"success","true"} and status code 200.

201 Created

The request succeeded and the resource was created.

400 Bad Request

The request was malformed. Either parameters required by the action were missing, or as in the
following example incorrect data was sent in the payload for the action:

Developing Client Applications
REST Status Codes

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 31

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --data '{"bad":"data"}' \
 https://openam.example.com:8443/openam/json/users?_action=forgotPassword

{
 "code":400,
 "reason":"Bad Request",
 "message":"Username or email not provided in request"
}

401 Unauthorized

The request requires user authentication as in the following example, which is missing an SSO
Token value:

$ curl \
 --request POST \
 https://openam.example.com:8443/openam/json/sessions?_action=logout

{
 "code": 401,
 "reason": "Unauthorized",
 "message": "Access denied"
}

403 Forbidden

Access was forbidden during an operation on a resource as in the following example, which has a
regular user trying to read the OpenAM administrator profile:

$ curl \
 --request POST \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 https://openam.example.com:8443/openam/json/authenticate

{ "tokenId": "AQIC5w...YyMA..*" }

$ curl \
 --header "iplanetDirectoryPro: AQIC5w...YyMA..*" \
 https://openam.example.com:8443/openam/json/users/amadmin

{
 "code": 403,
 "reason": "Forbidden",
 "message": "Permission to perform the read operation denied to
 id=demo,ou=user,dc=openam,dc=forgerock,dc=org"
}

Developing Client Applications
REST Status Codes

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 32

404 Not Found

The specified resource could not be found as in the following example, which is attempting to
read a nonexistent user's profile:

$ curl \
 --header "iplanetDirectoryPro: AQIC5w...NTcy*" \
 https://openam.example.com:8443/openam/json/users/missing

{
 "code":404,
 "reason":"Not Found",
 "message":"Resource cannot be found."
}

405 Method Not Allowed

The HTTP method is not allowed for the requested resource.

406 Not Acceptable

The request contains parameters that are not acceptable as in the following example, which
specifies an API version parameter that is not supported by OpenAM:

$ curl \
 --request POST \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 --header "Accept-API-Version: protocol=1.0, resource=999.0" \
 https://openam.example.com:8443/openam/json/authenticate

{
 "code":406,
 "reason":"Not Acceptable",
 "message":"Accept-API-Version: Requested version \"999.0\" does not match any routes."
}

409 Conflict

The request would have resulted in a conflict with the current state of the resource. For example
using the Forgot Password feature and specifying the user's email address as in the following
example, where multiple users have the same email address:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --data '{"email":"demo@example.com"}' \
 https://openam.example.com:8443/openam/json/users?_action=forgotPassword

{
 "code":409,
 "reason":"Conflict",
 "message":"Multiple users found"
}

Developing Client Applications
REST Status Codes

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 33

410 Gone

The requested resource is no longer available, and will not become available again. The URI
returned for resetting a password may have expired as in the following example:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --data '{"username": "demo"}' \
 https://openam.example.com:8443/openam/json/users/?_action=forgotPassword

{
 "code":410,
 "reason":"Gone",
 "message":"Token not found"
}

415 Unsupported Media Type

The request is in a format not supported by the requested resource for the requested method as
in the following example, which is attempting to pass basic authentication credentials as form-
encoded data rather than query string parameters:

$ curl \
 --request POST \
 --data "username=demo&password=changeit" \
 https://openam.example.com:8443/openam/json/authenticate

...
HTTP Status 415
...
The server refused this request because the request entity is in a
format not supported by the requested resource for the requested method
...

500 Internal Server Error

The server encountered an unexpected condition which prevented it from fulfilling the request.
This could be caused by an invalid configuration in the Email Service, or as in the following
example the specified user account not having an associated email address to send the Forgot
Password URI to:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --data '{"username": "demo"}' \
 https://openam.example.com:8443/openam/json/users/?_action=forgotPassword

{
 "code":500,
 "reason":"Internal Server Error",
 "message":"No email provided in profile."
}

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 34

501 Not Implemented

The resource does not support the functionality required to fulfill the request as in the following
example, which is attempting to delete an entry as a delete action instead of using an HTTP
DELETE request:

$ curl \
 --request POST \
 --header "iplanetDirectoryPro: AQIC5w...NTcy*" \
 https://openam.example.com:8443/openam/json/users/demo?_action=delete

{
 "code": 501,
 "reason": "Not Implemented",
 "message": "Actions are not supported for resource instances"
}

503 Service Unavailable

The requested resource was temporarily unavailable. The service may have been disabled, as in
the following example, where the Forgot Password functionality has been disabled:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --data '{"username": "demo"}' \
 https://openam.example.com:8443/openam/json/users/?_action=forgotPassword

{
 "code":503,
 "reason":"Service Unavailable",
 "message":"Forgot password is not accessible."
}

2.1.13. RESTful Authorization and Policy Management Services

This section shows how to use the OpenAM RESTful interfaces for authorization and policy
management.

2.1.13.1. About the REST Policy Endpoints

OpenAM provides REST APIs both for requesting policy decisions, and also for administering policy
definitions.

• Under /json{/realm}/resourcetypes, you find a JSON-based API for managing resource types.

• Under /json{/realm}/applications and /json/applicationtypes you find JSON-based APIs for
administering policy sets and reading application types.

• Under /json{/realm}/policies, you find a JSON-based API for policy management and evaluation.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 35

• Under /json/conditiontypes you find a JSON-based API for viewing what types of conditions you can
use when defining policies.

• Under /json/subjecttypes you find a JSON-based API for viewing what types of subjects you can use
when defining policies.

• Under /json/subjectattributes you find a JSON-based API for viewing subjects' attributes you can use
when defining response attributes in policies.

• Under /json/decisioncombiners you find a JSON-based API for viewing implementations you can use
when defining policies to specify how to combine results when multiple policies apply.

Before making a REST API call to request a policy decision or manage a policy component, make sure
that you have:

• Authenticated successfully to OpenAM as a user with sufficient privileges to make the REST API
call

• Obtained the session token returned after successful authentication

When making the REST API call, pass the session token in the HTTP header. For more information
about the OpenAM session token and its use in REST API calls, see "Using the Session Token After
Authentication".

2.1.13.2. Requesting Policy Decisions

You can request policy decisions from OpenAM by using the REST APIs described in this section.
OpenAM evaluates requests based on the context and the policies configured, and returns decisions
that indicate what actions are allowed or denied, as well as any attributes or advice for the resources
specified.

To request decisions for specific resources, see "Requesting Policy Decisions For Specific Resources".

To request decisions for a resource and all resources beneath it, see "Requesting Policy Decisions For
a Tree of Resources".

2.1.13.2.1. Requesting Policy Decisions For Specific Resources

This section shows how you can request a policy decision over REST for specific resources.

To request policy decisions for specific resources, perform an HTTP POST using the evaluation action
to the appropriate path under the URI where OpenAM is deployed, /json{/realm}{/subrealm}/policies?
_action=evaluate, where realm and subrealm optionally specifies the realm. The payload for the HTTP
POST is a JSON object that specifies at least the resources, and takes the following form.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 36

{
 "resources": [
 "resource1",
 "resource2",
 ...,
 "resourceN"
],
 "application": "defaults to iPlanetAMWebAgentService if not specified",
 "subject": {
 "ssoToken": "SSO token ID string",
 "jwt": "JSON Web Token string",
 "claims": {
 "key": "value",
 ...
 }
 },
 "environment": {
 "optional key1": [
 "value",
 "another value",
 ...
],
 "optional key2": [
 "value",
 "another value",
 ...
],
 ...
 }
}

The values for the fields shown above are explained below:

"resources"

This required field specifies the list of resources for which to return decisions.

For example, when using the default policy set, "iPlanetAMWebAgentService", you can request
decisions for resource URLs.
{
 "resources": [
 "http://www.example.com/index.html",
 "http://www.example.com/do?action=run"
]
}

"application"

This field holds the name of the policy set, and defaults to "iPlanetAMWebAgentService" if not
specified.

For more on policy sets, see "Managing Policy Sets".

"subject"

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 37

This optional field holds an object that represents the subject. You can specify one or more of the
following keys. If you specify multiple keys, the subject can have multiple associated principals,
and you can use subject conditions corresponding to any type in the request.

"ssoToken"

The value is the SSO token ID string for the subject, returned for example on successful
authentication as described in "Authentication and Logout".

"jwt"

The value is a JWT string.

"claims"

The value is an object (map) of JWT claims to their values.

If you do not specify the subject, OpenAM uses the SSO token ID of the subject making the
request.

"environment"

This optional field holds a map of keys to lists of values.

If you do not specify the environment, the default is an empty map.

The example below requests policy decisions for two URL resources. The iPlanetDirectoryPro header
sets the SSO token for a user who has access to perform the operation.

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data '{
 "resources": [
 "http://www.example.com/index.html",
 "http://www.example.com/do?action=run"
],
 "application": "iPlanetAMWebAgentService"
 }' \
 https://openam.example.com:8443/openam/json/policies?_action=evaluate
 [{
 "resource" : "http://www.example.com/do?action=run",
 "actions" : {
 },
 "attributes" : {
 },
 "advices" : {
 "AuthLevelConditionAdvice" : ["3"]
 }
}, {
 "resource" : "http://www.example.com/index.html",
 "actions" : {
 "POST" : false,

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 38

 "GET" : true
 },
 "attributes" : {
 "cn" : ["demo"]
 },
 "advices" : {
 }
 }
]

In the JSON list of decisions returned for each resource, OpenAM includes these fields.

"resource"

A resource specified in the request.

The decisions returned are not guaranteed to be in the same order as the resources were
requested.

"actions"

A map of action name keys to Boolean values that indicate whether the action is allowed (true) or
denied (false) for the specified resource.

In the example, for resource http://www.example.com:80/index.html HTTP GET is allowed, whereas
HTTP POST is denied.

"attributes"

A map of attribute names to their values, if any response attributes are returned according to
applicable policies.

In the example, the policy that applies to http://www.example.com:80/index.html causes that the value
of the subject's "cn" profile attribute to be returned.

"advices"

A map of advice names to their values, if any advice is returned according to applicable policies.

The "advices" field can provide hints regarding what OpenAM needs to take the authorization
decision.

In the example, the policy that applies to http://www.example.com:80/do?action=run requests that the
subject be authenticated at an authentication level of at least 3.
{
 "advices": {
 "AuthLevelConditionAdvice": [
 "3"
]
 }
}

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 39

See "Policy Decision Advice" for details.

You can use the query string parameters _prettyPrint=true to make the output easier to read, and
_fields=field-name[,field-name...] to limit the fields returned in the output.

2.1.13.2.2. Policy Decision Advice

When OpenAM returns a policy decision, the JSON for the decision can include an "advices" field.
This field contains hints for the policy enforcement point.
{
 "advices": {
 "type": [
 "advice"
]
 }
}

The "advices" returned depend on policy conditions. For more information about OpenAM policy
conditions, see "Managing Policies".

This section shows examples of the different types of policy decision advice and the conditions that
cause OpenAM to return the advice.

"AuthLevel" and "LEAuthLevel" condition failures can result in advice showing the expected or maximum
possible authentication level. For example, failure against the following condition:
{
 "type": "AuthLevel",
 "authLevel": 2
}

Leads to this advice:
{
 "AuthLevelConditionAdvice": [
 "2"
]
}

An "AuthScheme" condition failure can result in advice showing one or more required authentication
modules. For example, failure against the following condition:
{
 "type": "AuthScheme",
 "authScheme": [
 "HOTP"
],
 "applicationName": "iPlanetAMWebAgentService",
 "applicationIdleTimeout": 10
}

Leads to this advice:

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 40

{
 "AuthSchemeConditionAdvice": [
 "HOTP"
]
}

An "AuthenticateToRealm" condition failure can result in advice showing the name of the realm to which
authentication is required. For example, failure against the following condition:
{
 "type": "AuthenticateToRealm",
 "authenticateToRealm": "MyRealm"
}

Leads to this advice:
{
 "AuthenticateToRealmConditionAdvice": [
 "/myRealm"
]
}

An "AuthenticateToService" condition failure can result in advice showing the name of the required
authentication chain. For example, failure against the following condition:
{
 "type": "AuthenticateToService",
 "authenticateToService": "MyAuthnChain"
}

Leads to this advice:
{
 "AuthenticateToServiceConditionAdvice": [
 "MyAuthnChain"
]
}

A "ResourceEnvIP" condition failure can result in advice showing that indicates corrective action to be
taken to resolve the problem. The advice varies, depending on what the condition tests. For example,
failure against the following condition:
{
 "type": "ResourceEnvIP",
 "resourceEnvIPConditionValue": [
 "IF IP=[127.0.0.12] THEN authlevel=4"
]
}

Leads to this advice:
{
 "AuthLevelConditionAdvice": [
 "4"
]
}

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 41

Failure against a different type of "ResourceEnvIP" condition such as the following:
{
 "type": "ResourceEnvIP",
 "resourceEnvIPConditionValue": [
 "IF IP=[127.0.0.11] THEN service=MyAuthnChain"
]
}

Leads to this advice:
{
 "AuthenticateToServiceConditionAdvice": [
 "MyAuthnChain"
]
}

A "Session" condition failure can result in advice showing that access has been denied because the
user's stateful or stateless session has been active longer than allowed by the condition. The advice
will also show if the user's session was terminated and reauthentication is required. For example,
failure against the following condition:
{
 "type": "Session",
 "maxSessionTime": "10",
 "terminateSession": false
}

Leads to this advice:
{
 "SessionConditionAdvice": [
 "deny"
]
}

When policy evaluation denials occur against the following conditions, OpenAM does not return any
advice:

• IPv4

• IPv6

• LDAPFilter

• OAuth2Scope

• SessionProperty

• SimpleTime

2.1.13.2.3. Requesting Policy Decisions For a Tree of Resources

This section shows how you can request policy decisions over REST for a resource and all other
resources in the subtree beneath it.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 42

To request policy decisions for a tree of resources, perform an HTTP POST using the evaluation
action to the appropriate path under the URI where OpenAM is deployed, /json{/realm}/policies?
_action=evaluateTree, where realm optionally specifies the realm. The payload for the HTTP POST is a
JSON object that specifies at least the root resource, and takes the following form.
{
 "resource": "resource string",
 "application": "defaults to iPlanetAMWebAgentService if not specified",
 "subject": {
 "ssoToken": "SSO token ID string",
 "jwt": "JSON Web Token string",
 "claims": {
 "key": "value",
 ...
 }
 },
 "environment": {
 "optional key1": [
 "value",
 "another value",
 ...
],
 "optional key2": [
 "value",
 "another value",
 ...
],
 ...
 }
}

The values for the fields shown above are explained below:

"resource"

This required field specifies the root resource for the decisions to return.

For example, when using the default policy set, "iPlanetAMWebAgentService", you can request
decisions for resource URLs.
{
 "resource": "http://www.example.com/"
}

"application"

This field holds the name of the policy set, and defaults to "iPlanetAMWebAgentService" if not
specified.

For more on policy sets, see "Managing Policy Sets".

"subject"

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 43

This optional field holds an object that represents the subject. You can specify one or more of the
following keys. If you specify multiple keys, the subject can have multiple associated principals,
and you can use subject conditions corresponding to any type in the request.

"ssoToken"

The value is the SSO token ID string for the subject, returned for example on successful
authentication as described in, "Authentication and Logout".

"jwt"

The value is a JWT string.

"claims"

The value is an object (map) of JWT claims to their values.

If you do not specify the subject, OpenAM uses the SSO token ID of the subject making the
request.

"environment"

This optional field holds a map of keys to lists of values.

If you do not specify the environment, the default is an empty map.

The example below requests policy decisions for http://www.example.com/. The iPlanetDirectoryPro header
sets the SSO token for a user who has access to perform the operation, and the subject takes the SSO
token of the user who wants to access a resource.

 $ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5...NDU1*" \
 --data '{
 "resource": "http://www.example.com/",
 "subject": { "ssoToken": "AQIC5...zE4*" }
 }' \
 https://openam.example.com:8443/openam/json/policies?_action=evaluateTree
 [{
 "resource" : "http://www.example.com/",
 "actions" : {
 "GET" : true,
 "OPTIONS" : true,
 "HEAD" : true
 },
 "attributes" : {
 },
 "advices" : {
 }
}, {
 "resource" : "http://www.example.com/*",
 "actions" : {
 "POST" : false,
 "PATCH" : false,

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 44

 "GET" : true,
 "DELETE" : true,
 "OPTIONS" : true,
 "HEAD" : true,
 "PUT" : true
 },
 "attributes" : {
 "myStaticAttr" : ["myStaticValue"]
 },
 "advices" : {
 }
}, {
 "resource" : "http://www.example.com/*?*",
 "actions" : {
 "POST" : false,
 "PATCH" : false,
 "GET" : false,
 "DELETE" : false,
 "OPTIONS" : true,
 "HEAD" : false,
 "PUT" : false
 },
 "attributes" : {
 },
 "advices" : {
 "AuthLevelConditionAdvice" : ["3"]
 }
}]

Notice that OpenAM returns decisions not only for the specified resource, but also for matching
resource names in the tree whose root is the specified resource.

In the JSON list of decisions returned for each resource, OpenAM includes these fields.

"resource"

A resource name whose root is the resource specified in the request.

The decisions returned are not guaranteed to be in the same order as the resources were
requested.

"actions"

A map of action name keys to Boolean values that indicate whether the action is allowed (true) or
denied (false) for the specified resource.

In the example, for matching resources with a query string only HTTP OPTIONS is allowed
according to the policies configured.

"attributes"

A map of attribute names to their values, if any response attributes are returned according to
applicable policies.

In the example, the policy that applies to http://www.example.com:80/* causes a static attribute to be
returned.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 45

"advices"

A map of advice names to their values, if any advice is returned according to applicable policies.

The "advices" field can provide hints regarding what OpenAM needs to take the authorization
decision.

In the example, the policy that applies to resources with a query string requests that the subject
be authenticated at an authentication level of at least 3.

Notice that with the "advices" field present, no "advices" appear in the JSON response.
{
 "advices": {
 "AuthLevelConditionAdvice": ["3"]
 }
}

You can use the query string parameters _prettyPrint=true to make the output easier to read, and
_fields=field-name[,field-name...] to limit the fields returned in the output.

2.1.13.3. Managing Resource Types

This section describes the process of using the OpenAM REST API for managing resource types,
which define a template for the resources that policies apply to, and the actions associated with those
resources.

For information on creating resource types by using the OpenAM console, see "OpenAM Resource
Types, Policy Sets, and Policies" in the Administration Guide.

OpenAM provides the resourcetypes REST endpoint for the following:

• "Querying Resource Types"

• "Reading a Specific Resource Type"

• "Creating a Resource Type"

• "Updating a Resource Type"

• "Deleting a Specific Resource Type"

Resource types are realm specific, hence the URI for the resource types API can contain a realm
component, such as /json{/realm}/resourcetypes. If the realm is not specified in the URI, the top level
realm is used.

Resource types are represented in JSON and take the following form. Resource types are built from
standard JSON objects and values (strings, numbers, objects, sets, arrays, true, false, and null). Each
resource type has a unique, system-generated UUID, which must be used when modifying existing
resource types. Renaming a resource type will not affect the UUID.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 46

{
 "uuid": "12345a67-8f0b-123c-45de-6fab78cd01e2",
 "name": "URL",
 "description": "The built-in URL Resource Type available to OpenAM Policies.",
 "patterns": [
 "*://*:*/*?*",
 "*://*:*/*"
],
 "actions": {
 "POST": true,
 "PATCH": true,
 "GET": true,
 "DELETE": true,
 "OPTIONS": true,
 "HEAD": true,
 "PUT": true
 },
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1422892465848,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1422892465848
}

The values for the fields shown in the description are explained below:

"uuid"

String matching the unique identifier OpenAM generated for the resource type when created.

"name"

The name provided for the resource type.

"description"

An optional text string to help identify the resource type.

"patterns"

An array of resource patterns specifying individual URLs or resource names to protect.

For more information on patterns in resource types and policies, see "Specifying Resource
Patterns with Wildcards" in the Administration Guide

"actions"

Set of string action names, each set to a boolean indicating whether the action is allowed.

"createdBy"

A string containing the universal identifier DN of the subject that created the resource type.

"creationDate"

An integer containing the creation date and time, in ISO 8601 format.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 47

"lastModifiedBy"

A string containing the universal identifier DN of the subject that most recently updated the
resource type.

If the resource type has not been modified since it was created, this will be the same value as
createdBy.

"lastModifiedDate"

An string containing the last modified date and time, in ISO 8601 format.

If the resource type has not been modified since it was created, this will be the same value as
creationDate.

2.1.13.3.1. Querying Resource Types

To list all the resource types in a realm, perform an HTTP GET to the /json{/realm}/resourcetypes
endpoint, with a _queryFilter parameter set to true.

Note

If the realm is not specified in the URL, OpenAM returns resource types in the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

$ curl \
--header "iPlanetDirectoryPro: AQIC5..." \
https://openam.example.com:8443/openam/json/myrealm/resourcetypes?_queryFilter=true
{
 "result": [
 {
 "uuid": "12345a67-8f0b-123c-45de-6fab78cd01e3",
 "name": "LIGHTS",
 "description": "",
 "patterns": [
 "light://*/*"
],
 "actions": {
 "switch_off": true,
 "switch_on": true
 },
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1431013059131,
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1431013069803
 }
],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "remainingPagedResults": 0
}

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 48

Additional query strings can be specified to alter the returned results. For more information, see
"Filtering, Sorting, and Paging Results".

Supported _queryFilter Fields and Operators

Field Supported Operators
uuid Equals (eq), Contains (co), Starts with (sw)
name Equals (eq), Contains (co), Starts with (sw)
description Equals (eq), Contains (co), Starts with (sw)
patterns Equals (eq), Contains (co), Starts with (sw)
actions Equals (eq), Contains (co), Starts with (sw)

2.1.13.3.2. Reading a Specific Resource Type

To read an individual resource types in a realm, perform an HTTP GET to the /json{/realm}/
resourcetypes endpoint, and specify the UUID in the URL.

Note

If the realm is not specified in the URL, OpenAM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

$ curl \
--header "iPlanetDirectoryPro: AQIC5..." \
https://openam.example.com:8443/openam/json/myrealm/resourcetypes/12345a67-8f0b-123c-45de-6fab78cd01e3
{
 "uuid": "12345a67-8f0b-123c-45de-6fab78cd01e3",
 "name": "LIGHTS",
 "description": "",
 "patterns": [
 "light://*/*"
],
 "actions": {
 "switch_off": true,
 "switch_on": true
 },
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1431013059131,
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1431013069803
}

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 49

2.1.13.3.3. Creating a Resource Type

To create a resource type in a realm, perform an HTTP POST to the /json{/realm}/resourcetypes
endpoint, with an _action parameter set to create. Include a JSON representation of the resource type
in the POST data.

Note

If the realm is not specified in the URL, OpenAM creates the resource type in the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Do not use special characters within resource type, policy, or policy set names (for example, "my
+resource+type") when using the console or REST endpoints. Using the special characters listed
below causes OpenAM to return a 400 Bad Request error. The special characters are: double quotes
("), plus sign (+), comma (,), less than (<), equals (=), greater than (>), backslash (\), forward slash (/),
semicolon (;), and null (\u0000).

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "iPlanetDirectoryPro: AQIC5..."
 \
--data '{
 "name": "My Resource Type",
 "actions": {
 "LEFT": true,
 "RIGHT": true,
 "UP": true,
 "DOWN": true
 },
 "patterns": [
 "http://device/location/*"
]
}' \
https://openam.example.com:8443/openam/json/myrealm/resourcetypes/?_action=create
{
 "uuid": "12345a67-8f0b-123c-45de-6fab78cd01e4",
 "name": "My Resource Type",
 "description": null,
 "patterns": [
 "http://device/location/*"
],
 "actions": {
 "RIGHT": true,
 "DOWN": true,
 "UP": true,
 "LEFT": true
 },
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1431099940616,

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 50

 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1431099940616
}

2.1.13.3.4. Updating a Resource Type

To update an individual resource type in a realm, perform an HTTP PUT to the /json{/realm}/
resourcetypes endpoint, and specify the UUID in both the URL and the PUT body. Include a JSON
representation of the updated resource type in the PUT data, alongside the UUID.

Note

If the realm is not specified in the URL, OpenAM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Do not use special characters within resource type, policy, or policy set names (for example, "my
+resource+type") when using the console or REST endpoints. Using the special characters listed
below causes OpenAM to return a 400 Bad Request error. The special characters are: double quotes
("), plus sign (+), comma (,), less than (<), equals (=), greater than (>), backslash (\), forward slash (/),
semicolon (;), and null (\u0000).

$ curl \
--header "iPlanetDirectoryPro: AQIC5..." \
--request PUT \
--header "Content-Type: application/json" \
--data '{
 "uuid": "12345a67-8f0b-123c-45de-6fab78cd01e4",
 "name": "My Updated Resource Type",
 "actions": {
 "LEFT": false,
 "RIGHT": false,
 "UP": false,
 "DOWN": false
 },
 "patterns": [
 "http://device/location/*"
]
}' \
https://openam.example.com:8443/openam/json/myrealm/resourcetypes/12345a67-8f0b-123c-45de-6fab78cd01e4
{
 "uuid": "12345a67-8f0b-123c-45de-6fab78cd01e4",
 "name": "My Updated Resource Type",
 "description": null,
 "patterns": [
 "http://device/location/*"
],
 "actions": {
 "RIGHT": false,
 "DOWN": false,
 "UP": false,

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 51

 "LEFT": false
 },
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1431099940616,
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1431101016427
}

2.1.13.3.5. Deleting a Specific Resource Type

To delete an individual resource types in a realm, perform an HTTP DELETE to the /json{/realm}/
resourcetypes endpoint, and specify the UUID in the URL.

Note

If the realm is not specified in the URL, OpenAM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

$ curl \
--request DELETE
 \
--header "iPlanetDirectoryPro: AQIC5..." \
https://openam.example.com:8443/openam/json/myrealm/resourcetypes/12345a67-8f0b-123c-45de-6fab78cd01e4
{}

You can only delete resource types that are not being used by a policy set or policy. Trying to delete a
resource type that is in use will return an HTTP 409 Conflict status code, with a message such as:
{
 "code": 409,
 "reason": "Conflict",
 "message": "Unable to remove resource type 12345a67-8f0b-123c-45de-6fab78cd01e4 because it is
 referenced in the policy model."
}

Remove the resource type from any associated policy sets or policies to be able to delete it.

2.1.13.4. Managing Application Types

Application types act as templates for policy sets, and define how to compare resources and
index policies. OpenAM provides a default application type that represents web resources called
iPlanetAMWebAgentService. OpenAM policy agents use a default policy set that is based on this type,
which is also called iPlanetAMWebAgentService.

OpenAM provides the applicationtypes REST endpoint for the following:

• "Querying Application Types"

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 52

• "Reading a Specific Application Type"

Applications types are server-wide, and do not differ by realm. Hence the URI for the application
types API does not contain a realm component, but is /json/applicationtypes.

Application type resources are represented in JSON and take the following form. Application type
resources are built from standard JSON objects and values (strings, numbers, objects, arrays, true,
false, and null).
{
 "name": "iPlanetAMWebAgentService",
 "actions": {
 "POST": true,
 "PATCH": true,
 "GET": true,
 "DELETE": true,
 "OPTIONS": true,
 "PUT": true,
 "HEAD": true
 },
 "resourceComparator": "com.sun.identity.entitlement.URLResourceName",
 "saveIndex": "org.forgerock.openam.entitlement.indextree.TreeSaveIndex",
 "searchIndex": "org.forgerock.openam.entitlement.indextree.TreeSearchIndex",
 "applicationClassName": "com.sun.identity.entitlement.Application"
}

The values for the fields shown in the description are explained below:

"name"

The name provided for the application type.

"actions"

Set of string action names, each set to a boolean indicating whether the action is allowed.

"resourceComparator"

Class name of the resource comparator implementation used in the context of this application
type.

The following implementations are available:

"com.sun.identity.entitlement.ExactMatchResourceName"
"com.sun.identity.entitlement.PrefixResourceName"
"com.sun.identity.entitlement.RegExResourceName"
"com.sun.identity.entitlement.URLResourceName"

"saveIndex"

Class name of the implementation for creating indexes for resource names, such as "com.sun
.identity.entitlement.util.ResourceNameIndexGenerator" for URL resource names.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 53

"searchIndex"

Class name of the implementation for searching indexes for resource names, such as "com.sun
.identity.entitlement.util.ResourceNameSplitter" for URL resource names.

"applicationClassName"

Class name of the application type implementation, such as "com.sun.identity.entitlement
.Application".

2.1.13.4.1. Querying Application Types

To list all application types, perform an HTTP GET to the /json/applicationtypes endpoint, with a
_queryFilter parameter set to true.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

$ curl \
--header "iPlanetDirectoryPro: AQIC5..." \
https://openam.example.com:8443/openam/json/applicationtypes?_queryFilter=true
{
 "result" : [... application types ...],
 "resultCount" : 8,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
}

Additional query strings can be specified to alter the returned results. For more information, see
"Filtering, Sorting, and Paging Results".

2.1.13.4.2. Reading a Specific Application Type

To read an individual application type, perform an HTTP GET to the /json/applicationtypes endpoint,
and specify the application type name in the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 54

$ curl \
--header "iPlanetDirectoryPro: AQIC5..." \
https://openam.example.com:8443/openam/json/applicationtypes/iPlanetAMWebAgentService
{
 "name": "iPlanetAMWebAgentService",
 "actions": {
 "POST": true,
 "PATCH": true,
 "GET": true,
 "DELETE": true,
 "OPTIONS": true,
 "PUT": true,
 "HEAD": true
 },
 "resourceComparator": "com.sun.identity.entitlement.URLResourceName",
 "saveIndex": "org.forgerock.openam.entitlement.indextree.TreeSaveIndex",
 "searchIndex": "org.forgerock.openam.entitlement.indextree.TreeSearchIndex",
 "applicationClassName": "com.sun.identity.entitlement.Application"
}

2.1.13.5. Managing Policy Sets
This section describes the process of using the OpenAM REST API for managing policy sets.

Policy set definitions set constraints for defining policies. The default built-in policy set is called
iPlanetAMWebAgentService, which OpenAM policy agents use to allow policy management through the
console.

For information on creating policy sets by using the OpenAM console, see "OpenAM Resource Types,
Policy Sets, and Policies" in the Administration Guide.

OpenAM provides the applications REST endpoint for the following:

• "Querying Policy Sets"

• "Reading a Specific Policy Set"

• "Creating Policy Sets"

• "Updating Policy Sets"

• "Deleting Policy Sets"

Policy sets are realm specific, hence the URI for the policy set API can contain a realm component,
such as /json{/realm}/applications. If the realm is not specified in the URI, the top level realm is used.

Policy sets are represented in JSON and take the following form. Policy sets are built from standard
JSON objects and values (strings, numbers, objects, arrays, true, false, and null).
{
 "creationDate": 1431351677264,
 "lastModifiedDate": 1431351677264,
 "conditions": [

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 55

 "AuthenticateToService",
 "Script",
 "AuthScheme",
 "IPv6",
 "SimpleTime",
 "OAuth2Scope",
 "IPv4",
 "AuthenticateToRealm",
 "OR",
 "AMIdentityMembership",
 "LDAPFilter",
 "AuthLevel",
 "SessionProperty",
 "LEAuthLevel",
 "Session",
 "NOT",
 "AND",
 "ResourceEnvIP"
],
 "applicationType": "iPlanetAMWebAgentService",
 "subjects": [
 "JwtClaim",
 "AuthenticatedUsers",
 "Identity",
 "NOT",
 "AND",
 "NONE",
 "OR"
],
 "entitlementCombiner": "DenyOverride",
 "saveIndex": null,
 "searchIndex": null,
 "resourceComparator": null,
 "resourceTypeUuids": [
 "12345a67-8f0b-123c-45de-6fab78cd01e4"
],
 "attributeNames": [],
 "editable": true,
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "description": "The built-in Application used by OpenAM Policy Agents.",
 "realm": "/",
 "name": "iPlanetAMWebAgentService"
}

The values for the fields shown in the description are explained below:

"conditions"

Condition types allowed in the context of this policy set.

For information on condition types, see "Managing Policies" and "Managing Environment
Condition Types".

"applicationType"

Name of the application type used as a template for this policy set.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 56

"subjects"

Subject types allowed in the context of this policy set.

For information on subject types, see "Managing Policies" and "Managing Subject Condition
Types".

"entitlementCombiner"

Name of the decision combiner, such as "DenyOverride".

For more on decision combiners, see "Managing Decision Combiners".

"saveIndex"

Class name of the implementation for creating indexes for resource names, such as "com.sun
.identity.entitlement.util.ResourceNameIndexGenerator" for URL resource names.

"searchIndex"

Class name of the implementation for searching indexes for resource names, such as "com.sun
.identity.entitlement.util.ResourceNameSplitter" for URL resource names.

"resourceComparator"

Class name of the resource comparator implementation used in the context of this policy set.

The following implementations are available:

"com.sun.identity.entitlement.ExactMatchResourceName"
"com.sun.identity.entitlement.PrefixResourceName"
"com.sun.identity.entitlement.RegExResourceName"
"com.sun.identity.entitlement.URLResourceName"

"resourceTypeUuids"

A list of the UUIDs of the resource types associated with the policy set.

"attributeNames"

A list of attribute names such as cn. The list is used to aid policy indexing and lookup.

"description"

String describing the policy set.

"realm"

Name of the realm where this policy set is defined. You must specify the realm in the policy set
JSON even though it can be derived from the URL that is used when creating the policy set.

"name"

String matching the name in the URL used when creating the policy set by HTTP PUT or in the
body when creating the policy set by HTTP POST.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 57

"createdBy"

A string containing the universal identifier DN of the subject that created the policy set.

"creationDate"

An integer containing the creation date and time, in number of seconds since the Unix epoch
(1970-01-01T00:00:00Z).

"lastModifiedBy"

A string containing the universal identifier DN of the subject that most recently updated the
policy set.

If the policy set has not been modified since it was created, this will be the same value as
createdBy.

"lastModifiedDate"

An integer containing the last modified date and time, in number of seconds since the Unix epoch
(1970-01-01T00:00:00Z).

If the policy set has not been modified since it was created, this will be the same value as
creationDate.

2.1.13.5.1. Querying Policy Sets

To list all the policy sets in a realm, perform an HTTP GET to the /json{/realm}/applications endpoint,
with a _queryFilter parameter set to true.

Note

If the realm is not specified in the URL, OpenAM returns policy sets in the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

$ curl \
--header "iPlanetDirectoryPro: AQIC5..." \
https://openam.example.com:8443/openam/json/applications?_queryFilter=true
{
 "result": [
 {
 "_id": "iPlanetAMWebAgentService",
 "name": "iPlanetAMWebAgentService",
 "displayName": "Default Policy Set",
 "subjects": [
 "NOT",
 "OR",
 "JwtClaim",
 "AuthenticatedUsers",
 "AND",
 "Identity",

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 58

 "NONE"
],
 "saveIndex": null,
 "searchIndex": null,
 "entitlementCombiner": "DenyOverride",
 "resourceComparator": null,
 "attributeNames": [
],
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "editable": true,
 "resourceTypeUuids": [
 "76656a38-5f8e-401b-83aa-4ccb74ce88d2"
],
 "creationDate": 1480651214923,
 "lastModifiedDate": 1480651214923,
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "description": "The built-in Application used by OpenAM Policy Agents.",
 "applicationType": "iPlanetAMWebAgentService",
 "conditions": [
 "LEAuthLevel",
 "Script",
 "AuthenticateToService",
 "SimpleTime",
 "AMIdentityMembership",
 "OR",
 "IPv6",
 "IPv4",
 "SessionProperty",
 "AuthScheme",
 "AuthLevel",
 "NOT",
 "AuthenticateToRealm",
 "AND",
 "ResourceEnvIP",
 "LDAPFilter",
 "OAuth2Scope",
 "Session"
]
 },
 {
 "_id": "sunAMDelegationService",
 "name": "sunAMDelegationService",
 "displayName": "Delegation Policy Set",
 "subjects": [
 "NOT",
 "OR",
 "AuthenticatedUsers",
 "AND",
 "Identity"
],
 "saveIndex": null,
 "searchIndex": null,
 "entitlementCombiner": "DenyOverride",
 "resourceComparator": null,
 "attributeNames": [
],
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "editable": true,
 "resourceTypeUuids": [

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 59

 "20a13582-1f32-4f83-905f-f71ff4e2e00d"
],
 "creationDate": 1480651214933,
 "lastModifiedDate": 1480651214933,
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "description": null,
 "applicationType": "sunAMDelegationService",
 "conditions": [
]
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": 0
}

Additional query strings can be specified to alter the returned results. For more information, see
"Filtering, Sorting, and Paging Results".

Supported _queryFilter Fields and Operators

Field Supported Operators
name Equals (eq)
description Equals (eq)
createdBy Equals (eq)
creationDate Equals (eq), Greater than or equal to (ge), Greater than (gt), Less than or equal to

(le), Less than (lt)

Note

The implementation of eq for this date field does not use regular expression
pattern matching.

lastModifiedBy Equals (eq)
lastModifiedDate Equals (eq), Greater than or equal to (ge), Greater than (gt), Less than or equal to

(le), Less than (lt)

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 60

Field Supported Operators

Note

The implementation of eq for this date field does not use regular expression
pattern matching.

2.1.13.5.2. Reading a Specific Policy Set

To read an individual policy set in a realm, perform an HTTP GET to the /json{/realm}/applications
endpoint, and specify the policy set name in the URL.

Note

If the realm is not specified in the URL, OpenAM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

$ curl \
--header "iPlanetDirectoryPro: AQIC5..." \
https://openam.example.com:8443/openam/json/applications/mypolicyset
{
 "creationDate": 1431360678810,
 "lastModifiedDate": 1431360678810,
 "conditions": [
 "AuthenticateToService",
 "AuthScheme",
 "IPv6",
 "SimpleTime",
 "OAuth2Scope",
 "IPv4",
 "AuthenticateToRealm",
 "OR",
 "AMIdentityMembership",
 "LDAPFilter",
 "SessionProperty",
 "AuthLevel",
 "LEAuthLevel",
 "Session",
 "NOT",
 "AND",
 "ResourceEnvIP"
],
 "applicationType": "iPlanetAMWebAgentService",
 "subjects": [
 "JwtClaim",
 "AuthenticatedUsers",
 "Identity",
 "NOT",
 "AND",
 "OR"

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 61

],
 "entitlementCombiner": "DenyOverride",
 "saveIndex": null,
 "searchIndex": null,
 "resourceComparator": "com.sun.identity.entitlement.URLResourceName",
 "resourceTypeUuids": [
 "12345a67-8f0b-123c-45de-6fab78cd01e2"
],
 "attributeNames": [],
 "editable": true,
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "description": "My example policy set.",
 "realm": "/",
 "name": "mypolicyset"
}

You can use the query string parameters _prettyPrint=true to make the output easier to read, and
_fields=field-name[,field-name...] to limit the fields returned in the output.

2.1.13.5.3. Creating Policy Sets

To create a policy set in a realm, perform an HTTP POST to the /json{/realm}/applications endpoint,
with an _action parameter set to create. Include a JSON representation of the policy set in the POST
data.

Note

If the realm is not specified in the URL, OpenAM creates the policy set in the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Do not use special characters within resource type, policy, or policy set names (for example, "my
+resource+type") when using the console or REST endpoints. Using the special characters listed
below causes OpenAM to return a 400 Bad Request error. The special characters are: double quotes
("), plus sign (+), comma (,), less than (<), equals (=), greater than (>), backslash (\), forward slash (/),
semicolon (;), and null (\u0000).

$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "iPlanetDirectoryPro: AQIC5..." \
--data '{
 "name": "mypolicyset",
 "resourceTypeUuids": [
 "12345a67-8f0b-123c-45de-6fab78cd01e2"
],
 "realm": "/",
 "conditions": [
 "AND",
 "OR",
 "NOT",

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 62

 "AMIdentityMembership",
 "AuthLevel",
 "AuthScheme",
 "AuthenticateToRealm",
 "AuthenticateToService",
 "IPv4",
 "IPv6",
 "LDAPFilter",
 "LEAuthLevel",
 "OAuth2Scope",
 "ResourceEnvIP",
 "Session",
 "SessionProperty",
 "SimpleTime"
],
 "applicationType": "iPlanetAMWebAgentService",
 "description": "My example policy set.",
 "resourceComparator": "com.sun.identity.entitlement.URLResourceName",
 "subjects": [
 "AND",
 "OR",
 "NOT",
 "AuthenticatedUsers",
 "Identity",
 "JwtClaim"
],
 "entitlementCombiner": "DenyOverride",
 "saveIndex": null,
 "searchIndex": null,
 "attributeNames": []
}' \
https://openam.example.com:8443/openam/json/applications/?_action=create
{
 "creationDate": 1431360678810,
 "lastModifiedDate": 1431360678810,
 "conditions": [
 "AuthenticateToService",
 "AuthScheme",
 "IPv6",
 "SimpleTime",
 "OAuth2Scope",
 "IPv4",
 "AuthenticateToRealm",
 "OR",
 "AMIdentityMembership",
 "LDAPFilter",
 "SessionProperty",
 "AuthLevel",
 "LEAuthLevel",
 "Session",
 "NOT",
 "AND",
 "ResourceEnvIP"
],
 "applicationType": "iPlanetAMWebAgentService",
 "subjects": [
 "JwtClaim",
 "AuthenticatedUsers",
 "Identity",

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 63

 "NOT",
 "AND",
 "OR"
],
 "entitlementCombiner": "DenyOverride",
 "saveIndex": null,
 "searchIndex": null,
 "resourceComparator": "com.sun.identity.entitlement.URLResourceName",
 "resourceTypeUuids": [
 "12345a67-8f0b-123c-45de-6fab78cd01e2"
],
 "attributeNames": [],
 "editable": true,
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "description": "My example policy set.",
 "realm": "/",
 "name": "mypolicyset"
}

You can use the query string parameters _prettyPrint=true to make the output easier to read, and
_fields=field-name[,field-name...] to limit the fields returned in the output.

2.1.13.5.4. Updating Policy Sets

To update an individual policy set in a realm, perform an HTTP PUT to the /json{/realm}/applications
endpoint, and specify the policy set name in the URL. Include a JSON representation of the updated
policy set in the PUT data.

Note

If the realm is not specified in the URL, OpenAM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Do not use special characters within resource type, policy, or policy set names (for example, "my
+resource+type") when using the console or REST endpoints. Using the special characters listed
below causes OpenAM to return a 400 Bad Request error. The special characters are: double quotes
("), plus sign (+), comma (,), less than (<), equals (=), greater than (>), backslash (\), forward slash (/),
semicolon (;), and null (\u0000).

$ curl \
--request PUT \
--header "iPlanetDirectoryPro: AQIC5..." \
--header "Content-Type: application/json" \
--data '{
 "name": "myupdatedpolicyset",
 "description": "My updated policy set - new name and fewer allowable conditions/subjects.",
 "conditions": [
 "NOT",
 "SimpleTime"

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 64

],
 "subjects": [
 "AND",
 "OR",
 "NOT",
 "AuthenticatedUsers",
 "Identity"
],
 "applicationType": "iPlanetAMWebAgentService",
 "entitlementCombiner": "DenyOverride",
 "resourceTypeUuids": [
 "76656a38-5f8e-401b-83aa-4ccb74ce88d2"
]
}' \
https://openam.example.com:8443/openam/json/applications/mypolicyset
{
 "creationDate": 1431362370739,
 "lastModifiedDate": 1431362390817,
 "conditions": [
 "NOT",
 "SimpleTime"
],
 "resourceComparator": "com.sun.identity.entitlement.URLResourceName",
 "resourceTypeUuids": [
 "76656a38-5f8e-401b-83aa-4ccb74ce88d2"
],
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "applicationType": "iPlanetAMWebAgentService",
 "subjects": [
 "AuthenticatedUsers",
 "Identity",
 "NOT",
 "AND",
 "OR"
],
 "entitlementCombiner": "DenyOverride",
 "saveIndex": null,
 "searchIndex": null,
 "attributeNames": [],
 "editable": true,
 "description": "My updated policy set - new name and fewer allowable conditions/subjects.",
 "realm": "/",
 "name": "myupdatedpolicyset"
}

You can use the query string parameters _prettyPrint=true to make the output easier to read, and
_fields=field-name[,field-name...] to limit the fields returned in the output.

2.1.13.5.5. Deleting Policy Sets

To delete an individual policy set in a realm, perform an HTTP DELETE to the /json{/realm}/
applications endpoint, and specify the policy set name in the URL.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 65

Note

If the realm is not specified in the URL, OpenAM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

$ curl \
 --request DELETE \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/applications/myupdatedpolicyset
{}

2.1.13.6. Managing Policies

This section describes the process of using the OpenAM REST API for managing policies.

For information on creating policies by using the OpenAM console, see "OpenAM Resource Types,
Policy Sets, and Policies" in the Administration Guide.

OpenAM provides the policies REST endpoint for the following:

• "Querying Policies"

• "Reading a Specific Policy"

• "Creating Policies"

• "Updating Policies"

• "Deleting Policies"

• "Copying and Moving Policies"

Policies are realm specific, hence the URI for the policies API can contain a realm component, such as
/json{/realm}/policies. If the realm is not specified in the URI, the top level realm is used.

Policy resources are represented in JSON and take the following form. Policy resources are built from
standard JSON objects and values (strings, numbers, objects, arrays, true, false, and null).
{
 "name": "mypolicy",
 "active": true,
 "description": "My Policy.",
 "applicationName": "iPlanetAMWebAgentService",
 "actionValues": {
 "POST": true,
 "GET": true
 },

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 66

 "resources": [
 "http://www.example.com:80/*",
 "http://www.example.com:80/*?*"
],
 "subject": {
 "type": "AuthenticatedUsers"
 },
 "condition": {
 "type": "SimpleTime",
 "startTime": "09:00",
 "endTime": "17:00",
 "startDay": "mon",
 "endDay": "fri",
 "enforcementTimeZone": "GMT"
 },
 "resourceTypeUuid": "76656a38-5f8e-401b-83aa-4ccb74ce88d2",
 "resourceAttributes": [
 {
 "type": "User",
 "propertyName": "givenName",
 "propertyValues": []
 }
],
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": "2015-05-11T17:39:09.393Z",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": "2015-05-11T17:37:24.556Z"
}

The values for the fields shown in the example are explained below:

"name"

String matching the name in the URL used when creating the policy by HTTP PUT or in the body
when creating the policy by HTTP POST.

"active"

Boolean indicating whether OpenAM considers the policy active for evaluation purposes, defaults
to false.

"description"

String describing the policy.

"resources"

List of the resource name pattern strings to which the policy applies. Must conform to the pattern
templates provided by the associated resource type.

"applicationName"

String containing the policy set name, such as "iPlanetAMWebAgentService", or "mypolicyset".

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 67

"actionValues"

Set of string action names, each set to a boolean indicating whether the action is allowed. Chosen
from the available actions provided by the associated resource type.

Tip

Action values can also be expressed as numeric values. When using numeric values, use the value 0 for
false and use any non-zero numeric value for true.

"subject"

Specifies the subject conditions to which the policy applies, where subjects can be combined by
using the built-in types "AND", "OR", and "NOT", and where subject implementations are pluggable.

Subjects are shown as JSON objects with "type" set to the name of the implementation (using a
short name for all registered subject implementations), and also other fields depending on the
implementation. The subject types registered by default include the following:

• "AuthenticatedUsers", meaning any user that has successfully authenticated to OpenAM.
{
 "type": "AuthenticatedUsers"
}

Warning

The AuthenticatedUsers subject condition does not take into account the realm to which a user
authenticated. Any user that has authenticated successfully to any realm passes this subject condition.

To test whether a user has authenticated successfully to a specific realm, also add the
AuthenticateToRealm environment condition.

• "Identity" to specify one or more users from an OpenAM identity repository:
{
 "type": "Identity",
 "subjectValues": [
 "uid=scarter,ou=People,dc=example,dc=com",
 "uid=ahall,ou=People,dc=example,dc=com"
]
}

You can also use the "Identity" subject type to specify one or more groups from an identity
repository:
{
 "type": "Identity",
 "subjectValues": [
 "cn=HR Managers,ou=Groups,dc=example,dc=com"
]
}

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 68

• "JwtClaim" to specify a claim in a user's JSON web token (JWT).
{
 "type": "JwtClaim",
 "claimName": "sub",
 "claimValue": "scarter"
}

• "NONE", meaning never match any subject. The result is not that access is denied, but rather that
the policy itself does not match and therefore cannot be evaluated in order to allow access.

The following example defines the subject either as the user Sam Carter from an OpenAM
identity repository, or as a user with a JWT claim with a subject claim with the value scarter:
"subject": {
 "type": "OR",
 "subjects": [
 {
 "type": "Identity",
 "subjectValues": [
 "uid=scarter,ou=People,dc=example,dc=com"
]
 },
 {
 "type": "JwtClaim",
 "claimName": "sub",
 "claimValue": "scarter"
 }
]
}

To read a single subject type description, or to list all the available subject types, see "Managing
Subject Condition Types".

"condition"

Specifies environment conditions, where conditions can be combined by using the built-in types
"AND", "OR", and "NOT", and where condition implementations are pluggable.

Conditions are shown as JSON objects with "type" set to the name of the implementation (using a
short name for all registered condition implementations), and also other fields depending on the
implementation. The condition types registered by default include the following.

• "AMIdentityMembership" to specify a list of OpenAM users and groups.
{
 "type": "AMIdentityMembership",
 "amIdentityName": [
 "id=scarter,ou=People,dc=example,dc=com"
]
}

• "AuthLevel" to specify the authentication level.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 69

{
 "type": "AuthLevel",
 "authLevel": 2
}

• "AuthScheme" to specify the authentication module used to authenticate and the policy set name,
and to set a timeout for authentication.
{
 "type": "AuthScheme",
 "authScheme": [
 "DataStore"
],
 "applicationName": "iPlanetAMWebAgentService",
 "applicationIdleTimeout": 10
}

• "AuthenticateToRealm" to specify the realm to which the user authenticated.
{
 "type": "AuthenticateToRealm",
 "authenticateToRealm": "MyRealm"
}

• "AuthenticateToService" to specify the authentication chain that was used to authenticate.
{
 "type": "AuthenticateToService",
 "authenticateToService": "MyAuthnChain"
}

• "IPv4" or "IPv6" to specify an IP address range from which the request originated.
{
 "type": "IPv4",
 "startIp": "127.0.0.1",
 "endIp": "127.0.0.255"
}

You can also use the "IPv4" and "IPv6" conditions with the "dnsName" field to specify domain
names from which the request originated. Omit "startIp" and "endIp" when using "dnsName".
{
 "type": "IPv4",
 "dnsName": [
 "*.example.com"
]
}

• "LDAPFilter" to specify an LDAP search filter. The user's entry is tested against the search filter
in the directory configured in the Policy Configuration Service.
{
 "type": "LDAPFilter",
 "ldapFilter": "(&(c=US)(preferredLanguage=en-us))"
}

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 70

• "LEAuthLevel" to specify a maximum acceptable authentication level.

{
 "type": "LEAuthLevel",
 "authLevel": 2
}

• "OAuth2Scope" to specify a list of attributes that must be present in the user profile.
{
 "type": "OAuth2Scope",
 "requiredScopes": [
 "name",
 "address",
 "email"
]
}

• "ResourceEnvIP" to specify a complex condition such as whether the user is making a request
from a given host and has authenticated with a given authentication level. For example:
{
 "type": "ResourceEnvIP",
 "resourceEnvIPConditionValue": [
 "IF IP=[127.168.10.*] THEN authlevel=4"
]
}

Entries must take the form of one or more IF...ELSE statements. If the IF statement is true, the
THEN statement must also be true for the condition to be fulfilled. The IF statement can specify
either IP to match the user's IP address, or dnsName to match their DNS name. The IP address
can be IPv4 or IPv6 format, or a hybrid of the two, and can include wildcard characters.

The available parameters for the THEN statement are as follows:

module

The module that was used to authenticate the user, for example DataStore.

service

The authentication chain that was used to authenticate the user.

authlevel

The minimum required authentication level.

role

The role of the authenticated user.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 71

user

The name of the authenticated user.

redirectURL

The URL from which the user was redirected.

realm

The realm to which the user authenticated.

• "Session" to specify how long the user's stateful or stateless session has been active, and to
terminate the session if deemed too old, such that the user must authenticate again. Note
that OpenAM terminates stateless sessions only if session blacklisting is in effect. For more
information about session blacklisting, see "Session Termination" in the Administration Guide.
{
 "type": "Session",
 "maxSessionTime": "10",
 "terminateSession": false
}

• "SessionProperty" to specify attributes set in the user's stateful or stateless session.
{
 "type": "SessionProperty",
 "ignoreValueCase": true,
 "properties": {
 "CharSet": [
 "UTF-8"
],
 "clientType": [
 "genericHTML"
]
 }
}

• "SimpleTime" to specify a time range, where "type" is the only required field.
{
 "type": "SimpleTime",
 "startTime": "07:00",
 "endTime": "19:00",
 "startDay": "mon",
 "endDay": "fri",
 "startDate": "2015:01:01",
 "endDate": "2015:12:31",
 "enforcementTimeZone": "GMT+0:00"
}

The following example defines the condition as neither Saturday or Sunday, nor certain client IP
addresses.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 72

{
 "type": "NOT",
 "condition": {
 "type": "OR",
 "conditions": [
 {
 "type": "SimpleTime",
 "startDay": "sat",
 "endDay": "sun",
 "enforcementTimeZone": "GMT+8:00"
 },
 {
 "type": "IPv4",
 "startIp": "192.168.0.1",
 "endIp": "192.168.0.255"
 }
]
 }
}

To read a single condition type description, or to list all the available condition types, see
"Managing Environment Condition Types".

"resourceTypeUuid"

The UUIDs of the resource type associated with the policy.

"resourceAttributes"

List of attributes to return with decisions. These attributes are known as response attributes.

The response attribute provider is pluggable. The default implementation provides for statically
defined attributes and for attributes retrieved from user profiles.

Attributes are shown as JSON objects with "type" set to the name of the implementation (by
default either "Static" for statically defined attributes or "User" for attributes from the user
profile), "propertyName" set to the attribute names. For static attributes, "propertyValues" holds
the attribute values. For user attributes, "propertyValues" is not used; the property values are
determined at evaluation time.

"createdBy"

A string containing the universal identifier DN of the subject that created the policy.

"creationDate"

An integer containing the creation date and time, in number of seconds since the Unix epoch
(1970-01-01T00:00:00Z).

"lastModifiedBy"

A string containing the universal identifier DN of the subject that most recently updated the
policy.

If the policy has not been modified since it was created, this will be the same value as createdBy.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 73

"lastModifiedDate"

An integer containing the last modified date and time, in number of seconds since the Unix epoch
(1970-01-01T00:00:00Z).

If the policy has not been modified since it was created, this will be the same value as
creationDate.

2.1.13.6.1. Querying Policies

Use REST calls to list all the policies in a realm, or to find policies that explicitly apply to a given user
or group, by using the procedures below:

• "To List All Policies in a Realm"

• "To Query Policies in a Realm by User or Group"

To List All Policies in a Realm

• To list all the policies in a realm, perform an HTTP GET to the /json{/realm}/policies endpoint,
with an _queryFilter parameter set to true.

Note

If the realm is not specified in the URL, OpenAM returns policies in the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

$ curl \
 --header "iPlanetDirectoryPro: AQIC5w..." \
 https://openam.example.com:8443/openam/json/myrealm/policies?_queryFilter=true

{
 "result": [
 {
 "name": "example",
 "active": true,
 "description": "Example Policy",
 "applicationName": "iPlanetAMWebAgentService",
 "actionValues": {
 "POST": false,
 "GET": true
 },
 "resources": [
 "http://www.example.com:80/*",
 "http://www.example.com:80/*?*"
],
 "subject": {
 "type": "Identity",
 "subjectValues": [
 "uid=demo,ou=People,dc=example,dc=com"

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 74

]
 },
 "resourceTypeUuid": "12345a67-8f0b-123c-45de-6fab78cd01e4",
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": "2015-05-11T14:48:08.711Z",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": "2015-05-11T14:48:08.711Z"
 }
],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "remainingPagedResults": 0
}

Additional query strings can be specified to alter the returned results. For more information, see
"Filtering, Sorting, and Paging Results".

Supported _queryFilter Fields and Operators

Field Supported Operators
name Equals (eq)
description Equals (eq)
applicationName Equals (eq)
createdBy Equals (eq)
creationDate Equals (eq), Greater than or equal to (ge), Greater than (gt), Less than or equal

to (le), Less than (lt)

Note

The implementation of eq for this date field does not use regular expression
pattern matching.

lastModifiedBy Equals (eq)
lastModifiedDate Equals (eq), Greater than or equal to (ge), Greater than (gt), Less than or equal

to (le), Less than (lt)

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 75

Field Supported Operators

Note

The implementation of eq for this date field does not use regular expression
pattern matching.

To Query Policies in a Realm by User or Group

You can query policies that explicitly reference a given subject by providing the universal ID (UID) of
either a user or group. OpenAM returns any policies that explicitly apply to the user or group as part
of a subject condition.

Tip

You can obtain the universal ID for a user or group by using REST. See "Reading Identities".

The following caveats apply to querying policies by user or group:

• Group membership is not considered. For example, querying policies for a specific user will not
return policies that only use groups in their subject conditions, even if the user is a member of any
of those groups.

• Wildcards are not supported, only exact matches.

• Only policies with a subject condition type of Identity are queried—environment conditions are not
queried. The Identity subject condition type is labelled as Users & Groups in the policy editor in the
OpenAM console.

• Policies with subject conditions that only contain the user or group in a logical NOT operator are
not returned.

To query policies by user or group:

• Perform an HTTP GET to the /json{/realm}/policies endpoint, with an _queryId parameter set to
queryByIdentityUid, and a uid parameter containing the universal ID of the user or group:

$ curl \
 --get \
 --header "iPlanetDirectoryPro: AQIC5w..." \
 --data "_queryId=queryByIdentityUid" \
 --data "uid=id=demo,ou=user,o=myrealm,ou=services,dc=openam,dc=forgerock,dc=org" \
 https://openam.example.com:8443/openam/json/myrealm/policies
 {
 "result" : [{
 "name" : "mySubRealmPolicy",
 "active" : true,

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 76

 "description" : "",
 "resources" : ["*://*:*/*?*", "*://*:*/*"],
 "applicationName" : "iPlanetAMWebAgentService",
 "actionValues" : {
 "POST" : true,
 "PATCH" : true,
 "GET" : true,
 "DELETE" : true,
 "OPTIONS" : true,
 "PUT" : true,
 "HEAD" : true
 },
 "subject" : {
 "type" : "Identity",
 "subjectValues" :
 [
 "id=demo,ou=user,o=myrealm,ou=services,dc=openam,dc=forgerock,dc=org"
]
 },
 "resourceTypeUuid" : "76656a38-5f8e-401b-83aa-4ccb74ce88d2",
 "lastModifiedBy" : "id=amAdmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate" : "2016-05-05T08:45:35.716Z",
 "createdBy" : "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate" : "2016-05-03T13:45:38.137Z"
 }],
 "resultCount" : 1,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : 0
}

Note

If the realm is not specified in the URL, OpenAM searches the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

2.1.13.6.2. Reading a Specific Policy

To read an individual policy in a realm, perform an HTTP GET to the /json{/realm}/policies endpoint,
and specify the policy name in the URL.

Note

If the realm is not specified in the URL, OpenAM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

$ curl \

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 77

--header "iPlanetDirectoryPro: AQIC5..." \
https://openam.example.com:8443/openam/json/policies/example
{
 "result": [
 {
 "name": "example",
 "active": true,
 "description": "Example Policy",
 "applicationName": "iPlanetAMWebAgentService",
 "actionValues": {
 "POST": false,
 "GET": true
 },
 "resources": [
 "http://www.example.com:80/*",
 "http://www.example.com:80/*?*"
],
 "subject": {
 "type": "Identity",
 "subjectValues": [
 "uid=demo,ou=People,dc=example,dc=com"
]
 },
 "resourceTypeUuid": "12345a67-8f0b-123c-45de-6fab78cd01e4",
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": "2015-05-11T14:48:08.711Z",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": "2015-05-11T14:48:08.711Z"
 }
],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "remainingPagedResults": 0
}

You can use the query string parameters _prettyPrint=true to make the output easier to read, and
_fields=field-name[,field-name...] to limit the fields returned in the output.

2.1.13.6.3. Creating Policies

To create a policy in a realm, perform an HTTP POST to the /json{/realm}/policies endpoint, with an
_action parameter set to create. Include a JSON representation of the policy in the POST data.

Note

If the realm is not specified in the URL, OpenAM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Do not use special characters within resource type, policy, or policy set names (for example, "my
+resource+type") when using the console or REST endpoints. Using the special characters listed
below causes OpenAM to return a 400 Bad Request error. The special characters are: double quotes

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 78

("), plus sign (+), comma (,), less than (<), equals (=), greater than (>), backslash (\), forward slash (/),
semicolon (;), and null (\u0000).

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data '{
 "name": "mypolicy",
 "active": true,
 "description": "My Policy.",
 "applicationName": "iPlanetAMWebAgentService",
 "actionValues": {
 "POST": false,
 "GET": true
 },
 "resources": [
 "http://www.example.com:80/*",
 "http://www.example.com:80/*?*"
],
 "subject": {
 "type": "Identity",
 "subjectValues": [
 "uid=demo,ou=People,dc=example,dc=com"
]
 },
 "resourceTypeUuid": "12345a67-8f0b-123c-45de-6fab78cd01e4"
 }' \
 https://openam.example.com:8443/openam/json/policies?_action=create
 {
 "name": "mypolicy",
 "active": true,
 "description": "My Policy.",
 "applicationName": "iPlanetAMWebAgentService",
 "actionValues": {
 "POST": false,
 "GET": true
 },
 "resources": [
 "http://www.example.com:80/*",
 "http://www.example.com:80/*?*"
],
 "subject": {
 "type": "Identity",
 "subjectValues": [
 "uid=demo,ou=People,dc=example,dc=com"
]
 },
 "resourceTypeUuid": "12345a67-8f0b-123c-45de-6fab78cd01e4",
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": "2015-05-11T14:48:08.711Z",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": "2015-05-11T14:48:08.711Z"
}

You can use the query string parameters _prettyPrint=true to make the output easier to read, and
_fields=field-name[,field-name...] to limit the fields returned in the output.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 79

2.1.13.6.4. Updating Policies

To update an individual policy in a realm, perform an HTTP PUT to the /json{/realm}/policies
endpoint, and specify the policy name in the URL. Include a JSON representation of the updated
policy in the PUT data.

Note

If the realm is not specified in the URL, OpenAM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Do not use special characters within resource type, policy, or policy set names (for example, "my
+resource+type") when using the console or REST endpoints. Using the special characters listed
below causes OpenAM to return a 400 Bad Request error. The special characters are: double quotes
("), plus sign (+), comma (,), less than (<), equals (=), greater than (>), backslash (\), forward slash (/),
semicolon (;), and null (\u0000).

$ curl \
 --request PUT \
 --header "iPlanetDirectoryPro: AQIC5w..." \
 --header "Content-Type: application/json" \
 --data '{
 "name": "myupdatedpolicy",
 "active": true,
 "description": "My Updated Policy.",
 "resources": [
 "http://www.example.com:80/*",
 "http://www.example.com:80/*?*"
],
 "actionValues": {
 "POST": true,
 "GET": true
 },
 "subject": {
 "type": "Identity",
 "subjectValues": [
 "uid=scarter,ou=People,dc=example,dc=com",
 "uid=bjenson,ou=People,dc=example,dc=com"
]
 },
 "resourceTypeUuid": "12345a67-8f0b-123c-45de-6fab78cd01e4"
}' \
 https://openam.example.com:8443/openam/json/policies/mypolicy
 {
 "name": "myupdatedpolicy",
 "active": true,
 "description": "My Updated Policy.",
 "applicationName": "iPlanetAMWebAgentService",
 "actionValues": {
 "POST": true,
 "GET": true
 },

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 80

 "resources": [
 "http://www.example.com:80/*",
 "http://www.example.com:80/*?*"
],
 "subject": {
 "type": "Identity",
 "subjectValues": [
 "uid=bjenson,ou=People,dc=example,dc=com",
 "uid=scarter,ou=People,dc=example,dc=com"
]
 },
 "resourceTypeUuid": "12345a67-8f0b-123c-45de-6fab78cd01e4",
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": "2015-05-11T17:26:59.116Z",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": "2015-05-11T17:25:18.632Z"
}

You can use the query string parameters _prettyPrint=true to make the output easier to read, and
_fields=field-name[,field-name...] to limit the fields returned in the output.

2.1.13.6.5. Deleting Policies

To delete an individual policy in a realm, perform an HTTP DELETE to the /json{/realm}/policies
endpoint, and specify the policy name in the URL.

Note

If the realm is not specified in the URL, OpenAM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

$ curl \
 --header "iPlanetDirectoryPro: AQIC5w..." \
 --request DELETE \
 https://openam.example.com:8443/openam/json/policies/myupdatedpolicy
{}

2.1.13.6.6. Copying and Moving Policies

You can copy or move an individual policy by performing an HTTP POST to the /json{/realm}/
policies/policyName endpoint as follows:

• Specify the _action=copy or _action=move URL parameter.

• Specify the realm in which the input policy resides in the URL. If the realm is not specified in the
URL, OpenAM copies or moves a policy from the top level realm.

• Specify the policy to be copied or moved in the URL.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 81

• Specify the SSO token of an administrative user who has access to perform the operation in the
iPlanetDirectoryPro header.

Specify JSON input data as follows:

JSON Input Data for Copying or Moving Individual Policies

Object Property Description
to name The name of the output policy.

Required unless you are copying or moving a
policy to a different realm and you want the
output policy to have the same name as the
input policy.

to application The policy set in which to place the output
policy.

Required when copying or moving a policy to a
different policy set.

to realm The realm in which to place the output policy.
If not specified, OpenAM copies or moves the
policy within the realm identified in the URL.

Required when copying or moving a policy to a
different realm.

to resourceType The UUID of the output policy's resource type.

Required when copying or moving a policy to a
different realm.

The follow example copies the policy myPolicy to myNewPolicy. The output policy is placed in the myRealm
realm, in the same policy set as the input policy:

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 82

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5w..." \
 --data '{
 "to": {
 "name": "myNewPolicy"
 }
 }' \
 https://openam.example.com:8443/openam/json/myRealm/policies/myPolicy?_action=copy
{
 "name":"myNewPolicy",
 "active":true,
 "description":"",
 "applicationName":"iPlanetAMWebAgentService",
 "actionValues":{},
 "resources":['"*://*:*/*"],
 "subject":{"type":"NONE"},
 "resourceTypeUuid":"d98e59c9-766a-4934-b5de-8a28a9edc158",
 "lastModifiedBy":"id=amadmin,ou=user,dc=example,dc=com",
 "lastModifiedDate":"2015-12-19T15:22:44.861Z",
 "createdBy":"id=amadmin,ou=user,dc=example,dc=com",
 "creationDate":"2015-12-19T15:22:44.861Z"
}

The following example moves a policy named myPolicy in the myRealm realm to myMovedPolicy in the
myOtherRealm realm. The output policy is placed in the iPlanetAMWebAgentService policy set, which is the
policy set in which the input policy is located.

The realm myOtherRealm must be configured as follows for the example to run successfully:

• It must have a resource type that has the same resources as the resource type configured for the
myPolicy policy.

• It must have a policy set named iPlanetAMWebAgentService.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 83

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5w..." \
 --data '{
 "to": {
 "name": "myMovedPolicy",
 "realm": "/myOtherRealm",
 "resourceType: "616b3d02-7a8d-4422-b6a7-174f62afd065"
 }
 }' \
 https://openam.example.com:8443/openam/json/myRealm/policies/myPolicy?_action=move
{
 "name":"myMovedPolicy",
 "active":true,
 "description":"",
 "actionValues":{},
 "applicationName":"iPlanetAMWebAgentService",
 "resources":["*://*:*/*"],
 "subject":{"type":"NONE"},
 "resourceTypeUuid":"616b3d02-7a8d-4422-b6a7-174f62afd065",
 "lastModifiedBy":"id=amadmin,ou=user,dc=example,dc=com",
 "lastModifiedDate":"2015-12-21T19:32:59.502Z",
 "createdBy":"id=amadmin,ou=user,dc=example,dc=com",
 "creationDate":"2015-12-21T19:32:59.502Z"
 }

You can also copy and move multiple policies—all the policies in a policy set—in a single operation by
performing an HTTP POST to the /json{/realm}/policies endpoint as follows:

• Specify the _action=copy or _action=move URL parameter.

• Specify the realm in which the input policies reside as part of the URL. If no realm is specified in
the URL, OpenAM copies or moves policies within the top level realm.

• Specify the SSO token of an administrative user who has access to perform the operation in the
iPlanetDirectoryPro header.

Specify JSON input data as follows:

JSON Input Data for Copying or Moving Multiple Policies

Object Property Description
from application The policy set in which the input policies are

located.

Required.
to application The policy set in which to store output policies.

Required when copying or moving policies to a
different policy set.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 84

Object Property Description
to realm The realm in which to store output policies.

Required when copying or moving policies to a
different realm.

to namePostfix A value appended to output policy names in
order to prevent name clashes.

Required.
resourceTypeMapping Varies; see

Description
One or more resource types mappings, where
the left side of the mapping specifies the UUID
of a resource type used by the input policies and
the right side of the mapping specifies the UUID
of a resource type used by the output policies.
The two resource types should have the same
resource patterns.

Required when copying or moving policies to a
different realm.

The following example copies all the policies in the iPlanetAMWebAgentService policy set in the myRealm
realm to the iPlanetAMWebAgentService policy set in the myOtherRealm realm, appending the string -copy to
the output policy names.

The realm myOtherRealm must be configured as follows for the example to run successfully:

• It must have a resource type that maps to the ccb50c1a-206d-4946-9106-4164e8f2b35b resource type. The
two resource types should have the same resource patterns.

• It must have a policy set named iPlanetAMWebAgentService.

The JSON output shows that a single policy is copied. The policy myNewPolicy is copied to realm
myOtherRealm. The copied policy receives the name myOtherRealm-copy:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5w..." \
 --data '{
 "from": {
 "application": "iPlanetAMWebAgentService"
 },
 "to": {
 "realm": "/myOtherRealm",
 "namePostfix": "-copy"
 },
 "resourceTypeMapping": {
 "ccb50c1a-206d-4946-9106-4164e8f2b35b": "616b3d02-7a8d-4422-b6a7-174f62afd065"
 }

 }' \
https://openam.example.com:8443/openam/json/myRealm/policies?_action=copy

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 85

{
 "name":"myNewPolicy-copy",
 "active":true,
 "description":"",
 "actionValues":{},
 "applicationName":"iPlanetAMWebAgentService",
 "resources":["*://*:*/*"],"subject":{"type":"NONE"},
 "resourceTypeUuid":"616b3d02-7a8d-4422-b6a7-174f62afd065",
 "lastModifiedBy":"id=amadmin,ou=user,dc=example,dc=com",
 "lastModifiedDate":"2015-12-21T20:01:42.410Z",
 "createdBy":"id=amadmin,ou=user,dc=example,dc=com",
 "creationDate":"2015-12-21T20:01:42.410Z"
}

2.1.13.7. Importing and Exporting XACML 3.0

OpenAM supports the ability to export policies to eXtensible Access Control Markup Language
(XACML) 3.0-based formatted policy sets through its /xacml/policies REST endpoint. You can also
import XACML 3.0 policy sets back into OpenAM by using the same endpoint. The endpoint's
functionally is identical to that of the ssoadm create-xacml and ssoadm list-xacml commands. For
more information, see "Importing and Exporting Policies" in the Administration Guide

Note

OpenAM can only import XACML 3.0 policy sets that were either created by an OpenAM instance, or that
have had minor manual modifications, due to the reuse of some XACML 3.0 parameters for non-standard
information.

When exporting OpenAM policies to XACML 3.0 policy sets, OpenAM maps its policies to XACML 3.0
policy elements. The mappings are as follows:

OpenAM Policies to XACML Mappings

OpenAM Policy XACML Policy
Policy Name Policy ID
Description Description
Current Time (yyyy.MM.dd.HH.mm.ss.SSS) Version
xacml rule target entitlement excluded resource names
Rule Deny Overrides Rule Combining Algorithm ID
Any of:

• Entitlement Subject

• Resource Names

• Policy Set Names

• Action Values

Target

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 86

OpenAM Policy XACML Policy
Any of:

• Policy Set Name

• Entitlement Name

• Privilege Created By

• Privilege Modified By

• Privilege Creation Date

• Privilege Last Modification Date

Variable Definitions

Single Level Permit/Deny Actions converted to Policy
Rules

Rules

Note

XACML obligation is not supported. Also, only one XACML match is defined for each privilege action, and only
one XACML rule for each privilege action value.

2.1.13.7.1. Exporting from OpenAM to XACML

OpenAM supports exporting policies into XACML 3.0 format. OpenAM only exports a policy set that
contains policy definitions. No other types can be included in the policy set, such as sub-policy sets or
rules. The policy set mapping is as follows:

Policy Set Mappings

OpenAM XACML
Realm:<timestamp>(yyyy.MM.dd.HH.mm.ss.SSS) PolicySet ID
Current Time (yyyy.MM.dd.HH.mm.ss.SSS) Version
Deny Overrides Policy Combining Algorithm ID
No targets defined Target

The export service is accessible at the /xacml/policies endpoint using a HTTP GET request at the
following endpoint for the root realm or a specific realm:

http://openam.example.com:8080/openam/xacml/policies
http://openam.example.com:8080/openam/xacml/{realm}/policies

where {realm} is the name of a specific realm

You can filter your XACML exports using query search filters. Note the following points about the
search filters:

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 87

• LDAP-based Searches. The search filters follow the standard guidelines for LDAP searches as they
are applied to the entitlements index in the LDAP configuration backend, located at: ou=default
,ou=OrganizationalConfig,ou=1.0,ou=sunEntitlementIndexes, ou=services,dc=openam,dc=forgerock,dc=org.

• Search Filter Format. You can specify a single search filter or multiple filters in the HTTP URL
parameters. The format for the search filter is as follows:

[attribute name][operator][attribute value]

If you specify multiple search filters, they are logically ANDed: the search results meet the criteria
specified in all the search filters.

XACML Export Search Filter Format

Element Description
Attribute Name The name of the attribute to be searched for. The only permissible

values are: application (keyword for policy set), createdby,
lastmodifiedby, creationdate, lastmodifieddate, name, description.

Operator The type of comparison operation to perform.

• = Equals (text)

• < Less Than or Equal To (numerical)

• > Greater Than or Equal To (numerical)
Attribute Value The matching value. Asterisk wildcards are supported.

To Export Policies

• Use the /xacml/policies endpoint to export the OpenAM entitlement policies into XACML 3.0
format. The following curl command exports the policies and returns the XACML response
(truncated for display purposes).

$ curl \
 --request GET \
 --header "iPlanetDirectoryPro: AQIC5..." \
 http://openam.example.com:8080/openam/xacml/policies

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<PolicySet xmlns="urn:oasis:names:tc:xacml:3.0:core:schema:wd-17"
 PolicyCombiningAlgId="urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:deny-overrides"
 Version="2014.10.08.21.59.39.231" PolicySetId="/:2014.10.08.21.59.39.231">
 <Target/>
 <Policy RuleCombiningAlgId="urn:oasis:names:tc:xacml:3.0:rule-combining-algorithm:deny-overrides"
 Version="2014.10.08.18.01.03.626"
 PolicyId="Rockshop_Checkout_https://forgerock-rockshop.openrock.org:443/wp-login.php*?*">
 ...

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 88

To Export Policies with Search Filters

1. Use the /xacml/policies endpoint to export the policies into XACML 3.0 format with a search filter.
This command only exports policies that were created by "amadmin".

$ curl \
 --request GET \
 --header "iPlanetDirectoryPro: AQIC5..." \
 http://openam.example.com:8080/openam/xacml/policies?filter=createdby=amadmin

2. You can also specify more than one search filter by logically ANDing the filters as follows:

$ curl \
 --request GET \
 --header "iPlanetDirectoryPro: AQIC5..." \
 http://openam.example.com:8080/openam/xacml/policies?filter=createdby=amadmin&
 filter=creationdate=135563832

2.1.13.7.2. Importing from XACML to OpenAM

OpenAM supports the import of XACML 3.0-based policy sets into OpenAM policies using the REST
/xacml/policies endpoint. To test an import, OpenAM provides a dry-run feature that runs an import
without saving the changes to the database. The dry-run feature provides a summary of the import so
that you can troubleshoot any potential mismatches prior to the actual import.

You can import a XACML policy using an HTTP POST request for the root realm or a specific realm at
the following endpoints:

http://openam.example.com:8080/openam/xacml/policies
http://openam.example.com:8080/openam/xacml/{realm}/policies

where {realm} is the name of a specific realm

To Import a XACML 3.0 Policy

1. You can do a dry run using the dryrun=true query to test the import. The dry-run option outputs in
JSON format and displays the status of each import policy, where "U" indicates "Updated"; "A" for
"Added". The dry-run does not actually update to the database. When you are ready for an actual
import, you need to re-run the command without the dryrun=true query.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 89

$ curl \
 --request POST \
 --header "Content-Type: application/xml" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data @xacml-policy.xml \
 http://openam.example.com:8080/openam/xacml/policies?dryrun=true
[
 {
 "status":"A",
 "name":"aNewPolicy"
 },
 {
 "status":"U",
 "name":"anExistingPolicy"
 },
 {
 "status":"U",
 "name":"anotherExistingPolicy"
 }
]

2. Use the /xacml/policies endpoint to import a XACML policy:

$ curl \
 --request POST \
 --header "Content-Type: application/xml" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data @xacml-policy.xml \
 http://openam.example.com:8080/openam/xacml/policies

Tip

You can import a XACML policy into a realm as follows:

$ curl \
 --request POST \
 --header "Content-Type: application/xml" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data @xacml-policy.xml \
 http://openam.example.com:8080/openam/xacml/{realm}/policies

2.1.13.8. Managing Environment Condition Types
Environment condition types describe the JSON representation of environment conditions that you
can use in policy definitions.

OpenAM provides the conditiontypes REST endpoint for the following:

• "Querying Environment Condition Types"

• "Reading a Specific Environment Condition Type"

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 90

Environment condition types are server-wide, and do not differ by realm. Hence the URI for the
condition types API does not contain a realm component, but is /json/conditiontypes.

Environment condition types are represented in JSON and take the following form. Environment
condition types are built from standard JSON objects and values (strings, numbers, objects, arrays,
true, false, and null).
{
 "title": "IPv4",
 "logical": false,
 "config": {
 "type": "object",
 "properties": {
 "startIp": {
 "type": "string"
 },
 "endIp": {
 "type": "string"
 },
 "dnsName": {
 "type": "array",
 "items": {
 "type": "string"
 }
 }
 }
 }
}

Notice that the environment condition type has a title, a "logical" field that indicates whether the
type is a logical operator or takes a predicate, and a configuration specification. The configuration
specification in this case indicates that an IPv4 environment condition has two properties, "startIp"
and "endIp", that each take a single string value, and a third property, "dnsName," that takes an
array of string values. In other words, a concrete IP environment condition specification without a
DNS name constraint could be represented in a policy definition as in the following example:
{
 "type": "IPv4",
 "startIp": "127.0.0.1",
 "endIp": "127.0.0.255"
}

The configuration is what differs the most across environment condition types. The NOT condition,
for example, takes a single condition object as the body of its configuration.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 91

{
 "title" : "NOT",
 "logical" : true,
 "config" : {
 "type" : "object",
 "properties" : {
 "condition" : {
 "type" : "object",
 "properties" : {
 }
 }
 }
 }
}

The concrete NOT condition therefore takes the following form.
{
 "type": "NOT",
 "condition": {
 ...
 }
}

The OR condition takes an array of conditions.
{
 "title" : "OR",
 "logical" : true,
 "config" : {
 "type" : "object",
 "properties" : {
 "conditions" : {
 "type" : "array",
 "items" : {
 "type" : "any"
 }
 }
 }
 }
}

A corresponding concrete OR condition thus takes the following form.
{
 "type": "OR",
 "conditions": [
 {
 ...
 },
 {
 ...
 },
 ...
]
}

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 92

2.1.13.8.1. Querying Environment Condition Types

To list all environment condition types, perform an HTTP GET to the /json/conditiontypes endpoint,
with a _queryFilter parameter set to true.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/conditiontypes?_queryFilter=true
 {
 "result" : [
 {
 "title": "IPv4",
 "logical": false,
 "config": {
 "type": "object",
 "properties": {
 "startIp": {
 "type": "string"
 },
 "endIp": {
 "type": "string"
 },
 "dnsName": {
 "type": "array",
 "items": {
 "type": "string"
 }
 }
 }
 }
 },
 {
 "title": "NOT",
 "logical": true,
 "config": {
 "type": "object",
 "properties": {
 "condition": {
 "type": "object",
 "properties": { }
 }
 }
 }
 },
 {...},
 {...},
 {...}
],
 "resultCount" : 18,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : 0
}

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 93

Additional query strings can be specified to alter the returned results. For more information, see
"Filtering, Sorting, and Paging Results".

2.1.13.8.2. Reading a Specific Environment Condition Type

To read an individual environment condition type, perform an HTTP GET to the /json/conditiontypes
endpoint, and specify the environment condition type name in the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/conditiontypes/IPv4
{
 "title" : "IPv4",
 "logical" : false,
 "config" : {
 "type" : "object",
 "properties" : {
 "startIp" : {
 "type" : "string"
 },
 "endIp" : {
 "type" : "string"
 },
 "dnsName" : {
 "type" : "array",
 "items" : {
 "type" : "string"
 }
 }
 }
 }
}

2.1.13.9. Managing Subject Condition Types
Subject condition types describe the JSON representation of subject conditions that you can use in
policy definitions.

OpenAM provides the subjecttypes REST endpoint for the following:

• "Querying Subject Condition Types"

• "Reading a Specific Subject Condition Type"

Environment condition types are server-wide, and do not differ by realm. Hence the URI for the
condition types API does not contain a realm component, but is /json/subjecttypes.

Subject condition types are represented in JSON and take the following form. Subject condition types
are built from standard JSON objects and values (strings, numbers, objects, arrays, true, false, and
null).

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 94

{
 "title" : "Identity",
 "logical" : false,
 "config" : {
 "type" : "object",
 "properties" : {
 "subjectValues" : {
 "type" : "array",
 "items" : {
 "type" : "string"
 }
 }
 }
 }
}

Notice that the subject type has a title, a "logical" field that indicates whether the type is a logical
operator or takes a predicate, and a configuration specification. The configuration specification
in this case indicates that an Identity subject condition has one property, "subjectValues", which
takes an array of string values. In other words, a concrete Identity subject condition specification is
represented in a policy definition as in the following example:
{
 "type": "Identity",
 "subjectValues": [
 "uid=scarter,ou=People,dc=example,dc=com"
]
}

The configuration is what differs the most across subject condition types. The AND condition, for
example, takes an array of subject condition objects as the body of its configuration.
{
 "title" : "AND",
 "logical" : true,
 "config" : {
 "type" : "object",
 "properties" : {
 "subjects" : {
 "type" : "array",
 "items" : {
 "type" : "any"
 }
 }
 }
 }
}

The concrete AND subject condition therefore takes the following form.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 95

{
 "type": "AND",
 "subject": [
 {...},
 {...},
 {...},
 {...}
]
}

2.1.13.9.1. Querying Subject Condition Types

To list all environment condition types, perform an HTTP GET to the /json/subjecttypes endpoint, with
a _queryFilter parameter set to true.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/subjecttypes?_queryFilter=true
 {
 "result" : [
 {
 "title": "JwtClaim",
 "logical": false,
 "config": {
 "type": "object",
 "properties": {
 "claimName": {
 "type": "string"
 },
 "claimValue": {
 "type": "string"
 }
 }
 }
 },
 {
 "title": "NOT",
 "logical": true,
 "config": {
 "type": "object",
 "properties": {
 "subject": {
 "type": "object",
 "properties": { }
 }
 }
 }
 },
 {...},
 {...},
 {...}
],

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 96

 "resultCount" : 5,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : 0
}

Additional query strings can be specified to alter the returned results. For more information, see
"Filtering, Sorting, and Paging Results".

2.1.13.9.2. Reading a Specific Subject Condition Type

To read an individual subject condition type, perform an HTTP GET to the /json/subjecttypes endpoint,
and specify the subject condition type name in the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/subjecttypes/Identity
{
 "title" : "Identity",
 "logical" : false,
 "config" : {
 "type" : "object",
 "properties" : {
 "subjectValues" : {
 "type" : "array",
 "items" : {
 "type" : "string"
 }
 }
 }
 }
}

2.1.13.10. Managing Subject Attributes
When you define a policy subject condition, the condition can depend on values of subject attributes
stored in a user's profile. The list of possible subject attributes that you can use depends on the LDAP
User Attributes configured for the Identity data store where OpenAM looks up the user's profile.

OpenAM provides the subjectattributes REST endpoint for the following:

• "Querying Subject Attributes"

Subject attributes derive from the list of LDAP user attributes configured for the Identity data store.
For more information, see "Configuring Data Stores" in the Administration Guide.

2.1.13.10.1. Querying Subject Attributes

To list all subject attributes, perform an HTTP GET to the /json/subjectattributes endpoint, with a
_queryFilter parameter set to true.

Developing Client Applications
RESTful Authorization and Policy Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 97

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
--header "iPlanetDirectoryPro: AQIC5..." \
https://openam.example.com:8443/openam/json/subjectattributes/?_queryFilter=true

{
 "result" : [
 "sunIdentityServerPPInformalName",
 "sunIdentityServerPPFacadeGreetSound",
 "uid",
 "manager",
 "sunIdentityServerPPCommonNameMN",
 "sunIdentityServerPPLegalIdentityGender",
 "preferredLocale",
 "...",
 "...",
 "..."
],
 "resultCount": 87,
 "pagedResultsCookie": null,
 "remainingPagedResults": 0
}

Note that no pagination cookie is set and the subject attribute names are all returned as part of the
"result" array.

2.1.13.11. Managing Decision Combiners

Decision combiners describe how to resolve policy decisions when multiple policies apply.

OpenAM provides the decisioncombiners REST endpoint for the following:

• "Querying Decision Combiners"

• "Reading a Specific Decision Combiner"

Decision combiners are server-wide, and do not differ by realm. Hence the URI for the condition
types API does not contain a realm component, but is /json/decisioncombiners.

2.1.13.11.1. Querying Decision Combiners

To list all decision combiners, perform an HTTP GET to the /json/decisioncombiners endpoint, with a
_queryFilter parameter set to true.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 98

$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/decisioncombiners?_queryFilter=true
{
 "result": [
 {
 "title": "DenyOverride"
 }
],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "remainingPagedResults": 0
}

Additional query strings can be specified to alter the returned results. For more information, see
"Filtering, Sorting, and Paging Results".

2.1.13.11.2. Reading a Specific Decision Combiner

To view an individual decision combiner, perform an HTTP GET on its resource.

To read an individual decision combiner, perform an HTTP GET to the /json/decisioncombiners
endpoint, and specify the decision combiner name in the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/decisioncombiners/DenyOverride
{
 "title" : "DenyOverride"
}

2.1.14. RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services
This section shows how to use the OpenAM RESTful interfaces for OAuth 2.0, OpenID Connect 1.0,
and UMA 1.0.

In this section, long URLs are wrapped to fit the printed page, as some of the output is formatted for
easier reading.

2.1.14.1. OAuth 2.0
OpenAM exposes the following REST endpoints for different OAuth 2.0 purposes:

• Endpoints for OAuth 2.0 clients and resource servers, mostly defined in RFC 6749, The OAuth 2.0
Authorization Framework, with additional tokeninfo and introspect endpoints useful to resource
servers and clients.

http://tools.ietf.org/html/rfc6749
http://tools.ietf.org/html/rfc6749

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 99

• An endpoint for reading OAuth 2.0 resource sets. This is specific to OpenAM.

• An endpoint for OAuth 2.0 token administration. This is specific to OpenAM.

• An endpoint for OAuth 2.0 client administration. This is specific to OpenAM.

When accessing the APIs, browser-based REST clients can rely on OpenAM to handle the session as
usual. First authenticate with OpenAM. Then perform the operations in the browser session.

Clients not running in a browser can authenticate as described in "Authentication and Logout",
whereby OpenAM returns a token.id value. Clients pass the token.id value in a header named after the
authentication cookie, by default iplanetDirectoryPro.

2.1.14.1.1. OAuth 2.0 Client and Resource Server Endpoints

OpenAM exposes REST endpoints for making calls to OpenAM acting as an authorization server, as
described in "Managing OAuth 2.0 Authorization" in the Administration Guide.

In addition to the standard authorization and token endpoints described in RFC 6749, OpenAM also
exposes a token information endpoint for resource servers to get information about access tokens
so they can determine how to respond to requests for protected resources, and an introspection
endpoint to retrieve metadata about a token, such as approved scopes and the context in which the
token was issued. OpenAM as authorization server exposes the following endpoints for clients and
resource servers.

/oauth2/authorize

Authorization endpoint defined in RFC 6749, used to obtain an authorization grant from the
resource owner.

The /oauth2/authorize endpoint is protected by the policy you created after OAuth 2.0 authorization
server configuration, which grants all authenticated users access.

The following is an example URL for obtaining consent:

https://openam.example.com:8443/openam/oauth2/realms/root/authorize\ ?client_id=myClient\
 &response_type=code\ &scope=profile\ &redirect_uri=https://www.example.com

After logging in, the URL above presents the OAuth 2.0 consent screen, similar to the following:

OAuth 2.0 Consent Screen

If creating your own consent page, you can create a POST request to the endpoint with the
following additional parameters:

decision

Whether the resource owner consents to the requested access, or denies consent.

Valid values are allow or deny.

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 100

save_consent

Updates the resource owner's profile to avoid having to prompt the resource owner to grant
authorization when the client issues subsequent authorization requests.

To save consent, set the save_consent property to on.

You must provide the Saved Consent Attribute Name property with a profile attribute in
which to store the resource owner's consent decision.

For more information on setting this property in the OAuth2 Provider service, see "OAuth2
Provider" in the Reference.

csrf

Duplicates the contents of the iPlanetDirectoryPro cookie, which contains the SSO token of the
resource owner giving consent.

Duplicating the cookie value helps prevent against Cross-Site Request Forgery (CSRF)
attacks.

Example:
$ curl \
 --request POST \
 --header "Content-Type: application/x-www-form-urlencoded" \
 --Cookie "iPlanetDirectoryPro=AQIC5w...*" \
 --data "redirect_uri=http://www.example.net" \
 --data "scope=profile" \
 --data "response_type=code" \
 --data "client_id=myClient" \
 --data "csrf=AQIC5w...*" \
 --data "decision=allow" \
 --data "save_consent=on" \
 "https://openam.example.com:8443/openam/oauth2/authorize?response_type=code&client_id=myClient"\
 "&realm=/&scope=profile&redirect_uri=http://www.example.net"

You must specify the realm if the OpenAM OAuth 2.0 provider is configured for a subrealm rather
than the top-level realm. For example, if the OAuth 2.0 provider is configured for the /customers
realm, then use /oauth2/customers/authorize.

The /oauth2/authorize endpoint can take additional parameters, such as:

• module and service. Use either as described in "Authenticating To OpenAM" in the Administration
Guide, where module specifies the authentication module instance to use or service specifies the
authentication chain to use when authenticating the resource owner.

• response_mode=form_post. Use this parameter to return a self-submitting form that contains the
code instead of redirecting to the redirect URL with the code as a string parameter. For more
information, see the OAuth 2.0 Form Post Response Mode spec.

• code_challenge. Use this parameter when Proof Key for Code Exchange (PKCE) support is
enabled in the OAuth2 Provider service. To configure it, navigate to Realms > Realm Name
> Services > OAuth2 Provider > Advanced and enable the Code Verifier Parameter Required

https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 101

property. For more information about the PKCE support, see Proof Key for Code Exchange by
OAuth Public Clients - RFC 7636.

/oauth2/access_token

Token endpoint defined in RFC 6749, used to obtain an access token from the authorization
server.

Example: https://openam.example.com:8443/openam/oauth2/access_token

The /oauth2/access_token endpoint can take an additional parameter, auth_chain=authentication-chain,
which allows client to specify the authentication chain to use for Password Grant Type.

The following example shows how a client can specify the authentication chain, myAuthChain:
$ curl \
--request POST
 \
--user "myClientID:password"
 \
--data "grant_type=password&username=amadmin&password=cangetinam&scope=profile&auth_chain=myAuthChain"
 \
https://openam.example.com:8443/openam/oauth2/access_token

The /oauth2/access_token endpoint can take additional parameters. In particular, you must specify
the realm if the OpenAM OAuth 2.0 provider is configured for a subrealm rather than the top-
level realm.

For example, if the OAuth 2.0 provider is configured for the /customers realm, then use /oauth2/
customers/access_token.

/oauth2/device

Device flow endpoint as defined by the Internet-Draft OAuth 2.0 Device Flow, used by a client
device to obtain a device code or an access token.

Example: https://openam.example.com:8443/openam/oauth2/device/code

For more information, see "Using Endpoints for OAuth 2.0 Device Flow".

/oauth2/token/revoke

When a user logs out of an application, the application revokes any OAuth 2.0 tokens (access and
refresh tokens) that are associated with the user. The client can also revoke a token without the
need of an SSOToken by sending a request to the /oauth2/token/revoke endpoint as follows:
$ curl \
--request POST
 \
--data "token=d06ab31e-9cdb-403e-855f-bd77652add84"
 \
--data "client_id=MyClientID"
 \
--data "client_secret=password" \
https://openam.example.com:8443/openam/oauth2/token/revoke

https://tools.ietf.org/html/rfc7636
https://tools.ietf.org/html/rfc7636
https://datatracker.ietf.org/doc/draft-denniss-oauth-device-flow/

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 102

If you are revoking an access token, then that token will be revoked. If you are revoking a
refresh token, then both the refresh token and any other associated access tokens will also be
revoked. Associated access tokens means that any other tokens that have come out of the same
authorization grant will also be revoked. For cases where a client has multiple access tokens for a
single user that were obtained via different authorization grants, then the client will have to make
multiple calls to the /oauth2/token/revoke endpoint to invalidate each token.

/oauth2/tokeninfo

Endpoint not defined in RFC 6749, used to validate tokens, and to retrieve information, such as
scopes.

The /oauth2/tokeninfo endpoint takes an HTTP GET on /oauth2/tokeninfo?access_token=token-id, and
returns information about the token.

Resource servers — or any party having the token ID — can get token information through this
endpoint without authenticating. This means any application or user can validate the token
without having to be registered with OpenAM.

Given an access token, a resource server can perform an HTTP GET on /oauth2/tokeninfo?
access_token=token-id to retrieve a JSON object indicating token_type, expires_in, scope, and the
access_token ID.

Example: https://openam.example.com:8443/openam/oauth2/tokeninfo

The following example shows OpenAM issuing an access token, and then returning token
information:
$ curl \
--request POST
 \
--user "myClientID:password"
 \
--data "grant_type=password&username=demo&password=changeit&scope=cn%20mail" \
https://openam.example.com:8443/openam/oauth2/access_token
 {
 "expires_in": 599,
 "token_type": "Bearer",
 "refresh_token": "f6dcf133-f00b-4943-a8d4-ee939fc1bf29",
 "access_token": "f9063e26-3a29-41ec-86de-1d0d68aa85e9"
 }

$ curl https://openam.example.com:8443/openam/oauth2/tokeninfo\
 ?access_token=f9063e26-3a29-41ec-86de-1d0d68aa85e9
 {
 "mail": "demo@example.com",
 "grant_type":"password",
 "scope": [
 "mail",
 "cn"
],
 "cn": "demo",
 "realm": "/",

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 103

 "cnf": {
 "jwk": {
 "alg": "RS512",
 "e": "AQAB",
 "n": "k7qLlj...G2oucQ",
 "kty": "RSA",
 "use": "sig",
 "kid": "myJWK"
 }
 }
 "token_type": "Bearer",
 "expires_in": 577,
 "client_id": "MyClientID",
 "access_token": "f9063e26-3a29-41ec-86de-1d0d68aa85e9"
}

Note

Running a GET method to the /oauth2/tokeninfo endpoint as shown in the previous example writes the
token ID to the access log. To not expose the token ID in the logs, send the OAuth 2.0 access token as part
of the authorization bearer header:

$ curl \
--request GET
 \
--header "Authorization Bearer aec6b050-b0a4-4ece-a86f-bd131decbb9c" \
"https://openam.example.com:8443/openam/oauth2/tokeninfo"

The resource server making decisions about whether the token is valid can thus use the /oauth2
/tokeninfo endpoint to retrieve expiration information about the token. Depending on the scopes
implementation, the JSON response about the token can also contain scope information. As
described in "Using Your Own Client and Resource Server" in the Administration Guide, the
default scopes implementation in OpenAM considers scopes to be names of attributes in the
resource owner's user profile. Notice that the JSON response contains the values for those
attributes from the user's profile, as in the preceding example, with scopes set to mail and cn.

/oauth2/introspect

Endpoint defined in draft-ietf-oauth-introspection-04, used to retrieve metadata about a token,
such as approved scopes and the context in which the token was issued.

Given an access token, a client can perform an HTTP POST on /oauth2/introspect?token=access_token
to retrieve a JSON object indicating the following:

active

Is the token active.

scope

A space-separated list of the scopes associated with the token.

http://tools.ietf.org/html/draft-ietf-oauth-introspection-04

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 104

client_id

Client identifier of the client that requested the token.

user_id

The user who authorized the token.

token_type

The type of token.

exp

When the token expires, in seconds since January 1 1970 UTC.

sub

Subject of the token.

iss

Issuer of the token.

The /oauth2/introspect endpoint requires authentication, and supports basic authorization (a
base64-encoded string of client_id:client_secret), client_id and client_secret passed as header
values, or a JWT bearer token.

The following example demonstrates the /oauth2/introspect endpoint with basic authorization:
$ curl \
 --request POST \
 --header "Authorization: Basic ZGVtbzpjaGFuZ2VpdA==" \
 https://openam.example.com:8443/openam/oauth2/introspect \
 ?token=f9063e26-3a29-41ec-86de-1d0d68aa85e9
 {
 "active": true,
 "scope": "mail cn",
 "client_id": "myOAuth2Client",
 "user_id": "demo",
 "token_type": "Bearer",
 "exp": 1419356238,
 "sub": "https://resources.example.com/",
 "iss": "https://openam.example.com/"
 }

Note

Running a POST method to the /oauth2/introspect endpoint as shown in the previous example writes the
token ID to the access log. To hide the token ID in the logs, send the OAuth 2.0 access token as part of the
POST body:

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 105

$ curl \
--request POST \
--header "Authorization Basic ZGVtbzpjaGFuZ2VpdA==" \
--data "token=f9063e26-3a29-41ec-86de-1d0d68aa85e9" \
"https://openam.example.com:8443/openam/oauth2/introspect"

2.1.14.1.2. Using Endpoints for OAuth 2.0 Device Flow

If a client device has a limited user interface, it can obtain an OAuth 2.0 device code and ask a user to
authorize the client on a more full-featured user agent, such as an Internet browser.

OpenAM provides the /oauth2/device/code, /oauth2/device/user, and /oauth2/access_token endpoints to
support the OAuth 2.0 Device Flow.

The following procedures show how to use the OAuth 2.0 device flow endpoints:

• "To Request a User Code in the OAuth 2.0 Device Flow".

• "To Grant Consent in the OAuth 2.0 Device Flow".

• "To Poll for Authorization in the OAuth 2.0 Device Flow".

Note

In the examples nonce and state OAuth 2.0 parameters are omitted, but should be used in production.

To Request a User Code in the OAuth 2.0 Device Flow

Devices can display a user code and instructions to a user, which can be used on a separate client to
provide consent, allowing the device to access resources.

As user codes may be displayed on lower resolution devices, the list of possible characters used
has been optimized to reduce ambiguity. User codes consist of a random selection of eight of the
following characters:
234567ABCDEFGHIJKLMNOPQRSTVWXYZabcdefghijkmnopqrstvwxyz

To request a user code in the OAuth 2.0 device flow:

1. Ensure that an OAuth 2.0/OpenID Connect client Agent profile is configured in OpenAM, as
described in "Configuring OAuth 2.0 and OpenID Connect 1.0 Clients" in the Administration
Guide.

2. Create a POST request to the /oauth2/device/code endpoint to acquire a device code. The following
URL parameters are required:

response_type

Specifies the response type required by the request. Must be set to token.

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 106

scope

Specifies the list of scopes requested by the client, separated by URL-encoded space
characters.

client_id

Specifies the name of the client agent profile in OpenAM.

$ curl \
 --data response_type=token \
 --data scope=phone%20email%20profile%20address \
 --data client_id=myDeviceAgentProfile \
 http://openam.example.com:8080/openam/oauth2/device/code
{
 "interval": 5,
 "device_code": "7a95a0a4-6f13-42e3-ac3e-d3d159c94c55",
 "verification_url": "http://openam.example.com:8080/openam/oauth2/device/user",
 "user_code": "VAL12e0v",
 "expires_in": 300
}

On success, OpenAM returns a verification URL, and a user code to enter at that URL. OpenAM
also returns an interval, in seconds, that the client device must wait for in between requests for
an access token.

3. The client device should now provide instructions to the user to enter the user code and grant
access to the OAuth 2.0 device. The client may choose an appropriate method to convey the
instructions, for example text instructions on screen, or a QR code. See "To Grant Consent in the
OAuth 2.0 Device Flow".

4. The client device should also begin polling the authorization server for the access token, once
consent has been given. See "To Poll for Authorization in the OAuth 2.0 Device Flow".

To Grant Consent in the OAuth 2.0 Device Flow

OAuth 2.0 device flow requires that the user grants consent to allow the client device to access
resources.

• You can grant consent in the OAuth 2.0 device flow using the OpenAM user interface, or by
making calls to OpenAM endpoints.

• To use the OpenAM user interface, the user should visit the verification URL in a web
browser and enter the user code:

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 107

OAuth 2.0 User Code

The user can then authorize the device flow client by allowing the requested scopes:

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 108

OAuth 2.0 Consent Page

• To use endpoint calls, create a POST request to the /oauth2/device/user endpoint. The following
URL parameter is required:

user_code

The user code as provided by the /oauth2/device/code endpoint.

The form data should be in x-www-form-urlencoded format, and contain the following fields:

user_code

The user code as provided by the /oauth2/device/code endpoint.

scope

Specifies the list of scopes consented to by the user, separated by URL-encoded space
characters.

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 109

client_id

Specifies the name of the client agent profile in OpenAM.

response_type

Must be token.

decision

To allow client access, specify allow. Any other value will deny consent.

csrf

Duplicates the contents of the iPlanetDirectoryPro cookie, which contains the SSO token of
the user granting access.

Duplicating the cookie value helps prevent against Cross-Site Request Forgery (CSRF)
attacks.

The iPlanetDirectoryPro cookie is required and should contain the SSO token of the user
granting access to the client.
$ curl \
 -X POST \
 --header "Cookie: iPlanetDirectoryPro=AQIC5..." \
 --header "Content-Type: application/x-www-form-urlencoded" \
 --data scope=phone%20email%20profile%20address \
 --data user_code=VAL12e0v \
 --data response_type=token \
 --data client_id=myDeviceAgentProfile \
 --data decision=allow \
 --data csrf=AQIC5... \
 http://openam.example.com:8080/openam/oauth2/device/user?user_code=VAL12e0v

OpenAM returns HTML containing a JavaScript fragment named pageData, with details of the
result.

Successfully allowing or denying access returns:
pageData = {
 locale: "en-us",
 baseUrl : "http://openam.example.com:8080/openam/XUI",
 realm : "//XUI",
 done: true
};

If the supplied user code has already been used, or is incorrect, the following is returned:

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 110

pageData = {
 locale: "*",
 errorCode: "not_found",
 realm : "/",
 baseUrl : "http://openam.example.com:8080/openam/XUI"
};

If the user gives consent, OpenAM adds the OAuth 2.0 client to the user's profile page in
the Authorized Apps section. For more information, see "User Consent Management" in the
Administration Guide.

Important

As per Section 4.1.1 of the OAuth 2.0 authorization framework, it is required that the authorization server
legitimately obtains an authorization decision from the resource owner.

Any client using the endpoints to register consent is responsible for ensuring this requirement, OpenAM
cannot assert that consent was given in these cases.

To Poll for Authorization in the OAuth 2.0 Device Flow

• On the client device, create a POST request to poll the /oauth2/access_token endpoint to request an
access token. Include the client ID, client secret, and the device code as query parameters in the
request. You must also specify a grant_type of http://oauth.net/grant_type/device/1.0.

The client device must wait for the number of seconds previously provided as the value of interval
between polling OpenAM for an access token.
$ curl \
 --data client_id=myDeviceAgentProfile \
 --data client_secret=password \
 --data grant_type=http://oauth.net/grant_type/device/1.0 \
 --data code=7a95a0a4-6f13-42e3-ac3e-d3d159c94c55 \
 http://openam.example.com:8080/openam/oauth2/access_token
{
 "scope": "phone email address profile",
 "code": "20c1fc0c-3153-4a11-8d1f-d815c1a522b5"
}

If the user has authorized the client device, an HTTP 200 status code is returned, with an access
token that can be used to request resources.
{
 "expires_in": 3599,
 "token_type": "Bearer",
 "access_token": "c1e9c8a4-6a6c-45b2-919c-335f2cec5a40"
}

If the user has not yet authorized the client device, an HTTP 403 status code is returned, with the
following error message:

https://tools.ietf.org/html/rfc6749#section-4.1.1

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 111

{
 "error": "authorization_pending",
 "error_description": "The user has not yet completed authorization"
}

If the client device is polling faster than the specified interval, an HTTP 400 status code is
returned, with the following error message:
{
 "error": "slow_down",
 "error_description": "The polling interval has not elapsed since the last request"
}

2.1.14.1.3. OAuth 2.0 Resource Set Endpoint

OpenAM provides a read-only REST endpoint for viewing a resource set registered to a particular
user. The endpoint is /json{/realm}/users/user/oauth2/resourcesets/resource_set_ID, so for example
https://openam.example.com:8443/openam/json/myrealm/users/demo/oauth2/resourcesets/43225628-4c5b-4206-b7cc
-5164da81decd0.

To read a resource set, either the resource set owner or an administrator such as amadmin must have
logged in to OpenAM (the authorization server) and have been issued an SSO token.

To Read an OAuth 2.0 Resource Set

• Create a GET request to the resourcesets endpoint, including the SSO token in a header based on
the configured session cookie name (for example: iPlanetDirectoryPro), and with the resource set
ID in the URL.

The following example uses an SSO token acquired by the amadmin user to view a resource set, and
related policy, belonging to the demo user in the top level realm:

$ curl \
--header "iPlanetDirectoryPro: AQIC5wM2LY4Sfcxs...EwNDU2NjE0*" \
https://openam.example.com:8443/openam/json/users/demo
\
/oauth2/resourcesets/43225628-4c5b-4206-b7cc-5164da81decd0
{
 "scopes": [
 "http://photoz.example.com/dev/scopes/view",
 "http://photoz.example.com/dev/scopes/comment"
],
 "_id": "43225628-4c5b-4206-b7cc-5164da81decd0",
 "resourceServer": "UMA-Resource-Server",
 "name": "My Videos",
 "icon_uri": "http://www.example.com/icons/cinema.png",
 "policy": {
 "permissions": [
 {
 "subject": "user.1",
 "scopes": [
 "http://photoz.example.com/dev/scopes/view"

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 112

]
 },
 {
 "subject": "user.2",
 "scopes": [
 "http://photoz.example.com/dev/scopes/comment",
 "http://photoz.example.com/dev/scopes/view"
]
 }
]
 },
 "type": "http://www.example.com/rsets/videos"
}

Tip

You can specify the fields that are returned with the _fields query string filter. For example ?
_fields=scopes, resourceServer, name

On success, an HTTP 200 OK status code is returned, with a JSON body representing the
resource set. If a policy relating to the resource set exists, a representation of the policy is also
returned in the JSON.

If the specified resource set does not exist, an HTTP 404 Not Found status code is returned, as
follows:
{
 "code": 404,
 "reason": "Not Found",
 "message": "No resource set with id, bad-id-3e28-4c19-8a2b-36fc24c899df0, found."
}

If the SSO token used is not that of the resource set owner or an administrator, an HTTP 403
Forbidden status code is returned, as follows:
{
 "code": 403,
 "reason": "Forbidden",
 "message": "User, user.1, not authorized."
}

2.1.14.1.4. OAuth 2.0 Token Administration Endpoint

The OpenAM-specific OAuth 2.0 token administration endpoint lets administrators read, list, and
delete OAuth 2.0 tokens. OAuth 2.0 clients can also manage their own tokens.

OpenAM exposes the token administration endpoint at /frrest/oauth2/token, such as https://openam
.example.com:8443/openam/frrest/oauth2/token.

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 113

Note

This endpoint location is likely to change in the future.

To get a token, perform an HTTP GET on /frrest/oauth2/token/token-id, as in the following example:

$ curl \
 --request POST \
 --user "myClientID:password" \
 --data "grant_type=password&username=demo&password=changeit&scope=cn" \
 https://openam.example.com:8443/openam/oauth2/access_token
 {
 "scope": "cn",
 "expires_in": 60,
 "token_type": "Bearer",
 "access_token": "f5fb4833-ba3d-41c8-bba4-833b49c3fe2c"
}

$ curl \
 --request GET \
 --header "iplanetDirectoryPro: AQIC5wM2LY4Sfcxs...EwNDU2NjE0*" \
 https://openam.example.com:8443/openam/frrest/oauth2/token/f5fb4833-ba3d-41c8-bba4-833b49c3fe2c
 {
 "expireTime": [
 "1418818601396"
],
 "tokenName": [
 "access_token"
],
 "scope": [
 "cn"
],
 "grant_type": [
 "password"
],
 "clientID": [
 "myClientID"
],
 "parent": [],
 "id": [
 "f5fb4833-ba3d-41c8-bba4-833b49c3fe2c"
],
 "tokenType": [
 "Bearer"
],
 "redirectURI": [],
 "nonce": [],
 "realm": [
 "/"
],
 "userName": [
 "demo"
]
}

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 114

To list tokens, perform an HTTP GET on /frrest/oauth2/token/?_queryId=access_token to request the list
of access tokens for the current user.

The following example shows a search for the demo user's access tokens:

$ curl \
 --request GET \
 --header "iplanetDirectoryPro: AQIC5wM2LY4Sfcw..." \
 https://openam.example.com:8443/openam/frrest/oauth2/token/?_queryId=access_token
 {
 "_rev": "1753454107",
 "tokenName": [
 "access_token"
],
 "expireTime": "Indefinitely",
 "scope": [
 "openid"
],
 "grant_type": [
 "password"
],
 "clientID": [
 "myOAuth2Client"
],
 "tokenType": [
 "Bearer"
],
 "redirectURI": [],
 "nonce": [],
 "realm": [
 "/test"
],
 "userName": [
 "user.4"
],
 "display_name": "",
 "scopes": "openid"
 },
 {
 "_rev": "1753454107",
 "tokenName": [
 "access_token"
],
 "expireTime": "Indefinitely",
 "scope": [
 "openid"
],
 "grant_type": [
 "password"
],
 "clientID": [
 "myOAuth2Client"
],
 "tokenType": [
 "Bearer"
],
 "redirectURI": [],
 "nonce": [],

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 115

 "realm": [
 "/test"
],
 "userName": [
 "user.4"
],
 "display_name": "",
 "scopes": "openid"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

To list a specific user's tokens, perform an HTTP GET on /ffrest/oauth2/token/?_queryId=userName=string,
where string is the user, such as user.4. You must use an amadmin token with this GET method.
Delegated admins are not supported here.

$ curl \
--request GET
 \
--header "iplanetDirectoryPro: AQIC5wM2LY4Sfcxs...EwNDU2NjE0*" \
https://openam.example.com:8443/openam/frrest/oauth2/token/?_queryId=userName=user.4
{
 "result": [
 {
 "_id": "2aaddde8-586b-4cb7-b431-eb86af57aabc",
 "_rev": "-549186065",
 "tokenName": [
 "access_token"
],
 "expireTime": "Indefinitely",
 "scope": [
 "openid"
],
 "grant_type": [
 "password"
],
 "authGrantId": [
 "50e9f80b-d193-4aeb-93e9-e383ea2cabd3"
],
 "clientID": [
 "myOAuth2Client"
],
 "parent": [],
 "refreshToken": [
 "5e1423a2-d2cd-40d5-8f54-5b695836cd44"
],
 "id": [
 "2aaddde8-586b-4cb7-b431-eb86af57aabc"
],
 "tokenType": [
 "Bearer"
],

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 116

 "auditTrackingId": [
 "6ac90d13-9cac-444b-bfbc-c7aca16713de-777"
],
 "redirectURI": [],
 "nonce": [],
 "realm": [
 "/test"
],
 "userName": [
 "user.4"
],
 "display_name": "",
 "scopes": "openid"
 },
 {
 "_id": "5e1423a2-d2cd-40d5-8f54-5b695836cd44",
 "_rev": "1171292923",
 "tokenName": [
 "refresh_token"
],
 "expireTime": "Oct 18, 2016 10:51 AM",
 "scope": [
 "openid"
],
 "grant_type": [
 "password"
],
 "authGrantId": [
 "50e9f80b-d193-4aeb-93e9-e383ea2cabd3"
],
 "clientID": [
 "myOAuth2Client"
],
 "authModules": [],
 "id": [
 "5e1423a2-d2cd-40d5-8f54-5b695836cd44"
],
 "tokenType": [
 "Bearer"
],
 "auditTrackingId": [
 "6ac90d13-9cac-444b-bfbc-c7aca16713de-776"
],
 "redirectURI": [],
 "realm": [
 "/test"
],
 "userName": [
 "user.4"
],
 "acr": [],
 "display_name": "",
 "scopes": "openid"
 },
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 117

 "remainingPagedResults": -1
}

To delete a token, perform an HTTP DELETE on /frrest/oauth2/token/token-id, as in the following
example:

$ curl \
 --request POST \
 --data "grant_type=client_credentials&username=demo&password=changeit\
&client_id=myClientID&client_secret=password&scope=cn%20mail" \
 https://openam.example.com:8443/openam/oauth2/access_token
{
 "expires_in": 599,
 "token_type": "Bearer",
 "access_token": "867aaab2-61d7-4b78-9b80-4f9098034540"
}

$ curl \
 --request DELETE \
 --header "iplanetDirectoryPro: AQIC5wM2LY4Sfcxs...EwNDU2NjE0*" \
 https://openam.example.com:8443/openam/frrest/oauth2/token/867aaab2..098034540
{
 "success": "true"
}

2.1.14.1.5. OAuth 2.0 Client Administration Endpoint

The OAuth 2.0 administration endpoint lets OpenAM administrators and agent administrators create
(that is, register) and delete OAuth 2.0 clients.

OpenAM exposes this endpoint at /frrest/oauth2/client, such as https://openam.example.com:8443/openam/
frrest/oauth2/client.

Note

This endpoint location is likely to change in the future.

To create an OAuth 2.0 client, perform an HTTP POST to /frrest/oauth2/client/?_action=create with a
JSON object fully specifying the client, as in the following example:

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 118

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iplanetDirectoryPro: AQIC5wM...3MTYxOA..*" \
 --data \
 '{"client_id":["testClient"],
 "realm":["/"],
 "userpassword":["secret12"],
 "com.forgerock.openam.oauth2provider.clientType":["Confidential"],
 "com.forgerock.openam.oauth2provider.redirectionURIs":
 ["www.client.com","www.example.com"],
 "com.forgerock.openam.oauth2provider.scopes":["cn","sn"],
 "com.forgerock.openam.oauth2provider.defaultScopes":["cn"],
 "com.forgerock.openam.oauth2provider.name":["My Test Client"],
 "com.forgerock.openam.oauth2provider.description":["OAuth 2.0 Client"]
 }' \
 https://openam.example.com:8443/openam/frrest/oauth2/client/?_action=create
{"success":"true"}

When creating an OAuth 2.0 client, use the following fields in your JSON object:

client_id

(Required) This field takes an array containing the client identifier as defined in RFC 6749.

realm

(Required) This field takes an array containing the OpenAM realm in which to create the client as
defined in RFC 6749.

userpassword

(Required) This field takes an array containing the client secret as defined in RFC 6749.

com.forgerock.openam.oauth2provider.clientType

(Required) This field takes an array containing the client type, either "Confidential" or "Public" as
defined in RFC 6749.

com.forgerock.openam.oauth2provider.redirectionURIs

(Optional for confidential clients) This field takes an array of client redirection endpoints as
defined in RFC 6749.

com.forgerock.openam.oauth2provider.scopes

(Optional) This field takes an array of scopes as defined in RFC 6749. The default scopes
implementation takes scopes to be names of attributes in the resource owner profile.

Specify locale scopes in scope|locale|localized description format.

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 119

com.forgerock.openam.oauth2provider.defaultScopes

(Optional) This field takes an array of default scopes set automatically when tokens are issued.

com.forgerock.openam.oauth2provider.name

(Optional) This field takes an array containing the client name to display to the resource owner
when the resource owner must authorize client access to protected resources.

Specify localized names in locale|localized name format.

com.forgerock.openam.oauth2provider.description

(Optional) This field takes an array containing the description to display to the resource owner
when the resource owner must authorize client access to protected resources.

Specify localized descriptions in locale|localized description format.

To delete an OAuth 2.0 client, perform an HTTP DELETE on /frrest/oauth2/client/client-id, as in the
following example:

$ curl \
 --request DELETE \
 --header "iplanetDirectoryPro: AQIC5wM...3MTYxOA..*" \
 https://openam.example.com:8443/openam/frrest/oauth2/client/myClient
{"success":"true"}

Tip

To delete an OAuth 2.0 client from a subrealm, add the name of the subrealm in a query parameter named
realm, as in the following example:

$ curl \
 --request DELETE \
 --header "iplanetDirectoryPro: AQIC5wM...3MTYxOA..*" \
 https://openam.example.com:8443/openam/frrest/oauth2/client/myClient?realm=myRealm
{"success":"true"}

2.1.14.2. OpenID Connect 1.0

OpenID Connect 1.0 extends OAuth 2.0 so the client can verify claims about the identity of the end
user, get profile information about the end user, and log the user out at the end of the OpenAM
session.

OpenAM exposes the following endpoints for OpenID Connect 1.0 purposes:

• Endpoints for discovering information.

• An endpoint for registering client applications.

http://openid.net/connect/

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 120

• Endpoints for client authorization.

• Endpoints for session management.

• Endpoint for validating OpenID Connect 1.0 ID Tokens

2.1.14.2.1. Endpoints for Discovering OpenID Connect 1.0 Configuration

OpenAM exposes endpoints for discovering information about the provider configuration, and about
the provider for a given end user:

• /oauth2/.well-known/openid-configuration allows clients to retrieve OpenID Provider configuration by
HTTP GET as specified by OpenID Connect Discovery 1.0.

• /oauth2/.well-known/webfinger allows clients to retrieve the provider URL for an end user by HTTP
GET as specified by OpenID Connect Discovery 1.0.

For examples, see Configuring OpenAM For OpenID Connect Discovery in the Administration Guide.

Note

OpenAM supports a provider service that allows the realm to have a configured option for obtaining the base
URL (including protocol) for components that need to return a URL to the client. This service is used to provide
the URL base that is used in the .well-known endpoints used in OpenID Connect 1.0 and UMA.

For more information, see "Configuring the Base URL Source Service" in the Administration Guide.

2.1.14.2.2. Endpoints for Registering OpenID Connect 1.0 Clients

OpenAM allows both static and dynamic registration of OpenID Connect client applications. For
dynamic registration according to the OpenID Connect Dynamic Client Registration 1.0 specification,
the endpoint is /oauth2/connect/register. See "To Register a Relying Party Dynamically" in the
Administration Guide for details.

2.1.14.2.3. Endpoints for Performing OpenID Connect 1.0 Client Authorization

Registered clients can request authorization through OpenAM.

OpenID Connect 1.0 supports both a Basic Client Profile using the OAuth 2.0 authorization code
grant, and an Implicit Client Profile using the OAuth 2.0 implicit grant. These client profiles rely on
the OAuth 2.0 endpoints for authorization. Those endpoints are described in "OAuth 2.0 Client and
Resource Server Endpoints".

In addition, authorized clients can access end user information through the OpenID Connect 1.0
specific endpoint /oauth2/userinfo.

For examples, see "Relying Party Examples" in the Administration Guide.

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 121

2.1.14.2.4. Endpoints for Managing OpenID Connect 1.0 Sessions

Registered clients can use OpenID Connect Session Management 1.0 to handle end user logout
actions.

• /oauth2/connect/checkSession allows clients to retrieve session status notifications.

• /oauth2/connect/endSession allows clients to terminate end user sessions.

For an example, see "Managing OpenID Connect User Sessions" in the Administration Guide.

2.1.14.2.5. Endpoint for Validating OpenID Connect 1.0 ID Tokens

Clients can use an OpenID Connect 1.0 endpoint on OpenAM to quickly validate a stateless OIDC
ID token and optionally retrieve any claims within the token. The endpoint is used globally and not
within a realm. For information on configuring stateless OIDC tokens, see "Configuring Stateless
OpenID Connect 1.0 Tokens".

• /openam/oauth2/idtokeninfo

Note

The endpoint does not support the validation of encrypted OIDC ID tokens.

The endpoint validates an OIDC ID token based on rules 1-10 in section 3.1.3.7 of the OpenID
Connect Core and runs the following steps:

1. Extracts the first aud (audience) claim from the ID token. The client_id, which is passed in as
authentication of the request, will be used as the client and validated against the aud claim.

2. Extracts the realm claim, if present, default to the root realm if the token was not issued by
OpenAM.

3. Looks up the client in the given realm, producing an error if it does not exist.

4. Verifies the signature of the ID token, according to the settings for the client (ID token signed
response algorithm, public key selector).

5. Verifies the issuer, audience, expiry, not-before, and issued-at claims as per the specification.

To invoke the endpoint, the client sends an HTTP POST request to /openam/oauth2/idtokeninfo using the
following parameters in the POST body in application/x-www-form-url-encoded format or as query
parameters:

• id_token - OIDC ID token to validate (required)
• claims - optional comma-separated list of claims to return from the ID token

For example, you can run the following command:

http://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation
http://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 122

curl -X POST -d "id_token=$IDTOKEN" http://openam.example.com:8080/openam/oauth2/idtokeninfo

where $IDTOKEN is an OIDC ID token

If the ID token validates successfully, the endpoint unpacks the claims from the ID token and returns
them as JSON. You can also use an optional claims parameter in the request to return those specific
claims. If a claim is requested that does not exist, no error occurs; it will simply not be present in the
response.

For example, you can run the following command to retrieve the claims in an OIDC ID token:

curl -i -X POST -d "id_token=$IDTOKEN" \
'http://openam.example.com:8080/openam/oauth2/idtokeninfo?claims=sub,exp,realm'
HTTP/1.1 200 OK
Date: Wed, 01 Jun 2016 07:31:39 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.3.4
Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept
Content-Type: application/json;charset=UTF-8
Content-Length: 50
{
 "sub": "demo",
 "exp": 1461065147,
 "realm": "/"
}

For invalid requests, the endpoint returns a 400 HTTP code with a JSON error response:

curl -i -X POST 'http://openam.example.com:8080/openam/oauth2/idtokeninfo?claims=sub,exp,realm'
HTTP/1.1 400 Bad Request
Date: Wed, 01 Jun 2016 08:32:43 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.3.4
Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept
Content-Type: application/json
Transfer-Encoding: chunked
Connection: close
{
 "error":"bad_request",
 "error_description":"no id_token in request"
}

2.1.14.2.6. Configuring Stateless OpenID Connect 1.0 Tokens

OpenAM supports stateless access, refresh, and ID tokens for OpenID Connect 1.0 (OIDC). Stateless
tokens allow clients to directly validate the tokens by storing session information within the token
itself and bypassing storage in an external CTS data store. This feature also allows any OpenAM
instance in the issuing cluster to validate an OIDC tokens without cross-talk.

For configuration procedures, see "Stateless OpenID Connect 1.0 Access and Refresh Tokens" in the
Administration Guide.

Developing Client Applications
RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 123

2.1.14.3. User-Managed Access (UMA)
User-Managed Access (UMA) is a profile of OAuth 2.0 that lets resource owners control access to
protected resources on any number of resource servers from arbitrary requesting parties.

OpenAM acts as the centralized authorization server and governs access using policies created by
resource owners.

OpenAM exposes the following REST endpoints for User-Managed Access purposes:

• An endpoint for automatic configuration and registration of the Authorization Server.

• An endpoint for registering sets of resources.

• An endpoint for managing UMA policies.

• Endpoints for requesting and granting authorization for access to resources.

2.1.14.3.1. Discovering UMA Configuration

OpenAM exposes an endpoint for discovering information about the UMA provider configuration.

A resource server or client can perform an HTTP GET on /uma{/realm}/.well-known/uma-configuration to
retrieve a JSON object indicating the UMA configuration.

For an example, see Configuring OpenAM For UMA Discovery in the Administration Guide.

2.1.14.3.2. Managing UMA Resource Sets

UMA uses the OAuth 2.0 Resource Set Registration standard for registration and management of
resources. The endpoint is /oauth2/resource_set/. For details, see "Managing UMA Resource Sets" in
the Administration Guide.

OpenAM also provides a read-only endpoint for viewing a user's resource sets, and if available policy
definitions. For more information, see "OAuth 2.0 Resource Set Endpoint".

2.1.14.3.3. Managing UMA Policies

OpenAM exposes the following endpoint for managing UMA policies:

/json/users/username/uma/policies

For managing UMA policies. For details, see "Managing UMA Policies" in the Administration
Guide.

2.1.14.3.4. Accessing UMA Protected Resources

OpenAM exposes the following endpoints for managing UMA workflow and accessing protected
resources:

https://kantarainitiative.org/confluence/display/uma/Home
https://docs.kantarainitiative.org/uma/draft-oauth-resource-reg-v1_0_1.html

Developing Client Applications
RESTful User Self-Service

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 124

/uma/permission_request

For registering permission requests. For more information, see "To Register an UMA Permission
Request" in the Administration Guide.

/uma/authz_request

For acquiring requesting party tokens. For more information, see "To Acquire a Requesting Party
Token" in the Administration Guide.

2.1.15. RESTful User Self-Service
This section shows how to use the OpenAM RESTful interfaces for user self-service functionality: user
self-registration, forgotten password reset, forgotten username retrieval, dashboard configuration,
and device profile reset.

The steps to perform user self-service via the REST APIs varies depending on the configured user
self-service process flow. For more information, see "User Self-Service Process Flows" in the
Administration Guide.

When performing user self-service functions, you can enable one or more security methods, such
as email validation, Google reCAPTCHA, knowledge-based authentication, or custom plugins. Each
configured security method requires requests to be sent from OpenAM to the client, and completed
responses returned to OpenAM to verify.

Important

At least one security method should be enabled for each self-service feature.

A unique token is provided in the second request to the client that must be used in any subsequent
responses, so that OpenAM can maintain the state of the self-service process.

In this section, long URLs are wrapped to fit the printed page, and some of the output is formatted for
easier reading.

2.1.15.1. Registering Users
This section explains how to use the REST APIs for registering a user in OpenAM.

From OpenAM 13.5.1, the user self-registration flow validates the email address after the user has
provided their details. This section provides procedures for OpenAM 13.5 and OpenAM 13.5.1 and
later:

• For information about how to register a user with the REST APIs in OpenAM 13.5.1 or later, see "To
Register a User with the REST APIs (13.5.1 or later)".

• For information about how to register a user with the REST APIs in OpenAM 13.5, see "To Register
a User with the REST APIs (13.5)".

Developing Client Applications
RESTful User Self-Service

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 125

To Register a User with the REST APIs (13.5.1 or later)

1. Create a GET request to the /selfservice/userRegistration endpoint. Notice that the request does
not require any form of authentication.
$ curl \
https://openam.example.com:8443/openam/json/selfservice/userRegistration
{
 "requirements": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "New user details",
 "properties": {
 "user": {
 "description": "User details",
 "type": "object"
 }
 },
 "required": [
 "user"
],
 "type": "object"
 },
 "tag": "initial",
 "type": "userDetails"
}

OpenAM sends a request to complete the user details. The required array defines the data that
must be returned to OpenAM to progress past this step of the registration. In the example, the
required type is a user object that contains the user details.

2. Create a POST response back to the /selfservice/userRegistration endpoint with a query string
containing _action=submitRequirements. In the POST data, include an input element in the JSON
structure, which should contain values for each element in the required array of the request.

In this example, OpenAM requests an object named user. Ths object should contain values for the
username, givenName, sn, mail, userPassword, and inetUserStatus properties.
$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--data \
'{
 "input": {
 "user": {
 "username": "DEMO",
 "givenName": "Demo User",
 "sn": "User",
 "mail": "demo@example.com",
 "userPassword": "forgerock",
 "inetUserStatus": "Active"
 }
 }

Developing Client Applications
RESTful User Self-Service

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 126

}' \ https://openam.example.com:8443/openam/json/selfservice/userRegistration?
_action=submitRequirements
{
 "requirements": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Verify emailed code",
 "properties": {
 "code": {
 "description": "Enter code emailed",
 "type": "string"
 }
 },
 "required": [
 "code"
],
 "type": "object"
 },
 "tag": "validateCode",
 "token": "eyJ0eXAiOiJKV.....QiLCJjmqrlqUfQ",
 "type": "emailValidation"
}

If the response is accepted, OpenAM continues with the registration process and sends the next
request for information.

The value of the token element should be included in this and any subsequent responses to
OpenAM for this registration; OpenAM uses this information to track which stage of the
registration process is being completed.

Note that the request for information is of the type emailValidation. Other possible types include:

• captcha, if the Google reCAPTCHA plugin is enabled

• kbaSecurityAnswerDefinitionStage, if knowledge-based security questions are required

For an example of Google reCAPTCHA validation, see "Retrieving Forgotten Usernames".

3. Return the information required by the next step of the registration, along with the token element.

In this example, the user information was accepted and a code was emailed to the email address.
OpenAM requires this code in the response in an element named code before continuing:

Developing Client Applications
RESTful User Self-Service

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 127

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--data \
'{
 "input": {
 "code": "cf53fcb6-3bf2-44eb-a437-885296899699"
 },
 "token": "eyJ0eXAiOiJKV.....QiLCJjmqrlqUfQ"
}' https://openam.example.com:8443/openam/json/selfservice/userRegistration
\
?_action=submitRequirements
{
 "type": "selfRegistration",
 "tag": "end",
 "status": {
 "success": true
 },
 "additions": {

 }
}

When the process is complete, the response from OpenAM has a tag property with value of end. If
the success property in the status object has a value of true, then self-registration is complete and
the user account was created.

In the example, OpenAM only required email verification to register a new user. In flows
containing Google reCAPTCHA validation or knowledge-based security questions, you would
continue returning POST data to OpenAM containing the requested information until the process
is complete.

Note

The User Self-Service feature provides options to set the user's destination after a successful self-
registration. These options include redirecting the user to a 'successful registration' page, to the login
page, or automaticatically logging the user into the system. Use the Destination After Successful Self
-Registration property to set the option (on the console: Realm Name > Services > User Self-Service >
User Registration). When you select User sent to 'successful registration' page or User sent to login
 page, the JSON response after a successful registration is as follows:

{
 "type": "selfRegistration",
 "tag": "end",
 "status": {
 "success": true
 },
 "additions": {}
}

If you select User is automatically logged in, the JSON response is:

Developing Client Applications
RESTful User Self-Service

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 128

{
 "type": "autoLoginStage",
 "tag": "end",
 "status": {
 "success": true
 },
 "additions": {
 "tokenId": "AQIC5...MQAA*",
 "successUrl": "/openam/console"
 }
}

To Register a User with the REST APIs (13.5)

1. Create a GET request to the /selfservice/userRegistration endpoint. Notice that the request does
not require any form of authentication.
$ curl \
https://openam.example.com:8443/openam/json/selfservice/userRegistration
{
 "type": "emailValidation",
 "tag": "initial",
 "requirements": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Verify your email address",
 "type": "object",
 "required": [
 "mail"
],
 "properties": {
 "mail": {
 "description": "Email address",
 "type": "string"
 }
 }
 }
}

OpenAM sends the first request for security information. In this example, the first request is of
type emailValidation, but other types include captcha if the Google reCAPTCHA plugin is enabled,
and kbaSecurityAnswerDefinitionStage if knowledge-based authentication is required.

The required array defines the data that must be returned to OpenAM to progress past this step of
the registration.

The properties element contains additional information about the required response, such as a
description of the required field, or the site key required to generate a reCAPTCHA challenge.

2. Create a POST response back to the /selfservice/userRegistration endpoint with a query string
containing _action=submitRequirements. In the POST data, include an input element in the JSON
structure, which should contain values for each element in the required array of the request.

Developing Client Applications
RESTful User Self-Service

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 129

In this example, a mail value was requested.

$ curl \
--request POST \
--header "Content-Type: application/json" \
--data \
'{
 "input": {
 "mail": "demo.user@example.com"
 }
}' \
https://openam.example.com:8443/openam/json/selfservice/userRegistration\
 ?_action=submitRequirements
{
 "type": "emailValidation",
 "tag": "validateCode",
 "requirements": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Verify emailed code",
 "type": "object",
 "required": [
 "code"
],
 "properties": {
 "code": {
 "description": "Enter code emailed",
 "type": "string"
 }
 }
 },
 "token": "eyAicHis...PIF-lN4s"
}

If the response was accepted, OpenAM continues with the registration process and sends the
next request for information. In this example, the email address was accepted and a code was
emailed to the address, which OpenAM requires in the response in an element named code before
continuing.

The value of the token element should be included in this and any subsequent responses to
OpenAM for this registration.

3. Continue returning POST data to OpenAM containing the requested information, in the format
specified in the request. Also return the token value in the POST data, so that OpenAM can track
which stage of the registration process is being completed.

$ curl \
--request POST \
--header "Content-Type: application/json" \
--data \
'{
 "input": {
 "code": "cf53fcb6-3bf2-44eb-a437-885296899699"
 },
 "token": "eyAicHis...PIF-lN4s"

Developing Client Applications
RESTful User Self-Service

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 130

}' \
https://openam.example.com:8443/openam/json/selfservice/userRegistration\
 ?_action=submitRequirements
{
 "type": "userDetails",
 "tag": "initial",
 "requirements": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "New user details",
 "type": "object",
 "required": [
 "user"
],
 "properties": {
 "user": {
 "description": "User details",
 "type": "object"
 }
 }
 },
 "token": "eyAicHis...PIF-lN4s"
}

4. When requested—when the type value in the request is userDetails—supply the details of the new
user as an object in the POST data.

$ curl \
--request POST \
--header "Content-Type: application/json" \
--data \
'{
 "input": {
 "user": {
 "username": "demo",
 "givenName": "Demo User",
 "sn": "User",
 "userPassword": "d3m0",
 "inetUserStatus": "Active"
 }
 },
 "token": "eyAicHis...PIF-lN4s"
}' \
https://openam.example.com:8443/openam/json/selfservice/userRegistration\
 ?_action=submitRequirements
{
 "type": "selfRegistration",
 "tag": "end",
 "status": {
 "success": true
 },
 "additions": {}
 }

When the process is complete, the tag element has a value of end. If the success element in the
status element has a value of true, then self-registration is complete and the user account was
created.

Developing Client Applications
RESTful User Self-Service

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 131

2.1.15.2. Retrieving Forgotten Usernames

This section explains how to use the REST APIs to retrieve a forgotten username.

To Retrieve a Forgotten Username with the REST APIs

1. Create a GET request to the /selfservice/forgottenUsername endpoint. Notice that the request does
not require any form of authentication.

$ curl \
https://openam.example.com:8443/openam/json/selfservice/forgottenUsername
{
 "type": "captcha",
 "tag": "initial",
 "requirements": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Captcha stage",
 "type": "object",
 "required": [
 "response"
],
 "properties": {
 "response": {
 "recaptchaSiteKey": "6Lfr1...cIqbd",
 "description": "Captcha response",
 "type": "string"
 }
 }
 }
}

In this example, the Google reCAPTCHA plugin is enabled, so the first request is of the captcha
type.

2. Create a POST response back to the /selfservice/forgottenUsername endpoint with a query string
containing _action=submitRequirements. In the POST data, include an input element in the JSON
structure, which should contain values for each element in the required array of the request.

In this example, a response value was requested, which should be the user input as provided after
completing the Google reCAPTCHA challenge.

Developing Client Applications
RESTful User Self-Service

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 132

$ curl \
--request POST \
--header "Content-Type: application/json" \
--data \
'{
 "input": {
 "response": "03AHJ...qiE1x4"
 }
}' \
https://openam.example.com:8443/openam/json/selfservice/forgottenUsername\
 ?_action=submitRequirements
{
 "type": "userQuery",
 "tag": "initial",
 "requirements": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Find your account",
 "type": "object",
 "required": [
 "queryFilter"
],
 "properties": {
 "queryFilter": {
 "description": "filter string to find account",
 "type": "string"
 }
 }
 },
 "token": "eyAicHis...PIF-lN4s"
}

If the response was accepted, OpenAM continues with the username retrieval process and sends
the next request for information. In this example, the Google reCAPTCHA was verified and
OpenAM is requesting details about the account name to retrieve, which must be provided in a
queryFilter element.

The value of the token element should be included in this and all subsequent responses to
OpenAM for this retrieval process.

3. Create a POST response to OpenAM with a queryFilter value in the POST data containing the
user's email address associated with their account.

For more information on query filters, see "Filtering, Sorting, and Paging Results".

$ curl \
--request POST \
--header "Content-Type: application/json" \
--data \
'{
 "input": {
 "queryFilter": "mail eq \"demo.user@example.com\""
 },
 "token": "eyAicHis...PIF-lN4s"
}' \

Developing Client Applications
RESTful User Self-Service

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 133

https://openam.example.com:8443/openam/json/selfservice/forgottenUsername\
 ?_action=submitRequirements
{
 "type": "kbaSecurityAnswerVerificationStage",
 "tag": "initial",
 "requirements": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Answer security questions",
 "type": "object",
 "required": [
 "answer1"
],
 "properties": {
 "answer1": {
 "systemQuestion": {
 "en": "What was the model of your first car?"
 },
 "type": "string"
 }
 }
 },
 "token": "eyAicHis...PIF-lN4s"
}

If a single subject is located that matches the provided query filter, the retrieval process
continues.

If KBA is enabled, OpenAM requests answers to the configured number of KBA questions, as in
this example.

If a subject is not found, an HTTP 400 Bad Request status is returned, and an error message in
the JSON data:
{
 "code": 400,
 "reason": "Bad Request",
 "message": "Unable to find account"
}

4. Return a POST response with the answers as values of the elements specified in the required
array, in this example answer1. Ensure the same token value is sent with each response.

Developing Client Applications
RESTful User Self-Service

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 134

$ curl \
--request POST \
--header "Content-Type: application/json" \
--data \
'{
 "input": {
 "answer1": "Mustang"
 },
 "token": "eyAicHis...PIF-lN4s"
}' \
https://openam.example.com:8443/openam/json/selfservice/forgottenUsername\
 ?_action=submitRequirements
{
 "type": "retrieveUsername",
 "tag": "end",
 "status": {
 "success": true
 },
 "additions": {
 "userName": "demo"
 }
}

When the process is complete, the tag element has a value of end. If the success element in the
status element has a value of true, then username retrieval is complete and the username is
emailed to the registered address.

If the Show Username option is enabled for username retrieval, the username retrieved is also
returned in the JSON response as the value of the userName element, as in the example above.

2.1.15.3. Replacing Forgotten Passwords

This section explains how to use the REST APIs to replace a forgotten password.

To Replace a Forgotten Password with the REST APIs

1. Create a GET request to the /selfservice/forgottenPassword endpoint. Notice that the request does
not require any form of authentication.

Developing Client Applications
RESTful User Self-Service

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 135

$ curl \
https://openam.example.com:8443/openam/json/selfservice/forgottenPassword
{
 "type": "captcha",
 "tag": "initial",
 "requirements": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Captcha stage",
 "type": "object",
 "required": [
 "response"
],
 "properties": {
 "response": {
 "recaptchaSiteKey": "6Lfr1...cIqbd",
 "description": "Captcha response",
 "type": "string"
 }
 }
 }
}

In this example the Google reCAPTCHA plugin is enabled, so the first request is of the captcha
type.

2. Create a POST response back to the /selfservice/forgottenPassword endpoint with a query string
containing _action=submitRequirements. In the POST data, include an input element in the JSON
structure, which should contain values for each element in the required array of the request.

In this example, a response value was requested, which should be the user input as provided after
completing the Google reCAPTCHA challenge.

Developing Client Applications
RESTful User Self-Service

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 136

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--data \
'{
 "input": {
 "response": "03AHJ...qiE1x4"
 }
}' \
https://openam.example.com:8443/openam/json/selfservice/forgottenPassword\
 ?_action=submitRequirements
{
 "type": "userQuery",
 "tag": "initial",
 "requirements": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Find your account",
 "type": "object",
 "required": [
 "queryFilter"
],
 "properties": {
 "queryFilter": {
 "description": "filter string to find account",
 "type": "string"
 }
 }
 },
 "token": "eyAicHis...PIF-lN4s"
}

If the response was accepted, OpenAM continues with the password reset process and sends the
next request for information. In this example, the Google reCAPTCHA was verified and OpenAM
is requesting details about the account with the password to replace, which must be provided in a
queryFilter element.

The value of the token element should be included in this and all subsequent responses to
OpenAM for this reset process.

3. Create a POST response to OpenAM with a queryFilter value in the POST data containing the
username of the subject with the password to replace.

For more information on query filters, see "Filtering, Sorting, and Paging Results".
$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--data \
'{
 "input": {
 "queryFilter": "uid eq \"demo\""
 },

Developing Client Applications
RESTful User Self-Service

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 137

 "token": "eyAicHis...PIF-lN4s"
}' \
https://openam.example.com:8443/openam/json/selfservice/forgottenPassword\
 ?_action=submitRequirements
{
 "type": "kbaSecurityAnswerVerificationStage",
 "tag": "initial",
 "requirements": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Answer security questions",
 "type": "object",
 "required": [
 "answer1"
],
 "properties": {
 "answer1": {
 "systemQuestion": {
 "en": "What was the model of your first car?"
 },
 "type": "string"
 }
 }
 },
 "token": "eyAicHis...PIF-lN4s"
}

If a single subject is located that matches the provided query filter, the password reset process
continues.

If a subject is not found, an HTTP 400 Bad Request status is returned, and an error message in
the JSON data:
{
 "code": 400,
 "reason": "Bad Request",
 "message": "Unable to find account"
 }

4. Continue returning POST data to OpenAM containing the requested information, in the format
specified in the request. Also return the token value in the POST data, so that OpenAM can track
which stage of the password reset process is being completed.

Developing Client Applications
RESTful User Self-Service

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 138

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--data \
'{
 "input": {
 "answer1": "Mustang"
 },
 "token": "eyAicHis...PIF-lN4s"
}' \
https://openam.example.com:8443/openam/json/selfservice/forgottenPassword\
 ?_action=submitRequirements
{
 "type": "resetStage",
 "tag": "initial",
 "requirements": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Reset password",
 "type": "object",
 "required": [
 "password"
],
 "properties": {
 "password": {
 "description": "Password",
 "type": "string"
 }
 }
 },
 "token": "eyAicHis...PIF-lN4s"
}

5. When requested—when the type value in the request is resetStage—supply the new password in
the POST data.

Developing Client Applications
RESTful User Self-Service

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 139

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--data \
'{
 "input": {
 "password": "User1234"
 },
 "token": "eyAicHis...PIF-lN4s"
}' \
https://openam.example.com:8443/openam/json/selfservice/forgottenPassword\
 ?_action=submitRequirements
{
 "type": "resetStage",
 "tag": "end",
 "status": {
 "success": true
 },
 "additions": {}
}

When the process is complete, the tag element has a value of end. If the success element in the
status element has a value of true, then password reset is complete and the new password is now
active.

If the password is not accepted, an HTTP 400 Bad Request status is returned, and an error
message in the JSON data:
{
 "code": 400,
 "reason": "Bad Request",
 "message": "Minimum password length is 8."
}

2.1.15.4. Displaying Dashboard Applications

OpenAM lets administrators configure online applications to display applications on user Dashboards.
You can used exposed REST API to display information about the online applications.

/dashboard/assigned

This endpoint retrieves the list of applications assigned to the authenticated user.

Developing Client Applications
RESTful User Self-Service

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 140

$ curl \
 --header "iplanetDirectoryPro: AQIC5w...2NzEz*" \
 https://openam.example.com:8443/openam/json/dashboard/assigned
{
 "google": {
 "dashboardIcon": [
 "Google.gif"
],
 "dashboardName": [
 "Google"
],
 "dashboardLogin": [
 "http://www.google.com"
],
 "ICFIdentifier": [
 ""
],
 "dashboardDisplayName": [
 "Google"
],
 "dashboardClassName": [
 "SAML2ApplicationClass"
]
 }
}

/dashboard/available

This endpoint retrieves the list of applications available in the authenticated user's realm. The
example is based on two of the default Dashboard applications: Google and Salesforce.

$ curl \
 --header "iplanetDirectoryPro: AQIC5w...2NzEz*" \
 https://openam.example.com:8443/openam/json/dashboard/available
{
 "google": {
 "dashboardIcon": [
 "Google.gif"
],
 "dashboardName": [
 "Google"
],
 "dashboardLogin": [
 "http://www.google.com"
],
 "ICFIdentifier": [
 ""
],
 "dashboardDisplayName": [
 "Google"
],
 "dashboardClassName": [
 "SAML2ApplicationClass"
]
 }
 "salesforce": {

Developing Client Applications
RESTful User Self-Service

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 141

 "dashboardIcon": [
 "salesforce.gif"
],
 "dashboardName": [
 "Salesforce"
],
 "dashboardLogin": [
 "http://salesforce.com"
],
 "ICFIdentifier": [
 ""
],
 "dashboardDisplayName": [
 "Salesforce"
],
 "dashboardClassName": [
 "SAML2ApplicationClass"
]
 }
}

/dashboard/defined

This endpoint retrieves the list of all applications available defined for the OpenAM Dashboard
service. The example is based on the three default Dashboard applications: Google, Salesforce,
and Zendesk.

$ curl \
 --header "iplanetDirectoryPro: AQIC5w...2NzEz*" \
 https://openam.example.com:8443/openam/json/dashboard/defined
 {
 "google": {
 "dashboardIcon": [
 "Google.gif"
],
 "dashboardName": [
 "Google"
],
 "dashboardLogin": [
 "http://www.google.com"
],
 "ICFIdentifier": [
 "idm magic 34"
],
 "dashboardDisplayName": [
 "Google"
],
 "dashboardClassName": [
 "SAML2ApplicationClass"
]
 },
 "salesforce": {
 "dashboardIcon": [
 "salesforce.gif"
],
 "dashboardName": [
 "SalesForce"

Developing Client Applications
RESTful User Self-Service

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 142

],
 "dashboardLogin": [
 "http://www.salesforce.com"
],
 "ICFIdentifier": [
 "idm magic 12"
],
 "dashboardDisplayName": [
 "Salesforce"
],
 "dashboardClassName": [
 "SAML2ApplicationClass"
]
 },
 "zendesk": {
 "dashboardIcon": [
 "ZenDesk.gif"
],
 "dashboardName": [
 "ZenDesk"
],
 "dashboardLogin": [
 "http://www.ZenDesk.com"
],
 "ICFIdentifier": [
 "idm magic 56"
],
 "dashboardDisplayName": [
 "ZenDesk"
],
 "dashboardClassName": [
 "SAML2ApplicationClass"
]
 }
}

If your application runs in a user-agent such as a browser, you can rely on OpenAM to handle
authentication.

2.1.15.5. Resetting Device Profiles

The OpenAM REST API provides an action that lets a user reset their own profile for a registered
device running an authenticator app used for two-step verification. Administrators can also use this
REST API to reset a user's registered device profile.

Resetting a device profile deletes information about a user's registered device from OpenAM.

Resetting a device profile is useful when:

• A user loses a registered device—for example, a mobile phone—but had not saved the device
recovery codes available in the OpenAM dashboard.

• A user loses a registered device and has no device recovery codes remaining.

Developing Client Applications
RESTful Identity and Realm Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 143

An administrator or a user can perform an HTTP POST on /json/subrealm/users/user/devices/2fa/oath?
_action=reset to reset the user's device profile:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iplanetDirectoryPro: AQIC5w...2NzEz*" \
 --data '{}' \
 https://openam.example.com:8443/openam/json/mySubrealm/users/myUser/devices/2fa/oath?_action=reset
{"result":true}

For more information about device registration, see "Managing Devices for Multi-Factor
Authentication" in the Administration Guide.

2.1.16. RESTful Identity and Realm Management Services

This section shows how to use the OpenAM RESTful interfaces for identity and realm management.

In this section, long URLs are wrapped to fit the printed page, as some of the output is formatted for
easier reading.

Before making a REST API call to manage a realm or an identity, make sure that you have:

• Authenticated successfully to OpenAM as a user with sufficient privileges to make the REST API
call

• Obtained the session token returned after successful authentication

When making the REST API call, pass the session token in the HTTP header. For more information
about the OpenAM session token and its use in REST API calls, see "Using the Session Token After
Authentication".

2.1.16.1. Identity Management

This section shows how to create, read, update, delete, and list identities using the RESTful APIs.

Important

OpenAM is not primarily an identity data store, nor is it provisioning software. For storing identity data,
consider OpenDJ. For provisioning, consider OpenIDM. Both of these products provide REST APIs as well.

OpenAM has two REST APIs for managing identities:

• Under the /json/agents, /json/groups, and /json/users, you find the newer JSON-based APIs. The
newer APIs follow the ForgeRock common REST pattern creating, reading, updating, deleting, and
querying resources.

http://forgerock.com/what-we-offer/open-identity-stack/opendj/
http://forgerock.com/what-we-offer/open-identity-stack/openidm/

Developing Client Applications
RESTful Identity and Realm Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 144

Examples in this section do not repeat the authentication shown in Authorization and Policy
Management. For browser-based clients, you can rely on OpenAM cookies rather than construct the
header in your application. Managing agent profiles, groups, realms, and users with these APIs of
course require authorization. The examples shown in this section were performed with the token ID
gained after authenticating as OpenAM administrator.

Although the examples here show user management, you can use /json/agents, /json/groups, /json/
realms in similar fashion. See "Realm Management" for examples related to realms.

The following sections cover this JSON-based API:

• "Creating Identities"

• "Reading Identities"

• "Updating Identities"

• "Deleting Identities"

• "Listing Identities"

• "Changing Passwords"

2.1.16.1.1. Creating Identities

OpenAM lets administrators create a user profile by making an HTTP POST of the JSON
representation of the profile to /json/subrealm/users/?_action=create. To add a user to the Top Level
Realm, you do not need to specify the realm.

The following example shows an administrator creating a new user. The only required fields are
username and userpassword. If no other name is provided, the entry you make for username defaults to both
the user id and the user's last name:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iplanetDirectoryPro: AQIC5w...2NzEz*" \
 --data \
 '{
 "username": "bjensen",
 "userpassword": "secret12",
 "mail": "bjensen@example.com"
 }' \
 https://openam.example.com:8443/openam/json/users/?_action=create
 {
 "username": "bjensen",
 "realm": "/",
 "uid": [
 "bjensen"
],
 "mail": [

Developing Client Applications
RESTful Identity and Realm Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 145

 "bjensen@example.com"
],
 "sn": [
 "bjensen"
],
 "cn": [
 "bjensen"
],
 "inetuserstatus": [
 "Active"
],
 "dn": [
 "uid=bjensen,ou=people,dc=openam,dc=forgerock,dc=org"
],
 "objectclass": [
 "person",
 "sunIdentityServerLibertyPPService",
 "sunFederationManagerDataStore",
 "inetorgperson",
 "iPlanetPreferences",
 "iplanet-am-auth-configuration-service",
 "organizationalperson",
 "sunFMSAML2NameIdentifier",
 "inetuser",
 "iplanet-am-managed-person",
 "sunAMAuthAccountLockout",
 "iplanet-am-user-service",
 "top"
],
 "universalid": [
 "id=bjensen,ou=user,dc=openam,dc=forgerock,dc=org"
]
}

Alternatively, administrators can create user profiles with specific user IDs by doing an HTTP PUT of
the JSON representation of the changes to /json/users/user-id, as shown in the following example:

$ curl \
 --request PUT \
 --header "iplanetDirectoryPro: AQIC5w...2NzEz*" \
 --header "Content-Type: application/json" \
 --header "If-None-Match: *" \
 --data \
 '{
 "username": "janedoe",
 "userpassword": "secret12",
 "mail": "janedoe@example.com"
 }' \
 https://openam.example.com:8443/openam/json/users/janedoe
 {
 "username": "janedoe",
 "realm": "/",
 "uid": [
 "janedoe"
],
 "mail": [
 "janedoe@example.com"
],

Developing Client Applications
RESTful Identity and Realm Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 146

 "sn": [
 "janedoe"
],
 "cn": [
 "janedoe"
],
 "inetuserstatus": [
 "Active"
],
 "dn": [
 "uid=janedoe,ou=people,dc=openam,dc=forgerock,dc=org"
],
 "objectclass": [
 "devicePrintProfilesContainer",
 "person",
 "sunIdentityServerLibertyPPService",
 "inetorgperson",
 "sunFederationManagerDataStore",
 "iPlanetPreferences",
 "iplanet-am-auth-configuration-service",
 "organizationalperson",
 "sunFMSAML2NameIdentifier",
 "inetuser",
 "forgerock-am-dashboard-service",
 "iplanet-am-managed-person",
 "iplanet-am-user-service",
 "sunAMAuthAccountLockout",
 "top"
],
 "universalid": [
 "id=janedoe,ou=user,dc=openam,dc=forgerock,dc=org"
]
}

As shown in the examples, OpenAM returns the JSON representation of the profile on successful
creation. On failure, OpenAM returns a JSON representation of the error including the HTTP status
code. For example, version 2.0 of the CREST /json/users, /json/groups, and /json/agents endpoints
return 403 if the user making the request is not authorized to do so.

The same HTTP POST and PUT mechanisms also work for other objects such as policy agent profiles
and groups:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iplanetDirectoryPro: AQIC5w...2NzEz*" \
 --data \
 '{
 "username":"myAgent",
 "com.sun.identity.agents.config.fqdn.default":
 ["www.example.com"],
 "com.sun.identity.agents.config.repository.location":
 ["centralized"],
 "agenttype":["WebAgent"],
 "serverurl":["https://openam.example.com:8443/openam/"],
 "agenturl":["http://www.example.com:80/"],

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Developing Client Applications
RESTful Identity and Realm Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 147

 "userpassword":["password"],
 "com.sun.identity.agents.config.login.url":
 ["[0]=https://openam.example.com:8443/openam/UI/Login"],
 "com.sun.identity.agents.config.logout.url":
 ["[0]=https://openam.example.com:8443/openam/UI/Logout"],
 "sunidentityserverdevicestatus":["Active"]
 }' \
 https://openam.example.com:8443/openam/json/agents/?_action=create
 {
 "username": "myAgent",
 "realm": "/",
 "com.sun.identity.agents.config.fqdn.default": [
 "www.example.com"
],
 "com.sun.identity.agents.config.repository.location": [
 "centralized"
],
 "AgentType": [
 "WebAgent"
],
 "com.sun.identity.agents.config.login.url": [
 "[0]=https://openam.example.com:8443/openam/UI/Login"
],
 "com.sun.identity.agents.config.login.url":
 ["[0]=https://openam.example.com:8443/openam/UI/Login"
],
 "com.sun.identity.agents.config.logout.url":
 ["[0]=https://openam.example.com:8443/openam/UI/Logout"
],
 "sunIdentityServerDeviceStatus": [
 "Active"
]
}

Note

The command output above has been truncated to be more readable. When you create a policy agent profile,
OpenAM returns the full profile in JSON format.

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iplanetDirectoryPro: AQIC5w...2NzEz*" \
 --data '{
 "username":"newGroup",
 "uniquemember":["uid=demo,ou=people,dc=openam,dc=forgerock,dc=org"]
 }' \
 https://openam.example.com:8443/openam/json/groups?_action=create
 {
 "username": "newGroup",
 "realm": "/",
 "uniqueMember": [
 "uid=demo,ou=people,dc=openam,dc=forgerock,dc=org"
],
 "cn": [
 "newGroup"

Developing Client Applications
RESTful Identity and Realm Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 148

],
 "dn": [
 "cn=newGroup,ou=groups,dc=openam,dc=forgerock,dc=org"
],
 "objectclass": [
 "groupofuniquenames",
 "top"
],
 "universalid": [
 "id=newGroup,ou=group,dc=openam,dc=forgerock,dc=org"
]
}

$ curl \
 --request PUT \
 --header "If-None-Match: *" \
 --header "iPlanetDirectoryPro: AQIC5w...2NzEz*" \
 --header "Content-Type: application/json" \
 --data '{
 "username":"anotherGroup",
 "uniquemember":["uid=demo,ou=people,dc=openam,dc=forgerock,dc=org"]
 }' \
 https://openam.example.com:8443/openam/json/groups/anotherGroup
 {
 "username": "anotherGroup",
 "realm": "/",
 "uniqueMember": [
 "uid=demo,ou=people,dc=openam,dc=forgerock,dc=org"
],
 "cn": [
 "anotherGroup"
],
 "dn": [
 "cn=anotherGroup,ou=groups,dc=openam,dc=forgerock,dc=org"
],
 "objectclass": [
 "groupofuniquenames",
 "top"
],
 "universalid": [
 "id=anotherGroup,ou=group,dc=openam,dc=forgerock,dc=org"
]
}

2.1.16.1.2. Reading Identities

OpenAM lets users and administrators read profiles by requesting an HTTP GET on /json/subrealm/
users/user-id. This allows users and administrators to verify user data, status, and directory. If users
or administrators see missing or incorrect information, they can write down the correct information
and add it using "Updating Identities". To read a profile on the Top Level Realm, you do not need to
specify the realm.

Users can review the data associated with their own accounts, and administrators can also read other
user's profiles.

Developing Client Applications
RESTful Identity and Realm Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 149

Note

If an administrator user is reading their own profile, an additional roles element, with a value of ui-admin is
returned in the JSON response. The XUI verifies this element to grant or deny access to the OpenAM Console.

The following example shows an administrator accessing user data belonging to demo:

$ curl \
 --header "iplanetDirectoryPro: AQIC5w...2NzEz*" \
 https://openam.example.com:8443/openam/json/users/demo
{
 "username": "demo",
 "realm": "dc=openam,dc=forgerock,dc=org",
 "uid": [
 "demo"
],
 "sn": [
 "demo"
],
 "cn": [
 "demo"
],
 "inetuserstatus": [
 "Active"
],
 "dn": [
 "uid=demo,ou=people,dc=openam,dc=forgerock,dc=org"
],
 "objectclass": [
 "devicePrintProfilesContainer",
 "person",
 "sunIdentityServerLibertyPPService",
 "inetorgperson",
 "sunFederationManagerDataStore",
 "iPlanetPreferences",
 "iplanet-am-auth-configuration-service",
 "organizationalperson",
 "sunFMSAML2NameIdentifier",
 "inetuser",
 "forgerock-am-dashboard-service",
 "iplanet-am-managed-person",
 "iplanet-am-user-service",
 "sunAMAuthAccountLockout",
 "top"
],
 "universalid": [
 "id=demo,ou=user,dc=openam,dc=forgerock,dc=org"
]
}

Use the _fields query string parameter to restrict the list of attributes returned. This parameter takes
a comma-separated list of JSON object fields to include in the result:

Developing Client Applications
RESTful Identity and Realm Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 150

$ curl \
 --header "iPlanetDirectoryPro: AQIC5w...2NzEz*" \
 https://openam.example.com:8443/openam/json/users/demo?_fields=username,uid
{"username":"demo","uid":["demo"]}

As shown in the examples, OpenAM returns the JSON representation of the profile on success. On
failure, OpenAM returns a JSON representation of the error including the HTTP status code.

Using HTTP GET to read also works for other objects such as agent profiles and groups:

$ curl \
 --header "iplanetDirectoryPro: AQIC5w...2NzEz*" \
 https://openam.example.com:8443/openam/json/agents/myAgent
{
 "username": "myAgent",
 "realm": "/",
 "com.sun.identity.agents.config.fqdn.default": [
 "www.example.com"
],
 "com.sun.identity.agents.config.repository.location": [
 "centralized"
],
 "AgentType": [
 "WebAgent"
],
 "com.sun.identity.agents.config.login.url": [
 "[0]=https://openam.example.com:8443/openam/UI/Login"
],
 "com.sun.identity.agents.config.login.url":
 [
 "[0]=https://openam.example.com:8443/openam/UI/Login"
],
 "com.sun.identity.agents.config.logout.url":
 [
 "[0]=https://openam.example.com:8443/openam/UI/Logout"
],
 "sunIdentityServerDeviceStatus": [
 "Active"
]
}

Note

The command output above has been truncated to be more readable. When you read a policy agent profile,
OpenAM returns the full profile in JSON format.

The _prettyPrint query string parameter can make the resulting JSON easier to read when you are
viewing the resulting JSON directly:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Developing Client Applications
RESTful Identity and Realm Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 151

$ curl \
 --header "iPlanetDirectoryPro: AQIC5w...2NzEz*" \
 https://openam.example.com:8443/openam/json/groups/newGroup?_prettyPrint=true
{
 "username": "newGroup",
 "realm": "dc=openam,dc=forgerock,dc=org",
 "uniquemember": [
 "uid=demo,ou=people,dc=openam,dc=forgerock,dc=org"
],
 "cn": [
 "newGroup"
],
 "dn": [
 "cn=newGroup,ou=groups,dc=openam,dc=forgerock,dc=org"
],
 "objectclass": [
 "groupofuniquenames",
 "top"
],
 "universalid": [
 "id=newGroup,ou=group,dc=openam,dc=forgerock,dc=org"
]
}

2.1.16.1.3. Updating Identities

OpenAM lets users update their own profiles, and lets administrators update other users' profiles.
To update an identity do an HTTP PUT of the JSON representation of the changes to /json/subrealm/
users/user-id. To update a profile on the Top Level Realm, you do not need to specify the realm.

The following example shows how users can update their own profiles:

$ curl \
 --request PUT \
 --header "iplanetDirectoryPro: AQIC5...Y3MTAx*" \
 --header "Content-Type: application/json" \
 --data '{ "mail": "demo@example.com" }' \
 https://openam.example.com:8443/openam/json/users/demo
 {
 "username": "demo",
 "realm": "/",
 "uid": [
 "demo"
],
 "mail": [
 "demo@example.com"
],
 "sn": [
 "demo"
],
 "cn": [
 "demo"
],
 "inetuserstatus": [
 "Active"

Developing Client Applications
RESTful Identity and Realm Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 152

],
 "dn": [
 "uid=demo,ou=people,dc=openam,dc=forgerock,dc=org"
],
 "objectclass": [
 "person",
 "sunIdentityServerLibertyPPService",
 "sunFederationManagerDataStore",
 "inetorgperson",
 "iPlanetPreferences",
 "iplanet-am-auth-configuration-service",
 "organizationalperson",
 "sunFMSAML2NameIdentifier",
 "inetuser",
 "iplanet-am-managed-person",
 "sunAMAuthAccountLockout",
 "iplanet-am-user-service",
 "top"
],
 "universalid": [
 "id=demo,ou=user,dc=openam,dc=forgerock,dc=org"
]
}

As shown in the example, OpenAM returns the JSON representation of the profile on success. On
failure, OpenAM returns a JSON representation of the error including the HTTP status code.

You can use HTTP PUT to update other objects as well, such as policy agent profiles and groups.

The following example updates a web policy agent profile:

$ curl \
 --request PUT \
 --header "iPlanetDirectoryPro: AQIC5...Y3MTAx*" \
 --header "Content-Type: application/json" \
 --data '{
 "sunIdentityServerDeviceStatus" : ["Inactive"]
 }' \
 https://openam.example.com:8443/openam/json/agents/myAgent?_prettyPrint=true
 {
 "username": "myAgent",
 "realm": "/",
 "com.sun.identity.agents.config.fqdn.default": [
 "www.example.com"
],
 "com.sun.identity.agents.config.repository.location": [
 "centralized"
],
 "AgentType": [
 "WebAgent"
],
 "com.sun.identity.agents.config.login.url": [
 "[0]=https://openam.example.com:8443/openam/UI/Login"
],
 "com.sun.identity.agents.config.login.url":
 [
 "[0]=https://openam.example.com:8443/openam/UI/Login"

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Developing Client Applications
RESTful Identity and Realm Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 153

],
 "com.sun.identity.agents.config.logout.url":
 [
 "[0]=https://openam.example.com:8443/openam/UI/Logout"
],
 "sunIdentityServerDeviceStatus": [
 "Inactive"
]
 }

Note

The command output above has been truncated to be more readable. When you update a policy agent profile,
OpenAM returns the full profile in JSON format.

Notice in the following example that updates newGroup the object class value is not included in the
JSON sent to OpenAM:

$ curl \
 --request PUT \
 --header "iPlanetDirectoryPro: AQIC5...Y3MTAx*" \
 --header "Content-Type: application/json" \
 --data '{
 "uniquemember":[
 "uid=newUser,ou=people,dc=openam,dc=forgerock,dc=org",
 "uid=demo,ou=people,dc=openam,dc=forgerock,dc=org"
]
 }' \
 https://openam.example.com:8443/openam/json/groups/newGroup
{
 "name": "newGroup",
 "realm": "/",
 "uniqueMember": [
 "uid=newUser,ou=people,dc=openam,dc=forgerock,dc=org",
 "uid=demo,ou=people,dc=openam,dc=forgerock,dc=org"
],
 "cn": [
 "newGroup"
],
 "dn": [
 "cn=newGroup,ou=groups,dc=openam,dc=forgerock,dc=org"
],
 "objectclass": [
 "groupofuniquenames",
 "top"
],
 "universalid": [
 "id=newGroup,ou=group,dc=openam,dc=forgerock,dc=org"
]
}

Developing Client Applications
RESTful Identity and Realm Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 154

2.1.16.1.4. Deleting Identities

OpenAM lets administrators delete a user profile by making an HTTP DELETE call to /json/subrealm/
users/user-id. To delete a user from the Top Level Realm, you do not need to specify the realm.

The following example removes a user from the top level realm. Only administrators should delete
users. The user id is the only field required to delete a user:

$ curl \
 --request DELETE \
 --header "iplanetDirectoryPro: AQIC5w...2NzEz*" \
 https://openam.example.com:8443/openam/json/users/bjensen
{"success":"true"}

On success, OpenAM returns a JSON object indicating success. On failure, OpenAM returns a JSON
representation of the error including the HTTP status code.

You can use this same logic for other resources such as performing an HTTP DELETE of an agent
profile or of a group:

$ curl \
 --request DELETE \
 --header "iplanetDirectoryPro: AQIC5w...2NzEz*" \
 https://openam.example.com:8443/openam/json/agents/myOAuth2ClientAgent
{"success":"true"}

$ curl \
 --request DELETE \
 --header "iPlanetDirectoryPro: AQIC5w...2NzEz*" \
 https://openam.example.com:8443/openam/json/groups/newGroup
{"success":"true"}

Note

Deleting a user does not automatically remove any of the user's sessions. If you are using stateful sessions,
you can remove a user's sessions by checking for any sessions for the user and then removing them using the
console's Sessions tab. If you are using stateless sessions, you cannot remove users' sessions; you must wait for
the sessions to expire.

2.1.16.1.5. Listing Identities

OpenAM lets administrators list identities by making an HTTP GET call to /json/subrealm/users/?
_queryId=*. To query the Top Level Realm, you do not need to specify the realm:

$ curl \
--header "iPlanetDirectoryPro: AQIC5w...2NzEz*" \
"https://openam.example.com:8443/openam/json/users?_queryId=*"
{
 "result": [
 {
 "username": "amAdmin",

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Developing Client Applications
RESTful Identity and Realm Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 155

 "realm": "dc=openam,dc=forgerock,dc=org",
 "sunIdentityMSISDNNumber": [],
 "mail": [],
 "sn": [
 "amAdmin"
],
 "givenName": [
 "amAdmin"
],
 "universalid": [
 "id=amAdmin,ou=user,dc=openam,dc=forgerock,dc=org"
],
 "cn": [
 "amAdmin"
],
 "iplanet-am-user-success-url": [],
 "telephoneNumber": [],
 "roles": [
 "ui-global-admin",
 "ui-realm-admin"
],
 "iplanet-am-user-failure-url": [],
 "inetuserstatus": [
 "Active"
],
 "postalAddress": [],
 "dn": [
 "uid=amAdmin,ou=people,dc=openam,dc=forgerock,dc=org"
],
 "employeeNumber": [],
 "iplanet-am-user-alias-list": []
 },
 {
 "username": "demo",
 "realm": "dc=openam,dc=forgerock,dc=org",
 "uid": [
 "demo"
],
 "createTimestamp": [
 "20160108155628Z"
],
 "inetUserStatus": [
 "Active"
],
 "mail": [
 "demo.user@example.com"
],
 "sn": [
 "demo"
],
 "cn": [
 "demo"
],
 "objectClass": [
 "devicePrintProfilesContainer",
 "person",
 "sunIdentityServerLibertyPPService",
 "sunFederationManagerDataStore",
 "inetorgperson",

Developing Client Applications
RESTful Identity and Realm Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 156

 "oathDeviceProfilesContainer",
 "iPlanetPreferences",
 "iplanet-am-auth-configuration-service",
 "sunFMSAML2NameIdentifier",
 "organizationalperson",
 "inetuser",
 "kbaInfoContainer",
 "forgerock-am-dashboard-service",
 "iplanet-am-managed-person",
 "iplanet-am-user-service",
 "sunAMAuthAccountLockout",
 "top"
],
 "kbaInfo": [
 {
 "questionId": "2",
 "answer": {
 "$crypto": {
 "value": {
 "algorithm": "SHA-256",
 "data": "VXGtsnjJMC...MQJ/goU5hkfF"
 },
 "type": "salted-hash"
 }
 }
 },
 {
 "questionId": "1",
 "answer": {
 "$crypto": {
 "value": {
 "algorithm": "SHA-256",
 "data": "cfYYzi9U...rVfFl0Tdw0iX"
 },
 "type": "salted-hash"
 }
 }
 }
],
 "dn": [
 "uid=demo,ou=people,dc=openam,dc=forgerock,dc=org"
],
 "universalid": [
 "id=demo,ou=user,dc=openam,dc=forgerock,dc=org"
],
 "modifyTimestamp": [
 "20160113010610Z"
]
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

Developing Client Applications
RESTful Identity and Realm Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 157

The users endpoint also supports the _queryFilter parameter to alter the returned results. For more
information, see "Filtering, Sorting, and Paging Results".

The _queryId=* parameter also works for other types of objects, such as agent profiles and groups:

$ curl \
 --header "iPlanetDirectoryPro: AQIC5w...2NzEz*" \
 "https://openam.example.com:8443/openam/json/agents?_queryId=*"
{
 "result" : ["wsp", "wsc", "agentAuth", "SecurityTokenService"],
 "resultCount" : 4,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
}

$ curl \
 --header "iPlanetDirectoryPro: AQIC5w...2NzEz*" \
 "https://openam.example.com:8443/openam/json/groups?_queryId=*"
{
 "result" : ["newGroup", "anotherGroup"],
 "resultCount" : 2,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
}

As the result lists include all objects, this capability to list identity names is mainly useful in testing.

As shown in the examples, OpenAM returns the JSON representation of the resource list if successful.
On failure, OpenAM returns a JSON representation of the error including the HTTP status code.

2.1.16.1.6. Retrieving Identities Using the Session Cookie

If you only have access to the iPlanetDirectoryPro session cookie, you can retrieve the user ID by
performing an HTTP POST operation on the /json/users endpoint using the idFromSession action:

$ curl \
 --verbose \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iplanetDirectoryPro: AQIC5wM2LY4SfczUFNs-TJwFrCVAKgR0NulIAyNaIkQmjis.*AAJTSQACMDEA
 AlNLABQtNTQ3NDE2Njc5ODk4MjYzMzA2MQ..*" \
 http://openam.example.com:8080/openam/json/users?_action=idFromSession

{
 "id":"demo",
 "realm":"/",
 "dn":"id=demo,ou=user,dc=openam,dc=forgerock,dc=org",
 "successURL":"/openam/console",
 "fullLoginURL":null
}

2.1.16.1.7. Changing Passwords

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Developing Client Applications
RESTful Identity and Realm Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 158

Users other than the top-level administrator can change their own passwords with an HTTP POST
to /json/subrealm/users/username?_action=changePassword including the new password as the value of
userpassword in the request data.

Note

Changing the top-level administrator's password requires a more complex procedure. See "Administering the
amadmin Account" in the Administration Guide for more information.

Users must provide the current password, which is set in the request as the value of the
currentpassword.

For cases where users have forgotten their password, see "Retrieving Forgotten Usernames" instead.

The following example shows a successful request to change the demo user's password to password:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5w...NTcy*" \
 --data '{
 "currentpassword":"changeit",
 "userpassword":"password"
 }' \
 https://openam.example.com:8443/openam/json/users/demo?_action=changePassword
{}

On success, the response is an empty JSON object {} as shown in the example.

On failure, OpenAM returns a JSON representation of the error including the HTTP status code. See
also "REST Status Codes" for more information.

Administrators can change non-administrative users' passwords with an HTTP PUT to /json/subrealm/
users/username including the new password as the value of userpassword in the request data.

Unlike users, administrators do not provide users' current passwords when changing passwords.

The following example shows a successful request by an administrator to change the demo user's
password to cangetin:

$ curl \
 --request PUT \
 --header "iPlanetDirectoryPro: AQIC5w...NTcy*" \
 --header "Content-Type: application/json" \
 --data '{
 "userpassword":"cangetin"
 }' \
 https://openam.example.com:8443/openam/json/users/demo
 {

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Developing Client Applications
RESTful Identity and Realm Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 159

 "username":"demo",
 "realm":"/",
 "uid":[
 "demo"
],
 "universalid":[
 "id=demo,ou=user,dc=example,dc=com"
],
 "objectClass":[
 "iplanet-am-managed-person",
 "inetuser","sunFederationManagerDataStore",
 "sunFMSAML2NameIdentifier",
 "devicePrintProfilesContainer",
 "inetorgperson",
 "sunIdentityServerLibertyPPService",
 "iPlanetPreferences",
 "iplanet-am-user-service",
 "forgerock-am-dashboard-service",
 "organizationalperson",
 "top",
 "sunAMAuthAccountLockout",
 "person",
 "oathDeviceProfilesContainer",
 "iplanet-am-auth-configuration-service"
],
 "inetUserStatus":[
 "Active"
],
 "dn":[
 "uid=demo,ou=people,dc=example,dc=com"
],
 "sn":[
 "demo"
],
 "cn":[
 "demo"
],
 "modifyTimestamp":[
 "20151006213634Z"
],
 "createTimestamp":[
 "20151005134244Z"
]
}

As shown in the example, OpenAM returns the JSON representation of the profile on success. On
failure, OpenAM returns a JSON representation of the error including the HTTP status code. See also
"REST Status Codes" for more information.

2.1.16.2. Realm Management
This section shows how to create, read, update, and delete realms using the RESTful APIs:

• Under the /json/realms endpoint, you find the newer JSON-based API:

The following sections cover this JSON-based API.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Developing Client Applications
RESTful Identity and Realm Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 160

• "Default Parameters for Realms"

• "Creating Realms"

• "Reading Realms"

• "Listing Realms"

• "Updating Realms"

• "Deleting Realms"

2.1.16.2.1. Default Parameters for Realms

Realms have a number of fields entered with the default loading. The following table provides
information on what the default realm settings are, and whether they can be updated, added, or
deleted when updating a realm.

Realm Parameters for JSON-based API

Realm Parameter Default Purpose
realm None - the only required field to add a realm The name of the realm

Example: myRealm
sunOrganizationStatus Active The status of the realm

Active or Inactive
sunOrganizationAliases None Any applicable aliases

associated with the realm. Be
aware that an alias can only
be used once. Entering an
alias used by another realm
will remove the alias from
that realm and you will lose
configuration.

Example: opensso.example.com
serviceNames sunAMAuthHOTPService

iPlanetAMAuthConfiguration
sunAMAuthFederationService
sunIdentityRepositoryService
iPlanetAMPolicyConfigService
iPlanetAMAuthService
iPlanetAMAuthLDAPService
sunAMAuthDataStoreService
sunAMAuthSAEService sunAMDelegationService
sunAMAuthWSSAuthModuleService
iPlanetAMAuthOATHService

Services needed for the realm,
including authentication
modules

Developing Client Applications
RESTful Identity and Realm Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 161

2.1.16.2.2. Creating Realms

OpenAM lets administrators create a realm by making an HTTP POST of the JSON representation of
the profile to /json/realms/?_action=create.

You can create realms using an HTTP POST of the JSON representation of the profile to /json/realms/?
_action=create, as shown in the following example. The only required data field is realm:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iplanetDirectoryPro: AQIC5w...2NzEz*" \
 --data '{ "realm": "myRealm" }' \
 https://openam.example.com:8443/openam/json/realms/?_action=create
{"realmCreated":"/myRealm"}

Note

Do not use the names of OpenAM REST endpoints as the name of a realm. The OpenAM REST endpoint names
that should not be used includes: users, groups, realms, policies and applications.

You can also set the sunOrganizationAliases parameter, but it can only be assigned to one realm (usually
the top level realm). Before setting this parameter, make sure it is not already assigned elsewhere. If
you remove it from another realm, you will lose your configuration.

Alternatively, administrators can create realms by the specific realm name using the HTTP PUT of the
JSON representation of the changes to /json/realms/realm-id, as shown in the following example:

$ curl \
 --request PUT \
 --header "If-None-Match: *" \
 --header "iplanetDirectoryPro: AQIC5w...2NzEz*" \
 --header "Content-Type: application/json" \
 --data '{ }' \
 https://openam.example.com:8443/openam/json/realms/myRealm

 {
 "realmCreated": "/myRealm"
 }

OpenAM returns an HTTP 201 Created status code, and the JSON representation of the realm on
success. On failure, OpenAM returns a JSON representation of the error including the HTTP status
code. For example, if the If-None-Match header with a value of * is absent, an HTTP 404 Not Found
status code is returned.

2.1.16.2.3. Reading Realms

OpenAM lets administrators read realms by requesting an HTTP GET on /json/realms/realm-id. This
allows administrators to review all active realm services for the realm, like policy configuration
and modules. If users or administrators see missing information (such as Active status) or incorrect
information, they can write down the correct information and add it using "Updating Realms".

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Developing Client Applications
RESTful Identity and Realm Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 162

The following example shows an administrator receiving information about a realm called myRealm:

$ curl \
 --header "iplanetDirectoryPro: AQIC5w...2NzEz*" \
 https://openam.example.com:8443/openam/json/realms/myRealm
{
 "serviceNames":[
 "sunAMAuthHOTPService",
 "iPlanetAMAuthConfiguration",
 "sunAMAuthFederationService",
 "sunIdentityRepositoryService",
 "iPlanetAMPolicyConfigService",
 "iPlanetAMAuthService",
 "iPlanetAMAuthLDAPService",
 "sunAMAuthDataStoreService",
 "sunAMAuthSAEService",
 "sunAMDelegationService",
 "sunAMAuthWSSAuthModuleService",
 "iPlanetAMAuthOATHService"
]
}

As shown in the example, OpenAM returns the JSON representation of the profile on success. On
failure, OpenAM returns a JSON representation of the error including the HTTP status code.

To read the top-level realm, use toplevelrealm with the realms endpoint:

$ curl \
 --header "iplanetDirectoryPro: AQIC5w...2NzEz*" \
 https://openam.example.com:8443/openam/json/realms/toplevelrealm
{
 "serviceNames" : [
 "sunAMAuthFederationService",
 "sunEntitlementIndexes",
 "iPlanetAMAuthService",
 "sunAMAuthDataStoreService",
 "sunAMAuthWSSAuthModuleService",
 "sunAMDelegationService",
 "iPlanetAMAuthOATHService",
 "iPlanetAMAuthConfiguration",
 "sunAMAuthHOTPService",
 "sunIdentityRepositoryService",
 "iPlanetAMPolicyConfigService",
 "iPlanetAMAuthLDAPService",
 "sunEntitlementService",
 "iPlanetAMPolicyService",
 "sunAMAuthSAEService",
 "AgentService"]
}

If the realm you want to read is not an immediate subrealm of the top-level realm, specify its parent
realm to the left of realms in the URL, and specify the realm's final qualifier to the right of realms. For
example, to read the /myRealm/myRealmsChildRealm realm:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Developing Client Applications
RESTful Identity and Realm Management Services

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 163

$ curl \
 --header "iplanetDirectoryPro: AQIC5w...2NzEz*" \
 https://openam.example.com:8443/openam/json/myRealm/realms/myRealmsChildRealm
{
 "serviceNames" : [
 "sunAMAuthHOTPService",
 "iPlanetAMAuthConfiguration",
 "sunAMAuthFederationService",
 "sunIdentityRepositoryService",
 "iPlanetAMPolicyConfigService",
 "iPlanetAMAuthService",
 "iPlanetAMAuthLDAPService",
 "sunAMAuthDataStoreService",
 "sunAMAuthSAEService",
 "sunAMDelegationService",
 "sunAMAuthWSSAuthModuleService",
 "iPlanetAMAuthOATHService"
]
}

2.1.16.2.4. Listing Realms

To list a realm and its subrealms, perform an HTTP GET on the endpoint, set the _queryFilter query
string parameter as in the following example, which lists the top-level realm and all of its subrealms:

 $ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms?_queryFilter=true
 {
 "result" : ["/", "/myRealm", "/myRealm/myRealmsChildRealm"],
 "resultCount" : 3,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
 }

You can start listing realms from below the top-level realm by placing the starting realm name in the
URL. The following example lists the realm myRealm and all of its subrealms:

$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/myRealm/realms?_queryFilter=true
 {
 "result" : ["/myRealm", "/myRealm/myRealmsChildRealm"],
 "resultCount" : 2,
 "pagedResultsCookie" : null,
 "remainingPagedResults" : -1
 }

2.1.16.2.5. Updating Realms

OpenAM lets administrators update realms. To update a realm, do an HTTP PUT of the JSON
representation of the changes to /json/realms/realm-id.

Developing Client Applications
RESTful Script Management

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 164

The following example shows how to update a realm called myRealm. The example command sets the
realm's status to Inactive:

$ curl \
 --request PUT \
 --header "iplanetDirectoryPro: AQIC5...Y3MTAx*" \
 --header "Content-Type: application/json" \
 --data '{ "sunOrganizationStatus": "Inactive" }' \
 https://openam.example.com:8443/openam/json/realms/myRealm

OpenAM returns the JSON representation of the profile on success. On failure, OpenAM returns a
JSON representation of the error including the HTTP status code.

2.1.16.2.6. Deleting Realms

OpenAM lets administrators delete a realm by making an HTTP DELETE call to /json/realms/realm-id.

The following example deletes a realm called myRealm. The top level realm cannot be deleted. Only
administrators should delete realms. The name of the realm is the only field required to delete the
realm.

Make sure that you do not have any information you need within a realm before deleting it. Once a
realm is deleted, the only way to restore it is to return to a backed up deployment of OpenAM:

$ curl \
 --request DELETE \
 --header "iplanetDirectoryPro: AQIC5w...2NzEz*" \
 https://openam.example.com:8443/openam/json/realms/myRealm
{"success":"true"}

On success, OpenAM returns a JSON object indicating success. On failure, OpenAM returns a JSON
representation of the error including the HTTP status code.

If the realm you want to delete is not an immediate subrealm of the top-level realm, specify its parent
realm to the left of realms in the URL, and specify the realm's final qualifier to the right of realms. For
example, to delete the /myRealm/myRealmsChildRealm realm:

 $ curl \
 --request DELETE
 --header "iplanetDirectoryPro: AQIC5w...2NzEz*" \
 https://openam.example.com:8443/openam/json/myRealm/realms/myRealmsChildRealm
 { "success":"true" }

2.1.17. RESTful Script Management

This section shows you how to manage scripts used for client-side and server-side scripted
authentication, custom policy conditions, and handling OpenID Connect claims by using the REST
API.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Developing Client Applications
RESTful Script Management

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 165

For information on managing scripts by using the OpenAM console, see "Managing Scripts" in
the Administration Guide. For information on configuring script settings, see "Scripting" in the
Reference.

OpenAM provides the scripts REST endpoint for the following:

• "Querying Scripts"

• "Reading a Script"

• "Validating a Script"

• "Creating a Script"

• "Updating a Script"

• "Deleting a Script"

User-created scripts are realm-specific, hence the URI for the scripts' API can contain a realm
component, such as /json{/realm}/scripts. If the realm is not specified in the URI, the top level realm is
used.

Tip

OpenAM includes some global example scripts that can be used in any realm.

Scripts are represented in JSON and take the following form. Scripts are built from standard JSON
objects and values (strings, numbers, objects, sets, arrays, true, false, and null). Each script has a
system-generated universally unique identifier (UUID), which must be used when modifying existing
scripts. Renaming a script will not affect the UUID:
{
 "_id": "7e3d7067-d50f-4674-8c76-a3e13a810c33",
 "name": "Scripted Module - Server Side",
 "description": "Default global script for server side Scripted Authentication Module",
 "script": "dmFyIFNUQVJUX1RJ...",
 "language": "JAVASCRIPT",
 "context": "AUTHENTICATION_SERVER_SIDE",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
}

The values for the fields shown in the example above are explained below:

_id

The UUID that OpenAM generates for the script.

name

The name provided for the script.

Developing Client Applications
RESTful Script Management

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 166

description

An optional text string to help identify the script.

script

The source code of the script. The source code is in UTF-8 format and encoded into Base64.

For example, a script such as the following:
var a = 123;
var b = 456;

When encoded into Base64 becomes:
dmFyIGEgPSAxMjM7IA0KdmFyIGIgPSA0NTY7

language

The language the script is written in - JAVASCRIPT or GROOVY.

Language Support per Context

Script Context Supported Languages
POLICY_CONDITION JAVASCRIPT, GROOVY
AUTHENTICATION_SERVER_SIDE JAVASCRIPT, GROOVY
AUTHENTICATION_CLIENT_SIDE JAVASCRIPT

OIDC_CLAIMS JAVASCRIPT, GROOVY

context

The context type of the script.

Supported values are:

POLICY_CONDITION

Policy Condition

AUTHENTICATION_SERVER_SIDE

Server-side Authentication

AUTHENTICATION_CLIENT_SIDE

Client-side Authentication

Developing Client Applications
RESTful Script Management

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 167

Note

Client-side scripts must be written in JavaScript.

OIDC_CLAIMS

OIDC Claims

createdBy

A string containing the universal identifier DN of the subject that created the script.

creationDate

An integer containing the creation date and time, in ISO 8601 format.

lastModifiedBy

A string containing the universal identifier DN of the subject that most recently updated the
resource type.

If the script has not been modified since it was created, this property will have the same value as
createdBy.

lastModifiedDate

A string containing the last modified date and time, in ISO 8601 format.

If the script has not been modified since it was created, this property will have the same value as
creationDate.

2.1.17.1. Querying Scripts

To list all the scripts in a realm, as well as any global scripts, perform an HTTP GET to the /json{/
realm}/scripts endpoint with a _queryFilter parameter set to true.

Note

If the realm is not specified in the URL, OpenAM returns scripts in the top level realm, as well as any global
scripts.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
--header "iPlanetDirectoryPro: AQIC5..." \
https://openam.example.com:8443/openam/json/myrealm/scripts?_queryFilter=true

Developing Client Applications
RESTful Script Management

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 168

{
 "result": [
 {
 "_id": "9de3eb62-f131-4fac-a294-7bd170fd4acb",
 "name": "Scripted Policy Condition",
 "description": "Default global script for Scripted Policy Conditions",
 "script": "LyoqCiAqIFRoaXMg...",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
 },
 {
 "_id": "7e3d7067-d50f-4674-8c76-a3e13a810c33",
 "name": "Scripted Module - Server Side",
 "description": "Default global script for server side Scripted Authentication Module",
 "script": "dmFyIFNUQVJUX1RJ...",
 "language": "JAVASCRIPT",
 "context": "AUTHENTICATION_SERVER_SIDE",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

Additional query strings can be specified to alter the returned results. For more information, see
"Filtering, Sorting, and Paging Results".

Supported _queryFilter Fields and Operators

Field Supported Operators
_id Equals (eq), Contains (co), Starts with (sw)
name Equals (eq), Contains (co), Starts with (sw)
description Equals (eq), Contains (co), Starts with (sw)
script Equals (eq), Contains (co), Starts with (sw)
language Equals (eq), Contains (co), Starts with (sw)
context Equals (eq), Contains (co), Starts with (sw)

2.1.17.2. Reading a Script

To read an individual script in a realm, perform an HTTP GET using the /json{/realm}/scripts
endpoint, specifying the UUID in the URL.

Developing Client Applications
RESTful Script Management

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 169

Tip

To read a script in the top-level realm, or to read a built-in global script, do not specify a realm in the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
--header "iPlanetDirectoryPro: AQIC5..." \
https://openam.example.com:8443/openam/json/myrealm/scripts/9de3eb62-f131-4fac-a294-7bd170fd4acb
{
 "_id": "9de3eb62-f131-4fac-a294-7bd170fd4acb",
 "name": "Scripted Policy Condition",
 "description": "Default global script for Scripted Policy Conditions",
 "script": "LyoqCiAqIFRoaXMg...",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
}

2.1.17.3. Validating a Script
To validate a script, perform an HTTP POST using the /json{/realm}/scripts endpoint, with an _action
parameter set to validate. Include a JSON representation of the script and the script language,
JAVASCRIPT or GROOVY, in the POST data.

The value for script must be in UTF-8 format and then encoded into Base64.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "iPlanetDirectoryPro: AQIC5..."
 \
--data '{
 "script": "dmFyIGEgPSAxMjM7dmFyIGIgPSA0NTY7Cg==",
 "language": "JAVASCRIPT"
}' \
https://openam.example.com:8443/openam/json/myrealm/scripts/?_action=validate
{
 "success": true
}

If the script is valid the JSON response contains a success key with a value of true.

If the script is invalid the JSON response contains a success key with a value of false, and an indication
of the problem and where it occurs, as shown below:

Developing Client Applications
RESTful Script Management

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 170

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "iPlanetDirectoryPro: AQIC5..."
 \
--data '{
 "script": "dmFyIGEgPSAxMjM7dmFyIGIgPSA0NTY7ID1WQUxJREFUSU9OIFNIT1VMRCBGQUlMPQo=",
 "language": "JAVASCRIPT"
}' \
https://openam.example.com:8443/openam/json/myrealm/scripts/?_action=validate
{
 "success": false,
 "errors": [
 {
 "line": 1,
 "column": 27,
 "message": "syntax error"
 }
]
}

2.1.17.4. Creating a Script

To create a script in a realm, perform an HTTP POST using the /json{/realm}/scripts endpoint, with an
_action parameter set to create. Include a JSON representation of the script in the POST data.

The value for script must be in UTF-8 format and then encoded into Base64.

Note

If the realm is not specified in the URL, OpenAM creates the script in the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Developing Client Applications
RESTful Script Management

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 171

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "iPlanetDirectoryPro: AQIC5..."
 \
--data '{
 "name": "MyJavaScript",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "description": "An example script"
}' \
https://openam.example.com:8443/openam/json/myrealm/scripts/?_action=create
{
 "_id": "0168d494-015a-420f-ae5a-6a2a5c1126af",
 "name": "MyJavaScript",
 "description": "An example script",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1436807766258,
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1436807766258
}

2.1.17.5. Updating a Script

To update an individual script in a realm, perform an HTTP PUT using the /json{/realm}/scripts
endpoint, specifying the UUID in both the URL and the PUT body. Include a JSON representation of
the updated script in the PUT data, alongside the UUID.

Note

If the realm is not specified in the URL, OpenAM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Developing Client Applications
RESTful Troubleshooting Information Recording

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 172

$ curl \
--header "iPlanetDirectoryPro: AQIC5..."
 \
--header "Content-Type: application/json"
 \
--request PUT
 \
--data '{
 "name": "MyUpdatedJavaScript",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "description": "An updated example script configuration"
}' \
https://openam.example.com:8443/openam/json/myrealm/scripts/0168d494-015a-420f-ae5a-6a2a5c1126af
{
 "_id": "0168d494-015a-420f-ae5a-6a2a5c1126af",
 "name": "MyUpdatedJavaScript",
 "description": "An updated example script configuration",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1436807766258,
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1436808364681
}

2.1.17.6. Deleting a Script
To delete an individual script in a realm, perform an HTTP DELETE using the /json{/realm}/scripts
endpoint, specifying the UUID in the URL.

Note

If the realm is not specified in the URL, OpenAM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
--request DELETE
 \
--header "iPlanetDirectoryPro: AQIC5..." \
https://openam.example.com:8443/openam/json/myrealm/scripts/0168d494-015a-420f-ae5a-6a2a5c1126af
{}

2.1.18. RESTful Troubleshooting Information Recording
This section shows you how to start, stop, and get the status of a troubleshooting recording event
using the REST API.

OpenAM provides the /json/records REST endpoint for the following:

Developing Client Applications
RESTful Troubleshooting Information Recording

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 173

• Starting a recording event. See "Starting a Recording Event".

• Getting the status of a recording event. See "Getting the Status of a Recording Event".

• Stopping a recording event. See "Stopping a Recording Event".

You must authenticate to OpenAM as an administrative user to obtain an SSO token prior to calling
the /json/records REST endpoint. You then pass the SSO token in the iPlanetDirectoryPro header as
proof of authentication.

You can also record troubleshooting information by using the ssoadm command. For more
information, see "Recording Troubleshooting Information" in the Administration Guide.

Note

The curl command output in the examples in this section is indented for ease of reading. The actual output
is not indented, and the actions available from the /json/records endpoint do not support the _prettyPrint
parameter.

2.1.18.1. Starting a Recording Event

To start a recording event, perform an HTTP POST using the /json/records endpoint, specifying the
_action=start parameter in the URL. Specify a JSON payload identical in format to the input file for the
ssoadm start-recording command, as described in "The Recording Control File" in the Administration
Guide:

$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "iPlanetDirectoryPro: AQIC5..." \
--data ' {
 "issueID": 103572,
 "referenceID": "policyEvalFails",
 "description": "Troubleshooting artifacts in support of case 103572",
 "zipEnable": true,
 "configExport": {
 "enable": true,
 "password": "5x2RR70",
 "sharePassword": false
 },
 "debugLogs": {
 "debugLevel": "MESSAGE",
 "autoStop": {
 "time": {
 "timeUnit": "SECONDS",
 "value": 15
 },
 "fileSize": {
 "sizeUnit": "GB",
 "value": 1
 }
 }

Developing Client Applications
RESTful Troubleshooting Information Recording

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 174

 },
 "threadDump" : {
 "enable": true,
 "delay" : {
 "timeUnit": "SECONDS",
 "value": 5
 }
 }
 }' \
https://openam.example.com:8443/openam/json/records?_action=start
{
 "recording":true,
 "record":{
 "issueID":103572,
 "referenceID":"policyEvalFails",
 "description":"Troubleshooting artifacts in support of case 103572",
 "zipEnable":true,
 "threadDump":{
 "enable":true,
 "delay":{
 "timeUnit":"SECONDS",
 "value":5
 }
 },
 "configExport":{
 "enable":true,
 "password":"xxxxxx",
 "sharePassword":false
 },
 "debugLogs":{
 "debugLevel":"message",
 "autoStop":{
 "time":{
 "timeUnit":"MILLISECONDS",
 "value":15000
 },
 "fileSize":{
 "sizeUnit":"KB",
 "value":1048576
 }
 }
 },
 "status":"RUNNING",
 "folder":"/opt/demo/openam/config/openam/debug/record/103572/policyEvalFails/"
 }
}

2.1.18.2. Getting the Status of a Recording Event
To get the status of a recording event, perform an HTTP POST using the /json/records endpoint,
specifying the _action=status parameter in the URL:
$ curl \
--request POST
 \
--header "iPlanetDirectoryPro: AQIC5..." \
https://openam.example.com:8443/openam/json/records?_action=status

Developing Client Applications
RESTful Troubleshooting Information Recording

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 175

If there is no active recording event, the following output appears:
{
 "recording":false
}

If there is an active recording event, output similar to the following appears:
{
 "recording":true,
 "record":{
 "issueID":103572,
 "referenceID":"policyEvalFails",
 "description":"Troubleshooting artifacts in support of case 103572",
 "zipEnable":true,
 "threadDump":{
 "enable":true,
 "delay":{
 "timeUnit":"SECONDS",
 "value":5
 }
 },
 "configExport":{
 "enable":true,
 "password":"xxxxxx",
 "sharePassword":false
 },
 "debugLogs":{
 "debugLevel":"message",
 "autoStop":{
 "time":{
 "timeUnit":"MILLISECONDS",
 "value":15000
 },
 "fileSize":{
 "sizeUnit":"KB",
 "value":1048576
 }
 }
 },
 "status":"RUNNING",
 "folder":"/opt/demo/openam/config/openam/debug/record/103572/policyEvalFails/"
 }
}

2.1.18.3. Stopping a Recording Event
To stop a recording event, perform an HTTP POST using the /json/records endpoint, specifying the
_action=stop parameter in the URL:
$ curl \
--request POST
 \
--header "iPlanetDirectoryPro: AQIC5..." \
https://openam.example.com:8443/openam/json/records?_action=stop

If there is no active recording event, OpenAM returns a 400 error code.

Developing Client Applications
Using the OpenAM Java SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 176

If there is an active recording event, output similar to the following appears:
{
 "recording":false,
 "record":{
 "issueID":103572,
 "referenceID":"policyEvalFails",
 "description":"Troubleshooting artifacts in support of case 103572",
 "zipEnable":true,
 "threadDump":{
 "enable":true,
 "delay":{
 "timeUnit":"SECONDS",
 "value":5
 }
 },
 "configExport":{
 "enable":true,
 "password":"xxxxxx",
 "sharePassword":false
 },
 "debugLogs":{
 "debugLevel":"message",
 "autoStop":{
 "time":{
 "timeUnit":"MILLISECONDS",
 "value":15000
 },
 "fileSize":{
 "sizeUnit":"KB",
 "value":1048576
 }
 }
 },
 "status":"STOPPED",
 "folder":"/opt/demo/openam/config/openam/debug/record/103572/policyEvalFails/"
 }
}

2.2. Using the OpenAM Java SDK
This section introduces OpenAM Java SDK. OpenAM Java SDK is delivered with the full version of
OpenAM, OpenAM-13.5.2.zip.

2.2.1. Installing OpenAM Client SDK Samples

The full OpenAM download, OpenAM-13.5.2.zip, contains the Java Client SDK library,
ClientSDK-13.5.2.jar, as well as samples for use on the command line in ExampleClientSDK-CLI-13.5.2.zip,
and samples in a web application, ExampleClientSDK-WAR-13.5.2.war. The OpenAM Java SDK API
Specification provides a reference to the public APIs.

../apidocs
../apidocs

Developing Client Applications
Installing OpenAM Client SDK Samples

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 177

To Deploy the Sample Web Application

The sample web application deploys in your container to show you the client SDK samples in action.

1. Deploy the .war in your Java web application container such as Apache Tomcat or JBoss.

$ cp ExampleClientSDK-WAR-13.5.2.war /path/to/tomcat/webapps/client.war

2. If you have run this procedure before, make sure to deploy a fresh copy of the .war file to a
different location, such as /path/to/tomcat/webapps/client1.war

3. Browse to the location where you deployed the client, and configure the application to access
OpenAM using the application user name, UrlAccessAgent, and password configured when you set
up OpenAM.

Use the following hints to complete the configuration.

Server Protocol

Protocol to access OpenAM (http or https)

Server Host

Fully qualified domain name for OpenAM, such as openam.example.com

Server Port

OpenAM port number such as 8080 or 8443

Server Deployment URI

URI entry point to OpenAM such as /openam

Developing Client Applications
Installing OpenAM Client SDK Samples

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 178

Debug directory

Where to write the debug messages for the client samples

Application user name

An user agent configured to access OpenAM, such as UrlAccessAgent set up when OpenAM was
installed

Application user password

The user agent password

The sample client writes configuration information under $HOME/OpenAMClient/, where $HOME is
that of the user running the web application container.

4. Verify that you have properly configured the sample web application.

a. In another browser tab page of the same browser instance, login to OpenAM as the OpenAM
Administrator, amadmin.

This signs you into OpenAM, storing the cookie in your browser.

b. On the Samples tab page, click the link under Single Sign On Token Verification Servlet.

If the sample web application is properly configured, you should see something like the
following text in your browser.
SSOToken host name: 127.0.0.1
SSOToken Principal name: id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org
Authentication type used: DataStore
IPAddress of the host: 127.0.0.1
SSO Token validation test succeeded
The token id is AQIC5...CMDEAAlNLABQtODY0Mjc5MDUwNDQzOTA2MzYxNg..*
...
User Attributes: {... givenName=[amAdmin], ...roles=[Top-level Admin Role], ...}

To Build the Command-Line Sample Applications

Follow these steps to set up the command-line examples.

1. Unpack the sample applications and related libraries.

$ mkdir sdk && cd sdk
$ unzip ~/Downloads/ExampleClientSDK-CLI-13.5.2.zip

2. Configure the samples to access OpenAM.

Developing Client Applications
About the OpenAM Java SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 179

$ sh scripts/setup.sh
Debug directory (make sure this directory exists): /Users/me/openam/openam/debug
Application user (e.g. URLAccessAgent) password: secret12
Protocol of the server: http
Host name of the server: openam.example.com
Port of the server: 8080
Server's deployment URI: openam
Naming URL (hit enter to accept default value,
 http://openam.example.com:8080/openam/namingservice):
$

3. Verify that you have properly configured the samples.

$ sh scripts/Login.sh
Realm (e.g. /): /
Login module name (e.g. DataStore or LDAP): DataStore
Login locale (e.g. en_US or fr_FR): fr_FR
DataStore: Obtained login context
Nom d'utilisateur :demo
Mot de passe :changeit
Login succeeded.
Logged Out!!

2.2.2. About the OpenAM Java SDK
After installing the Java SDK command line samples, you see the following content.

• lib/: SDK and other libraries

• resources/: properties configuration files for the SDK and samples

• scripts/: scripts to run the samples

• source/: sample code

After deploying the Java SDK web application archive, you find the following content where the .war
file was unpacked.

• META-INF/: build information

• WEB-INF/: sample classes and libraries

• console/: images for sample UI

• index.html: sample home page

• keystore.jks: OpenAM test certificate, alias: test, keystore password: changeit

• policy/: Policy Evaluator Client Sample page

• saml2/: Secure Attribute Exchange example

• sample.css: sample styles

Developing Client Applications
Authenticating Using OpenAM Java SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 180

• sm/: Service Configuration sample

• um/: User Profile sample

Registering Your Java SDK Client to Shut Down Gracefully

When writing a client using the OpenAM Java SDK, make sure you register hooks to make sure the
application can be shut down gracefully. How you register for shutdown depends on the type of
application.

• For Java EE applications, make sure the OpenAM client SDK shuts down successfully by including
the following context listener in your application's web.xml file.
<listener>
 <listener-class>
 com.sun.identity.common.ShutdownServletContextListener
 </listener-class>
</listener>

• For standalone applications, set the following JVM property.
-Dopenam.runtime.shutdown.hook.enabled=true

2.2.3. Authenticating Using OpenAM Java SDK
This section looks at authentication with the OpenAM Java SDK and at the sample client, Login.java,
which demonstrates authenticating to OpenAM from a client application, provided a realm, user
name, and password. This is the sample you ran to test installation of the command-line SDK samples.
The class shown in this section is com.sun.identity.samples.authentication.Login.

Before you continue, make sure that the packages described in "Installing OpenAM Client SDK
Samples" are installed.

With OpenAM, your client application performs the following steps to handle authentication.

1. Sets up an AuthContext, based on the realm in which the user authenticates.

2. Starts the login process by calling the AuthContext login() method.

3. Handling authentication callbacks to retrieve credentials from the user who is authenticating.

Your application loops through the authentication callbacks by using the AuthContext
getRequirements() and hasMoreRequirements() methods. Each time it finishes populating a callback
with the credentials retrieved, your application calls submitRequirements() to send the credentials to
OpenAM's Authentication Service.

4. After handling all authentication callbacks, your application calls the AuthContext getStatus()
method.

On login success, OpenAM sets up an SSO token that holds information about the authentication,
and also about the user's environment and session.

Developing Client Applications
Authenticating Using OpenAM Java SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 181

5. When the user logs out, your application can end the session by calling the AuthContext logout()
method.

The AuthContext class is provided by the com.sun.identity.authentication package, part of the OpenAM
client API. Callback classes are provided by the javax.security.auth.callback package, which provides
callbacks for choices, confirmations, locales, names, passwords, text input, and text output.

See the OpenAM Public API JavaDoc for reference.

As the sample client gets the realm (called organization in the sample), locale, and authentication
module to set up the authentication context, there is not need for a language callback to get the local
afterwards. The Login.java example does, however, show simple ways of handling callbacks for the
command-line context. The implementation of the sample client follows.
package com.sun.identity.samples.authentication;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.ChoiceCallback;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.callback.TextInputCallback;
import javax.security.auth.callback.TextOutputCallback;
import javax.security.auth.callback.UnsupportedCallbackException;
import com.sun.identity.authentication.AuthContext;
import com.sun.identity.authentication.spi.AuthLoginException;
import com.sun.identity.shared.debug.Debug;

public class Login {
 private String loginIndexName;
 private String orgName;
 private String locale;

 private Login(String loginIndexName, String orgName) {
 this.loginIndexName = loginIndexName;
 this.orgName = orgName;
 }

 private Login(String loginIndexName, String orgName, String locale) {
 this.loginIndexName = loginIndexName;
 this.orgName = orgName;
 this.locale = locale;
 }

 protected AuthContext getAuthContext()
 throws AuthLoginException {
 AuthContext lc = new AuthContext(orgName);
 AuthContext.IndexType indexType = AuthContext.IndexType.MODULE_INSTANCE;
 if (locale == null || locale.length() == 0) {
 lc.login(indexType, loginIndexName);
 } else {
 lc.login(indexType, loginIndexName, locale);
 }
 debugMessage(loginIndexName + ": Obtained login context");
 return lc;
 }

../apidocs

Developing Client Applications
Authenticating Using OpenAM Java SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 182

 private void addLoginCallbackMessage(Callback[] callbacks)
 throws UnsupportedCallbackException {
 int i = 0;
 try {
 for (i = 0; i < callbacks.length; i++) {
 if (callbacks[i] instanceof TextOutputCallback) {
 handleTextOutputCallback((TextOutputCallback)callbacks[i]);
 } else if (callbacks[i] instanceof NameCallback) {
 handleNameCallback((NameCallback)callbacks[i]);
 } else if (callbacks[i] instanceof PasswordCallback) {
 handlePasswordCallback((PasswordCallback)callbacks[i]);
 } else if (callbacks[i] instanceof TextInputCallback) {
 handleTextInputCallback((TextInputCallback)callbacks[i]);
 } else if (callbacks[i] instanceof ChoiceCallback) {
 handleChoiceCallback((ChoiceCallback)callbacks[i]);
 }
 }
 } catch (IOException e) {
 e.printStackTrace();
 throw new UnsupportedCallbackException(callbacks[i],e.getMessage());
 }
 }

 private void handleTextOutputCallback(TextOutputCallback toc) {
 debugMessage("Got TextOutputCallback");
 // display the message according to the specified type

 switch (toc.getMessageType()) {
 case TextOutputCallback.INFORMATION:
 debugMessage(toc.getMessage());
 break;
 case TextOutputCallback.ERROR:
 debugMessage("ERROR: " + toc.getMessage());
 break;
 case TextOutputCallback.WARNING:
 debugMessage("WARNING: " + toc.getMessage());
 break;
 default:
 debugMessage("Unsupported message type: " +
 toc.getMessageType());
 }
 }

 private void handleNameCallback(NameCallback nc)
 throws IOException {
 // prompt the user for a username
 System.out.print(nc.getPrompt());
 System.out.flush();
 nc.setName((new BufferedReader
 (new InputStreamReader(System.in))).readLine());
 }

 private void handleTextInputCallback(TextInputCallback tic)
 throws IOException {
 // prompt for text input
 System.out.print(tic.getPrompt());
 System.out.flush();
 tic.setText((new BufferedReader

Developing Client Applications
Authenticating Using OpenAM Java SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 183

 (new InputStreamReader(System.in))).readLine());
 }

 private void handlePasswordCallback(PasswordCallback pc)
 throws IOException {
 // prompt the user for sensitive information
 System.out.print(pc.getPrompt());
 System.out.flush();
 String passwd = (new BufferedReader(new InputStreamReader(System.in))).
 readLine();
 pc.setPassword(passwd.toCharArray());
 }

 private void handleChoiceCallback(ChoiceCallback cc)
 throws IOException {
 // ignore the provided defaultValue
 System.out.print(cc.getPrompt());

 String[] strChoices = cc.getChoices();
 for (int j = 0; j < strChoices.length; j++) {
 System.out.print("choice[" + j + "] : " + strChoices[j]);
 }
 System.out.flush();
 cc.setSelectedIndex(Integer.parseInt((new BufferedReader
 (new InputStreamReader(System.in))).readLine()));
 }

 protected boolean login(AuthContext lc)
 throws UnsupportedCallbackException {
 boolean succeed = false;
 Callback[] callbacks = null;

 // get information requested from module
 while (lc.hasMoreRequirements()) {
 callbacks = lc.getRequirements();
 if (callbacks != null) {
 addLoginCallbackMessage(callbacks);
 lc.submitRequirements(callbacks);
 }
 }

 if (lc.getStatus() == AuthContext.Status.SUCCESS) {
 System.out.println("Login succeeded.");
 succeed = true;
 } else if (lc.getStatus() == AuthContext.Status.FAILED) {
 System.out.println("Login failed.");
 } else {
 System.out.println("Unknown status: " + lc.getStatus());
 }

 return succeed;
 }

 protected void logout(AuthContext lc)
 throws AuthLoginException {
 lc.logout();
 System.out.println("Logged Out!!");
 }

Developing Client Applications
Authenticating Using OpenAM Java SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 184

 static void debugMessage(String msg) {
 System.out.println(msg);
 }

 public static void main(String[] args) {
 try {
 System.out.print("Realm (e.g. /): ");
 String orgName = (new BufferedReader(
 new InputStreamReader(System.in))).readLine();

 System.out.print("Login module name (e.g. DataStore or LDAP): ");
 String moduleName = (new BufferedReader(
 new InputStreamReader(System.in))).readLine();

 System.out.print("Login locale (e.g. en_US or fr_FR): ");
 String locale = (new BufferedReader(
 new InputStreamReader(System.in))).readLine();

 Login login = new Login(moduleName, orgName, locale);
 AuthContext lc = login.getAuthContext();
 if (login.login(lc)) {
 login.logout(lc);
 }
 } catch (IOException e) {
 e.printStackTrace();
 } catch (AuthLoginException e) {
 e.printStackTrace();
 } catch (UnsupportedCallbackException e) {
 e.printStackTrace();
 }
 System.exit(0);
 }
}

2.2.3.1. Encoding Passwords and Password Reset Questions and Answers

OpenAM uses symmetric encryption algorithms to encrypt and decrypt stored passwords, so that they
can be retrieved or modified at later date if necessary. The OpenAM Java SDK provides the capability
to encode passwords using the EncodeAction class in standalone applications. For example, you can
encrypt and decrypt a password as follows:
String plainText = "helloworld";
String encrypted = AccessController.doPrivileged(new EncodeAction(plainText));
String decrypted = AccessController.doPrivileged(new DecodeAction(encrypted));
Assert plainText.equals(decrypted);

To use this class, you must ensure that the symmetric encryption key has the same value as
configured in the server instances. You can run ssoadm to retrieve the password encryption key as
follows:

ssoadm am.encryption.pwd

Next, in your application's AMConfig.properties file, replace the @ENCRYPTION_KEY@ with the value of the
password encryption key. The property ensures that OpenAM can decrypt the password.

Developing Client Applications
Handling Single Sign-On Using OpenAM Java SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 185

am.encryption.pwd=@ENCRYPTION_KEY@

OpenAM's password reset question and answer also uses symmetric key encryption in its
configuration. You can use the encodeAction class to encrypt a password reset question and answer:

String encrypted = AccessController.doPrivileged(new EncodeAction(question + "\t" + \
 answer "+" "1"));

The last number in the previous example indicates whether the question/answer is enabled or
disabled:

• 0 = default question/answer that is disabled

• 1 = default question/answer that is enabled

• 2 = personal question/answer that is disabled

• 3 = personal question/answer that is enabled

To encrypt or decrypt the password reset question and answer, you must retrieve the password
encryption key using ssoadm am.encryption.key, and then set the am.encryption.key property with the
value of the password encryption key in the AMConfig.properties file.

For additional information, see EncodeAction.

2.2.4. Handling Single Sign-On Using OpenAM Java SDK
This section looks at handling session tokens with the OpenAM Java SDK. The class shown in this
section is com.sun.identity.samples.sso.SSOTokenSample.

When a user authenticates successfully, OpenAM sets up a single sign-on (SSO) session for the user.
The session is associated with an SSO token that holds information about the authentication, and
also about the user's environment and session. OpenAM deletes the session when the authentication
context logout() method is called, or when a session timeout is reached. At that point the SSO token is
no longer valid.

Before you continue, make sure that the packages described in the "Installing OpenAM Client SDK
Samples" chapter are installed.

When your application has an AuthContext after successful authentication, you can retrieve the SSO
token from the context. You also can get the token as shown in the sample client by passing an SSO
token ID from OpenAM to an SSOTokenManager.

If your application needs to be notified of changes, you can register an SSOTokenListener on the
token by using the token's addSSOTokenListener() method. OpenAM then calls your SSOTokenListener
ssoTokenChanged() method when the session times out, is disposed of, or has a property that
changes. Applications can receive notifications about changes to stateful sessions only. Adding an
SSOTokenListener for a stateless session token does not generate notifications.

../apidocs/index.html?com/sun/identity/security/EncodeAction.html

Developing Client Applications
Handling Single Sign-On Using OpenAM Java SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 186

The sample client takes an SSO token ID to get the token from OpenAM, and then displays some
information from the SSO token. The implementation of the sample client follows.
package com.sun.identity.samples.sso;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.net.InetAddress;
import com.iplanet.sso.SSOException;
import com.iplanet.sso.SSOToken;
import com.iplanet.sso.SSOTokenID;
import com.iplanet.sso.SSOTokenManager;

public class SSOTokenSample {
 private SSOTokenManager manager;
 private SSOToken token;

 private SSOTokenSample(String tokenID)
 throws SSOException
 {
 if (validateToken(tokenID)) {
 setGetProperties(token);
 }
 }

 private boolean validateToken(String tokenID)
 throws SSOException
 {
 boolean validated = false;
 manager = SSOTokenManager.getInstance();
 token = manager.createSSOToken(tokenID);

 // isValid method returns true for valid token.
 if (manager.isValidToken(token)) {
 // let us get all the values from the token
 String host = token.getHostName();
 java.security.Principal principal = token.getPrincipal();
 String authType = token.getAuthType();
 int level = token.getAuthLevel();
 InetAddress ipAddress = token.getIPAddress();
 long maxTime = token.getMaxSessionTime();
 long idleTime = token.getIdleTime();
 long maxIdleTime = token.getMaxIdleTime();

 System.out.println("SSOToken host name: " + host);
 System.out.println("SSOToken Principal name: " +
 principal.getName());
 System.out.println("Authentication type used: " + authType);
 System.out.println("IPAddress of the host: " +
 ipAddress.getHostAddress());
 validated = true;
 }

 return validated;
 }

 private void setGetProperties(SSOToken token)
 throws SSOException

Developing Client Applications
Handling Single Sign-On Using OpenAM Java SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 187

 {
 /*
 * Validate the token again, with another method
 * if token is invalid, this method throws an exception
 */
 manager.validateToken(token);
 System.out.println("SSO Token validation test Succeeded.");

 // Get the SSOTokenID associated with the token and print it.
 SSOTokenID id = token.getTokenID();
 String tokenId = id.toString();
 System.out.println("Token ID: " + tokenId);

 // Set and get properties in the token.
 token.setProperty("TimeZone", "PST");
 token.setProperty("County", "SantaClara");
 String tZone = token.getProperty("TimeZone");
 String county = token.getProperty("County");

 System.out.println("Property: TimeZone: " + tZone);
 System.out.println("Property: County: " + county);
 }

 public static void main(String[] args) {
 try {
 System.out.print("Enter SSOToken ID: ");
 String ssoTokenID = (new BufferedReader(
 new InputStreamReader(System.in))).readLine();
 new SSOTokenSample(ssoTokenID.trim());
 } catch (SSOException e) {
 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 System.exit(0);
 }

}

Before you run the script that calls the sample, authenticate to OpenAM in order to have OpenAM
generate the SSO token ID. To see the SSO token ID, use the RESTful authenticate command as shown
in the following example, or alternatively run the SSOTokenSampleServlet web-based sample.

Developing Client Applications
Handling Single Sign-On Using OpenAM Java SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 188

$ curl \
 --request POST \
 --data "username=demo&password=changeit" \
 http://openam.example.com:8080/openam/identity/authenticate
token.id=AQIC5wM2LY4Sfcyy10grl...AlNLABQtNjI4OTkyNTUxNTc4MDQ3NzEzOQ..*
$ sh scripts/SSOTokenSample.sh
Enter SSOToken ID: AQIC5wM2LY4Sfcyy10grl...AlNLABQtNjI4OTkyNTUxNTc4MDQ3NzEzOQ..*
SSOToken host name: 172.16.203.239
SSOToken Principal name: id=demo,ou=user,dc=openam,dc=forgerock,dc=org
Authentication type used: DataStore
IPAddress of the host: 172.16.203.239
SSO Token validation test Succeeded.
Token ID: AQIC5wM2LY4Sfcyy10grl...AlNLABQtNjI4OTkyNTUxNTc4MDQ3NzEzOQ..*
Property: TimeZone: PST
Property: County: SantaClara

Notice both the properties populated by OpenAM, and also the two properties, TimeZone and County,
that are set by the sample client.

2.2.4.1. Receiving Notifications
If your application implements a listener for change notification, such as a SessionListener to handle
notification when a stateful session is invalidated, then you must configure the following settings in
the AMConfig.properties configuration file for your application.

com.iplanet.am.notification.url

Set this parameter to http://host:port/context/notificationservice.

com.iplanet.am.sdk.caching.enabled

Set this parameter to true.

com.iplanet.am.serverMode

Set this parameter to false.

com.sun.identity.client.notification.url

Set this parameter to http://host:port/context/notificationservice.

com.sun.identity.idm.cache.enabled

Set this parameter to true.

com.sun.identity.idm.remote.notification.enabled

Set this parameter to true.

com.sun.identity.sm.cache.enabled

Set this parameter to true.

Developing Client Applications
Requesting Policy Decisions Using OpenAM Java SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 189

com.sun.identity.sm.enableDataStoreNotification

Set this parameter to true.

The above configuration to access the notification service also applies for other types of listeners,
such as ServiceListener, and IdEventListener implementations. See the OpenAM Java SDK API
Specification for details on the available listener interfaces.

2.2.5. Requesting Policy Decisions Using OpenAM Java SDK
This section shows how to request policy decision by using OpenAM Java SDK. The chapter focuses
on the sample client, source/samples/policy/PolicyEvaluationSample.java, which demonstrates making a
request to OpenAM for a policy decision about access to a web resource.

Before you continue, make sure that the packages described in "Installing OpenAM Client SDK
Samples" are installed.

OpenAM centralizes policy administration, policy evaluation, and policy decision making so that your
applications do not have to do so. In many deployments, OpenAM policy agents and the Open Identity
gateway can handle policy enforcement independently from your application code.

If your application does need to request a policy decision from OpenAM, then your application can
retrieve a PolicyEvaluator from a client-side PolicyEvaluatorFactory, and then call the PolicyEvaluator
getPolicyDecision() method. For boolean decisions such as allow or deny, your application can also call
the isAllowed() method.

To make a policy decision, OpenAM needs an SSO token, the resource to access, the action the user
wants to perform on the resource such as HTTP GET or POST, and a Map of environment settings you can
use to specify conditions and attributes in the session or can pass back as an empty Map if your policy
does not include conditions and response attributes.

The PolicyEvaluationSample class takes as its configuration the user credentials, service name, resource,
and action that you provide in a Java properties file. It then authenticates the user to get an SSO
token using the TokenUtils.java helper methods. At that point it has sufficient information to request a
policy decision.

The implementation of the sample client follows.
package samples.policy;

import com.iplanet.sso.SSOToken;
import com.iplanet.sso.SSOTokenManager;

import com.sun.identity.policy.PolicyDecision;
import com.sun.identity.policy.client.PolicyEvaluator;
import com.sun.identity.policy.client.PolicyEvaluatorFactory;

import samples.policy.TokenUtils;

import java.util.Enumeration;
import java.util.HashMap;
import java.util.Map;
import java.util.HashSet;

../apidocs
../apidocs

Developing Client Applications
Requesting Policy Decisions Using OpenAM Java SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 190

import java.util.Properties;
import java.util.MissingResourceException;
import java.util.ResourceBundle;
import java.util.Set;

public class PolicyEvaluationSample {

 public PolicyEvaluationSample() {
 }

 public static void main(String[] args) throws Exception {
 PolicyEvaluationSample clientSample = new PolicyEvaluationSample();
 clientSample.runSample(args);
 System.exit(0);
 }

 public void runSample(String[] args) throws Exception {
 if (args.length == 0 || args.length > 1) {
 System.out.println("Missing argument:"
 + "properties file name not specified");
 } else {
 System.out.println("Using properties file:" + args[0]);
 Properties sampleProperties = getProperties(args[0]);
 SSOToken ssoToken = getSSOToken(
 (String)sampleProperties.get("user.name"),
 (String)sampleProperties.get("user.password")
);
 getPolicyDecision(
 ssoToken,
 (String)sampleProperties.get("service.name"),
 (String)sampleProperties.get("resource.name"),
 (String)sampleProperties.get("action.name")
);
 }
 }

 private SSOToken getSSOToken(
 String userName, String password) throws Exception {
 System.out.println("Entering getSSOToken():"
 + "userName=" + userName + ","
 + "password=" + password);
 SSOToken ssoToken = TokenUtils.getSessionToken("/",
 userName, password);
 System.out.println("TokenID:" + ssoToken.getTokenID().toString());
 System.out.println("returning from getSSOToken()");
 return ssoToken;
 }

 private void getPolicyDecision(
 SSOToken ssoToken,
 String serviceName,
 String resourceName,
 String actionName)
 throws Exception {

 System.out.println("Entering getPolicyDecision():"
 + "resourceName=" + resourceName + ","
 + "serviceName=" + serviceName + ","

Developing Client Applications
Requesting Policy Decisions Using OpenAM Java SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 191

 + "actionName=" + actionName);
 PolicyEvaluator pe = PolicyEvaluatorFactory.getInstance().
 getPolicyEvaluator(serviceName);

 Map env = new HashMap();
 Set attrSet = new HashSet();
 Set actions = new HashSet();
 actions.add(actionName);
 PolicyDecision pd = pe.getPolicyDecision(ssoToken, resourceName,
 actions, env);
 System.out.println("policyDecision:" + pd.toXML());

 System.out.println("returning from getPolicyDecision()");
 }

 private Properties getProperties(String file)
 throws MissingResourceException {
 Properties properties = new Properties();
 ResourceBundle bundle = ResourceBundle.getBundle(file);
 Enumeration e = bundle.getKeys();
 System.out.println("sample properties:");
 while (e.hasMoreElements()) {
 String key = (String) e.nextElement();
 String value = bundle.getString(key);
 properties.put(key, value);
 System.out.println(key + ":" + value);
 }
 return properties;
 }
}

Before you run the script that calls the sample, edit the properties file, resources/
policyEvaluationSample.properties, to indicate the user credentials, resource to access, and HTTP
method to use. You can use a resource that might not exist for the purposes of this example, but you
will need to set up a policy for that resource to get meaningful results.
user.name=demo
user.password=changeit
service.name=iPlanetAMWebAgentService
resource.name=http://www.example.com:80/banner.html
action.name=GET

Also, set up a policy in OpenAM that corresponds to the resource in question. You can set up the
policy in OpenAM console under Realms > Realm Name > Authorization. Concerning the Realm
Name, notice that unless you change the code, the sample uses the top-level realm, / to authenticate
the user.

With the properties configured and policy in place, get the decision from OpenAM using the script,
scripts/run-policy-evaluation-sample.sh.

Developing Client Applications
Requesting a XACML Policy Decision Using OpenAM Java SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 192

$ sh scripts/run-policy-evaluation-sample.sh
Using properties file:policyEvaluationSample
sample properties:
user.password:changeit
service.name:iPlanetAMWebAgentService
user.name:demo
resource.name:http://www.example.com:80/banner.html
action
.name:GET
--:
Entering getSSOToken():userName=demo,password=changeit
TokenID:AQIC5wM2LY4Sfcx3aQGFRKu5-r1a-Vfyjb...5ODM4NDY0MzE0ODYzODQ1*
returning from getSSOToken()
Entering getPolicyDecision():resourceName=http://www.example.com:80/banner.html,
 serviceName=iPlanetAMWebAgentService,actionName=GET
policyDecision:<PolicyDecision>
<ResponseAttributes>
</ResponseAttributes>
<ActionDecision timeToLive="9223372036854775807">
<AttributeValuePair>
<Attribute name="GET"/>
<Value>allow</Value>
</AttributeValuePair>
<Advices>
</Advices>
</ActionDecision>
</PolicyDecision>

returning from getPolicyDecision()

As you see, the policy decision response is formatted here as an XML document.1 Notice here the line
showing that OpenAM has allowed access to the resource.
<Value>allow</Value>

2.2.6. Requesting a XACML Policy Decision Using OpenAM Java SDK
This section shows how to request a XACML policy decision with OpenAM Java SDK, using the sample
client, source/samples/xacml/XACMLClientSample.java. The sample client relies on an OpenAM server acting
as a policy decision point and another OpenAM server acting as a policy enforcement point.

Before you continue, make sure that the packages described in the "Installing OpenAM Client SDK
Samples" chapter are installed.

The sample client uses the XACML ContextFactory to create the XACML request. It then uses the
XACMLRequestProcessor to get a decision as XACML Response from OpenAM. Most of the work in the
sample is done setting up the request.

The implementation of the XACMLClientSample class follows.
package samples.xacml;

1The PolicyDecision element is defined in openam/WEB-INF/remoteInterface.dtd where openam is the location where the
OpenAM web application is deployed.

Developing Client Applications
Requesting a XACML Policy Decision Using OpenAM Java SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 193

import com.sun.identity.saml2.common.SAML2Exception;
import com.sun.identity.xacml.client.XACMLRequestProcessor;
import com.sun.identity.xacml.common.XACMLConstants;
import com.sun.identity.xacml.common.XACMLException;
import com.sun.identity.xacml.context.ContextFactory;
import com.sun.identity.xacml.context.Action;
import com.sun.identity.xacml.context.Attribute;
import com.sun.identity.xacml.context.Environment;
import com.sun.identity.xacml.context.Request;
import com.sun.identity.xacml.context.Resource;
import com.sun.identity.xacml.context.Response;
import com.sun.identity.xacml.context.Subject;
import java.net.URI;
import java.net.URISyntaxException;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Enumeration;
import java.util.List;
import java.util.MissingResourceException;
import java.util.Properties;
import java.util.ResourceBundle;

public class XACMLClientSample {

 public XACMLClientSample() {
 }

 public static void main(String[] args) throws Exception {
 XACMLClientSample clientSample = new XACMLClientSample();
 clientSample.runSample(args);
 System.exit(0);
 }

 public void runSample(String[] args) throws Exception {
 if (args.length == 0 || args.length > 1) {
 System.out.println("Missing argument:"
 + "properties file name not specified");
 } else {
 System.out.println("Using properties file:" + args[0]);
 Properties sampleProperties = getProperties(args[0]);
 testProcessRequest(
 (String)sampleProperties.get("pdp.entityId"),
 (String)sampleProperties.get("pep.entityId"),
 (String)sampleProperties.get("subject.id"),
 (String)sampleProperties.get("subject.id.datatype"),
 (String)sampleProperties.get("subject.category"),
 (String)sampleProperties.get("resource.id"),
 (String)sampleProperties.get("resource.id.datatype"),
 (String)sampleProperties.get("resource.servicename"),
 (String)sampleProperties.get("resource.servicename.datatype"),
 (String)sampleProperties.get("action.id"),
 (String)sampleProperties.get("action.id.datatype")
);
 }
 }

 private void testProcessRequest(
 String pdpEntityId, String pepEntityId,

Developing Client Applications
Requesting a XACML Policy Decision Using OpenAM Java SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 194

 String subjectId, String subjectIdType,
 String subjectCategory,
 String resourceId, String resourceIdType,
 String serviceName, String serviceNameType,
 String actionId, String actionIdType)
 throws XACMLException, SAML2Exception,
 URISyntaxException, Exception {

 Request xacmlRequest = createSampleXacmlRequest(
 subjectId, subjectIdType,
 subjectCategory,
 resourceId, resourceIdType,
 serviceName, serviceNameType,
 actionId, actionIdType);

 System.out.println("\ntestProcessRequest():xacmlRequest:\n"
 + xacmlRequest.toXMLString(true, true));

 Response xacmlResponse = XACMLRequestProcessor.getInstance()
 .processRequest(xacmlRequest, pdpEntityId, pepEntityId);

 System.out.println("testProcessRequest():xacmlResponse:\n"
 + xacmlResponse.toXMLString(true, true));
 }

 private Request createSampleXacmlRequest(
 String subjectId, String subjectIdType,
 String subjectCategory,
 String resourceId, String resourceIdType,
 String serviceName, String serviceNameType,
 String actionId, String actionIdType)
 throws XACMLException, URISyntaxException {

 Request request = ContextFactory.getInstance().createRequest();

 //Subject
 Subject subject = ContextFactory.getInstance().createSubject();
 subject.setSubjectCategory(new URI(subjectCategory));

 //set subject id
 Attribute attribute = ContextFactory.getInstance().createAttribute();
 attribute.setAttributeId(new URI(XACMLConstants.SUBJECT_ID));
 attribute.setDataType(new URI(subjectIdType));
 List valueList = new ArrayList();
 valueList.add(subjectId);
 attribute.setAttributeStringValues(valueList);
 List attributeList = new ArrayList();
 attributeList.add(attribute);
 subject.setAttributes(attributeList);

 //set Subject in Request
 List subjectList = new ArrayList();
 subjectList.add(subject);
 request.setSubjects(subjectList);

 //Resource
 Resource resource = ContextFactory.getInstance().createResource();

 //set resource id

Developing Client Applications
Requesting a XACML Policy Decision Using OpenAM Java SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 195

 attribute = ContextFactory.getInstance().createAttribute();
 attribute.setAttributeId(new URI(XACMLConstants.RESOURCE_ID));
 attribute.setDataType(new URI(resourceIdType));
 valueList = new ArrayList();
 valueList.add(resourceId);
 attribute.setAttributeStringValues(valueList);
 attributeList = new ArrayList();
 attributeList.add(attribute);

 //set serviceName
 attribute = ContextFactory.getInstance().createAttribute();
 attribute.setAttributeId(new URI(XACMLConstants.TARGET_SERVICE));
 attribute.setDataType(new URI(serviceNameType));
 valueList = new ArrayList();
 valueList.add(serviceName);
 attribute.setAttributeStringValues(valueList);
 attributeList.add(attribute);
 resource.setAttributes(attributeList);

 //set Resource in Request
 List resourceList = new ArrayList();
 resourceList.add(resource);
 request.setResources(resourceList);

 //Action
 Action action = ContextFactory.getInstance().createAction();
 attribute = ContextFactory.getInstance().createAttribute();
 attribute.setAttributeId(new URI(XACMLConstants.ACTION_ID));
 attribute.setDataType(new URI(actionIdType));

 //set actionId
 valueList = new ArrayList();
 valueList.add(actionId);
 attribute.setAttributeStringValues(valueList);
 attributeList = new ArrayList();
 attributeList.add(attribute);
 action.setAttributes(attributeList);

 //set Action in Request
 request.setAction(action);

 //Environment, our PDP does not use environment now
 Environment environment = ContextFactory.getInstance()
 .createEnvironment();
 request.setEnvironment(environment);
 return request;
 }

 private Properties getProperties(String file)
 throws MissingResourceException {
 Properties properties = new Properties();
 ResourceBundle bundle = ResourceBundle.getBundle(file);
 Enumeration e = bundle.getKeys();
 System.out.println("sample properties:");
 while (e.hasMoreElements()) {
 String key = (String) e.nextElement();
 String value = bundle.getString(key);
 properties.put(key, value);
 System.out.println(key + ":" + value);

Developing Client Applications
Requesting a XACML Policy Decision Using OpenAM Java SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 196

 }
 return properties;
 }
}

Before running the sample client, you must set up the configuration as described in the comments at
the outset of the scripts/run-xacml-client-sample.sh script.

• Check resources/AMConfig.properties to see which OpenAM server the SDK is configured to use.

The relevant settings from resources/AMConfig.properties specify the server protocol, host, port and
deployment URI.
com.iplanet.am.server.protocol=http
com.iplanet.am.server.host=openam.example.com
com.iplanet.am.server.port=8080
com.iplanet.am.services.deploymentDescriptor=openam

For the purpose of this example, the XACML policy decision point (PDP) and the XACML policy
enforcement point (PEP) are configured on this server.

• Edit resources/xacmlClientSample.properties and resources/policyEvaluationSample.properties to set up the
configuration for the sample client.

The relevant settings from resources/xacmlClientSample.properties are the following.
pdp.entityId=xacmlPdpEntity
pep.entityId=xacmlPepEntity
subject.id=id=demo,ou=user,dc=openam,dc=forgerock,dc=org
subject.id.datatype=urn:oasis:names:tc:xacml:1.0:data-type:x500Name
subject.category=urn:oasis:names:tc:xacml:1.0:subject-category:access-subject
resource.id=http://www.example.com:80/banner.html
resource.id.datatype=http://www.w3.org/2001/XMLSchema#string
resource.servicename=iPlanetAMWebAgentService
resource.servicename.datatype=http://www.w3.org/2001/XMLSchema#string
action.id=GET
action.id.datatype=http://www.w3.org/2001/XMLSchema#string

The relevant settings from resources/policyEvaluationSample.properties are the following.
user.name=demo
user.password=changeit
service.name=iPlanetAMWebAgentService
resource.name=http://www.example.com:80/banner.html
action.name=GET

These settings use the default demo user as the subject, who has ID id=demo,ou=user,dc=openam
,dc=forgerock,dc=org, and password changeit. If you choose a different subject, then change the
subject.id value in resources/xacmlClientSample.properties, and the user.name and user.password values in
resources/policyEvaluationSample.properties.

• The client accesses an OpenAM server acting as the policy enforcement point, configured in a circle
of trust with the OpenAM server acting as the policy decision point. When you set up the sample

Developing Client Applications
Requesting a XACML Policy Decision Using OpenAM Java SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 197

clients, you pointed them to an OpenAM server. For this example, configure that server to function
as a policy enforcement point and also as a policy decision point.

1. In OpenAM console, browse to Configure > Global Services, click SAMLv2 SOAP Binding, and
then configure a new request handler with Key /xacmlPdpEntity and Class com.sun.identity.xacml
.plugins.XACMLAuthzDecisionQueryHandler.

2. Set up the circle of trust, and then create and import the metadata for the policy enforcement
point and the policy decision point. In the following simplified example, both the policy
enforcement point and policy decision point are hosted on the same OpenAM server. You could
also set up the policy enforcement point and policy decision point on separate servers, as long
as the circles of trust on both servers each include both the policy enforcement point and the
policy decision point. You can set up the trust relationship between the two entities either by
using the ssoadm command as shown below, or by using the ssoadm.jsp page, which you can
activate as described in "OpenAM ssoadm.jsp" in the Administration Guide.

$ ssoadm \
 create-cot \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --cot cot

Circle of trust, cot was created.

$ ssoadm \
 create-metadata-templ \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --entityid xacmlPepEntity \
 --xacmlpep /xacmlPepEntity \
 --meta-data-file xacmlPep.xml \
 --extended-data-file xacmlPep-extended.xml

Hosted entity configuration was written to xacmlPep-extended.xml.
Hosted entity descriptor was written to xacmlPep.xml.

$ ssoadm \
 import-entity \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --cot cot \
 --meta-data-file xacmlPep.xml \
 --extended-data-file xacmlPep-extended.xml

Import file, xacmlPep.xml.
Import file, xacmlPep-extended.xml.

$ ssoadm \
 create-metadata-templ \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --entityid xacmlPdpEntity \
 --xacmlpdp /xacmlPdpEntity \
 --meta-data-file xacmlPdp.xml \
 --extended-data-file xacmlPdp-extended.xml

Developing Client Applications
Requesting a XACML Policy Decision Using OpenAM Java SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 198

Hosted entity configuration was written to xacmlPdp-extended.xml.
Hosted entity descriptor was written to xacmlPdp.xml.

$ ssoadm \
 import-entity \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --cot cot \
 --meta-data-file xacmlPdp.xml \
 --extended-data-file xacmlPdp-extended.xml

Import file, xacmlPdp.xml.
Import file, xacmlPdp-extended.xml.

• Create a policy that allows authenticated users to perform an HTTP GET on the sample resource.id
URL you configured, such as http://www.example.com:80/banner.html.

See "Defining Authorization Policies" in the Administration Guide for details.

After you have configured OpenAM and the properties files, run the sample client script, and observe
the XACML request and response.

$ sh scripts/run-xacml-client-sample.sh

Using properties file:xacmlClientSample
sample properties:
subject.id.datatype:urn:oasis:names:tc:xacml:1.0:data-type:x500Name
pdp.entityId:xacmlPdpEntity
resource.servicename.datatype:http://www.w3.org/2001/XMLSchema#string
resource.id:http://www.example.com:80/banner.html
resource.servicename:iPlanetAMWebAgentService
action.id.datatype:http://www.w3.org/2001/XMLSchema#string
resource.id.datatype:http://www.w3.org/2001/XMLSchema#string
action.id:GET
subject.category:urn:oasis:names:tc:xacml:1.0:subject-category:access-subject
pep.entityId:xacmlPepEntity
subject.id:id=demo,ou=user,dc=openam,dc=forgerock,dc=org

testProcessRequest():xacmlRequest:

<xacml-context:Request
 xmlns:xacml-context="urn:oasis:names:tc:xacml:2.0:context:schema:os"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:oasis:names:tc:xacml:2.0:context:schema:os
 http://docs.oasis-open.org/xacml/access_control-xacml-2.0-context-schema-os.xsd">
<Subject SubjectCategory=
 "urn:oasis:names:tc:xacml:1.0:subject-category:access-subject">
<Attribute
 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
 DataType="urn:oasis:names:tc:xacml:1.0:data-type:x500Name" >
<AttributeValue
 >id=demo,ou=user,dc=openam,dc=forgerock,dc=org</AttributeValue>
</Attribute>
</Subject>
<xacml-context:Resource>
<Attribute

Developing Client Applications
Using the OpenAM C SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 199

 AttributeId="ResourceId"
 DataType="http://www.w3.org/2001/XMLSchema#string" >
<AttributeValue>http://www.example.com:80/banner.html</AttributeValue>
</Attribute>
<Attribute
 AttributeId="urn:sun:names:xacml:2.0:resource:target-service"
 DataType="http://www.w3.org/2001/XMLSchema#string" >
<AttributeValue>iPlanetAMWebAgentService</AttributeValue>
</Attribute>
</xacml-context:Resource>
<xacml-context:Action>
<Attribute
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 DataType="http://www.w3.org/2001/XMLSchema#string" >
<AttributeValue>GET</AttributeValue>
</Attribute>
</xacml-context:Action>
<xacml-context:Environment></xacml-context:Environment>
</xacml-context:Request>

testProcessRequest():xacmlResponse:
<xacml-context:Response
 xmlns:xacml-context="urn:oasis:names:tc:xacml:2.0:context:schema:os" >
<xacml-context:Result ResourceId="http://www.example.com:80/banner.html">
<xacml-context:Decision>Permit</xacml-context:Decision>
<xacml-context:Status>
<xacml-context:StatusCode
 Value="urn:oasis:names:tc:xacml:1.0:status:ok">
</xacml-context:StatusCode>
<xacml-context:StatusMessage>ok</xacml-context:StatusMessage>
<xacml-context:StatusDetail
 xmlns:xacml-context="urn:oasis:names:tc:xacml:2.0:context:schema:cd:04">
<xacml-context:StatusDetail/></xacml-context:StatusDetail>
</xacml-context:Status>
</xacml-context:Result>
</xacml-context:Response>

2.3. Using the OpenAM C SDK
This section introduces OpenAM C SDK, which is available for selected platforms. Contact
info@forgerock.com if you need OpenAM C SDK support.

To prepare to install OpenAM C SDK, first download the version for your platform and unpack the
archive as in the following example.

$ mkdir -p /path/to/openam-client
$ cd /path/to/openam-client
$ unzip ~/Downloads/common_3_0_Linux_64bit.zip

All C SDK deliveries are .zip files, and the filenames are self-explanatory. The SunOS in some of the .zip
files refer to the Solaris OS.

• common_3_0_Linux.zip

mailto:info@forgerock.com

Developing Client Applications
Using the OpenAM C SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 200

• common_3_0_Linux_64bit.zip

• common_3_0_windows.zip

• common_3_0_windows_64bit.zip

• common_3_0_SunOS_x86.zip

• common_3_0_SunOS_64bit.zip

• common_3_0_SunOS_sparc.zip

• common_3_0_SunOS_sparc_64bit.zip

Once unpacked, you have several directories that include the SDK, and also sample client
applications.

bin/

The crypt_util or cryptit.exe command for encrypting passwords

config/

Configuration data for the SDK

include/

Header files for the SDK

lib/

SDK and other required libraries

samples/

Sample code

To Build OpenAM C SDK Samples

1. Review the samples/README.TXT file to complete any specific instructions required for your platform.
The two commands shown here confirm that the specified system is a 64-bit Linux OS. Make sure
it matches the C SDK package that you have downloaded.

$ uname -s
Linux
$ uname -m
x86_64

2. Set up OpenSSOAgentBootstrap.properties and OpenSSOAgentConfiguration.properties as appropriate for
your environment.

Developing Client Applications
Using the OpenAM C SDK

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 201

Base your work on the template files in the config/ directory. You can find the Password
Encryption Key in the OpenAM console under Deployment > Servers > Server Name > Security.

3. Try one of the samples you built to test your build.

$ LD_LIBRARY_PATH=../lib \
 ./am_auth_test \
 -f ../config/OpenSSOAgentBootstrap.properties \
 -u demo \
 -p changeit \
 -o /
 Login 1 Succeeded!
 SSOToken = AQIC5wM2LY4SfcxZfk4EzC9Y46P9cXG9ogwf2ixnYOeZ0K0.*AAJTSQACMDE.*
 Organization = /
 Module Instance Name [0] = SAE
 Module Instance Name [1] = LDAP
 Module Instance Name [2] = WSSAuthModule
 Module Instance Name [3] = Federation
 Module Instance Name [4] = HOTP
 Module Instance Name [5] = DataStore
 Logout 1 Succeeded!

Customizing OpenAM
Customizing Profile Attributes

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 202

Chapter 3

Customizing OpenAM
Service provider interfaces (SPI's) provide a framework to customize all OpenAM service modules
such as adding custom authentication modules, federation plugins, and policy conditions.

This part of the guide covers customizing OpenAM functionality.

3.1. Customizing Profile Attributes
You can extend user profiles by adding custom attributes. This section demonstrates how to add a
custom attribute to a user profile when storing user profiles in the embedded LDAP directory.

Adding a custom attribute involves both updating the iPlanetAMUserService, and also updating the
identity repository schema to hold the new attribute. Furthermore, to allow users to update the
attribute in their own profiles, you must also update the OpenAM policy configuration stored in the
configuration directory.

Important

In OpenAM 13.5.2-15, the ability to edit custom profile attributes is limited to the classic UI. Custom profile
attributes do not appear in the user profile when users log in to OpenAM using the XUI.

This section includes the following procedures.

• "To Update the AMUser Service For the New Attribute"

• "To Update the Identity Repository For the New Attribute"

• "To Allow Users To Update the New Attribute"

To Update the AMUser Service For the New Attribute

Follow the steps below to create a custom attribute in OpenAM.

1. Create a backup copy of the configuration file for the iPlanetAMUserService.

$ cp ~/openam/config/xml/amUser.xml ~/openam/config/xml/amUser.xml.orig

2. Edit the file to add your attribute as one of the list of <User> attributes.

Customizing OpenAM
Customizing Profile Attributes

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 203

<AttributeSchema name="customAttribute"
 type="single"
 syntax="string"
 any="display"
 i18nKey="Custom Attribute">
</AttributeSchema>

Here, the name refers to the attribute type name used in LDAP. The i18nKey holds either the
reference, or in this case the content, of the text that appears in the user interface.

3. Delete iPlanetAMUserService, and then create it from your updated configuration file.

$ cd /path/to/tools/openam/bin/
$ ssoadm \
 delete-svc \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename iPlanetAMUserService

Service was deleted.
$ ssoadm \
 create-svc \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --xmlfile $HOME/openam/config/xml/amUser.xml

Service was added.

To Update the Identity Repository For the New Attribute

Follow the steps below to update the identity repository LDAP schema for the custom attribute, and
then update OpenAM to use the custom attribute and object class.

If you are adding an existing attribute that is already allowed on user profile entries, you can skip this
procedure.

Tip

If you are using OpenDJ as the identity repository, you can update the schema through OpenDJ Control Panel >
Schema > Manage Schema, as described in the OpenDJ documentation.

1. Prepare the attribute type object class definitions in LDIF format.

https://backstage.forgerock.com/docs/opendj/3.5/admin-guide/#update-schema

Customizing OpenAM
Customizing Profile Attributes

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 204

$ cat custom-attr.ldif
dn: cn=schema
changetype: modify
add: attributeTypes
attributeTypes: (temp-custom-attr-oid NAME 'customAttribute' EQUALITY case
 IgnoreMatch ORDERING caseIgnoreOrderingMatch SUBSTR caseIgnoreSubstrings
 Match SYNTAX 1.3.6.1.4.1.1466.115.121.1.15 USAGE
 userApplications)
-
add: objectClasses
objectClasses: (temp-custom-oc-oid NAME 'customObjectclass' SUP top AUXILIARY
 MAY customAttribute)

2. Add the schema definitions to the directory.

$ /path/to/opendj/bin/ldapmodify \
 --port 1389 \
 --hostname openam.example.com \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --filename custom-attr.ldif
Processing MODIFY request for cn=schema
MODIFY operation successful for DN cn=schema

3. In OpenAM console, browse to Realms > Realm Name > Data Stores > Data Store Name.

4. Add the object class, here customObjectclass, to the LDAP User Object Class list.

5. Add the attribute type, here customAttribute, to the LDAP User Attributes list.

6. Save your work.

To Allow Users To Update the New Attribute

Follow these steps to make the new attribute editable by users. The steps imply use of the embedded
configuration directory. If you use a different directory server to store the configuration, then adapt
them for your tools.

1. Login to the control panel for the embedded configuration directory.

$./openam/opends/bin/control-panel &

Connect using bind DN cn=Directory Manager and the the password for amadmin.

2. Select Manage Entries to open the LDAP browser.

3. Search with LDAP Filter: set to ou=SelfWriteAttributes, and then expand the tree views to see the
two entries found.

4. In the entry under iPlanetAMPolicyService, edit the sunKeyValue attribute to add your custom
attribute to the list of self-writable attributes, as in <Value>customAttribute</Value>.

Customizing OpenAM
Customizing OAuth 2.0 Scope Handling

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 205

5. In the entry under sunEntitlementIndexes, edit the sunKeyValue attribute by adding your custom
attribute to the attributes JSON array.

6. Restart OpenAM or the web container where it runs. The following example applies to Tomcat.

$ /path/to/tomcat/bin/shutdown.sh
$ /path/to/tomcat/bin/startup.sh

7. Login to OpenAM console as a user to check that a user can save a value for your new, custom
attribute.

3.2. Customizing OAuth 2.0 Scope Handling
RFC 6749, The OAuth 2.0 Authorization Framework, describes access token scopes as a set of case-
sensitive strings defined by the authorization server. Clients can request scopes, and resource owners
can authorize them.

The default scopes implementation in OpenAM treats scopes as profile attributes for the resource
owner. When a resource server or other entity uses the access token to get token information from
OpenAM, OpenAM populates the scopes with profile attribute values. For example, if one of the
scopes is mail, OpenAM sets mail to the resource owner's email address in the token information
returned.

You can change this behavior by writing your own scope validator plugin. This section shows how
to write a custom OAuth 2.0 scope validator plugin for use in an OAuth 2.0 provider (authorization
server) configuration.

3.2.1. Designing an OAuth 2.0 Scope Validator Plugin

A scope validator plugin implements the org.forgerock.oauth2.core.ScopeValidator interface. As
described in the API specification, the ScopeValidator interface has several methods that your plugin
overrides.

The following example plugin sets whether read and write permissions were granted.

http://tools.ietf.org/html/rfc6749
../apidocs/index.html?org/forgerock/oauth2/core/ScopeValidator.html

Customizing OpenAM
Designing an OAuth 2.0 Scope Validator Plugin

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 206

package org.forgerock.openam.examples;

import org.forgerock.oauth2.core.AccessToken;
import org.forgerock.oauth2.core.ClientRegistration;
import org.forgerock.oauth2.core.OAuth2Request;
import org.forgerock.oauth2.core.ScopeValidator;
import org.forgerock.oauth2.core.Token;
import org.forgerock.oauth2.core.UserInfoClaims;
import org.forgerock.oauth2.core.exceptions.InvalidClientException;
import org.forgerock.oauth2.core.exceptions.NotFoundException;
import org.forgerock.oauth2.core.exceptions.ServerException;
import org.forgerock.oauth2.core.exceptions.UnauthorizedClientException;

import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;

/**
 * Custom scope validators implement the
 * {@link org.forgerock.oauth2.core.ScopeValidator} interface.
 *
 * <p>
 * This example sets read and write permissions according to the scopes set.
 * </p>
 *
 *
 *
 *
 * The {@code validateAuthorizationScope} method
 * adds default scopes, or any allowed scopes provided.
 *
 *
 *
 * The {@code validateAccessTokenScope} method
 * adds default scopes, or any allowed scopes provided.
 *
 *
 *
 * The {@code validateRefreshTokenScope} method
 * adds the scopes from the access token,
 * or any requested scopes provided that are also in the access token scopes.
 *
 *
 *
 * The {@code getUserInfo} method
 * populates scope values and sets the resource owner ID to return.
 *
 *
 *
 * The {@code evaluateScope} method
 * populates scope values to return.
 *
 *
 *
 * The {@code additionalDataToReturnFromAuthorizeEndpoint} method
 * returns no additional data (an empty Map).

Customizing OpenAM
Designing an OAuth 2.0 Scope Validator Plugin

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 207

 *
 *
 *
 * The {@code additionalDataToReturnFromTokenEndpoint} method
 * adds no additional data.
 *
 *
 *
 */
public class CustomScopeValidator implements ScopeValidator {
 @Override
 public Set<String> validateAuthorizationScope(
 ClientRegistration clientRegistration,
 Set<String> scope,
 OAuth2Request request) {
 if (scope == null || scope.isEmpty()) {
 return clientRegistration.getDefaultScopes();
 }

 Set<String> scopes = new HashSet<String>(
 clientRegistration.getAllowedScopes());
 scopes.retainAll(scope);
 return scopes;
 }

 @Override
 public Set<String> validateAccessTokenScope(
 ClientRegistration clientRegistration,
 Set<String> scope,
 OAuth2Request request) {
 if (scope == null || scope.isEmpty()) {
 return clientRegistration.getDefaultScopes();
 }

 Set<String> scopes = new HashSet<String>(
 clientRegistration.getAllowedScopes());
 scopes.retainAll(scope);
 return scopes;
 }

 @Override
 public Set<String> validateRefreshTokenScope(
 ClientRegistration clientRegistration,
 Set<String> requestedScope,
 Set<String> tokenScope,
 OAuth2Request request) {
 if (requestedScope == null || requestedScope.isEmpty()) {
 return tokenScope;
 }

 Set<String> scopes = new HashSet<String>(tokenScope);
 scopes.retainAll(requestedScope);
 return scopes;
 }

 @Override
 public UserInfoClaims getUserInfo(
 AccessToken token,
 OAuth2Request request)

Customizing OpenAM
Building the OAuth 2.0 Scope Validator Sample Plugin

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 208

 throws UnauthorizedClientException, NotFoundException {
 Map<String, Object> response = mapScopes(token);
 response.put("sub", token.getResourceOwnerId());
 UserInfoClaims claims = new UserInfoClaims(response, null);
 return claims;
 }

 /**
 * Set read and write permissions according to scope.
 *
 * @param token The access token presented for validation.
 * @return The map of read and write permissions,
 * with permissions set to {@code true} or {@code false},
 * as appropriate.
 */
 private Map<String,Object> mapScopes(AccessToken token) {
 Set<String> scopes = token.getScope();
 Map<String, Object> map = new HashMap<String, Object>();
 final String[] permissions = {"read", "write"};

 for (String scope : permissions) {
 if (scopes.contains(scope)) {
 map.put(scope, true);
 } else {
 map.put(scope, false);
 }
 }
 return map;
 }

 @Override
 public Map<String, Object> evaluateScope(AccessToken token) {
 return mapScopes(token);
 }

 @Override
 public Map<String, String> additionalDataToReturnFromAuthorizeEndpoint(
 Map<String, Token> tokens,
 OAuth2Request request) {
 return new HashMap<String, String>(); // No special handling
 }

 @Override
 public void additionalDataToReturnFromTokenEndpoint(
 AccessToken token,
 OAuth2Request request)
 throws ServerException, InvalidClientException {
 // No special handling
 }
}

3.2.2. Building the OAuth 2.0 Scope Validator Sample Plugin

The sample scope validator plugin source is available online. Get a local clone so that you can try the
sample on your system. In the sources you find the following files.

https://github.com/ForgeRock/openam-scope-sample/tree/13.0.0

Customizing OpenAM
Configuring OpenAM to Use the Plugin

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 209

pom.xml

Apache Maven project file for the module

This file specifies how to build the sample scope validator plugin, and also specifies its
dependencies on OpenAM components.

src/main/java/org/forgerock/openam/examples/CustomScopeValidator.java

Core class for the sample OAuth 2.0 scope validator plugin

See "Designing an OAuth 2.0 Scope Validator Plugin" for a listing.

Build the module using Apache Maven.

$ cd /path/to/openam-scope-sample
$ mvn install
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building openam-scope-sample 1.0.0-SNAPSHOT
[INFO] --

...

[INFO]
[INFO] --- maven-jar-plugin:2.3.2:jar (default-jar) @ openam-scope-sample ---
[INFO] Building jar: .../target/openam-scope-sample-1.0.0-SNAPSHOT.jar

...

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 1.827s
[INFO] Finished at: Tue Jun 03 10:40:31 CEST 2014
[INFO] Final Memory: 27M/357M
[INFO] --

After you successfully build the module, you find the .jar in the target/ directory of the project.

3.2.3. Configuring OpenAM to Use the Plugin

After building your plugin .jar file, copy the .jar file under WEB-INF/lib/ where you deployed OpenAM.

Restart OpenAM or the container in which it runs.

In OpenAM console, you can either configure a specific OAuth 2.0 provider to use your plugin,
or configure your plugin as the default for new OAuth 2.0 providers. In either case, you need the
class name of your plugin. The class name for the sample plugin is org.forgerock.openam.examples
.CustomScopeValidator.

Customizing OpenAM
Trying the Sample Plugin

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 210

• To configure a specific OAuth 2.0 provider to use your plugin, navigate to Realms > Realm Name
> Services, click OAuth2 Provider, and enter the class name of your scopes plugin to the Scope
Implementation Class field.

• To configure your plugin as the default for new OAuth 2.0 providers, add the class name of your
scopes plugin. Navigate to Configure > Global Services, click OAuth2 Provider, and set Scope
Implementation Class.

3.2.4. Trying the Sample Plugin
In order to try the sample plugin, make sure you have configured an OAuth 2.0 provider to use the
sample plugin. Also, set up an OAuth 2.0 client of the provider that takes scopes read and write.

Next try the provider as shown in the following example:

$ curl \
 --request POST \
 --data "grant_type=client_credentials \
&client_id=myClientID&client_secret=password&scope=read" \
 https://openam.example.com:8443/openam/oauth2/access_token

{
 "scope": "read",
 "expires_in": 59,
 "token_type": "Bearer",
 "access_token": "c8860442-daba-4af0-a1d9-b607c03e5a0b"
}

$ curl https://openam.example.com:8443/openam/oauth2/tokeninfo
\
?access_token=0d492486-11a7-4175-b116-2fc1cbff6d78
{
 "scope": [
 "read"
],
 "grant_type": "client_credentials",
 "realm": "/",
 "write": false,
 "read": true,
 "token_type": "Bearer",
 "expires_in": 24,
 "access_token": "c8860442-daba-4af0-a1d9-b607c03e5a0b"
}

As seen in this example, the requested scope read is authorized, but the write scope has not been
authorized.

3.3. Creating a Custom Authentication Module
This section shows how to customize authentication with a sample custom authentication module.
For deployments with particular requirements not met by existing OpenAM authentication modules,

Customizing OpenAM
About the Sample Authentication Module

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 211

determine whether you can adapt one of the built-in or extension modules for your needs. If not, build
the functionality into a custom authentication module.

3.3.1. About the Sample Authentication Module

The sample authentication module prompts for a user name and password to authenticate the user,
and handles error conditions. The sample shows how you integrate an authentication module into
OpenAM such that you can configure the module through OpenAM console, and also localize the user
interface.

For information on downloading and building OpenAM sample source code, see How do I access and
build the sample code provided for OpenAM 12.x, 13.x and AM (All versions)? in the Knowledge Base.

Get a local clone so that you can try the sample on your system. In the sources, you find the following
files under the /path/to/openam-source/openam-samples/custom-authentication-module directory:

pom.xml

Apache Maven project file for the module

This file specifies how to build the sample authentication module, and also specifies its
dependencies on OpenAM components and on the Java Servlet API.

src/main/java/org/forgerock/openam/examples/SampleAuth.java

Core class for the sample authentication module

This class is called by OpenAM to initialize the module and to process authentication. See "The
Sample Authentication Logic" for details.

src/main/java/org/forgerock/openam/examples/SampleAuthPrincipal.java

Class implementing java.security.Principal interface that defines how to map credentials to
identities

This class is used to process authentication. See "The Sample Auth Principal" for details.

src/main/resources/amAuthSampleAuth.properties

Properties file mapping UI strings to property values

This file makes it easier to localize the UI. See "Sample Auth Properties" for details.

src/main/resources/amAuthSampleAuth.xml

Configuration file for the sample authentication service

This file is used when registering the authentication module with OpenAM. See "The Sample Auth
Service Configuration" for details.

https://backstage.forgerock.com/knowledge/kb/article/a47487197
https://backstage.forgerock.com/knowledge/kb/article/a47487197

Customizing OpenAM
Sample Auth Properties

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 212

src/main/resources/config/auth/default/SampleAuth.xml

Callback file for OpenAM classic UI authentication pages

The sample authentication module does not include localized versions of this file. See "Sample
Auth Callbacks" for details.

3.3.2. Sample Auth Properties

OpenAM uses a Java properties file per locale to retrieve the appropriate, localized strings for the
authentication module.

The following is the Sample Authentication Module properties file, amAuthSampleAuth.properties.
sampleauth-service-description=Sample Authentication Module
a500=Authentication Level
a501=Service Specific Attribute

sampleauth-ui-login-header=Login
sampleauth-ui-username-prompt=User Name:
sampleauth-ui-password-prompt=Password:

sampleauth-error-1=Error 1 occurred during the authentication
sampleauth-error-2=Error 2 occurred during the authentication

3.3.3. Sample Auth Callbacks

OpenAM callbacks XML files are used to build the classic UI to prompt the user for identity
information needed to process the authentication. The document type for a callback XML file is
described in WEB-INF/Auth_Module_Properties.dtd where OpenAM is deployed.

The value of the moduleName property in the callbacks file must match your custom authentication
module's class name. Observe that the module name in "Sample Auth Callbacks File", SampleAuth,
matches the class name in "Sample Authentication Module Code".

Sample Auth Callbacks File

The following is the SampleAuth.xml callbacks file.

Customizing OpenAM
The Sample Authentication Logic

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 213

<!DOCTYPE ModuleProperties PUBLIC
 "=//iPlanet//Authentication Module Properties XML Interface 1.0 DTD//EN"
 "jar://com/sun/identity/authentication/Auth_Module_Properties.dtd">

<ModuleProperties moduleName="SampleAuth" version="1.0" >
 <Callbacks length="0" order="1" timeout="600" header="#NOT SHOWN#" />
 <Callbacks length="2" order="2" timeout="600" header="#TO BE SUBSTITUTED#">
 <NameCallback isRequired="true">
 <Prompt>#USERNAME#</Prompt>
 </NameCallback>
 <PasswordCallback echoPassword="false" >
 <Prompt>#PASSWORD#</Prompt>
 </PasswordCallback>
 </Callbacks>
 <Callbacks length="1" order="3" timeout="600" header="#TO BE SUBSTITUTED#"
 error="true" >
 <NameCallback>
 <Prompt>#THE DUMMY WILL NEVER BE SHOWN#</Prompt>
 </NameCallback>
 </Callbacks>
</ModuleProperties>

This file specifies three states.

1. The initial state (order="1") is used dynamically to replace the dummy strings shown between
hashes (for example, #USERNAME#) by the substituteUIStrings() method in SampleAuth.java.

2. The next state (order="2") handles prompting the user for authentication information.

3. The last state (order="3") has the attribute error="true". If the authentication module state
machine reaches this order then the authentication has failed. The NameCallback is not used and not
displayed to user. OpenAM requires that the callbacks array have at least one element. Otherwise
OpenAM does not permit header substitution.

3.3.4. The Sample Authentication Logic

An OpenAM authentication module must extend the com.sun.identity.authentication.spi.AMLoginModule
abstract class, and must implement the methods shown below.

See the OpenAM Java SDK API Specification for reference.

// OpenAM calls the init() method once when the module is created.
public void init(Subject subject, Map sharedState, Map options)

// OpenAM calls the process() method when the user submits authentication
// information. The process() method determines what happens next:
// success, failure, or the next state specified by the order
// attribute in the callbacks XML file.
public int process(Callback[] callbacks, int state) throws LoginException

// OpenAM expects the getPrincipal() method to return an implementation of
// the java.security.Principal interface.
public Principal getPrincipal()

../apidocs

Customizing OpenAM
The Sample Authentication Logic

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 214

OpenAM does not reuse authentication module instances. This means that you can store information
specific to the authentication process in the instance.

Sample Authentication Module Code

The implementation, SampleAuth.java, is shown below.
/**
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.
 *
 * Copyright (c) 2011-2018 ForgeRock AS. All Rights Reserved
 *
 * The contents of this file are subject to the terms
 * of the Common Development and Distribution License
 * (the License). You may not use this file except in
 * compliance with the License.
 *
 * You can obtain a copy of the License at legal/CDDLv1.0.txt.
 * See the License for the specific language governing
 * permission and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL
 * Header Notice in each file and include the License file at legal/CDDLv1.0.txt.
 * If applicable, add the following below the CDDL Header,
 * with the fields enclosed by brackets [] replaced by
 * your own identifying information:
 * "Portions Copyrighted [year] [name of copyright owner]"
 *
 */

package org.forgerock.openam.examples;

import java.security.Principal;
import java.util.Map;
import java.util.ResourceBundle;

import javax.security.auth.Subject;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.login.LoginException;

import com.sun.identity.authentication.spi.AMLoginModule;
import com.sun.identity.authentication.spi.AuthLoginException;
import com.sun.identity.authentication.spi.InvalidPasswordException;
import com.sun.identity.authentication.util.ISAuthConstants;
import com.sun.identity.shared.datastruct.CollectionHelper;
import com.sun.identity.shared.debug.Debug;

/**
 * SampleAuth authentication module example.
 *
 * If you create your own module based on this example, you must modify all
 * occurrences of "SampleAuth" in addition to changing the name of the class.
 *
 * Please refer to OpenAM documentation for further information.
 *
 * Feel free to look at the code for authentication modules delivered with

Customizing OpenAM
The Sample Authentication Logic

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 215

 * OpenAM, as they implement this same API.
 */
public class SampleAuth extends AMLoginModule {

 // Name for the debug-log
 private final static String DEBUG_NAME = "SampleAuth";
 private final static Debug debug = Debug.getInstance(DEBUG_NAME);

 // Name of the resource bundle
 private final static String amAuthSampleAuth = "amAuthSampleAuth";

 // User names for authentication logic
 private final static String USERNAME = "demo";
 private final static String PASSWORD = "changeit";

 private final static String ERROR_1_USERNAME = "test1";
 private final static String ERROR_2_USERNAME = "test2";

 // Orders defined in the callbacks file
 private final static int STATE_BEGIN = 1;
 private final static int STATE_AUTH = 2;
 private final static int STATE_ERROR = 3;

 // Errors properties
 private final static String SAMPLE_AUTH_ERROR_1 = "sampleauth-error-1";
 private final static String SAMPLE_AUTH_ERROR_2 = "sampleauth-error-2";

 private Map<String, String> options;
 private ResourceBundle bundle;
 private Map<String, String> sharedState;

 public SampleAuth() {
 super();
 }

 /**
 * This method stores service attributes and localized properties for later
 * use.
 * @param subject
 * @param sharedState
 * @param options
 */
 @Override
 public void init(Subject subject, Map sharedState, Map options) {

 debug.message("SampleAuth::init");

 this.options = options;
 this.sharedState = sharedState;
 this.bundle = amCache.getResBundle(amAuthSampleAuth, getLoginLocale());
 }

 @Override
 public int process(Callback[] callbacks, int state) throws LoginException {

 debug.message("SampleAuth::process state: {}", state);

 switch (state) {

Customizing OpenAM
The Sample Authentication Logic

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 216

 case STATE_BEGIN:
 // No time wasted here - simply modify the UI and
 // proceed to next state
 substituteUIStrings();
 return STATE_AUTH;

 case STATE_AUTH:
 // Get data from callbacks. Refer to callbacks XML file.
 NameCallback nc = (NameCallback) callbacks[0];
 PasswordCallback pc = (PasswordCallback) callbacks[1];
 String username = nc.getName();
 String password = String.valueOf(pc.getPassword());

 //First errorstring is stored in "sampleauth-error-1" property.
 if (ERROR_1_USERNAME.equals(username)) {
 setErrorText(SAMPLE_AUTH_ERROR_1);
 return STATE_ERROR;
 }

 //Second errorstring is stored in "sampleauth-error-2" property.
 if (ERROR_2_USERNAME.equals(username)) {
 setErrorText(SAMPLE_AUTH_ERROR_2);
 return STATE_ERROR;
 }

 if (USERNAME.equals(username) && PASSWORD.equals(password)) {
 debug.message("SampleAuth::process User '{}' " +
 "authenticated with success.", username);
 return ISAuthConstants.LOGIN_SUCCEED;
 }

 throw new InvalidPasswordException("password is wrong",
 USERNAME);

 case STATE_ERROR:
 return STATE_ERROR;
 default:
 throw new AuthLoginException("invalid state");
 }
 }

 @Override
 public Principal getPrincipal() {
 return new SampleAuthPrincipal(USERNAME);
 }

 private void setErrorText(String err) throws AuthLoginException {
 // Receive correct string from properties and substitute the
 // header in callbacks order 3.
 substituteHeader(STATE_ERROR, bundle.getString(err));
 }

 private void substituteUIStrings() throws AuthLoginException {
 // Get service specific attribute configured in OpenAM
 String ssa = CollectionHelper.getMapAttr(options, "specificAttribute");

 // Get property from bundle
 String new_hdr = ssa + " " +

Customizing OpenAM
The Sample Auth Principal

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 217

 bundle.getString("sampleauth-ui-login-header");
 substituteHeader(STATE_AUTH, new_hdr);

 replaceCallback(STATE_AUTH, 0, new NameCallback(
 bundle.getString("sampleauth-ui-username-prompt")));
 replaceCallback(STATE_AUTH, 1, new PasswordCallback(
 bundle.getString("sampleauth-ui-password-prompt"), false));
 }
}

3.3.5. The Sample Auth Principal
The implementation, SampleAuthPrincipal.java, is shown below.

/**
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.
 *
 * Copyright (c) 2011-2018 ForgeRock AS. All Rights Reserved
 *
 * The contents of this file are subject to the terms
 * of the Common Development and Distribution License
 * (the License). You may not use this file except in
 * compliance with the License.
 *
 * You can obtain a copy of the License at legal/CDDLv1.0.txt.
 * See the License for the specific language governing
 * permission and limitations under the License.
 *
 * When distributing Covered Code, include this CDDL
 * Header Notice in each file and include the License file at legal/CDDLv1.0.txt.
 * If applicable, add the following below the CDDL Header,
 * with the fields enclosed by brackets [] replaced by
 * your own identifying information:
 * "Portions Copyrighted [year] [name of copyright owner]"
 *
 */

package org.forgerock.openam.examples;

import java.io.Serializable;
import java.security.Principal;

/**
 * SampleAuthPrincipal represents the user entity.
 */
public class SampleAuthPrincipal implements Principal, Serializable {
 private final static String COLON = " : ";

 private final String name;

 public SampleAuthPrincipal(String name) {

 if (name == null) {
 throw new NullPointerException("illegal null input");
 }

 this.name = name;

Customizing OpenAM
The Sample Auth Principal

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 218

 }

 /**
 * Return the LDAP username for this SampleAuthPrincipal.
 *
 * @return the LDAP username for this SampleAuthPrincipal
 */
 @Override
 public String getName() {
 return name;
 }

 /**
 * Return a string representation of this SampleAuthPrincipal.
 *
 * @return a string representation of this
 * TestAuthModulePrincipal.
 */
 @Override
 public String toString() {
 return new StringBuilder().append(this.getClass().getName())
 .append(COLON).append(name).toString();
 }

 /**
 * Compares the specified Object with this SampleAuthPrincipal
 * for equality. Returns true if the given object is also a
 * SampleAuthPrincipal and the two SampleAuthPrincipal have
 * the same username.
 *
 * @param o Object to be compared for equality with this
 * SampleAuthPrincipal.
 * @return true if the specified Object is equal equal to this
 * SampleAuthPrincipal.
 */
 @Override
 public boolean equals(Object o) {
 if (o == null) {
 return false;
 }

 if (this == o) {
 return true;
 }

 if (!(o instanceof SampleAuthPrincipal)) {
 return false;
 }
 SampleAuthPrincipal that = (SampleAuthPrincipal) o;

 if (this.getName().equals(that.getName())) {
 return true;
 }
 return false;
 }

 /**
 * Return a hash code for this SampleAuthPrincipal.
 *

Customizing OpenAM
The Sample Auth Service Configuration

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 219

 * @return a hash code for this SampleAuthPrincipal.
 */
 @Override
 public int hashCode() {
 return name.hashCode();
 }
}

3.3.6. The Sample Auth Service Configuration

OpenAM requires that all authentication modules be configured by means of an OpenAM service. At
minimum, the service must include an authentication level attribute. Your module can access these
configuration attributes in the options parameter passed to the init() method.

Some observations about the service configuration file follow in the list below.

• The document type for a service configuration file is described in WEB-INF/sms.dtd where OpenAM is
deployed.

• The service name is derived from the module name. The service name must have the following
format:

• It must start with either iPlanetAMAuth or sunAMAuth.

• The module name must follow. The case of the module name must match the case of the class
that implements the custom authentication module.

• It must end with Service.

In the Sample Auth service configuration, the module name is SampleAuth and the service name is
iPlanetAMAuthSampleAuthService.

• The service must have a localized description, retrieved from a properties file.

• The i18nFileName attribute in the service configuration holds the default (non-localized) base name of
the Java properties file. The i18nKey attributes indicate properties keys to string values in the Java
properties file.

• The authentication level attribute name must have the following format:

• It must start with iplanet-am-auth-, sun-am-auth-, or forgerock-am-auth-.

• The module name must follow, and must appear in lower case if the attribute name starts with
iplanet-am-auth- or forgerock-am-auth-. If the attribute name starts with sun-am-auth-, it must exactly
match the case of the module name as it appears in the service name.

• It must end with -auth-level.

In the Sample Auth service configuration, the authentication level attribute name is iplanet-am-auth-
sampleauth-auth-level.

Customizing OpenAM
The Sample Auth Service Configuration

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 220

• The Sample Auth service configuration includes an example sampleauth-service-specific-attribute,
which can be configured through OpenAM console.

The service configuration file, amAuthSampleAuth.xml, is shown below. Save a local copy of this file, which
you use when registering the module.
<?xml version="1.0" encoding="UTF-8"?>
<!--
 DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.

 Copyright (c) 2011-2018 ForgeRock AS.

 The contents of this file are subject to the terms
 of the Common Development and Distribution License
 (the License). You may not use this file except in
 compliance with the License.

 You can obtain a copy of the License at legal/CDDLv1.0.txt.
 See the License for the specific language governing
 permission and limitations under the License.

 When distributing Covered Code, include this CDDL
 Header Notice in each file and include the License file at legal/CDDLv1.0.txt.
 If applicable, add the following below the CDDL Header,
 with the fields enclosed by brackets [] replaced by
 your own identifying information:
 "Portions Copyrighted [year] [name of copyright owner]"
-->
<!DOCTYPE ServicesConfiguration
 PUBLIC "=//iPlanet//Service Management Services (SMS) 1.0 DTD//EN"
 "jar://com/sun/identity/sm/sms.dtd">

<ServicesConfiguration>
 <Service name="iPlanetAMAuthSampleAuthService" version="1.0">
 <Schema
 serviceHierarchy="/DSAMEConfig/authentication/iPlanetAMAuthSampleAuthService"
 i18nFileName="amAuthSampleAuth" revisionNumber="10"
 i18nKey="sampleauth-service-description" resourceName="sample">
 <Organization>
 <!-- Specify resourceName for a JSON-friendly property in the REST SMS -->
 <AttributeSchema name="iplanet-am-auth-sampleauth-auth-level" resourceName="authLevel"
 type="single" syntax="number_range" rangeStart="0" rangeEnd="2147483647"
 i18nKey="a500">
 <DefaultValues>
 <Value>1</Value>
 </DefaultValues>
 </AttributeSchema>

 <!-- No need for resourceName when the name is JSON-compatible -->
 <AttributeSchema name="specificAttribute"
 type="single" syntax="string" validator="no" i18nKey="a501" />

 <!--
 For Auth Modules, the parent Schema element specifies the REST SMS resourceName,
 and the nested SubSchema must have resourceName="USE-PARENT"
 -->
 <SubSchema name="serverconfig" inheritance="multiple" resourceName="USE-PARENT">
 <AttributeSchema name="iplanet-am-auth-sampleauth-auth-level" resourceName="authLevel"

Customizing OpenAM
Building and Installing the Sample Auth Module

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 221

 type="single" syntax="number_range" rangeStart="0" rangeEnd="2147483647"
 i18nKey="a500">
 <DefaultValues>
 <Value>1</Value>
 </DefaultValues>
 </AttributeSchema>

 <!-- No need for a DefaultValues element when the default is blank -->
 <AttributeSchema name="specificAttribute"
 type="single" syntax="string" validator="no" i18nKey="a501" />

 </SubSchema>
 </Organization>
 </Schema>
 </Service>
</ServicesConfiguration>

3.3.7. Building and Installing the Sample Auth Module

Build the module with Apache Maven, and install the module in OpenAM.

3.3.7.1. Building the Module

Build the module with Apache Maven, and install the module in OpenAM.

After you successfully build the module, you find the .jar file in the target/ directory of the project.

For information on downloading and building OpenAM sample source code, see How do I access and
build the sample code provided for OpenAM 12.x, 13.x and AM (All versions)? in the Knowledge Base.

3.3.7.2. Installing the Module

Installing the sample authentication module consists of copying the .jar file to OpenAM's WEB-INF/lib/
directory, registering the module with OpenAM, and then restarting OpenAM or the web application
container where it runs.

1. Copy the sample authentication module .jar file to WEB-INF/lib/ where OpenAM is deployed.

$ cp target/custom*.jar /path/to/tomcat/webapps/openam/WEB-INF/lib/

2. Register the module with OpenAM using the ssoadm command.

https://backstage.forgerock.com/knowledge/kb/article/a47487197
https://backstage.forgerock.com/knowledge/kb/article/a47487197

Customizing OpenAM
Configuring & Testing the Sample Auth Module

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 222

$ ssoadm \
 create-svc \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --xmlfile src/main/resources/amAuthSampleAuth.xml

Service was added.
$ ssoadm \
 register-auth-module \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --authmodule org.forgerock.openam.examples.SampleAuth

Authentication module was registered.

See the ssoadm(1) in the Reference a full list of Authentication Service Management
subcommands.

3. Restart OpenAM or the container in which it runs.

For example if you deployed OpenAM in Apache Tomcat, then you shut down Tomcat and start it
again.

$ /path/to/tomcat/bin/shutdown.sh
$ /path/to/tomcat/bin/startup.sh
$ tail -1 /path/to/tomcat/logs/catalina.out
INFO: Server startup in 14736 ms

3.3.8. Configuring & Testing the Sample Auth Module

Authentication modules are registered as services with OpenAM globally, and then set up for use in a
particular realm. In this example, you set up the sample authentication module for use in the realm /
(Top Level Realm).

Log in to the OpenAM console as an administrator, such as amadmin, and browse to Realms > Top
Level Realm > Authentication > Modules. Click Add Module to create an instance of the Sample
Authentication Module. Name the module Sample.

Customizing OpenAM
Configuring & Testing the Sample Auth Module

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 223

Click Create, and then configure the authentication module as appropriate.

Now that the module is configured, log out of the OpenAM console.

Finally, try the module by specifying the Sample module using a query string parameter. Browse to the
login URL such as http://openam.example.com:8080/openam/XUI/#login/&module=Sample, and then authenticate
with user name demo and password changeit.

Customizing OpenAM
Customizing Session Quota Exhaustion Actions

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 224

After authentication you are redirected to the end user page for the demo user. You can logout of
OpenAM console, and then try to authenticate as the non-existent user test123 to see what the error
handling looks like to the user.

3.4. Customizing Session Quota Exhaustion Actions
This section demonstrates a custom session quota exhaustion action plugin. OpenAM calls a session
quota exhaustion action plugin when a user tries to open more stateful sessions than their quota
allows. Note that session quotas are not available for stateless sessions.

You only need a custom session quota exhaustion action plugin if the built-in actions are not flexible
enough for your deployment. See "To Configure Session Quotas and Exhaustion Actions" in the
Administration Guide.

3.4.1. Creating & Installing a Custom Session Quota Exhaustion Action

You build custom session quota exhaustion actions into a .jar that you then plug in to OpenAM. You
must also add your new action to the Session service configuration, and restart OpenAM in order to
be able to configure it for your use.

Your custom session quota exhaustion action implements the com.iplanet.dpro.session.service
.QuotaExhaustionAction interface, overriding the action method. The action method performs the action
when the session quota is met, and returns true only if the request for a new session should not be
granted.

Customizing OpenAM
Creating & Installing a Custom Session Quota Exhaustion Action

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 225

The example in this section simply removes the first session it finds as the session quota exhaustion
action.
package org.forgerock.openam.examples.quotaexhaustionaction;

import com.iplanet.dpro.session.Session;
import com.iplanet.dpro.session.SessionException;
import com.iplanet.dpro.session.SessionID;
import com.iplanet.dpro.session.service.InternalSession;
import com.iplanet.dpro.session.service.QuotaExhaustionAction;
import com.iplanet.dpro.session.service.SessionService;
import com.sun.identity.shared.debug.Debug;
import java.util.Map;

/**
 * This is a sample {@link QuotaExhaustionAction} implementation,
 * which randomly kills the first session it finds.
 */
public class SampleQuotaExhaustionAction implements QuotaExhaustionAction {

 private static Debug debug = SessionService.sessionDebug;

 /**
 * Check if the session quota for a given user has been exhausted and
 * if so perform the necessary actions. This implementation randomly
 * destroys the first session it finds.
 *
 * @param is The InternalSession to be activated.
 * @param existingSessions All existing sessions that belong to the same
 * uuid (Map:sid->expiration_time).
 * @return true If the session activation request should be rejected,
 * otherwise false.
 */
 @Override
 public boolean action(
 InternalSession is,
 Map<String, Long> existingSessions) {
 for (Map.Entry<String, Long> entry : existingSessions.entrySet()) {
 try {
 // Get an actual Session instance based on the session ID.
 Session session =
 Session.getSession(new SessionID(entry.getKey()));
 // Use the session to destroy itself.
 session.destroySession(session);
 // Only destroy the first session.
 break;
 } catch (SessionException se) {
 if (debug.messageEnabled()) {
 debug.message("Failed to destroy existing session.", se);
 }
 // In this case, deny the session activation request.
 return true;
 }
 }
 return false;
 }
}

Customizing OpenAM
Creating & Installing a Custom Session Quota Exhaustion Action

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 226

The sample plugin source is available online. Get a local clone so that you can try the sample on your
system. In the sources you find the following files.

pom.xml

Apache Maven project file for the module

This file specifies how to build the sample plugin, and also specifies its dependencies on OpenAM
components and on the Servlet API.

src/main/java/org/forgerock/openam/examples/quotaexhaustionaction/SampleQuotaExhaustionAction.java

Core class for the sample quota exhaustion action plugin

Build the module using Apache Maven.

$ cd /path/to/openam-examples-quotaexhaustionaction
$ mvn install
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building OpenAM Example Quota Exhaustion Action 1.0.0-SNAPSHOT
[INFO] --

...

[INFO]
[INFO] --- maven-jar-plugin:2.3.1:jar (default-jar) @ quotaexhaustionaction ---
[INFO] Building jar: .../target/quotaexhaustionaction-1.0.0-SNAPSHOT.jar

...

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 10.138s
[INFO] Finished at: Mon Nov 25 15:59:10 CET 2013
[INFO] Final Memory: 18M/129M
[INFO] --

Copy the .jar to WEB-INF/lib/ where OpenAM is deployed.

$ cp target/*.jar /path/to/tomcat/webapps/openam/WEB-INF/lib/

Using the ssoadm command or the ssoadm.jsp page in OpenAM Console, update the Session service
configuration.

https://github.com/ForgeRock/openam-examples-quotaexhaustionaction/

Customizing OpenAM
Listing Session Quota Exhaustion Actions

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 227

$ ssoadm \
 set-attr-choicevals \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename iPlanetAMSessionService \
 --schematype Global \
 --attributename iplanet-am-session-constraint-handler \
 --add \
 --choicevalues myKey=\
org.forgerock.openam.examples.quotaexhaustionaction.SampleQuotaExhaustionAction

Choice Values were set.

Extract amSession.properties and if necessary the localized versions of this file from openam-
core-13.5.2.jar to WEB-INF/classes/ where OpenAM is deployed. For example, if OpenAM is deployed
under /path/to/tomcat/webapps/openam, then you could run the following commands.

$ cd /path/to/tomcat/webapps/openam/WEB-INF/classes/
$ jar -xvf ../lib/openam-core-13.5.2.jar amSession.properties
 inflated: amSession.properties

Add the following line to amSession.properties.
myKey=Randomly Destroy Session

Restart OpenAM or the container in which it runs.

You can now use the new session quota exhaustion action. In the OpenAM Console, navigate to
Configure > Global Services, click Session, scroll to Resulting behavior if session quota exhausted,
and then choose an option.

Before moving to your test and production environments, be sure to add your .jar file and updates to
amSession.properties into a custom .war file that you can then deploy. You must still update the Session
service configuration in order to use your custom session quota exhaustion action.

3.4.2. Listing Session Quota Exhaustion Actions

List session quota exhaustion actions by using the ssoadm command or by using the ssoadm.jsp page.

Customizing OpenAM
Removing a Session Quota Exhaustion Action

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 228

$ ssoadm \
 get-attr-choicevals \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename iPlanetAMSessionService \
 --schematype Global \
 --attributename iplanet-am-session-constraint-handler

I18n Key Choice Value
------------------------- ---...---
choiceDestroyOldSession org...session.service.DestroyOldestAction
choiceDenyAccess org...session.service.DenyAccessAction
choiceDestroyNextExpiring org...session.service.DestroyNextExpiringAction
choiceDestroyAll org...session.service.DestroyAllAction
myKey org...examples...SampleQuotaExhaustionAction

3.4.3. Removing a Session Quota Exhaustion Action

Remove a session quota exhaustion action by using the ssoadm command or by using the ssoadm.jsp
page.

$ ssoadm \
 remove-attr-choicevals \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename iPlanetAMSessionService \
 --schematype Global \
 --attributename iplanet-am-session-constraint-handler \
 --choicevalues \
 org.forgerock.openam.examples.quotaexhaustionaction.SampleQuotaExhaustionAction

Choice Values were removed.

3.5. Customizing Policy Evaluation
OpenAM policies let you restrict access to resources based both on identity and group membership,
and also on a range of conditions including session age, authentication chain or module used,
authentication level, realm, session properties, IP address and DNS name, user profile content,
resource environment, date, day, time of day, and time zone. Yet, some deployments require further
distinctions for policy evaluation. This section explains how to customize policy evaluation for
deployments with particular requirements not met by built-in OpenAM functionality.

This section shows how to build and use a custom policy plugin that implements a custom subject
condition, a custom environment condition, and a custom resource attribute.

Customizing OpenAM
About the Sample Plugin

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 229

3.5.1. About the Sample Plugin
The OpenAM policy framework lets you build plugins that extend subject conditions, environment
conditions, and resource attributes.

For information on downloading and building OpenAM sample source code, see How do I access and
build the sample code provided for OpenAM 12.x, 13.x and AM (All versions)? in the Knowledge Base.

Get a local clone so that you can try the sample on your system. In the sources, you find the following
files under the /path/to/openam-source/openam-samples/policy-evaluation-plugin directory:

pom.xml

Apache Maven project file for the module

This file specifies how to build the sample policy evaluation plugin, and also specifies its
dependencies on OpenAM components.

src/main/java/org/forgerock/openam/examples/SampleAttributeType.java

Extends the com.sun.identity.entitlement.ResourceAttribute interface, and shows an implementation
of a resource attribute provider to send an attribute with the response.

src/main/java/org/forgerock/openam/examples/SampleConditionType.java

Extends the com.sun.identity.entitlement.EntitlementCondition interface, and shows an
implementation of a condition that is the length of the user name.

A condition influences whether the policy applies for a given access request. If the condition is
fulfilled, then OpenAM includes the policy in the set of policies to evaluate in order to respond to
a policy decision request.

src/main/java/org/forgerock/openam/examples/SampleSubjectType.java

Extends the com.sun.identity.entitlement.EntitlementSubject interface, and shows an implementation
that defines a user to whom the policy applies.

A subject, like a condition, influences whether the policy applies. If the subject matches in the
context of a given access request, then the policy applies.

src/main/java/org/forgerock/openam/examples/SampleEntitlementModule.java
src/main/resources/META-INF/services/org.forgerock.openam.entitlement.EntitlementModule

These files serve to register the plugin with OpenAM.

The Java class, SampleEntitlementModule, implements the org.forgerock.openam.entitlement
.EntitlementModule interface. In the sample, this class registers SampleAttribute, SampleCondition, and
SampleSubject.

The services file, org.forgerock.openam.entitlement.EntitlementModule, holds the fully qualified class
name of the EntitlementModule that registers the custom implementations. In this case, org.forgerock
.openam.entitlement.EntitlementModule.

https://backstage.forgerock.com/knowledge/kb/article/a47487197
https://backstage.forgerock.com/knowledge/kb/article/a47487197

Customizing OpenAM
Building the Sample Plugin

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 230

3.5.2. Building the Sample Plugin

Follow the steps in this procedure to build the sample plugin:

To Build the Sample Plugin

1. If you have not already done so, download and build the samples.

For information on downloading and building OpenAM sample source code, see How do I
access and build the sample code provided for OpenAM 12.x, 13.x and AM (All versions)? in the
Knowledge Base.

2. Check out the master branch of the OpenAM source.

3. Build the module using Apache Maven:

$ cd /path/to/openam-source/openam-samples
$ cd policy-evaluation-plugin
$ mvn install
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building policy-evaluation-plugin 13.5.2-15
[INFO] --
[INFO]
[INFO] --- maven-resources-plugin:2.6:resources (default-resources) @
[INFO] policy-evaluation-plugin ---

...

[INFO] Building jar: .../target/policy-evaluation-plugin-13.5.2-15.jar
[INFO]

...

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 5.264 s
[INFO] Finished at: 2016-05-11T19:39:23+02:00
[INFO] Final Memory: 32M/85M
[INFO] --

4. Copy the .jar to the WEB-INF/lib directory where you deployed OpenAM:

$ cp target/*.jar /path/to/tomcat/webapps/openam/WEB-INF/lib/

5. Edit the /path/to/tomcat/webapps/openam/XUI/locales/en/translation.json file to update the user
interface to include the custom subject and environment conditions:

a. Locate the line that contains the following text:

https://backstage.forgerock.com/knowledge/kb/article/a47487197
https://backstage.forgerock.com/knowledge/kb/article/a47487197

Customizing OpenAM
Adding Custom Policy Implementations to Existing Policy Sets

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 231

"subjectTypes": {

b. Insert the following text after the line you located in the previous step:

"SampleSubject": {
 "title": "Sample Subject",
 "props": {
 "name": "Name"
 }
},

c. Locate the line that contains the following text:

"conditionTypes": {

d. Insert the following text after the line you located in the previous step:

"SampleCondition": {
 "title": "Sample Condition",
 "props": {
 "nameLength": "Minimum username length"
 }
},

6. If you require additional translations under /path/to/tomcat/webapps/openam/XUI/locales, modify other
translation.json files as needed.

7. Clear your browser's cache and restart your browser.

Clearing the cache and refreshing the browser is required when you modify the translation.json
file.

8. Restart OpenAM or the container in which it runs.

3.5.3. Adding Custom Policy Implementations to Existing Policy Sets

In order to use your custom policy in existing policy sets, you must update the policy sets. Note that
you cannot update a policy set that already has policies configured. When there are already policies
configured for a policy set, you must instead first delete the policies, and then update the policy set.

Update the iPlanetAMWebAgentService policy set in the top level realm of a fresh installation. First,
authenticate to OpenAM as the amadmin user:

Customizing OpenAM
Adding Custom Policy Implementations to Existing Policy Sets

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 232

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "X-OpenAM-Username: amadmin" \
 --header "X-OpenAM-Password: password" \
 --data "{}" \
 https://openam.example.com:8443/openam/json/authenticate
{"tokenId":"AQIC5wM2...","successUrl":"/openam/console"}

Then update the iPlanetAMWebAgentService policy set by adding the SampleSubject subject condition and
the SampleCondition environment condition:

$ curl \
 --request PUT \
 --header "iPlanetDirectoryPro: AQIC5wM2..." \
 --header "Content-Type: application/json" \
 --data '{
 "name": "iPlanetAMWebAgentService",
 "conditions": [
 "LEAuthLevel",
 "Script",
 "AuthenticateToService",
 "SimpleTime",
 "AMIdentityMembership",
 "OR",
 "IPv6",
 "IPv4",
 "SessionProperty",
 "AuthScheme",
 "AuthLevel",
 "NOT",
 "AuthenticateToRealm",
 "AND",
 "ResourceEnvIP",
 "LDAPFilter",
 "OAuth2Scope",
 "Session",
 "SampleCondition"
],
 "subjects": [
 "NOT",
 "OR",
 "JwtClaim",
 "AuthenticatedUsers",
 "AND",
 "Identity",
 "NONE",
 "SampleSubject"
],
 "applicationType": "iPlanetAMWebAgentService",
 "entitlementCombiner": "DenyOverride"
 }' https://openam.example.com:8443/openam/json/applications/iPlanetAMWebAgentService

Customizing OpenAM
Trying the Sample Subject and Environment Conditions

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 233

3.5.4. Trying the Sample Subject and Environment Conditions

Using the OpenAM console, add a policy to the iPlanetAMWebAgentService policy set in the top level realm
that allows HTTP GET access for URLs based on the template http://www.example.com:80/* and uses the
custom subject and environment conditions.

Create the policy with the following properties:

Sample Policy Properties

Property Value
Name Sample Policy

Resource Type URL

Resources Use the *://*:*/*resource template to specify the resource http://www
.example.com:80/*.

Actions Allow GET
Subject Conditions Add a subject condition of type Sample Subject and a name of demo so that

the demo user is the only user who can access the resource.
Environment Conditions Add an environment condition of type Sample Condition and a minimum

username length of 4 so that only users with a username length of 4
characters or greater can access the resource.

With the policy in place, authenticate both as a user who can request policy decisions and also as a
user trying to access a resource, such as demo in the example above. Both calls return tokenId values
for use in the policy decision request.

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "X-OpenAM-Username: amadmin" \
 --header "X-OpenAM-Password: password" \
 --data "{}" \
 https://openam.example.com:8443/openam/json/authenticate

{"tokenId":"AQIC5wM2LY4Sfcw...","successUrl":"/openam/console"}

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 --data "{}" \
 https://openam.example.com:8443/openam/json/authenticate

{"tokenId":"AQIC5wM2LY4Sfcy...","successUrl":"/openam/console"}

Use the administrator tokenId as the header of the policy decision request, and the user tokenId as the
subject ssoToken value.

Customizing OpenAM
Trying the Sample Resource Attributes

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 234

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5wM2LY4Sfcw..." \
 --data '{
 "subject": {
 "ssoToken": "AQIC5wM2LY4Sfcy..."},
 "resources": [
 "http://www.example.com:80/index.html"
],
 "application": "iPlanetAMWebAgentService"
 }' \
 https://openam.example.com:8443/openam/json/policies?_action=evaluate

[
 {
 "resource": "http://www.example.com:80/index.html",
 "actions": {
 "GET": true
 },
 "attributes": {},
 "advices": {}
 }
]

Notice that the actions returned from the policy evaluation call are set in accordance with the policy.

3.5.5. Trying the Sample Resource Attributes

The sample custom policy plugin can have OpenAM return an attribute with the policy decision. In
order to make this work, list the resource type for the URL resource type to obtain its UUID, and then
update your policy to return a test attribute:

$ curl \
 --request GET \
 --header "iPlanetDirectoryPro: AQIC5wM2..." \
 https://openam.example.com:8443/openam/json/resourcetypes?_queryFilter=name%20eq%20%22URL%22
{
 "result":[
 {
 "uuid":"URL-resource-type-UUID",
 "name":"URL",
 "description":"The built-in URL Resource Type available to OpenAM Policies.",
 "patterns":["*://*:*/*","*://*:*/*?*"],
 ...
 }
],
 "resultCount":1,
 "pagedResultsCookie":null,
 "totalPagedResultsPolicy":"NONE",
 "totalPagedResults":-1,
 "remainingPagedResults":0
}

Customizing OpenAM
Trying the Sample Resource Attributes

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 235

$ curl \
 --request PUT \
 --header "iPlanetDirectoryPro: AQIC5wM2LY4Sfcw..." \
 --header "Content-Type: application/json" \
 --data '{
 "name": "Sample Policy",
 "active": true,
 "description": "Try sample policy plugin",
 "resourceTypeUuid": "URL-resource-type-UUID",
 "resources": [
 "http://www.example.com:80/*"
],
 "applicationName": "iPlanetAMWebAgentService",
 "actionValues": {
 "GET": true
 },
 "subject": {
 "type": "SampleSubject",
 "name": "demo"
 },
 "condition": {
 "type": "SampleCondition",
 "nameLength": 4
 },
 "resourceAttributes": [
 {
 "type": "SampleAttribute",
 "propertyName": "test"
 }
]
}' http://openam.example.com:8088/openam/json/policies/Sample%20Policy

When you now request the same policy decision as before, OpenAM returns the test attribute that you
configured in the policy.

Customizing OpenAM
Extending the ssoadm Classpath

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 236

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5wM2LY4Sfcw..." \
 --data '{
 "subject": {
 "ssoToken": "AQIC5wM2LY4Sfcy..."},
 "resources": [
 "http://www.example.com:80/index.html"
],
 "application": "iPlanetAMWebAgentService"
 }' \
 http://openam.example.com:8080/openam/json/policies?_action=evaluate

[
 {
 "resource": "http://www.example.com/profile",
 "actions": {
 "GET": true
 },
 "attributes": {
 "test": [
 "sample"
]
 },
 "advices": {}
 }
]

3.5.6. Extending the ssoadm Classpath

After customizing your OpenAM deployment to use policy evaluation plugins, inform ssoadm
users to add the jar file containing the plugins to the classpath before running policy management
subcommands.

To add a jar file to the ssoadm classpath, set the CLASSPATH environment variable before running the
ssoadm command.

$ export CLASSPATH=/path/to/jarfile:$CLASSPATH
$ ssoadm ...

3.6. Customizing Identity Data Storage
OpenAM maps user and group identities into a realm using data stores. An OpenAM data store relies
on a Java identity repository (IdRepo) plugin to implement interaction with the identity repository
where the users and groups are stored.

Customizing OpenAM
About the Identity Repository Plugin

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 237

3.6.1. About the Identity Repository Plugin
This section describes how to create a custom identity repository plugin. OpenAM includes built-in
support for LDAP identity repositories. For most deployments, you therefore do not need to create
your own custom identity repository plugin. Only create custom identity repository plugins for
deployments with particular requirements not met by built-in OpenAM functionality.

Tip

Before creating your own identity repository plugin, start by reading the OpenAM source code for the FilesRepo
or DatabaseRepo plugins under com.sun.identity.idm.plugins.

3.6.1.1. IdRepo Inheritance
Your identity repository plugin class must extend the com.sun.identity.idm.IdRepo abstract class, and
must include a constructor method that takes no arguments.

3.6.1.2. IdRepo Lifecycle
When OpenAM instantiates your IdRepo plugin, it calls the initialize() method.
public void initialize(Map configParams)

The configParams are service configuration parameters for the realm where the IdRepo plugin is
configured. The configParams normally serve to set up communication with the underlying identity data
store. OpenAM calls the initialize() method once, and considers the identity repository ready for use.

If you encounter errors or exceptions during initialization, catch and store them in your plugin for use
later when OpenAM calls other plugin methods.

After initialization, OpenAM calls the addListener() and removeListener() methods to register listeners
that inform OpenAM client code of changes to identities managed by your IdRepo.
public int addListener(SSOToken token, IdRepoListener listener)
public void removeListener()

You must handle listener registration in your IdRepo plugin, and also return events to OpenAM
through the IdRepoListener.

When stopping, OpenAM calls your IdRepo plugin shutdown() method.
public void shutdown()

You are not required to implement shutdown() unless your IdRepo plugin has shut down work of its
own to do, such as close connections to the underlying identity data store.

3.6.1.3. IdRepo Plugin Capabilities
Your IdRepo plugin provides OpenAM with a generic means to manage subjects—including users and
groups but also special types such as roles, realms, and agents— and to create, read, update, delete,

Customizing OpenAM
Identity Repository Plugin Implementation

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 238

and search subjects. In order for OpenAM to determine your plugin's capabilities, it calls the methods
described in this section.
public Set getSupportedTypes()

The getSupportedTypes() method returns a set of IdType objects, such as IdType.USER and IdType.GROUP. You
can either hard-code the supported types into your plugin, or make them configurable through the
IdRepo service.
public Set getSupportedOperations(IdType type)

The getSupportedOperations() method returns a set of IdOperation objects, such as IdOperation.CREATE and
IdOperation.EDIT. You can also either hard-code these, or make them configurable.
public boolean supportsAuthentication()

The supportsAuthentication() method returns true if your plugin supports the authenticate() method.

3.6.2. Identity Repository Plugin Implementation

Your IdRepo plugin implements operational methods depending on what you support. These methods
perform the operations in your data store.

Create

OpenAM calls create() to provision a new identity in the repository, where name is the new
identity's name, and attrMap holds the attributes names and values.
public String create(SSOToken token, IdType type, String name, Map attrMap)
 throws IdRepoException, SSOException

Read

OpenAM calls the following methods to retrieve subjects in the identity repository, and to check
account activity. If your data store does not support binary attributes, return an empty Map for
getBinaryAttributes().
public boolean isExists(
 SSOToken token,
 IdType type,
 String name
) throws IdRepoException, SSOException

public boolean isActive(
 SSOToken token,
 IdType type,
 String name
) throws IdRepoException, SSOException

public Map getAttributes(
 SSOToken token,
 IdType type,
 String name

Customizing OpenAM
Identity Repository Plugin Implementation

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 239

) throws IdRepoException, SSOException

public Map getAttributes(
 SSOToken token,
 IdType type,
 String name,
 Set attrNames
) throws IdRepoException, SSOException

public Map getBinaryAttributes(
 SSOToken token,
 IdType type,
 String name,
 Set attrNames
) throws IdRepoException, SSOException

public RepoSearchResults search(
 SSOToken token,
 IdType type,
 String pattern,
 Map avPairs,
 boolean recursive,
 int maxResults,
 int maxTime,
 Set returnAttrs
) throws IdRepoException, SSOException

public RepoSearchResults search(
 SSOToken token,
 IdType type,
 String pattern,
 int maxTime,
 int maxResults,
 Set returnAttrs,
 boolean returnAllAttrs,
 int filterOp,
 Map avPairs,
 boolean recursive
) throws IdRepoException, SSOException

Edit

OpenAM calls the following methods to update a subject in the identity repository.
public void setAttributes(
 SSOToken token,
 IdType type,
 String name,
 Map attributes,
 boolean isAdd
) throws IdRepoException, SSOException

public void setBinaryAttributes(
 SSOToken token,
 IdType type,
 String name,
 Map attributes,
 boolean isAdd
) throws IdRepoException, SSOException

Customizing OpenAM
Identity Repository Plugin Deployment

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 240

public void removeAttributes(
 SSOToken token,
 IdType type,
 String name,
 Set attrNames
) throws IdRepoException, SSOException

public void modifyMemberShip(
 SSOToken token,
 IdType type,
 String name,
 Set members,
 IdType membersType,
 int operation
) throws IdRepoException, SSOException

public void setActiveStatus(
 SSOToken token,
 IdType type,
 String name,
 boolean active
)

Authenticate

OpenAM calls authenticate() with the credentials from the DataStore authentication module.
public boolean authenticate(Callback[] credentials)
 throws IdRepoException, AuthLoginException

Delete

The delete() method removes the subject from the identity repository. The name specifies the
subject.
public void delete(SSOToken token, IdType type, String name)
 throws IdRepoException, SSOException

Service

The IdOperation.SERVICE operation is rarely used in recent OpenAM deployments.

3.6.3. Identity Repository Plugin Deployment

When you build your IdRepo plugin, include openam-core-13.5.2.jar in the classpath. This file is found
under WEB-INF/lib/ where OpenAM is deployed.

You can either package your plugin as a .jar, and then add it to WEB-INF/lib/, or add the classes under
WEB-INF/classes/.

To register your plugin with OpenAM, you add a SubSchema to the sunIdentityRepositoryService using the
ssoadm command. First, you create the SubSchema document having the following structure.

Customizing OpenAM
Identity Repository Plugin Deployment

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 241

<SubSchema i18nKey="x4000" inheritance="multiple" maintainPriority="no"
 name="CustomRepo" supportsApplicableOrganization="no" validate="yes">
 <AttributeSchema cosQualifier="default" isSearchable="no"
 name="RequiredValueValidator" syntax="string"
 type="validator" >
 <DefaultValues>
 <Value>com.sun.identity.sm.RequiredValueValidator</Value>
 </DefaultValues>
 </AttributeSchema>
 <AttributeSchema any="required" cosQualifier="default"
 i18nKey="x4001" isSearchable="no"
 name="sunIdRepoClass" syntax="string"
 type="single" validator="RequiredValueValidator" >
 <DefaultValues>
 <Value>org.test.CustomRepo</Value>
 </DefaultValues>
 </AttributeSchema>
 <AttributeSchema cosQualifier="default" i18nKey="x4002" isSearchable="no"
 name="sunIdRepoAttributeMapping" syntax="string" type="list">
 <DefaultValues>
 <Value></Value>
 </DefaultValues>
 </AttributeSchema>
</SubSchema>

Also include the AttributeSchema required to configure your IdRepo plugin.

Notice the i18nKey attributes on SubSchema elements. The i18nKey attribute values correspond to
properties in the amIdRepoService.properties file under WEB-INF/classes/ where OpenAM is deployed.
OpenAM console displays the label for the configuration user interface that it retrieves from the value
of the i18nKey property in the amIdRepoService.properties file.

To make changes to the properties, first extract amIdRepoService.properties and if necessary the
localized versions of this file from openam-core-13.5.2.jar to WEB-INF/classes/ where OpenAM is deployed.
For example, if OpenAM is deployed under /path/to/tomcat/webapps/openam, then you could run the
following commands.

$ cd /path/to/tomcat/webapps/openam/WEB-INF/classes/
$ jar -xvf ../lib/openam-core-13.5.2.jar amIdRepoService.properties
 inflated: amIdRepoService.properties

Register your plugin using the ssoadm command after copy the files into place.

$ ssoadm \
 add-sub-schema \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename sunIdentityRepositoryService \
 --schematype Organization \
 --filename customIdRepo.xml

Log in to the OpenAM console as administrator, then browse to Realms > Realm Name > Data
Stores. In the Data Stores table, click New... to create a Data Store corresponding to your

Customizing OpenAM
Identity Repository Plugin Deployment

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 242

custom IdRepo plugin. In the first screen of the wizard, name the Data Store and select the type
corresponding to your plugin. In the second screen of the wizard, add the configuration for your
plugin.

After creating the Data Store, create a new subject in the realm to check that your plugin works as
expected. You can do this under Realms > Realm Name > Subjects.

If your plugin supports authentication, then users should now be able to authenticate using the
DataStore module for the realm.
http://openam.example.com:8080/openam/UI/Login?realm=test&module=DataStore

Extending OpenAM
Creating a Post Authentication Plugin

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 243

Chapter 4

Extending OpenAM
OpenAM services solve a wide range of access and federation management problems out of the box.
Yet, OpenAM also exposes APIs and SPIs that enable you extend OpenAM services when built-in
functionality does not fit your deployment.

This part of the guide covers OpenAM mechanisms for plugging in additional functionality not
available out of the box.

4.1. Creating a Post Authentication Plugin
Post authentication plugins (PAP) let you include custom processing at the end of the authentication
process, immediately before the subject is authenticated. Common uses of post authentication
plugins include setting cookies and session variables. Post authentication plugins are often used
in conjunction with policy agents. The post authentication plugin sets custom session properties,
and then the policy agent injects the custom properties into the request header to the protected
application.

Two issues should be considered when writing a post authentication plugin for an OpenAM
deployment that uses stateless sessions:

Cookie size

You can set an unlimited number of session properties in a post authentication plugin. When
OpenAM creates a stateless session, it writes the session properties into the session cookie,
increasing the size of the cookie. Very large session cookies can exceed browser limitations.
Therefore, when implementing a post authentication plugin in a deployment with stateless
sessions, be sure to monitor the session cookie size and verify that you have not exceeded
browser cookie size limits.

For more information about stateless session cookies, see "Session Cookies" in the Administration
Guide.

Cookie security

The OpenAM administrator secures custom session properties residing on the OpenAM server for
stateful sessions by using firewalls and other typical security techniques.

However, when using stateless sessions, custom session properties are written in cookies and
reside on end users' systems. Cookies can be long-lasting and might represent a security issue if

Extending OpenAM
Designing Your Post Authentication Plugin

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 244

any session properties are of a sensitive nature. When developing a post authentication plugin for
a deployment that uses stateless sessions, be sure that you are aware of the measures securing
the session contained within the cookie.

For more information about stateless session cookie security, see "Stateless Session Cookie
Security" in the Administration Guide.

This section explains how to create a post authentication plugin.

4.1.1. Designing Your Post Authentication Plugin

Your post authentication plugin class implements the AMPostAuthProcessInterface interface, and in
particular the following three methods.
public void onLoginSuccess(
 Map requestParamsMap,
 HttpServletRequest request,
 HttpServletResponse response,
 SSOToken token
) throws AuthenticationException

public void onLoginFailure(
 Map requestParamsMap,
 HttpServletRequest request,
 HttpServletResponse response
) throws AuthenticationException

public void onLogout(
 HttpServletRequest request,
 HttpServletResponse response,
 SSOToken token
) throws AuthenticationException

OpenAM calls the onLoginSuccess() and onLoginFailure() methods immediately before informing the
user of login success or failure, respectively. OpenAM calls the onLogout() method only when the user
actively logs out, not when a user's session times out.

See the OpenAM Java SDK API Specification for reference.

These methods can perform whatever processing you require. Yet, know that OpenAM calls your
methods synchronously as part of the authentication process. Therefore, if your methods take a
long time to complete, you will keep users waiting. Minimize the processing done in your post
authentication methods.

4.1.2. Building Your Sample Post Authentication Plugin

The following example post authentication plugin sets a session property during successful login,
writing to its debug log if the operation fails.
package com.forgerock.openam.examples;

import java.util.Map;

../apidocs

Extending OpenAM
Building Your Sample Post Authentication Plugin

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 245

import com.iplanet.sso.SSOException;
import com.iplanet.sso.SSOToken;

import com.sun.identity.authentication.spi.AMPostAuthProcessInterface;
import com.sun.identity.authentication.spi.AuthenticationException;
import com.sun.identity.shared.debug.Debug;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class SamplePAP implements AMPostAuthProcessInterface {
 private final static String PROP_NAME = "MyProperty";
 private final static String PROP_VALUE = "MyValue";
 private final static String DEBUG_FILE = "SamplePAP";

 protected Debug debug = Debug.getInstance(DEBUG_FILE);

 public void onLoginSuccess(
 Map requestParamsMap,
 HttpServletRequest request,
 HttpServletResponse response,
 SSOToken token
) throws AuthenticationException {
 try {
 token.setProperty(PROP_NAME, PROP_VALUE);
 } catch (SSOException e) {
 debug.error("Unable to set property");
 }
 }

 public void onLoginFailure(
 Map requestParamsMap,
 HttpServletRequest request,
 HttpServletResponse response
) throws AuthenticationException {
 // Not used
 }

 public void onLogout(
 HttpServletRequest request,
 HttpServletResponse response,
 SSOToken token
) throws AuthenticationException {
 // Not used
 }
}

The sample post authentication plugin source is available online. Get a local clone so that you can try
the sample on your system. In the sources you find the following files.

pom.xml

Apache Maven project file for the module

This file specifies how to build the sample post authentication plugin, and also specifies its
dependencies on OpenAM components and on the Servlet API.

https://github.com/ForgeRock/openam-post-auth-sample

Extending OpenAM
Configuring Your Post Authentication Plugin

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 246

src/main/java/com/forgerock/openam/examples/SamplePAP.java

Core class for the sample post authentication plugin

Build the module using Apache Maven.

$ cd /path/to/openam-post-auth-sample
$ mvn install
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building openam-post-auth-sample 1.0.0-SNAPSHOT
[INFO] --

...

[INFO]
[INFO] --- maven-jar-plugin:2.3.1:jar (default-jar) @ openam-post-auth-sample --
[INFO] Building jar: .../target/openam-post-auth-sample-1.0.0-SNAPSHOT.jar

...

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --
[INFO] Total time: 6.727s
[INFO] Finished at: Mon Nov 25 17:07:23 CET 2013
[INFO] Final Memory: 20M/227M
[INFO] --

Copy the .jar to the WEB-INF/lib directory where you deployed OpenAM.

$ cp target/*.jar /path/to/tomcat/webapps/openam/WEB-INF/lib/

Restart OpenAM or the container in which it runs.

4.1.3. Configuring Your Post Authentication Plugin

You can associate post authentication plugins with realms or services (authentication chains). Where
you configure the plugin depends on the scope to which the plugin should apply:

• Plugins configured at the realm level are executed when authenticating to any authentication chain
in the realm, provided the authentication chain does not have an associated plugin.

• Plugins configured at the service level are executed if that authentication chain is used for
authentication. Any plugins configured at the realm level will not execute.

In OpenAM Console, navigate to Realms > Realm Name > Authentication > Settings > Post
Authentication Processing. In the Authentication Post Processing Classes list, add the sample plugin
class, com.forgerock.openam.examples.SamplePAP, and then click Save.

Extending OpenAM
Testing Your Post Authentication Plugin

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 247

Alternatively, you can configure sample plugin for the realm by using the ssoadm command.
$ ssoadm
 set-svc-attrs
 --adminid amadmin
 --password-file /tmp/pwd.txt
 --servicename iPlanetAMAuthService
 --realm /myRealm
 --attributevalues iplanet-am-auth-post-login-process-class=
 com.forgerock.openam.examples.SamplePAP

iPlanetAMAuthService under /myRealm was
 modified.

4.1.4. Testing Your Post Authentication Plugin

To test the sample post authentication plugin, login successfully to OpenAM in the scope where the
plugin is configured. For example, if you configured your plugin for the realm, /myRealm, specify the
realm in the login URL.
http://openam.example.com:8080/openam/UI/Login?realm=myRealm

Although as a user you do not notice anywhere in the user interface that OpenAM calls your plugin, a
policy agent or custom client code could retrieve the session property that your plugin added to the
user session.

4.2. Extending UMA Workflow with Extension Points
OpenAM provides a number of extension points for extending the UMA workflow. These extension
points are provided as filters and are dynamically loaded by using the Java ServiceLoader framework
during the UMA workflow.

The extension points available are described in the sections below:

• "Resource Set Registration Extension Point"

• "Permission Request Extension Point"

• "Authorization Request Extension Point"

• "Resource Sharing Extension Point"

4.2.1. Resource Set Registration Extension Point

OpenAM provides the ResourceRegistrationFilter extension point, which can be used to extend UMA
resource set registration functionality.

http://docs.oracle.com/javase/7/docs/api/java/util/ServiceLoader.html

Extending OpenAM
Permission Request Extension Point

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 248

Resource Set Registration Extension Methods

Method Parameters Description
beforeResourceRegistration resourceSet (type:

ResourceSetDescription)
Invoked before a resource set is
registered in the backend.

Changes made to the resourceSet
object at this stage will be
persisted.

afterResourceRegistration resourceSet (type:
ResourceSetDescription)

Invoked after a resource set is
registered in the backend.

Changes made to the resourceSet
object at this stage will not be
persisted.

4.2.2. Permission Request Extension Point
OpenAM provides the PermissionRequestFilter extension point, which can be used to extend UMA
permission request functionality.

Permission Request Extension Methods

Method Parameters Description
onPermissionRequest resourceSet (type:

ResourceSetDescription)

requestedScopes (type:
Set<String>)

requestingClientId (type: String)

Invoked before a permission
request is created.

4.2.3. Authorization Request Extension Point
OpenAM provides the RequestAuthorizationFilter extension point, which can be used to extend UMA
authorization functionality.

Authorization Request Extension Methods

Method Parameters Description
beforeAuthorization permissionTicket (type:

PermissionTicket)

requestingParty (type: Subject)

resourceOwner (type: Subject)

Invoked before authorization of a
request is attempted.

Extending OpenAM
Resource Sharing Extension Point

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 249

Method Parameters Description
Throws UmaException if
authorization of the request should
not be attempted.

afterAuthorization isAuthorized (type: boolean)

permissionTicket (type:
PermissionTicket)

requestingParty (type: Subject)

resourceOwner (type: Subject)

Invoked before authorization of a
request is attempted.

If the authorization request was
successful, isAuthorized will be
true.

4.2.4. Resource Sharing Extension Point

OpenAM provides the ResourceDelegationFilter extension point, which can be used to extend UMA
resource sharing functionality.

Resource Sharing Extension Methods

Method Parameters Description
beforeResourceShared umaPolicy (type: UmaPolicy) Invoked before creating

a sharing policy for a
resource.

Changes to the umaPolicy
object at this stage will be
persisted.

Throws ResourceException
if a sharing policy for the
resource should not be
created.

afterResourceShared umaPolicy (type: UmaPolicy) Invoked after creating
a sharing policy for a
resource.

Changes to the umaPolicy
object at this stage will not
be persisted.

beforeResourceSharedModification currentUmaPolicy (type:
UmaPolicy)

updatedUmaPolicy (type:
UmaPolicy)

Invoked before altering the
sharing policy of a resource.

Changes to the
updatedUmaPolicy object at
this stage will be persisted.

Throws ResourceException
if the sharing policy of the

Extending OpenAM
Resource Sharing Extension Point

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 250

Method Parameters Description
resource should not be
modified.

onResourceSharedDeletion umaPolicy (type: UmaPolicy) Invoked before deleting the
sharing policy of a resource.

Throws ResourceException
if the sharing policy of the
resource should not be
deleted.

beforeQueryResourceSets userId (type: String)

queryFilter (type:
QueryFilter<JsonPointer>)

Invoked before querying
the resource sets owned or
shared with a user.

The userId parameter
provides the ID of the user
making the query request.

The queryFilter parameter
provides the incoming
request query filter.

Returns a QueryFilter that
can be used to return the
user's resource sets.

Scripting OpenAM
The Scripting Environment

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 251

Chapter 5

Scripting OpenAM

This chapter explains how to use scripting to exact fine control over various aspects of OpenAM.

You can use scripts for client-side and server-side authentication, policy conditions, and handling
OpenID Connect claims.

This chapter covers the following topics:

• The Scripting Environment

• The Scripting API

• Using the Default Scripts

For information on managing scripts, see "Managing Scripts" in the Administration Guide and
"RESTful Script Management".

5.1. The Scripting Environment
This section introduces how OpenAM executes scripts, and covers thread pools and security
configuration.

You can use scripts to modify default OpenAM behavior in the following situations, also known as
contexts:

Client-side Authentication

Scripts that are executed on the client during authentication.

Note

Client-side scripts must be in JavaScript.

Server-side Authentication

Scripts are included in an authentication module and are executed on the server during
authentication.

Scripting OpenAM
The Scripting Environment

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 252

Scripted authentication modules are an alternative to developing custom authentication
modules by using Java as described in "Creating a Custom Authentication Module". A scripted
authentication module allows you to customize default authentication behavior by adding Groovy
or JavaScript code to the module configuration.

To see an example server-side authentication script, see "Default Server-side Authentication
Script".

Policy Condition

Scripts used as conditions within policies.

To see an example policy condition script, see "Default Policy Condition Script".

OIDC Claims

Scripts that gather and populate the claims in a request when issuing an ID token or making a
request to the userinfo endpoint.

OpenAM implements a configurable scripting engine for each of the context types that are executed
on the server.

The scripting engines in OpenAM have two main components: security settings, and the thread pool.

Scripting OpenAM
Security

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 253

5.1.1. Security
OpenAM scripting engines provide security features for ensuring that malicious Java classes are
not directly called. The engines validate scripts by checking all directly-called Java classes against
a configurable blacklist and whitelist, and, optionally, against the JVM SecurityManager, if it is
configured.

Whitelists and blacklists contain class names that are allowed or denied execution respectively.
Specify classes in whitelists and blacklists by name or by using regular expressions.

Classes called by the script are checked against the whitelist first, and must match at least one
pattern in the list. The blacklist is applied after the whitelist, and classes matching any pattern are
disallowed.

You can also configure the scripting engine to make an additional call to the JVM security manager
for each class that is accessed. The security manager throws an exception if a class being called is
not allowed to execute.

Scripting OpenAM
Thread Pools

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 254

For more information on configuring script engine security, see "Scripting" in the Reference.

Important Points About Script Engine Security

The following points should be considered when configuring the security settings within each script
engine:

The scripting engine only validates directly accessible classes.

The security settings only apply to classes that the script directly accesses. If the script calls Foo
.a() and then that method calls Bar.b(), the scripting engine will be unable to prevent it. You must
consider the whole chain of accessible classes.

Note

Access includes actions such as:

• Importing or loading a class.

• Accessing any instance of that class. For example, passed as a parameter to the script.

• Calling a static method on that class.

• Calling a method on an instance of that class.

• Accessing a method or field that returns an instance of that class.

Potentially dangerous Java classes are blacklisted by default.

All Java reflection classes (java.lang.Class, java.lang.reflect.*) are blacklisted by default to avoid
bypassing the security settings.

The java.security.AccessController class is also blacklisted by default to prevent access to the
doPrivileged() methods.

Caution

You should not remove potentially dangerous Java classes from the blacklist.

The whitelists and blacklists match class or package names only.

The whitelist and blacklist patterns apply only to the exact class or package names involved. The
script engine does not know anything about inheritance, so it is best to whitelist known, specific
classes.

5.1.2. Thread Pools
Each script is executed in an individual thread. Each scripting engine starts with an initial number of
threads available for executing scripts. If no threads are available for execution, OpenAM creates a
new thread to execute the script, until the configured maximum number of threads is reached.

Scripting OpenAM
The Scripting API

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 255

If the maximum number of threads is reached, pending script executions are queued in a number
of buffer threads, until a thread becomes available for execution. If a created thread has completed
script execution and has remained idle for a configured amount of time, OpenAM terminates the
thread, shrinking the pool.

For more information on configuring script engine thread pools, see "Scripting" in the Reference.

5.2. The Scripting API
Client-side scripts have access only to the user agent API. The functionality provided by each user
agent is different, refer to the API provided by your user agent for more information.

5.2.1. Global API Functionality
This section covers functionality available to each of the server-side script types.

Global API functionality includes:

• Accessing HTTP Services

• Debug Logging

5.2.1.1. Accessing HTTP Services
OpenAM passes an HTTP client object, httpClient, to server-side scripts. Server-side scripts can
call HTTP services with the httpClient.get and httpClient.post methods. The methods return an
HttpClientResponse object.

HTTP Client Methods

Method Parameters Return Type Description
httpClient.get URI (type: String)

Request Data (type: Map)

HttpClientResponse Perform an HTTP GET
on the specified URI with
the specified request data
and return the response
retrieved.

httpClient.post URI (type: String)

Body (type: String)

Request Data (type: Map)

HttpClientResponse Perform an HTTP POST
to the specified URI with
the specified body and
request data and return
the response retrieved.

The requestData object is a map in which the keys are cookies and headers. OpenAM ignores other keys.

The cookies value, specifying the cookie headers in the request, is a list of maps where the keys are
domain, field, and value.

Scripting OpenAM
Global API Functionality

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 256

The headers value, specifying the headers in the request, is a list of maps where the keys are field, and
value.

An example requestData JavaScript object using GET would be as follows:
var response = httpClient.get("http://example.com:8080/openam/json/users/" + username,
{
 cookies:[
 {
 "domain": ".example.com",
 "field": "iPlanetDirectoryPro",
 "value": "E8cDkvlad83kd....KDodkIEIx*DLEDLK...JKD09d"
 }
],
 headers:[
 {
 "field": "Content-type",
 "value": "application/json"
 }
]
});

An example requestData JavaScript object using POST follows:
var response = httpClient.post("http://example.com:8080/openam/json/authenticate","{
 "authId": "eyAiYWxnIjogIkhTMjU2IiwgInR5cCI6ICJqd3QiIH0.eyAib3RrIjogIm03ODVzN2x
 sbnR1bjZvbGZ1MHZhOGVtYTQxIiwgInNlc3Npb25JZCI6ICJBUUlDNXdNMkxZNFNmY3lEeDY3QnB
 PdzJtRU9rUzNpLWhfNDdRWlMwNHBEN1ppdy4qQUFKVFNRQUNNREVBQWxOTEFCUXROak15TURjNU1
 UZzROVFUwTXpnNE5qRTNNQS4uKiIsICJyZWFsbSI6ICJkYz1vcGVuYW0sZGM9Zm9yZ2Vyb2NrLGR
 jPW9yZyIgfQ.VDRqaekQuXBm2lNI29hfwVADLxjepezuO0241VNDsIM",
 "template": "",
 "stage": "DataStore1",
 "callbacks": [
 {
 "type": "NameCallback",
 "output": [
 {
 "name": "prompt",
 "value": "User Name:"
 }
],
 "input": [
 {
 "name": "IDToken1",
 "value": "demo"
 }
]
 },
 {
 "type": "PasswordCallback",
 "output": [
 {
 "name": "prompt",
 "value": "Password:"
 }
],
 "input": [
 {

Scripting OpenAM
Global API Functionality

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 257

 "name": "IDToken2",
 "value": "changeit"
 }
]
 }
]
 }",
 {
 cookies:[
],
 headers:[
 {
 "field": "Content-Type",
 "value": "application/json"
 }
]
});

Note

To get the form data, you can access the sharedState object to get the data that previous modules in the chain
have obtained. For example, if you have a Data Store module in your chain, you can get the username and
password from the sharedState object in the script.

HTTP client requests are synchronous, blocking until they return. You can, however, set a global
timeout for server-side scripts. For details, see "Hints for the Scripted Authentication Module" in the
Administration Guide.

Server-side scripts can access response data by using the methods listed in the table below.

HTTP Client Response Methods

Method Parameters Return Type Description
HttpClientResponse.getCookies Void Map<String, String> Get the cookies for the

returned response, if
any exist.

HttpClientResponse.getEntity Void String Get the entity of the
returned response.

HttpClientResponse.getHeaders Void Map<String, String> Get the headers for the
returned response, if
any exist.

HttpClientResponse
.getReasonPhrase

Void String Get the reason phrase
of the returned
response.

HttpClientResponse.getStatusCode Void Integer Get the status code of
the returned response.

HttpClientResponse.hasCookies Void Boolean Indicate whether the
returned response had
any cookies.

Scripting OpenAM
Authentication API Functionality

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 258

Method Parameters Return Type Description
HttpClientResponse.hasHeaders Void Boolean Indicate whether the

returned response had
any headers.

5.2.1.2. Debug Logging

Server-side scripts can write messages to OpenAM debug logs by using the logger object.

OpenAM does not log debug messages from scripts by default. You can configure OpenAM to log such
messages by setting the debug log level for the amScript service. For details, see "Debug Logging By
Service" in the Administration Guide.

The following table lists the logger methods.

Logger Methods

Method Parameters Return Type Description
logger.error Error Message (type:

String)
Void Write Error Message to OpenAM

debug logs if ERROR level logging
is enabled.

logger.errorEnabled Void Boolean Return true when ERROR level
debug messages are enabled.

logger.message Message (type: String) Void Write Message to OpenAM debug
logs if MESSAGE level logging is
enabled.

logger.messageEnabled Void Boolean Return true when MESSAGE level
debug messages are enabled.

logger.warning Warning Message (type:
String)

Void Write Warning Message to OpenAM
debug logs if WARNING level
logging is enabled.

logger.warningEnabled Void Boolean Return true when WARNING level
debug messages are enabled.

5.2.2. Authentication API Functionality

This section covers the available functionality when Scripting authentication modules use client-side
and server-side authentication script types.

Authentication API functionality includes:

• Accessing Authentication State

• Accessing Profile Data

Scripting OpenAM
Authentication API Functionality

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 259

• Accessing Client-Side Script Output Data

• Accessing Request Data

5.2.2.1. Accessing Authentication State

OpenAM passes authState and sharedState objects to server-side scripts in order for the scripts to
access authentication state.

Server-side scripts can access the current authentication state through the authState object.

The authState value is SUCCESS if the authentication is currently successful, or FAILED if authentication
has failed. Server-side scripts must set a value for authState before completing.

If an earlier authentication module in the authentication chain has set the login name of the user,
server-side scripts can access the login name through username.

The following authentication modules set the login name of the user:

• Anonymous

• Certificate

• Data Store

• Federation

• HTTP Basic

• JDBC

• LDAP

• Membership

• RADIUS

• SecurID,

• Windows Desktop SSO

• Windows NT

5.2.2.2. Accessing Profile Data

Server-side authentication scripts can access profile data through the methods of the idRepository
object.

Scripting OpenAM
Authentication API Functionality

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 260

Profile Data Methods

Method Parameters Return
Type

Description

idRepository
.getAttribute

User Name (type: String)

Attribute Name (type: String)

Set Return the values of the named
attribute for the named user.

idRepository
.setAttribute

User Name (type: String)

Attribute Name (type: String)

Attribute Values (type: Array)

Void Set the named attribute as specified
by the attribute value for the named
user, and persist the result in the
user's profile.

idRepository
.addAttribute

User Name (type: String)

Attribute Name (type: String)

Attribute Value (type: String)

Void Add an attribute value to the list of
attribute values associated with the
attribute name for a particular user.

5.2.2.3. Accessing Client-Side Script Output Data

Client-side scripts add data they gather into a String object named clientScriptOutputData. Client-side
scripts then cause the user-agent automatically to return the data to OpenAM by HTTP POST of a
self-submitting form.

5.2.2.4. Accessing Request Data

Server-side scripts can get access to the login request by using the methods of the requestData object.

The following table lists the methods of the requestData object. Note that this object differs from the
client-side requestData object (see "HTTP Client Methods") and contains information about the original
authentication request made by the user.

Request Data Methods

Method Parameters Return Type Description
requestData.getHeader Header Name (type:

String)
String Return the String value of the named

request header, or null if parameter is
not set.

requestData.getHeaders Header Name (type:
String)

String[] Return the array of String values of
the named request header, or null if
parameter is not set.

requestData.getParameter Parameter Name
(type: String)

String Return the String value of the
named request parameter, or null if
parameter is not set.

Scripting OpenAM
Authorization API Functionality

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 261

Method Parameters Return Type Description
requestData.getParameters Parameter Name

(type: String)
String[] Return the array of String values of the

named request parameter, or null if
parameter is not set.

5.2.3. Authorization API Functionality

This section covers functionality available when scripting authorization using the policy condition
script context type.

5.2.3.1. Accessing Authorization State

Server-side scripts can access the current authorization state through the following objects:

Authorization State Objects

Object Type Description
authorized Boolean Return true if the authorization is currently successful, or false if

authorization has failed. Server-side scripts must set a value for
authorized before completing.

environment Map<String,
 Set<String>>

Describe the environment passed from the client making the
authorization request.

For example, the following shows a simple environment map with a single
entry:
"environment": {
 "IP": [
 "127.0.0.1"
]
}

resourceURI String Specify the URI of the resource to which authorization is being
requested.

username String Specify the user ID of the subject that is requesting authorization.

5.2.3.2. Accessing Profile Data

Server-side authorization scripts can access profile data of the subject of the authorization request
through the methods of the identity object.

Scripting OpenAM
Authorization API Functionality

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 262

Note

To access the profile data of the subject, they must be logged in and their SSO token must be available.

Authorization Script Profile Data Methods

Method Parameters Return
Type

Description

identity.getAttribute Attribute Name (type: String) Set Return the values of the named
attribute for the subject of the
authorization request.

identity.setAttribute Attribute Name (type: String)

Attribute Values (type: Array)

Void Set the named attribute to the
values specified by the attribute
value for the subject of the
authorization request.

identity.addAttribute Attribute Name (type: String)

Attribute Value (type: String)

Void Add an attribute value to the list of
attribute values associated with the
attribute name for the subject of the
authorization request.

identity.store None Void Commit any changes to the identity
repository.

Caution

You must call store() otherwise
changes will be lost when the
script completes.

5.2.3.3. Accessing Session Data

Server-side authorization scripts can access session data of the subject of the authorization request
through the methods of the session object.

Note

To access the session data of the subject, they must be logged in and their SSO token must be available.

Authorization Script Session Methods

Method Parameters Return
Type

Description

session.getProperty Property Name (type: String) String Retrieve properties from the
session associated with the subject

Scripting OpenAM
OIDC Claims API Functionality

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 263

Method Parameters Return
Type

Description

of the authorization request. For
example, AuthLevel.

5.2.3.4. Setting Authorization Responses

Server-side authorization scripts can return information in the response to an authorization request.

Authorization Script Response Methods

Method Parameters Return Type Description
responseAttributes.put Attribute Name (type:

String)

Attribute Values (type:
Array)

Void Add an attribute to
the response to the
authorization request.

advice.put Advice Key (type: String)

Advice Values (type: Array)

Void Add advice key-
value pairs to the
response to a failing
authorization request.

ttl TTL Value (type: Integer) Void Add a time-to-live
value to the response
to a successful
authorization, after
which the decision is
no longer valid.

5.2.4. OIDC Claims API Functionality

This section covers functionality available when scripting OIDC claim handling using the OIDC claims
script context type.

5.2.4.1. Accessing OpenID Connect Requests

Server-side scripts can access the OpenID Connect request through the following objects:

OIDC Request Objects

Object Type Description
scopes Set<String> Contains a set of the requested scopes. For

example:

Scripting OpenAM
OIDC Claims API Functionality

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 264

Object Type Description

[
 "profile",
 "openid"
]

identity Class Contains a representation of the identity of the
resource owner.

For more details, see the com.sun.identity.idm
.AMIdentity class in the OpenAM Javadoc.

session Class Contains a representation of the user's session
object if the request contained a session cookie.

For more details, see the com.iplanet.sso
.SSOToken class in the OpenAM Javadoc.

claims Map<String, Object> Contains a map of the claims the server provides
by default. For example:
{
 "sub": "248289761001",
 "updated_at": "1450368765"
}

requestedClaims Map<String,
 Set<String>>

Contains requested claims if the claims query
parameter is used in the request and Enable
"claims_parameter_supported" is checked in
the OAuth2 provider service configuration,
otherwise is empty.

For more information see "Requesting Claims
using the "claims" Request Parameter" in the
OpenID Connect Core 1.0 specification.

Example:
{
 "given_name": {
 "essential": true,
 "values": [
 "Demo User",
 "D User"
]
 },
 "nickname": null,
 "email": {
 "essential": true
 }
}

../apidocs/index.html?com/sun/identity/idm/AMIdentity.html
../apidocs/index.html?com/iplanet/sso/SSOToken.html
http://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter
http://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter

Scripting OpenAM
Using the Default Scripts

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 265

5.3. Using the Default Scripts
This section covers the default scripts provided in OpenAM. These scripts act as templates for
creating your own scripts. They are global and can be used in any realm, and cannot be deleted.

Warning

Editing a default script will affect every authentication module, policy condition, or OIDC claim configuration
that uses the script.

5.3.1. Default Server-side Authentication Script
This section demonstrates how to use the default server-side authentication script in a Scripted
Authentication module.

The default server-side authentication script only authenticates a subject when the current time
on the OpenAM server is between 09:00 and 17:00. The script also uses the logger and httpClient
functionality provided in the scripting API.

To examine the contents of the default server-side authentication script in the OpenAM console
browse to Realms > Top Level Realm > Scripts, and then click Scripted Module - Server Side.

For more information on the functions available for use in server-side authentication scripts, see "The
Scripting API".

5.3.1.1. Preparing OpenAM
OpenAM requires a small amount of configuration before trying the example server-side
authentication script. You must first create a Scripted authentication module, and then include it in
an authentication chain, which can then be used when logging in to OpenAM.

The procedures in this section are:

• "To Create a Scripted Authentication Module that Uses the Default Server-side Authentication
Script"

• "To Create an Authentication Chain that Uses a Scripted Authentication Module"

To Create a Scripted Authentication Module that Uses the Default Server-side Authentication
Script

In this procedure create a Scripted Authentication module, and link it to the default server-side
authentication script.

1. Log in as an OpenAM administrator, for example amadmin.

2. Click Realms > Top Level Realm > Authentication > Modules.

Scripting OpenAM
Default Server-side Authentication Script

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 266

3. On the Authentication Modules page, click Add Module.

4. On the New Module page, enter a module name, such as myScriptedAuthModule, in the Type drop-
down menu, select Scripted Module, and then click Create.

5. On the module configuration page:

a. Uncheck the Client-side Script Enabled checkbox.

b. In the Server-side Script drop-down menu, select Scripted Module - Server Side.

c. Click Save Changes.

To Create an Authentication Chain that Uses a Scripted Authentication Module

In this procedure create an authentication chain that uses a Data Store authentication module and
the Scripted authentication module created in the previous procedure.

1. Log in as an OpenAM administrator, for example amadmin.

2. Click Realms > Top Level Realm > Authentication > Chains.

3. On the Authentication Chains page, click Add Chain.

4. On the Add Chain page, enter a name, such as myScriptedChain, and then click Create.

5. On the Edit Chain tab, click Add a Module.

6. In the New Module dialog box:

a. In the Select Module drop-down menu, select DataStore.

b. In the Select Criteria drop-down menu, select Required.

c. Click OK.

Note

The Data Store authentication module checks the user credentials, whereas the Scripted authentication
module does not check credentials, but instead only checks that the authentication request is processed
during working hours. Without the Data Store module, the username in the Scripted authentication module
cannot be determined. Therefore, do not configure the Scripted authentication module (server-side script)
as the first module in an authentication chain, because it needs a username.

7. On the Edit Chain tab, click Add Module.

8. In the New Module dialog box:

a. In the Select Module drop-down menu, select the Scripted Module from the previous
procedure, for example myScriptedAuthModule.

Scripting OpenAM
Default Server-side Authentication Script

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 267

b. In the Select Criteria drop-down menu, select Required.

c. Click OK.

The resulting chain resembles the following:

9. On the Edit Chain tab, click Save Changes.

5.3.1.2. Trying the Default Server-side Authentication Script

This section shows how to log in using an authentication chain that contains a Scripted authentication
module, which in turn uses the default server-side authentication script.

Scripting OpenAM
Default Server-side Authentication Script

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 268

To Login to OpenAM Using a Chain Containing a Scripted Authentication Module

1. Log out of OpenAM.

2. In a browser, navigate to the OpenAM login URL, and specify the authentication chain created in
the previous procedure as the value of the service query parameter.

For example:
https://openam.example.com:8443/openam/XUI/#login/&service=myScriptedChain

3. Log in as user demo with password changeit.

If login is successful, the user profile page appears. The script will also output messages, such as
the following in the debug/Authentication log file:

amScript:05/08/2015 11:31:21:835 AM CEST: Thread[pool-19-thread-5,5,main]
Starting server-side JavaScript
amScript:05/08/2015 11:31:21:837 AM CEST: Thread[pool-19-thread-5,5,main]
User: demo
amScript:05/08/2015 11:31:21:837 AM CEST: Thread[pool-19-thread-5,5,main]
Current time: 11
amScript:05/08/2015 11:31:21:837 AM CEST: Thread[pool-19-thread-5,5,main]
Authentication allowed!

Tip

The default server-side authentication script outputs log messages at the message and error level.

OpenAM does not log debug messages from scripts by default. You can configure OpenAM to log such
messages by setting the debug log level for the amScript service. For details, see "Debug Logging By
Service" in the Administration Guide.

4. (Optional) To test that the script is being used as part of the login process, edit the script to alter
the times when authentication is allowed:

a. Log out the demo user.

b. Log in as an OpenAM administrator, for example amadmin.

c. Click Realms > Top Level Realm > Scripts > Scripted Module - Server Side.

d. In the script, swap the values for START_TIME and END_TIME, for example:
var START_TIME = 17;
var END_TIME = 9; //

e. Click Save.

Scripting OpenAM
Default Policy Condition Script

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 269

f. Repeat steps 1, 2, and 3 above, logging into the module as the demo user as before. The
authentication result will be the opposite of the previous result, as the allowed times have
inverted.

5.3.2. Default Policy Condition Script
This section demonstrates how to use the sample policy condition script as part of an authorization
policy. To examine the contents of the sample policy condition script in the OpenAM console browse
to Realms > Top Level Realm > Scripts, and then click Scripted Policy Condition.

The default policy condition script demonstrates how to access a user's profile information, use that
information in HTTP calls, and make a policy decision based on the outcome.

For more information on the functions available for use in policy condition scripts, see "The Scripting
API".

5.3.2.1. Preparing OpenAM
OpenAM requires a small amount of configuration before trying the default policy condition script.
The default policy condition script requires that the subject of the policy has an address in their
profile. The script compares the address to the country in the resource URL and to the country from
which the request originated, as determined by an external GeoIP web service. The demo user also
requires access to evaluate policies.

The procedures in this section are:

• "To Add an Address to the Demo User"

• "To Allow the Demo User to Evaluate a Policy"

• "To Create a Policy that Uses the Default Policy Condition Script"

• "To Enable Message-level Logging for Policy Evaluation"

To Add an Address to the Demo User

In this procedure, add an address value to the demo user's profile. The default policy condition script
uses the address when performing policy evaluation.

1. Log in as an OpenAM administrator, for example amadmin.

2. Click Realms > Top Level Realm > Subjects.

3. On the User tab, click the demo user.

4. In Home Address, enter a valid address. For example:
201 Mission St, Suite 2900, San Francisco, CA 94105

Scripting OpenAM
Default Policy Condition Script

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 270

5. Click Save.

To Allow the Demo User to Evaluate a Policy

In this procedure, add the demo user to a group and assign the privilege required to perform policy
evaluations.

1. Log in as an OpenAM administrator, for example amadmin.

2. Click Realms > Top Level Realm > Subjects.

3. On the Group tab, click New, enter an ID for the group, such as policyEval, and then click OK.

4. On the User tab:

a. Click the demo user.

b. Click the Group tab.

c. In the Available box, select the group created in step 3, and then click Add.

d. Click Save.

5. Click Realms > Top Level Realm > Privileges.

6. Click the group created in step 3, for example policyEval.

7. On the Privileges page, select Read and write access to all realm and policy properties.

8. Click Save.

To Create a Policy that Uses the Default Policy Condition Script

In this procedure, create a policy that uses the default policy condition script. Policy evaluations can
then be performed to test the script functionality.

1. Log in as an OpenAM administrator, for example amadmin.

2. Click Realms > Top Level Realm > Authorization > Policy Sets.

3. On the Policy Sets page, select Default Policy Set.

4. On the Default Policy Set page, click Add a Policy.

5. Define the policy as follows:

a. Enter a name for the policy.

b. Define resources to which the policy applies:

i. Select URL from the Resource Type drop down list.

Scripting OpenAM
Default Policy Condition Script

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 271

ii. Select the resource pattern *://*:*/* from the Resources drop down list.

iii. Click Add.

The *://*:*/* resource appears in the Resources field.

iv. Click Add Resource to add a second resource to the policy.

v. Select the resource pattern *://*:*/*?* from the Resources drop down list.

vi. Click Add.

The *://*:*/*?* resource appears along with the *://*:*/* resource in the Resources field.

vii. Click Create to create the policy.

The Resources tab appears as follows:

c. Specify actions to which the policy applies:

i. Select the Actions tab.

ii. Select GET from the Add an Action drop down list.

iii. The GET action appears in the list of actions. The default state for the GET action is
Allow.

Scripting OpenAM
Default Policy Condition Script

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 272

The Actions tab appears as follows:

iv. Click Save Changes.

d. Configure subjects to which the policy applies:

i. Select the Subjects tab.

ii. Click the edit icon—the pencil.

iii. Select Authenticated Users from the Type drop down list.

iv. Click the OK icon—the check mark.

The Subjects tab appears as follows:

Scripting OpenAM
Default Policy Condition Script

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 273

v. Click Save Changes.

e. Configure environments in which the policy applies:

i. Select the Environments tab.

ii. Click Add an Environment Condition.

iii. Select Script from the Type drop down list.

iv. Select Scripted Policy Condition from the Script Name drop down list.

v. Click the OK icon—the check mark.

The Environments tab appears as follows:

Scripting OpenAM
Default Policy Condition Script

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 274

vi. Click Save Changes.

f. No additional configuration is required in the Response Attributes or Details tabs.

To Enable Message-level Logging for Policy Evaluation

The default policy condition script writes to the debug logs at the message level. Message-level debug
logging is not enabled for policy evaluation by default.

This section shows how to enable message-level debug logging for policy evaluation, so that logger
output from the default policy condition script can be viewed in the Entitlement debug log.

1. Log in as an OpenAM administrator, for example amadmin.

2. Visit the Debug.jsp page, for example: https://openam.example.com:8443/openam/Debug.jsp.

3. In the Debug instances drop-down, select Entitlement.

4. In the Level drop-down, choose the debug level required. In this example, select Message.

Scripting OpenAM
Default Policy Condition Script

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 275

5. Click Submit, and on the summary page that appears, click Confirm.

Message-level debug logging is now enabled for policy evaluation.

5.3.2.2. Trying the Default Policy Condition Script

This section demonstrates using a policy that contains the default policy condition script.

To evaluate against a policy, you must first obtain an SSO token for the subject performing the
evaluation, in this case the demo user. You can then make a call to the policies?_action=evaluate
endpoint, including some environment information, which the policy uses to make an authorization
decision.

To Evaluate a Policy

1. Obtain an SSO Token for the demo user:

curl \
--request POST
 \
--header "X-OpenAM-Username: demo"
 \
--header "X-OpenAM-Password: changeit" \
https://openam.example.com:8443/openam/json/authenticate
{
 "tokenId": "AQIC5wM2...",
 "successUrl": "/openam/console"
}

2. Send an evaluation request to the policies endpoint, using the SSO token of the demo user in the
iPlanetDirectoryPro header.

In the JSON data, set the subject property to also be the SSO token of the demo user. In the
resources property, include a URL that resides on a server in the same country as the address set
for the demo user. In the environment property, include an IP address that is also based in the same
country as the user and the resource. The example below uses the ForgeRock Community web
site URL and an IP address from a ForgeRock office, both located in the United States:

curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "iPlanetDirectoryPro: AQIC5wM2..."
 \
--data '{
 "resources": [
 "http://www.forgerock.org:80/index.html"
],
 "application": "iPlanetAMWebAgentService",
 "subject": { "ssoToken": "AQIC5wM2..."},

Scripting OpenAM
Default Policy Condition Script

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 276

 "environment": {
 "IP": [
 "38.99.39.210"
]
 }
}' \
https://openam.example.com:8443/openam/json/policies?_action=evaluate
[
 {
 "advices": {},
 "ttl": 9223372036854775807,
 "resource": "http://www.forgerock.org:80/index.html",
 "actions": {
 "POST": true,
 "GET": true
 },
 "attributes": {
 "countryOfOrigin": [
 "United States"
]
 }
 }
]

If the country in the subject's profile matches the country determined from the source IP in the
environment and the country determined from the resource URL, then OpenAM returns a list of
actions available. The script will also add an attribute to the response called countryOfOrigin with
the country as the value.

If the countries do not match, no actions are returned. In the following example, the resource
URL is based in France, while the IP and user's address in the profile are based in the United
States:

Scripting OpenAM
Default OIDC Claims Script

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 277

curl -X POST
 \
-H "Content-Type: application/json"
 \
-H "iPlanetDirectoryPro: AQIC5wM2..."
 \
-d '{
 "resources": [
 "http://www.forgerock.fr:80/index.html"
],
 "application": "iPlanetAMWebAgentService",
 "subject": { "ssoToken": "AQIC5wM2..."},
 "environment": {
 "IP": [
 "38.99.39.210"
]
 }
}' \
'https://openam.example.com:8443/openam/json/policies?_action=evaluate'
[
 {
 "advices": {},
 "ttl": 9223372036854775807,
 "resource": "http://www.forgerock.fr:80/index.html",
 "actions": {},
 "attributes": {}
 }
]

5.3.3. Default OIDC Claims Script

This section demonstrates how to use the default OIDC claims script to return the profile attributes of
a user in response to an OpenID Connect request for the profile scope.

The default OIDC claims script maps the following claims to the profile scope:

• zoneinfo

• family_name

• locale

• name

To examine the contents of the default OIDC claims script in the OpenAM console browse to Realms
> Top Level Realm > Scripts, and then click OIDC Claims Script.

For more information on the functions available for use in OIDC claim scripts, see "The Scripting
API".

Scripting OpenAM
Default OIDC Claims Script

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 278

5.3.3.1. Preparing OpenAM

OpenAM requires a small amount of configuration before trying the example OIDC claims script. You
must first create an OAuth2 provider with OpenID Connect settings, and register an OpenID Connect
client, before you can authenticate to the client using a web browser.

The procedures in this section are:

• "To Create an OpenID Connect Provider Service"

• "To Register an OpenID Connect Client"

To Create an OpenID Connect Provider Service

Follow the steps in this procedure to create an OpenID Connect provider service by using the wizard.

1. Log in to OpenAM as an administrator, for example amadmin.

2. Click Realms > Top Level Realm > Configure OAuth Provider > Configure OpenID Connect.

3. On the Configure OpenID Connect page, accept the default values and then click Create.

4. Navigate to Realms > Top Level Realm > Services, click OAuth2 Provider, and verify that the
value for OIDC Claims Script is the default script, OIDC Claims Script.

For a more detailed explanation and example of creating an OpenID Connect provider service, see
"Configuring OpenAM As OpenID Connect Provider" in the Administration Guide.

To Register an OpenID Connect Client

Follow the steps in this procedure to create an OpenID Connect client agent profile.

1. Log in to OpenAM as an administrator, for example amadmin.

2. Click Realms > Top Level Realm > Agents > OAuth 2.0/OpenID Connect Client.

3. In the Agent table, click New.

4. Enter a name for the client, such as oidcTest, provide a password, and then click Create.

5. On the OAuth 2.0/OpenID Connect Client page, click the agent name to configure the agent.

6. On the edit client page:

a. In Redirection URIs, enter an example URI such as http://www.example.com.

b. In Scope(s), enter both profile and openid.

Scripting OpenAM
Default OIDC Claims Script

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 279

The profile scope will return details about the subject such as given name and timezone. The
openid scope indicates this is an OpenID Connect client.

c. In Display name, enter the name of the client as it will be displayed on the consent page, for
example OIDC Claims Script Client.

7. Save your work.

For a more detailed explanation and examples of registering an OpenID Connect client, see
"Registering OpenID Connect Relying Parties" and "Configuring OAuth 2.0 and OpenID Connect 1.0
Clients" in the Administration Guide.

5.3.3.2. Trying the Default OIDC Claims Script

This section shows how to authenticate to a registered OpenID Connect client and request scopes
from OpenAM, which in turn uses the default OIDC Claims script to populate the scope with claims
and profile values.

To Authenticate to an OIDC Client and use the Default OIDC Claims Script

1. Log out of OpenAM.

2. In an Internet browser, navigate to the OpenAM OAuth 2.0 authorization endpoint, /oauth2/
authorize, and specify the following query parameters, with the values you configured in the agent
profile:

Query parameters for OpenID Connect Authorization to an Agent Profile

Query Parameter Agent Profile Property Value
client_id Name of the agent, for example oidcTest.
redirect_uri Redirection URIs, for example http://www.example.com.
response_type Response Types, for example code.
scope Scope(s), for example openid profile.

For example: http://openam.example.com:8080/openam/oauth2/authorize?
client_id=oidcTest&redirect_uri=http://www.example.com&response_type=code&scope=openid profile

3. Log in to OpenAM as demo, with password changeit.

4. On the consent page, expand the panel labelled Your personal information to see the claim values
the default OIDC script has populated into the requested profile scope.

Scripting OpenAM
Default OIDC Claims Script

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 280

5. Click Allow to be redirected to the Redirection URI specified in the agent profile. The
authorization code is appended to the redirection URI as the value of the code query parameter.

Building SAML v2.0 Service Providers With Fedlets
Using Fedlets in Java Web Applications

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 281

Chapter 6

Building SAML v2.0 Service Providers With
Fedlets

This chapter introduces OpenAM Fedlets, and shows how to use the Fedlet as part of your Java web
application.

An OpenAM Fedlet is a small web application that that acts as a lightweight SAML v2.0 service
provider.

Fedlets are easy to integrate into Java web applications. The Fedlet does not require an entire
OpenAM installation alongside your application, but instead can redirect to OpenAM for single sign-
on, and to retrieve SAML assertions.

6.1. Using Fedlets in Java Web Applications
This section introduces OpenAM Fedlets and shows how to use the Fedlet as part of your Java web
application.

6.1.1. Creating and Installing a Java Fedlet

The following sections provide procedures for creating, installing, configuring, and testing a Java
Fedlet to perform single sign-on and single logout with an identity provider:

• "Generating the Fedlet Configuration on the Identity Provider"

• "Installing and Configuring the Fedlet on the Service Provider"

• "Testing Fedlet Single Sign-on and Single Logout"

You can also use the Fedlet to query attributes of users on identity providers configured with the
Attribute Authority (AttrAuth) and the XACML Policy Decision Point (XACML PDP) types. See the following
sections for additional configuration requirements:

• "Querying an Attribute Authority"

• "Querying an XACML Policy Decision Point"

Building SAML v2.0 Service Providers With Fedlets
Creating and Installing a Java Fedlet

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 282

6.1.1.1. Generating the Fedlet Configuration on the Identity Provider
Perform the following steps on the identity provider to create a Fedlet.zip file containing the
configuration files for the Java fedlet:

To Create Configuration Files for a Fedlet

1. If you have not already done so, create a hosted identity provider, using the test certificate for the
signing key.

For information about how to create a hosted identity provider, see "Creating a Hosted Identity
Provider" in the Administration Guide.

2. Under Realms > Realm Name > Dashboard, click Create Fedlet Configuration, and then click
Create Fedlet Configuration a second time.

Note that the circle of trust includes your hosted identity provider.

3. Name the Fedlet, and set the Destination URL.

You can use the deployment URL, such as http://openam.example.com:8080/fedlet as both the name
and the destination URL.

4. Click Create to generate the Fedlet.zip file.

A message appears indicating Fedlet creation was successful. Note the location of the
generated output file in the message. For example, /path/to/openam/config/myfedlets/
httpopenamexamplecom8080fedlet/Fedlet.zip.

5. Click OK to close the message informing you that the Fedlet was created.

6. Transfer the Fedlet.zip file to the service provider administrator.

6.1.1.2. Installing and Configuring the Fedlet on the Service Provider
Having obtained the Fedlet.zip file from the identity provider administrator, the service provider
adminsitrator unzips and installs the file, and then installs the fedlet.war file from the OpenAM
distribution:

To Install and Configure the Fedlet as a Demo Application

1. Create the fedlet directory in the home directory of the user that runs the OpenAM web
container:

$ cd $HOME
$ mkdir fedlet

2. Copy the Fedlet.zip file obtained from the identity provider administrator to the $HOME/fedlet
directory.

Building SAML v2.0 Service Providers With Fedlets
Creating and Installing a Java Fedlet

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 283

3. Unzip the Fedlet.zip file.

4. Move all the files under $HOME/fedlet/conf to $HOME/fedlet.

5. Obtain the Fedlet-13.5.2.zip file from the full OpenAM distribution file, OpenAM-13.5.2.zip.

6. Unzip the Fedlet-13.5.2.zip file:

$ cd /path/to/openam-distribution/openam
$ unzip Fedlet-13.5.2.zip

7. Deploy the Fedlet in your web container:

$ cp /path/to/openam-distribution/openam/fedlet.war /path/to/tomcat/webapps

6.1.1.3. Testing Fedlet Single Sign-on and Single Logout

To test single sign-on and single logout from the Fedlet, browse to the Fedlet URL. For example,
http://openam.example.com:8080/fedlet.

Try one or more examples from the Fedlet home page:

You can log in to the identity provider with username demo and password changeit.

6.1.1.4. Querying an Attribute Authority

You can use the Fedlet to query attributes on an identity provider. The identity provider must be
configured with the Attribute Authority (AttrAuth) type and should sign responses. The Fedlet must
be configured to deal with signed responses. Furthermore, map the attributes to request in both the
identity provider and the Fedlet configurations.

Perform the following steps:

To Use the Fedlet to Query an Attribute Authority

1. Add the Attribute Authority type to the hosted identity provider.

Building SAML v2.0 Service Providers With Fedlets
Creating and Installing a Java Fedlet

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 284

a. On OpenAM where the identity provider is hosted, log in to the OpenAM console as an
administrator, such as amadmin.

b. Under Federation > Entity Providers, select the identity provider, and then click New, even
though you plan to change the configuration rather than create a new provider.

c. Select the protocol of the provider: SAMLv2.

d. In the Create SAMLv2 Entity Provider page, do the following.

• Set the Realm.

• Set the Entity Identifier to the same entity identifier you selected in the previous screen.

• In the Attribute Authority section, set the Meta Alias for example to /attra, and set the
Signing certificate alias and Encryption certificate alias values to test (to use the test
certificate).

• Click Create to save your changes.

Disregard any error messages stating that the entity already exists.

AttrAuth now appears in the list of Types for your identity provider.

2. Under Federation > Entity Providers, click the Identity Provider link to open the provider's
configuration.

3. Make sure attributes for the query are mapped on the Identity Provider.

Under IDP > Attribute Mapper, add the following values to the Attribute Map if they are not yet
present.

• cn=cn

• sn=sn

• uid=uid

Note

Make sure to use thread-safe code if you implement the AttributeAuthorityMapper. You can use the
attributes on the HttpRequest instead of synchronizing them. The default AttributeAuthorityMapper uses
an attribute on the HttpServletRequest to pass information to the AttributeQueryUtil.

Click Save to save your changes.

4. Generate the Fedlet configuration files as described in "To Create Configuration Files for a
Fedlet", making sure you map the attributes.

Building SAML v2.0 Service Providers With Fedlets
Creating and Installing a Java Fedlet

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 285

• cn=cn

• sn=sn

• uid=uid

This step creates a Fedlet configuration with updated identity provider metadata. If you already
created a Fedlet, either use a different name, or delete the existing Fedlet.

5. Deploy the new Fedlet as described in "To Install and Configure the Fedlet as a Demo
Application".

6. Edit the new Fedlet configuration to request signing and encryption, and replace the existing
configuration in OpenAM with the edited configuration.

a. Copy the test keystore from OpenAM, and prepare password files.

$ scp user@openam:/home/user/openam/openam/keystore.jks ~/fedlet/

The Fedlet uses password files when accessing the keystore. These password files contain
encoded passwords, where the encoding is specific to the Fedlet.

To encode the password, use fedletEncode.jsp. fedletEncode.jsp is in the deployed Fedlet, for
example http://openam.example.com:8080/fedlet/fedletEncode.jsp. The only password to encode for
OpenAM's test keystore is changeit, because the keystore and private key passwords are both
the same.

Use the encoded value to create the password files as in the following example.

$ echo AQIC5BHNSjLwT303GqndmHbyYvzP9Tz7OAnK > ~/fedlet/.storepass
$ echo AQIC5BHNSjLwT303GqndmHbyYvzP9Tz7OAnK > ~/fedlet/.keypass

b. Edit ~/fedlet/sp.xml.

To use the test certificate for the attribute query feature, add a RoleDescriptor to the
EntityDescriptor after the SSODescriptor. The RoleDescriptor describes the certificates that are
used for signing and encryption. The attribute authority encrypts the response with the
Fedlet's public key, and the Fedlet decrypts the response with its private key.

Change the following:
<RoleDescriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:query="urn:oasis:names:tc:SAML:metadata:ext:query"
 xsi:type="query:AttributeQueryDescriptorType"
 protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 </RoleDescriptor>

To:
 <RoleDescriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

Building SAML v2.0 Service Providers With Fedlets
Creating and Installing a Java Fedlet

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 286

 xmlns:query="urn:oasis:names:tc:SAML:metadata:ext:query"
 xsi:type="query:AttributeQueryDescriptorType"
 protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 <KeyDescriptor use="signing">
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:X509Data>
 <ds:X509Certificate>
MIICQDCCAakCBEeNB0swDQYJKoZIhvcNAQEEBQAwZzELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNh
bGlmb3JuaWExFDASBgNVBAcTC1NhbnRhIENsYXJhMQwwCgYDVQQKEwNTdW4xEDAOBgNVBAsTB09w
ZW5TU08xDTALBgNVBAMTBHRlc3QwHhcNMDgwMTE1MTkxOTM5WhcNMTgwMTEyMTkxOTM5WjBnMQsw
CQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEUMBIGA1UEBxMLU2FudGEgQ2xhcmExDDAK
BgNVBAoTA1N1bjEQMA4GA1UECxMHT3BlblNTTzENMAsGA1UEAxMEdGVzdDCBnzANBgkqhkiG9w0B
AQEFAAOBjQAwgYkCgYEArSQc/U75GB2AtKhbGS5piiLkmJzqEsp64rDxbMJ+xDrye0EN/q1U5Of+
RkDsaN/igkAvV1cuXEgTL6RlafFPcUX7QxDhZBhsYF9pbwtMzi4A4su9hnxIhURebGEmxKW9qJNY
Js0Vo5+IgjxuEWnjnnVgHTs1+mq5QYTA7E6ZyL8CAwEAATANBgkqhkiG9w0BAQQFAAOBgQB3Pw/U
QzPKTPTYi9upbFXlrAKMwtFf2OW4yvGWWvlcwcNSZJmTJ8ARvVYOMEVNbsT4OFcfu2/PeYoAdiDA
cGy/F2Zuj8XJJpuQRSE6PtQqBuDEHjjmOQJ0rV/r8mO1ZCtHRhpZ5zYRjhRC9eCbjx9VrFax0JDC
/FfwWigmrW0Y0Q==
 </ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 </KeyDescriptor>
 <KeyDescriptor use="encryption">
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:X509Data>
 <ds:X509Certificate>
MIICQDCCAakCBEeNB0swDQYJKoZIhvcNAQEEBQAwZzELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNh
bGlmb3JuaWExFDASBgNVBAcTC1NhbnRhIENsYXJhMQwwCgYDVQQKEwNTdW4xEDAOBgNVBAsTB09w
ZW5TU08xDTALBgNVBAMTBHRlc3QwHhcNMDgwMTE1MTkxOTM5WhcNMTgwMTEyMTkxOTM5WjBnMQsw
CQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEUMBIGA1UEBxMLU2FudGEgQ2xhcmExDDAK
BgNVBAoTA1N1bjEQMA4GA1UECxMHT3BlblNTTzENMAsGA1UEAxMEdGVzdDCBnzANBgkqhkiG9w0B
AQEFAAOBjQAwgYkCgYEArSQc/U75GB2AtKhbGS5piiLkmJzqEsp64rDxbMJ+xDrye0EN/q1U5Of+
RkDsaN/igkAvV1cuXEgTL6RlafFPcUX7QxDhZBhsYF9pbwtMzi4A4su9hnxIhURebGEmxKW9qJNY
Js0Vo5+IgjxuEWnjnnVgHTs1+mq5QYTA7E6ZyL8CAwEAATANBgkqhkiG9w0BAQQFAAOBgQB3Pw/U
QzPKTPTYi9upbFXlrAKMwtFf2OW4yvGWWvlcwcNSZJmTJ8ARvVYOMEVNbsT4OFcfu2/PeYoAdiDA
cGy/F2Zuj8XJJpuQRSE6PtQqBuDEHjjmOQJ0rV/r8mO1ZCtHRhpZ5zYRjhRC9eCbjx9VrFax0JDC
/FfwWigmrW0Y0Q==
 </ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc">
 <xenc:KeySize xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"
 >128</xenc:KeySize>
 </EncryptionMethod>
 </KeyDescriptor>
 </RoleDescriptor>

c. Edit ~/fedlet/sp-extended.xml to use the test certificate for the attribute query.

Change the following, assuming your circle of trust is called cot:

Building SAML v2.0 Service Providers With Fedlets
Creating and Installing a Java Fedlet

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 287

<AttributeQueryConfig metaAlias="/attrQuery">
 <Attribute name="signingCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="encryptionCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="wantNameIDEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>cot</Value>
 </Attribute>
</AttributeQueryConfig>

To:
<AttributeQueryConfig metaAlias="/attrQuery">
 <Attribute name="signingCertAlias">
 <Value>test</Value>
 </Attribute>
 <Attribute name="encryptionCertAlias">
 <Value>test</Value>
 </Attribute>
 <Attribute name="wantNameIDEncrypted">
 <Value>true</Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>cot</Value>
 </Attribute>
</AttributeQueryConfig>

d. In the OpenAM Console, under Federation > Entity Providers, delete the existing
configuration for your new Fedlet.

e. Make a copy of sp-extended.xml called sp-extended-copy.xml and set hosted="0" in the root element
of the copy.

Use the copy, sp-extended-copy.xml, when importing the Fedlet configuration into OpenAM.
OpenAM must register the Fedlet as a remote service provider.

f. Under Federation > Entity Providers, click Import Entity... and import your updated Fedlet
configuration.

This ensures OpenAM has the correct service provider configuration for your new Fedlet.

g. Restart the Fedlet or the container where it is deployed.

7. Try the Attribute Query test.

a. Access the Fedlet.

Building SAML v2.0 Service Providers With Fedlets
Creating and Installing a Java Fedlet

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 288

b. Try SSO with username demo, password changeit.

c. Click Fedlet Attribute Query, set the attributes in the Attribute Query page to match the
mapped attributes, and then click Submit.

Building SAML v2.0 Service Providers With Fedlets
Creating and Installing a Java Fedlet

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 289

d. Check that you see the attribute values in the response.

6.1.1.5. Querying an XACML Policy Decision Point
You can use the Fedlet to query an XACML policy decision point on an identity provider. The identity
provider must have a policy configured, must be configured with the Policy Decision Point (XACML PDP)
type, and must have a SAML v2.0 SOAP Binding PDP handler configured.

Perform the following steps:

To Use the Fedlet to Query an XACML Policy Decision Point

1. Configure a policy on the hosted identity provider.

OpenAM uses the policy to make the decision whether to permit or deny access to a resource. For
the purpose of the demonstration, configure a simple policy that allows all authenticated users
HTTP GET access on http://www.example.com/.

a. Log in to OpenAM console as an administrator, such as amadmin.

b. Access the policy editor under Realms > Realm Name > Authorization.

c. Choose an application that allows the resource pattern http://www.example.com/*, and HTTP GET
as an action.

If no application exists in the realm, add a new application for the resource pattern http://www
.example.com/*.

Building SAML v2.0 Service Providers With Fedlets
Creating and Installing a Java Fedlet

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 290

d. Add a new policy with the following characteristics.

• Resource pattern: http://www.example.com/*

• Actions: allow GET

• Subject conditions: Authenticated Users

2. Add the Policy Decision Point type to the identity provider.

a. Under Federation > Entity Providers, select the identity provider, and then click New, even
though you plan to change the configuration rather than create a new provider.

b. Select the protocol of the provider: SAMLv2.

c. In the Create SAMLv2 Entity Provider page, do the following.

• Set the Realm.

• Set the Entity Identifier to the entity identifier for the hosted identity provider.

• In the XACML Policy Decision Point section, set the Meta Alias for example to /pdp.

• Click Create to save your changes.

Disregard any error messages stating that the entity already exists.

XACML PDP now appears in the list of Types for your identity provider.

3. Add the PDP handler for the SAML v2.0 SOAP Binding.

a. Navigate to Configure > Global Services, click SAMLv2 SOAP Binding, and then click New.

b. Set the new key to match the meta alias you used when adding the XACML PDP type to the
identity provider configuration, for example /pdp.

• Key: /pdp

• Class: com.sun.identity.xacml.plugins.XACMLAuthzDecisionQueryHandler

Click OK. (Your changes are not saved yet.)

c. Click Save to actually save the new Key:Class pair.

4. Create the Fedlet's configuration files as described in "To Create Configuration Files for a
Fedlet".

This step creates Fedlet configuration files with updated identity provider metadata. If you
already created a Fedlet, either use a different name, or delete the existing Fedlet.

Building SAML v2.0 Service Providers With Fedlets
Creating and Installing a Java Fedlet

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 291

5. Deploy the new Fedlet as described in "To Install and Configure the Fedlet as a Demo
Application".

6. Try the XACML Query test.

a. Access the Fedlet.

b. Try SSO with username demo, password changeit.

c. Click XACML Attribute Query, set the Resource URL in the XACML Query page to http://www
.example.com/, and then click Submit.

Building SAML v2.0 Service Providers With Fedlets
Enabling Signing and Encryption in a Fedlet

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 292

d. Check that you see the permit decision in the response.

6.1.2. Enabling Signing and Encryption in a Fedlet
By default when you create the Java Fedlet, signing and encryption are not configured. You can
however set up OpenAM and the Fedlet to sign and to verify XML signatures and to encrypt and to
decrypt data such as SAML assertions. If you have tried the Attribute Query demonstration, then you
have already configured the Fedlet to request signing and encryption using the test keys from the
identity provider.

Enabling signing and encryption for the Java Fedlet involves the following high level stages:

• Before you create the Fedlet, configure the IDP to sign and encrypt data. See Federation > Entity
Providers > IDP Name > Signing and Encryption in the OpenAM console.

For evaluation, you can use the test certificate delivered with OpenAM.

• Initially deploy and configure the Fedlet, but do not use the Fedlet until you finish.

• On the Fedlet side set up a JKS keystore used for signing and encryption. For evaluation, you can
use copy the keystore.jks file delivered with OpenAM. You can find the file under the configuration
directory for OpenAM, such as $HOME/openam/openam/ for a server instance with base URI openam. The
built-in keystore includes the test certificate.

You must also set up .storepass and .keypass files using the fedletEncode.jsp page, such as http:/
/openam.example.com:8080/fedlet/fedletEncode.jsp, to encode passwords on the Fedlet side. The
passwords for the test keystore and private key are both changeit.

• Configure the Fedlet to perform signing and encryption by ensuring the Fedlet has access to the
keystore, and by updating the SP metadata for the Fedlet.

• Import the updated SP metadata into the IDP to replace the default Fedlet configuration.

• Restart the Fedlet or container in which the Fedlet runs for the changes you made on the Fedlet
side to take effect.

Building SAML v2.0 Service Providers With Fedlets
Enabling Signing and Encryption in a Fedlet

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 293

To Configure the Fedlet For Signing & Encryption

The FederationConfig.properties file specifies the paths to the JKS keystore holding the signing or
encryption keys for the Fedlet, the keystore password file, and the private key password file.

1. After setting up your keystore and password files as described above, edit the properties file
in the configuration directory, such as $HOME/fedlet/FederationConfig.properties, to point to the
keystore and password files.

2. Export the certificate to use for signing and encryption purposes.

$ keytool -export -rfc -keystore keystore.jks -alias test
Enter keystore password:
-----BEGIN CERTIFICATE-----
MIICQDCCAakCBEeNB0swDQYJKoZIhvcNAQEEBQAwZzELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNh
bGlmb3JuaWExFDASBgNVBAcTC1NhbnRhIENsYXJhMQwwCgYDVQQKEwNTdW4xEDAOBgNVBAsTB09w
ZW5TU08xDTALBgNVBAMTBHRlc3QwHhcNMDgwMTE1MTkxOTM5WhcNMTgwMTEyMTkxOTM5WjBnMQsw
CQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEUMBIGA1UEBxMLU2FudGEgQ2xhcmExDDAK
BgNVBAoTA1N1bjEQMA4GA1UECxMHT3BlblNTTzENMAsGA1UEAxMEdGVzdDCBnzANBgkqhkiG9w0B
AQEFAAOBjQAwgYkCgYEArSQc/U75GB2AtKhbGS5piiLkmJzqEsp64rDxbMJ+xDrye0EN/q1U5Of+
RkDsaN/igkAvV1cuXEgTL6RlafFPcUX7QxDhZBhsYF9pbwtMzi4A4su9hnxIhURebGEmxKW9qJNY
Js0Vo5+IgjxuEWnjnnVgHTs1+mq5QYTA7E6ZyL8CAwEAATANBgkqhkiG9w0BAQQFAAOBgQB3Pw/U
QzPKTPTYi9upbFXlrAKMwtFf2OW4yvGWWvlcwcNSZJmTJ8ARvVYOMEVNbsT4OFcfu2/PeYoAdiDA
cGy/F2Zuj8XJJpuQRSE6PtQqBuDEHjjmOQJ0rV/
r8mO1ZCtHRhpZ5zYRjhRC9eCbjx9VrFax0JDC
/FfwWigmrW0Y0Q==

3. Edit the standard metadata file for the Fedlet, such as $HOME/fedlet/sp.xml, to include the
certificate in KeyDescriptor elements, that are children of the SPSSODescriptor element.
<EntityDescriptor
 xmlns="urn:oasis:names:tc:SAML:2.0:metadata"
 entityID="http://www.example.com:8080/fedlet">
 <SPSSODescriptor
 AuthnRequestsSigned="true"
 WantAssertionsSigned="true"
 protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 <KeyDescriptor use="signing">
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:X509Data>
 <ds:X509Certificate>
MIICQDCCAakCBEeNB0swDQYJKoZIhvcNAQEEBQAwZzELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNh
bGlmb3JuaWExFDASBgNVBAcTC1NhbnRhIENsYXJhMQwwCgYDVQQKEwNTdW4xEDAOBgNVBAsTB09w
ZW5TU08xDTALBgNVBAMTBHRlc3QwHhcNMDgwMTE1MTkxOTM5WhcNMTgwMTEyMTkxOTM5WjBnMQsw
CQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEUMBIGA1UEBxMLU2FudGEgQ2xhcmExDDAK
BgNVBAoTA1N1bjEQMA4GA1UECxMHT3BlblNTTzENMAsGA1UEAxMEdGVzdDCBnzANBgkqhkiG9w0B
AQEFAAOBjQAwgYkCgYEArSQc/U75GB2AtKhbGS5piiLkmJzqEsp64rDxbMJ+xDrye0EN/q1U5Of+
RkDsaN/igkAvV1cuXEgTL6RlafFPcUX7QxDhZBhsYF9pbwtMzi4A4su9hnxIhURebGEmxKW9qJNY
Js0Vo5+IgjxuEWnjnnVgHTs1+mq5QYTA7E6ZyL8CAwEAATANBgkqhkiG9w0BAQQFAAOBgQB3Pw/U
QzPKTPTYi9upbFXlrAKMwtFf2OW4yvGWWvlcwcNSZJmTJ8ARvVYOMEVNbsT4OFcfu2/PeYoAdiDA
cGy/F2Zuj8XJJpuQRSE6PtQqBuDEHjjmOQJ0rV/r8mO1ZCtHRhpZ5zYRjhRC9eCbjx9VrFax0JDC
/FfwWigmrW0Y0Q==
 </ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>

Building SAML v2.0 Service Providers With Fedlets
Enabling Signing and Encryption in a Fedlet

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 294

 </KeyDescriptor>
 <KeyDescriptor use="encryption">
 <ds:KeyInfo xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
 <ds:X509Data>
 <ds:X509Certificate>
MIICQDCCAakCBEeNB0swDQYJKoZIhvcNAQEEBQAwZzELMAkGA1UEBhMCVVMxEzARBgNVBAgTCkNh
bGlmb3JuaWExFDASBgNVBAcTC1NhbnRhIENsYXJhMQwwCgYDVQQKEwNTdW4xEDAOBgNVBAsTB09w
ZW5TU08xDTALBgNVBAMTBHRlc3QwHhcNMDgwMTE1MTkxOTM5WhcNMTgwMTEyMTkxOTM5WjBnMQsw
CQYDVQQGEwJVUzETMBEGA1UECBMKQ2FsaWZvcm5pYTEUMBIGA1UEBxMLU2FudGEgQ2xhcmExDDAK
BgNVBAoTA1N1bjEQMA4GA1UECxMHT3BlblNTTzENMAsGA1UEAxMEdGVzdDCBnzANBgkqhkiG9w0B
AQEFAAOBjQAwgYkCgYEArSQc/U75GB2AtKhbGS5piiLkmJzqEsp64rDxbMJ+xDrye0EN/q1U5Of+
RkDsaN/igkAvV1cuXEgTL6RlafFPcUX7QxDhZBhsYF9pbwtMzi4A4su9hnxIhURebGEmxKW9qJNY
Js0Vo5+IgjxuEWnjnnVgHTs1+mq5QYTA7E6ZyL8CAwEAATANBgkqhkiG9w0BAQQFAAOBgQB3Pw/U
QzPKTPTYi9upbFXlrAKMwtFf2OW4yvGWWvlcwcNSZJmTJ8ARvVYOMEVNbsT4OFcfu2/PeYoAdiDA
cGy/F2Zuj8XJJpuQRSE6PtQqBuDEHjjmOQJ0rV/r8mO1ZCtHRhpZ5zYRjhRC9eCbjx9VrFax0JDC
/FfwWigmrW0Y0Q==
 </ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc">
 <xenc:KeySize xmlns:xenc="http://www.w3.org/2001/04/xmlenc#">
 128
 </xenc:KeySize>
 </EncryptionMethod>
 </KeyDescriptor>
 <SingleLogoutService
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"
 Location="http://www.example.com:8080/fedlet/fedletSloRedirect"
 ResponseLocation="http://www.example.com:8080/fedlet/fedletSloRedirect" />
 <SingleLogoutService
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
 Location="http://www.example.com:8080/fedlet/fedletSloPOST"
 ResponseLocation="http://www.example.com:8080/fedlet/fedletSloPOST" />
 <SingleLogoutService
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP"
 Location="http://www.example.com:8080/fedlet/fedletSloSoap" />
 <NameIDFormat>
 urn:oasis:names:tc:SAML:2.0:nameid-format:transient
 </NameIDFormat>
 <AssertionConsumerService
 index="0"
 isDefault="true"
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"
 Location="http://www.example.com:8080/fedlet/fedletapplication" />
 <AssertionConsumerService
 index="1"
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Artifact"
 Location="http://www.example.com:8080/fedlet/fedletapplication" />
 </SPSSODescriptor>
 <RoleDescriptor
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:query="urn:oasis:names:tc:SAML:metadata:ext:query"
 xsi:type="query:AttributeQueryDescriptorType"
 protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 </RoleDescriptor>
 <XACMLAuthzDecisionQueryDescriptor
 WantAssertionsSigned="false"
 protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol" />

Building SAML v2.0 Service Providers With Fedlets
Enabling Signing and Encryption in a Fedlet

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 295

</EntityDescriptor>

4. Edit the extended metadata file for the Fedlet, such as $HOME/fedlet/sp-extended.xml, to set the
certificate alias names to the alias for the Fedlet certificate, and the want*Signed and want*Encrypted
values to true.

If you reformat the file, take care not to add white space around string values in elements.

<EntityConfig xmlns="urn:sun:fm:SAML:2.0:entityconfig"
 xmlns:fm="urn:sun:fm:SAML:2.0:entityconfig" hosted="1"
 entityID="http://www.example.com:8080/fedlet">
 <SPSSOConfig metaAlias="/sp">
 <Attribute name="description">
 <Value></Value>
 </Attribute>
 <Attribute name="signingCertAlias">
 <Value>test</Value>
 </Attribute>
 <Attribute name="encryptionCertAlias">
 <Value>test</Value>
 </Attribute>
 <Attribute name="basicAuthOn">
 <Value>false</Value>
 </Attribute>
 <Attribute name="basicAuthUser">
 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthPassword">
 <Value></Value>
 </Attribute>
 <Attribute name="autofedEnabled">
 <Value>false</Value>
 </Attribute>
 <Attribute name="autofedAttribute">
 <Value></Value>
 </Attribute>
 <Attribute name="transientUser">
 <Value>anonymous</Value>
 </Attribute>
 <Attribute name="spAdapter">
 <Value></Value>
 </Attribute>
 <Attribute name="spAdapterEnv">
 <Value></Value>
 </Attribute>
 <Attribute name="fedletAdapter">
 <Value>com.sun.identity.saml2.plugins.DefaultFedletAdapter</Value>
 </Attribute>
 <Attribute name="fedletAdapterEnv">
 <Value></Value>
 </Attribute>
 <Attribute name="spAccountMapper">
 <Value>com.sun.identity.saml2.plugins.DefaultLibrarySPAccountMapper</Value>
 </Attribute>
 <Attribute name="useNameIDAsSPUserID">
 <Value>false</Value>
 </Attribute>

Building SAML v2.0 Service Providers With Fedlets
Enabling Signing and Encryption in a Fedlet

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 296

 <Attribute name="spAttributeMapper">
 <Value>com.sun.identity.saml2.plugins.DefaultSPAttributeMapper</Value>
 </Attribute>
 <Attribute name="spAuthncontextMapper">
 <Value>com.sun.identity.saml2.plugins.DefaultSPAuthnContextMapper</Value>
 </Attribute>
 <Attribute name="spAuthncontextClassrefMapping">
 <Value
 >urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport|0|default</Value>
 </Attribute>
 <Attribute name="spAuthncontextComparisonType">
 <Value>exact</Value>
 </Attribute>
 <Attribute name="attributeMap">
 <Value>*=*</Value>
 </Attribute>
 <Attribute name="saml2AuthModuleName">
 <Value></Value>
 </Attribute>
 <Attribute name="localAuthURL">
 <Value></Value>
 </Attribute>
 <Attribute name="intermediateUrl">
 <Value></Value>
 </Attribute>
 <Attribute name="defaultRelayState">
 <Value></Value>
 </Attribute>
 <Attribute name="appLogoutUrl">
 <Value>http://www.example.com:8080/fedlet/logout</Value>
 </Attribute>
 <Attribute name="assertionTimeSkew">
 <Value>300</Value>
 </Attribute>
 <Attribute name="wantAttributeEncrypted">
 <Value>true</Value>
 </Attribute>
 <Attribute name="wantAssertionEncrypted">
 <Value>true</Value>
 </Attribute>
 <Attribute name="wantNameIDEncrypted">
 <Value>true</Value>
 </Attribute>
 <Attribute name="wantPOSTResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantArtifactResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantLogoutRequestSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantLogoutResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantMNIRequestSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantMNIResponseSigned">

Building SAML v2.0 Service Providers With Fedlets
Enabling Signing and Encryption in a Fedlet

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 297

 <Value></Value>
 </Attribute>
 <Attribute name="responseArtifactMessageEncoding">
 <Value>URI</Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>fedlet-cot</Value>
 </Attribute>
 <Attribute name="saeAppSecretList">
 </Attribute>
 <Attribute name="saeSPUrl">
 <Value></Value>
 </Attribute>
 <Attribute name="saeSPLogoutUrl">
 </Attribute>
 <Attribute name="ECPRequestIDPListFinderImpl">
 <Value>com.sun.identity.saml2.plugins.ECPIDPFinder</Value>
 </Attribute>
 <Attribute name="ECPRequestIDPList">
 <Value></Value>
 </Attribute>
 <Attribute name="ECPRequestIDPListGetComplete">
 <Value></Value>
 </Attribute>
 <Attribute name="enableIDPProxy">
 <Value>false</Value>
 </Attribute>
 <Attribute name="idpProxyList">
 <Value></Value>
 </Attribute>
 <Attribute name="idpProxyCount">
 <Value>0</Value>
 </Attribute>
 <Attribute name="useIntroductionForIDPProxy">
 <Value>false</Value>
 </Attribute>
 <Attribute name="spSessionSyncEnabled">
 <Value>false</Value>
 </Attribute>
 <Attribute name="relayStateUrlList">
 </Attribute>
 </SPSSOConfig>
 <AttributeQueryConfig metaAlias="/attrQuery">
 <Attribute name="signingCertAlias">
 <Value>test</Value>
 </Attribute>
 <Attribute name="encryptionCertAlias">
 <Value>test</Value>
 </Attribute>
 <Attribute name="wantNameIDEncrypted">
 <Value>true</Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>fedlet-cot</Value>
 </Attribute>
 </AttributeQueryConfig>
 <XACMLAuthzDecisionQueryConfig metaAlias="/pep">
 <Attribute name="signingCertAlias">
 <Value>test</Value>

Building SAML v2.0 Service Providers With Fedlets
Customizing a Java Fedlet

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 298

 </Attribute>
 <Attribute name="encryptionCertAlias">
 <Value>test</Value>
 </Attribute>
 <Attribute name="basicAuthOn">
 <Value>false</Value>
 </Attribute>
 <Attribute name="basicAuthUser">
 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthPassword">
 <Value></Value>
 </Attribute>
 <Attribute name="wantXACMLAuthzDecisionResponseSigned">
 <Value>false</Value>
 </Attribute>
 <Attribute name="wantAssertionEncrypted">
 <Value>true</Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>fedlet-cot</Value>
 </Attribute>
 </XACMLAuthzDecisionQueryConfig>
</EntityConfig>

5. Make a copy of sp-extended.xml called sp-extended-copy.xml and set hosted="0" in the root element of
the copy.

Use the copy, sp-extended-copy.xml, when importing the Fedlet configuration into OpenAM.
OpenAM must register the Fedlet as a remote service provider.

6. In OpenAM console delete the original SP entity configuration for the Fedlet, and then import the
updated metadata for the new configuration into OpenAM on the IDP side.

7. Restart the Fedlet or the container in which it runs in order for the Fedlet to pick up the changes
to the configuration properties and the metadata.

6.1.3. Customizing a Java Fedlet

You can customize the Java Fedlet to perform many of the SAML v2.0 service provider operations.
The Java Fedlet has the SAML v2.0 capabilities identified in "Fedlet Support for SAML v2.0 Features"
in the Administration Guide.

To Add Your Application

The Fedlet includes the following files that you use when building your own service provider
application based on the demo web application, including a set of JavaServer Pages (JSP) examples.

conf/

Configuration files copied to $HOME/fedlet when you first deploy and configure the Fedlet. When
deploying your application, you can move these to an alternate location passed to the Java virtual

Building SAML v2.0 Service Providers With Fedlets
Customizing a Java Fedlet

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 299

machine for the web application container at startup. For example, if you store the configuration
under /export/fedlet/, then you could pass the following property to the JVM.
-Dcom.sun.identity.fedlet.home=/export/fedlet/conf

You do not need to include these files in your application.

fedletAttrQuery.jsp
fedletAttrResp.jsp

Sample SAML attribute query and response handlers.

fedletEncode.jsp

Utility JSP to encode a password, such as the password used to protect a Java keystore

fedletSampleApp.jsp
index.jsp

Demo application. You can remove these before deployment to replace them with your
application.

fedletXACMLQuery.jsp
fedletXACMLResp.jsp

Sample SAML XACML query and response handlers.

logout.jsp

Utility page to perform single log out

saml2/jsp/

JSPs to initiate single sign-on and single logout, and to handle errors, and also a JSP for obtaining
Fedlet metadata, saml2/jsp/exportmetadata.jsp

WEB-INF/classes/

Localized Java properties files for strings used in the Fedlet user interface

WEB-INF/lib/

Fedlet libraries required by your application

WEB-INF/web.xml

Fedlet web application configuration, showing how JSPs map to URLs used in the Fedlet. Add
mappings for your application before deployment.

In the web.xml mappings, your application must be mapped to /fedletapplication, as this is the
assertion consumer URL set in the Fedlet metadata.

Building SAML v2.0 Service Providers With Fedlets
Customizing a Java Fedlet

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 300

<servlet>
 <servlet-name>yourApp</servlet-name>
 <jsp-file>/fedletSampleApp.jsp</jsp-file>
</servlet>
<servlet-mapping>
 <servlet-name>yourApp</servlet-name>
 <url-pattern>/fedletapplication</url-pattern>
</servlet-mapping>

Follow these steps for a very simple demonstration of how to customize the Fedlet.

1. Backup fedletSampleApp.jsp.

$ cd /path/to/tomcat/webapps/fedlet/
$ cp fedletSampleApp.jsp fedletSampleApp.jsp.orig

2. Edit fedletSampleApp.jsp to reduce it to a single redirection to myapp.jsp. An implementation of the
<html> element of the file follows below.
<html>
<head>
 <title>Fedlet Sample Application</title>
 <meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
</head>

<body>
<%
 // BEGIN : following code is a must for Fedlet (SP) side application
 Map map;
 try {
 // invoke the Fedlet processing logic. this will do all the
 // necessary processing conforming to SAML v2.0 specifications,
 // such as XML signature validation, Audience and Recipient
 // validation etc.
 map = SPACSUtils.processResponseForFedlet(request, response,
 new PrintWriter(out, true));
 response.sendRedirect("myapp.jsp");
 } catch (SAML2Exception sme) {
 SAMLUtils.sendError(request, response,
 response.SC_INTERNAL_SERVER_ERROR, "failedToProcessSSOResponse",
 sme.getMessage());
 return;
 } catch (IOException ioe) {
 SAMLUtils.sendError(request, response,
 response.SC_INTERNAL_SERVER_ERROR, "failedToProcessSSOResponse",
 ioe.getMessage());
 return;
 } catch (SessionException se) {
 SAMLUtils.sendError(request, response,
 response.SC_INTERNAL_SERVER_ERROR, "failedToProcessSSOResponse",
 se.getMessage());
 return;
 } catch (ServletException se) {
 SAMLUtils.sendError(request, response,
 response.SC_BAD_REQUEST, "failedToProcessSSOResponse",
 se.getMessage());
 return;

Building SAML v2.0 Service Providers With Fedlets
Customizing a Java Fedlet

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 301

 }
 // END : code is a must for Fedlet (SP) side application
%>
</body>
</html>

3. Add a myapp.jsp page to the Fedlet, such as the following.
<html>
<head>
<title>My Application</title>
<meta http-equiv="Content-Type" content="text/html" />
</head>

<body>

<h1>My Application</h1>

<p>After you change the <code>fedletSampleApp.jsp</code>,
 all it does is redirect to this home page after
 successful login.</p>

</body>
</html>

4. Browse to the Fedlet URL, such as http://openam.example.com:8080/fedlet/, and try one of the login
methods.

After login you are redirected to myapp.jsp.

6.1.3.1. Performing Single Sign-On

The Java Fedlet includes a JSP file, saml2/jsp/fedletSSOInit.jsp, that you can call to initiate single sign-
on from the Fedlet (SP) side. The Fedlet home page, index.jsp, calls this page when the user does
Fedlet-initiated single sign-on.

When calling this JSP, the parameters to use are those also used by saml2/jsp/spSSOInit.jsp in
OpenAM. Those parameters are described in spSSOInit.jsp Parameters in the Administration Guide.

For IDP-initiated single sign-on, call the appropriate page on the identity provider. OpenAM's page is
described in idpSSOInit.jsp Parameters in the Administration Guide.

After single sign-on, the user-agent is directed by default to the assertion consumer URI set in the
Fedlet metadata, which by default is /fedletapplication. Also by default that URI points to the JSP,
fedletSampleApp.jsp

6.1.3.2. Performing Single Logout

The Java Fedlet includes a JSP file, saml2/jsp/spSingleLogoutInit.jsp, that you can call to initiate single
logout from the Fedlet (SP) side. The Fedlet assertion consumer page, fedletSampleApp.jsp, calls this
when the user does Fedlet-initiated single logout.

Building SAML v2.0 Service Providers With Fedlets
Configuring Java Fedlets By Hand

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 302

When calling this JSP, the parameters to use are those also used by saml2/jsp/spSingleLogoutInit.jsp in
OpenAM. Those parameters are described in spSingleLogoutInit.jsp Parameters in the Administration
Guide.

For IDP-initiated single logout, call the appropriate page on the identity provider. OpenAM's page is
described in idpSingleLogoutInit.jsp Parameters in the Administration Guide.

Set the RelayState parameter when initiating logout to redirect the user-agent appropriately when the
process is complete.

6.1.3.3. Performing Attribute Queries

As seen in "To Use the Fedlet to Query an Attribute Authority", an attribute query allows the Fedlet to
get profile information about a subject from the attribute authority. The Fedlet must be configured to
deal with responses from the attribute authority, including configuration for signing and encryption.
Also, an identity provider and attribute authority is likely to share only those attributes that the
Fedlet absolutely requires to provide service, such as, for example, a name to customize a page. The
attributes must then be mapped in the attribute authority and Fedlet metadata.

The Java Fedlet includes a JSP file, fedletAttrQuery.jsp, which is used in the procedure described
above to prepare an attribute query using the transient subject identifier obtained during single sign-
on. The fedletAttrQuery.jsp also supports using the Subject name from an X.509 identity certificate.

Another JSP file, fedletAttrResp.jsp, sends the query to the attribute authority using com.sun.identity
.saml2.profile.AttributeQueryUtil.html.getAttributesForFedlet(), and if successful processes the result,
which is a java.util.Map of the attribute types and their values.

6.1.3.4. Performing XACML Queries

As seen in "To Use the Fedlet to Query an XACML Policy Decision Point", a XACML query allows the
Fedlet to request a policy decision from a XACML PDP. You can configure OpenAM to respond to
such queries as described in that procedure.

The Java Fedlet includes a JSP file, fedletXACMLQuery.jsp, which is used in the procedure described
above to prepare a XACML query, identifying a resource URL and a type of HTTP operation to
perform, and specifying the subject identifier obtained during single sign-on.

Another JSP file, fedletXACMLResp.jsp, sends the query to the XACML PDP using com.sun.identity.saml2
.profile.XACMLQueryUtil.getPolicyDecisionForFedlet(), and if successful processes the result, which is a
java.lang.String representing the decision, such as Permit if the decision is to allow access, or Deny if
the decision is to deny access.

6.2. Configuring Java Fedlets By Hand
An OpenAM Fedlet is a small web application that makes it easy to add SAML v2.0 Service Provider
(SP) capabilities to your Java web application. The OpenAM console offers a wizard for configuring a

Building SAML v2.0 Service Providers With Fedlets
Java Fedlet Layout

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 303

Java Fedlet as a SAML v2.0 Service Provider with OpenAM as the Identity Provider (IDP). If that fits
your purposes, then read the chapter "Using Fedlets in Java Web Applications" instead.

The full distribution file, OpenAM-13.5.2.zip, also includes a Java Fedlet, Fedlet-13.5.2.zip, that you can
configure by hand. This chapter covers how to configure a Java Fedlet using that distribution, by
manually editing the Circle of Trust, Java properties, and IDP and SP XML configuration templates.

Seen from a high level, what you must do is this:

• Determine the roles that the IDP(s) and Fedlet play in SAML v2.0 Circles of Trust.

• Unpack the unconfigured Fedlet from the full OpenAM distribution to access the Fedlet war and
template configuration files.

• Begin preparing the Fedlet configuration, including setting up a configuration directory and
keystore if needed.

• Obtain SAML v2.0 metadata configuration files from the IDP(s), and add them to the Fedlet
configuration.

The IDP must provide at least the standard SAML v2.0 metadata.

• Finish preparing the Fedlet configuration by editing the remaining Fedlet template configuration
files.

• Share the Fedlet SAML v2.0 configuration files at least for the standard SAML v2.0 metadata with
the IDP(s).

An IDP relies on the standard SAML v2.0 metadata to communicate with the Fedlet.

• Deploy and test the Fedlet with each IDP.

6.2.1. Java Fedlet Layout

Unpack the Java Fedlet distribution into a working directory.

$ mkdir fedlet && cd fedlet
$ unzip ../Fedlet-13.5.2.zip

When you unpack the Fedlet-13.5.2.zip file, you find the following files.

Fedlet-13.5.2.war

This file contains a Java Fedlet web application that serves as an example, and that you can
embed in your applications.

README

This file succinctly describes how to configure some Fedlet features.

Building SAML v2.0 Service Providers With Fedlets
Java Fedlet Layout

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 304

conf/

This folder contains the Fedlet configuration templates that you edit as appropriate for your
deployment.

When editing the templates, place copies of the files in the Fedlet home directory on the system
where you deploy the Fedlet. By default the Fedlet home directory is user.home/uri, where
user.home is the value of the Java system property user.home for the user running the web
container where you deploy the Fedlet, and uri is the path of the URI where you deploy the
Fedlet, such as /fedlet.

For example, if user.home is /home/user, that user could have a /home/user/fedlet folder for Fedlet
configuration files.

$ mkdir ~/fedlet

To change the location, set the system property com.sun.identity.fedlet.home when starting the
container where the Fedlet runs.

$ java -Dcom.sun.identity.fedlet.home=/path/to/fedlet/conf ...

conf/FederationConfig.properties

This file defines settings for the Fedlet as a web application. It does not address the SAML v2.0
configuration.

For more about this file, see "Configuring Java Fedlet Properties".

conf/fedlet.cot-template

This template defines settings for a SAML v2.0 Circle of Trust to which the Fedlet belongs.

For more about this file, see "Configuring Circles of Trust".

conf/idp.xml (not provided)

The idp.xml file is standard SAML v2.0 metadata that describes the IDP configuration.

Templates for other SAML v2.0 configuration files are provided, but no idp.xml template file is
provided.

Instead you must obtain the SAML v2.0 metadata from the IDP, and add it as idp.xml here,
alongside the other SAML v2.0 configuration files. How you obtain this file from the IDP depends
on the IDP implementation.

conf/idp-extended.xml-template

This template holds extended SAML v2.0 IDP settings that OpenAM uses.

For more about this file, see "Configuring the Identity Providers".

Building SAML v2.0 Service Providers With Fedlets
Configuring Java Fedlet Properties

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 305

conf/sp.xml-template

This template describes standard SAML v2.0 SP settings.

For more about this file, see "Configuring the Service Providers".

conf/sp-extended.xml-template

This template describes extended SAML v2.0 SP settings that the Fedlet uses.

For more about this file, see "Configuring the Service Providers".

6.2.2. Configuring Java Fedlet Properties
The Java Fedlet to configure by hand includes a FederationConfig.properties file that defines settings
for the Fedlet as a web application. The configuration for a single Java Fedlet includes only one
FederationConfig.properties file, regardless of how many IDP and SP configurations are involved. This
file does not address the SAML v2.0 configuration.

When configured this file contains sensitive properties such as the value of am.encryption.pwd. Make
sure it is readable only by the user running the Fedlet application.

This section categorizes the settings as follows:

• Deployment URL Settings

• Log and Statistics Settings

• Public and Private Key Settings

• Alternative Implementation Settings

Deployment URL Settings

The following settings define the Fedlet deployment URL.

com.iplanet.am.server.protocol

Set this to the protocol portion of the URL, such as HTTP or HTTPS.

com.iplanet.am.server.host

Set this to the host portion of the URL, such as sp.example.com.

com.iplanet.am.server.port

Set this to the port portion of the URL, such as 80, 443, 8080, or 8443.

com.iplanet.am.services.deploymentDescriptor

Set this to path portion of the URL, starting with a /, such as /fedlet.

Building SAML v2.0 Service Providers With Fedlets
Configuring Java Fedlet Properties

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 306

Log and Statistics Settings

The following settings define the Fedlet configuration for logging and monitoring statistics.

com.iplanet.am.logstatus

This sets whether the Fedlet actively writes debug log files.

Default: ACTIVE

com.iplanet.services.debug.level

This sets the debug log level.

The following settings are available, in order of increasing verbosity:

off
error
warning
message

Default: message

com.iplanet.services.debug.directory

This sets the location of the debug log folder.

Trailing spaces in the file names are significant. Even on Windows systems, use slashes to
separate directories.

Examples: /home/user/fedlet/debug, C:/fedlet/debug

com.iplanet.am.stats.interval

This sets the interval at which statistics are written, in seconds.

The shortest interval supported is 5 seconds. Settings less than 5 (seconds) are taken as 5
seconds.

Default: 60

com.iplanet.services.stats.state

This sets how the Fedlet writes monitoring statistics.

The following settings are available:

off
console (write to the container logs)
file (write to Fedlet stats logs)

Building SAML v2.0 Service Providers With Fedlets
Configuring Java Fedlet Properties

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 307

Default: file

com.iplanet.services.stats.directory

This sets the location of the stats file folder.

Trailing spaces in the file names are significant. Even on Windows systems, use slashes to
separate directories.

Examples: /home/user/fedlet/stats, C:/fedlet/stats

Public and Private Key Settings

The following settings define settings for access to certificates and private keys used in signing and
encryption.

Other sections in this guide explain how to configure a Fedlet for signing and encryption including
how to work with the keystores that these settings reference, and how to specify public key
certificates in standard SAML v2.0 metadata. When working with a Java Fedlet, see the section on
"Enabling Signing and Encryption in a Fedlet".

Tip

Although this section focuses on Java Fedlets, if you are working with a .NET Fedlet see How do I use Fedlets
in .NET applications in OpenAM (All versions)? in the ForgeRock Knowledge Base.

com.sun.identity.saml.xmlsig.keystore

This sets the path to the keystore file that holds public key certificates of IDPs and key pairs for
the Fedlet.

For hints on generating a keystore file with a key pair, see "To Change OpenAM Default test
Signing Key " in the Administration Guide.

Example: @FEDLET_HOME@/keystore.jks

com.sun.identity.saml.xmlsig.storepass

This sets the path to the file that contains the keystore password encoded by using the symmetric
key set as the value of am.encryption.pwd.

When creating the file, encode the clear text password by using your own test copy (not a
production version) of OpenAM.

• Log in to the OpenAM Console as administrator amadmin.

• Under Deployment > Servers > Server Name > Security > Encryption, set the Password
Encryption Key to your symmetric key, and save your work.

Do not do this in a production system where the existing symmetric key is already in use!

https://backstage.forgerock.com/knowledge/kb/article/a99870342
https://backstage.forgerock.com/knowledge/kb/article/a99870342

Building SAML v2.0 Service Providers With Fedlets
Configuring Java Fedlet Properties

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 308

• Switch to the encode.jsp page, such as http://openam.example.com:8080/openam/encode.jsp, enter the
clear text password to encode with your symmetric key, and click Encode.

• Copy the encoded password to your file.

Example: @FEDLET_HOME@/.storepass

com.sun.identity.saml.xmlsig.keypass

This sets the path to the file that contains the private key password encoded by using the
symmetric key set as the value of am.encryption.pwd.

To encode the clear text password, follow the same steps for the password used when setting com
.sun.identity.saml.xmlsig.storepass.

Example: @FEDLET_HOME@/.keypass

com.sun.identity.saml.xmlsig.certalias

This sets the alias of the Fedlet's public key certificate.

Example: fedlet-cert

com.sun.identity.saml.xmlsig.storetype

The sets the type of keystore.

Default: JKS

am.encryption.pwd

This sets the symmetric key that used to encrypt and decrypt passwords.

Example: uu4dHvBkJJpIjPQWM74pxH3brZJ5gJje

Alternative Implementation Settings

The Java Fedlet properties file includes settings that let you plug in alternative implementations of
Fedlet capabilities. You can safely use the default settings, as specified in the following list. The list
uses the same order for the keys you find in the file.

com.sun.identity.plugin.configuration.class

Default: com.sun.identity.plugin.configuration.impl.FedletConfigurationImpl

com.sun.identity.plugin.datastore.class.default

Default: com.sun.identity.plugin.datastore.impl.FedletDataStoreProvider

com.sun.identity.plugin.log.class

Default: com.sun.identity.plugin.log.impl.FedletLogger

Building SAML v2.0 Service Providers With Fedlets
Configuring Java Fedlet Properties

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 309

com.sun.identity.plugin.session.class

Default: com.sun.identity.plugin.session.impl.FedletSessionProvider

com.sun.identity.plugin.monitoring.agent.class

Default: com.sun.identity.plugin.monitoring.impl.FedletAgentProvider

com.sun.identity.plugin.monitoring.saml1.class

Default: com.sun.identity.plugin.monitoring.impl.FedletMonSAML1SvcProvider

com.sun.identity.plugin.monitoring.saml2.class

Default: com.sun.identity.plugin.monitoring.impl.FedletMonSAML2SvcProvider

com.sun.identity.plugin.monitoring.idff.class

Default: com.sun.identity.plugin.monitoring.impl.FedletMonIDFFSvcProvider

com.sun.identity.saml.xmlsig.keyprovider.class

Default: com.sun.identity.saml.xmlsig.JKSKeyProvider

com.sun.identity.saml.xmlsig.signatureprovider.class

Default: com.sun.identity.saml.xmlsig.AMSignatureProvider

com.sun.identity.common.serverMode

Default: false

com.sun.identity.webcontainer

Default: WEB_CONTAINER

com.sun.identity.saml.xmlsig.passwordDecoder

Default: com.sun.identity.fedlet.FedletEncodeDecode

com.iplanet.services.comm.server.pllrequest.maxContentLength

Default: 16384

com.iplanet.security.SecureRandomFactoryImpl

Default: com.iplanet.am.util.SecureRandomFactoryImpl

com.iplanet.security.SSLSocketFactoryImpl

Default: com.sun.identity.shared.ldap.factory.JSSESocketFactory

com.iplanet.security.encryptor

Default: com.iplanet.services.util.JCEEncryption

Building SAML v2.0 Service Providers With Fedlets
Configuring Circles of Trust

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 310

com.sun.identity.jss.donotInstallAtHighestPriority

Default: true

com.iplanet.services.configpath

Default: @BASE_DIR@

6.2.3. Configuring Circles of Trust
As described in "Java Fedlet Layout", this template defines settings for a SAML v2.0 Circle of Trust.
The Fedlet belongs to at least one Circle of Trust.

This section includes the following procedures:

• "To Configure a Circle of Trust With a Single IDP"

• "To Configure Multiple Circles of Trust"

• "To Configure a Circle of Trust With Multiple IDPs"

To Configure a Circle of Trust With a Single IDP

When the Fedlet is involved in only a single Circle of Trust with one IDP and the Fedlet as an SP, the
only settings to change are cot-name and sun-fm-trusted-providers.

1. Save a copy of the template as fedlet.cot in the configuration folder, as in the following example.

$ cp ~/Downloads/fedlet/conf/fedlet.cot-template ~/fedlet/fedlet.cot

2. Set cot-name to the name of the Circle of Trust.

3. Set sun-fm-trusted-providers to a comma-separated list of the entity names for the IDP and SP.

For example, if the IDP is OpenAM with entity ID https://openam.example.com:8443/openam and the SP
is the Fedlet with entity ID https://sp.example.net:8443/fedlet, then set the property as follows.

sun-fm-trusted-providers=https://openam.example.com:8443/openam,\
 https://sp.example.net:8443/fedlet

To Configure Multiple Circles of Trust

This procedure concerns deployments where the Fedlet participates as SP in multiple Circles of
Trust, each involving their own IDP.

1. For each Circle of Trust, save a copy of the template in the configuration folder.

The following example involves two Circles of Trust.

Building SAML v2.0 Service Providers With Fedlets
Configuring the Identity Providers

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 311

$ cp ~/Downloads/fedlet/conf/fedlet.cot-template ~/fedlet/fedlet.cot
$ cp ~/Downloads/fedlet/conf/fedlet.cot-template ~/fedlet/fedlet2.cot

2. Set up IDP XML files for each IDP as described in "Configuring the Identity Providers".

3. For each Circle of Trust, set up the cot file as described in "To Configure a Circle of Trust With a
Single IDP".

4. In the extended SP XML file described in "Configuring the Identity Providers", set the Attribute
element with name cotlist to include values for all Circles of Trust. The values are taken from the
cot-name settings in the cot files.

The following example works with two Circles of Trust, cot and cot2.

<Attribute name="cotlist">
 <Value>cot</Value>
 <Value>cot2</Value>
</Attribute>

The same Attribute element is also available in extended IDP XML files for cases where an IDP
belongs to multiple Circles of Trust.

To Configure a Circle of Trust With Multiple IDPs

When the Circle of Trust involves multiple IDPs, use the Fedlet in combination with the OpenAM IDP
Discovery service.

Note

For this to work, the IDPs must be configured to use IDP discovery, and users must have preferred IDPs.

1. Set up the OpenAM IDP Discovery service.

For details see "Deploying the Identity Provider Discovery Service" in the Administration Guide.

2. Configure the Circle of Trust as described in "To Configure a Circle of Trust With a Single IDP",
but specifying multiple IDPs, including the IDP that provides the IDP Discovery service.

3. Set the sun-fm-saml2-readerservice-url and the sun-fm-saml2-writerservice-url properties as defined
for the IDP Discovery service.

6.2.4. Configuring the Identity Providers
As described in "Java Fedlet Layout", the IDP provides its standard SAML v2.0 metadata as XML,
which you save in the configuration folder as idp.xml. If the IDP uses OpenAM, the IDP can also
provide extended SAML v2.0 metadata as XML, which you save in the configuration folder as idp-
extended.xml, rather than using the template for extended information.

Building SAML v2.0 Service Providers With Fedlets
Configuring the Identity Providers

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 312

If you have multiple identity providers, then number the configuration files, as in idp.xml, idp2.xml,
idp3.xml, and also idp-extended.xml, idp2-extended.xml, idp3-extended.xml and so on.

6.2.4.1. Identity Provider Standard XML

This section covers the configuration in idp.xml. The idp.xml file contains standard SAML v2.0
metadata for an IDP in a Circle of Trust that includes the Fedlet as SP. The IDP provides you the
content of this file.

If the IDP uses OpenAM then the administrator can export the metadata by using either the ssoadm
create-metadata-templ command or the /saml2/jsp/exportmetadata.jsp endpoint under the OpenAM
deployment URL.

If the IDP uses an implementation different from OpenAM, see the documentation for details on
obtaining the standard metadata. The standard, product-independent metadata are covered in
Metadata for the OASIS Security Assertion Markup Language (SAML) V2.0. The standard XML
namespace describing the XML document has identifier urn:oasis:names:tc:SAML:2.0:metadata. An XML
schema description for this namespace is found online at http://docs.oasis-open.org/security/saml/
v2.0/saml-schema-metadata-2.0.xsd.

6.2.4.2. Identity Provider Extended XML

This section covers the configuration in idp-extended.xml. Most extended metadata are specific to the
OpenAM implementation of SAML v2.0. If the IDP runs OpenAM, have the IDP provide the extended
metadata exported by using the ssoadm create-metadata-templ command. This section covers only
the basic settings relative to all IDPs.

The extended metadata file describes an EntityConfig element, defined by the namespace with the
identifier urn:sun:fm:SAML:2.0:entityconfig. The XML schema definition is described in entity-config-
schema.xsd, available online as part of the OpenAM source code, though not included in the OpenAM
war file.

The unconfigured Fedlet includes a template file, conf/idp-extended.xml-template. This extended
metadata template for the IDP requires that you edit at least the IDP_ENTITY_ID and fedletcot values
to reflect the IDP entity ID used in the standard metadata and the Circle of Trust name defined in
fedlet.cot, respectively. The hosted attribute on the EntityConfig element must remain set to hosted="0",
meaning that the IDP is remote. The IDP is likely to play at least the role of SSO Identity Provider,
though the namespace defines elements for the Attribute Authority and Policy Decision Point roles
shown in the template, as well as the others defined in the standard governing SAML v2.0 metadata.

The extended metadata file is essentially a series of XML maps of key-value pairs specifying IDP
configuration for each role. All role-level elements can take a metaAlias attribute that the Fedlet
uses when communicating with the IDP. Each child element of a role element defines an Attribute
whose name is the key. Each Attribute element can contain multiple Value elements. The Value elements'
contents comprise the values for the key. All values are strings, sometimes with a format that is
meaningful to OpenAM. The basic example in the IDP template shows the minimal configuration for
the SSO IDP role.

http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-schema-metadata-2.0.xsd
http://docs.oasis-open.org/security/saml/v2.0/saml-schema-metadata-2.0.xsd

Building SAML v2.0 Service Providers With Fedlets
Configuring the Identity Providers

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 313

In the following example, the description is empty and the name of the Circle of Trust is fedletcot.

<IDPSSOConfig>
 <Attribute name="description">
 <Value/>
 </Attribute>
 <Attribute name="cotlist">
 <Value>fedletcot</Value>
 </Attribute>
</IDPSSOConfig>
<AttributeAuthorityConfig>
 <Attribute name="cotlist">
 <Value>fedletcot</Value>
 </Attribute>
</AttributeAuthorityConfig>
<XACMLPDPConfig>
 <Attribute name="wantXACMLAuthzDecisionQuerySigned">
 <Value></Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>fedletcot</Value>
 </Attribute>
</XACMLPDPConfig>

When functioning as IDP, OpenAM can take many other Attribute values. These are implementation
dependent. You can obtain the extended metadata from OpenAM either as part of the pre-packaged
Java Fedlet that you create by using the OpenAM console wizard as described in "To Create
Configuration Files for a Fedlet", or by using the ssoadm create-metadata-templ subcommand.

Note

Custom authentication contexts can be loaded and saved when they are loaded via ssoadm as part of the hosted
IDP/SP extended metadata and the saves are made in the console. Any custom contexts loaded via ssoadm are
also visible in the console.

For example, you can specify custom entries in the idpAuthncontextClassrefMapping element of the extended
metadata for a hosted IDP as follows:

<Attribute name="idpAuthncontextClassrefMapping">
 <Value>urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport
 |1||default</Value>
 <Value>http://idmanagement.gov/ns/assurance/loa/4|4||</Value>
 <Value>http://idmanagement.gov/ns/assurance/loa/3|3||</Value>
 <Value>http://idmanagement.gov/ns/assurance/loa/2|2||</Value>
 <Value>http://idmanagement.gov/ns/assurance/loa/1|1||</Value>
</Attribute>

6.2.4.3. Identity Provider Extended XML: IDPSSOConfig Settings

This section covers elements for the IDP SSO role, arranged in the order they appear in the template.

Building SAML v2.0 Service Providers With Fedlets
Configuring the Service Providers

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 314

description

Description of the file.

cotlist

Specifies the circle of trust(s) to which the provider belongs.

Default: fedletcot

6.2.4.4. Identity Provider Extended XML: Attribute Authority Configuration Settings
This section covers the element for the AttributeAuthorityConfig role, arranged in the order they
appear in the template.

cotlist

Specifies the circle of trust(s) to which the provider belongs.

Default: fedletcot

6.2.4.5. Identity Provider Extended XML: XACML PDP Configuration
This section covers the elements for the XACMLPDPConfig role, arranged in the order they appear in
the template.

wantXACMLAuthzDecisionQuerySigned

If the IdP requires signed XACML AuthzDecision queries, then set this attribute to true.

cotlist

Specifies the circle of trust(s) to which the provider belongs.

Default: fedletcot

6.2.5. Configuring the Service Providers
As mentioned in "Java Fedlet Layout", the Fedlet SAML v2.0 configuration is defined in two XML files,
the standard metadata in sp.xml and the extended metadata in sp-extended.xml.

If the Fedlet has multiple service provider personalities, then number the configuration files, as in
sp.xml, sp2.xml, sp3.xml, and also sp-extended.xml, sp2-extended.xml, sp3-extended.xml and so on.

6.2.5.1. Service Provider Standard XML
This section covers the configuration in sp.xml. The sp.xml file contains standard SAML v2.0 metadata
for the Fedlet as SP. If you edit the standard metadata, make sure that you provide the new version to
your IDP, as the IDP software relies on the metadata to get the Fedlet's configuration.

Building SAML v2.0 Service Providers With Fedlets
Configuring the Service Providers

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 315

The standard metadata are covered in Metadata for the OASIS Security Assertion Markup
Language (SAML) V2.0. The standard XML namespace describing the XML document has identifier
urn:oasis:names:tc:SAML:2.0:metadata. An XML schema description for this namespace is found online at
http://docs.oasis-open.org/security/saml/v2.0/saml-schema-metadata-2.0.xsd.

A standard metadata file describes the SAML v2.0 roles that the Fedlet plays. The default base
element of the file is an EntityDescriptor, which is a container for role descriptor elements. The
EntityDescriptor element can therefore contain multiple role descriptor elements. The namespace for
the standard metadata document is urn:oasis:names:tc:SAML:2.0:metadata. You can get the corresponding
XML schema description online at http://docs.oasis-open.org/security/saml/v2.0/saml-schema-
metadata-2.0.xsd. In general, you can find standard SAML v2.0-related XML schema definitions at
http://docs.oasis-open.org/security/saml/v2.0/.

Fedlets do not support all arbitrary SP configurations. As lightweight Service Provider components,
Fedlets are built to play the SP role in web single sign-on and single logout, to perform attribute
queries and XACML policy decision requests, and to work with multiple IDPs including Circles of
Trust with an IDP discovery service. For a list of what Fedlets support, see the table "Fedlet Support
for SAML v2.0 Features" in the Administration Guide.

When preparing a standard SP metadata file, follow these suggestions.

• Start either with an existing example or with the template, conf/sp.xml-template.

• When using the template, replace the following placeholders.

FEDLET_ENTITY_ID

The Fedlet entity ID used when communicating with the IDP.

OpenAM often uses the deployment URL as the entity ID, though that is a convention rather
than a requirement.

FEDLET_PROTOCOL

The Fedlet deployment protocol (http, https)

FEDLET_HOST

The Fedlet deployment host name

FEDLET_PORT

The Fedlet deployment port number

FEDLET_DEPLOY_URI

The Fedlet application deployment path

• Add and edit role elements as children depending on the roles the Fedlet plays as described in the
following sections.

http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-metadata-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-schema-metadata-2.0.xsd
http://docs.oasis-open.org/security/saml/v2.0/saml-schema-metadata-2.0.xsd
http://docs.oasis-open.org/security/saml/v2.0/saml-schema-metadata-2.0.xsd
http://docs.oasis-open.org/security/saml/v2.0/

Building SAML v2.0 Service Providers With Fedlets
Configuring the Service Providers

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 316

6.2.5.1.1. Single Sign-On and Logout: SPSSODescriptor Element

Add an SPSSODescriptor element to play the SP role in web single sign-on and logout. An SPSSODescriptor
element has attributes specifying whether requests and assertion responses should be digitally
signed.

• The AuthnRequestsSigned attribute indicates whether the Fedlet signs authentication requests.

If you set the AuthnRequestsSigned attribute to true, then you must also configure the SPSSODescriptor
element to allow the Fedlet to sign requests. For details see the section on "Enabling Signing and
Encryption in a Fedlet".

• The WantAssertionsSigned attribute indicates whether the Fedlet requests signed assertion responses
from the IDP.

An SPSSODescriptor element's children indicate what name ID formats the Fedlet supports, and where
the IDP can call the following services on the Fedlet.

• The AssertionConsumerService elements specify endpoints that support the SAML Authentication
Request protocols.

You must specify at least one of these. The template specifies two, with the endpoint supporting the
HTTP POST binding as the default.

• The optional SingleLogoutService elements specify endpoints that support the SAML Single Logout
protocols.

6.2.5.1.2. Attribute Queries: RoleDescriptor Element

Add a RoleDescriptor element with type="query:AttributeQueryDescriptorType" to perform attribute queries.

Attribute queries require the IDP to act as Attribute Authority and call for signing and encryption
to be configured for the Fedlet. For details see the example in the procedure "To Use the Fedlet
to Query an Attribute Authority". For example, you can set the attribute mapping on the Fedlet
by editing the extended metadata attribute attributeMap in the SPSSOConfig element as described in
"Service Provider Extended XML: SPSSOConfig Settings".

6.2.5.1.3. XACML Requests: XACMLAuthzDecisionQueryDescriptor Element

Add an XACMLAuthzDecisionQueryDescriptor element to perform XACML policy decision queries.

Attribute queries require the IDP to act as XACML PDP. For details see the example in the procedure
"To Use the Fedlet to Query an XACML Policy Decision Point".

6.2.5.2. Service Provider Extended XML
This section covers the configuration in the sp-extended.xml file. The extended metadata are specific to
the OpenAM implementation of SAML v2.0.

Building SAML v2.0 Service Providers With Fedlets
Configuring the Service Providers

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 317

The extended metadata file describes an EntityConfig element, defined by the namespace with
the identifier urn:sun:fm:SAML:2.0:entityconfig. The XML schema definition is described in entity-
config-schema.xsd, available online as part of the OpenAM source code, though not included with the
unconfigured Fedlet.

The unconfigured Fedlet does include a template file, conf/sp-extended.xml-template. This extended
metadata template for the IDP requires that you edit at least the FEDLET_ENTITY_ID placeholder
value, the appLogoutUrl attribute value in the SPSSOConfig element, and the fedletcot values. The
FEDLET_ENTITY_ID value must reflect the SP entity ID used in the standard metadata. For the single
logout profile, the appLogoutUrl attribute value must match the Fedlet URL based on the values used in
the FederationConfig.properties file. The fedletcot values must correspond to the Circle of Trust name
defined in fedlet.cot.

The hosted attribute on the EntityConfig element must remain set to hosted="1", meaning that the SP is
hosted (local to the Fedlet). If you provide a copy of the file to your IDP running OpenAM, however,
then set hosted="0" for the IDP, as the Fedlet is remote to the IDP.

The extended metadata file is essentially a series of XML maps of key-value pairs specifying IDP
configuration for each role. All role-level elements can take a metaAlias attribute that the Fedlet
uses when communicating with the IDP. Each child element of a role element defines an Attribute
whose name is the key. Each Attribute element can contain multiple Value elements. The Value elements'
contents comprise the values for the key. All values are strings, sometimes with a format that is
meaningful to the Fedlet. The basic example in the SP template shows the configuration options,
documented in the following lists.

6.2.5.2.1. Service Provider Extended XML: SPSSOConfig Settings

This section covers elements for the SP SSO role, arranged in the order they appear in the template.

description

Human-readable description of the Fedlet in the SP SSO role

signingCertAlias

Alias of the public key certificate for the key pair used when signing messages to the IDP

The key pair is found in the Fedlet's keystore, and the certificate is included in the standard
metadata. See Public and Private Key Settings for details on how to specify access to the
keystore, and "Service Provider Standard XML" for details on how to set up standard metadata.

encryptionCertAlias

Alias of the public key certificate for the key pair used when encrypting messages to the IDP

The key pair is found in the Fedlet's keystore, and the certificate is included in the standard
metadata. See Public and Private Key Settings for details on how to specify access to the
keystore, and "Service Provider Standard XML" for details on how to set up standard metadata.

Building SAML v2.0 Service Providers With Fedlets
Configuring the Service Providers

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 318

basicAuthOn

Set this to true to use HTTP Basic authorization with the IDP.

Default: false

basicAuthUser

When using HTTP Basic authorization with the IDP, this value is the user name.

basicAuthPassword

When using HTTP Basic authorization with the IDP, this value is the password.

Encrypt the password using the encode.jsp page of your test copy of OpenAM that you might also
have used to encode keystore passwords as described in Public and Private Key Settings.

autofedEnabled

Set this to true to enable automatic federation with OpenAM based on the value of a profile
attribute that is common to user profiles both in OpenAM and in the Fedlet's context.

Default: false

autofedAttribute

When automatic federation is enabled, set this to the name of the user profile attribute used for
automatic federation.

transientUser

Use this effective identity for users with transient identifiers.

Default: anonymous

spAdapter

Class name for a plugin service provider adapter

This class must extend com.sun.identity.saml2.plugins.SAML2ServiceProviderAdapter.

spAdapterEnv

When using a plugin service provider adapter, this attribute's values optionally take a map of
settings key=value used to initialize the plugin.

fedletAdapter

Class name for an alternate fedlet adapter. Default is an empty value.

Building SAML v2.0 Service Providers With Fedlets
Configuring the Service Providers

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 319

fedletAdapterEnv

When using an alternate fedlet adapter, this attribute's values optionally take a map of settings
key=value used to initialize the plugin.

spAccountMapper

Class name for an implementation mapping SAML protocol objects to local user profiles

Default: com.sun.identity.saml2.plugins.DefaultLibrarySPAccountMapper

spAttributeMapper

Class name for an implementation mapping SAML assertion attributes to local user profile
attributes

Default: com.sun.identity.saml2.plugins.DefaultSPAttributeMapper

spAuthncontextMapper

Class name for an implementation determining the authentication context to set in an
authentication request, and mapping the authentication context to an authentication level

Default: com.sun.identity.saml2.plugins.DefaultSPAuthnContextMapper

spAuthncontextClassrefMapping

String defining how the SAML authentication context classes map to authentication levels and
indicate the default context class

Format: authnContextClass|authLevel[|default]

Default: urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport|0|default

spAuthncontextComparisonType

How to evaluate authentication context class identifiers.

exact

Assertion context must exactly match a context in the list

minimum

Assertion context must be at least as strong as a context in the list

maximum

Assertion context must be no stronger than a context in the list

better

Assertion context must be stronger than all contexts in the list

Building SAML v2.0 Service Providers With Fedlets
Configuring the Service Providers

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 320

Default: exact

attributeMap

Map of SAML assertion attributes to local user profile attributes

Default: *=*

saml2AuthModuleName

Name of an alternative SAML v2.0 authentication module

localAuthURL

URL to a login page on the Fedlet side

Use this to override the Assertion Consumer Service URL from the standard metadata when
consuming assertions.

intermediateUrl

URL to an intermediate page returned before the user accesses the final protected resource

defaultRelayState

If no RelayState is specified in a SAML request, redirect to this URL after successful single sign-
on.

URL-encode the defaultRelayState value.

appLogoutUrl

One or more Fedlet URLs that initiate single logout

Replace the placeholders in the default with the values for your Fedlet.

Default: FEDLET_PROTOCOL://FEDLET_HOST:FEDLET_PORT/FEDLET_DEPLOY_URI/logout

assertionTimeSkew

Tolerate clock skew between the Fedlet and the IDP of at most this number of seconds

Default: 300

wantAttributeEncrypted

Set to true to request that the IDP encrypt attributes in the response

wantAssertionEncrypted

Set to true to request that the IDP encrypt the SAML assertion in the response

Building SAML v2.0 Service Providers With Fedlets
Configuring the Service Providers

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 321

wantNameIDEncrypted

Set to true to request that the IDP encrypt the name ID in the response

wantPOSTResponseSigned

Set to true to request that the IDP sign the response when using HTTP POST

wantArtifactResponseSigned

Set to true to request that the IDP sign the response when using HTTP Artifact

wantLogoutRequestSigned

Set to true to request that the IDP sign single logout requests

wantLogoutResponseSigned

Set to true to request that the IDP sign single logout responses

wantMNIRequestSigned

Set to true to request that the IDP manage name ID requests

wantMNIResponseSigned

Set to true to request that the IDP manage name ID responses

cotlist

Set this to the Circle of Trust name used in "Configuring Circles of Trust".

Default: fedletcot

saeAppSecretList

When using Secure Attribute Exchange with OpenAM this represents the Application Security
Configuration settings.

Values take the format url=FedletURL|type=symmetric|secret=EncodedSharedSecret[|
encryptionalgorithm=EncAlg|encryptionkeystrength=EncStrength] or url=FedletURL|type=asymmetric|
privatekeyalias=FedletSigningCertAlias[|encryptionalgorithm=EncAlg|encryptionkeystrength=EncStrength|
pubkeyalias=FedletPublicKeyAlias]

You can omit the privatekeyalias setting if the signing certifcate is specified in the standard
metadata.

saeSPUrl

When using Secure Attribute Exchange (SAE) with OpenAM this is the Fedlet URL that handles
SAE requests. If this is omitted, then SAE is not enabled.

Building SAML v2.0 Service Providers With Fedlets
Configuring the Service Providers

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 322

saeSPLogoutUrl

When using Secure Attribute Exchange with OpenAM this is the Fedlet URL that handles SAE
global logout requests.

ECPRequestIDPListFinderImpl

When using the Enhanced Client and Proxy profile this is the class name for the implementation
that returns a list of preferred IDPs trusted by the ECP.

Default: com.sun.identity.saml2.plugins.ECPIDPFinder

ECPRequestIDPList

When using the Enhanced Client and Proxy profile this is the list of IDPs for the ECP to contact.

When not specified the list finder implementation is used.

enableIDPProxy

Set this to true to enable IDP proxy functionality.

Default: false

idpProxyList

A list of preferred IDPs that the Fedlet can proxy to

idpProxyCount

Number of IDP proxies that the Fedlet can have

Default: 0

useIntroductionForIDPProxy

Set this to true to pick a preferred IDP based on a SAML v2.0 introduction cookie.

Default: false

6.2.5.2.2. Service Provider Extended XML: AttributeQueryConfig Settings

This section covers elements for the Attribute Requester role, arranged in the order they appear in
the template.

signingCertAlias

Alias of the public key certificate for the key pair used when signing messages to the IDP

The key pair is found in the Fedlet's keystore, and the certificate is included in the standard
metadata. See Public and Private Key Settings for details on how to specify access to the
keystore, and "Service Provider Standard XML" for details on how to set up standard metadata.

Building SAML v2.0 Service Providers With Fedlets
Configuring the Service Providers

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 323

encryptionCertAlias

Alias of the public key certificate for the key pair used when encrypting messages to the IDP

The key pair is found in the Fedlet's keystore, and the certificate is included in the standard
metadata. See Public and Private Key Settings for details on how to specify access to the
keystore, and "Service Provider Standard XML" for details on how to set up standard metadata.

wantNameIDEncrypted

Set to true to request that the IDP encrypt the name ID

cotlist

Set this to the Circle of Trust name used in "Configuring Circles of Trust".

Default: fedletcot

6.2.5.2.3. Service Provider Extended XML: XACMLAuthzDecisionQueryConfig Settings

This section covers elements for the XACML decision requester role, enabling the Fedlet to act as a
Policy Enforcement Point, arranged in the order they appear in the template.

signingCertAlias

Alias of the public key certificate for the key pair used when signing messages to the IDP

The key pair is found in the Fedlet's keystore, and the certificate is included in the standard
metadata. See Public and Private Key Settings for details on how to specify access to the
keystore, and "Service Provider Standard XML" for details on how to set up standard metadata.

encryptionCertAlias

Alias of the public key certificate for the key pair used when encrypting messages to the IDP

The key pair is found in the Fedlet's keystore, and the certificate is included in the standard
metadata. See Public and Private Key Settings for details on how to specify access to the
keystore, and "Service Provider Standard XML" for details on how to set up standard metadata.

basicAuthOn

Set to true to use HTTP Basic authorization when contacting the Policy Decision Provider

Default: false

basicAuthUser

When using Basic authorization to contact the Policy Decision Provider, use this value as the user
name

Building SAML v2.0 Service Providers With Fedlets
Embedding the Java Fedlet in a Web Application

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 324

basicAuthPassword

When using Basic authorization to contact the Policy Decision Provider, use this value as the
password

Encrypt the password using the encode.jsp page of your test copy of OpenAM that you might also
have used to encode keystore passwords as described in Public and Private Key Settings.

wantXACMLAuthzDecisionResponseSigned

Set this to true to request that the Policy Decision Provider sign the XACML response.

wantAssertionEncrypted

Set this to true to request that the Policy Decision Provider encrypt the SAML assertion response

cotlist

Set this to the Circle of Trust name used in "Configuring Circles of Trust".

Default: fedletcot

6.2.6. Embedding the Java Fedlet in a Web Application

The Fedlet war file, Fedlet-13.5.2.war, serves both as an example and also to provide the code needed
to embed the Fedlet in your web application.

The basic steps for using the Fedlet in your application are as follows.

• Unpack the Fedlet war file to a working directory, remove any files you do not want to keep such as
index.jsp or fedletEncode.jsp, and overlay the Fedlet files with those of your web application.

• To integrate single sign-on into your application, modify the functionality in fedletSampleApp.jsp or
add it to your application's logic.

If you add it to your application's logic, then you must also edit your application's deployment
descriptor file, web.xml, to set the assertion consumer URI, which by default is /fedletapplication in
the basic SP XML for the Fedlet. Add servlet and servlet-mapping elements as shown in the following
example.

<servlet>
 <servlet-name>yourapplication</servlet-name>
 <jsp-file>/your-application.jsp</jsp-file>
</servlet>
<servlet-mapping>
 <servlet-name>yourapplication</servlet-name>
 <url-pattern>/fedletapplication</url-pattern>
</servlet-mapping>

• Build a war file from your web application with embedded Fedlet files.

Building SAML v2.0 Service Providers With Fedlets
Embedding the Java Fedlet in a Web Application

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 325

This is the version of the application to deploy.

• When you deploy your war file, also provide the Fedlet configuration as described in this section.

Working With the Security Token Service
Publishing STS Instances

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 326

Chapter 7

Working With the Security Token Service

This chapter covers tasks developers perform when working with OpenAM's Security Token Service
(STS).

The Security Token Service transforms security tokens upon request. For example, you can call
the Security Token Service to convert a username and password token to a SAML v2.0 token.
For a complete description of the Security Token Service, including operational flow, supported
token types, configuration, and deployment, see "Configuring the Security Token Service" in the
Administration Guide.

This section covers tasks that developers perform when working with the Security Token Service:

• "Publishing STS Instances"

• "Consuming STS Instances"

• "Querying, Validating, and Canceling Tokens"

• "Extending STS to Support Custom Token Types"

Several sections in this chapter reference STS code examples. The following procedure describes how
to access the examples:

To Access the STS Example Code

1. If you have not already done so, download and build the STS samples.

For information on downloading and building OpenAM sample source code, see How do I
access and build the sample code provided for OpenAM 12.x, 13.x and AM (All versions)? in the
Knowledge Base.

2. Check out the master branch of the OpenAM source.

You can find the STS code examples under /path/to/openam-samples-external/sts-example-code.

7.1. Publishing STS Instances
You configure STS instances to perform one or more token transformations. Each instance provides
configuration details about how SAML v2.0 and/or OpenID Connect output tokens are encrypted

https://backstage.forgerock.com/knowledge/kb/article/a47487197
https://backstage.forgerock.com/knowledge/kb/article/a47487197

Working With the Security Token Service
The Publish Service

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 327

or signed. Deployments that support multiple SAML v2.0 and/or OpenID Connect service providers
require multiple STS instances.

Publishing an STS instance means creating an STS instance with a given configuration.

OpenAM supports two types of STS instances: REST STS instances and SOAP STS instances. REST
STS instances provide token transformations by letting users call REST API endpoints, while SOAP
STS instances provide token transformations by letting users call WS-Trust 1.4-compliant SOAP
endpoints.

OpenAM provides two techniques for publishing STS instances:

• Creating and configuring the instance by using the OpenAM console

• Executing code that calls the sts-publish REST endpoint

"Configuring the Security Token Service" in the Administration Guide describes how to create and
configure STS instances by using the OpenAM console. This chapter covers how to publish STS
instances programmatically.

When you publish a REST STS instance, OpenAM exposes a REST endpoint for accessing the
instance, and the instance is immediately available for use to callers.

For SOAP STS instances, there is an additional deployment step. In order for the SOAP endpoint
to be exposed, a SOAP STS deployment must exist for the realm in which the SOAP STS instance
was created. A SOAP STS deployment is a running web application separate from OpenAM. For
information about creating SOAP STS deployments, see "Deploying SOAP STS Instances" in the
Administration Guide.

7.1.1. The Publish Service

To publish an STS instance, perform an HTTP POST on one of the sts-publish endpoints:

• /sts-publish/rest, for REST STS instances

• /sts-publish/soap, for SOAP STS instances

Specify the _action=create parameter in the URL.

For example, you could publish a REST STS instance named username-transformer in the Top Level
Realm as follows:

$ curl \
 --request POST \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --header "Content-Type: application/json" \
 --data '{

Working With the Security Token Service
The Publish Service

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 328

 "invocation_context": "invocation_context_client_sdk",
 "instance_state": {
 "saml2-config": {
 "issuer-name":"saml2-issuer",
 ...
 },
 "deployment-config": {
 "deployment-url-element":"username-transformer",
 "deployment-realm":"/",
 ...
 },
 "persist-issued-tokens-in-cts":"false",
 "supported-token-transforms":[{
 "inputTokenType":"USERNAME",
 "outputTokenType":"OPENIDCONNECT",
 "invalidateInterimOpenAMSession":false
 }],
 "oidc-id-token-config":{
 "oidc-issuer":"test",
 ...
 }
 }
 } \
 https://openam.example.com:8443/openam/sts-publish/rest?_action=create
{
 "_id":"username-transformer",
 "_rev":"21939129",
 "result":"success",
 "url_element":"username-transformer"}
}

The instance_state object in the JSON payload represents the STS instance's configuration. For a
complete example of an instance_state object, see the sample code for the RestSTSInstancePublisher class
in "Publishing REST STS Instances".

Accessing the sts-publish endpoint requires administrative privileges. Authenticate as an OpenAM
administrative user, such as amadmin, before attempting to publish an STS instance.

In addition to publishing instances, the sts-publish endpoint can also return the configuration of
an STS instance when you perform an HTTP GET on the sts-publish endpoint for the instance. The
endpoint you access differs for REST and SOAP STS instances:

• For REST STS instances, access /sts-publish/rest/realm/deployment-URL-element

• For SOAP STS instances, access /sts-publish/soap/realm/deployment-URL-element

In the preceding examples, deployment-URL-element is the value of the STS instance's deployment
URL element—one of the instance's configuration properties. realm is the realm in which a SOAP STS
instance has been configured.

For example, you could obtain the configuration of a REST STS instance configured in the Top Level
Realm with the deployment URL element username-transformer as follows:

Working With the Security Token Service
Publishing REST STS Instances

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 329

$ curl \
 --request GET \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/sts-publish/rest/username-transformer
{
 "_id":"username-transformer",
 "_rev":"-659999943",
 "username-transformer": {
 "saml2-config": {
 "issuer-name":"saml2-issuer",
 ...
 },
 "deployment-config": {
 "deployment-url-element":"username-transformer",
 ...
 },
 "persist-issued-tokens-in-cts":"false",
 "supported-token-transforms":[{
 "inputTokenType":"USERNAME",
 "outputTokenType":"OPENIDCONNECT",
 "invalidateInterimOpenAMSession":false
 }],
 "oidc-id-token-config":{
 "oidc-issuer":"test",
 ...
 }
 }
}

You can delete STS instances by performing an HTTP DELETE on the sts-publish endpoint. The
endpoint you access differs for REST and SOAP STS instances:

• For REST STS instances, perform an HTTP DELETE on /sts-publish/rest/realm/deployment-URL-element

• For SOAP STS instances, perform an HTTP DELETE on /sts-publish/soap/realm/deployment-URL-element

7.1.2. Publishing REST STS Instances
The sample code referenced in this section provides an example of how to programmatically publish
REST STS instance. The code is not intended to be a working example. Rather, it is a starting point—
code that you can modify to satisfy your organization's specific requirements. To access the sample
code, see "To Access the STS Example Code".

After publishing a REST STS instance programmatically, you can view the instance's configuration in
the OpenAM console. The instance is ready for consumption.

Sample code is available for the following classes:

RestSTSInstancePublisher

The RestSTSInstancePublisher class exposes an API to publish, delete, and update REST STS
instances by calling methods that perform an HTTP POST operation on the soap-sts/publish
endpoint.

Working With the Security Token Service
Publishing SOAP STS Instances

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 330

RestSTSInstanceConfigFactory

The RestSTSInstancePublisherclass calls the RestSTSInstanceConfigFactory class to create a
RestSTSInstanceConfig instance. RestSTSInstanceConfig objects encapsulate all the configuration
information of a REST STS instance, and emit JSON values that you can post to the sts-publish/
rest endpoint to publish a REST STS instance.

STSPublishContext

The sample STSPublishContext class specifies the configuration necessary to publish REST and
SOAP STS instances. The class provides a programmatic method for setting configuration
properties—the same configuration properties available through the OpenAM console under
Realms > Realm Name > STS.

CustomTokenOperationContext

The sample CustomTokenOperationContext class specifies custom validators, token types, and
transformations that a REST STS instance can support.

Important

The sample code referenced in this section is not compilable, because it uses classes that are not available
publicly. The code provides patterns to developers familiar with the problem domain and is intended only to
assist developers who want to programmatically publish REST STS instances.

The sample code imports a number of classes, introducing dependencies. Classes imported from the OpenAM
client SDK can remain in your code, but other imported classes must be removed and replaced with code
that provides similar functionality in your environment. For example, the RestSTSInstanceConfigFactory class
uses a constant named CommonConstants.DEFAULT_CERT_MODULE_NAME from the imported com.forgerock.openam
.functionaltest.sts.frmwk.common.CommonConstants utility class. This utility class is not publicly available.
Therefore, you need to replace this constant with another construct.

The critical part of the sample code is the idioms that programmatically set all the state necessary to publish a
REST STS instance.

7.1.3. Publishing SOAP STS Instances

The sample code referenced in this section provides an example of how to programmatically publish
of a SOAP STS instance. The code is not intended to be a working example. Rather, it is starter code
that you can modify to satisfy your organization's specific requirements. To access the sample code,
see "To Access the STS Example Code".

After publishing a SOAP STS instance programmatically, you can view the instance's configuration in
the OpenAM console. However, the instance is not ready for consumption until after you have created
and deployed a SOAP STS .war file. For information about how to create and deploy a SOAP STS .war
file, see "Deploying SOAP STS Instances" in the Administration Guide."

Sample code is available for the following classes:

Working With the Security Token Service
Consuming STS Instances

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 331

SoapSTSInstancePublisher

The sample SoapSTSInstancePublisher class exposes an API to publish, delete, and update SOAP STS
instances by calling methods that perform an HTTP POST operation on the soap-sts-publish/publish
endpoint.

SoapSTSInstanceConfigFactory

The sample SoapSTSInstancePublisher class calls the SoapSTSInstanceConfigFactory class to create
a SoapSTSInstanceConfig instance. SoapSTSInstanceConfig objects encapsulate all the configuration
information of a SOAP STS instance, and emit JSON values that you can post to the soap-sts-
publish/publish endpoint to publish a REST STS instance.

SoapSTSServerCryptoState

The sample SoapSTSServerCryptoState class specifies the configuration for the keystore used by
a SOAP STS instance. The class provides a programmatic method for setting configuration
properties—the same configuration properties available through the OpenAM console under
Realms > Realm Name > STS > Soap Keystore Configuration.

STSPublishContext

The sample STSPublishContext class specifies the configuration necessary to publish REST and
SOAP STS instances. The class provides a programmatic method for setting configuration
properties—the same configuration properties available through the OpenAM console under
Realms > Realm Name > STS.

Important

The sample code referenced in this section is not compilable, because it uses classes that are not available
publicly. The code provides patterns to developers familiar with the problem domain and is intended only to
assist developers who want to programmatically publish SOAP STS instances.

The sample code imports a number of classes, introducing dependencies. Classes imported from the OpenAM
client SDK and the SOAP STS client SDK can remain in your code, but other imported classes must be
removed and replaced with code that provides similar functionality in your environment. For example, the
SoapSTSInstanceConfigFactory class uses a constant named CommonConstants.DEFAULT_CERT_MODULE_NAME from the
imported com.forgerock.openam.functionaltest.sts.frmwk.common.CommonConstants utility class. This utility class
is not publicly available. Therefore, you need to replace this constant with another construct.

The critical part of the sample code is the idioms that programmatically set all the state necessary to publish a
SOAP STS instance.

7.2. Consuming STS Instances
Once REST and SOAP STS instance endpoints have been exposed, they are available for use to
consumers as follows:

• Developers access REST STS instances by making REST API calls that support token
transformations.

Working With the Security Token Service
Consuming REST STS Instances

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 332

• Developers access SOAP STS instances by sending SOAP messages or by using the SOAP STS client
SDK. OpenAM's SOAP STS is WS-Trust 1.4 compliant.

7.2.1. Consuming REST STS Instances

You consume a REST STS instance by sending REST API calls to the instance's endpoint.

7.2.1.1. REST STS Instance Endpoint

REST STS instances' endpoints comprise the following parts:

• The OpenAM context

• The string rest-sts

• The realm in which the REST STS instance is configured

• The deployment URL element, which is one of the configuration properties of an STS instance

For example, a REST STS instance configured in the realm myRealm with the deployment URL element
username-transformer exposes the endpoint /rest-sts/myRealm/username-transformer.

7.2.1.2. JSON Representation of Token Transformations

Token transformations are represented in JSON as follows:
{
 "input_token_state": {
 "token_type": "INPUT_TOKEN_TYPE"
 ... INPUT_TOKEN_TYPE_PROPERTIES ...
 },
 "output_token_state": {
 "token_type": "OUTPUT_TOKEN_TYPE"
 ... OUTPUT_TOKEN_TYPE_PROPERTIES ...
 }
}

REST STS supports the following token types and properties:

• Input token types:

• USERNAME

Requires the username and password properties.

• OPENAM

Requires the session_id property, with an SSO token as its value.

• X509

http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html

Working With the Security Token Service
Consuming REST STS Instances

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 333

No properties are required, because input X.509 tokens are presented either in HTTP headers
or by using TLS. For more information about X.509 tokens, see the configuration details for the
Authentication Target Mappings and Client Certificate Header Key properties in "REST STS
Configuration Properties" in the Administration Guide.

• OPENIDCONNECT

Requires the oidc_id_token property, with the OpenID Connect token as its value.

• Output token types:

• SAML2

Requires the subject_confirmation property, the value of which determines the
<saml:ConfirmationMethod> element for the generated SAML v2.0 assertion. Valid values are BEARER,
SENDER_VOUCHES, and HOLDER_OF_KEY.

When generating an assertion with a holder-of-key subject confirmation method, the
proof_token_state property is required. The value for this property is an object that contains the
base64EncodedCertificate property.

• OPENIDCONNECT

Requires the nonce and allow_access properties.

The following are examples of JSON payloads that define REST STS token transformations:

1. Transform a username token to a SAML v2.0 token with the bearer subject confirmation method:
{
 "input_token_state": {
 "token_type": "USERNAME",
 "username": "demo",
 "password": "changeit"
 },
 "output_token_state": {
 "token_type": "SAML2",
 "subject_confirmation": "BEARER"
 }
}

2. Transform an X.509 token to a SAML v2.0 token with the sender vouches subject confirmation
method:
{
 "input_token_state": {
 "token_type": "X509"
 },
 "output_token_state": {
 "token_type": "SAML2",
 "subject_confirmation": "SENDER_VOUCHES"
 }
}

Working With the Security Token Service
Consuming REST STS Instances

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 334

3. Transform an OpenID Connect token to a SAML v2.0 token with the holder-of-key subject
confirmation method:
{
 "input_token_state": {
 "token_type": "OPENIDCONNECT",
 "oidc_id_token": "eyAiYWxQ.euTNnNDExNTkyMjEyIH0.kuNlKwyvZJqaC8EYpDyPJMiEcII"
 },
 "output_token_state": {
 "token_type": "SAML2",
 "subject_confirmation": "HOLDER_OF_KEY",
 "proof_token_state": {
 "base64EncodedCertificate": "MIMbFAAOBjQAwgYkCgYEArSQ...c/U75GB2AtKhbGS5pimrW0Y0Q=="
 }
 }
}

4. Transform an OpenAM SSO token to an OpenID Connect token:
{
 "input_token_state": {
 "token_type": "OPENAM",
 "session_id": "AQIC5wM2...TMQAA*"
 },
 "output_token_state": {
 "token_type": "OPENIDCONNECT",
 "nonce": "471564333",
 "allow_access": true
 }
}

For more examples of JSON payloads that you can send to REST STS instances, see the comments in
the sample code in "Java Example".

7.2.1.3. Command-Line Example

You can use the curl command to quickly verify that a published REST STS instance operates as
expected.

For example, if you publish a REST instance with a deployment URL element usernmame-transformer
that supports username to SAML v2.0 bearer assertion token transformation, you can perform an
HTTP POST to the /rest-sts/username-transformer endpoint, setting the _action parameter to translate as
follows:

$ curl \
 --request POST \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --header "Content-Type: application/json" \
 --data '{
 "input_token_state": {
 "token_type": "USERNAME",
 "username": "demo",
 "password": "changeit"
 },

Working With the Security Token Service
Consuming REST STS Instances

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 335

 "output_token_state": {
 "token_type": "SAML2",
 "subject_confirmation": "BEARER"
 }
 }' \
 https://openam.example.com:8443/openam/rest-sts/username-transformer?_action=translate
 {
 "issued_token":
 "<saml:Assertion
 xmlns:saml=\"urn:oasis:names:tc:SAML:2.0:assertion\"
 Version=\"2.0\"
 ID=\"s2c51ebd0ad10aae44fb76e4b400164497c63b4ce6\"
 IssueInstant=\"2016-03-02T00:14:47Z\">\n
 <saml:Issuer>saml2-issuer</saml:Issuer>
 <saml:Subject>\n
 <saml:NameID
 Format=\"urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress\">demo
 </saml:NameID>
 <saml:SubjectConfirmation
 Method=\"urn:oasis:names:tc:SAML:2.0:cm:bearer\">\n
 <saml:SubjectConfirmationData
 NotOnOrAfter=\"2016-03-02T00:24:47Z\" >
 </saml:SubjectConfirmationData>
 </saml:SubjectConfirmation>\n
 </saml:Subject>
 <saml:Conditions
 NotBefore=\"2016-03-02T00:14:47Z\"
 NotOnOrAfter=\"2016-03-02T00:24:47Z\">\n
 <saml:AudienceRestriction>\n
 <saml:Audience>saml2-issuer-entity</saml:Audience>\n
 </saml:AudienceRestriction>\n</saml:Conditions>\n
 <saml:AuthnStatement
 AuthnInstant=\"2016-03-02T00:14:47Z\">
 <saml:AuthnContext>
 <saml:AuthnContextClassRef>
 urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport
 </saml:AuthnContextClassRef>
 </saml:AuthnContext>
 </saml:AuthnStatement>
 </saml:Assertion>\n"
}

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

7.2.1.4. Java Example

The RestSTSConsumer.java sample code provides an example of how to consume a published REST STS
instance programmatically. Tailor this example as required to provide programmatic consumption of
your own REST STS instances. To access the sample code, see "To Access the STS Example Code".

Working With the Security Token Service
Consuming SOAP STS Instances

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 336

Important

The sample code referenced in this section is not compilable, because it uses classes that are not available
publicly. The code provides patterns to developers familiar with the problem domain and is intended only to
assist developers who want to programmatically consume REST STS instances.

7.2.2. Consuming SOAP STS Instances
You consume a SOAP STS instance by sending it SOAP messages to the instance's endpoint, or by
calling it using the OpenAM SOAP STS client SDK.

7.2.2.1. SOAP STS Instance URL
SOAP STS instances' URLs comprise the following parts:

• The SOAP STS deployment context

• The string sts

• The realm in which the REST STS instance is configured

• The deployment URL element, which is one of the configuration properties of an STS instance

The SOAP STS deployment context comprises the base URL of the web container to which the
SOAP STS .war file is deployed and the deployment web application name. For more information
about SOAP STS deployments, see "Deploying the SOAP STS Instance to a Web Container" in the
Administration Guide.

For example, a SOAP STS instance configured in the realm myRealm with the deployment URL element
soap-username-transformer and the a deployment web application name openam-soap-sts would expose a
URL similar to https://soap-sts-host.com:8443/openam-soap-sts/sts/myRealm/soap-username-transformer.

The WSDL for the service would be available at https://soap-sts-host.com:8443/openam-soap-sts/sts/
myRealm/soap-username-transformer?wsdl.

7.2.2.2. Consuming SOAP STS Instances Using SOAP Messages
Because an OpenAM SOAP STS instance is a WS-Trust 1.4-compliant security token service, users
can consume the instance by sending it standard WS-Trust 1.4 SOAP STS framework messages, such
as RequestSecurityToken messages, passed as the payload to WSDL ports that are implemented by the
security token services.

For more information about WS-Trust 1.4 security token services, see the WS-Trust 1.4 specification.

7.2.2.3. Consuming SOAP STS Instances Using the OpenAM SOAP STS Client SDK
You can consume an OpenAM SOAP STS instance by calling it using the OpenAM SOAP STS client
SDK.

http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html

Working With the Security Token Service
Consuming SOAP STS Instances

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 337

7.2.2.3.1. About the SOAP STS Client SDK

The SOAP STS client SDK is based on classes in Apache CXF, an open source service framework.
Apache CXF provides the org.apache.cxf.ws.security.trust.STSClient class, which encapsulates
consumption of a SOAP STS service. However, using this class requires considerable expertise.

The SOAP STS client SDK makes it easier to consume OpenAM SOAP STS instances than using
Apache CXF for the following reasons:

• The org.forgerock.openam.sts.soap.SoapSTSConsumer class in the OpenAM SOAP STS client SDK
wraps the Apache CXF class org.apache.cxf.ws.security.trust.STSClient, providing a higher level of
abstraction that makes consumption of SOAP STS instances easier to achieve.

• The SoapSTSConsumer class' issueToken, validateToken, and cancelToken methods provide the three
fundamental operations exposed by SOAP STS instances. Supporting classes facilitate the creation
of state necessary to invoke these methods.

• Classes in the SDK provide logic to allow OpenAM session tokens to be presented in order to
satisfy the security policy bindings that mandate OpenAM sessions as supporting tokens. The
STS client obtains secret password state—keystore entry passwords and aliases, username token
credential information, and so forth—from a callback handler. The SoapSTSConsumerCallbackHandler
class provides the means to create a callback handler initialized with state that will be encountered
when consuming SOAP STS instances. The SoapSTSConsumerCallbackHandler instance can be passed
to an STS client. The TokenSpecification class provides a way to create the varying token state
necessary to obtain specific tokens and create any necessary supporting state.

You can use the classes in the SOAP STS client SDK as is, or you can tailor them to your needs. For
more information about the SOAP STS client SDK classes, see the source code and the Javadoc.

7.2.2.3.2. Building a SOAP STS Client SDK .jar File

The SOAP STS client SDK is not part of the OpenAM client SDK. 1 To use the SOAP STS client SDK,
you must compile the source code for the SOAP STS client SDK and create a .jar file.

To Build the SOAP STS Client SDK

1. Download the OpenAM source code.

2. Change to the openam-sts/openam-soap-sts directory.

3. Run the mvn install command.

4. Locate the openam-soap-sts-client-13.5.2-15.jar file in the openam-sts/openam-soap-sts/openam-soap-sts-
client/target directory.

1 The SOAP STS client SDK has a dependency on Apache CXF classes, which is not present in the OpenAM client SDK.
Therefore, the two SDKs are not bundled together.

http://cxf.apache.org
http://cxf.apache.org/javadoc/latest

Working With the Security Token Service
Querying, Validating, and Canceling Tokens

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 338

7.3. Querying, Validating, and Canceling Tokens
Both REST and SOAP STS instances support token persistence, which is the ability to store tokens
issued for the STS instance in the Core Token Service (CTS). You enable token persistence for both
REST and SOAP STS instances' configuration under Realms > Realm Name > STS > STS Instance
Name > General Configuration > Persist Issued Tokens in Core Token Store. Tokens are saved in the
CTS for the duration of the token lifetime, which is a configuration property for STS-issued SAML
v2.0 and OpenID Connect tokens. Tokens with expired durations are periodically removed from the
CTS.

With token persistence enabled for an STS instance, OpenAM provides the ability to query, validate,
and cancel tokens issued for the instance:

• Querying tokens means listing tokens issued for an STS instance or for a user.

• Validating a token means verifying that the token is still present in the CTS.

• Cancelling a token means removing the token from the CTS.

7.3.1. Invoking the sts-tokengen Endpoint
The sts-tokengen endpoint provides administrators with the ability to query and cancel tokens issued
for both REST and SOAP STS instances using REST API calls.

When using the sts-tokengen endpoint, be sure to provide the token ID for an OpenAM administrator,
such as amadmin, as the value of a header whose name is the name of the SSO token cookie, by default
iPlanetDirectoryPro.

7.3.1.1. Querying Tokens
List tokens issued for an STS instance by using the queryFilter action in an HTTP GET call to the sts-
tokengen endpoint with the /sts-id argument.

The following example lists all the tokens issued for the username-transformer STS instance. The
results show that OpenAM has issued two OpenID Connect tokens for the demo user for the username-
transformer STS instance:

$ curl \
 --request GET \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/sts-tokengen\
 ?_queryFilter=\/sts_id+eq+\'username-transformer'\
 {
 "result":[
 {
 "_id":"B663D248CE4C3B63A7422000B03B8F5E0F8E443B",
 "_rev":"",
 "token_id":"B663D248CE4C3B63A7422000B03B8F5E0F8E443B",
 "sts_id":"username-transformer",
 "principal_name":"demo",

Working With the Security Token Service
Invoking the sts-tokengen Endpoint

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 339

 "token_type":"OPENIDCONNECT",
 "expiration_time":1459376096
 },
 {
 "_id":"7CB70009970D1AAFF177AC2A08D58405EDC35DF5",
 "_rev":"",
 "token_id":"7CB70009970D1AAFF177AC2A08D58405EDC35DF5",
 "sts_id":"username-transformer",
 "principal_name":"demo",
 "token_type":"OPENIDCONNECT",
 "expiration_time":1459376098
 }
],
 "resultCount":2,
 "pagedResultsCookie":null,
 "totalPagedResultsPolicy":"NONE",
 "totalPagedResults":-1,
 "remainingPagedResults":-1
}

List tokens issued for a particular user with the queryFilter action in an HTTP GET call to the sts-
tokengen endpoint with the /token-principal argument.

The following example lists all the tokens issued for the demo user. The results show that OpenAM has
issued two OpenID Connect tokens:

$ curl \
 --request GET \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/sts-tokengen\
 ?_queryFilter=\/token_principal+eq+\'demo'\
 {
 "result":[
 {
 "_id":"B663D248CE4C3B63A7422000B03B8F5E0F8E443B",
 "_rev":"",
 "token_id":"B663D248CE4C3B63A7422000B03B8F5E0F8E443B",
 "sts_id":"username-transformer",
 "principal_name":"demo",
 "token_type":"OPENIDCONNECT",
 "expiration_time":1459376096
 },
 {
 "_id":"7CB70009970D1AAFF177AC2A08D58405EDC35DF5",
 "_rev":"",
 "token_id":"7CB70009970D1AAFF177AC2A08D58405EDC35DF5",
 "sts_id":"username-transformer",
 "principal_name":"demo",
 "token_type":"OPENIDCONNECT",
 "expiration_time":1459376098
 }
],
 "resultCount":2,
 "pagedResultsCookie":null,
 "totalPagedResultsPolicy":"NONE",
 "totalPagedResults":-1,
 "remainingPagedResults":-1

Working With the Security Token Service
Validating and Cancelling Tokens by Invoking a REST STS Instance

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 340

}

7.3.1.2. Cancelling Tokens

Cancel tokens by making an HTTP DELETE call to the sts-tokengen/token_id endpoint:

$ curl \
 --request DELETE \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/sts-tokengen/B663D248CE4C3B63A7422000B03B8F5E0F8E443B
{
 "_id":"B663D248CE4C3B63A7422000B03B8F5E0F8E443B",
 "_rev":"B663D248CE4C3B63A7422000B03B8F5E0F8E443B",
 "result":"token with id B663D248CE4C3B63A7422000B03B8F5E0F8E443B successfully removed."
}

7.3.2. Validating and Cancelling Tokens by Invoking a REST STS Instance

REST STS users can validate and cancel tokens by making an HTTP POST call to a REST STS
instance's endpoint.

To validate a token, use the validate action. The following example validates an OpenID Connect
token previously issued by the username-transformer REST STS instance:

$ curl \
 --request POST \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --header "Content-Type: application/json" \
 --data '{
 "validated_token_state": {
 "token_type": "OPENIDCONNECT",
 "oidc_id_token": "eyAidHlwIjogIkpXVCIsIC..."
 }
 }' \
 https://openam.example.com:8443/openam/rest-sts/username-transformer?_action=validate
{
 "token_valid":true
}

To cancel a token, use the cancel action. The following example cancels an OpenID Connect token
previously issued by the username-transformer REST STS instance:

Working With the Security Token Service
Validating and Cancelling Tokens by Invoking a SOAP STS Instance

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 341

$ curl \
 --request POST \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --header "Content-Type: application/json" \
 --data '{
 "cancelled_token_state": {
 "token_type": "OPENIDCONNECT",
 "oidc_id_token": "eyAidHlwIjogIkpXVCIsIC..."
 }
 }' \
 https://openam.example.com:8443/openam/rest-sts/username-transformer?_action=cancel
{
 "result":"OPENIDCONNECT token cancelled successfully."
}

7.3.3. Validating and Cancelling Tokens by Invoking a SOAP STS Instance
The source code for the validateToken and cancelToken methods in the org.forgerock.openam.sts.soap
.SoapSTSConsumer class provides information needed to construct WS-Trust 1.4-compliant calls for
validating and cancelling tokens.

Locate the org.forgerock.openam.sts.soap.SoapSTSConsumer class under openam-sts/openam-soap-sts/openam-
soap-sts-client in the OpenAM source code.

7.4. Extending STS to Support Custom Token Types
OpenAM supports token transformations to and from a variety of token types, including username,
SAML v2.0, OpenID Connect, and X.509. In addition to these supported token types, REST STS
instances can use custom token types as the input or output token, or both, in a token transformation.
When you configure a REST STS instance to support a token transformation that takes a custom
token type, you can also configure a custom validator and provider class for the custom token type.
OpenAM uses custom validator classes to validate custom tokens and custom provider classes to
produce custom tokens.

Specify custom token validator and provider classes in the OpenAM console by configuring the
Custom Token Validators and Custom Token Providers properties under Realms > Realm Name >
STS > REST STS Instance Name.

A custom validator class can be used in transformations that produce standard STS output tokens,
such as SAML v2.0 tokens or OpenID Connect tokens, and in transformations that produce custom
output token types.

A custom provider class can be used in token transformations that take standard STS input tokens,
such as username tokens or OpenAM SSO tokens, and in transformations that take custom input
token types.

Before a REST STS instance can use a custom token type validator or provider class, you must bundle
the class into the OpenAM .war file and restart OpenAM.

Working With the Security Token Service
Developing Custom Token Type Validator Classes

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 342

OpenAM invokes a single instance of a validator or provider class to run all concurrently dispatched
token transformations that use the custom token type. Because there is only a single instance of the
class, you must code custom validator and provider classes to be thread-safe.

7.4.1. Developing Custom Token Type Validator Classes

To create a custom token type validator class, implement the org.forgerock.openam.sts.rest.token
.validator.RestTokenTransformValidator class.

Custom token type validator classes implement the validateToken method. This method takes a
RestTokenValidatorParameters object as input. Note that the generic type of RestTokenValidatorParameters is
org.forgerock.json.fluent.JsonValue. As a result of using this type, custom validator classes can access
the JSON representation of the input token passed to the REST STS instance in the input_token_state
JSON key.

The validateToken method returns an org.forgerock.openam.sts.rest.token.validator
.RestTokenTransformValidatorResult object. At a minimum, this object contains the OpenAM SSO
token corresponding to the validated principal. It can also contain additional information specified
as a JSON value, allowing a custom validator to pass extra state to a custom provider in a token
transformation.

7.4.2. Developing Custom Token Type Provider Classes

To create a custom token type provider class, implement the org.forgerock.openam.sts.rest.token
.provider.RestTokenProvider class.

Custom token type provider classes implement the createToken method. This method takes an org
.forgerock.openam.sts.rest.token.provider.CustomRestTokenProviderParameters object as input. This object
gives the custom provider access to the following information:

• The principal returned by the RestTokenTransformValidator

• The OpenAM SSO token corresponding to the validated principal

• Any additional state returned in the RestTokenValidatorResult object

• The type of input token validated by the RestTokenTransformValidator in the token transformation

• The JsonValue corresponding to this validated token, as specified by the input_token_state object in
the transformation request

• The JsonValue corresponding to the token_output_state object specified in the token transformation
request (which can provide additional information pertinent to the creation of the output token)

The createToken method returns a string representation of the custom token in a format that can be
transmitted across HTTP in JSON. It should be base64-encoded if binary.

Working With the Security Token Service
Using Custom Token Type Validators and Providers

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 343

7.4.3. Using Custom Token Type Validators and Providers

This section provides an example of how to use custom token type validators and providers.

The example assumes that you already configured a token transformation by completing the following
tasks:

• Implementing the RestTokenTransformValidator interface to create a custom token type validator

• Implementing the RestTokenProvider interface to create a custom token type provider

• Bundling the two classes into the OpenAM .war file

• Restarting OpenAM

• Publishing a REST STS instance with a custom token type named CUSTOM, specifying the custom
validator and provider classes in the instance's configuration

To transform a CUSTOM token to an OpenID Connect token, you might specify a JSON payload similar to
the following:

{
 "input_token_state":
 {
 "token_type": "CUSTOM",
 "extra_stuff": "very_useful_state"
 },
 "output_token_state":
 {
 "token_type": "OPENIDCONNECT",
 "nonce": "1234",
 "allow_access": true
 }
}

With the preceding JSON payload, OpenAM passes a JsonValue instance to the validateToken method of
the custom token type validator class as follows:

{
 "token_type": "CUSTOM",
 "extra_stuff": "very_useful_state"
}

To transform a username token to a CUSTOM token, you might specify a JSON payload similar to the
following:

Working With the Security Token Service
Using Custom Token Type Validators and Providers

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 344

{
 "input_token_state":
 {
 "token_type": "USERNAME",
 "username": "unt_user17458687",
 "password": "password"
 },
 "output_token_state":
 {
 "token_type": "CUSTOM",
 "extra_stuff_for_custom": "some_useful_information"
 }
}

With the preceding JSON payload, OpenAM passes the following information to the createToken
method of the custom token type provider:

• The principal returned by the USERNAME token validator: unt_user17458687.

• The OpenAM SSO token corresponding to this authenticated principal.

• Additional state returned by the token validator, if any. Because the USERNAME token validator does
not return any additional state, the additional state for this example would be null.

• The input token type: CUSTOM

• A JsonValue representation of the following:

{
 "token_type": "USERNAME",
 "username": "unt_user17458687",
 "password": "password"
}

• A JsonValue representation of the following:

{
 "token_type": "CUSTOM",
 "extra_stuff_for_custom": "some_useful_information"
}

To transform a CUSTOM token to a CUSTOM token, you might specify a JSON payload similar to the
following:

Working With the Security Token Service
Using Custom Token Type Validators and Providers

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 345

{
 "input_token_state":
 {
 "token_type": "CUSTOM",
 "extra_stuff": "very_useful_state"
 },
 "output_token_state":
 {
 "token_type": "CUSTOM",
 "extra_stuff_for_custom": "some_useful_information"
 }
}

The input to the custom validator and provider would be similar to the preceding examples, with the
possible addition of any additional state that the custom validator returned from the validateToken
method.

Using Secure Attribute Exchange

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 346

Chapter 8

Using Secure Attribute Exchange

Most deployments can rely on OpenAM to handle authentication and provide identity assertions.
OpenAM supports a wide variety of authentication scenarios out of the box, but OpenAM also makes
it possible to add custom authentication modules. Furthermore, OpenIG lets you integrate legacy
systems into your access management deployment.

In a deployment where you need OpenAM to act as a SAML v2.0 gateway to a legacy application
that serves as an identity provider, you can use OpenAM Secure Attribute Exchange (SAE). On the
identity provider side, SAE lets OpenAM retrieve the information needed to create assertions from an
external authentication service, bypassing OpenAM authentication and trusting the external service
as the authoritative source of authentication. On the service provider side, SAE lets OpenAM securely
provide attributes to an application that makes its own policy decision based on the attributes rather
than rely on OpenAM for the policy decision.

When you use SAE on the identity provider side, an external application acts as the authoritative
source of authentication. After a user authenticates successfully, the application tells OpenAM to
create a session by sending a secure HTTP GET or POST to OpenAM that asserts the identity of

Using Secure Attribute Exchange
Installing the Samples

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 347

the user. OpenAM processes the assertion to create a session for the user. If the user is already
authenticated and comes back to access the application, the application sends a secure HTTP POST
to OpenAM to assert both the user's identity and also any necessary attributes related to the user.
OpenAM processes the assertion to create the session for the user and populate the attributes in
the user's session. When the user logs out, the external authentication application can initiate single
logout from the identity provider OpenAM server by sending the sun.cmd=logout attribute to OpenAM
using SAE.

On the service provider side, OpenAM communicates using SAML v2.0 with OpenAM on the identity
provider side. OpenAM can use SAE to transmit attributes to an application through a secure HTTP
POST.

SAE relies either on shared keys and symmetric encryption, or on public and private keys and
asymmetric encryption to protect attributes communicated between OpenAM and external
applications.

OpenAM ships with sample JSPs that demonstrate secure attribute exchange. To try the sample, you
must set up an OpenAM Circle of Trust to include an identity provider and a service provider, install
the SDK sample web application on each provider, and then configure the providers appropriately
as described in this chapter to secure communications with the sample SAE applications on both the
identity provider and service provider sides.

8.1. Installing the Samples
Set up an OpenAM server as an identity provider, and another as a service provider, connecting
the two in a circle of trust called samplesaml2cot. Configure both the hosted providers and also the
remote providers as described in "Configuring Identity Providers, Service Providers, and Circles of
Trust" in the Administration Guide. This chapter assumes you set up the hosted identity provider at
http://idp.example.com:8080/openam and the hosted service provider at http://sp.example.com:8080/openam.
Use Realms > Realm Name > Test Federation Connectivity in the OpenAM console to make sure
Federation is working before you add secure attribute exchange applications that rely on functioning
SAML v2.0 communications between the providers.

Set up the sample web application as described in "Installing OpenAM Client SDK Samples", both
on the identity provider side and also on the service provider side. The SAE samples are found
under /saml2/sae where you installed the samples. saeIDPApp.jsp is the identity provider side external
application. saeSPApp.jsp is the service provider side external application.

8.2. Preparing to Secure SAE Communications
In order for SAE to be secure, you must both set up a trust relationship between the application on
the identity provider side and the OpenAM server acting as identity provider, and sets up a trust
relationship between the application on the service provider side and the OpenAM server acting
as the service provider. These trust relationships can be based on a shared secret and symmetric

Using Secure Attribute Exchange
Securing the Identity Provider Side

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 348

encryption, or on public and private key pairs and asymmetric encryption. The trust relationships on
either side are independent. For example, you can use a shared secret on the identity provider side
and certificates on the service provider side if you chose.

When using symmetric encryption, you must define a shared secret string used both for the
application and the provider. The sample uses secret12 as the shared secret. To simplify configuration,
the sample uses the same shared secret, and thus symmetric encryption, for both trust relationships.

When using symmetric encryption, you must also use the encoded version of your shared secret. To
get the encoded version of a shared secret string, use the encode.jsp page on the provider, as in http:/
/idp.example.com:8080/openam/encode.jsp and http://sp.example.com:8080/openam/encode.jsp. An encoded
version of secret12 looks something like AQICEcFhDWmb6sVmMuCJuVh43306HVacDte9.

When using asymmetric encryption, you must obtain a public-private key pair for the application, and
store the keys in a keystore on the application side. Also store the public key from OpenAM which
is acting as the provider in the application's keystore. Make note of the certificate aliases for your
application's private key, and for OpenAM's public key. Also note the path to the keystore for your
application, the keystore password, and the private key password.

8.3. Securing the Identity Provider Side
This configuration uses the default sample settings with a shared secret of secret12, without
encryption of the attributes:

1. Log in as amadmin to the OpenAM server console where you set up the hosted identity provider
(IDP).

2. The sample includes a branch attribute not found in user profiles by default. Therefore, under
Realms > Realm Name > Authentication > Settings > User Profile, set User Profile to Ignored,
and then save your work.

3. Under Federation > Entity Providers, click the name for the Hosted IDP in order to access the IDP
configuration:

• Under Assertion Processing > Attribute Mapper, add both mail=mail and branch=branch to the
attribute map, and then Save your work.

• Under Advanced > SAE Configuration, make sure the IDP URL reflects an endpoint on the IDP
such as http://idp.example.com:8080/openam/idpsaehandler/metaAlias/idp, and then Save your work.

• Also under Advanced > SAE Configuration > Application Security Configuration, add the URL
value for the kind of encryption you are using, and then Save your work.

When using the defaults, the value is something like url=http://idp.example.com:8080/samples/
saml2/sae/saeIDPApp.jsp|type=symmetric|secret=encoded-secret, where the OpenAM SDK sample web
application is deployed on the IDP side with context root /samples and the encoded-secret is
something like AQICEcFhDWmb6sVmMuCJuVh43306HVacDte9.

Using Secure Attribute Exchange
Securing the Service Provider Side

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 349

If you use a different mechanism to secure the communications between the SAE application
and the provider, read the online help in the console to see how to construct your URL value.

4. Under Federation > Entity Providers, click the name for the Remote SP in order to access the SP
configuration on the IDP side:

• Under Assertion Processing > Attribute Mapper, add both mail=mail and branch=branch to the
attribute map, and then Save your work.

• Under Advanced > SAE Configuration, make sure the SP URL reflects an endpoint on the SP,
such as http://sp.example.com:8080/openam/spsaehandler/metaAlias/sp, and then Save your work.

• Also under Advanced > SAE Configuration, add the URL to the sample SAE application as the
SP Logout URL, such as http://sp.example.com:8080/samples/saml2/sae/saeSPApp.jsp, and then Save
your work.

8.4. Securing the Service Provider Side
This configuration uses the default sample setting of symmetric encryption, with a shared secret of
secret12.

Login as amadmin to the OpenAM server console where you set up the hosted service provider (SP):

1. The sample includes a branch attribute not found in user profiles by default. Therefore, under
Realms > Realm Name > Authentication > Settings > User Profile, set User Profile to Ignored,
and then Save your work.

2. Under Federation > Entity Providers, click the name for the Hosted SP in order to access the SP
configuration:

• Under Assertion Processing > Attribute Mapper, add both mail=mail and branch=branch to the
attribute map, and then Save your work.

• Also under Assertion Processing > Attribute Mapper > Auto Federation, select Enabled, set the
Attribute to mail, and then Save your work.

• Under Advanced > SAE Configuration, make sure the SP URL reflects an endpoint on the SP
such as http://sp.example.com:8080/openam/spsaehandler/metaAlias/sp, and then Save your work.

• Furthermore, under Advanced > SAE Configuration, add the URL to the sample SAE application
as the SP Logout URL such as http://sp.example.com:8080/samples/saml2/sae/saeSPApp.jsp, and then
Save your work.

• Also under Advanced > SAE Configuration > Application Security Configuration, add the URL
value for the kind of encryption you are using, and then Save your work.

Using Secure Attribute Exchange
Trying It Out

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 350

When using the defaults, the value is something like url=http://sp.example.com:8080/samples/
saml2/sae/saeSPApp.jsp|type=symmetric|secret=encoded-secret, where the OpenAM SDK sample web
application is deployed on the IDP side with context root /samples and the encoded-secret is
something like AQICkX24RbZboAVgr2FG1kWoqRv1zM2a6KEH.

If you use a different mechanism to secure the communications between the SAE application
and the provider, read the online help in the console to see how to construct your URL value.

8.5. Trying It Out
After completing the setup described above, navigate to the IDP side SAE application, for example at
http://idp.example.com:8080/samples/saml2/sae/saeIDPApp.jsp.

Make sure you set at least the "SP App URL" and "SAE URL on IDP end" to fit your configuration. For
example if you used the settings above then use the following values:

SP App URL

http://sp.example.com:8080/samples/saml2/sae/saeSPApp.jsp

SAE URL on IDP end

http://idp.example.com:8080/openam/idpsaehandler/metaAlias/idp

Check the settings, and then click Generate URL to open the Secure Attributes Exchange IDP APP
SAMPLE page.

Click the ssourl link in the page to start the exchange.

The resulting web page shows the attributes exchanged, including the mail and branch values used.
The text of that page is something like the following:
SAE SP APP SAMPLE

Secure Attrs :
mail testuser@foo.com
sun.idpentityid http://idp.example.com:8080/openam
sun.spentityid http://sp.example.com:8080/openam
branch mainbranch
sun.authlevel 0

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 351

Appendix A. Deprecated REST APIs

This appendix provides information about REST APIs deprecated in OpenAM 13.5.2-15.

A.1. Deprecated Session Information APIs
Interface Stability: Deprecated

To check the maximum remaining time (in seconds) of a session, perform an HTTP POST to the
resource URL, /json/sessions/, using the getMaxTime action as shown in the following example:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iplanetDirectoryPro: AQIC5w...NTcy*" \
 http://openam.example.com:8080/openam/json/sessions/?_action=getMaxTime&tokenId=BXCCq...NX*1*

{"maxtime":7022}

The getMaxTime action has been deprecated in favor of getTimeLeft. For more information, see
"Obtaining Information About Sessions".

A.2. Deprecated Self-Service APIs
Interface Stability: Deprecated

For information about the new self-service APIs, see "RESTful User Self-Service".

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 352

A.2.1. Legacy User Self-Registration

The OpenAM REST API for users provides an action for self-registration. The feature works by
sending an email to the user in response to RESTful HTTP POST requesting registration with an
email address. When the user clicks the link received by mail, an application intercepts the HTTP
GET, transforms the query string values into an HTTP POST to confirm the operation. OpenAM
responds to the application with a JSON object that the application can further use to request
creation of the user account to complete the transaction.

To Set Up Legacy User Self-Registration

1. Configure the Email Service.

You must configure the Email Service to send mail notifications to users who self-register. To
configure these globally in OpenAM console, navigate to Configure > Global Services, and then
click Email Service.

Alternatively, you can configure them for an individual realm under Realms > Realm Name >
Services.

2. Configure Legacy User Self Service.

You must enable self-registration in the User Self Service service. To configure these globally,
in OpenAM console navigate to Configure > Global Services, and then click Legacy User Self
Service. On the Legacy User Self Service page, click the Enabled checkbox next to Legacy Self-
Service REST Endpoint, and Self-Registration for Users, and then click Save.

At this point users can self-register. The starting screen for self-registration is at /XUI/#register/
under the base URL where OpenAM is installed. The default confirmation URI is /XUI/confirm.html.

3. Perform an HTTP POST on /json/users?_action=register with the new user's mail.

Note

In OpenAM 13, the /users endpoint was updated to version 3.0. Request API resource version 2.0 in the
REST API calls to get the behavior provided in previous versions of OpenAM.

To use a subject and message other than those configured in the Email Service, you can
optionally set the mail subject and message content by including "subject" and "message"
strings in the JSON data. For example, the following POST results in a mail with subject Confirm
 registration with OpenAM and content Follow this link to confirm your registration in addition to the
confirmation link.

Notice that authentication is not required.

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 353

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "Accept-API-Version: protocol=1.0,resource=2.0"
 \
--data \
'{
 "email": "newuser@example.com",
 "subject": "Confirm registration with OpenAM",
 "message": "Follow this link to confirm your registration"
}' \
https://openam.example.com:8443/openam/json/users?_action=register
{}

On success, the response is an empty JSON object {} as shown in the example.

4. The user receives an email message that includes a URL similar to the following example, but all
on one line. The user has self-registered in the root realm:
https://openam.example.com:8443/openam/XUI/confirm.html?
 confirmationId=f4x0Dh6iZCXtX8nhiSb3xahNxrg%3D
 &email=newuser%40example.com
 &tokenId=yA26LZ6SxFEgNuF86%2FSIXfimGlg%3D
 &realm=/

5. Intercept the HTTP GET request to this URL when the user clicks the link.

Your application must use the confirmation link to construct an HTTP POST to /json/users?
_action=confirm from the query string parameters as shown in the following example:

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "Accept-API-Version: protocol=1.0,resource=2.0"
 \
--data \
'{
 "email": "newuser@example.com",
 "tokenId": "yA26LZ6SxFEgNuF86/SIXfimGlg=",
 "confirmationId": "f4x0Dh6iZCXtX8nhiSb3xahNxrg="
}' \
https://openam.example.com:8443/openam/json/users?_action=confirm
{
 "email": "newuser@example.com",
 "tokenId": "yA26LZ6SxFEgNuF86/SIXfimGlg=",
 "confirmationId": "f4x0Dh6iZCXtX8nhiSb3xahNxrg="
}

The response is a further confirmation that the account can be created.

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 354

6. Using the confirmation, your application must make an authenticated HTTP POST to /json/users?
_action=anonymousCreate to create the user as shown in the following example:

$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "Accept-API-Version: protocol=1.0,resource=2.0" \
--data \
'{
 "email": "newuser@example.com",
 "tokenId": "yA26LZ6SxFEgNuF86/SIXfimGlg=",
 "confirmationId": "f4x0Dh6iZCXtX8nhiSb3xahNxrg=",
 "username": "newuser",
 "userpassword": "password"
}' \
https://openam.example.com:8443/openam/json/users?_action=anonymousCreate
{
 "username": "newuser",
 "realm": "/",
 "uid": [
 "newuser"
],
 "mail": [
 "newuser@example.com"
],
 "sn": [
 "newuser"
],
 "cn": [
 "newuser"
],
 "inetUserStatus": [
 "Active"
],
 "dn": [
 "uid=newuser,ou=people,dc=openam,dc=forgerock,dc=org"
],
 "objectClass": [
 "devicePrintProfilesContainer",
 "person",
 "sunIdentityServerLibertyPPService",
 "inetorgperson",
 "sunFederationManagerDataStore",
 "iPlanetPreferences",
 "iplanet-am-auth-configuration-service",
 "organizationalperson",
 "sunFMSAML2NameIdentifier",
 "inetuser",
 "forgerock-am-dashboard-service",
 "iplanet-am-managed-person",
 "iplanet-am-user-service",
 "sunAMAuthAccountLockout",
 "top"
],
 "universalid": [
 "id=newuser,ou=user,dc=openam,dc=forgerock,dc=org"
]

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 355

}

At this point, the user is registered, active, and can authenticate with OpenAM.

A.2.2. Legacy Forgotten Password Reset

The OpenAM REST API provides an action for handling forgotten passwords as long as the user has a
valid email address in their profile. This is an alternative to the password reset capability described in
"Configuring User Self-Service Features" in the Administration Guide.

Tip

If the current password is known, use the "Changing Passwords" feature to change a password.

An example follows, showing the steps in more detail.

To Set Up Legacy Forgotten Password Reset

1. Configure Legacy User Self Service.

You must enable Forgotten Password Reset in the Legacy User Self Service service. To configure
this globally in the OpenAM console, navigate to Configure > Global Services, and then click
Legacy User Self Service. On the Legacy User Self Service page, click the Enabled checkbox next
to Legacy Self-Service REST Endpoint, and Forgot Password for Users, and then click Save.

2. Configure the Email Service.

In particular, you must configure the Email Service to send mail allowing the user to reset the
forgotten password.

To configure the service globally in the OpenAM Console, navigate to Configure > Global
Services, and then click Email Service.

Alternatively, you can configure it for an individual realm under Realms > Realm Name >
Services.

At this point users with mail addresses can reset their forgotten passwords. The starting screen
for forgotten password reset is at /XUI/#forgotPassword/ under the base URL where OpenAM is
installed. The default confirmation URI is /XUI/confirm.html.

The steps that follow show how to use the REST API directly.

3. Perform an HTTP POST on /json/users?_action=forgotPassword with the user's ID.

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 356

Note

In OpenAM 13, the /users endpoint was updated to version 3.0. Request API resource version 2.0 in the
REST API calls to get the behavior provided in previous versions of OpenAM.

To use a subject and message other than those configured in the Email Service, you can
optionally set the mail subject and message content by including "subject" and "message" strings
in the JSON data. For example, the following POST results in a mail with subject Reset your
 forgotten password with OpenAM and content Follow this link to reset your password in addition to the
confirmation link.

Notice that authentication is not required.

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "Accept-API-Version: protocol=1.0,resource=2.0"
 \
--data '{
 "username": "demo",
 "subject": "Reset your forgotten password with OpenAM",
 "message": "Follow this link to reset your password"
}' \
https://openam.example.com:8443/openam/json/users/?_action=forgotPassword
{}

Note that you can also use the email attribute to locate the user. If both username and mail
attributes are used, then a request error is issued. If more than one account has been registered
with the same email address, the password reset process does not start.

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "Accept-API-Version: protocol=1.0,resource=2.0"
 \
--data '{
 "email": "demo@example.com",
 "subject": "Reset your forgotten password with OpenAM",
 "message": "Follow this link to reset your password"
}' \
https://openam.example.com:8443/openam/json/users/?_action=forgotPassword
{}

On success, the response is an empty JSON object {} as shown in the example.

OpenAM looks up the email address in the user profile, and sends an email message that includes
a URL as in the following example, but all on one line.

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 357

https://openam.example.com:8443/openam/json/XUI/confirm.html
 ?confirmationId=sdfsfeM+URcWVQ7vvCDnx4N5Vut7SBIY=
 &tokenId=vkm+5v58cTs1yQcQl5HCQGOsuQk=
 &username=demo&realm=/

4. Intercept the HTTP GET request to this URL when the user clicks the link.

Your application must use the confirmation link to construct an HTTP POST to /json/users?
_action=confirm from the query string parameters as shown in the following example:

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "Accept-API-Version: protocol=1.0,resource=2.0"
 \
--data \
'{
 "username":"demo",
 "tokenId":"vkm+5v58cTs1yQcQl5HCQGOsuQk=",
 "confirmationId":"sdfsfeM+URcWVQ7vvCDnx4N5Vut7SBIY="
}' \
https://openam.example.com:8443/openam/json/users?_action=confirm
{
 "username": "demo",
 "tokenId": "vkm+5v58cTs1yQcQl5HCQGOsuQk=",
 "confirmationId": "sdfsfeM+URcWVQ7vvCDnx4N5Vut7SBIY="
}

The response is a further confirmation that the request is valid, has not expired, and the
password can be reset.

5. Using the confirmation, your application must construct an HTTP POST to /json/users?
_action=forgotPasswordReset to reset the password as shown in the following example.

Your POST includes the new password as the value of the "userpassword" field in the JSON
payload. You can also use the email attribute instead of username.

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "Accept-API-Version: protocol=1.0,resource=2.0"
 \
--data '{
 "username":"demo",
 "userpassword":"password",
 "tokenId":"vkm+5v58cTs1yQcQl5HCQGOsuQk=",
 "confirmationId":"sdfsfeM+URcWVQ7vvCDnx4N5Vut7SBIY="
}' \
https://openam.example.com:8443/openam/json/users?_action=forgotPasswordReset
{}

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 358

On success or failure, the REST call returns an empty message, so that information is not leaked.

At this point the user can authenticate with the new password.

Developer's Guide OpenAM 13.5 (2019-10-15T14:45:10.764679)
Copyright © 2011-2018 ForgeRock AS. All rights reserved. 359

Index

A
Authentication

Java API, 180
Post authentication plugins, 243

D
Dashboard services, 139

F
Fedlets

Java
Manual, 302
Wizard, 281

SAML v2.0, 281

I
Installing

C SDK, 199
Java SDK samples, 176

O
OAuth 2.0, 205

REST API, 98
OpenID Connect 1.0

API, 119

P
Passwords

Change, 158
Reset, 157

Policy
Java API, 189
REST API, 34

R
Realm data

REST access, 159
Realms

REST, 10
Recording

Using the REST API, 172
Resource Types, 45
REST API, 34, 98, 143

S
Scripts, 251

API, 255
Managing, 164
OIDC Claims, 277
Policy Conditions, 269
Server-side Authentication, 265

Secure Attribute Exchange (SAE), 346
Security Token Service, 326
Session tokens

Java API, 185

T
Two-step verification

resetting device profile, 142

U
UMA

Extending, 247
User data

Custom profile attributes, 202
Custom repository, 236
REST access, 143

User self-service
REST API, 124

User-Managed Access (UMA)
REST API, 123

	Developer's Guide
	Table of Contents
	Preface
	1. Who Should Use This Guide
	2. Formatting Conventions
	3. Accessing Documentation Online
	4. Using the ForgeRock.org Site
	5. Getting Support and Contacting ForgeRock

	Chapter 1. OpenAM APIs and Protocols
	1.1. OpenAM APIs
	1.2. OpenAM SPIs
	1.3. OpenAM, IPv4, and IPv6

	Chapter 2. Developing Client Applications
	2.1. Using the REST API
	2.1.1. About the RESTful APIs
	2.1.2. REST API Versioning
	2.1.2.1. Supported REST API Versions
	2.1.2.2. Specifying an Explicit REST API Version
	2.1.2.3. REST API Versioning Messages

	2.1.3. Token Encoding
	2.1.4. Specifying Realms in REST API Calls
	2.1.5. Authentication and Logout
	2.1.5.1. Load Balancer and Proxy Layer Requirements
	2.1.5.2. Windows Desktop SSO Requirements

	2.1.6. Using the Session Token After Authentication
	2.1.7. Filtering, Sorting, and Paging Results
	2.1.8. Server Information
	2.1.9. Token Validation and Session Information
	2.1.9.1. Validating Sessions
	2.1.9.2. Obtaining Information About Sessions
	2.1.9.3. Refreshing Stateful Sessions
	2.1.9.4. Invalidating Sessions
	2.1.9.5. Session Properties

	2.1.10. REST Goto URL Validation
	2.1.11. Logging
	2.1.11.1. Common Audit Logging of REST API Calls
	2.1.11.2. Legacy Logging of REST API Calls

	2.1.12. REST Status Codes
	2.1.13. RESTful Authorization and Policy Management Services
	2.1.13.1. About the REST Policy Endpoints
	2.1.13.2. Requesting Policy Decisions
	2.1.13.2.1. Requesting Policy Decisions For Specific Resources
	2.1.13.2.2. Policy Decision Advice
	2.1.13.2.3. Requesting Policy Decisions For a Tree of Resources

	2.1.13.3. Managing Resource Types
	2.1.13.3.1. Querying Resource Types
	2.1.13.3.2. Reading a Specific Resource Type
	2.1.13.3.3. Creating a Resource Type
	2.1.13.3.4. Updating a Resource Type
	2.1.13.3.5. Deleting a Specific Resource Type

	2.1.13.4. Managing Application Types
	2.1.13.4.1. Querying Application Types
	2.1.13.4.2. Reading a Specific Application Type

	2.1.13.5. Managing Policy Sets
	2.1.13.5.1. Querying Policy Sets
	2.1.13.5.2. Reading a Specific Policy Set
	2.1.13.5.3. Creating Policy Sets
	2.1.13.5.4. Updating Policy Sets
	2.1.13.5.5. Deleting Policy Sets

	2.1.13.6. Managing Policies
	2.1.13.6.1. Querying Policies
	2.1.13.6.2. Reading a Specific Policy
	2.1.13.6.3. Creating Policies
	2.1.13.6.4. Updating Policies
	2.1.13.6.5. Deleting Policies
	2.1.13.6.6. Copying and Moving Policies

	2.1.13.7. Importing and Exporting XACML 3.0
	2.1.13.7.1. Exporting from OpenAM to XACML
	2.1.13.7.2. Importing from XACML to OpenAM

	2.1.13.8. Managing Environment Condition Types
	2.1.13.8.1. Querying Environment Condition Types
	2.1.13.8.2. Reading a Specific Environment Condition Type

	2.1.13.9. Managing Subject Condition Types
	2.1.13.9.1. Querying Subject Condition Types
	2.1.13.9.2. Reading a Specific Subject Condition Type

	2.1.13.10. Managing Subject Attributes
	2.1.13.10.1. Querying Subject Attributes

	2.1.13.11. Managing Decision Combiners
	2.1.13.11.1. Querying Decision Combiners
	2.1.13.11.2. Reading a Specific Decision Combiner

	2.1.14. RESTful OAuth 2.0, OpenID Connect 1.0 and UMA 1.0 Services
	2.1.14.1. OAuth 2.0
	2.1.14.1.1. OAuth 2.0 Client and Resource Server Endpoints
	2.1.14.1.2. Using Endpoints for OAuth 2.0 Device Flow
	2.1.14.1.3. OAuth 2.0 Resource Set Endpoint
	2.1.14.1.4. OAuth 2.0 Token Administration Endpoint
	2.1.14.1.5. OAuth 2.0 Client Administration Endpoint

	2.1.14.2. OpenID Connect 1.0
	2.1.14.2.1. Endpoints for Discovering OpenID Connect 1.0 Configuration
	2.1.14.2.2. Endpoints for Registering OpenID Connect 1.0 Clients
	2.1.14.2.3. Endpoints for Performing OpenID Connect 1.0 Client Authorization
	2.1.14.2.4. Endpoints for Managing OpenID Connect 1.0 Sessions
	2.1.14.2.5. Endpoint for Validating OpenID Connect 1.0 ID Tokens
	2.1.14.2.6. Configuring Stateless OpenID Connect 1.0 Tokens

	2.1.14.3. User-Managed Access (UMA)
	2.1.14.3.1. Discovering UMA Configuration
	2.1.14.3.2. Managing UMA Resource Sets
	2.1.14.3.3. Managing UMA Policies
	2.1.14.3.4. Accessing UMA Protected Resources

	2.1.15. RESTful User Self-Service
	2.1.15.1. Registering Users
	2.1.15.2. Retrieving Forgotten Usernames
	2.1.15.3. Replacing Forgotten Passwords
	2.1.15.4. Displaying Dashboard Applications
	2.1.15.5. Resetting Device Profiles

	2.1.16. RESTful Identity and Realm Management Services
	2.1.16.1. Identity Management
	2.1.16.1.1. Creating Identities
	2.1.16.1.2. Reading Identities
	2.1.16.1.3. Updating Identities
	2.1.16.1.4. Deleting Identities
	2.1.16.1.5. Listing Identities
	2.1.16.1.6. Retrieving Identities Using the Session Cookie
	2.1.16.1.7. Changing Passwords

	2.1.16.2. Realm Management
	2.1.16.2.1. Default Parameters for Realms
	2.1.16.2.2. Creating Realms
	2.1.16.2.3. Reading Realms
	2.1.16.2.4. Listing Realms
	2.1.16.2.5. Updating Realms
	2.1.16.2.6. Deleting Realms

	2.1.17. RESTful Script Management
	2.1.17.1. Querying Scripts
	2.1.17.2. Reading a Script
	2.1.17.3. Validating a Script
	2.1.17.4. Creating a Script
	2.1.17.5. Updating a Script
	2.1.17.6. Deleting a Script

	2.1.18. RESTful Troubleshooting Information Recording
	2.1.18.1. Starting a Recording Event
	2.1.18.2. Getting the Status of a Recording Event
	2.1.18.3. Stopping a Recording Event

	2.2. Using the OpenAM Java SDK
	2.2.1. Installing OpenAM Client SDK Samples
	2.2.2. About the OpenAM Java SDK
	2.2.3. Authenticating Using OpenAM Java SDK
	2.2.3.1. Encoding Passwords and Password Reset Questions and Answers

	2.2.4. Handling Single Sign-On Using OpenAM Java SDK
	2.2.4.1. Receiving Notifications

	2.2.5. Requesting Policy Decisions Using OpenAM Java SDK
	2.2.6. Requesting a XACML Policy Decision Using OpenAM Java SDK

	2.3. Using the OpenAM C SDK

	Chapter 3. Customizing OpenAM
	3.1. Customizing Profile Attributes
	3.2. Customizing OAuth 2.0 Scope Handling
	3.2.1. Designing an OAuth 2.0 Scope Validator Plugin
	3.2.2. Building the OAuth 2.0 Scope Validator Sample Plugin
	3.2.3. Configuring OpenAM to Use the Plugin
	3.2.4. Trying the Sample Plugin

	3.3. Creating a Custom Authentication Module
	3.3.1. About the Sample Authentication Module
	3.3.2. Sample Auth Properties
	3.3.3. Sample Auth Callbacks
	3.3.4. The Sample Authentication Logic
	3.3.5. The Sample Auth Principal
	3.3.6. The Sample Auth Service Configuration
	3.3.7. Building and Installing the Sample Auth Module
	3.3.7.1. Building the Module
	3.3.7.2. Installing the Module

	3.3.8. Configuring & Testing the Sample Auth Module

	3.4. Customizing Session Quota Exhaustion Actions
	3.4.1. Creating & Installing a Custom Session Quota Exhaustion Action
	3.4.2. Listing Session Quota Exhaustion Actions
	3.4.3. Removing a Session Quota Exhaustion Action

	3.5. Customizing Policy Evaluation
	3.5.1. About the Sample Plugin
	3.5.2. Building the Sample Plugin
	3.5.3. Adding Custom Policy Implementations to Existing Policy Sets
	3.5.4. Trying the Sample Subject and Environment Conditions
	3.5.5. Trying the Sample Resource Attributes
	3.5.6. Extending the ssoadm Classpath

	3.6. Customizing Identity Data Storage
	3.6.1. About the Identity Repository Plugin
	3.6.1.1. IdRepo Inheritance
	3.6.1.2. IdRepo Lifecycle
	3.6.1.3. IdRepo Plugin Capabilities

	3.6.2. Identity Repository Plugin Implementation
	3.6.3. Identity Repository Plugin Deployment

	Chapter 4. Extending OpenAM
	4.1. Creating a Post Authentication Plugin
	4.1.1. Designing Your Post Authentication Plugin
	4.1.2. Building Your Sample Post Authentication Plugin
	4.1.3. Configuring Your Post Authentication Plugin
	4.1.4. Testing Your Post Authentication Plugin

	4.2. Extending UMA Workflow with Extension Points
	4.2.1. Resource Set Registration Extension Point
	4.2.2. Permission Request Extension Point
	4.2.3. Authorization Request Extension Point
	4.2.4. Resource Sharing Extension Point

	Chapter 5. Scripting OpenAM
	5.1. The Scripting Environment
	5.1.1. Security
	5.1.2. Thread Pools

	5.2. The Scripting API
	5.2.1. Global API Functionality
	5.2.1.1. Accessing HTTP Services
	5.2.1.2. Debug Logging

	5.2.2. Authentication API Functionality
	5.2.2.1. Accessing Authentication State
	5.2.2.2. Accessing Profile Data
	5.2.2.3. Accessing Client-Side Script Output Data
	5.2.2.4. Accessing Request Data

	5.2.3. Authorization API Functionality
	5.2.3.1. Accessing Authorization State
	5.2.3.2. Accessing Profile Data
	5.2.3.3. Accessing Session Data
	5.2.3.4. Setting Authorization Responses

	5.2.4. OIDC Claims API Functionality
	5.2.4.1. Accessing OpenID Connect Requests

	5.3. Using the Default Scripts
	5.3.1. Default Server-side Authentication Script
	5.3.1.1. Preparing OpenAM
	5.3.1.2. Trying the Default Server-side Authentication Script

	5.3.2. Default Policy Condition Script
	5.3.2.1. Preparing OpenAM
	5.3.2.2. Trying the Default Policy Condition Script

	5.3.3. Default OIDC Claims Script
	5.3.3.1. Preparing OpenAM
	5.3.3.2. Trying the Default OIDC Claims Script

	Chapter 6. Building SAML v2.0 Service Providers With Fedlets
	6.1. Using Fedlets in Java Web Applications
	6.1.1. Creating and Installing a Java Fedlet
	6.1.1.1. Generating the Fedlet Configuration on the Identity Provider
	6.1.1.2. Installing and Configuring the Fedlet on the Service Provider
	6.1.1.3. Testing Fedlet Single Sign-on and Single Logout
	6.1.1.4. Querying an Attribute Authority
	6.1.1.5. Querying an XACML Policy Decision Point

	6.1.2. Enabling Signing and Encryption in a Fedlet
	6.1.3. Customizing a Java Fedlet
	6.1.3.1. Performing Single Sign-On
	6.1.3.2. Performing Single Logout
	6.1.3.3. Performing Attribute Queries
	6.1.3.4. Performing XACML Queries

	6.2. Configuring Java Fedlets By Hand
	6.2.1. Java Fedlet Layout
	6.2.2. Configuring Java Fedlet Properties
	6.2.3. Configuring Circles of Trust
	6.2.4. Configuring the Identity Providers
	6.2.4.1. Identity Provider Standard XML
	6.2.4.2. Identity Provider Extended XML
	6.2.4.3. Identity Provider Extended XML: IDPSSOConfig Settings
	6.2.4.4. Identity Provider Extended XML: Attribute Authority Configuration Settings
	6.2.4.5. Identity Provider Extended XML: XACML PDP Configuration

	6.2.5. Configuring the Service Providers
	6.2.5.1. Service Provider Standard XML
	6.2.5.1.1. Single Sign-On and Logout: SPSSODescriptor Element
	6.2.5.1.2. Attribute Queries: RoleDescriptor Element
	6.2.5.1.3. XACML Requests: XACMLAuthzDecisionQueryDescriptor Element

	6.2.5.2. Service Provider Extended XML
	6.2.5.2.1. Service Provider Extended XML: SPSSOConfig Settings
	6.2.5.2.2. Service Provider Extended XML: AttributeQueryConfig Settings
	6.2.5.2.3. Service Provider Extended XML: XACMLAuthzDecisionQueryConfig Settings

	6.2.6. Embedding the Java Fedlet in a Web Application

	Chapter 7. Working With the Security Token Service
	7.1. Publishing STS Instances
	7.1.1. The Publish Service
	7.1.2. Publishing REST STS Instances
	7.1.3. Publishing SOAP STS Instances

	7.2. Consuming STS Instances
	7.2.1. Consuming REST STS Instances
	7.2.1.1. REST STS Instance Endpoint
	7.2.1.2. JSON Representation of Token Transformations
	7.2.1.3. Command-Line Example
	7.2.1.4. Java Example

	7.2.2. Consuming SOAP STS Instances
	7.2.2.1. SOAP STS Instance URL
	7.2.2.2. Consuming SOAP STS Instances Using SOAP Messages
	7.2.2.3. Consuming SOAP STS Instances Using the OpenAM SOAP STS Client SDK
	7.2.2.3.1. About the SOAP STS Client SDK
	7.2.2.3.2. Building a SOAP STS Client SDK .jar File

	7.3. Querying, Validating, and Canceling Tokens
	7.3.1. Invoking the sts-tokengen Endpoint
	7.3.1.1. Querying Tokens
	7.3.1.2. Cancelling Tokens

	7.3.2. Validating and Cancelling Tokens by Invoking a REST STS Instance
	7.3.3. Validating and Cancelling Tokens by Invoking a SOAP STS Instance

	7.4. Extending STS to Support Custom Token Types
	7.4.1. Developing Custom Token Type Validator Classes
	7.4.2. Developing Custom Token Type Provider Classes
	7.4.3. Using Custom Token Type Validators and Providers

	Chapter 8. Using Secure Attribute Exchange
	8.1. Installing the Samples
	8.2. Preparing to Secure SAE Communications
	8.3. Securing the Identity Provider Side
	8.4. Securing the Service Provider Side
	8.5. Trying It Out

	Appendix A. Deprecated REST APIs
	A.1. Deprecated Session Information APIs
	A.2. Deprecated Self-Service APIs
	A.2.1. Legacy User Self-Registration
	A.2.2. Legacy Forgotten Password Reset

	Index

