
Gateway Guide
/ ForgeRock Identity Gateway 7

Latest update: 7.0.2

Paul Bryan
Mark Craig

Jamie Nelson
Guillaume Sauthier

Joanne Henry

ForgeRock AS.
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2011-2021 ForgeRock AS.

Abstract

Instructions for installing and configuring ForgeRock® Identity Gateway.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, https://fontawesome.com/.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://fontawesome.com/
https://opensource.org/licenses/OFL-1.1

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. iii

Table of Contents
Preface ... vi

About This Guide .. vi
Example Installation for This Guide ... vii
External Tools Used In This Guide .. vii

1. About IG ... 1
IG As an HTTP Gateway .. 1
Processing Requests and Responses .. 3
Development Mode and Production Mode ... 7
Decorators ... 8
Configuration Parameters Declared as Property Variables 14
Changing the Configuration and Restarting IG .. 14
Understanding IG APIs With API Descriptors .. 15
Sessions ... 18
Secrets .. 20

2. Installation in Detail .. 25
About Securing Connections .. 25
Installing IG in Standalone Mode .. 26
Installing IG in Apache Tomcat ... 29
Installing IG in Jetty .. 32
Installing IG in JBoss EAP ... 37
Preparing the Network .. 40
Changing the Default Location of the Configuration Folders 40
Preparing For Load Balancing and Failover ... 40
Configuring IG For HTTPS (Client-Side) .. 42
Using JWT Sessions ... 45
Setting Up AM .. 54

3. Getting Login Credentials From Data Sources ... 57
Logging In With Credentials From a File ... 57
Logging In With Credentials From a Database .. 60

4. Getting Login Credentials From AM .. 65
5. Single Sign-On and Cross-Domain Single Sign-On ... 71

Authenticating With SSO ... 71
Authenticating With CDSSO .. 76
Using WebSocket Notifications to Evict the Session Info Cache 81

6. Enforcing Policy Decisions From AM ... 82
About Policy Enforcement ... 82
Enforcing AM Policy Decisions In the Same Domain .. 83
Enforcing AM Policy Decisions In Different Domains ... 86
Using WebSocket Notifications to Evict the Policy Cache 89

7. Hardening Authorization With Advice From AM .. 90
Stepping Up the Authentication Level for an AM Session 90
Increasing Authorization for a Single Transaction ... 94

8. Protecting Against CSRF Attacks .. 98
9. Acting As a SAML 2.0 Service Provider ... 103

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. iv

About SAML 2.0 SSO and Federation .. 103
Set Up SAML 2.0 SSO and Federation .. 105
Using a Non-Transient NameID Format ... 112
Example Fedlet Files ... 113

10. Acting As an OAuth 2.0 Resource Server ... 124
About IG As an OAuth 2.0 Resource Server ... 124
Validating Access_Tokens Through the Introspection Endpoint 126
Validating Stateless Access_Tokens With the StatelessAccessTokenResolver 130
Validating Certificate-Bound Access Tokens .. 144
Using the OAuth 2.0 Context to Log in to the Sample Application 163
Caching Access_Tokens ... 166

11. Acting As an OpenID Connect Relying Party .. 170
About IG With OpenID Connect ... 170
Using AM As a Single OpenID Connect Provider ... 171
Using Multiple OpenID Connect Providers ... 177
Discovering and Dynamically Registering With OpenID Connect Providers 180

12. Transforming OpenID Connect ID Tokens Into SAML Assertions 186
13. Supporting UMA Resource Servers ... 194

About IG As an UMA Resource Server .. 194
Limitations Of IG As an UMA Resource Server .. 197
Setting Up the UMA Example ... 198
Editing the Example to Match Custom Settings ... 206
Understanding the UMA API With an API Descriptor ... 207

14. Configuring Routers and Routes .. 208
Configuring Routers .. 208
Configuring Routes .. 209
Creating and Editing Routes Through Common REST .. 212
Preventing the Reload of Routes ... 214
Accessing Reserved Routes ... 215

15. Proxying WebSocket Traffic ... 216
16. Implementing Not-Enforced URIs for Authentication ... 221

Implementing Not-Enforced URIs With a SwitchFilter 221
Implementing Not-Enforced URIs With a DispatchHandler 225

17. Configuration Templates .. 227
Proxy and Capture ... 227
Simple Login Form .. 229
Login Form With Cookie From Login Page .. 231
Login Form With Password Replay and Cookie Filters 233
Login Which Requires a Hidden Value From the Login Page 235
HTTP and HTTPS Application .. 237
AM Integration With Headers .. 239

18. Extending IG ... 242
Extending IG Through Scripts ... 242
Extending IG Through the Java API ... 256
Recording Custom Audit Events .. 262

19. Throttling the Rate of Requests to Protected Applications 269
About Throttling .. 269

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. v

Configuring Simple Throttling ... 270
Configuring Mapped Throttling ... 272
Configuring Scriptable Throttling .. 277

20. SAML 2.0 and Multiple Applications .. 281

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. vi

Preface
ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity
and Access Management solution. We help our customers deepen their relationships with their
customers, and improve the productivity and connectivity of their employees and partners. For more
information about ForgeRock and about the platform, see https://www.forgerock.com.

About This Guide
IG integrates web applications, APIs, and microservices with the ForgeRock Identity Platform,
without modifying the application or the container where they run. Based on reverse proxy
architecture, IG enforces security and access control in conjunction with Access Management
modules.

This guide is for access management designers and administrators who develop, build, deploy,
and maintain IG for their organizations. It helps you to get started quickly, and learn more as you
progress through the guide.

This guide assumes basic familiarity with the following topics:

• Hypertext Transfer Protocol (HTTP), including how clients and servers exchange messages, and the
role that a reverse proxy (gateway) plays

• JavaScript Object Notation (JSON), which is the format for IG configuration files

• Managing services on operating systems and application servers

• Configuring network connections on operating systems

• Managing Public Key Infrastructure (PKI) used to establish HTTPS connections

• Access management for web applications

Depending on the features you use, you should also have basic familiarity with the following topics:

• Lightweight Directory Access Protocol (LDAP) if you use IG with LDAP directory services

• Structured Query Language (SQL) if you use IG with relational databases

• Configuring AM if you use password capture and replay, or if you plan to follow the OAuth 2.0 or
SAML 2.0 tutorials

• The Groovy programming language if you plan to extend IG with scripts

https://www.forgerock.com

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. vii

• The Java programming language if you plan to extend IG with plugins, and Apache Maven for
building plugins

Example Installation for This Guide
Unless otherwise stated, the examples in this guide assume the following installation:

• IG installed on http://openig.example.com:8080, as described in "Downloading and Starting IG" in
the Getting Started Guide.

• Sample application installed on http://openig.example.com:8081, as described in "Downloading and
Starting the Sample Application" in the Getting Started Guide.

• AM installed on http://openam.example.com:8088/openam, with the default configuration.

If you use a different configuration, substitute in the procedures accordingly.

External Tools Used In This Guide
The examples in this guide use some of the following third-party tools:

• curl: https://curl.haxx.se

• HTTPie: https://httpie.org

• jq: https://stedolan.github.io/jq/

• keytool: https://docs.oracle.com/en/java/javase/11/tools/keytool.html

http://openig.example.com:8080
http://openig.example.com:8081
http://openam.example.com:8088/openam
https://curl.haxx.se
https://httpie.org
https://stedolan.github.io/jq/
https://docs.oracle.com/en/java/javase/11/tools/keytool.html

About IG
IG As an HTTP Gateway

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 1

Chapter 1

About IG
The following sections introduce IG:

• "IG As an HTTP Gateway"

• "Processing Requests and Responses"

• "Development Mode and Production Mode"

• "Decorators"

• " Configuration Parameters Declared as Property Variables "

• "Changing the Configuration and Restarting IG"

• "Understanding IG APIs With API Descriptors"

• "Sessions"

• "Secrets"

IG As an HTTP Gateway
Most organizations have valuable existing services that are not easily integrated into newer
architectures. These existing services cannot often be changed. Many client applications cannot
communicate as they lack a gateway to bridge the gap. The following image illustrates an example of
a missing gateway.

About IG
IG As an HTTP Gateway

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 2

Missing Gateway

Client

Client

Service

Service

1 Client request not appropriate for service

2 Service response not appropriate for client

IG works as an HTTP gateway, based on reverse proxy architecture. IG is deployed on a network, so
that it can intercept client requests and server responses. IG can check the identity of HTTP traffic,
blocking requests without permission, and letting allowed requests pass. IG can also adapt requests
and responses. For example, IG can add headers and change the message payload.

The following image illustrates how a request and response flow between a client and application:

IG Deployed

Client

Client

IG

IG

Service

Service

1 Client request not appropriate for service

2 Appropriate request

3 Service response not appropriate for client

4 Appropriate response

Clients interact with protected servers through IG. IG can be configured to add new capabilities to
existing services without affecting current clients or servers.

About IG
Processing Requests and Responses

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 3

IG provides the following features:

• Access management integration

• Application and API security

• Credential replay

• OAuth 2.0 support

• OpenID Connect 1.0 support

• Network traffic control

• Proxy with request and response capture

• Request and response rewriting

• SAML 2.0 federation support

• Single sign-on (SSO)

IG supports these capabilities as out of the box configuration options. Once you understand the
essential concepts covered in this chapter, try the additional instructions in this guide to use IG to
add other features.

Processing Requests and Responses
The following sections describe how IG processes requests and responses:

• "IG Object Model"

• "Configuring IG"

• "Configuration Directories and Files"

• "Using Comments in IG Configuration Files"

IG Object Model

IG processes HTTP requests and responses by passing them through user-defined chains of filters
and handlers. The filters and handlers provide access to the request and response at each step in the
chain, and make it possible to alter the request or response, and collect contextual information.

The following image illustrates a typical sequence of events when IG processes a request and
response through a chain:

About IG
Configuring IG

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 4

Flow Inside a Chain
IG Chain

Client

Client

Request Filter

Request Filter

Response Filter

Response Filter

Handler

Handler

Protected applicat ion

Protected applicat ion

Request

Transform request , possibly
m odify the object representat ion,
or enrich runt im e context with com puted inform at ion

Transform ed request , context

Transform ed request , context

Log t ransform ed request

Transform ed request

Response

Log response

Request , context , response

Transform response,
build a response representat ion with headers and ent ity

Request , context , t ransform ed response

Transform ed response

When IG processes a request, it first builds an object representation of the request, including parsed
query/form parameters, cookies, headers, and the entity. IG initializes a runtime context to provide
additional metadata about the request and applied transformations. IG then passes the request
representation into the chain.

In the request flow, filters modify the request representation and can enrich the runtime context with
computed information. In the ClientHandler, the entity content is serialized, and additional query
parameters can be encoded as described in RFC-3986.

In the response flow, filters build a response representation with headers and the entity.

The route configuration in "Adding Headers and Logging Results" in the Configuration Reference
demonstrates the flow through a chain to a protected application.

Configuring IG

The way that IG processes requests and responses is defined by the configuration files admin.json and
config.json, and by Route configuration files. For information about the different files used by IG, see
"Configuration Directories and Files".

Configuration files are flat JSON files that define objects with the following parts:

https://tools.ietf.org/html/rfc3986#section-3.4

About IG
Configuration Directories and Files

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 5

• name: A unique string to identify the object. When you declare inline objects, the name is not
required.

• type: The type name of the object. IG defines many object types for different purposes.

• config: Additional configuration settings for the object. The content of the configuration object
depends on its type. For information about each object type available in the IG configuration, see
the Configuration Reference.

If all of the configuration settings for the type are optional, the config field is also optional. The
object uses default settings when the config field isn't configured, or is configured as an empty
object ("config": {}), or is configured as null ("config": null).

Filters, handlers, and other objects whose configuration settings are defined by strings, integers, or
booleans, can be defined by expressions that match the expected type.

For information about the objects available, see "AdminHttpApplication (admin.json)" in the
Configuration Reference "GatewayHttpApplication (config.json)" in the Configuration Reference and
"Route" in the Configuration Reference. An IG route typically contains at least the following parts:

• handler: An object to specify the point where the request enters the route. If the handler type is a
Chain, the request is dispatched to a list of filters, and then to another handler.

Handler objects produce a response for a request, or delegate the request to another handler. Filter
objects transform data in the request, response, or context, or perform an action when the request
or response passes through the filter.

• baseURI: A handler decorator to override the scheme, host, and port of the request URI. After a
route processes a request, it reroutes the request to the baseURI, which most usually points to the
application or service that IG is protecting.

• heap: A collection of named objects configured in the top level of config.json or in individual routes.
Heap objects can be configured once and used multiple times in the configuration.

A heap object in a route can be used in that route. A heap object in config.json can be used across
the whole configuration, unless it is overridden in a route.

• condition: An object to define a condition that a request must meet. A route can handle a request if
condition is not defined, or if the condition resolves to true.

Routes inherit settings from their parent configurations. This means that you can configure objects
in the config.json heap, for example, and then reference those objects by name in any other IG
configuration.

Configuration Directories and Files
By default, IG configuration files are located under $HOME/.openig on Linux, macOS, and UNIX systems,
and %appdata%\OpenIG on Windows systems. For information about how to change the default locations,
see "Changing the Default Location of the Configuration Folders".

About IG
Configuration Directories and Files

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 6

IG uses the following configuration directories:

IG Configuration Directories and Files

Purpose Default location on Linux, macOS,
and UNIX systems

Default location on Windows

Administration and gateway
configuration, admin.json and
config.json. For more information,
see "AdminHttpApplication
(admin.json)" in the
Configuration Reference and
"GatewayHttpApplication
(config.json)" in the Configuration
Reference

$HOME/.openig/config %appdata%\OpenIG\config

Route configuration files. For more
information, see "Configuring
Routers and Routes".

$HOME/.openig/config/routes %appdata%\OpenIG\config\routes

SAML 2.0 configuration files. For
more information, see "Acting As a
SAML 2.0 Service Provider".

$HOME/.openig/SAML %appdata%\OpenIG\SAML

Script files, for Groovy scripted
filters and handlers. For more
information, see "Extending IG".

$HOME/.openig/scripts/groovy %appdata%\OpenIG\scripts\groovy

Temporary storage files.

To change the directory, configure
the property temporaryDirectory in
admin.json. For more information,
see "AdminHttpApplication
(admin.json)" in the Configuration
Reference.

$HOME/.openig/tmp %appdata%\OpenIG\tmp

JSON schema for the topic of a
custom audit event. For more
information, see "Recording
Custom Audit Events".

To change the directory,
configure the property
topicsSchemasDirectory in
AuditService. For more
information, see "AuditService" in
the Configuration Reference.

$HOME/.openig/audit-schemas %appdata%\OpenIG\audit-schemas

About IG
Using Comments in IG Configuration Files

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 7

Using Comments in IG Configuration Files

The JSON format does not specify a notation for comments. If IG does not recognize a JSON field
name, it ignores the field. As a result, it is possible to use comments in configuration files.

The following conventions are available for commenting:

• A comment field to add text comments. The following example includes a text comment.
{
 "name": "capture",
 "type": "CaptureDecorator",
 "comment": "Write request and response information to the logs",
 "config": {
 "captureEntity": true
 }
}

• An underscore (_) to comment a field temporarily. The following example comments out
"captureEntity": true, and as a result it uses the default setting ("captureEntity": false).
{
 "name": "capture",
 "type": "CaptureDecorator",
 "config": {
 "_captureEntity": true
 }
}

Development Mode and Production Mode
IG operates in the following modes:

• Development mode (mutable mode)

In development mode, by default all endpoints are open and accessible.

You can create, edit, and deploy routes through IG Studio, and manage routes through Common
REST, without authentication or authorization.

Use development mode to evaluate or demo IG, or to develop configurations on a single instance.
This mode is not suitable for production.

For information about how to switch to development mode, see "Switching from Production Mode
to Development Mode" in the Getting Started Guide.

For information about restricting access to Studio in development mode, see "Restricting Access to
Studio" in the Studio User Guide.

• Production mode (immutable mode)

About IG
Decorators

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 8

In production mode, the /routes endpoint is not exposed or accessible.

Studio is effectively disabled, and you cannot manage, list, or even read routes through Common
REST.

By default, other endpoints, such as /share and api/info are exposed to the loopback address
only. To change the default protection for specific endpoints, configure an ApiProtectionFilter in
admin.json and add it to the IG configuration.

For information about how to switch to production mode, see "Switching From Development Mode
to Production Mode" in the Maintenance Guide.

After installation, IG is by default in production mode.

Decorators
Decorators are heap objects to extend what another object can do. IG defines baseURI, capture, and
timer decorators that you can use without explicitly configuring them. For more information about the
types of decorators provided by IG, see "Decorators" in the Configuration Reference.

The following sections provide an overview of how decorators are implemented in IG:

• "Decorating Objects, the Route Handler, and the Heap"

• "Using Multiple Decorators for the Same Object"

• "Guidelines for Naming Decorators"

Decorating Objects, the Route Handler, and the Heap

Use decorations that are compatible with the object type. For example, timer records the time to
process filters and handlers, but does not record information for other object types. Similarly, baseURI
overrides the scheme, host, and ports, but has no other effect.

In a route, you can decorate individual objects, the route handler, and the heap. IG applies
decorations in this order:

1. Decorations declared on individual objects. Local decorations that are part of an object's
declaration are inherited wherever the object is used.

2. globalDecorations declared in parent routes, then in child routes, and then in the current route.

3. Decorations declared on the route handler.

The following sections describes where to place decorators in a route.

About IG
Decorating Objects, the Route Handler, and the Heap

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 9

Decorating Individual Objects In a Route
To decorate individual objects, add the decorator's name value as a top-level field of the object, next
to type and config.

In this example, the decorator captures all requests going into the SingleSignOnFilter, and all
responses coming out of the SingleSignOnFilter:
{
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://openam.example.com:8088/openam/",
 "version": "7"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "capture": "all",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Decorating the Route Handler
To decorate the handler for a route, add the decorator as a top-level field of the route.

In this example, the decorator captures all requests and responses that traverse the route:
{
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },

About IG
Decorating Objects, the Route Handler, and the Heap

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 10

 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent" : {
 "username" : "ig_agent",
 "passwordSecretId" : "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://openam.example.com:8088/openam/",
 "version": "7"
 }
 }
],
 "capture": "all",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Decorating the Route Heap
To decorate all compatible objects in a route, configure globalDecorators as a top-level field of the
route. The globalDecorators field takes a map of the decorations to apply.

To decorate all compatible objects declared in config.json or admin.json, configure globalDecorators as
a top-level field in config.json or admin.json.

In the following example, the route has capture and timer decorations. The capture decoration
applies to AmService, Chain, SingleSignOnFilter, and ReverseProxyHandler. The timer decoration
doesn't apply to AmService because it is not a filter or handler, but does apply to Chain,
SingleSignOnFilter, and ReverseProxyHandler:
{
 "globalDecorators":
 {
 "capture": "all",
 "timer": true
 },
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {

About IG
Decorating Objects, the Route Handler, and the Heap

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 11

 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://openam.example.com:8088/openam/",
 "version": "7"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Decorating a Named Object Differently In Different Parts of the Configuration

When a filter or handler is configured in config.json or in the heap, it can be used many times in the
configuration. To decorate each use of the filter or handler individually, use a Delegate. For more
information, see "Delegate" in the Configuration Reference

In the following example, an AmService heap object configures an amHandler to delegate tasks to
ForgeRockClientHandler, and capture all requests and responses passing through the handler.
{
 "type": "AmService",
 "config": {
 "agent" : {
 "username" : "ig_agent",
 "passwordSecretId" : "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "amHandler": {
 "type": "Delegate",
 "capture": "all",
 "config": {
 "delegate": "ForgeRockClientHandler"
 }
 },
 "url": "http://openam.example.com:8088/openam"
 }
}

About IG
Using Multiple Decorators for the Same Object

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 12

You can use the same ForgeRockClientHandler in another part of the configuration, in a different route
for example, without adding a capture decorator. Requests and responses that pass through that use
of the handler are not captured.

Decorating IG's Interactions With AM

To log interactions between IG and AM, delegate message handling to a ForgeRockClientHandler,
and capture the requests and responses passing through the handler. When the
ForgeRockClientHandler communicates with an application, it sends ForgeRock Common Audit
transaction IDs.

In the following example, the accessTokenResolver delegates message handling to a decorated
ForgeRockClientHandler:
"accessTokenResolver": {
 "name": "token-resolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "capture": "all",
 "type": "Delegate",
 "config": {
 "delegate": "ForgeRockClientHandler"
 }
 }
 }
}

To try the example, replace the accessTokenResolver in the IG route of "Validating Access_Tokens
Through the Introspection Endpoint". Test the setup as described for the example, and note that the
route's log file contains an HTTP call to the introspection endpoint.

Using Multiple Decorators for the Same Object

Decorations can apply more than once. For example, if you set a decoration on a route and another
decoration on an object defined within the route, IG applies the decoration twice. In the following
route, the request is captured twice:
{
 "handler": {
 "type": "ReverseProxyHandler",
 "capture": "request"
 },
 "capture": "all"
}

When an object has multiple decorations, the decorations are applied in the order they appear in the
JSON.

In the following route, the handler is decorated with a baseURI first, and a capture second:

About IG
Using Multiple Decorators for the Same Object

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 13

{
 "name": "myroute",
 "baseURI": "http://app.example.com:8081",
 "capture": "all",
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "reason": "OK",
 "headers": {
 "Content-Type": ["text/plain"]
 },
 "entity": "Hello world, from myroute!"
 }
 },
 "condition": "${matches(request.uri.path, '^/myroute1')}"
}

The decoration can be represented as capture[baseUri[handler]]. When a request is processed, it is
captured, and then rebased, and then processed by the handler: The log for this route shows that the
capture occurs before the rebase:
2018-09-10T13:23:18,990Z | INFO | http-nio-8080-exec-1 | o.f.o.d.c.C.c.top-level-handler | @myroute |

--- (request) id:f792d2ad-4409-4907-bc46-28e1c3c19ac3-7 --->

GET http://openig.example.com:8080/myroute HTTP/1.1
...

Conversely, in the following route, the handler is decorated with a capture first, and a baseURI second:
{
 "name": "myroute",
 "capture": "all",
 "baseURI": "http://app.example.com:8081",
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "reason": "OK",
 "headers": {
 "Content-Type": ["text/plain"]
 }
 "entity": "Hello, world from myroute1!"
 }
 },
 "condition": "${matches(request.uri.path, '^/myroute')}"
}

The decoration can be represented as baseUri[capture[handler]]. When a request is processed, it is
rebased, and then captured, and then processed by the handler. The log for this route shows that the
rebase occurs before the capture:

About IG
Guidelines for Naming Decorators

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 14

2018-09-10T13:07:07,524Z | INFO | http-nio-8080-exec-1 | o.f.o.d.c.C.c.top-level-handler | @myroute |

--- (request) id:3c26ab12-3cc0-403e-bec6-43bf5621f657-7 --->

GET http://app.example.com:8081/myroute HTTP/1.1
...

Guidelines for Naming Decorators

To prevent unwanted behavior, consider the following points when you name decorators:

• Avoid decorators named comment or comments, and avoid reserved field names. Instead of using
alphanumeric field names, consider using dots in your decorator names, such as my.decorator.

• For heap objects, avoid the reserved names config, name, and type.

• For routes, avoid the reserved names auditService, baseURI, condition, globalDecorators, heap, handler,
name, secrets, and session.

• In config.json, avoid the reserved name temporaryStorage.

Configuration Parameters Declared as Property Variables
Configuration parameters, such as host names, port numbers, and directories, can be declared as
property variables in the IG configuration or in an external JSON file. The variables can then be used
in expressions in routes and in config.json to set the value of configuration parameters.

Properties can be inherited across the router, so a property defined in config.json can be used in any
of the routes in the configuration.

Storing the configuration centrally and using variables for parameters that can be different for each
installation makes it easier to deploy IG in different environments without changing a single line in
your route configuration.

For more information, see "Properties" in the Configuration Reference.

Changing the Configuration and Restarting IG
You can change routes or change a property that is read at runtime or that relies on a runtime
expression without needing to restart IG to take the change into account.

Stop and restart IG only when you make the following changes:

• Change the configuration of any route, when the scanInterval of Router is disabled (see "Router" in
the Configuration Reference).

About IG
Understanding IG APIs With API Descriptors

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 15

• Add or change an external object used by the route, such as an environment variable, system
property, external URL, or keystore.

• Add or update config.json or admin.json.

• When IG is running in web container mode, and the container configuration is changed.

Understanding IG APIs With API Descriptors
Common REST endpoints in IG serve API descriptors at runtime. When you retrieve an API descriptor
for an endpoint, a JSON that describes the API for that endpoint is returned.

To help you discover and understand APIs, you can use the API descriptor with a tool such as
Swagger UI to generate a web page that helps you to view and test the different endpoints.

When you start IG, or add or edit routes, registered endpoint locations for the routes hosted
by the main router are written in $HOME/.openig/logs/route-system.log, where $HOME/.openig is the
instance directory. Endpoint locations for subroutes are written to other log files. To retrieve the
API descriptor for a specific endpoint, append one of the following query string parameters to the
endpoint:

• _api, to represent the API accessible over HTTP. This OpenAPI descriptor can be used with
endpoints that are complete or partial URLs.

The returned JSON respects the OpenAPI specification and can be consumed by Swagger tools,
such as Swagger UI.

• _crestapi, to provide a compact representation that is independent of the transport protocol. This
ForgeRock® Common REST (Common REST) API descriptor cannot be used with partial URLs.

The returned JSON respects a ForgeRock proprietary specification dedicated to describe Common
REST endpoints.

For more information about Common REST API descriptors, see "Common REST API Documentation"
in the Configuration Reference.

Retrieving API Descriptors for a Router

With IG running as described in the Getting Started Guide, run the following query to generate a
JSON that describes the router operations supported by the endpoint:

http://swagger.io/swagger-ui/
http://swagger.io/swagger-ui/

About IG
Understanding IG APIs With API Descriptors

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 16

http://openig.example.com:8080/openig/api/system/objects/_router/routes?_api
{
 "swagger": "2.0",
 "info": {
 "version": "IG version",
 "title": "IG"
 },
 "host": "0:0:0:0:0:0:0:1",
 "basePath": "/openig/api/system/objects/_router/routes",
 "tags": [{
 "name": "Routes Endpoint"
 }],
 . . .

Alternatively, generate a Common REST API descriptor by using the ?_crestapi query string.

Retrieving API Descriptors for the UMA Service

With the UMA tutorial running as described in "Supporting UMA Resource Servers", run the
following query to generate a JSON that describes the UMA share API:
http://openig.example.com:8080/openig/api/system/objects/_router/routes/00-uma/objects/umaservice/share?
_api
{
 "swagger": "2.0",
 "info": {
 "version": "IG version",
 "title": "IG"
 },
 "host": "0:0:0:0:0:0:0:1",
 "basePath": "/openig/api/system/objects/_router/routes/00-uma/objects/umaservice/share",
 "tags": [{
 "name": "Manage UMA Share objects"
 }],
 . . .

Alternatively, generate a Common REST API descriptor by using the ?_crestapi query string.

Retrieving API Descriptors for the Main Router

Run a query to generate a JSON that describes the API for the main router and its subsequent
endpoints. For example:

About IG
Understanding IG APIs With API Descriptors

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 17

http://openig.example.com:8080/openig/api/system/objects/_router?_api
{
 "swagger": "2.0",
 "info": {
 "version": "IG version",
 "title": "IG"
 },
 "host": "openig.example.com:8080",
 "basePath": "/openig/api/system/objects/_router",
 "tags": [{
 "name": "Monitoring endpoint"
 }, {
 "name": "Manage UMA Share objects"
 }, {
 "name": "Routes Endpoint"
 }],
 . . .

Because the above URL is a partial URL, you cannot use the ?_crestapi query string to generate a
Common REST API descriptor.

Retrieving API Descriptors for an IG Instance

Run a query to generate a JSON that describes the APIs provided by the IG instance that is
responding to a request. For example:
http://openig.example.com:8080/openig/api?_api
{
 "swagger": "2.0",
 "info": {
 "version": "IG version",
 "title": "IG"
 },
 "host": "openig.example.com:8080",
 "basePath": "/openig/api",
 "tags": [{
 "name": "Internal Storage for UI Models"
 }, {
 "name": "Monitoring endpoint"
 }, {
 "name": "Manage UMA Share objects"
 }, {
 "name": "Routes Endpoint"
 }, {
 "name": "Server Info"
 }],
 . . .

If routes are added after the request is performed, they are not included in the returned JSON.

Because the above URL is a partial URL, you cannot use the ?_crestapi query string to generate a
Common REST API descriptor.

About IG
Sessions

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 18

Sessions
IG uses sessions to group requests from a user agent or other source, and collect information from
the requests. When multiple requests are made in the same session, the requests can share the
session information. Because session sharing is not thread-safe, it is not suitable for concurrent
exchanges.

The following table compares stateful and stateless sessions:

Feature Stateful sessions Stateless sessions
Cookie size. Unlimited. Max 4 KBytes.
Default name of the session
cookie.

IG_SESSIONID. openig-jwt-session.

Object types that can be stored in
the session.

Only Java serializable objects,
when sessions are replicated.

Any object, when sessions are not
replicated.

JSON-compatible types, such as
strings, numbers, booleans, null,
structures such as arrays, and list
and maps containing only JSON-
compatible types.

Session sharing between instances
of IG, for load balancing and
failover.

Possible when sessions are
replicated on multiple IG
instances.

Possible when sessions are not
replicated, if session stickiness is
configured.

Possible because the session
content is a cookie on the user
agent, that can be copied to
multiple instances of IG.

Risk of data inconsistency when
simultaneous requests modify the
content of a session.

Low because the session content
is stored on IG and shared by all
exchanges.

Processing is not thread-safe.

Higher because the session content
is reconstructed for each request.
Concurrent exchanges don't see the
same content.

About Stateful Sessions

When a JwtSession is not configured for a request, stateful sessions are created automatically.
Session information is stored in the IG cookie, called IG_SESSIONID by default. When the user agent
sends a request with the cookie, the request can access the session information on IG.

When a JwtSession object is configured in the route that processes a request, or in its ascending
configuration (a parent route or config.json), the session is always stateless and can't be stateful.

When a request enters a route without a JwtSession object in the route or its ascending configuration,
a stateful session is created lazily. The session lasts as follows:

• For IG in standalone mode, the duration defined the session property in admin.json, defaulting to 30
minutes. For more information, see the `session` property of "AdminHttpApplication (admin.json)" in
the Configuration Reference.

About IG
About Stateless Sessions

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 19

• For IG in web container mode, until the session reaches the timeout configured by the web
container.

Even if the session is empty, the session remains usable until the timeout.

When IG is not configured for session replication, any object type can be stored in a stateful session.

Because session content is stored on IG, and shared by all exchanges, when IG processes
simultaneous requests in a stateful session there is low risk that the data becomes inconsistent.
However, sessions are not thread-safe; different requests can simultaneously read and modify a
shared session.

Session information is available in SessionContext to downstream handlers and filters. For more info
see "SessionContext" in the Configuration Reference.

Considerations for clustering IG

When a stateful session is replicated on the multiple IG instances, consider the following points:

• The session can store only object types that can be serialized.

• The network latency of session replication introduces a delay that can cause the session
information of two IG instances to desynchronize.

• Because the session is replicated on the clustered IG instances, it can be shared between the
instances, without configuring session stickiness.

• When sessions are not shared, configure session stickiness to ensure that load balancers serve
requests to the same IG instance. For more information, see "Preparing For Load Balancing and
Failover".

About Stateless Sessions
Stateless sessions are provided when a JwtSession object is configured in config.json or in a route.
For more information about configuring stateless sessions, see "JwtSession" in the Configuration
Reference.

IG serializes stateless session information as JSON, stores it in a JWT that can be encrypted and then
signed, and places the JWT in a cookie. The cookie contains all of the information about the session,
including the session attributes as JSON, and a marker for the session timeout.

Only JSON-compatible object types can be stored in stateless sessions. These object types include
strings, numbers, booleans, null, structures such as arrays, and list and maps containing only JSON-
compatible types.

Stateless sessions are managed as follows:

• When a request enters a route with a JwtSession object in the route or its ascending configuration,
IG creates the SessionContext, verifies the cookie signature, decrypts the content of the cookie, and
checks that the current date is before the session timeout.

About IG
Secrets

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 20

• When the request passes through the filters and handlers in the route, the request can read and
modify the session content.

• When the request returns to the the point where the session was created, for example, at the
entrance to a route or at config.json, IG updates the cookie as follows:

• If the session content has changed, IG serializes the session, creates a new cookie with the new
content, encrypts and then signs the new cookie, assigns it an appropriate expiration time, and
returns the cookie in the response.

• If the session is empty, IG deletes the session, creates a new cookie with an expiration time that
has already passed, and returns the cookie in the response.

• If the session content has not changed, IG does nothing.

Because the session content is stored in a cookie on the user agent, stateless sessions can be shared
easily between IG instances. The cookie is automatically carried over in requests, and any IG instance
can unpack and use the session content.

When IG processes simultaneous requests in stateless sessions, there is a high risk that the data
becomes inconsistent. This is because the session content is reconstructed for each exchange, and
concurrent exchanges don't see the same content.

IG does not share sessions across requests. Instead, each request has its own session objects that it
modifies as necessary, writing its own session to the session cookie regardless of what other requests
do.

Session information is available in SessionContext to downstream handlers and filters,. For more
information, see "SessionContext" in the Configuration Reference.

Secrets
IG uses the ForgeRock Commons Secrets Service to manage secrets, such as passwords and
cryptographic keys.

Repositories of secrets are managed through secret stores, provided to the configuration by the
SecretsProvider object or secrets object. For more information about these objects and the types of
secret stores provided in IG, see "SecretsProvider" in the Configuration Reference and "Secret
Stores" in the Configuration Reference.

Secret Names and Types

The following terms are used to describe secrets:

• Secret ID: A label to indicate the purpose of a secret. A secret ID is generally associated with one or
more aliases of a key in a keystore or HSM.

About IG
Validating the Signature of Signed Tokens

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 21

• Stable ID: A label to identify a secret. The stable ID corresponds to the following values in each
type of secret store:

• Base64EncodedSecretStore: The value of secret-id in the "secret-id": "string" pair.

• FileSystemSecretStore: The filename of a file in the specified directory, without the prefix/suffix
defined in the store configuration.

• HsmSecretStore: The value of an alias in a secret-id/aliases mapping.

• JwkSetSecretStore: The value of the kid of a JWK stored in a JwkSetSecretStore.

• KeyStoreSecretStore: The value of an alias in a secret-id/aliases mapping.

• SystemAndEnvSecretStore: The name of a system property or environment. variable

• Valid secret: A secret whose purpose matches the secret ID.

• Named secret: A valid secret that a secret store can find by using a secret ID and stable ID.

• Active secret: One of the valid secrets that is considered eligible at the time of use.

Validating the Signature of Signed Tokens
IG validates the signature of signed tokens as follows:

• Named secret resolution:

• If the JWT contains a kid, IG queries the secret stores declared in secretsProvider or secrets to find
a named secret, identified by a secret ID and stable ID.

• If a named secret is found, IG then uses the named secret to try to validate the signature. If the
named secret can't validate the signature, the token is considered as invalid.

• If a named secret isn't found, IG tries valid secret resolution.

• Valid secret resolution:

• IG uses the value of verificationSecretId as the secret ID, and queries the declared secret stores to
find all secrets that match the provided secret ID.

• All matching secrets are returned as valid secrets, in the order that the secret stores are
declared, and for KeyStoreSecretStore and HsmSecretStore, in the order defined by the
mappings.

• IG tries to verify the signature with each valid secret, starting with the first valid secret, and
stopping when it succeeds.

• If no valid secrets are returned, or if none of the valid secrets can verify the signature, the token
is considered as invalid.

About IG
Validating the Signature of Signed Tokens

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 22

Validating the Signature of Signed Tokens by Using a KeyStoreSecretStore

In the following example, a StatelessAccessTokenResolver validates a signed access_token by using a
KeyStoreSecretStore:
"accessTokenResolver": {
 "type": "StatelessAccessTokenResolver",
 "config": {
 "secretsProvider": {
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "IG_keystore.p12",
 "storeType": "PKCS12",
 "storePassword": "keystore.secret.id",
 "keyEntryPassword": "keystore.secret.id",
 "mappings": [{
 "secretId": "verification.secret.id",
 "aliases": ["verification.key.1", "verification.key.2"]
 }]
 },
 "issuer": "http://openam.example.com:8088/openam/oauth2",
 "verificationSecretId": "verification.secret.id"
 }
 }
}

The JWT signature is validated as follows:

• If the JWT contains a kid with a mapped value, for example verification.key.1:

• The secrets provider queries the KeyStoreSecretStore for a named secret with the secret ID
verification.secret.id and the stable ID verification.key.1.

• Because the KeyStoreSecretStore contains that mapping, the KeyStoreSecretStore returns a
named secret.

• The StatelessAccessTokenResolver tries to validate the JWT signature with the named secret. If it
fails, the token is considered as invalid.

• If the JWT contains a kid with an unmapped value, for example, verification.key.3:

• The secrets provider queries the KeyStoreSecretStore for a named secret with the secret ID
verification.secret.id and the stable ID verification.key.3.

• Because the KeyStoreSecretStore doesn't contain that mapping, named secret resolution fails. IG
tries valid secret resolution in the same way as when the JWT doesn't contain a kid.

• If the JWT doesn't contain a kid:

• The secrets provider queries the KeyStoreSecretStore for all valid secrets, whose alias is mapped
to the secret ID verification.secret.id. There are two valid secrets, with aliases verification.key.1
and verification.key.2.

About IG
Validating the Signature of Signed Tokens

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 23

• The StatelessAccessTokenResolver first tries to verify the signature with verification.key.1. If that
fails, it tries verification.key.2.

• If neither of the valid secrets can verify the signature, the token is considered as invalid.

Validating the Signature of Signed Tokens With a JwkSetSecretStore

In the following example, a StatelessAccessTokenResolver validates a signed access_token by using a
JwkSetSecretStore:
"accessTokenResolver": {
 "type": "StatelessAccessTokenResolver",
 "config": {
 "secretsProvider": {
 "type": "JwkSetSecretStore",
 "config": {
 "jwkUrl": "http://openam.example.com:8088/openam/oauth2/connect/jwk_uri"
 },
 "issuer": "http://openam.example.com:8088/openam/oauth2",
 "verificationSecretId": "verification.secret.id"
 }
 }
}

The JWT signature is validated as follows:

• If the JWT contains a kid with a matching secret in the JWK set:

• The secrets provider queries the JwkSetSecretStore for a named secret.

• The JwkSetSecretStore returns the matching secret, identified by a stable ID.

• The StatelessAccessTokenResolver tries to validate the signature with that named secret. If it
fails, the token is considered as invalid.

In the route, note that the property verificationSecretId must be configured but is not used in named
secret resolution.

• If the JWT contains a kid without a matching secret in the JWK set:

• The secrets provider queries the JwkSetSecretStore for a named secret.

• Because the referenced JWK set doesn't contain a matching secret, named secret resolution fails.
IG tries valid secret resolution in the same way as when the JWT doesn't contain a kid.

• If the JWT doesn't contain a kid:

• The secrets provider queries the JwkSetSecretStore for list of valid secrets, whose secret ID is
verification.secret.id.

• The JwkSetSecretStore returns all secrets in the JWK set whose purpose is signature verification.
For example, signature verification keys can have the following JWK parameters:

About IG
Using Multiple Secret Stores in a Configuration

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 24

{
 "use": "sig"
}

{
 "key_opts": ["verify"]
}

Secrets are returned in the order that they are listed in the JWK set.

• The StatelessAccessTokenResolver tries to validate the signature with each secret sequentially,
starting with the first, and stopping when it succeeds.

• If none of the valid secrets can verify the signature, the token is considered as invalid.

Using Multiple Secret Stores in a Configuration

When multiple secrets stores are provided in a configuration, the secrets stores are queried in the
following order:

• Locally in the route, starting with the first secret store in the list, up to the last.

• In ascending parent routes, starting with the first secret store in each list, up to the last.

• In config.json, starting with the first secret store in the list, up to the last.

• If a secrets store is not configured in config.json, the secret is queried in a default
SystemAndEnvSecretStore, and a base64-encoded value is expected.

• If a secret is not resolved, an error is produced.

Secrets stores defined in admin.json can be accessed only by heap objects in admin.json.

Algorithms for Elliptic Curve Digital Signatures

When the Elliptic Curve Digital Signature Algorithm (ECDSA) is used for signing, and both of the
following conditions are met, JWTs are signed with a deterministic ECDSA:

• Bouncy Castle is installed.

• The system property org.forgerock.secrets.preferDeterministicEcdsa is true, which is its default value.

Otherwise, when ECDSA is used for signing, JWTs are signed with a non-deterministic ECDSA.

A non-deterministic ECDSA signature can be verified by the equivalent deterministic algorithm.

For information about deterministic ECDSA, see RFC 6979. For information about Bouncy Castle, see
The Legion of the Bouncy Castle.

https://tools.ietf.org/html/rfc6979
https://www.bouncycastle.org

Installation in Detail
About Securing Connections

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 25

Chapter 2

Installation in Detail
For information about how to quickly install and configure IG, see Getting Started Guide. The
following sections describe other aspects of installation:

• "About Securing Connections"

• "Installing IG in Standalone Mode"

• "Installing IG in Apache Tomcat"

• "Installing IG in Jetty"

• "Installing IG in JBoss EAP"

• "Preparing the Network"

• "Changing the Default Location of the Configuration Folders"

• "Preparing For Load Balancing and Failover"

• "Configuring IG For HTTPS (Client-Side)"

• "Using JWT Sessions"

• "Setting Up AM"

About Securing Connections
IG is often deployed to replay credentials or other security information. In a real world deployment,
that information must be communicated over a secure connection using HTTPS, meaning in effect
HTTP over encrypted Transport Layer Security (TLS). Never send real credentials, bearer tokens, or
other security information unprotected over HTTP.

When IG is running in web container mode, and acting as a server, the TLS connection is configured
in the container. When IG is running in standalone mode, and acting as a server, the TLS connection
is configured in admin.json.

When IG is acting as a client, the TLS connection is configured in the ReverseProxyHandler.
For details, see "Configuring IG For HTTPS (Client-Side)" and "ReverseProxyHandler" in the
Configuration Reference.

Installation in Detail
Installing IG in Standalone Mode

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 26

TLS depends on the use of digital certificates (public keys). In typical use of TLS, the client
authenticates the server by its X.509 digital certificate as the first step to establishing
communication. Once trust is established, then the client and server can set up a symmetric key to
encrypt communications.

In order for the client to trust the server certificate, the client needs first to trust the certificate of
the party who signed the server's certificate. This means that either the client has a trusted copy of
the signer's certificate, or the client has a trusted copy of the certificate of the party who signed the
signer's certificate.

Certificate Authorities (CAs) are trusted signers with well-known certificates. Browsers generally
ship with many well-known CA certificates. Java distributions also ship with many well-known CA
certificates. Getting a certificate signed by a well-known CA is often expensive.

It is also possible for you to self-sign certificates. The trade-off is that although there is no monetary
expense, the certificate is not trusted by any clients until they have a copy. Whereas it is often
enough to install a certificate signed by a well-known CA in the server keystore as the basis of trust
for HTTPS connections, self-signed certificates must also be installed in all clients.

Like self-signed certificates, the signing certificates of less well-known CAs are also unlikely to be
found in the default truststore. You might therefore need to install those signing certificates on the
client-side as well.

This guide describes how to install self-signed certificates, that are suitable for trying out the
software, or for deployments where you manage all clients that access IG. For information about how
to use well-known CA-signed certificates, see the documentation for the Java Virtual Machine (JVM).

After certificates are properly installed to allow client-server trust, consider the cipher suites
configured for use. The cipher suite determines the security settings for the communication. Initial
TLS negotiations bring the client and server to agreement on which cipher suite to use. Basically the
client and server share their preferred cipher suites to compare and to choose. If you therefore have
a preference concerning the cipher suites to use, you must set up your deployment to use only your
preferred cipher suites. IG inherits the list of cipher suites from the underlying Java environment.

The Java Secure Socket Extension (JSSE), part of the Java environment, provides security services
that IG uses to secure connections. You can set security and system properties to configure the JSSE.
For a list of properties you can use to customize the JSSE in Oracle Java, see the Customization
section of the JSSE Reference Guide.

Installing IG in Standalone Mode
For information about how to install IG in standalone mode (installed from a .zip file, and run outside
of a web container), see "Downloading and Starting IG in Standalone Mode" in the Getting Started
Guide. The following sections describe other installation options for IG in standalone mode:

• "Configuring IG For HTTPS (Server-Side)"

• "Adding .jar Files for IG Extensions"

https://docs.oracle.com/en/java/javase/11/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-A41282C3-19A3-400A-A40F-86F4DA22ABA9

Installation in Detail
Configuring IG For HTTPS (Server-Side)

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 27

Configuring IG For HTTPS (Server-Side)
This section describes how to set up IG to run as a server over HTTPS. IG uses a KeyManager and a
private key to prove its identity to the client.

For information about the set up for HTTPS (client-side), see "Configuring IG For HTTPS (Client-
Side)".

Configure IG For HTTPS (Server-Side)

Before you start, install IG in standalone mode, as described in "Downloading and Starting IG in
Standalone Mode" in the Getting Started Guide.

1. Locate the keystore directory, ig_keystore_directory, and in a terminal create an environment
variable for it:
$ export ig_keystore_directory=/path/to/secrets

2. Create a keystore holding a self-signed certificate:
$ keytool \
-genkey \
-alias https-connector-key \
-keyalg RSA \
-keystore $ig_keystore_directory/IG-keystore \
-storepass password \
-keypass password \
-dname "CN=openig.example.com,O=Example Corp,C=FR"

Note

Because KeyStore converts all characters in its key aliases to lower case, use only lowercase in alias
definitions of a KeyStore.

3. In the secrets directory, add a file called keystore.pass, containing the keystore password password:
$ cd $ig_keystore_directory
$ echo -n password > keystore.pass

4. Add the following line to $HOME/.openig/bin/env.sh, replacing the path with your path to the keystore
directory:
$ export IG_KEYSTORE_DIRECTORY='/path/to/secrets'

5. Add the following file to IG:
Linux
$HOME/.openig/config/admin.json

Windows
%appdata%\OpenIG\config\admin.json

Installation in Detail
Configuring IG For HTTPS (Server-Side)

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 28

{
 "connectors": [
 {
 "port": 8080
 },
 {
 "port": 8443,
 "tls": "ServerTlsOptions-1"
 }
],
 "heap": [
 {
 "name": "ServerTlsOptions-1",
 "type": "ServerTlsOptions",
 "config": {
 "keyManager": {
 "type": "SecretsKeyManager",
 "config": {
 "signingSecretId": "key.manager.secret.id",
 "secretsProvider": "ServerIdentityStore"
 }
 }
 }
 },
 {
 "type": "FileSystemSecretStore",
 "name": "SecretsPasswords",
 "config": {
 "directory": "&{ig_keystore_directory}/",
 "format": "PLAIN"
 }
 },
 {
 "type": "KeyStoreSecretStore",
 "name": "ServerIdentityStore",
 "config": {
 "file": "&{ig_keystore_directory}/IG-keystore",
 "storePassword": "keystore.pass",
 "secretsProvider": "SecretsPasswords",
 "mappings": [
 {
 "secretId": "key.manager.secret.id",
 "aliases": ["https-connector-key"]
 }
]
 }
 }
]
}

Notice the following features of the file:

• IG starts on port 8080, and on 8443 over TLS.

• IG's private keys for TLS are managed by the SecretsKeyManager, which references the
KeyStoreSecretStore that holds the keys.

Installation in Detail
Adding .jar Files for IG Extensions

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 29

• The password of the KeyStoreSecretStore is provided by the FileSystemSecretStore.

• The KeyStoreSecretStore maps the keystore alias to the secret ID for retrieving the private
signing keys.

• The path to the keystore is provided by an environment variable.

6. Start IG:
$ /path/to/identity-gateway/bin/start.sh
...
... started in 1234ms on ports : [8080 8443]

7. Access the IG welcome page on https://openig.example.com:8443.

If you see warnings that the site is not secure, or that the self-signed certificate is not valid,
respond to the warnings to access the site.

Adding .jar Files for IG Extensions
IG includes a complete Java application programming interface for extending your deployment with
customizations. For more information, see "Extending IG Through the Java API"

Create the directory $HOME/.openig/extra, and add .jar files for IG extensions to the directory.

When IG starts up, .jar files in $HOME/.openig/extra are loaded by the JVM.

Installing IG in Apache Tomcat
For basic information about how to install IG in Tomcat, see "Downloading and Starting IG in Tomcat"
in the Getting Started Guide. The following sections describe other installation options:

• "About Using Tomcat"

• "Configuring Cookie Domains in Tomcat"

• "Configuring IG for HTTPS (Server-Side) in Tomcat"

• "Configuring Access to MySQL Over JNDI in Tomcat"

• "Session Stickiness and Session Replication for Tomcat"

About Using Tomcat

Important

If you use startup scripts to bootstrap the IG web container, the scripts can start the container process with a
different user. To prevent errors, make sure that the location of the IG configuration is correct. Alternatively,

https://openig.example.com:8443
../apidocs

Installation in Detail
Configuring Cookie Domains in Tomcat

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 30

adapt the startup scripts to specify the IG_INSTANCE_DIR env variable or ig.instance.dir system properties,
taking care to set file permissions correctly.

If you start and stop the IG web container yourself, the default location of the IG configuration files is correct.
By default, IG configuration files are located under $HOME/.openig on Linux, Mac, and UNIX systems, and under
%appdata%\OpenIG on Windows.

Configure Tomcat to use the same protocol as the application you are protecting with IG. If the
protected application is on a remote system, configure Tomcat to use the same port as well. If your
application listens on both an HTTP and an HTTPS port, then you must configure Tomcat to do so,
too.

To configure Tomcat to use an HTTP port other than 8080, modify the defaults in /path/to/tomcat/conf/
server.xml. Search for the default value of 8080 and replace it with the new port number.

Configuring Cookie Domains in Tomcat

To protect multiple applications running on different hosts, set a cookie domain as follows:

• For stateful sessions, add a context element to /path/to/conf/Catalina/server/root.xml, as in the
following example, and then restart Tomcat to read the configuration changes:
<Context sessionCookieDomain=".example.com" />

If JwtSession is not configured, stateful sessions are created automatically. For more information,
see "Sessions".

• For stateless sessions, configure the domain property of JwtSession. When set, the JWT cookie can
be accessed from different hosts in that domain. When not set, the JWT cookie can be accessed only
from the host where the cookie was created. For information, see "JwtSession" in the Configuration
Reference.

Configuring IG for HTTPS (Server-Side) in Tomcat

This section describes how to set up IG to run as a server over HTTPS. For information about the set
up for HTTPS (client-side), see "Configuring IG For HTTPS (Client-Side)".

To get Tomcat up quickly on an SSL port, add an entry similar to the following in /path/to/tomcat/conf/
server.xml:
<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true">
 <SSLHostConfig sslProtocol="TLS" protocols="all" certificateVerification="none">
 <Certificate certificateKeystoreFile="/path/to/tomcat/conf/keystore"
 certificateKeystorePassword="password"
 certificateKeystoreType="PKCS12" />
 </SSLHostConfig>
</Connector>

Also create a keystore holding a self-signed certificate:

Installation in Detail
Configuring Access to MySQL Over JNDI in Tomcat

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 31

$ keytool \
-genkey \
-alias tomcat \
-keyalg RSA \
-keystore /path/to/tomcat/conf/keystore \
-storetype PKCS12 \
-storepass password \
-keypass password \
-dname "CN=openig.example.com,O=Example Corp,C=FR"

Note

Because KeyStore converts all characters in its key aliases to lower case, use only lowercase in alias definitions
of a KeyStore.

Notice the keystore file location and the keystore password both match the configuration. By default,
Tomcat looks for a certificate with alias tomcat.

Restart Tomcat to read the configuration changes.

Browsers generally do not trust self-signed certificates. To work with a certificate signed instead by a
trusted CA, see the Tomcat documentation on configuring HTTPS.

Configuring Access to MySQL Over JNDI in Tomcat

If IG accesses an SQL database, then you must configure Tomcat to access the database using Java
Naming and Directory Interface (JNDI). To do so, you must add the driver .jar for the database, set up
a JNDI data source, and set up a reference to that data source.

The following steps are for MySQL Connector/J:

1. Download the MySQL JDBC Driver Connector/J from http://dev.mysql.com/downloads/connector/j.

2. Copy the driver .jar to /path/to/tomcat/lib/ so that it is on Tomcat's class path.

3. Add a JNDI data source for your MySQL server and database in /path/to/tomcat/conf/context.xml:
<Resource
 name="jdbc/forgerock"
 auth="Container"
 type="javax.sql.DataSource"
 maxActive="100"
 maxIdle="30"
 maxWait="10000"
 username="mysqladmin"
 password="password"
 driverClassName="com.mysql.jdbc.Driver"
 url="jdbc:mysql://localhost:3306/databasename"
/>

4. Add a resource reference to the data source in /path/to/tomcat/conf/web.xml:

http://dev.mysql.com/downloads/connector/j

Installation in Detail
Session Stickiness and Session Replication for Tomcat

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 32

<resource-ref>
 <description>MySQL Connection</description>
 <res-ref-name>jdbc/forgerock</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

5. Restart Tomcat to read the configuration changes.

Session Stickiness and Session Replication for Tomcat
Tomcat can help with session stickiness, and a Tomcat cluster can handle session replication:

• If you choose to use the Tomcat connector (mod_jk) on your web server to perform load balancing,
then see the LoadBalancer HowTo for details.

In the HowTo, you configure the jvmRoute attribute in the Tomcat server configuration, /path/to/
tomcat/conf/server.xml, to identify the server. The connector can use this identifier to achieve session
stickiness.

• A Tomcat cluster configuration can handle session replication. When setting up a cluster
configuration, the ClusterManager defines the session replication implementation.

Installing IG in Jetty
For basic information about how to install IG in Jetty, see "Downloading and Starting IG in Jetty" in
the Getting Started Guide. The following sections describe other installation options:

• "About Using Jetty"

• "Configuring Cookie Domains in Jetty"

• "Configuring IG for HTTPS (Server-Side) in Jetty"

• "Configuring Access MySQL Over JNDI in Jetty"

• "Session Stickiness and Session Replication for Jetty"

About Using Jetty
Configure Jetty to use the same protocol as the application you are protecting with IG. If the
protected application is on a remote system, configure Jetty to use the same port as the protected
application. If the protected application listens on both an HTTP and an HTTPS port, configure Jetty
to listen on both an HTTP and an HTTPS port.

To configure Jetty to use an HTTP port other than 8080, modify the defaults in /path/to/jetty/etc/
jetty.xml. Search for the default value of 8080 and replace it with the new port number.

http://tomcat.apache.org/connectors-doc/
http://tomcat.apache.org/connectors-doc/common_howto/loadbalancers.html
http://tomcat.apache.org/tomcat-7.0-doc/config/cluster.html
http://tomcat.apache.org/tomcat-7.0-doc/config/cluster-manager.html

Installation in Detail
Configuring Cookie Domains in Jetty

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 33

Note

IG depends on javax.websocket-api version 1.1, which is a higher version than that provided by Jetty. To
prevent errors related to WebSocket, do not include the websocket configuration modules when you configure
Jetty.

To change the default port for Jetty in HTTP, edit http.ini.

To change the default port for Jetty in HTTPS, edit server.ini.

Configuring Cookie Domains in Jetty

To use IG for multiple protected applications running on different hosts, set a cookie domain as
follows:

• For stateful sessions, add a session domain handler element that specifies the domain to /path/to/
jetty/etc/webdefault.xml, as in the following example:
<context-param>
 <param-name>org.eclipse.jetty.servlet.SessionDomain</param-name>
 <param-value>.example.com</param-value>
</context-param>

Restart Jetty to read the configuration changes.

If JwtSession is not configured, stateful sessions are created automatically. For more information,
see "Sessions".

• For stateless sessions, configure the domain property of JwtSession. When set, the JWT cookie can
be accessed from different hosts in that domain. When not set, the JWT cookie can be accessed only
from the host where the cookie was created. For information, see "JwtSession" in the Configuration
Reference.

Configuring IG for HTTPS (Server-Side) in Jetty

This section describes how to set up Jetty to run IG over HTTPS. For information about the set up for
HTTPS (client-side), see "Configuring IG For HTTPS (Client-Side)".

These instructions are for Jetty 9.4.21, and are not compatible with earlier versions of Jetty. For
more information about Jetty and HTTPS, see http://www.eclipse.org/jetty/documentation/current/
configuring-ssl.html#configuring-sslcontextfactory.

Configure Jetty for HTTPS

1. Install Jetty, and set up the location for the Jetty distribution binaries:

a. Download a supported version of Jetty server from its download page, and install it to /path/
to/jetty.

http://www.eclipse.org/jetty/documentation/current/configuring-ssl.html#configuring-sslcontextfactory
http://www.eclipse.org/jetty/documentation/current/configuring-ssl.html#configuring-sslcontextfactory
http://www.eclipse.org/jetty/download.html

Installation in Detail
Configuring IG for HTTPS (Server-Side) in Jetty

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 34

b. Set the environment variable JETTY_HOME for /path/to/jetty:
$ export JETTY_HOME=/path/to/jetty

2. Set up the location for configurations and customizations to the Jetty distribution:

a. Create a directory /path/to/jetty_base.

b. Set the environment variable JETTY_BASE for /path/to/jetty_base:
$ export JETTY_BASE=/path/to/jetty_base

3. Set up the keystore:

a. Remove the built-in keystore:
$ rm ${JETTY_HOME}/modules/ssl/keystore

b. Generate a key pair with a self-signed certificate in the keystore:
$ keytool \
-genkey \
-alias jetty \
-keyalg RSA \
-keystore ${JETTY_HOME}/modules/ssl/keystore \
-storepass password \
-keypass password \
-dname "CN=openig.example.com,O=Example Corp,C=FR"

Note

Because KeyStore converts all characters in its key aliases to lower case, use only lowercase in alias
definitions of a KeyStore.

4. Create a directory to store local server customization and configurations in ${JETTY_BASE}:

a. Delete the global start.ini:
$ rm ${JETTY_HOME}/start.ini

b. From ${JETTY_BASE}, create the start.d folder to hold the module .ini files:
$ cd ${JETTY_BASE}
$ java -jar ${JETTY_HOME}/start.jar --create-startd
MKDIR : ${jetty.base}/start.d
INFO : Base directory was modified

5. From ${JETTY_BASE}, add the following Jetty configuration modules:
$ cd ${JETTY_BASE}
$ java -jar ${JETTY_HOME}/start.jar \
--add-to-start=server,webapp,deploy,ssl,jstl,ext,jsp,resources,console-capture,http,https
INFO : webapp initialized in ${jetty.base}/start.d/webapp.ini

Installation in Detail
Configuring IG for HTTPS (Server-Side) in Jetty

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 35

INFO : ext initialized in ${jetty.base}/start.d/ext.ini
INFO : server initialized in ${jetty.base}/start.d/server.ini
INFO : mail transitively enabled
INFO : servlet transitively enabled
INFO : jsp initialized in ${jetty.base}/start.d/jsp.ini
INFO : annotations transitively enabled
INFO : resources initialized in ${jetty.base}/start.d/resources.ini
INFO : transactions transitively enabled
INFO : threadpool transitively enabled, ini template available with --add-to-start=threadpool
INFO : ssl initialized in ${jetty.base}/start.d/ssl.ini
INFO : plus transitively enabled
INFO : deploy initialized in ${jetty.base}/start.d/deploy.ini
INFO : jstl initialized in ${jetty.base}/start.d/jstl.ini
INFO : security transitively enabled
INFO : apache-jsp transitively enabled
INFO : jndi transitively enabled
INFO : console-capture initialized in ${jetty.base}/start.d/console-capture.ini
INFO : apache-jstl transitively enabled
INFO : http initialized in ${jetty.base}/start.d/http.ini
INFO : client transitively enabled
INFO : https initialized in ${jetty.base}/start.d/https.ini
INFO : bytebufferpool transitively enabled, ini template available with --add-to-
start=bytebufferpool
MKDIR : ${jetty.base}/lib
MKDIR : ${jetty.base}/lib/ext
MKDIR : ${jetty.base}/resources
MKDIR : ${jetty.base}/etc
COPY : ${jetty.home}/modules/ssl/keystore to ${jetty.base}/etc/keystore
MKDIR : ${jetty.base}/webapps
MKDIR : ${jetty.base}/logs
INFO : Base directory was modified

Note

IG depends on javax.websocket-api version 1.1, which is a higher version than that provided by Jetty.
To prevent errors related to WebSocket, do not include the websocket configuration modules when you
configure Jetty.

To change the default port for Jetty in HTTP, edit http.ini.

To change the default port for Jetty in HTTPS, edit server.ini.

6. Replace jetty-util-*.jar with the version for your installation, and find the obfuscated form of the
keystore password:
$ cd ${JETTY_HOME}/lib
$ ls jetty-util-*.jar

$ java -cp jetty-util-*.jar org.eclipse.jetty.util.security.Password password

password
OBF:1v2j1uum1xtv1zej1zer1xtn1uvk1v1v
MD5:5f4dcc3b5aa765d61d8327deb882cf99

Installation in Detail
Configuring Access MySQL Over JNDI in Jetty

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 36

7. In ${JETTY_BASE}/start.d/ssl.ini, uncomment the following lines, and update the passwords with
the OBF password returned in the previous step:
Connector port to listen on
jetty.ssl.port=8443

Keystore file path (relative to $jetty.base)
jetty.sslContext.keyStorePath=etc/keystore

Keystore password
jetty.sslContext.keyStorePassword=OBF:1v2j1uum1xtv1zej1zer1xtn1uvk1v1v

KeyManager password
jetty.sslContext.keyManagerPassword=OBF:1v2j1uum1xtv1zej1zer1xtn1uvk1v1v

8. Copy the IG .war file to ${JETTY_BASE}/webapps/IG-7.0.2.war.

9. Go to ${JETTY_BASE}, and start Jetty:
$ cd ${JETTY_BASE}
$ java -jar ${JETTY_HOME}/start.jar

10. Access the IG welcome page on https://openig.example.com:8443.

If you see warnings that the site is not secure, or that the self-signed certificate is not valid,
respond to the warnings to access the site.

Configuring Access MySQL Over JNDI in Jetty
If IG accesses an SQL database, then you must configure Jetty to access the database over JNDI. To
do so, you must add the driver .jar for the database, set up a JNDI data source, and set up a reference
to that data source.

The following steps are for MySQL Connector/J:

1. Download the MySQL JDBC Driver Connector/J from http://dev.mysql.com/downloads/connector/j.

2. Copy the driver .jar to /path/to/jetty/lib/jndi/ so that it is on Jetty's class path.

3. Add a JNDI data source for your MySQL server and database in /path/to/jetty/etc/jetty.xml:
<New id="jdbc/forgerock" class="org.eclipse.jetty.plus.jndi.Resource">
 <Arg></Arg>
 <Arg>jdbc/forgerock</Arg>
 <Arg>
 <New class="com.mysql.jdbc.jdbc2.optional.MysqlConnectionPoolDataSource">
 <Set name="Url">jdbc:mysql://localhost:3306/databasename</Set>
 <Set name="User">mysqladmin</Set>
 <Set name="Password">password</Set>
 </New>
 </Arg>
</New>

4. Add a resource reference to the data source in /path/to/jetty/etc/webdefault.xml:

https://openig.example.com:8443
http://dev.mysql.com/downloads/connector/j

Installation in Detail
Session Stickiness and Session Replication for Jetty

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 37

<resource-ref>
 <description>MySQL Connection</description>
 <res-ref-name>jdbc/forgerock</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
</resource-ref>

5. Restart Jetty to read the configuration changes.

Session Stickiness and Session Replication for Jetty

Jetty has provisions for session stickiness, and also for session replication through clustering:

• Jetty's persistent session mechanism appends a node ID to the session ID in the same way Tomcat
appends the jvmRoute value to the session cookie. This can be useful for session stickiness if your
load balancer examines the session ID.

• Session Clustering with a Database describes how to configure Jetty to persist sessions over JDBC,
allowing session replication.

Unless it is set up to be highly available, the database can be a single point of failure in this case.

• Session Clustering with MongoDB describes how to configure Jetty to persist sessions in MongoDB,
allowing session replication.

The Jetty documentation recommends this implementation when session data is seldom written, but
often read.

Installing IG in JBoss EAP
For basic information about how to install IG in JBoss, see "Downloading and Starting IG in JBoss" in
the Getting Started Guide. The following sections describe other installation options:

• "Configuring Cookie Domains in JBoss EAP"

• "Configuring IG for HTTPS (Server-Side) in JBoss EAP"

Configuring Cookie Domains in JBoss EAP

To use IG to protect multiple applications running on different hosts, set a cookie domain as follows:

• For stateful sessions, set a cookie domain in JBoss. For information, see the Redhat documentation
about Cookie Domain .

If JwtSession is not configured, stateful sessions are created automatically. For more information,
see "Sessions".

http://www.eclipse.org/jetty/documentation/current/configuring-sessions-jdbc.html
http://www.eclipse.org/jetty/documentation/current/configuring-sessions-mongo.html
https://access.redhat.com/documentation/en-US/JBoss_Enterprise_Application_Platform/6.4/html/Development_Guide/sect-Cookie_Domain.html

Installation in Detail
Configuring IG for HTTPS (Server-Side) in JBoss EAP

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 38

• For stateless sessions, configure the domain property of JwtSession. When set, the JWT cookie can
be accessed from different hosts in that domain. When not set, the JWT cookie can be accessed only
from the host where the cookie was created. For information, see "JwtSession" in the Configuration
Reference.

Configuring IG for HTTPS (Server-Side) in JBoss EAP

This section describes how to set up JBoss to run IG over HTTPS. These instructions are for JBoss
7.2, and are not compatible with earlier versions. For information about the set up for HTTPS (client-
side), see "Configuring IG For HTTPS (Client-Side)".

The default ephemeral DH key size in the JVM is 1024-bit. To support stronger ephemeral DH keys,
and protect against weak keys, set the following system property: jdk.tls.ephemeralDHKeySize=2048.

Configure Jetty for HTTPS

Before you start, install IG in JBoss as described in "Downloading and Starting IG in JBoss" in the
Getting Started Guide. JBoss is installed in /path/to/jboss.

1. Set the environment variable JBOSS_HOME in two terminals:
$ export JBOSS_HOME=/path/to/jboss

2. In the first terminal, create a user with administrative permissions to run the setup:
$ ${JBOSS_HOME}/bin/add-user.sh myadmin myadmin-password
Added user 'myadmin' to file '${JBOSS_HOME}/standalone/configuration/mgmt-users.properties'
Added user 'myadmin' to file '${JBOSS_HOME}/domain/configuration/mgmt-users.properties'

3. Make a temporary directory for the settings and keystore:
$ mkdir $JBOSS_HOME/tmp

4. Create the following file as ${JBOSS_HOME}/tmp/batch_settings:
/socket-binding-group=standard-sockets/socket-binding=http/:write-attribute(name=port, value=8080)
/socket-binding-group=standard-sockets/socket-binding=https/:write-attribute(name=port, value=8443)
/socket-binding-group=standard-sockets/socket-binding=ajp/:write-attribute(name=port, value=8009)
/socket-binding-group=standard-sockets/socket-binding=management-http/:write-attribute(name=port,
 value=9990)
/socket-binding-group=standard-sockets/socket-binding=management-https/:write-attribute(name=port,
 value=9993)
/subsystem=deployment-scanner/scanner=default/:write-attribute(name="scan-interval", value="2000")
/interface=management/:write-attribute(name="inet-address",
 value="${jboss.bind.address:openig.example.com}")
/interface=public/:write-attribute(name="inet-address",
 value="${jboss.bind.address:openig.example.com}")

5. Generate a key pair with a self-signed certificate in the keystore:

Installation in Detail
Configuring IG for HTTPS (Server-Side) in JBoss EAP

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 39

$ keytool \
-genkey \
-alias jboss \
-storetype PKCS12 \
-keyalg RSA \
-keystore ${JBOSS_HOME}/tmp/keystore \
-storepass password \
-keypass password \
-dname "CN=openig.example.com,O=Example Corp,C=FR"

Note

Because KeyStore converts all characters in its key aliases to lower case, use only lowercase in alias
definitions of a KeyStore.

6. Start JBoss as a standalone server:
$ ${JBOSS_HOME}/bin/standalone.sh

7. While JBoss is running, in the second terminal, update the batch settings:
$ ${JBOSS_HOME}/bin/jboss-cli.sh --connect \
--controller=openig.example.com:9990 command="run-batch -v \
--file=${JBOSS_HOME}/tmp/batch_settings"

8. Make sure IG is deployed on port 8080:
$ ${JBOSS_HOME}/bin/jboss-cli.sh --connect \
--controller=openig.example.com:9990 command="deployment list"

9. Enable SSL:

a. Enable the SSL server:
$ ${JBOSS_HOME}/bin/jboss-cli.sh --connect \
--controller=openig.example.com:9990 command="security enable-ssl-http-server \
--key-store-path=${JBOSS_HOME}/tmp/keystore \
--key-store-password=password \
--key-store-type=PKCS12"

Server reloaded.
SSL enabled for default-server
ssl-context is ssl-context-keystore
key-manager is key-manager-keystore
key-store is keystore

b. Access the IG welcome page on https://openig.example.com:8443.

If you see warnings that the site is not secure, or that the self-signed certificate is not valid,
respond to the warnings to access the site.

https://openig.example.com:8443

Installation in Detail
Preparing the Network

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 40

Preparing the Network
Because IG uses reverse proxy architecture, you must configure the network so that that traffic from
the browser to the protected application goes through IG.

Modify DNS or host file settings so that the host name of the protected application resolves to the IP
address of IG on the system where the browser runs.

Restart the browser after making this change.

Changing the Default Location of the Configuration Folders
By default, the base location for IG configuration files is in the following directory:
Linux

$HOME/.openig

Windows

%appdata%\OpenIG

Change the default base location in the following ways:

• Set the IG_INSTANCE_DIR environment variable to the full path to the base location:
Linux

$ export IG_INSTANCE_DIR=/path/to/instance-dir

Windows

C:> set IG_INSTANCE_DIR=c:\path\to\instance-dir

• For IG running in web container mode, set the ig.instance.dir Java system property to the full path
of the base location. The following example starts Jetty in the foreground and sets the value of ig.
instance.dir:
$ java -Dig.instance.dir=/path/to/instance-dir -jar start.jar

• For IG running in standalone mode, specify the base location as an argument. The following
example reads the configuration from the config directory under /path/to/instance-dir:
$ /path/to/identity-gateway/bin/start.sh /path/to/instance-dir

Preparing For Load Balancing and Failover
For a high scale or highly available deployment, you can prepare a pool of IG servers with nearly
identical configurations, and then load balance requests across the pool, routing around any servers
that become unavailable. Load balancing allows the service to handle more load.

Installation in Detail
Preparing For Load Balancing and Failover

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 41

Before you spread requests across multiple servers, however, you must determine what to do with
state information that IG saves in the context, or retrieves locally from the IG server system. If
information is retrieved locally, then consider setting up failover. If one server becomes unavailable,
another server in the pool can take its place. The benefit of failover is that a server failure can be
invisible to client applications.

IG saves state information in the following ways:

• By using a handler, such as a SamlFederationHandler or a custom ScriptableHandler, that can
store information in the context. Most handlers depend on information in the context, some of
which is first stored by IG.

• By using filters, such as AssignmentFilters, HeaderFilters, OAuth2ClientFilters,
OAuth2ResourceServerFilters, ScriptableFilters, SqlAttributesFilters, and StaticRequestFilters,
that can store information in the context. Most filters depend on information in the request,
response, or context, some of which is first stored by IG.

IG retrieves information locally in the following ways:

• By using filters and handlers, such as FileAttributesFilters, ScriptableFilters, ScriptableHandlers,
and SqlAttributesFilters, that depend on local system files or container configuration.

By default, the context data, including storage of the default session implementation, resides
in memory. For information about whether to store session data on the user-agent instead, see
"JwtSession" in the Configuration Reference.

When using JwtSession with a cookie domain, share the encryption keys and the signature symmetric
secret across all IG configurations so that any server can read or update JWT cookies from any other
server in the same cookie domain.

If your data does not fit in an HTTP cookie, for example, because when encrypted it is larger than 4
KB, consider storing a reference in the cookie, and then retrieve the data by using another filter. IG
logs warning messages if the JwtSession cookie is too large. Using a reference can also work when
a server becomes unavailable, and the load balancer must fail requests over to another server in the
pool.

If some data attached to a context must be stored on the server-side, then you have additional
configuration steps to perform for session stickiness and for session replication. Session stickiness
means that the load balancer sends all requests from the same client session to the same server.
Session stickiness helps to ensure that a client request goes to the server holding the original session
data. Session replication involves writing session data either to other servers or to a data store,
so that if one server goes down, other servers can read the session data and continue processing.
Session replication helps when one server fails, allowing another server to take its place without
having to start the session over again. If you set up session stickiness but not session replication,
when a server crashes, the client session information for that server is lost, and the client must start
again with a new session.

For more information, see "Session Stickiness and Session Replication for Tomcat" and "Session
Stickiness and Session Replication for Jetty".

Installation in Detail
Configuring IG For HTTPS (Client-Side)

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 42

Configuring IG For HTTPS (Client-Side)
When IG sends requests over HTTP to a proxied application, or requests services from a third-party
application, IG is acting as a client of the application, and the application is acting as a server. IG is
client-side.

When IG sends requests securely over HTTPS, IG must be able to trust the server. By default, IG uses
the Java environment truststore to trust server certificates. The Java environment truststore includes
public key signing certificates from many well-known Certificate Authorities (CAs).

When servers present certificates signed by trusted CAs, then IG can send requests over HTTPS
to those servers, without any configuration to set up the HTTPS client connection. When server
certificates are self-signed or signed by a CA whose certificate is not automatically trusted, the
following objects can be required to configure the connection:

• KeyStore, to hold the server certificates or the CA's signing certificate. See "KeyStore" in the
Configuration Reference.

• SecretsTrustManager, to let IG handle the certificates in the KeyStore when deciding whether to
trust a server certificate. See "SecretsTrustManager" in the Configuration Reference.

• (Optional) KeyManager, to let IG present its certificate from the keystore when the server must
authenticate IG as client. See "KeyManager" in the Configuration Reference.

• ClientHandler and ReverseProxyHandler reference to ClientTlsOptions, for connecting to TLS-
protected endpoints. See "ClientTlsOptions" in the Configuration Reference.

The following procedure describes how to set up IG for HTTPS (client-side), when server certificates
are self-signed or signed by untrusted CAs.

Set Up IG for HTTPS (Client-Side) for Untrusted Servers

1. Locate or set up the following directories:

• Directory containing the sample application .jar: sampleapp_install_dir

• Directory to store the sample application certificate and IG keystore: /path/to/secrets

2. Extract the public certificate from the sample application:
$ cd /path/to/secrets

$ jar --verbose --extract \
--file $sampleapp_install_dir/IG-sample-application-7.0.2.jar tls/sampleapp-cert.pem

inflated: tls/sampleapp-cert.pem

The file /path/to/secrets/tls/sampleapp-cert.pem is created.

3. From the same directory, import the certificate into the IG keystore, and answer yes to trust the
certificate:

Installation in Detail
Configuring IG For HTTPS (Client-Side)

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 43

$ keytool -importcert \
-alias ig-sampleapp \
-file tls/sampleapp-cert.pem \
-keystore reverseproxy-truststore.p12 \
-storetype pkcs12 \
-storepass password

...
Trust this certificate? [no]:yes
Certificate was added to keystore

Note

Because KeyStore converts all characters in its key aliases to lower case, use only lowercase in alias
definitions of a KeyStore.

4. List the keys in the IG keystore to make sure that a key with the alias ig-sampleapp is present:
$ keytool -list \
-v \
-keystore /path/to/secrets/reverseproxy-truststore.p12 \
-storetype pkcs12 \
-storepass password

Keystore type: PKCS12
Keystore provider: SUN
Your keystore contains 1 entry
Alias name: ig-sampleapp
...

5. In the terminal where you run IG, create an environment variable for the value of the keystore
password:
$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by the SystemAndEnvSecretStore, and must be base64-encoded.

6. Add the following route to IG, to serve .css and other static resources for the sample application:
Linux
$HOME/.openig/config/routes/static-resources.json

Windows
%appdata%\OpenIG\config\routes\static-resources.json

{
 "name" : "sampleapp_resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${matches(request.uri.path,'^/css')}",
 "handler": "ReverseProxyHandler"
}

7. Add the following route to IG:

Installation in Detail
Configuring IG For HTTPS (Client-Side)

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 44

Linux

$HOME/.openig/config/routes/client-side-https.json

Windows

%appdata%\OpenIG\config\routes\client-side-https.json

{
 "name": "client-side-https",
 "condition": "${matches(request.uri.path, '/home/client-side-https')}",
 "baseURI": "https://app.example.com:8444",
 "heap": [
 {
 "name": "Base64EncodedSecretStore-1",
 "type": "Base64EncodedSecretStore",
 "config": {
 "secrets": {
 "keystore.secret.id": "cGFzc3dvcmQ="
 }
 }
 },
 {
 "name": "KeyStoreSecretStore-1",
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "/path/to/secrets/reverseproxy-truststore.p12",
 "storeType": "PKCS12",
 "storePassword": "keystore.secret.id",
 "secretsProvider": "Base64EncodedSecretStore-1",
 "mappings": [
 {
 "secretId": "trust.manager.secret.id",
 "aliases": ["ig-sampleapp"]
 }
]
 }
 },
 {
 "name": "SecretsTrustManager-1",
 "type": "SecretsTrustManager",
 "config": {
 "verificationSecretId": "trust.manager.secret.id",
 "secretsProvider":"KeyStoreSecretStore-1"
 }
 },
 {
 "name": "ReverseProxyHandler-1",
 "type": "ReverseProxyHandler",
 "config": {
 "tls": {
 "type": "ClientTlsOptions",
 "config": {
 "trustManager": "SecretsTrustManager-1"
 }
 },
 "hostnameVerifier": "ALLOW_ALL"
 },

Installation in Detail
Using JWT Sessions

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 45

 "capture": "all"
 }
],
 "handler": "ReverseProxyHandler-1"
}

Notice the following features of the route:

• The route matches requests to /home/client-side-https.

• The baseURI changes the request URI to point to the HTTPS port for the sample application.

• The Base64EncodedSecretStore provides the KeyStore password.

• The SecretsTrustManager uses a KeyStoreSecretStore to manage the trust material.

• The KeyStoreSecretStore points to the sample application certificate. The password to access
the KeyStore is provided by the SystemAndEnvSecretStore.

• The ReverseProxyHandler uses the SecretsTrustManager for the connection to TLS-protected
endpoints. All hostnames are allowed.

8. Test the setup:

a. Start the sample application
$ java -jar $sampleapp_install_dir/IG-sample-application-7.0.2.jar

b. Go to http://openig.example.com:8080/home/client-side-https.

The request is proxied transparently to the sample application, on the TLS port 8444. Check
the route log for GET https://app.example.com:8444/home/client-side-https.

Using JWT Sessions
JwtSession objects store session information in JWT cookies on the user-agent. The following sections
describe how to set authenticated encryption for JwtSession, using symmetric keys.

Authenticated encryption encrypts data and then signs it with HMAC, in a single step. For more
information, see Authenticated encryption. For information about JwtSession, see "JwtSession" in the
Configuration Reference.

• "Encrypting JWT Sessions"

• "Sharing JWT Session Between Multiple Instances of IG"

http://openig.example.com:8080/home/client-side-https
https://en.wikipedia.org/wiki/Authenticated_encryption

Installation in Detail
Encrypting JWT Sessions

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 46

Encrypting JWT Sessions

This section describes how to set up a keystore with a symmetric key for authenticated encryption of
a JWT session.

Set Up JWT Encryption Keys

1. Generate a keystore to contain the encryption key, where the keystore and the key have the
password password:
$ keytool \
 -genseckey \
 -alias symmetric-key \
 -keystore /path/to/secrets/jwtsessionkeystore.pkcs12 \
 -storepass password \
 -storetype pkcs12 \
 -keyalg HmacSHA512 \
 -keysize 512

Note

Because KeyStore converts all characters in its key aliases to lower case, use only lowercase in alias
definitions of a KeyStore.

2. Add the following route to IG:

Linux

$HOME/.openig/config/routes/jwt-session-encrypt.json

Windows

%appdata%\OpenIG\config\routes\jwt-session-encrypt.json

{
 "name": "jwt-session-encrypt",
 "heap": [{
 "name": "KeyStoreSecretStore-1",
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "/path/to/secrets/jwtsessionkeystore.pkcs12",
 "storeType": "PKCS12",
 "storePassword": "keystore.secret.id",
 "secretsProvider": ["SystemAndEnvSecretStore-1"],
 "mappings": [{
 "secretId": "jwtsession.symmetric.secret.id",
 "aliases": ["symmetric-key"]
 }]
 }
 },
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 }

Installation in Detail
Sharing JWT Session Between Multiple Instances of IG

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 47

],
 "session": {
 "type": "JwtSession",
 "config": {
 "authenticatedEncryptionSecretId": "jwtsession.symmetric.secret.id",
 "encryptionMethod": "A256CBC-HS512",
 "secretsProvider": ["KeyStoreSecretStore-1"],
 "cookie": {
 "name": "IG",
 "domain": ".example.com"
 }
 }
 },
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "reason": "OK",
 "headers": {
 "Content-Type": ["text/plain"]
 },
 "entity": "Hello world!"
 }
 },
 "condition": "${request.uri.path == '/jwt-session-encrypt'}"
}

Notice the following features of the route:

• The route matches requests to /jwt-session-encrypt.

• The KeyStoreSecretStore uses the SystemAndEnvSecretStore in the heap to manage the store
password.

• The JwtSession uses the KeyStoreSecretStore in the heap to manage the session encryption
secret.

3. In the terminal where you will run the IG instance, create an environment variable for the value
of the keystore password:
$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by the SystemAndEnvSecretStore, and must be base64-encoded.

Sharing JWT Session Between Multiple Instances of IG

When a session is shared between multiple instances of IG, the instances are able to share the
session information for load balancing and failover.

This section gives an example of how to set up a deployment with three instances of IG that share a
JwtSession.

Installation in Detail
Sharing JWT Session Between Multiple Instances of IG

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 48

Reques t
pa th

/w
eb
ap
p/
br
ow
si
ng
 a

nd

/w
eb
ap
p/
br
ow
si
ng
?o
ne

In s ta n ce 1

Loa d b a la n ce r

8 0 0 1

In s ta n ce 2

Re t rie ve s e s s ion u s e rn a m e

8 0 8 2

In s ta n ce 3

Re t rie ve s e s s ion u s e rn a m e

8 0 8 3

Reques t pa th

/webapp/browsing?two

All reques ts

Reques t pa th

/log-in-and-generate-session

Set Up Shared Secrets for Multiple Instances of IG

In this example, IG is running in web container mode.

1. Generate a keystore to contain the encryption key, where the keystore and the key have the
password password:
$ keytool \
 -genseckey \
 -alias symmetric-key \
 -keystore /path/to/secrets/jwtsessionkeystore.pkcs12 \
 -storepass password \
 -storetype pkcs12 \
 -keyalg HmacSHA512 \
 -keysize 512

Installation in Detail
Sharing JWT Session Between Multiple Instances of IG

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 49

Note

Because KeyStore converts all characters in its key aliases to lower case, use only lowercase in alias
definitions of a KeyStore.

2. Set up and start the first instance of IG, which acts as the load balancer:

a. Download and install the instance to /path/to/instance1.

b. Create a configuration directory for the instance:
$ mkdir $HOME/.instance1/

c. Add the following route to IG:

Linux

$HOME/.openig/config/routes/instance1-loadbalancer.json

Windows

%appdata%\OpenIG\config\routes\instance1-loadbalancer.json

{
 "name": "instance1-loadbalancer",
 "heap": [{
 "name": "KeyStoreSecretStore-1",
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "/path/to/secrets/jwtsessionkeystore.pkcs12",
 "storeType": "PKCS12",
 "storePassword": "keystore.secret.id",
 "secretsProvider": ["SystemAndEnvSecretStore-1"],
 "mappings": [{
 "secretId": "jwtsession.symmetric.secret.id",
 "aliases": ["symmetric-key"]
 }]
 }
 },
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 }
],
 "session": {
 "type": "JwtSession",
 "config": {
 "authenticatedEncryptionSecretId": "jwtsession.symmetric.secret.id",
 "encryptionMethod": "A256CBC-HS512",
 "secretsProvider": ["KeyStoreSecretStore-1"],
 "cookie": {
 "name": "IG",
 "domain": ".example.com"
 }
 }

Installation in Detail
Sharing JWT Session Between Multiple Instances of IG

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 50

 },
 "handler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [{
 "condition": "${matches(request.uri.path, '/webapp/browsing') and
 (contains(request.uri.query, 'one') or empty(request.uri.query))}",
 "baseURI": "http://openig.example.com:8082",
 "handler": "ReverseProxyHandler"
 }, {
 "condition": "${matches(request.uri.path, '/webapp/browsing') and
 contains(request.uri.query, 'two')}",
 "baseURI": "http://openig.example.com:8083",
 "handler": "ReverseProxyHandler"
 }, {
 "condition": "${matches(request.uri.path, '/log-in-and-generate-session')}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [{
 "type": "AssignmentFilter",
 "config": {
 "onRequest": [{
 "target": "${session.authUsername}",
 "value": "Sam Carter"
 }]
 }
 }],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html"]
 },
 "entity": "<html><body>Sam Carter logged IN. (JWT session generated)</body></
html>"
 }
 }
 }
 }
 }]
 }
 },
 "capture": "all"
}

Notice the following features of the route:

• The route has no condition, so it matches all requests.

• When the request matches /log-in-and-generate-session, the DispatchHandler creates a JWT
session, whose authUsername attribute contains the name Sam Carter.

• When the request matches /webapp/browsing, the DispatchHandler dispatches the request to
instance 2 or instance 3, depending on the rest of the request path.

Installation in Detail
Sharing JWT Session Between Multiple Instances of IG

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 51

d. In the terminal where you will run the IG instance, create an environment variable for the
value of the keystore password:
$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by the SystemAndEnvSecretStore, and must be base64-encoded.

e. Start the instance on port 8001:
$ java -jar start.jar -Djetty.http.port=8001 -Dig.instance.dir=$HOME/.instance1/

3. Set up and start the second instance of IG:

a. Download and install the instance to /path/to/instance2

b. Create a configuration directory for the instance:
$ mkdir $HOME/.instance2/

c. Add the following route as $HOME/.instance2/config/routes/instance2-retrieve-session-
username.json:
{
 "name": "instance2-retrieve-session-username",
 "heap": [{
 "name": "KeyStoreSecretStore-1",
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "/path/to/secrets/jwtsessionkeystore.pkcs12",
 "storeType": "PKCS12",
 "storePassword": "keystore.secret.id",
 "secretsProvider": ["SystemAndEnvSecretStore-1"],
 "mappings": [{
 "secretId": "jwtsession.symmetric.secret.id",
 "aliases": ["symmetric-key"]
 }]
 }
 },
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 }
],
 "session": {
 "type": "JwtSession",
 "config": {
 "authenticatedEncryptionSecretId": "jwtsession.symmetric.secret.id",
 "encryptionMethod": "A256CBC-HS512",
 "secretsProvider": ["KeyStoreSecretStore-1"],
 "cookie": {
 "name": "IG",
 "domain": ".example.com"
 }
 }
 },
 "handler": {

Installation in Detail
Sharing JWT Session Between Multiple Instances of IG

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 52

 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html"]
 },
 "entity": "<html><body>${session.authUsername!= null?'Hello,
 '.concat(session.authUsername).concat(' !'):'Session.authUsername is not defined'}! (instance2)</
body></html>"
 }
 },
 "condition": "${matches(request.uri.path, '/webapp/browsing')}",
 "capture": "all"
}

Notice the following features of the route compared to the route for instance 1:

• The route matches the condition /webapp/browsing. When a request matches /webapp/browsing,
the DispatchHandler dispatches it to instance 2.

• The StaticResponseHandler displays information from the session context.

d. In the terminal where you will run the IG instance, create an environment variable for the
value of the keystore password:
$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by the SystemAndEnvSecretStore, and must be base64-encoded.

e. Start the instance on port 8082:
$ java -jar start.jar -Djetty.http.port=8082 -Dig.instance.dir=$HOME/.instance2/

4. Set up and start the third instance of IG:

a. Download and install the instance to /path/to/instance3

b. Create the configuration directory:
$ mkdir $HOME/.instance3/

c. Add the following route as $HOME/.instance3/config/routes/instance3-retrieve-session-
username.json:
{
 "name": "instance3-retrieve-session-username",
 "heap": [{
 "name": "KeyStoreSecretStore-1",
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "/path/to/secrets/jwtsessionkeystore.pkcs12",
 "storeType": "PKCS12",
 "storePassword": "keystore.secret.id",
 "secretsProvider": ["SystemAndEnvSecretStore-1"],
 "mappings": [{

Installation in Detail
Sharing JWT Session Between Multiple Instances of IG

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 53

 "secretId": "jwtsession.symmetric.secret.id",
 "aliases": ["symmetric-key"]
 }]
 }
 },
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 }
],
 "session": {
 "type": "JwtSession",
 "config": {
 "authenticatedEncryptionSecretId": "jwtsession.symmetric.secret.id",
 "encryptionMethod": "A256CBC-HS512",
 "secretsProvider": ["KeyStoreSecretStore-1"],
 "cookie": {
 "name": "IG",
 "domain": ".example.com"
 }
 }
 },
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html"]
 },
 "entity": "<html><body>${session.authUsername!= null?'Hello,
 '.concat(session.authUsername).concat(' !'):'Session.authUsername is not defined'}! (instance3)</
body></html>"
 }
 },
 "condition": "${matches(request.uri.path, '/webapp/browsing')}",
 "capture": "all"
}

Notice that the route is the same as instance2.json, apart from the text in the entity of the
StaticResponseHandler.

d. In the terminal where you will run the IG instance, create an environment variable for the
value of the keystore password:
$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by the SystemAndEnvSecretStore, and must be base64-encoded.

e. Start the instance on port 8083:
$ java -jar start.jar -Djetty.http.port=8083 -Dig.instance.dir=$HOME/.instance3/

5. Test the setup:

a. Access instance 1, to generate a session:

Installation in Detail
Setting Up AM

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 54

$ curl -v http://openig.example.com:8001/log-in-and-generate-session
GET /log-in-and-generate-session HTTP/1.1
...

HTTP/1.1 200 OK
Content-Length: 84
Set-Cookie: IG=eyJ...HyI; Path=/; Domain=.example.com; HttpOnly
...
Sam Carter logged IN. (JWT session generated)

b. Using the JWT cookie returned in the previous step, access the instance 2:
$ curl -v http://openig.example.com:8001/webapp/browsing?one --header "cookie:IG=<JWT cookie>"
GET /webapp/browsing?one HTTP/1.1
...
cookie: IG=eyJ...QHyI
...
HTTP/1.1 200 OK
...
Hello, Sam Carter !! (instance2)

Note that instance 2 can access the session info.

c. Using the JWT cookie again, access the instance 3:
$ curl -v http://openig.example.com:8001/webapp/browsing?two --header "cookie:IG=<JWT cookie>"
GET /webapp/browsing?two HTTP/1.1
...
cookie: IG=eyJ...QHyI
...
HTTP/1.1 200 OK
...
Hello, Sam Carter !! (instance3)

Note that instance 3 can access the session info.

Setting Up AM
This section contains procedures for setting up items in AM that you can use in many of the tutorials
in this guide. For more information about setting up AM, see the Access Management Docs.

Set Up a Sample User in AM

Follow these steps to add an example user to the AM configuration:

1. In the AM console, select the top-level realm, and then select  Identities.

2. Click Add Identity and add a user with the following values:

• ID/username: george

• First name: george

https://backstage.forgerock.com/docs/am/7

Installation in Detail
Setting Up AM

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 55

• Last name: costanza

• Password: C0stanza

• Email Address: george@example.com

• Employee number: 123

Set Up an IG Agent in AM

In AM 7, follow these steps to set up an agent that acts on behalf of IG in the same domain. In AM
6.5 or earlier, follow the steps in "Set Up an IG Agent in AM 6.5 and Earlier". After the agent is
authenticated, the token can be used to get the user profile, evaluate policies, and to connect to the
AM notification endpoint:

1. In the AM console, select the top-level realm, and then select Applications > Agents > Identity
Gateway.

2. Add an agent with the following values:

• Agent ID: ig_agent

• Password: password

Set Up an IG Agent in AM 6.5 and Earlier

In AM 6.5 and earlier versions, follow these steps to set up an agent that acts on behalf of IG. After
the agent is authenticated, the token can be used to get the user profile, evaluate policies, and to
connect to the AM notification endpoint:

1. In the AM console, select the top-level realm, and then select Applications > Agents > Java (or
J2EE).

2. Add an agent with the following values:

• Agent ID: ig_agent for SSO, ig_agent_cdsso for CDSSO

• Agent URL: http://openig.example.com:8080/agentapp for SSO, http://openig.ext.com:8080/agentapp for
CDSSO

• Server URL: http://openam.example.com:8088/openam

• Password: password

3. On the Global tab, deselect Agent Configuration Change Notification.

This option stops IG from being notified about agent configuration changes in AM, because they
are not required by IG.

Installation in Detail
Setting Up AM

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 56

4. (For SSO in different domains) On the SSO tab, select the following values:

• Cross Domain SSO: Deselect this option

• CDSSO Redirect URI: /home/cdsso/redirect

(For enforcing AM policy decisions in different domains) On the SSO tab, select the following
values:

• Cross Domain SSO: Deselect this option

• CDSSO Redirect URI: /home/pep-cdsso/redirect

Find the Name of Your AM Session Cookie

The procedures in this guide assume you are using the default AM session cookie, iPlanetDirectoryPro.
If not, find your session cookie name, and substitute its value in the procedures.

• In a terminal, access the AM serverinfo endpoint to find the session cookie name:
$ curl http://openam.example.com:8088/openam/json/serverinfo/*

 ...
 "cookieName": "iPlanetDirectoryPro"

Getting Login Credentials From Data Sources
Logging In With Credentials From a File

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 57

Chapter 3

Getting Login Credentials From Data Sources
The following sections describe how to look up credentials to log in to the sample app:

• "Logging In With Credentials From a File"

• "Logging In With Credentials From a Database"

Logging In With Credentials From a File
The following figure illustrates the flow of requests when IG uses credentials in a file to log a user in
to the sample app:

Log In With Credent ials From a File
IG as Gat ew ay

Browser

Browser

Userfile

Userfile

PasswordReplayFilter

PasswordReplayFilter

FileAt t ributesFilter

FileAt t ributesFilter

ReverseProxyHandler

ReverseProxyHandler

Applicat ion

Applicat ion

1 HTTP GET request to
ht tp://openig.exam ple.com :8080/profile/george

2 Confirm login page is required

3 Request

4 Look up credent ials in userfile

5 Credent ials

6 Store credent ials in the context

7 Retrieve credent ials from the context

8 Replace request with HTTP POST of login form

9 Relay request

1 0 Validate login & send response

1 1 Relay response

• IG intercepts the browser's HTTP GET request, which matches the route condition.

• The PasswordReplayFilter confirms that a login page is required, and

• The FileAttributesFilter uses the email address to look up the user credentials in a file, and stores
the credentials in the request context attributes map.

Getting Login Credentials From Data Sources
Logging In With Credentials From a File

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 58

• The PasswordReplayFilter retrieves the credentials from the attributes map, builds the login form,
and performs the HTTP POST request to the sample app.

• The sample application validates the credentials, and responds with a profile page.

• The ReverseProxyHandler passes the response to the browser.

Log in to the Sample App With Credentials From a File

Before you start, prepare IG and the sample application as described in Getting Started Guide.

1. On your system, add the following data in a comma-separated value file called /tmp/userfile (on
Windows C:\Temp\userfile):
username,password,fullname,email
george,C0stanza,George Costanza,george@example.com
kramer,N3wman12,Kramer,kramer@example.com
bjensen,H1falutin,Babs Jensen,bjensen@example.com
demo,Ch4ng31t,Demo User,demo@example.com
kvaughan,B5ibery12,Kirsten Vaughan,kvaughan@example.com
scarter,S9rain12,Sam Carter,scarter@example.com

2. Add the following route to IG, to serve .css and other static resources for the sample application:
Linux
$HOME/.openig/config/routes/static-resources.json

Windows
%appdata%\OpenIG\config\routes\static-resources.json

{
 "name" : "sampleapp_resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${matches(request.uri.path,'^/css')}",
 "handler": "ReverseProxyHandler"
}

3. Add the following route to IG:
Linux
$HOME/.openig/config/routes/02-file.json

Windows
%appdata%\OpenIG\config\routes\02-file.json

{
 "name": "02-file",
 "condition": "${matches(request.uri.path, '^/profile')}",
 "capture": "all",
 "handler": {
 "type": "Chain",
 "baseURI": "http://app.example.com:8081",
 "config": {
 "filters": [

Getting Login Credentials From Data Sources
Logging In With Credentials From a File

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 59

 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${matches(request.uri.path, '^/profile/george') and (request.method ==
 'GET')}",
 "credentials": {
 "type": "FileAttributesFilter",
 "config": {
 "file": "/tmp/userfile",
 "key": "email",
 "value": "george@example.com",
 "target": "${attributes.credentials}"
 }
 },
 "request": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "${attributes.credentials.username}"
],
 "password": [
 "${attributes.credentials.password}"
]
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route:

• The route matches requests to /profile.

• The PasswordReplayFilter specifies a loginPage page property:

• When a request is an HTTP GET, and the request URI path is /profile/george, the expression
resolves to true. The request is directed to a login page.

The FileAttributesFilter looks up the key and value in /tmp/userfile, and stores them in the
context.

The request object retrieves the username and password from the context, and replaces the
browser's original HTTP GET request with an HTTP POST login request, containing the
credentials to authenticate.

• For other requests, the expression resolves to false. The request passes to the
ReverseProxyHandler, which directs it to the profile page of the sample app.

Getting Login Credentials From Data Sources
Logging In With Credentials From a Database

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 60

Test the Setup

1. Go to http://openig.example.com:8080/profile/george.

Because the property loginPage resolves to true, the PasswordReplayFilter processes the request
to obtain the login credentials. The sample app returns the profile page for George.

2. Go to http://openig.example.com:8080/profile/bob, or to any other URI starting with http://openig.
example.com:8080/profile.

Because the property loginPage resolves to false, the PasswordReplayFilter passes the request
directly to the ReverseProxyHandler. The sample app returns the login page.

Logging In With Credentials From a Database
This section describes how to configure IG to get credentials from a database. This example is tested
with Jetty and H2 1.4.197.

The following figure illustrates the flow of requests when IG uses credentials from a database to log a
user in to the sample app:

Log in With Credentials From a Database

Log In With Credent ials From a Database
IG as Gat ew ay

Browser

Browser

Database

Database

PasswordReplayFilter

PasswordReplayFilter

SqlAt t ributesFilter

SqlAt t ributesFilter

ReverseProxyHandler

ReverseProxyHandler

Applicat ion

Applicat ion

1 HTTP GET request to
ht tp://openig.exam ple.com :8080/profile/george

2 Confirm login page is required

3 Request

4 Look up the record containing credent ials

5 Credent ials

6 Store credent ials in the context

7 Retrieve credent ials from context

8 Replace request with HTTP POST of login form

9 Relay request

1 0 Validate login & relay response

1 1 Relay response

• IG intercepts the browser's HTTP GET request.

http://openig.example.com:8080/profile/george
http://openig.example.com:8080/profile/bob

Getting Login Credentials From Data Sources
Logging In With Credentials From a Database

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 61

• The PasswordReplayFilter confirms that a login page is required, and passes the request to the
SqlAttributesFilter.

• The SqlAttributesFilter uses the email address to look up credentials in H2, and stores them in the
request context attributes map.

• The PasswordReplayFilter retrieves the credentials from the attributes map, builds the login form,
and performs the HTTP POST request to the sample app.

• The sample application validates the credentials, and responds with a profile page.

Set Up the Database

Before you start, prepare IG and the sample application as described in Getting Started Guide.

1. On your system, add the following data in a comma-separated value file called /tmp/userfile (on
Windows, C:\Temp\userfile):
username,password,fullname,email
george,C0stanza,George Costanza,george@example.com
kramer,N3wman12,Kramer,kramer@example.com
bjensen,H1falutin,Babs Jensen,bjensen@example.com
demo,Ch4ng31t,Demo User,demo@example.com
kvaughan,B5ibery12,Kirsten Vaughan,kvaughan@example.com
scarter,S9rain12,Sam Carter,scarter@example.com

2. Download and unpack the H2 database, and then start H2:
$ sh /path/to/h2/bin/h2.sh

H2 starts, listening on port 8082, and opens the H2 Console in a browser.

3. In the H2 Console, select the following options, and then select Connect to access the console:

• Saved Settings: Generic H2 (Server)

This option sets the Driver Class, org.h2.Driver, the JDBC URL, jdbc:h2:tcp://localhost/~/test, and
the User Name, sa.

• Password: password

4. In the console, add the following text, and then run it to create the user table:
DROP TABLE IF EXISTS USERS;
CREATE TABLE USERS AS SELECT * FROM CSVREAD('/tmp/userfile');

5. In the console, add the following text, and then run it to verify that the table contains the same
users as the file:
SELECT * FROM users;

6. Add the .jar file /path/to/h2/bin/h2-*.jar to the IG configuration:

http://h2database.com

Getting Login Credentials From Data Sources
Logging In With Credentials From a Database

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 62

• For IG in standalone mode, create the directory $HOME/.openig/extra, where $HOME/.openig is the
instance directory: and add .jar files to the directory.

• For IG in web container mode, add .jar files to the web container classpath. For example, in
Jetty use /path/to/jetty/webapps/ROOT/WEB-INF/lib.

Set Up IG

1. Set an environment variable for the database password, and then restart IG:
$ export DATABASE_PASSWORD='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

2. Add the following route to IG, to serve .css and other static resources for the sample application:
Linux
$HOME/.openig/config/routes/static-resources.json

Windows
%appdata%\OpenIG\config\routes\static-resources.json

{
 "name" : "sampleapp_resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${matches(request.uri.path,'^/css')}",
 "handler": "ReverseProxyHandler"
}

3. In IG, add the following route as $HOME/.openig/config/routes/03-sql.json (on Windows, $HOME/.openig/
config/routes/03-sql.json):
{
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "JdbcDataSource-1",
 "type": "JdbcDataSource",
 "config": {
 "driverClassName": "org.h2.Driver",
 "jdbcUrl": "jdbc:h2:tcp://localhost/~/test",
 "username": "sa",
 "passwordSecretId": "database.password",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "name": "sql",
 "condition": "${matches(request.uri.path, '^/profile')}",
 "handler": {
 "type": "Chain",

Getting Login Credentials From Data Sources
Logging In With Credentials From a Database

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 63

 "baseURI": "http://app.example.com:8081",
 "config": {
 "filters": [
 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${matches(request.uri.path, '^/profile/george') and (request.method ==
 'GET')}",
 "credentials": {
 "type": "SqlAttributesFilter",
 "config": {
 "dataSource": "JdbcDataSource-1",
 "preparedStatement":
 "SELECT username, password FROM users WHERE email = ?;",
 "parameters": [
 "george@example.com"
],
 "target": "${attributes.sql}"
 }
 },
 "request": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "${attributes.sql.USERNAME}"
],
 "password": [
 "${attributes.sql.PASSWORD}"
]
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route:

• The route matches requests to /profile.

• The PasswordReplayFilter specifies a loginPage page property:

• When a request is an HTTP GET, and the request URI path is /profile/george, the expression
resolves to true. The request is directed to a login page.

The SqlAttributesFilter specifies the data source to access, a prepared statement to look up
the user's record, a parameter to pass into the statement, and where to store the search
results in the request context attributes map.

Getting Login Credentials From Data Sources
Logging In With Credentials From a Database

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 64

The request object retrieves the username and password from the context, and replaces the
browser's original HTTP GET request with an HTTP POST login request, containing the
credentials to authenticate.

The request is for username, password, but H2 returns the fields as USERNAME and PASSWORD. The
configuration reflects this difference.

• For other requests, the expression resolves to false. The request passes to the
ReverseProxyHandler, which directs it to the profile page of the sample app.

Test the Setup

1. Go to http://openig.example.com:8080/profile.

Because the property loginPage resolves to false, the PasswordReplayFilter passes the request
directly to the ReverseProxyHandler. The sample app returns the login page.

2. Go to http://openig.example.com:8080/profile/george.

Because the property loginPage resolves to true, the PasswordReplayFilter processes the request
to obtain the login credentials. The sample app returns the profile page for George.

http://openig.example.com:8080/profile
http://openig.example.com:8080/profile/george

Getting Login Credentials From AM

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 65

Chapter 4

Getting Login Credentials From AM
Use IG with AM's password capture and replay to bring SSO to legacy web applications, without the
need to edit, upgrade, or recode. This feature helps you to integrate legacy web applications with
other applications using the same user identity.

For an alternative configuration using an AM policy agent instead of IG's
CapturedUserPasswordFilter, see the documentation for earlier versions of IG.

The following figure illustrates the flow of requests when an unauthenticated user accesses a
protected application. After authenticating with AM, the user is logged into the application with the
username and password from the AM login session.

Data Flow to Log in to a Protect Application With AM Credentials

Browser

Browser

IG

IG

AM

AM

Sam ple App

Sam ple App

1 Send an HTTP GET request to
ht tp://openig.exam ple.com :8080/replay

2 User not authent icated:
-redirect request to AM for authent icat ion

3 Authent icate and capture credent ials in AM session

4 Redirect browser back to the protected applicat ion

5 Resend the HTTP GET request to
ht tp://openig.exam ple.com :8080/replay

6

User authent icated:
-ret rieve encrypted AM password
-decrypt it
-place it in the context

7 Replace request with an HTTP POST of login form

8 Validate login

9 Return response page showing user is logged in

1 0 Return the response page showing user is logged in

Getting Login Credentials From AM

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 66

• IG intercepts the browser's HTTP GET request.

• Because the user is not authenticated, the SingleSignOnFilter redirects the user to AM for
authentication.

• AM authenticates the user, capturing the login credentials, and storing the encrypted password in
the user's AM session.

• AM redirects the browser back to the protected application.

• IG intercepts the browser's HTTP GET request again:

• The user is now authenticated, so IG's SingleSignOnFilter passes the request to the
CapturedUserPasswordFilter.

• The CapturedUserPasswordFilter checks that the SessionInfoContext ${contexts.amSession.
properties.sunIdentityUserPassword} is available and not null. It then decrypts the password and
stores it in the CapturedUserPasswordContext, at ${contexts.capturedPassword}.

• The PasswordReplayFilter uses the username and decrypted password in the context to replace the
request with an HTTP POST of the login form.

• The sample application validates the credentials.

• The sample application responds with the user's profile page.

• IG then passes the response from the sample application to the browser.

Get Login Credentials From AM

Before you start, prepare AM, IG, and the sample application as described in "Example Installation
for This Guide".

1. Generate an AES 256-bit key:
$ openssl rand -base64 32
loH...UFQ=

2. Set up AM:

a. (For AM 6.5.x and earlier versions) Select  Identities > demo, and set the demo user
password to Ch4ng31t.

b. (For AM 6.5.3 and later versions) Select  Services > Add a Service, and add a Validation
Service with the following Valid goto URL Resources:

• http://openig.example.com:8080/*

• http://openig.example.com:8080/*?*

c. Select Applications > Agents > Identity Gateway, add an agent with the following values:

Getting Login Credentials From AM

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 67

• Agent ID: ig_agent

• Password: password

Leave all other values as default.

For AM 6.5.x and earlier versions, set up an agent as described in "Set Up an IG Agent in AM
6.5 and Earlier".

d. Update the Authentication Post Processing Classes for password replay:

i. Select  Authentication > Settings > Post Authentication Processing.

ii. In Authentication Post Processing Classes, add com.sun.identity.authentication.spi.
JwtReplayPassword.

e. Add the AES 256-bit key to AM:

i. Select  DEPLOYMENT >  Servers, and then select the AM server name, http://openam.
example.com:8088/openam.

In earlier version of AM, select Configuration > Servers and Sites.

ii. Select  Advanced, and add the following property:

• PROPERTY NAME: com.sun.am.replaypasswd.key

• PROPERTY VALUE: The value of the AES 256-bit key from step 1.

f. Select Configure > Global Services > Platform, and add example.com as an AM cookie domain.

By default, AM sets host-based cookies. After authentication with AM, requests can be
redirected to AM instead of to the resource.

3. Set up IG:

a. Set environment variables for the value of the AES 256-bit key in step 1, and the IG agent
password, and then restart IG:
$ export AES_KEY='AES 256-bit key'
$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

b. Add the following route to IG, to serve .css and other static resources for the sample
application:
Linux
$HOME/.openig/config/routes/static-resources.json

Windows
%appdata%\OpenIG\config\routes\static-resources.json

Getting Login Credentials From AM

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 68

{
 "name" : "sampleapp_resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${matches(request.uri.path,'^/css')}",
 "handler": "ReverseProxyHandler"
}

c. Add the following route to IG:

Linux

$HOME/.openig/config/routes/04-replay.json

Windows

%appdata%\OpenIG\config\routes\04-replay.json

{
 "name": "04-replay",
 "condition": "${matches(request.uri.path, '^/replay')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://openam.example.com:8088/openam/"
 }
 },
 {
 "name": "CapturedUserPasswordFilter",
 "type": "CapturedUserPasswordFilter",
 "config": {
 "ssoToken": "${contexts.ssoToken.value}",
 "keySecretId": "aes.key",
 "keyType": "AES",
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "amService": "AmService-1"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }

Getting Login Credentials From AM

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 69

 },
 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${true}",
 "credentials": "CapturedUserPasswordFilter",
 "request": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "${contexts.ssoToken.info.uid}"
],
 "password": [
 "${contexts.capturedPassword.value}"
]
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route:

• The route matches requests to /replay.

• The agent password for AmService is provided by a SystemAndEnvSecretStore in the heap.

• If the request does not have a valid AM session cookie, the SingleSignOnFilter redirects the
request to AM for authentication.

After authentication, the SingleSignOnFilter passes the request to the next filter, storing
the cookie value in an SsoTokenContext.

• The PasswordReplayFilter uses the CapturedUserPasswordFilter declared in the heap to
retrieve the AM password from AM session properties. The CapturedUserPasswordFilter
uses the AES 256-bit key to decrypt the password, and then makes it available in a
CapturedUserPasswordContext.

The value of the AES 256-bit key is provided by the SystemAndEnvSecretStore.

The PasswordReplayFilter retrieves the username and password from the context. It
replaces the browser's original HTTP GET request with an HTTP POST login request
containing the credentials to authenticate to the sample application.

4. Test the setup:

a. If you are logged in to AM, log out.

Getting Login Credentials From AM

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 70

b. Go to http://openig.example.com:8080/replay. The SingleSignOnFilter redirects the request to
AM for authentication.

c. Log in to AM as user demo, password Ch4ng31t. The request is redirected to the sample
application.

http://openig.example.com:8080/replay

Single Sign-On and Cross-Domain Single Sign-On
Authenticating With SSO

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 71

Chapter 5

Single Sign-On and Cross-Domain Single Sign-
On
The following sections describe how to set up single sign-on for requests in the same domain and in a
different domain:

• "Authenticating With SSO"

• "Authenticating With CDSSO"

• "Using WebSocket Notifications to Evict the Session Info Cache"

Authenticating With SSO
In SSO using the SingleSignOnFilter, IG processes a request using authentication provided by AM. IG
and the authentication provider must run on the same domain.

The following sequence diagram shows the flow of information during SSO between IG and AM as the
authentication provider.

Single Sign-On and Cross-Domain Single Sign-On
Authenticating With SSO

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 72

Flow of Information for SSO

Browser

Browser

IG
openig.exam ple.com

IG
openig.exam ple.com

AM
am .exam ple.com

AM
am .exam ple.com

Sam ple App
app.exam ple.com

Sam ple App
app.exam ple.com

1 Request to access sam ple app

1 . Unaut hent icat ed brow ser redirect ed t o AM for aut hent icat ion

2 Redirect browser to AM

3 Authent icat ion

4 Create SSO token

2 . Aut hent icat ed brow ser redirect t o original URI

5 Redirect to original URI, with cookie containing SSO token

3 . Request forw arded t o applicat ion

6 Follow redirect , with cookie

7 Request SessionInfo and add to request
Store SSO token in SsoTokenContext

8 Forward request

9 Return response

1 0 Return response

• The browser sends an unauthenticated request to access the sample app.

• IG intercepts the request, and redirects the browser to AM for authentication.

• AM authenticates the user, creates an SSO token.

• AM redirects the request back to the original URI with the token in a cookie, and the browser
follows the redirect to IG.

• IG validates the token it gets from the cookie. It then adds the AM session info to the request, and
stores the SSO token in the context for use by downstream filters and handlers.

Single Sign-On and Cross-Domain Single Sign-On
Authenticating With SSO

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 73

• IG forwards the request to the sample app, and the sample app returns the requested resource to
the browser.

Authenticate With SSO

This procedure gives an example of how to set up SSO, where AM on openam.example.com authenticates
users that are processed by IG on openig.example.com.

Before you start, prepare AM, IG, and the sample application as described in "Example Installation
for This Guide".

1. Set up AM:

a. (For AM 6.5.x and earlier versions) Select  Identities > demo, and set the demo user
password to Ch4ng31t.

b. (For AM 6.5.3 and later versions) Select  Services > Add a Service, and add a Validation
Service with the following Valid goto URL Resources:

• http://openig.example.com:8080/*

• http://openig.example.com:8080/*?*

c. Select Applications > Agents > Identity Gateway, add an agent with the following values:

• Agent ID: ig_agent

• Password: password

Leave all other values as default.

For AM 6.5.x and earlier versions, set up an agent as described in "Set Up an IG Agent in AM
6.5 and Earlier".

d. Select Configure > Global Services > Platform, and add example.com as an AM cookie domain.

By default, AM sets host-based cookies. After authentication with AM, requests can be
redirected to AM instead of to the resource.

2. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:
$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

b. Add the following route to IG, to serve .css and other static resources for the sample
application:
Linux

Single Sign-On and Cross-Domain Single Sign-On
Authenticating With SSO

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 74

$HOME/.openig/config/routes/static-resources.json

Windows

%appdata%\OpenIG\config\routes\static-resources.json

{
 "name" : "sampleapp_resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${matches(request.uri.path,'^/css')}",
 "handler": "ReverseProxyHandler"
}

c. Add the following route to IG:

Linux

$HOME/.openig/config/routes/sso.json

Windows

%appdata%\OpenIG\config\routes\sso.json

{
 "name": "sso",
 "baseURI": "http://app.example.com:8081",
 "condition": "${matches(request.uri.path, '^/home/sso$')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://openam.example.com:8088/openam/",
 "version": "7"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "SingleSignOnFilter-1",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 }
],

Single Sign-On and Cross-Domain Single Sign-On
Authenticating With SSO

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 75

 "handler": "ReverseProxyHandler"
 }
 }
}

For information about how to set up the IG route in Studio, see "Policy Enforcement in
Structured Editor" in the Studio User Guide or "Protecting a Web App With Freeform
Designer" in the Studio User Guide.

3. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

b. Go to http://openig.example.com:8080/home/sso.

The SingleSignOnFilter redirects the request to AM for authentication.

c. Log in to AM as user demo, password Ch4ng31t.

The SingleSignOnFilter passes the request to sample app, which returns the profile page.

Authenticate With SSO Through an AM Authentication Tree

This procedure gives an example of how to authenticate by using SSO and the example authentication
tree provided in AM, instead of the default authentication service.

1. Set up the example in "Authenticate With SSO".

2. Add the following route to IG:

Linux

$HOME/.openig/config/routes/sso-authservice.json

Windows

%appdata%\OpenIG\config\routes\sso-authservice.json

{
 "name": "sso-authservice",
 "baseURI": "http://app.example.com:8081",
 "condition": "${matches(request.uri.path, '^/home/sso-authservice')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"

http://openig.example.com:8080/home/sso

Single Sign-On and Cross-Domain Single Sign-On
Authenticating With CDSSO

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 76

 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://openam.example.com:8088/openam/",
 "version": "7"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "SingleSignOnFilter-1",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1",
 "authenticationService": "Example"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the features of the route compared to sso.json:

• The route matches requests to /home/sso-authservice.

• The authenticationService property of SingleSignOnFilter refers to Example, the name of the
example authentication tree in AM. This authentication tree is used for authentication instead
of the AM XUI.

3. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

b. Go to http://openig.example.com:8080/home/sso-authservice, and note that the login page is
different to that returned in "Authenticate With SSO".

Authenticating With CDSSO
The SSO mechanism described in "Single Sign-On and Cross-Domain Single Sign-On" can be used
when IG and AM are running in the same domain. When IG and AM are running in different domains,
AM cookies are not visible to IG because of the same-origin policy.

CDSSO using the CrossDomainSingleSignOnFilter, provides a mechanism to push tokens issued by
AM to IG running in a different domain.

The following sequence diagram shows the flow of information between IG, AM, and the sample app
during CDSSO. In this example, AM is running on am.example.com, and IG is running on ig.ext.com.

http://openig.example.com:8080/home/sso-authservice

Single Sign-On and Cross-Domain Single Sign-On
Authenticating With CDSSO

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 77

Flow of Information for CDSSO

Browser

Browser

IG
ig.ext .com

IG
ig.ext .com

AM
am .exam ple.com

AM
am .exam ple.com

Sam ple App
app.exam ple.com

Sam ple App
app.exam ple.com

1 Request to access sam ple app

1 . Unaut hent icat ed brow ser redirect ed t o AM for aut hent icat ion

2 Create a nonce and store in session
Redirect browser to AM

3 Authent icat ion

4 Create CDSSO token

2 . Aut hent icat ed brow ser redirect t o original URI

5 Autosubm it form to redirectEndpoint , and include CDSSO token as form param eter

6 Subm it param eters to redirectEndpoint

7
Check nonce to confirm that
authent icat ion was init iated by IG
Const ruct cookie containing CDSSO token

8 Redirect to original URI, with cookie

3 . Request forw arded t o applicat ion

9 Follow redirect , with cookie

1 0
Request SessionInfo and add to request
Store SSO token in SsoTokenContext
Store CDSSO token in CdSsoContext

1 1 Forward request

1 2 Return response

1 3 Return response

• The browser sends an unauthenticated request to access the sample app.

• IG intercepts the request, and redirects the browser to AM for authentication.

• AM authenticates the user and creates a CDSSO token.

Single Sign-On and Cross-Domain Single Sign-On
Authenticating With CDSSO

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 78

• AM responds to a successful authentication with an HTML autosubmit form containing the issued
token.

• The browser loads the HTML and autosubmit form parameters to the IG callback URL for the
redirect endpoint.

• IG checks the nonce found inside the CDSSO token to confirm that the callback comes from an
authentication initiated by IG. IG then constructs a cookie, and fulfills it with a cookie name, path,
and domain, using the CrossDomainSingleSignOnFilter property authCookie. The domain must match
that set in the AM J2EE agent.

• IG redirects the request back to the original URI, with the cookie, and the browser follows the
redirect back to IG.

• IG validates the token it gets from the cookie. It adds the AM session info to the request, and stores
the SSO token and CDSSO token in the contexts for use by downstream filters and handlers.

• IG forwards the request to the sample app, and the sample app returns the requested resource to
the browser.

Set Up CDSSO

This procedure gives an example of how to set up CDSSO, where AM on openam.example.com
authenticates users that are processed by IG on openig.ext.com.

Before you start, prepare AM, IG, and the sample application as described in "Example Installation
for This Guide".

1. Set up AM:

a. (For AM 6.5.x and earlier versions) Select  Identities > demo, and set the demo user
password to Ch4ng31t.

b. Select Applications > Agents > Identity Gateway, add an agent with the following values:

• Agent ID: ig_agent_cdsso

• Password: password

• Redirect URL for CDSSO: http://openig.ext.com:8080/home/cdsso/redirect

The agent credentials are the only properties that are used by IG.

For AM 6.5.x and earlier versions, set up an agent as described in "Set Up an IG Agent in AM
6.5 and Earlier".

c. (For AM 6.5.3 and later versions) Select  Services > Add a Service, and add a Validation
Service with the following Valid goto URL Resources:

• http://openig.ext.com:8080/*

Single Sign-On and Cross-Domain Single Sign-On
Authenticating With CDSSO

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 79

• http://openig.ext.com:8080/*?*

d. Select Configure > Global Services > Platform, and add example.com as an AM cookie domain.

By default, AM sets host-based cookies. After authentication with AM, requests can be
redirected to AM instead of to the resource.

2. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:
$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

b. Add the following route to IG, to serve .css and other static resources for the sample
application:

Linux

$HOME/.openig/config/routes/static-resources.json

Windows

%appdata%\OpenIG\config\routes\static-resources.json

{
 "name" : "sampleapp_resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${matches(request.uri.path,'^/css')}",
 "handler": "ReverseProxyHandler"
}

c. Add the following route to IG:

Linux

$HOME/.openig/config/routes/cdsso.json

Windows

%appdata%\OpenIG\config\routes\cdsso.json

{
 "name": "cdsso",
 "baseURI": "http://app.example.com:8081",
 "condition": "${matches(request.uri.path, '^/home/cdsso')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {

Single Sign-On and Cross-Domain Single Sign-On
Authenticating With CDSSO

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 80

 "url": "http://openam.example.com:8088/openam",
 "realm": "/",
 "version": "7",
 "agent": {
 "username": "ig_agent_cdsso",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "sessionCache": {
 "enabled": false
 }
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "CrossDomainSingleSignOnFilter-1",
 "type": "CrossDomainSingleSignOnFilter",
 "config": {
 "redirectEndpoint": "/home/cdsso/redirect",
 "authCookie": {
 "path": "/home",
 "name": "ig-token-cookie"
 },
 "amService": "AmService-1",
 "verificationSecretId": "verify",
 "secretsProvider": {
 "type": "JwkSetSecretStore",
 "config": {
 "jwkUrl": "http://openam.example.com:8088/openam/oauth2/connect/jwk_uri"
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route:

• The route matches requests to /home/cdsso.

• The agent password for AmService is provided by a SystemAndEnvSecretStore in the heap.

• The property verificationSecretId is configured with a value. If this property is not
configured, the filter does not verify the signature of signed access_tokens.

• The JwkSetSecretStore specifies the URL to a JWK set on AM, that contains signing keys
identified by a kid.

Single Sign-On and Cross-Domain Single Sign-On
Using WebSocket Notifications to Evict the Session Info Cache

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 81

The JwkSetSecretStore verifies the signature of the token when the value of a kid in the
JWK set matches a kid in the the signed access_token.

If the JWT doesn't have a kid, or if the JWK set doesn't contain a key with the same value,
the JwkSetSecretStore looks for valid secrets with the same purpose as the value of
verificationSecretId.

3. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

b. Go to http://openig.ext.com:8080/home/cdsso.

The CrossDomainSingleSignOnFilter redirects the request to AM for authentication.

c. Log in to AM as user demo, password Ch4ng31t.

When you have authenticated, AM calls /home/cdsso/redirect, and includes the CDSSO token.

The CrossDomainSingleSignOnFilter then passes the request to sample app, which returns
the profile page.

Using WebSocket Notifications to Evict the Session Info Cache
When WebSocket notifications are enabled, IG receives notifications whenever a user logs out of AM,
or when an AM session is modified, closed, or times out.

The following procedure gives an example of how to change the configuration in "Authenticating
With SSO" and "Authenticating With CDSSO" to evict entries related to the event from the cache. For
information about WebSocket notifications, see "WebSocket Notifications" in the Maintenance Guide.

Evict Entries From the Session Info Cache

Before you start, set up and test the example in "Authenticating With SSO" or "Authenticating With
CDSSO".

• In the AmService heap object of your route, enable sessionCache:
"sessionCache": {
 "enabled": true
}

http://openig.ext.com:8080/home/cdsso

Enforcing Policy Decisions From AM
About Policy Enforcement

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 82

Chapter 6

Enforcing Policy Decisions From AM
The following sections describe how to set up single sign on for requests in the same domain and in a
different domain:

• "About Policy Enforcement"

• "Enforcing AM Policy Decisions In the Same Domain"

• "Enforcing AM Policy Decisions In Different Domains"

• "Using WebSocket Notifications to Evict the Policy Cache"

About Policy Enforcement
IG as a policy enforcement point (PEP) intercepts requests for a resource, and provides information
about the request to AM.

AM as a policy decision point (PDP) evaluates requests based on their context and the configured
policies. AM then returns decisions that indicate what actions are allowed or denied, as well as any
advices, subject attributes, or static attributes for the specified resources.

After a policy decision, IG continues to process requests as follows:

• If the request is allowed, processing continues.

• If the request is denied with advices, IG checks whether it can respond to the advices. If IG can
respond, it sends a redirect and information about how to meet the conditions in the advices.

By default, the request is redirected to AM. If the SingleSignOnFilter property loginEndpoint is
configured, the request is redirected to that endpoint.

• If the request is denied without advice, or if IG cannot respond to the advice, IG forwards the
request to a failureHandler declared in the PolicyEnforcementFilter. If there is no failureHandler, IG
returns a 403 Forbidden.

• If an error occurs during the process, IG returns 500 Internal Server Error.

For information about the PolicyEnforcementFilter, see "PolicyEnforcementFilter" in the
Configuration Reference. For information about AM authentication and session upgrade, see AM's
Authentication and Single Sign-On Guide.

https://backstage.forgerock.com/docs/am/7/authentication-guide/

Enforcing Policy Decisions From AM
Enforcing AM Policy Decisions In the Same Domain

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 83

Enforcing AM Policy Decisions In the Same Domain
The following procedure gives an example of how to create a policy in AM and configure an agent
that can request policy decisions, when IG and AM are in the same domain.

Enforce AM Policy Decisions in the Same Domain

Before you start, prepare AM, IG, and the sample application as described in "Example Installation
for This Guide".

1. Set up an AM agent with permission to request policy decisions:

a. (For AM 6.5.x and earlier versions) Select  Identities > demo, and set the demo user
password to Ch4ng31t.

b. (For AM 6.5.3 and later versions) Select  Services > Add a Service, and add a Validation
Service with the following Valid goto URL Resources:

• http://openig.example.com:8080/*

• http://openig.example.com:8080/*?*

c. Select Applications > Agents > Identity Gateway, add an agent with the following values:

• Agent ID: ig_agent

• Password: password

Leave all other values as default.

For AM 6.5.x and earlier versions, set up an agent as described in "Set Up an IG Agent in AM
6.5 and Earlier".

d. Set up a policy:

i. Select  Authorization > Policy Sets > New Policy Set, and add a policy set with the
following values:

• Id: PEP-SSO

• Resource Types: URL

ii. In the new policy set, add a policy with the following values:

• Name: IG Policy SSO

• Resource Type: URL

• Resource pattern: *://*:*/*

Enforcing Policy Decisions From AM
Enforcing AM Policy Decisions In the Same Domain

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 84

• Resource value: http://app.example.com:8081/home/pep-sso*

This policy protects the home page of the sample application.

iii. On the Actions tab, add an action to allow HTTP GET.

iv. On the Subjects tab, remove any default subject conditions, add a subject condition for all
Authenticated Users.

e. Select Configure > Global Services > Platform, and add example.com as an AM cookie domain.

By default, AM sets host-based cookies. After authentication with AM, requests can be
redirected to AM instead of to the resource.

2. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:
$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

b. Add the following route to IG, to serve .css and other static resources for the sample
application:

Linux

$HOME/.openig/config/routes/static-resources.json

Windows

%appdata%\OpenIG\config\routes\static-resources.json

{
 "name" : "sampleapp_resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${matches(request.uri.path,'^/css')}",
 "handler": "ReverseProxyHandler"
}

c. Add the following route to IG:

Linux

$HOME/.openig/config/routes/04-pep.json

Windows

%appdata%\OpenIG\config\routes\04-pep.json

{
 "name": "pep-sso",
 "baseURI": "http://app.example.com:8081",
 "condition": "${matches(request.uri.path, '^/home/pep-sso')}",
 "heap": [

Enforcing Policy Decisions From AM
Enforcing AM Policy Decisions In the Same Domain

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 85

 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://openam.example.com:8088/openam/",
 "version": "7"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "SingleSignOnFilter-1",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 },
 {
 "name": "PolicyEnforcementFilter-1",
 "type": "PolicyEnforcementFilter",
 "config": {
 "pepRealm": "/",
 "application": "PEP-SSO",
 "ssoTokenSubject": "${contexts.ssoToken.value}",
 "amService": "AmService-1"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

For information about how to set up the IG route in Studio, see "Policy Enforcement in
Structured Editor" in the Studio User Guide or "Protecting a Web App With Freeform
Designer" in the Studio User Guide.

For an example route that uses claimsSubject instead of ssoTokenSubject to identify the subject,
see "Example Policy Enforcement Using claimsSubject" in the Configuration Reference.

3. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

Enforcing Policy Decisions From AM
Enforcing AM Policy Decisions In Different Domains

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 86

b. Go to http://openig.example.com:8080/home/pep-sso.

Because you have not previously authenticated to AM, the request does not contain a cookie
with an SSO token. The SingleSignOnFilter redirects you to AM for authentication.

c. Log in to AM as user demo, password Ch4ng31t.

When you have authenticated, AM redirects you back to the request URL, and IG requests a
policy decision using the AM session cookie.

AM returns a policy decision that grants access to the sample application.

Enforcing AM Policy Decisions In Different Domains
The following procedure gives an example of how to create a policy in AM and configure an agent
that can request policy decisions, when IG and AM are in different domains.

Enforce AM Policy Decisions in a Different Domain

Before you start, prepare AM, IG, and the sample application as described in "Example Installation
for This Guide".

1. Set up AM:

a. (For AM 6.5.x and earlier versions) Select  Identities > demo, and set the demo user
password to Ch4ng31t.

b. (For AM 6.5.3 and later versions) Select  Services > Add a Service, and add a Validation
Service with the following Valid goto URL Resources:

• http://openig.ext.com:8080/*

• http://openig.ext.com:8080/*?*

c. Select Applications > Agents > Identity Gateway, add an agent with the following values:

• Agent ID: ig_agent_cdsso

• Password: password

• Redirect URL for CDSSO: http://openig.ext.com:8080/home/pep-cdsso/redirect

The agent credentials are the only properties that are used by IG.

For AM 6.5.x and earlier versions, set up an agent as described in "Set Up an IG Agent in AM
6.5 and Earlier".

http://openig.example.com:8080/home/pep-sso

Enforcing Policy Decisions From AM
Enforcing AM Policy Decisions In Different Domains

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 87

d. Set up a policy:

i. Select  Authorization > Policy Sets > New Policy Set, and add a policy set with the
following values:

• Id: PEP-CDSSO

• Resource Types: URL

ii. In the new policy set, add a policy with the following values:

• Name: IG Policy CDSSO

• Resource Type: URL

• Resource pattern: *://*:*/*

• Resource value: http://app.example.com:8081/home/pep-cdsso*

This policy protects the home page of the sample application.

iii. On the Actions tab, add an action to allow HTTP GET.

iv. On the Subjects tab, remove any default subject conditions, add a subject condition for all
Authenticated Users.

e. Select Configure > Global Services > Platform, and add example.com as an AM cookie domain.

By default, AM sets host-based cookies. After authentication with AM, requests can be
redirected to AM instead of to the resource.

2. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:
$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

b. Add the following route to IG, to serve .css and other static resources for the sample
application:

Linux

$HOME/.openig/config/routes/static-resources.json

Windows

%appdata%\OpenIG\config\routes\static-resources.json

Enforcing Policy Decisions From AM
Enforcing AM Policy Decisions In Different Domains

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 88

{
 "name" : "sampleapp_resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${matches(request.uri.path,'^/css')}",
 "handler": "ReverseProxyHandler"
}

c. Add the following route to IG:

Linux

$HOME/.openig/config/routes/04-pep-cdsso.json

Windows

%appdata%\OpenIG\config\routes\04-pep-cdsso.json

{
 "name": "pep-cdsso",
 "baseURI": "http://app.example.com:8081",
 "condition": "${matches(request.uri.path, '^/home/pep-cdsso')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent_cdsso",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://openam.example.com:8088/openam/",
 "version": "7"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "CrossDomainSingleSignOnFilter-1",
 "type": "CrossDomainSingleSignOnFilter",
 "config": {
 "redirectEndpoint": "/home/pep-cdsso/redirect",
 "authCookie": {
 "path": "/home",
 "name": "ig-token-cookie"
 },
 "amService": "AmService-1"
 }
 },
 {
 "name": "PolicyEnforcementFilter-1",

Enforcing Policy Decisions From AM
Using WebSocket Notifications to Evict the Policy Cache

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 89

 "type": "PolicyEnforcementFilter",
 "config": {
 "pepRealm": "/",
 "application": "PEP-CDSSO",
 "ssoTokenSubject": "${contexts.cdsso.token}",
 "amService": "AmService-1"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

For information about how to set up the IG route in Studio, see "Policy Enforcement for
CDSSO in Structured Editor" in the Studio User Guide.

3. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

b. Go to http://openig.ext.com:8080/home/pep-cdsso.

IG redirects you to AM for authentication.

c. Log in to AM as user demo, password Ch4ng31t.

When you have authenticated, AM redirects you back to the request URL, and IG requests a
policy decision. AM returns a policy decision that grants access to the sample application.

Using WebSocket Notifications to Evict the Policy Cache
When WebSocket notifications are enabled, IG receives notifications whenever AM creates, deletes,
or changes a policy.

The following procedure gives an example of how to change the configuration in "Enforcing AM
Policy Decisions In the Same Domain" and "Enforcing AM Policy Decisions In Different Domains"
to evict outdated entries from the policy cache. For information about WebSocket notifications, see
"WebSocket Notifications" in the Maintenance Guide.

Evict Entries From the Policy Cache

1. Set up and test the example in "Enforcing AM Policy Decisions In the Same Domain" or
"Enforcing AM Policy Decisions In Different Domains".

2. In the PolicyEnforcementFilter, enable cache:
"cache": {
 "enabled": true
}

http://openig.ext.com:8080/home/pep-cdsso

Hardening Authorization With Advice From AM
Stepping Up the Authentication Level for an AM Session

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 90

Chapter 7

Hardening Authorization With Advice From AM
To protect sensitive resources, AM policies can be configured with additional conditions to harden
the authorization. When AM communicates these policy decisions to IG, the decision includes advices
to indicate what extra conditions the user must meet.

Conditions can include requirements to access the resource over a secure channel, access during
working hours, or to authenticate again at a higher authentication level. For more information, see
AM's Authorization Guide.

The following sections build on the policies in "Enforcing Policy Decisions From AM" to step up the
authentication level:

• "Stepping Up the Authentication Level for an AM Session"

• "Increasing Authorization for a Single Transaction"

Stepping Up the Authentication Level for an AM Session
When you step up the authentication level for an AM session, the authorization is verified and then
captured as part of the AM session, and the user-agent is authorized to that authentication level for
the duration of the AM session.

This section uses the policies you created in "Enforcing AM Policy Decisions In the Same Domain"
and "Enforcing AM Policy Decisions In Different Domains", adding an authorization policy with a
Authentication by Service environment condition. Except for the paths where noted, procedures for
single domain and cross-domain are the same.

After the user-agent redirects the user to AM, if the user is not already authenticated they are
presented with a login page. If the user is already authenticated, or after they authenticate, they
are presented with a second page asking for a verification code to meet the AuthenticateToService
environment condition.

Set Up an AM Authentication Chain

Before you start, set up one of the following examples:

• For SSO, "Enforcing AM Policy Decisions In the Same Domain".

• For CDSSO, "Enforcing AM Policy Decisions In Different Domains".

1. In the AM console, add an environment condition to the policy:

https://backstage.forgerock.com/docs/am/7/authorization-guide/

Hardening Authorization With Advice From AM
Stepping Up the Authentication Level for an AM Session

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 91

a. Select a policy set:

• For SSO, select  Authorization > Policy Sets > PEP-SSO.

• For CDSSO, select  Authorization > Policy Sets > PEP-CDSSO.

b. In the policy, select Environments, and add the following environment condition:

• All of

• Type: Authentication by Service

• Authenticate to Service: VerificationCodeLevel1

2. Set up client-side and server-side scripts:

a. Select  Scripts > Scripted Module - Client Side, and replace the default script with the
following script:
For AM 6 and later versions
/*
 * Copyright 2018 ForgeRock AS. All Rights Reserved
 *
 * Use of this code requires a commercial software license with ForgeRock AS.
 * or with one of its affiliates. All use shall be exclusively subject
 * to such license between the licensee and ForgeRock AS.
 */
autoSubmitDelay = 60000;

function callback() {
 var parent = document.createElement("div");
 parent.className = "form-group";

 var label = document.createElement("label");
 label.className = "sr-only separator";
 label.setAttribute("for", "answer");
 label.innerText = "Verification Code";
 parent.appendChild(label);

 var input = document.createElement("input");
 input.className = "form-control input-lg";
 input.type = "text";
 input.placeholder = "Enter your verification code";
 input.name = "answer";
 input.id = "answer";
 input.value = "";
 input.oninput = function(event) {
 var element = document.getElementById("clientScriptOutputData");
 if (!element.value || element.value == "clientScriptOutputData") element.value = "{}";
 var json = JSON.parse(element.value);
 json["answer"] = event.target.value;
 element.value = JSON.stringify(json);
 };
 parent.appendChild(input);

Hardening Authorization With Advice From AM
Stepping Up the Authentication Level for an AM Session

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 92

 var fieldset = document.forms[0].getElementsByTagName("fieldset")[0];
 fieldset.prepend(parent);
}

if (document.readyState !== 'loading') {
 callback();
} else {
 document.addEventListener("DOMContentLoaded", callback);
}

For AM 5 and earlier versions

spinner.hideSpinner();
autoSubmitDelay = 60000;
$(document).ready(function() {
 fs = $(document.forms[0]).find("fieldset");
 strUI = '<div class="form-group"> \
 <label class="sr-only separator" for="answer"> \
 Verification Code</label><input onchange="s=$(\'#clientScriptOutputData\')[0]; \
 if (!s.value) s.value=\'{}\'; d=JSON.parse(s.value); d[\'answer\']=value; \
 s.value=JSON.stringify(d);" id="answer" class="form-control input-lg" type="text" \
 placeholder="Enter your verification code" value="" name="answer"></input></div>';
 $(fs).prepend(strUI);
});

Leave all other values as default.

This client-side script adds a field to the AM form, in which the user is required to enter a
verification code. The script formats the entered code as a JSON object, as required by the
server-side script.

b. Select  Scripts > Scripted Module - Server Side, and replace the default script with the
following script:
username = 'demo'
logger.error('username: ' + username)

// Test whether the user 'demo' enters the correct validation code
data = JSON.parse(clientScriptOutputData);
answer = data.answer;

if (answer !== '123456') {
 logger.error('Authentication Failed !!')
 authState = FAILED;
} else {
 logger.error('Authenticated !!')
 authState = SUCCESS;
}

Leave all other values as default.

This server-side script tests that the user demo has entered 123456 as the verification code.

3. Add an authentication module:

Hardening Authorization With Advice From AM
Stepping Up the Authentication Level for an AM Session

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 93

a. In the top level realm, select  Authentication > Modules, and add a module with the
following settings:

• Name: VerificationCodeLevel1

• Type: Scripted Module

b. In the authentication module, enable the option for client-side script, and select the following
options:

• Client-side Script: Scripted Module - Client Side

• Server-side Script: Scripted Module - Server Side

• Authentication Level: 1

4. Add the authentication module to an authentication chain:

a. Select  Authentication > Chains, and add a chain called VerificationCodeLevel1.

b. Add a module with the following settings:

• Select Module: VerificationCodeLevel1

• Select Criteria: Required

Test the Setup

1. Log out of AM.

2. Access the route:

• For SSO, go to http://openig.example.com:8080/home/pep-sso.

• For CDSSO, go to http://openig.ext.com:8080/home/pep-cdsso.

If you have not previously authenticated to AM, the SingleSignOnFilter redirects the request to
AM for authentication.

3. Log in to AM as user demo, password Ch4ng31t.

AM creates a session with the default authentication level 0, and IG requests a policy decision.

The updated policy requires authentication level 1, which is higher than the AM session's
current authentication level. AM issues a redirect with a AuthenticateToServiceConditionAdvice to
authenticate at level 1.

4. In the session upgrade window, enter the verification code 123456.

http://openig.example.com:8080/home/pep-sso
http://openig.ext.com:8080/home/pep-cdsso

Hardening Authorization With Advice From AM
Increasing Authorization for a Single Transaction

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 94

AM upgrades the authentication level for the session to 1, and grants access to the sample
application. If you try to access the sample application again in the same session, you don't need
to provide the verification code.

Increasing Authorization for a Single Transaction
Transactional authorization improves security by requiring a user to perform additional actions when
trying to access a resource protected by an AM policy. For example, they must reauthenticate to an
authentication module or respond to a push notification on their mobile device.

Performing the additional action successfully grants access to the protected resource, but only once.
Additional attempts to access the resource require the user to perform the configured actions again.

This section builds on the example in "Stepping Up the Authentication Level for an AM Session",
adding a simple authorization policy with a Transaction environment condition. Each time the user-
agent tries to access the protected resource, the user must reauthenticate to an authentication
module by providing a verification code.

This feature is supported with AM 5.5 and later versions.

Use Transactional Authorization

Before you start, configure AM as described in "Set Up an AM Authentication Chain". The IG
configuration is not changed.

1. In the AM console, add a new Environment condition:

a. Select the policy set:

• For SSO, select Authorization > Policy Sets > PEP-SSO.

• For CDSSO, select Authorization > Policy Sets > PEP-CDSSO.

b. In the IG policy, select Environments and add another environment condition:

• All of

• Type: Transaction

• Authentication strategy: Authenticate To Module

• Strategy specifier: TxVerificationCodeLevel5

2. Set up client-side and server-side scripts:

a. Select  Scripts > New Script, and add the following client-side script:

• Name: Tx Scripted Module - Client Side

Hardening Authorization With Advice From AM
Increasing Authorization for a Single Transaction

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 95

• Script Type: Client-side Authentication

/*
 * Copyright 2018 ForgeRock AS. All Rights Reserved
 *
 * Use of this code requires a commercial software license with ForgeRock AS.
 * or with one of its affiliates. All use shall be exclusively subject
 * to such license between the licensee and ForgeRock AS.
 */
autoSubmitDelay = 60000;

function callback() {
 var parent = document.createElement("div");
 parent.className = "form-group";

 var label = document.createElement("label");
 label.className = "sr-only separator";
 label.setAttribute("for", "answer");
 label.innerText = "Verification Code";
 parent.appendChild(label);

 var input = document.createElement("input");
 input.className = "form-control input-lg";
 input.type = "text";
 input.placeholder = "Enter your TX code";
 input.name = "answer";
 input.id = "answer";
 input.value = "";
 input.oninput = function(event) {
 var element = document.getElementById("clientScriptOutputData");
 if (!element.value || element.value == "clientScriptOutputData") element.value = "{}";
 var json = JSON.parse(element.value);
 json["answer"] = event.target.value;
 element.value = JSON.stringify(json);
 };
 parent.appendChild(input);

 var fieldset = document.forms[0].getElementsByTagName("fieldset")[0];
 fieldset.prepend(parent);
}

if (document.readyState !== 'loading') {
 callback();
} else {
 document.addEventListener("DOMContentLoaded", callback);
}

This client-side script adds a field to the AM form, in which the user is required to enter a TX
code. The script formats the entered code as a JSON object, as required by the server-side
script.

b. Select  Scripts > New Script, and add the following server side script:

• Name: Tx Scripted Module - Server Side

Hardening Authorization With Advice From AM
Increasing Authorization for a Single Transaction

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 96

• Script Type: Server-side Authentication

username = 'demo'
logger.error('username: ' + username)

// Test whether the user 'demo' enters the correct validation code
data = JSON.parse(clientScriptOutputData);
answer = data.answer;

if (answer !== '789') {
 logger.error('Authentication Failed !!')
 authState = FAILED;
} else {
 logger.error('Authenticated !!')
 authState = SUCCESS;
}

This server-side script tests that the user demo has entered 789 as the verification code.

3. Add an authentication module:

a. Select  Authentication > Modules, and add a module with the following settings:

• Name: TxVerificationCodeLevel5

• Type: Scripted Module

b. In the authentication module, enable the option for client-side script, and select the following
options:

• Client-side Script: Tx Scripted Module - Client Side

• Server-side Script: Tx Scripted Module - Server Side

• Authentication Level: 5

Test the Setup

1. Log out of AM.

2. Go to your route:

• For SSO, go to http://openig.example.com:8080/home/pep-sso.

• For CDSSO, go to http://openig.ext.com:8080/home/pep-cdsso.

If you have not previously authenticated to AM, the SingleSignOnFilter redirects the request to
AM for authentication.

3. Log in to AM as user demo, password Ch4ng31t.

http://openig.example.com:8080/home/pep-sso
http://openig.ext.com:8080/home/pep-cdsso

Hardening Authorization With Advice From AM
Increasing Authorization for a Single Transaction

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 97

AM creates a session with the default authentication level 0, and IG requests a policy decision.

4. Enter the verification code 123456 to upgrade the authorization level for the session to 1.

The authentication module you configured for transactional authorization requires authentication
level 5, so AM issues a TransactionConditionAdvice.

5. In the transaction upgrade window, enter the verification code 789.

AM upgrades the authentication level for this policy evaluation to 5, and then returns a policy
decision that grants a one-time access to the sample application. If you try to access the sample
application again, you must enter the code again.

Protecting Against CSRF Attacks

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 98

Chapter 8

Protecting Against CSRF Attacks
In a Cross Site Request Forgery (CSRF) attack, a user unknowingly executes a malicious request on a
website where they are authenticated. A CSRF attack usually includes a link or script in a web page.
When a user accesses the link or script, the page executes an HTTP request on the site where the
user is authenticated.

CSRF attacks interact with HTTP requests as follows:

• CSRF attacks can execute POST, PUT, and DELETE requests on the targeted server. For example, a
CSRF attack can transfer funds out of a bank account or change a user's password.

• Because of same-origin policy, CSRF attacks cannot access any response from the targeted server.

When IG processes POST, PUT, and DELETE requests, it checks a custom HTTP header in the
request. If a CSRF token is not present in the header or not valid, IG rejects the request and returns a
valid CSRF token in the response.

Rogue websites that attempt CSRF attacks operate in a different website domain to the targeted
website. Because of same-origin policy, rogue websites can't access a response from the targeted
website, and cannot, therefore, access the response or CSRF token.

The following example shows the data flow when an authenticated user sends a POST request to an
application protected against CSRF:

Protecting Against CSRF Attacks

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 99

Flow of Requests From Authent icated User to Applicat ion Protected Against CSRF

Client

Client

IG

IG

legit im ate.exam ple.com

legit im ate.exam ple.com

Post request w it hout CSRF t oken

POST
Headers: session cookie

Validate CSRF token as hash of session cookieCSRF token not present or not valid

HTTP 403 Forbidden
Headers: X-CSRF-TOKEN

Re-post request w it h CSRF t oken

POST
Headers: session cookie, X-CSRF-TOKEN

Validate CSRF token as hash of session cookieCSRF token validated

POST
Headers: session cookie

Content

Content

The following example shows the data flow when an authenticated user sends a POST request from a
rogue site to an application protected against CSRF:

Protecting Against CSRF Attacks

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 100

Flow of Requests From Rogue Site to Applicat ion Protected Against CSRF

Malicious User

Malicious User

Client

Client

IG

IG

legit im ate.exam ple.com

legit im ate.exam ple.com

rogue.exam ple.com

rogue.exam ple.com

Checkout rogue.example.com

GET rogue.example.com

Malicious code
POST with form to change data
Headers: session cookie (auto added)

Validate CSRF token as hash
of session cookieCSRF token not present or not valid

Content : HTTP 403/Forbidden
Header: CSRF token

Protect Against CSRF Attacks

1. Set up SSO, so that AM authenticates users to the sample app through IG:

a. Set up AM and IG as described in "Authenticate With SSO".

b. Remove the condition in sso.json, so that the route matches all requests:
"condition": "${matches(request.uri.path, '^/home/sso')}"

2. Test the setup without CSRF protection:

a. Go to http://openig.example.com:8080/bank/index, and log in to the Sample App Bank through
AM, as user demo, password Ch4ng31t.

b. Send a bank transfer of $10 to Bob, and note that the transfer is successful.

c. Go to http://localhost:8081/bank/attack-autosubmit to simulate a CSRF attack.

When you access this page, a hidden HTML form is automatically submitted to transfer $1000
to the rogue user, using the IG session cookie to authenticate to the bank.

In the bank transaction history, note that $1000 has been debited.

3. Test the setup with CSRF protection:

a. In IG, replace sso.json with the following route:
{
 "name": "Csrf",
 "baseURI": "http://app.example.com:8081",
 "heap": [

http://openig.example.com:8080/bank/index
http://localhost:8081/bank/attack-autosubmit

Protecting Against CSRF Attacks

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 101

 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://openam.example.com:8088/openam/",
 "version": "7"
 }
 },
 {
 "name": "FailureHandler-1",
 "type": "StaticResponseHandler",
 "config": {
 "status": 403,
 "headers": {
 "Content-Type": ["text/plain"]
 },
 "entity": "Request forbidden"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "SingleSignOnFilter-1",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 },
 {
 "name": "CsrfFilter-1",
 "type": "CsrfFilter",
 "config": {
 "cookieName": "iPlanetDirectoryPro",
 "failureHandler": "FailureHandler-1"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route compared to sso.json:

Protecting Against CSRF Attacks

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 102

• The CsrfFilter checks the AM session cookie for the X-CSRF-Token header. If a CSRF token
is not present in the header or not valid, the filter rejects the request and provides a valid
CSRF token in the header.

b. Go to http://openig.example.com:8080/bank/index, and send a bank transfer of $10 to Alice.

Because there is no CSRF token, IG responds with an HTTP 403, and provides the token.

c. Send the transfer again, and note that because the CSRF token is provided the transfer is
successful.

d. Go to http://localhost:8081/bank/attack-autosubmit to automatically send a rogue transfer.

Because there is no CSRF token, IG rejects the request and provides the CSRF token.
However, because the rogue site is in a different domain to openig.example.com it can't access
the CSRF token.

http://openig.example.com:8080/bank/index
http://localhost:8081/bank/attack-autosubmit

Acting As a SAML 2.0 Service Provider
About SAML 2.0 SSO and Federation

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 103

Chapter 9

Acting As a SAML 2.0 Service Provider
The following sections describe IG's role as a SAML 2.0 service provider, and give an example of how
to set up IG, with AM as an identity provider:

• "About SAML 2.0 SSO and Federation"

• "Set Up SAML 2.0 SSO and Federation"

• "Using a Non-Transient NameID Format"

• "Example Fedlet Files"

For information about how to set up multiple service providers, see "SAML 2.0 and Multiple
Applications".

About SAML 2.0 SSO and Federation
The IG federation component implements SAML 2.0, to validate users and log them in to protected
applications.

The SAML 2.0 standard describes the messages that providers exchange, and how they exchange
them. SAML 2.0 enables web single sign-on (SSO), for example, where the service managing the
user's identity does not belong to the same organization and does not use the same software as the
service that the user wants to access.

The following terms are used in SAML and federation:

• Identity Provider (IDP): The service that manages the user identity.

• Service Provider (SP): The service that a user wants to access. IG acts as a SAML 2.0 SP for SSO,
providing users with an interface to applications that don't support SAML 2.0.

• Circle of trust (CoT): An IDP and SP that participate in the federation.

When an IDP and an SP participate in a federation, they agree on what security information to
exchange, and mutually configure access to each other's services.

After an IDP authenticates a user, it provides the SP with SAML assertions that attest to which user is
authenticated, when the authentication succeeded, how long the assertion is valid, and so on. The SP
uses the SAML assertions to make authorization decisions, for example, to let an authenticated user
complete a purchase that gets charged to the user's account at the IDP.

Acting As a SAML 2.0 Service Provider
About SP-Initiated SSO

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 104

The IDP and SP usually communicate about a user identified by a name identifier. In SP-initiated
SSO and IDP-initiated SSO, the NameID format can be any format supported by the IDP. For more
information, see "Using a Non-Transient NameID Format".

SAML assertions can be signed and encrypted. ForgeRock recommends using *SHA-256 variants (rsa-
sha256 or ecdsa-sha256).

SAML assertions can contain configurable attribute values, such as user meta-information or
anything else provided by the IDP. The attributes of a SAML assertion can contain one or more
values, made available as a list of strings. Even if an attribute contains a single value, it is made
available as a list of strings.

About SP-Initiated SSO

SP-initiated SSO occurs when a user attempts to access a protected application directly through the
SP. Because the user's federated identity is managed by the IDP, the SP sends a SAML authentication
request to the IDP. After the IDP authenticates the user, it provides the SP with a SAML assertion for
the user.

The following sequence diagram shows the flow of information in SP-initiated SSO, when IG acts as a
SAML 2.0 SP:

SP-Initiated SSO

SP-Init iated SSO

Browser

Browser

AM
ident ity provider

AM
ident ity provider

IG
service provider

IG
service provider

Protected applicat ion

Protected applicat ion

SSO on t he federat ion

1 HTTP GET request to the protected applicat ion

2 User not authent icated, direct
request to the SP-init iated SSO endpoint

3 Request credent ial, and user logs in

4 Direct request to the SP,
provide SAML assert ions for the user

5 Validate the assert ions, set the at t ributes

Applicat ion-specif ic passw ord replay

6
Retrieve credent ials, replace original HTTP GET
with HTTP POST containing credent ials to
authent icate to the protected applicat ion

7 Return response page showing that the user has logged in

Acting As a SAML 2.0 Service Provider
About IDP-Initiated SSO

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 105

About IDP-Initiated SSO
IDP-initiated SSO occurs when a user attempts to access a protected application, using the IDP for
authentication. The IDP sends an unsolicited authentication statement to the SP.

Before IDP-initiated SSO can occur:

• The user must access a link on the IDP that refers to the remote SP.

• The user must authenticate to the IDP.

• The IDP must be configured with links that refer to the SP.

The following sequence diagram shows the flow of information in IDP-initiated SSO when IG acts as a
SAML 2.0 SP:

IDP-Initiated SSO

IDP-Init iated SSO

Browser

Browser

AM
ident ity provider

AM
ident ity provider

IG
service provider

IG
service provider

Protected applicat ion

Protected applicat ion

SSO on t he federat ion

1 HTTP GET request to the protected applicat ion
through IDP-init iated SSO endpoint

2 Request credent ials, and user logs in

3 Direct the request to the SP,
provide SAML assert ions for the user

4 Validate the assert ions, set the at t ributes

Applicat ion-specif ic passw ord replay

5
Retrieve credent ials, replace original HTTP GET
with HTTP POST containing credent ials to
authent icate to the protected applicat ion.

6 Return response page showing that the user has logged in

Set Up SAML 2.0 SSO and Federation
For examples of the federation configuration files, see "Example Fedlet Files". To set up multiple SPs,
work through this section, and then "SAML 2.0 and Multiple Applications".

1. Set up the network:

• Add sp.example.com to your /etc/hosts file:

Acting As a SAML 2.0 Service Provider
Set Up SAML 2.0 SSO and Federation

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 106

127.0.0.1 localhost openam.example.com openig.example.com app.example.com sp.example.com

Traffic to the application is proxied through IG, using the host name sp.example.com.

2. Configure a Java Fedlet:

Note

The SAML library component validates the SP's AssertionConsumerService Location against the incoming
IDP SAML Assertion, based on the request information, including the port. In sp.xml, always specify the
port in the Location value of AssertionConsumerService, even when using defaults of 443 or 80, as follows:

<AssertionConsumerService isDefault="true" index="0"
 Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" Location="https://sp.example.com:443/
fedletapplication"/>

For more information about Java Fedlets, see Creating and Configuring the Fedlet in AM's SAML
v2.0 Guide.

a. Copy and unzip the fedlet zip file, Fedlet-7.0.2.zip, delivered with the AM installation, into a
local directory.
$ unzip $HOME/openam/Fedlet-7.0.2.zip
Archive: Fedlet-7.0.0-SNAPSHOT.zip
creating: conf/
inflating: README
inflating: conf/FederationConfig.properties
inflating: conf/fedlet.cot-template
inflating: conf/idp-extended.xml-template
inflating: conf/sp-extended.xml-template
inflating: conf/sp.xml-template
inflating: fedlet.war

b. For AM 6.5.2 and earlier versions, add the following lines to FederationConfig.properties:
Specifies implementation for
org.forgerock.openam.federation.plugin.rooturl.RootUrlProvider interface.
This property defines the default base url provider.
com.sun.identity.plugin.root.url.class.default=org.forgerock.openam.federation.plugin.rooturl.impl.FedletRootUrlProvider

c. In each file, search and replace the following properties:

• IDP_ENTITY_ID: replace with openam

• FEDLET_ENTITY_ID: replace with sp

• FEDLET_PROTOCOL://FEDLET_HOST:FEDLET_PORT/FEDLET_DEPLOY_URI: replace with http://sp.example.
com:8080/saml

• fedletcot and FEDLET_COT: replace with Circle of Trust

https://backstage.forgerock.com/docs/am/7/saml2-guide/create-configure-fedlet.html

Acting As a SAML 2.0 Service Provider
Set Up SAML 2.0 SSO and Federation

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 107

• sp.example.com:8080/saml/fedletapplication: replace with sp.example.com:8080/saml/
fedletapplication/metaAlias/sp

d. Save the files as .xml, without the -template extension.

By default, AM as an IDP uses the NameID format urn:oasis:names:tc:SAML:2.0:nameid-
format:transient to communicate about a user. For information about using a different NameID
format, see "Using a Non-Transient NameID Format".

3. Set up AM:

a. Select  Identities, and add a user with the following values:

• ID/username: george

• First name: george

• Last name: C0stanza

Note that, for this example, the last name must be the same as the password.

• Password: C0stanza

b. Select  Applications > Federation > Circles of Trust, and add a circle of trust called Circle
 of Trust, with the default settings.

c. Set up a remote service provider:

i. Select  Applications > Federation > Entity Providers, and add a remote entity provider.

ii. Drag in or import sp.xml created in Step 2.

iii. Select Circles of Trust: Circle of Trust

d. Set up a hosted identity provider:

i. Select  Applications > Federation > Entity Providers, and add a hosted entity provider
with the following values:

• Entity ID: openam

• Entity Provider Base URL: http://openam.example.com:8088/openam

• Identity Provider Meta Alias: idp

• Circles of Trust: Circle of Trust

ii. Select Assertion Processing > Attribute Mapper, map the following SAML attribute keys
and values, and then save your changes:

Acting As a SAML 2.0 Service Provider
Set Up SAML 2.0 SSO and Federation

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 108

• SAML Attribute: cn, Local Attribute: cn

• SAML Attribute: sn, Local Attribute: sn

iii. In a terminal, export the XML-based metadata for the IPD:
$ curl -v \
--output idp.xml \
"http://openam.example.com:8088/openam/saml2/jsp/exportmetadata.jsp?entityid=openam"

The idp.xml file is created locally.

4. Set up IG:

a. Retrieve the Fedlet configuration files:

• Copy the edited fedlet files, and the exported idp.xml file into the IG configuration, at
$HOME/.openig/SAML.
$ ls -l $HOME/.openig/SAML
FederationConfig.properties
fedlet.cot
idp-extended.xml
idp.xml
sp-extended.xml
sp.xml

b. In config.json, comment out or remove the baseURI:
{
 "handler": {
 "_baseURI": "http://app.example.com:8081",
 ...

Requests to the SamlFederationHandler must not be rebased, because the request URI must
match the endpoint in the SAML metadata.

c. Add the following route to IG, to serve .css and other static resources for the sample
application:

Linux

$HOME/.openig/config/routes/static-resources.json

Windows

%appdata%\OpenIG\config\routes\static-resources.json

{
 "name" : "sampleapp_resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${matches(request.uri.path,'^/css')}",
 "handler": "ReverseProxyHandler"
}

Acting As a SAML 2.0 Service Provider
Set Up SAML 2.0 SSO and Federation

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 109

d. Add the following route to IG:

Linux

$HOME/.openig/config/routes/saml.json

Windows

%appdata%\OpenIG\config\routes\saml.json

{
 "name": "saml",
 "condition": "${matches(request.uri.path, '^/saml')}",
 "session": "JwtSession",
 "handler": {
 "type": "SamlFederationHandler",
 "config": {
 "assertionMapping": {
 "username": "cn",
 "password": "sn"
 },
 "subjectMapping": "sp-subject-name",
 "redirectURI": "/home/federate"
 }
 }
}

Notice the following features of the route:

• The route matches requests to /saml.

• After authentication, the SamlFederationHandler extracts cn and sn from the SAML
assertion, and maps them to the SessionContext, at session.username and session.password.

• The handler stores the subject name as a string in the session field session.sp-subject-name,
which is named by the subjectMapping property. By default, the subject name is stored in the
session field session.subjectName.

• The handler redirects the request to the /federate route.

• The route uses the JwtSession implementation, meaning it stores encrypted session
information in a browser cookie. The name is a reference to the JwtSession object defined in
config.json. For details, see "JwtSession" in the Configuration Reference.

e. Add the following route to IG:

Linux

$HOME/.openig/config/routes/federate.json

Windows

%appdata%\OpenIG\config\routes\federate.json

{

Acting As a SAML 2.0 Service Provider
Set Up SAML 2.0 SSO and Federation

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 110

 "name": "federate",
 "condition": "${matches(request.uri.path, '^/home/federate')}",
 "session": "JwtSession",
 "baseURI": "http://app.example.com:8081",
 "handler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${empty session.username}",
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 302,
 "reason": "Found",
 "headers": {
 "Location": [
 "http://sp.example.com:8080/saml/SPInitiatedSSO?metaAlias=/sp"
]
 }
 }
 }
 },
 {
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "x-username": ["${session.username[0]}"],
 "x-password": ["${session.password[0]}"]
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
 }
]
 }
 }
}

Notice the following features of the route:

• The route matches requests to /home/federate.

• If the user is not authenticated with AM, the username is not populated in the context.
The DispatchHandler then dispatches the request to the StaticResponseHandler, which
redirects it to the SP-initiated SSO endpoint.

Acting As a SAML 2.0 Service Provider
Set Up SAML 2.0 SSO and Federation

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 111

If the credentials are in the context, or after successful authentication, the DispatchHandler
dispatches the request to the Chain.

• The HeaderFilter adds headers for the first value for the username and password attributes of
the SAML assertion.

• The route uses the JwtSession implementation, meaning it stores encrypted session
information in a browser cookie. The name is a reference to the JwtSession object defined in
config.json. For details, see "JwtSession" in the Configuration Reference.

Tip

For more control over the URL where the user agent is redirected, use the RelayState query string
parameter in the URL of the redirect Location header. RelayState specifies where to redirect the user
when the SAML 2.0 web browser SSO process is complete. It overrides the redirectURI set in the
SamlFederationHandler.

The RelayState value must be URL-encoded. When using an expression, use a function to encode the
value. For example, use ${urlEncodeQueryParameterNameOrValue(contexts.router.originalUri)}.

In the following example, the user is finally redirected to the original URI from the request:

"headers": {
 "Location": [
 "http://openig.example.com:8080/saml/SPInitiatedSSO?RelayState=
${urlEncodeQueryParameterNameOrValue(contexts.router.originalUri)}"
]
}

f. Restart IG.

5. Test the setup:

a. Log out of AM, and test the setup with the following links:

• IDP-initiated SSO

• SP-initiated SSO

b. Log in to AM with username george and password C0stanza.

IG returns the response page showing that the George has logged in.

http://openam.example.com:8088/openam/idpssoinit?metaAlias=/idp&spEntityID=sp
http://openig.example.com:8080/home/federate

Acting As a SAML 2.0 Service Provider
Using a Non-Transient NameID Format

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 112

Using a Non-Transient NameID Format
By default, AM as an IDP uses the NameID format urn:oasis:names:tc:SAML:2.0:nameid-format:transient.
For more information, see Hosted Identity Provider Configuration Properties in AM's SAML v2.0
Guide.

When the IDP uses another NameID format, configure IG to use that NameID format by editing the
Fedlet configuration file sp-extended.xml:

• To use the NameID value provided by the IDP, add the following attribute:
<Attribute name="useNameIDAsSPUserID">
 <Value>true</Value>
</Attribute>

• To use an attribute from the assertion, add the following attribute:
<Attribute name="autofedEnabled">
 <Value>true</Value>
</Attribute>
<Attribute name="autofedAttribute">
 <Value>sn</Value>
</Attribute>

This example uses the value in SN to identify the subject.

Although IG supports the persistent NameID format, IG does not store the mapping. To configure this
behavior, edit the file sp-extended.xml:

• To disable attempts to persist the user mapping, add the following attribute:
<Attribute name="spDoNotWriteFederationInfo">
 <Value>true</Value>
</Attribute>

• To enable attempts to persist the user mapping, add the following attribute:
<Attribute name="spDoNotWriteFederationInfo">
 <Value>false</Value>
</Attribute>

If a login request doesn't contain a NameID format query parameter, the value is defined by the
presence and content of the NameID format list for the SP and IDP. For example, an SP-initiated
login can be constructed with the binding and NameIDFormat as a parameter, as follows:
http://fedlet.example.org:7070/fedlet/SPInitiatedSSO?binding=urn:oasis:names:tc:SAML:2.0:bindings:HTTP-
POST&NameIDFormat=urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified

When the NameID format is provided in a list, it is resolved as follows:

• If both the IDP and SP have a list, the first matching NameID format in the lists.

• If either the IDP or SP list is empty, the first NameID format in the other list.

• If neither the IDP nor SP has a list, then AM defaults to transient, and IG defaults to persistent.

https://backstage.forgerock.com/docs/am/7/saml2-guide/saml2-reference.html#sec-saml2-hosted-idp-configuration

Acting As a SAML 2.0 Service Provider
Example Fedlet Files

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 113

Example Fedlet Files

Summary of Fedlet Files

File Description
FederationConfig.properties Defines fedlet properties
fedlet.cot Circle of trust for IG and the IDP
idp.xml Standard metadata for the IDP
idp-extended.xml Metadata extensions for the IDP
sp.xml Standard metadata for the IG SP
sp-extended.xml Metadata extensions for the IG SP

FederationConfig.properties

The following example of $HOME/.openig/SAML/FederationConfig.properties defines the fedlet properties:
#
DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.
#
Copyright (c) 2006 Sun Microsystems Inc. All Rights Reserved
#
The contents of this file are subject to the terms
of the Common Development and Distribution License
(the License). You may not use this file except in
compliance with the License.
#
You can obtain a copy of the License at
https://opensso.dev.java.net/public/CDDLv1.0.html or
opensso/legal/CDDLv1.0.txt
See the License for the specific language governing
permission and limitations under the License.
#
When distributing Covered Code, include this CDDL
Header Notice in each file and include the License file
at opensso/legal/CDDLv1.0.txt.
If applicable, add the following below the CDDL Header,
with the fields enclosed by brackets [] replaced by
your own identifying information:
"Portions Copyrighted [year] [name of copyright owner]"
#
$Id: FederationConfig.properties,v 1.21 2010/01/08 22:41:28 exu Exp $
#
Portions Copyright 2016-2020 ForgeRock AS.

If a component wants to use a different datastore provider than the
default one defined above, it can define a property like follows:
com.sun.identity.plugin.datastore.class.<componentName>=<provider class>

com.sun.identity.plugin.configuration.class specifies implementation for
com.sun.identity.plugin.configuration.ConfigurationInstance interface.
com.sun.identity.plugin.configuration.class=com.sun.identity.plugin.configuration.impl.FedletConfigurationImpl

Acting As a SAML 2.0 Service Provider
Example Fedlet Files

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 114

Specifies implementation for
com.sun.identity.plugin.datastore.DataStoreProvider interface.
This property defines the default datastore provider.
com.sun.identity.plugin.datastore.class.default=com.sun.identity.plugin.datastore.impl.FedletDataStoreProvider

Specifies implementation for
org.forgerock.openam.federation.plugin.rooturl.RootUrlProvider interface.
This property defines the default base url provider.
com.sun.identity.plugin.root.url.class.default=org.forgerock.openam.federation.plugin.rooturl.impl.FedletRootUrlProvider

com.sun.identity.plugin.log.class specifies implementation for
com.sun.identity.plugin.log.Logger interface.
com.sun.identity.plugin.log.class=com.sun.identity.plugin.log.impl.FedletLogger

com.sun.identity.plugin.session.class specifies implementation for
com.sun.identity.plugin.session.SessionProvider interface.
com.sun.identity.plugin.session.class=com.sun.identity.plugin.session.impl.FedletSessionProvider

com.sun.identity.plugin.monitoring.agent.class specifies implementation for
com.sun.identity.plugin.monitoring.FedMonAgent interface.
com.sun.identity.plugin.monitoring.agent.class=com.sun.identity.plugin.monitoring.impl.FedletAgentProvider

com.sun.identity.plugin.monitoring.saml2.class specifies implementation for
com.sun.identity.plugin.monitoring.FedMonSAML2Svc interface.
com.sun.identity.plugin.monitoring.saml2.class=com.sun.identity.plugin.monitoring.impl.FedletMonSAML2SvcProvider

com.sun.identity.saml.xmlsig.keyprovider.class specified the implementation
class for com.sun.identity.saml.xmlsig.KeyProvider interface
com.sun.identity.saml.xmlsig.keyprovider.class=com.sun.identity.saml.xmlsig.JKSKeyProvider

com.sun.identity.saml.xmlsig.signatureprovider.class specified the
implementation class for com.sun.identity.saml.xmlsig.SignatureProvider
interface
com.sun.identity.saml.xmlsig.signatureprovider.class=com.sun.identity.saml.xmlsig.AMSignatureProvider

com.iplanet.am.server.protocol=http
com.iplanet.am.server.host=openam.example.com
com.iplanet.am.server.port=8080
com.iplanet.am.services.deploymentDescriptor=/openam
com.iplanet.am.logstatus=ACTIVE

Name of the webcontainer.
Even though the servlet/JSP are web container independent,
Access/Federation Manager uses servlet 2.3 API request.setCharacterEncoding()
to decode incoming non English characters. These APIs will not work if
Access/Federation Manager is deployed on Sun Java System Web Server 6.1.
We use gx_charset mechanism to correctly decode incoming data in
Sun Java System Web Server 6.1 and S1AS7.0. Possible values
are BEA6.1, BEA 8.1, IBM5.1 or IAS7.0.
If the web container is Sun Java System Webserver, the tag is not replaced.
com.sun.identity.webcontainer=WEB_CONTAINER

Identify saml xml signature keystore file, keystore password file
key password file
com.sun.identity.saml.xmlsig.keystore=%BASE_DIR%/security/keystores/keystore.jks
com.sun.identity.saml.xmlsig.storepass=%BASE_DIR%/.storepass
com.sun.identity.saml.xmlsig.keypass=%BASE_DIR%/.keypass
com.sun.identity.saml.xmlsig.certalias=test

Acting As a SAML 2.0 Service Provider
Example Fedlet Files

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 115

Type of KeyStore used for saml xml signature. Default is JKS.
#
com.sun.identity.saml.xmlsig.storetype=JKS

Specifies the implementation class for
com.sun.identity.saml.xmlsig.PasswordDecoder interface.
com.sun.identity.saml.xmlsig.passwordDecoder=com.sun.identity.fedlet.FedletEncodeDecode

The following key is used to specify the maximum content-length
for an HttpRequest that will be accepted by the OpenSSO
The default value is 16384 which is 16k
com.iplanet.services.comm.server.pllrequest.maxContentLength=16384

The following keys are used to configure the Debug service.
Possible values for the key 'level' are: off | error | warning | message.
The key 'directory' specifies the output directory where the debug files
will be created.
Trailing spaces are significant.
Windows: Use forward slashes "/" separate directories, not backslash "\".
Windows: Spaces in the file name are allowed for Windows.
#
com.iplanet.services.debug.level=message
com.iplanet.services.debug.directory=%BASE_DIR%%SERVER_URI%/debug

The following keys are used to configure the Stats service.
Possible values for the key 'level' are: off | file | console
Stats state 'file' will write to a file under the specified directory,
and 'console' will write into webserver log files
The key 'directory' specifies the output directory where the debug files
will be created.
Trailing spaces are significant.
Windows: Use forward slashes "/" separate directories, not backslash "\".
Windows: Spaces in the file name are allowed for Windows.
Stats interval should be atleast 5 secs to avoid CPU saturation,
the product would assume any thing less than 5 secs is 5 secs.
com.iplanet.am.stats.interval=60
com.iplanet.services.stats.state=file
com.iplanet.services.stats.directory=%BASE_DIR%/var/stats

The key that will be used to encrypt and decrypt passwords.
am.encryption.pwd=@AM_ENC_PWD@

SecureRandom Properties: The key
"com.iplanet.security.SecureRandomFactoryImpl"
specifies the factory class name for SecureRandomFactory
Available impl classes are:
com.iplanet.am.util.JSSSecureRandomFactoryImpl (uses JSS)
com.iplanet.am.util.SecureRandomFactoryImpl (pure Java)
com.iplanet.security.SecureRandomFactoryImpl=com.iplanet.am.util.SecureRandomFactoryImpl

SocketFactory properties: The key "com.iplanet.security.SSLSocketFactoryImpl"
specifies the factory class name for LDAPSocketFactory
Available classes are:
com.iplanet.services.ldap.JSSSocketFactory (uses JSS)
com.sun.identity.shared.ldap.factory.JSSESocketFactory (pure Java)
com.iplanet.security.SSLSocketFactoryImpl=com.sun.identity.shared.ldap.factory.JSSESocketFactory

Encryption: The key "com.iplanet.security.encryptor" specifies

Acting As a SAML 2.0 Service Provider
Example Fedlet Files

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 116

the encrypting class implementation.
Available classes are:
com.iplanet.services.util.JCEEncryption
com.iplanet.services.util.JSSEncryption
com.iplanet.security.encryptor=com.iplanet.services.util.JCEEncryption

Determines if JSS will be added with highest priority to JCE
Set this to "true" if other JCE providers should be used for
digial signatures and encryptions.
com.sun.identity.jss.donotInstallAtHighestPriority=true

Configuration File (serverconfig.xml) Location
com.iplanet.services.configpath=@BASE_DIR@

fedlet.cot

The following example of $HOME/.openig/SAML/fedlet.cot defines a circle of trust between AM as the IDP,
and IG as the SP:
cot-name=Circle of Trust
sun-fm-cot-status=Active
sun-fm-trusted-providers=openam, sp
sun-fm-saml2-readerservice-url=
sun-fm-saml2-writerservice-url=

idp.xml

The following example of $HOME/.openig/SAML/idp.xml defines a SAML configuration file for the AM IDP,
idp:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<EntityDescriptor entityID="openam" xmlns="urn:oasis:names:tc:SAML:2.0:metadata" xmlns:query="urn:oasis:names:tc:SAML:metadata:ext:query" xmlns:mdattr="urn:oasis:names:tc:SAML:metadata:attribute" xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion" xmlns:xenc="http://
www.w3.org/2001/04/xmlenc#" xmlns:xenc11="http://www.w3.org/2009/
xmlenc11#" xmlns:alg="urn:oasis:names:tc:SAML:metadata:algsupport" xmlns:x509qry="urn:oasis:names:tc:SAML:metadata:X509:query" xmlns:ds="http://
www.w3.org/2000/09/xmldsig#">
 <IDPSSODescriptor protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 <KeyDescriptor use="signing">
 <ds:KeyInfo>
 <ds:X509Data>
 <ds:X509Certificate>
...
 </ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 </KeyDescriptor>
 <KeyDescriptor use="encryption">
 <ds:KeyInfo>
 <ds:X509Data>
 <ds:X509Certificate>
...
 </ds:X509Certificate>
 </ds:X509Data>
 </ds:KeyInfo>
 <EncryptionMethod Algorithm="http://www.w3.org/2009/xmlenc11#rsa-oaep">
 <ds:DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>
 <xenc11:MGF Algorithm="http://www.w3.org/2009/xmlenc11#mgf1sha256"/>

Acting As a SAML 2.0 Service Provider
Example Fedlet Files

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 117

 </EncryptionMethod>
 <EncryptionMethod Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc">
 <xenc:KeySize>128</xenc:KeySize>
 </EncryptionMethod>
 </KeyDescriptor>

 <ArtifactResolutionService index="0" Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP" Location="http://
openam.example.com:8088/openam/ArtifactResolver/metaAlias/idp"/>
 <SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-
Redirect" Location="http://openam.example.com:8088/openam/IDPSloRedirect/metaAlias/
idp" ResponseLocation="http://openam.example.com:8088/openam/IDPSloRedirect/metaAlias/idp"/>
 <SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" Location="http://
openam.example.com:8088/openam/IDPSloPOST/metaAlias/idp" ResponseLocation="http://openam.example.com:8088/
openam/IDPSloPOST/metaAlias/idp"/>
 <SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP" Location="http://
openam.example.com:8088/openam/IDPSloSoap/metaAlias/idp"/>
 <ManageNameIDService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-
Redirect" Location="http://openam.example.com:8088/openam/IDPMniRedirect/metaAlias/
idp" ResponseLocation="http://openam.example.com:8088/openam/IDPMniRedirect/metaAlias/idp"/>
 <ManageNameIDService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" Location="http://
openam.example.com:8088/openam/IDPMniPOST/metaAlias/idp" ResponseLocation="http://openam.example.com:8088/
openam/IDPMniPOST/metaAlias/idp"/>
 <ManageNameIDService Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP" Location="http://
openam.example.com:8088/openam/IDPMniSoap/metaAlias/idp"/>
 <NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-format:persistent</NameIDFormat>
 <NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-format:transient</NameIDFormat>
 <NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-format:emailAddress</NameIDFormat>
 <NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified</NameIDFormat>
 <NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-format:WindowsDomainQualifiedName</NameIDFormat>
 <NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-format:kerberos</NameIDFormat>
 <NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName</NameIDFormat>
 <SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-
Redirect" Location="http://openam.example.com:8088/openam/SSORedirect/metaAlias/idp"/>
 <SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" Location="http://
openam.example.com:8088/openam/SSOPOST/metaAlias/idp"/>
 <SingleSignOnService Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP" Location="http://
openam.example.com:8088/openam/SSOSoap/metaAlias/idp"/>
 <NameIDMappingService Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP" Location="http://
openam.example.com:8088/openam/NIMSoap/metaAlias/idp"/>
 <AssertionIDRequestService Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP" Location="http://
openam.example.com:8088/openam/AIDReqSoap/IDPRole/metaAlias/idp"/>
 <AssertionIDRequestService Binding="urn:oasis:names:tc:SAML:2.0:bindings:URI" Location="http://
openam.example.com:8088/openam/AIDReqUri/IDPRole/metaAlias/idp"/>
 </IDPSSODescriptor>
</EntityDescriptor>

idp-extended.xml

The following example of $HOME/.openig/SAML/idp-extended.xml defines an AM-specific SAML descriptor
file for the IDP:
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<!--
 DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.

 Copyright (c) 2002-2010 Sun Microsystems Inc. All Rights Reserved

Acting As a SAML 2.0 Service Provider
Example Fedlet Files

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 118

 The contents of this file are subject to the terms
 of the Common Development and Distribution License
 (the License). You may not use this file except in
 compliance with the License.

 You can obtain a copy of the License at
 https://opensso.dev.java.net/public/CDDLv1.0.html or
 opensso/legal/CDDLv1.0.txt
 See the License for the specific language governing
 permission and limitations under the License.

 When distributing Covered Code, include this CDDL
 Header Notice in each file and include the License file
 at opensso/legal/CDDLv1.0.txt.
 If applicable, add the following below the CDDL Header,
 with the fields enclosed by brackets [] replaced by
 your own identifying information:
 "Portions Copyrighted [year] [name of copyright owner]"

 Portions Copyrighted 2010-2017 ForgeRock AS.
-->
<EntityConfig entityID="openam" hosted="0" xmlns="urn:sun:fm:SAML:2.0:entityconfig">
 <IDPSSOConfig>
 <Attribute name="description">
 <Value/>
 </Attribute>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value>
 </Attribute>
 </IDPSSOConfig>
 <AttributeAuthorityConfig>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value>
 </Attribute>
 </AttributeAuthorityConfig>
 <XACMLPDPConfig>
 <Attribute name="wantXACMLAuthzDecisionQuerySigned">
 <Value></Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value>
 </Attribute>
 </XACMLPDPConfig>
</EntityConfig>

sp.xml

The following example of $HOME/.openig/SAML/sp.xml defines a SAML configuration file for the IG SP, sp:
<!--
 DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.

 Copyright (c) 2002-2010 Sun Microsystems Inc. All Rights Reserved

 The contents of this file are subject to the terms
 of the Common Development and Distribution License
 (the License). You may not use this file except in

Acting As a SAML 2.0 Service Provider
Example Fedlet Files

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 119

 compliance with the License.

 You can obtain a copy of the License at
 https://opensso.dev.java.net/public/CDDLv1.0.html or
 opensso/legal/CDDLv1.0.txt
 See the License for the specific language governing
 permission and limitations under the License.

 When distributing Covered Code, include this CDDL
 Header Notice in each file and include the License file
 at opensso/legal/CDDLv1.0.txt.
 If applicable, add the following below the CDDL Header,
 with the fields enclosed by brackets [] replaced by
 your own identifying information:
 "Portions Copyrighted [year] [name of copyright owner]"

 Portions Copyrighted 2010-2017 ForgeRock AS.
-->
<EntityDescriptor entityID="sp" xmlns="urn:oasis:names:tc:SAML:2.0:metadata">

 <SPSSODescriptor AuthnRequestsSigned="false" WantAssertionsSigned="false" protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 <SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-
Redirect" Location="http://sp.example.com:8080/saml/fedletSloRedirect" ResponseLocation="http://
sp.example.com:8080/saml/fedletSloRedirect"/>
 <SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST" Location="http://
sp.example.com:8080/saml/fedletSloPOST" ResponseLocation="http://sp.example.com:8080/saml/fedletSloPOST"/>
 <SingleLogoutService Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP" Location="http://
sp.example.com:8080/saml/fedletSloSoap"/>
 <NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-format:transient</NameIDFormat>

 <AssertionConsumerService isDefault="true" index="0" Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-
POST" Location="http://sp.example.com:8080/saml/fedletapplication"/>
 <AssertionConsumerService index="1" Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-
Artifact" Location="http://sp.example.com:8080/saml/fedletapplication"/>
 </SPSSODescriptor>
 <RoleDescriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xmlns:query="urn:oasis:names:tc:SAML:metadata:ext:query" xsi:type="query:AttributeQueryDescriptorType" protocolSupportEnumeration= "urn:oasis:names:tc:SAML:2.0:protocol">
 </RoleDescriptor>

 <XACMLAuthzDecisionQueryDescriptor WantAssertionsSigned="false" protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protocol">
 </XACMLAuthzDecisionQueryDescriptor>
</EntityDescriptor>

sp-extended.xml

The following example of $HOME/.openig/SAML/sp-extended.xml defines an AM-specific SAML descriptor
file for the SP:
<!--
 DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.

 Copyright (c) 2002-2010 Sun Microsystems Inc. All Rights Reserved

 The contents of this file are subject to the terms
 of the Common Development and Distribution License
 (the License). You may not use this file except in
 compliance with the License.

Acting As a SAML 2.0 Service Provider
Example Fedlet Files

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 120

 You can obtain a copy of the License at
 https://opensso.dev.java.net/public/CDDLv1.0.html or
 opensso/legal/CDDLv1.0.txt
 See the License for the specific language governing
 permission and limitations under the License.

 When distributing Covered Code, include this CDDL
 Header Notice in each file and include the License file
 at opensso/legal/CDDLv1.0.txt.
 If applicable, add the following below the CDDL Header,
 with the fields enclosed by brackets [] replaced by
 your own identifying information:
 "Portions Copyrighted [year] [name of copyright owner]"

 Portions Copyrighted 2010-2017 ForgeRock AS.
-->
<EntityConfig xmlns="urn:sun:fm:SAML:2.0:entityconfig" xmlns:fm="urn:sun:fm:SAML:2.0:entityconfig" hosted="1" entityID="sp">
 <SPSSOConfig metaAlias="/sp">
 <Attribute name="description">
 <Value></Value>
 </Attribute>
 <Attribute name="signingCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="encryptionCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthOn">
 <Value>false</Value>
 </Attribute>
 <Attribute name="basicAuthUser">
 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthPassword">
 <Value></Value>
 </Attribute>
 <Attribute name="autofedEnabled">
 <Value>false</Value>
 </Attribute>
 <Attribute name="autofedAttribute">
 <Value></Value>
 </Attribute>
 <Attribute name="transientUser">
 <Value>anonymous</Value>
 </Attribute>
 <Attribute name="spAdapter">
 <Value></Value>
 </Attribute>
 <Attribute name="spAdapterEnv">
 <Value></Value>
 </Attribute>
 <Attribute name="fedletAdapter">
 <Value></Value>
 </Attribute>
 <Attribute name="fedletAdapterEnv">
 <Value></Value>
 </Attribute>
 <Attribute name="spAccountMapper">

Acting As a SAML 2.0 Service Provider
Example Fedlet Files

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 121

 <Value>com.sun.identity.saml2.plugins.DefaultLibrarySPAccountMapper</Value>
 </Attribute>
 <Attribute name="spAttributeMapper">
 <Value>com.sun.identity.saml2.plugins.DefaultSPAttributeMapper</Value>
 </Attribute>
 <Attribute name="spAuthncontextMapper">
 <Value>com.sun.identity.saml2.plugins.DefaultSPAuthnContextMapper</Value>
 </Attribute>
 <Attribute name="spAuthncontextClassrefMapping">
 <Value>urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport|0|default</Value>
 </Attribute>
 <Attribute name="spAuthncontextComparisonType">
 <Value>exact</Value>
 </Attribute>
 <Attribute name="attributeMap">
 <Value>*=*</Value>
 </Attribute>
 <Attribute name="saml2AuthModuleName">
 <Value></Value>
 </Attribute>
 <Attribute name="localAuthURL">
 <Value></Value>
 </Attribute>
 <Attribute name="intermediateUrl">
 <Value></Value>
 </Attribute>
 <Attribute name="defaultRelayState">
 <Value></Value>
 </Attribute>
 <Attribute name="appLogoutUrl">
 <Value>http://sp.example.com:8080/saml/logout</Value>
 </Attribute>
 <Attribute name="assertionTimeSkew">
 <Value>300</Value>
 </Attribute>
 <Attribute name="wantAttributeEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="wantAssertionEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="wantNameIDEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="wantPOSTResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantArtifactResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantLogoutRequestSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantLogoutResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantMNIRequestSigned">
 <Value></Value>
 </Attribute>

Acting As a SAML 2.0 Service Provider
Example Fedlet Files

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 122

 <Attribute name="wantMNIResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value></Attribute>
 <Attribute name="saeAppSecretList">
 </Attribute>
 <Attribute name="saeSPUrl">
 <Value></Value>
 </Attribute>
 <Attribute name="saeSPLogoutUrl">
 </Attribute>
 <Attribute name="ECPRequestIDPListFinderImpl">
 <Value>com.sun.identity.saml2.plugins.ECPIDPFinder</Value>
 </Attribute>
 <Attribute name="ECPRequestIDPList">
 <Value></Value>
 </Attribute>
 <Attribute name="enableIDPProxy">
 <Value>false</Value>
 </Attribute>
 <Attribute name="idpProxyList">
 <Value></Value>
 </Attribute>
 <Attribute name="idpProxyCount">
 <Value>0</Value>
 </Attribute>
 <Attribute name="useIntroductionForIDPProxy">
 <Value>false</Value>
 </Attribute>
 </SPSSOConfig>
 <AttributeQueryConfig metaAlias="/attrQuery">
 <Attribute name="signingCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="encryptionCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="wantNameIDEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value>
 </Attribute>
 </AttributeQueryConfig>
 <XACMLAuthzDecisionQueryConfig metaAlias="/pep">
 <Attribute name="signingCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="encryptionCertAlias">
 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthOn">
 <Value>false</Value>
 </Attribute>
 <Attribute name="basicAuthUser">
 <Value></Value>
 </Attribute>
 <Attribute name="basicAuthPassword">

Acting As a SAML 2.0 Service Provider
Example Fedlet Files

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 123

 <Value></Value>
 </Attribute>
 <Attribute name="wantXACMLAuthzDecisionResponseSigned">
 <Value></Value>
 </Attribute>
 <Attribute name="wantAssertionEncrypted">
 <Value></Value>
 </Attribute>
 <Attribute name="cotlist">
 <Value>Circle of Trust</Value>
 </Attribute>
 </XACMLAuthzDecisionQueryConfig>
</EntityConfig>

Acting As an OAuth 2.0 Resource Server
About IG As an OAuth 2.0 Resource Server

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 124

Chapter 10

Acting As an OAuth 2.0 Resource Server
The following sections describe how IG acts as an OAuth 2.0 Resource Server, to resolve and validate
access_tokens, and inject them into the context:

• "About IG As an OAuth 2.0 Resource Server"

• "Validating Access_Tokens Through the Introspection Endpoint"

• "Validating Stateless Access_Tokens With the StatelessAccessTokenResolver"

• "Validating Certificate-Bound Access Tokens"

• "Using the OAuth 2.0 Context to Log in to the Sample Application"

• "Caching Access_Tokens"

For information about allowing third-party applications to access users' resources without having
users' credentials, see OAuth 2.0 Authorization Framework.

For information about the context, see "OAuth2Context" in the Configuration Reference. For
examples that use fields in OAuth2Context to throttle access to the sample application, see
"Configuring Mapped Throttling" and "Configuring Scriptable Throttling".

About IG As an OAuth 2.0 Resource Server
OAuth 2.0 includes the following entities:

• Resource owner: A user who owns protected resources on a resource server. For example, a
resource owner can store photos in a web service.

• Resource server: A service that gives authorized client applications access to the resource
owner's protected resources. In OAuth 2.0, an authorization server grants authorization to a client
application, based on the resource owner's consent. For example, a resource server can be a web
service that holds a user's photos.

• Client: An application that requests access to the resource owner's protected resources, on behalf
of the resource owner. For example, a client can be a photo printing service requesting access to a
resource owner's photos stored on a web service, after the resource owner gives the client consent
to download the photos.

http://tools.ietf.org/html/rfc6749

Acting As an OAuth 2.0 Resource Server
About IG As an OAuth 2.0 Resource Server

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 125

• Authorization server: A service responsible for authenticating resource owners, and obtaining
their consent to allow client applications to access their resources. For example, AM can act as the
OAuth 2.0 authorization server to authenticate resource owners and obtain their consent. Other
services, such as Google and Facebook can provide OAuth 2.0 authorization services.

The following image illustrates the steps for a client application to access a user's protected
resources, with AM as the authorization server and IG as the resource server:

Handling OAuth 2.0 Requests as an OAuth 2.0 Resource Server

Resource
Owner

Resource
Owner

Client
Applicat ion

Client
Applicat ion

Authorizat ion Server
AM

Authorizat ion Server
AM

Resource Server
IG

Resource Server
IG

1 Authorizat ion request

2 Authorizat ion grant

3 Authorizat ion grant

4 Access token

5 Access token

6 Grab the token from the
request header

7 Request token validat ion
and inform at ion

8 If the token is valid,
respond with inform at ion

9 Validate that the token is
act ive and has sufficient scopes

1 0
Create new context for the
authorizat ion server response,
at ${ contexts.oauth2}

1 1 Protected resources

• The application obtains an authorization grant, representing the resource owner's consent. For
information about the different OAuth 2.0 grant mechanisms supported by AM, see OAuth 2.0 Grant
Flows in AM's OAuth 2.0 Guide.

• The application authenticates to the authorization server and requests an access_token. The
authorization server returns an access_token to the application.

https://backstage.forgerock.com/docs/am/7/oauth2-guide/oauth2-implementing-flows.html
https://backstage.forgerock.com/docs/am/7/oauth2-guide/oauth2-implementing-flows.html

Acting As an OAuth 2.0 Resource Server
Validating Access_Tokens Through the Introspection Endpoint

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 126

An OAuth 2.0 access_token is an opaque string issued by the authorization server. When the client
interacts with the resource server, the client presents the access_token in the Authorization header.
For example:
Authorization: Bearer 7af41ddd-47a4-40dc-b530-a9aa9f7ceda9

Access_tokens are the credentials to access protected resources. The advantage of access_tokens
over passwords or other credentials is that access_tokens can be granted and revoked without
exposing the user's credentials.

The access_token represents the authorization to access protected resources. Because an
access_token is a bearer token, anyone who has the access_token can use it to get the resources.
Access_tokens must therefore be protected, so that requests involving them go over HTTPS.

In OAuth 2.0, the token scopes are strings that identify the scope of access authorized to the client,
but can also be used for other purposes.

• The application supplies the access_token to the resource server, which then resolves and validates
the access_token by using an access_token resolver, as described in "Access Token Resolvers" in
the Configuration Reference.

If the access_token is valid, the resource server permits the client access to the requested resource.

Validating Access_Tokens Through the Introspection Endpoint
This section sets up IG as an OAuth 2.0 resource server, using the introspection endpoint.

For more information about configuring AM as an OAuth 2.0 authorization service, see AM's OAuth
2.0 Guide.

Validate Access_Tokens Through the Introspection Endpoint

Before you start, prepare AM, IG, and the sample application as described in "Example Installation
for This Guide".

1. Set up AM:

a. Select Applications > Agents > Identity Gateway, add an agent with the following values:

• Agent ID: ig_agent

• Password: password

• Token Introspection: Realm Only

b. Select  Identities, and add a user with the following values:

• ID/username: george

https://backstage.forgerock.com/docs/am/7/oauth2-guide/index.html
https://backstage.forgerock.com/docs/am/7/oauth2-guide/index.html

Acting As an OAuth 2.0 Resource Server
Validating Access_Tokens Through the Introspection Endpoint

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 127

• First name: george

• Last name: costanza

• Password: C0stanza

• Email Address: george@example.com

• Employee number: 123

c. Create an OAuth 2.0 Authorization Server:

i. Select  Services > Add a Service > OAuth2 Provider.

ii. Add a service with the default values.

d. Create an OAuth 2.0 Client to request OAuth 2.0 access_tokens:

i. Select  Applications > OAuth 2.0 > Clients, and add a client with the following values:

• Client ID: client-application

• Client secret: password

• Scope(s): mail, employeenumber

ii. (From AM 6.5) On the Advanced tab, select the following value:

• Grant Types: Resource Owner Password Credentials

2. Set up IG

a. Set an environment variable for the IG agent password, and then restart IG:
$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

b. Add the following route to IG:

Linux

$HOME/.openig/config/routes/rs-introspect.json

Windows

%appdata%\OpenIG\config\routes\rs-introspect.json

{
 "name": "rs-introspect",
 "baseURI": "http://app.example.com:8081",
 "condition": "${matches(request.uri.path, '^/rs-introspect$')}",
 "heap": [

Acting As an OAuth 2.0 Resource Server
Validating Access_Tokens Through the Introspection Endpoint

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 128

 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://openam.example.com:8088/openam/",
 "version": "7"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": [
 "mail",
 "employeenumber"
],
 "requireHttps": false,
 "realm": "OpenIG",
 "accessTokenResolver": {
 "name": "TokenIntrospectionAccessTokenResolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
 }
 }
 }
 }
],
 "handler": {

Acting As an OAuth 2.0 Resource Server
Validating Access_Tokens Through the Introspection Endpoint

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 129

 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html"]
 },
 "entity": "<html><body><h2>Decoded access_token: ${contexts.oauth2.accessToken.info}</
h2></body></html>"
 }
 }
 }
 }
}

For information about how to set up the IG route in Studio, see "Resource Server Using the
Introspection Endpoint in Structured Editor" in the Studio User Guide.

Notice the following features of the route:

• The route matches requests to /rs-introspect.

• The OAuth2ResourceServerFilter expects an OAuth 2.0 access_token in the header of the
incoming authorization request, with the scopes mail and employeenumber.

The accessTokenResolver uses the AM server declared in the heap. The introspection endpoint
to validate the access_token is extrapolated from the URL of the AM server.

For convenience in this test, requireHttps is false. In production environments, set it to true.

• After the filter validates the access_token, it creates a new context from the authorization
server response. The context is named oauth2, and can be reached at contexts.oauth2 or
contexts['oauth2'].

The context contains information about the access_token, which can be reached at contexts.
oauth2.accessToken.info. Filters and handlers further down the chain can access the token
info through the context.

If there is no access_token in the request, or token validation does not complete
successfully, the filter returns an HTTP error status to the user-agent, and IG does not
continue processing the request. This is done as specified in the RFC, OAuth 2.0 Bearer
Token Usage.

• The HttpBasicAuthenticationClientFilter adds the credentials to the outgoing token
introspection request.

• The StaticResponseHandler returns the content of the access_token from the context
${contexts.oauth2.accessToken.info}.

3. Test the setup:

http://tools.ietf.org/html/rfc6750
http://tools.ietf.org/html/rfc6750

Acting As an OAuth 2.0 Resource Server
Validating Stateless Access_Tokens With the StatelessAccessTokenResolver

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 130

a. In a terminal window, use a curl command similar to the following to retrieve an
access_token:
$ mytoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=george&password=C0stanza&scope=mail%20employeenumber" \
http://openam.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

b. Validate the access_token returned in the previous step:
$ curl -v http://openig.example.com:8080/rs-introspect --header "Authorization: Bearer ${mytoken}"

{
 active = true,
 scope = employeenumber mail,
 client_id = client - application,
 user_id = george,
 token_type = Bearer,
 exp = 158...907,
 sub = george,
 iss = http://openam.example.com:8088/openam/oauth2, ...
 ...
}

Validating Stateless Access_Tokens With the
StatelessAccessTokenResolver
The StatelessAccessTokenResolver confirms that stateless access_tokens provided by AM are well-
formed, have a valid issuer, have the expected access_token name, and have a valid signature.

After the StatelessAccessTokenResolver resolves an access_token, the OAuth2ResourceServerFilter
checks that the token is within the expiry time, and that it provides the required scopes. For more
information, see "StatelessAccessTokenResolver" in the Configuration Reference. This feature is
supported with OpenAM 13.5, and AM 5 and later versions.

The following sections provide examples of how to validate signed and encrypted access_tokens:

• "Validating Signed Access_Tokens With the StatelessAccessTokenResolver and JwkSetSecretStore"

• "Validating Signed Access_Tokens With the StatelessAccessTokenResolver and
KeyStoreSecretStore"

• "Validating Encrypted Access_Tokens With the StatelessAccessTokenResolver and
KeyStoreSecretStore"

Acting As an OAuth 2.0 Resource Server
Validating Signed Access_Tokens With the StatelessAccessTokenResolver and

JwkSetSecretStore

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 131

Validating Signed Access_Tokens With the StatelessAccessTokenResolver and
JwkSetSecretStore
This section provides examples of how to validate signed access_tokens with the
StatelessAccessTokenResolver, using a JwkSetSecretStore. For more information about
JwkSetSecretStore, see "JwkSetSecretStore" in the Configuration Reference.

Set Up AM

1. Configure an OAuth 2.0 Authorization Provider:

a. Select  Services, and add an OAuth 2.0 Provider.

b. Accept all of the default values, and select Create. The service is added to the  Services list.

c. On the Core tab, select the following option:

• Use Client-Based Access & Refresh Tokens: on

d. On the Advanced tab, select the following options:

• Client Registration Scope Whitelist: myscope

• OAuth2 Token Signing Algorithm: RS256

• Encrypt Client-Based Tokens: Deselected

2. Create an OAuth2 Client to request OAuth 2.0 access_tokens:

a. Select  Applications > OAuth 2.0 > Clients, and add a client with the following values:

• Client ID: client-application

• Client secret: password

• Scope(s): myscope

b. (From AM 6.5) On the Advanced tab, select the following values:

• Grant Types: Resource Owner Password Credentials

• Response Types: code token

c. On the Signing and Encryption tab, include the following setting:

• ID Token Signing Algorithm: RS256

Set Up IG

1. Add the following route to IG:

Acting As an OAuth 2.0 Resource Server
Validating Signed Access_Tokens With the StatelessAccessTokenResolver and

JwkSetSecretStore

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 132

Linux

$HOME/.openig/config/routes/rs-stateless-signed.json

Windows

%appdata%\OpenIG\config\routes\rs-stateless-signed.json

{
 "name": "rs-stateless-signed",
 "condition": "${matches(request.uri.path, '/rs-stateless-signed')}",
 "heap": [
 {
 "name": "SecretsProvider-1",
 "type": "SecretsProvider",
 "config": {
 "stores": [
 {
 "type": "JwkSetSecretStore",
 "config": {
 "jwkUrl": "http://openam.example.com:8088/openam/oauth2/connect/jwk_uri"
 }
 }
]
 }
 }
],
 "handler": {
 "type": "Chain",
 "capture": "all",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": ["myscope"],
 "requireHttps": false,
 "accessTokenResolver": {
 "type": "StatelessAccessTokenResolver",
 "config": {
 "secretsProvider": "SecretsProvider-1",
 "issuer": "http://openam.example.com:8088/openam/oauth2",
 "verificationSecretId": "any.value.in.regex.format"
 }
 }
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html"]
 },
 "entity": "<html><body><h2>Decoded access_token: ${contexts.oauth2.accessToken.info}</h2></
body></html>"

Acting As an OAuth 2.0 Resource Server
Validating Signed Access_Tokens With the StatelessAccessTokenResolver and

JwkSetSecretStore

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 133

 }
 }
 }
 }
}

2. Notice the following features of the route:

• The route matches requests to /rs-stateless-signed.

• A SecretsProvider in the heap declares a JwkSetSecretStore to manage secrets for signed
access_tokens.

• The JwkSetSecretStore specifies the URL to a JWK set on AM, that contains the signing keys.

• The OAuth2ResourceServerFilter expects an OAuth 2.0 access_token in the header of the
incoming authorization request, with the scope myscope.

• The StatelessAccessTokenResolver uses the SecretsProvider to verify the signature of the provided
access_token.

• After the OAuth2ResourceServerFilter validates the access_token, it creates the OAuth2Context
context. For more information, see "OAuth2Context" in the Configuration Reference.

• If there is no access_token in a request, or token validation does not complete successfully, the
filter returns an HTTP error status to the user-agent, and IG does not continue processing the
request. This is done as specified in the RFC OAuth 2.0 Bearer Token Usage.

• The StaticResponseHandler returns the content of the access_token from the context.

Test the Setup For a Signed Access_Token

1. Get an access_token for the demo user, using the scope myscope:
$ mytoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=demo&password=Ch4ng31t&scope=myscope" \
http://openam.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

2. Display the token:
$ echo ${mytoken}

Note that the token is structured as a signed token.

3. Access the route by providing the token returned in the previous step:

http://tools.ietf.org/html/rfc6750

Acting As an OAuth 2.0 Resource Server
Validating Signed Access_Tokens With the StatelessAccessTokenResolver and

KeyStoreSecretStore

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 134

$ curl -v http://openig.example.com:8080/rs-stateless-signed --header "Authorization: Bearer
 ${mytoken}"
...
Decoded access_token: {
sub=demo,
cts=OAUTH2_STATELESS_GRANT,
...

Validating Signed Access_Tokens With the StatelessAccessTokenResolver and
KeyStoreSecretStore

This section provides examples of how to validate signed access_tokens with the
StatelessAccessTokenResolver, using a KeyStoreSecretStore. For more information about
KeyStoreSecretStore, see "KeyStoreSecretStore" in the Configuration Reference.

Set Up Keys for Signing

1. Locate the following directories for keys, keystores, and certificates, and in a terminal create
variables for them:

• Directory where the keystore is created: keystore_directory

• AM keystore directory: am_keystore_directory

• IG keystore directory: ig_keystore_directory

2. Set up the keystore for signing keys:

a. Generate a private key called signature-key, and a corresponding public certificate called
x509certificate.pem:
$ openssl req -x509 \
-newkey rsa:2048 \
-nodes \
-subj "/CN=openig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \
-keyout $keystore_directory/signature-key.key \
-out $keystore_directory/x509certificate.pem \
-days 365
...
writing new private key to '$keystore_directory/signature-key.key'

b. Convert the private key and certificate files into a PKCS12 file, called signature-key, and store
them in a keystore named keystore.p12:
$ openssl pkcs12 \
-export \
-in $keystore_directory/x509certificate.pem \
-inkey $keystore_directory/signature-key.key \
-out $keystore_directory/keystore.p12 \
-passout pass:password \
-name signature-key

Acting As an OAuth 2.0 Resource Server
Validating Signed Access_Tokens With the StatelessAccessTokenResolver and

KeyStoreSecretStore

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 135

c. List the keys in keystore.p12:
$ keytool -list \
-v \
-keystore "$keystore_directory/keystore.p12" \
-storepass "password" \
-storetype PKCS12

...
Your keystore contains 1 entry
Alias name: signature-key

3. Set up keys for AM:

a. Copy the signing key keystore.p12 to AM:
$ cp $keystore_directory/keystore.p12 $am_keystore_directory/AM_keystore.p12

b. List the keys in the AM keystore:
$ keytool -list \
-v \
-keystore "$am_keystore_directory/AM_keystore.p12" \
-storepass "password" \
-storetype PKCS12
...
Your keystore contains 1 entry
Alias name: signature-key

c. Add a file called keystore.pass, with the content password:
$ cd $am_keystore_directory
$ echo -n password > keystore.pass

The filename corresponds to the secret ID of the store password and entry password for the
KeyStoreSecretStore.

d. Restart AM.

4. Set up keys for IG:

a. Import the public certificate to the IG keystore, with the alias verification-key:
$ keytool -import \
-trustcacerts \
-rfc \
-alias verification-key \
-file "$keystore_directory/x509certificate.pem" \
-keystore "$ig_keystore_directory/IG_keystore.p12" \
-storetype PKCS12 \
-storepass "password"

...
Trust this certificate? [no]: yes
Certificate was added to keystore

Acting As an OAuth 2.0 Resource Server
Validating Signed Access_Tokens With the StatelessAccessTokenResolver and

KeyStoreSecretStore

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 136

b. List the keys in the IG keystore:
$ keytool -list \
-v \
-keystore "$ig_keystore_directory/IG_keystore.p12" \
-storepass "password" \
-storetype PKCS12

...
Your keystore contains 1 entry
Alias name: verification-key

c. In the IG configuration, set an environment variable for the keystore password:
$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

d. Restart IG.

Validate Signed Access_Tokens With the StatelessAccessTokenResolver and
KeyStoreSecretStore

1. Set up AM:

a. Create a KeyStoreSecretStore to manage the new AM keystore:

i. In AM, select  Secret Stores, and then add a secret store with the following values:

• Secret Store ID: keystoresecretstore

• Store Type: Keystore

• File: am_keystore_directory/AM_keystore.p12

• Keystore type: PKCS12

• Store password secret ID: keystore.pass

• Entry password secret ID: keystore.pass

ii. Select the Mappings tab, and add a mapping with the following values:

• Secret ID: am.services.oauth2.stateless.signing.RSA

• Aliases: signature-key

The mapping sets signature-key as the active alias to use for signature generation.

b. Create a FileSystemSecretStore to manage secrets for the KeyStoreSecretStore:

• select  Secret Stores, and then create a secret store with the following configuration:

Acting As an OAuth 2.0 Resource Server
Validating Signed Access_Tokens With the StatelessAccessTokenResolver and

KeyStoreSecretStore

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 137

• Secret Store ID: filesystemsecretstore

• Store Type: File System Secret Volumes

• Directory: am_keystore_directory/secrets

• File format: Plain text

c. Configure an OAuth 2.0 Authorization Provider:

i. Select  Services, and add an OAuth 2.0 Provider.

ii. Accept all of the default values, and select Create. The service is added to the  Services
list.

iii. On the Core tab, select the following option:

• Use Client-Based Access & Refresh Tokens: on

iv. On the Advanced tab, select the following options:

• Client Registration Scope Whitelist: myscope

• OAuth2 Token Signing Algorithm: RS256

• Encrypt Client-Based Tokens: Deselected

d. Create an OAuth2 Client to request OAuth 2.0 access_tokens:

i. Select  Applications > OAuth 2.0 > Clients, and add a client with the following values:

• Client ID: client-application

• Client secret: password

• Scope(s): myscope

ii. (From AM 6.5) On the Advanced tab, select the following values:

• Grant Types: Resource Owner Password Credentials

• Response Types: code token

iii. On the Signing and Encryption tab, include the following setting:

• ID Token Signing Algorithm: RS256

2. Set up IG:

• Add the following route to IG, and replace ig_keystore_directory:

Acting As an OAuth 2.0 Resource Server
Validating Signed Access_Tokens With the StatelessAccessTokenResolver and

KeyStoreSecretStore

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 138

Linux

$HOME/.openig/config/routes/rs-stateless-signed-ksss.json

Windows

%appdata%\OpenIG\config\routes\rs-stateless-signed-ksss.json

{
 "name": "rs-stateless-signed-ksss",
 "condition" : "${matches(request.uri.path, '/rs-stateless-signed-ksss')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "KeyStoreSecretStore-1",
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "<ig_keystore_directory>/IG_keystore.p12",
 "storeType": "PKCS12",
 "storePassword": "keystore.secret.id",
 "keyEntryPassword": "keystore.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "mappings": [
 {
 "secretId": "stateless.access.token.verification.key",
 "aliases": ["verification-key"]
 }
]
 }
 }
],
 "handler" : {
 "type" : "Chain",
 "capture" : "all",
 "config" : {
 "filters" : [{
 "name" : "OAuth2ResourceServerFilter-1",
 "type" : "OAuth2ResourceServerFilter",
 "config" : {
 "scopes" : ["myscope"],
 "requireHttps" : false,
 "accessTokenResolver": {
 "type": "StatelessAccessTokenResolver",
 "config": {
 "secretsProvider": "KeyStoreSecretStore-1",
 "issuer": "http://openam.example.com:8088/openam/oauth2",
 "verificationSecretId": "stateless.access.token.verification.key"
 }
 }
 }
 }],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,

Acting As an OAuth 2.0 Resource Server
Validating Signed Access_Tokens With the StatelessAccessTokenResolver and

KeyStoreSecretStore

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 139

 "headers": {
 "Content-Type": ["text/html"]
 },
 "entity": "<html><body><h2>Decoded access_token: ${contexts.oauth2.accessToken.info}</
h2></body></html>"
 }
 }
 }
 }
}

Notice the following features of the route:

• The route matches requests to /rs-stateless-signed-ksss.

• The keystore password is provided by the SystemAndEnvSecretStore in the heap.

• The OAuth2ResourceServerFilter expects an OAuth 2.0 access_token in the header of the
incoming authorization request, with the scope myscope.

• The accessTokenResolver uses a StatelessAccessTokenResolver to resolve and verify the
authenticity of the access_token. The secret is provided by the KeyStoreSecretStore in the
heap.

• After the OAuth2ResourceServerFilter validates the access_token, it creates the
OAuth2Context context. For more information, see "OAuth2Context" in the Configuration
Reference.

• If there is no access_token in a request, or if the token validation does not complete
successfully, the filter returns an HTTP error status to the user-agent, and IG stops
processing the request, as specified in the RFC, OAuth 2.0 Bearer Token Usage.

• The StaticResponseHandler returns the content of the access_token from the context.

3. Test the setup for a signed access_token:

a. Get an access_token for the demo user, using the scope myscope:
$ mytoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=demo&password=Ch4ng31t&scope=myscope" \
http://openam.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

b. Display the token:
$ echo ${mytoken}

c. Access the route by providing the token returned in the previous step:

http://tools.ietf.org/html/rfc6750

Acting As an OAuth 2.0 Resource Server
Validating Encrypted Access_Tokens With the StatelessAccessTokenResolver and

KeyStoreSecretStore

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 140

$ curl -v http://openig.example.com:8080/rs-stateless-signed-ksss --header "Authorization: Bearer
 ${mytoken}"

...
Decoded access_token: {
sub=demo,
cts=OAUTH2_STATELESS_GRANT,
...

Validating Encrypted Access_Tokens With the StatelessAccessTokenResolver and
KeyStoreSecretStore

Set Up Keys for Encryption

1. Locate the following directories for keys, keystores, and certificates, and in a terminal create
variables for them:

• Directory where the keystore is created: keystore_directory

• AM keystore directory: am_keystore_directory

• IG keystore directory: ig_keystore_directory

2. Set up keys for AM:

a. Generate the encryption key:
$ keytool -genseckey \
-alias encryption-key \
-dname "CN=openig.example.com, OU=example, O=com, L=fr, ST=fr, C=fr" \
-keystore "$am_keystore_directory/AM_keystore.p12" \
-storetype PKCS12 \
-storepass "password" \
-keyalg AES \
-keysize 256

b. List the keys in the AM keystore:
$ keytool -list \
-v \
-keystore "$am_keystore_directory/AM_keystore.p12" \
-storepass "password" \
-storetype PKCS12

...
Your keystore contains 1 entry
Alias name: encryption-key

c. Add a file called keystore.pass, with the content password:
$ cd $am_keystore_directory
$ echo -n password > keystore.pass

Acting As an OAuth 2.0 Resource Server
Validating Encrypted Access_Tokens With the StatelessAccessTokenResolver and

KeyStoreSecretStore

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 141

The filename corresponds to the secret ID of the store password and entry password for the
KeyStoreSecretStore.

d. Restart AM.

3. Set up keys for IG:

a. Import encryption-key into the IG keystore, with the alias decryption-key:
$ keytool -importkeystore \
-srcalias encryption-key \
-srckeystore "$am_keystore_directory/AM_keystore.p12" \
-srcstoretype PKCS12 \
-srcstorepass "password" \
-destkeystore "$ig_keystore_directory/IG_keystore.p12" \
-deststoretype PKCS12 \
-destalias decryption-key \
-deststorepass "password" \
-destkeypass "password"

b. List the keys in the IG keystore:
$ keytool -list \
-v \
-keystore "$ig_keystore_directory/IG_keystore.p12" \
-storepass "password" \
-storetype PKCS12

...
Your keystore contains 1 entry
Alias name: decryption-key

c. In the IG configuration, set an environment variable for the keystore password:
$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

d. Restart IG.

Validate Encrypted Access_Tokens With the StatelessAccessTokenResolver and
KeyStoreSecretStore

1. Set up AM:

a. Set up AM as described in "Validate Signed Access_Tokens With the
StatelessAccessTokenResolver and KeyStoreSecretStore".

b. Add a mapping for the encryption keystore:

i. select  Secret Stores > keystoresecretstore.

ii. Select the Mappings tab, and add a mapping with the following values:

Acting As an OAuth 2.0 Resource Server
Validating Encrypted Access_Tokens With the StatelessAccessTokenResolver and

KeyStoreSecretStore

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 142

• Secret ID: am.services.oauth2.stateless.token.encryption

• Alias: encryption-key

c. Enable token encryption on the OAuth 2.0 Authorization Provider:

i. Select  Services > OAuth2 Provider.

ii. On the Advanced tab, select Encrypt Client-Based Tokens.

2. Set up IG:

a. Add the following route to IG, and replace ig_keystore_directory:
Linux

$HOME/.openig/config/routes/rs-stateless-encrypted.json

Windows

%appdata%\OpenIG\config\routes\rs-stateless-encrypted.json

{
 "name": "rs-stateless-encrypted",
 "condition": "${matches(request.uri.path, '/rs-stateless-encrypted')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "KeyStoreSecretStore-1",
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "<ig_keystore_directory>/IG_keystore.p12",
 "storeType": "PKCS12",
 "storePassword": "keystore.secret.id",
 "keyEntryPassword": "keystore.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "mappings": [
 {
 "secretId": "stateless.access.token.decryption.key",
 "aliases": ["decryption-key"]
 }
]
 }
 }
],
 "handler": {
 "type": "Chain",
 "capture": "all",
 "config": {
 "filters": [{
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": ["myscope"],

Acting As an OAuth 2.0 Resource Server
Validating Encrypted Access_Tokens With the StatelessAccessTokenResolver and

KeyStoreSecretStore

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 143

 "requireHttps": false,
 "accessTokenResolver": {
 "type": "StatelessAccessTokenResolver",
 "config": {
 "secretsProvider": "KeyStoreSecretStore-1",
 "issuer": "http://openam.example.com:8088/openam/oauth2",
 "decryptionSecretId": "stateless.access.token.decryption.key"
 }
 }
 }
 }],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html"]
 },
 "entity": "<html><body><h2>Decoded access_token: ${contexts.oauth2.accessToken.info}</
h2></body></html>"
 }
 }
 }
 }
}

b. Notice the following features of the route compared to rs-stateless-signed.json, used
in: "Validating Signed Access_Tokens With the StatelessAccessTokenResolver and
KeyStoreSecretStore":

• The route matches requests to /rs-stateless-encrypted.

• The OAuth2ResourceServerFilter and KeyStoreSecretStore refer to the configuration for a
decryption key instead of a verification key.

Test the Setup For an Encrypted Access_Token

1. Get an access_token for the demo user, using the scope myscope:
$ mytoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=demo&password=Ch4ng31t&scope=myscope" \
http://openam.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

2. Display the token:
$ echo ${mytoken}

Note that the token is structured as an encrypted token.

3. Access the route by providing the token returned in the previous step:

Acting As an OAuth 2.0 Resource Server
Validating Certificate-Bound Access Tokens

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 144

$ curl -v http://openig.example.com:8080/rs-stateless-encrypted --header "Authorization: Bearer
 ${mytoken}"
...
Decoded access_token: {
sub=demo,
cts=OAUTH2_STATELESS_GRANT,
...

Validating Certificate-Bound Access Tokens
Clients can authenticate to AM through mutual TLS (mTLS) and X.509 certificates. Certificates must
be self-signed or use public key infrastructure (PKI), as described in version 12 of the draft OAuth 2.0
Mutual TLS Client Authentication and Certificate Bound Access Tokens.

When a client requests an access_token from AM through mTLS, AM can use a confirmation key
to bind the access_token to the presented client certificate. The confirmation key is the certificate
thumbprint, computed as base64url-encode(sha256(der(certificate))). The access_token is then
certificate-bound. For more information, see Authenticating Clients Using Mutual TLS in AM's OAuth
2.0 Guide.

When the client connects to IG by using that certificate, IG can verify that the confirmation key
corresponds to the presented certificate. This proof-of-possession interaction ensures that only the
client in possession of the key corresponding to the certificate can use the access_token to access
protected resources.

The following sections provide examples of how to validate certificate-bound access_tokens:

• "mTLS Using Standard TLS Client Certificate Authentication"

• "mTLS Using Trusted Headers"

mTLS Using Standard TLS Client Certificate Authentication

IG can validate the thumbprint of certificate-bound access_tokens by reading the client certificate
from the TLS connection. When the web container that is running IG performs a successful TLS
connection handshake, the connected client is trusted.

For this example, the client must be connected directly to IG through a TLS connection, for which IG
is the TLS termination point. If TLS is terminated at a reverse proxy or load balancer before IG, use
the example in "mTLS Using Trusted Headers".

The following images illustrate the example:

https://tools.ietf.org/html/draft-ietf-oauth-mtls
https://tools.ietf.org/html/draft-ietf-oauth-mtls
https://backstage.forgerock.com/docs/am/7/oauth2-guide/client-auth-mtls.html

Acting As an OAuth 2.0 Resource Server
mTLS Using Standard TLS Client Certificate Authentication

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 145

Connections for mTLS Using Standard TLS Client Certificate Authentication

Clie n t

AM

Bin d c lie n t ce rt ifica te to
toke n with con firm a t ion

ke y

IG

Ve rify con firm a t ion ke y
m a tch e s c lie n t ce rt ifica te

Clie n t re g is t ra t ion

Toke n b ou n d to ce rt ifica te

In t ros p e ct ion

TLS con n e ct ion

- Clie n t a u th e n t ica t ion

- No ce rt ifica te va lid a t ion

- Sa m e c lie n t ce rt ifica te p re s e n te d

TLSTLS

TLS

Ce rt ifica te

Toke n b ou n d to ce rt ifica te

Toke n b ou n d to ce rt ifica te

Ce rt ifica te

Ce rt ifica te

Acting As an OAuth 2.0 Resource Server
mTLS Using Standard TLS Client Certificate Authentication

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 146

Data Flow for mTLS Using Standard TLS Client Certificate Authentication

Client

Client

Authorizat ion Server
AM

Authorizat ion Server
AM

Resource Server
IG

Resource Server
IG

Obt ain Access_Token

1 (TLS) Request access_token

2 Bind the client cert ificate
thum brint to the access_token

3 (TLS) Return access_token

Access a Resource

4 (TLS) Send request with access_token on m utual TLS connect ion
(client is t rusted by the resource server)

5 Read client cert ificate from incom ing
TLS connect ion, and com pute its thum bprint

6 Read client cert ificate bound to token by AM,
through int rospect ion, and find its thum bprint

7 Confirm that the two thum bprints m atch

8 Cont inue standard OAuth 2.0 flow

9 (TLS) Allow access to protected resources

Perform the procedures in this section to set up and test mTLS using standard TLS client certificate
authentication:

• "Set Up Keystores and Truststores"

• "Set Up AM for HTTPS (Server-Side) in Tomcat"

• "Set Up IG for HTTPS (Server-Side) in Tomcat"

• "Set Up IG for HTTPS (Server-Side) in Standalone Mode"

• "Set Up AM As an Authorization Server With mTLS"

Acting As an OAuth 2.0 Resource Server
mTLS Using Standard TLS Client Certificate Authentication

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 147

• "Set Up IG As a Resource Server With mTLS"

• "Test the Setup"

Set Up Keystores and Truststores

1. Locate the following keystore directories, and in a terminal create variables for them:

• oauth2_client_keystore_directory

• am_keystore_directory

• ig_keystore_directory

2. Create self-signed RSA key pairs for AM, IG, and the client:
$ keytool -genkeypair \
-alias openam-server \
-keyalg RSA \
-keysize 2048 \
-keystore $am_keystore_directory/keystore.p12 \
-storepass changeit \
-storetype PKCS12 \
-keypass changeit \
-validity 360 \
-dname CN=openam.example.com,O=Example,C=FR

$ keytool -genkeypair \
-alias openig-server \
-keyalg RSA \
-keysize 2048 \
-keystore $ig_keystore_directory/keystore.p12 \
-storepass changeit \
-storetype PKCS12 \
-keypass changeit \
-validity 360 \
-dname CN=openig.example.com,O=Example,C=FR

$ keytool -genkeypair \
-alias oauth2-client \
-keyalg RSA \
-keysize 2048 \
-keystore $oauth2_client_keystore_directory/keystore.p12 \
-storepass changeit \
-storetype PKCS12 \
-keypass changeit \
-validity 360 \
-dname CN=test

3. Export the certificates to .pem so that the curl client can verify the identity of the AM and IG
servers:

Acting As an OAuth 2.0 Resource Server
mTLS Using Standard TLS Client Certificate Authentication

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 148

$ keytool -export \
-rfc \
-alias openam-server \
-keystore $am_keystore_directory/keystore.p12 \
-storepass changeit \
-storetype PKCS12 \
-file $am_keystore_directory/openam-server.cert.pem

Certificate stored in file .../openam-server.cert.pem

$ keytool -export \
-rfc \
-alias openig-server \
-keystore $ig_keystore_directory/keystore.p12 \
-storepass changeit \
-storetype PKCS12 \
-file $ig_keystore_directory/openig-server.cert.pem

Certificate stored in file openig-server.cert.pem

4. Extract the certificate and client private key to .pem so that the curl command can identity itself
as the client for the HTTPS connection:
$ keytool -export \
-rfc \
-alias oauth2-client \
-keystore $oauth2_client_keystore_directory/keystore.p12 \
-storepass changeit \
-storetype PKCS12 \
-file $oauth2_client_keystore_directory/client.cert.pem

Certificate stored in file .../client.cert.pem

$ openssl pkcs12 \
-in $oauth2_client_keystore_directory/keystore.p12 \
-nocerts \
-nodes \
-passin pass:changeit \
-out $oauth2_client_keystore_directory/client.key.pem

...verified OK

You can now delete the client keystore.

5. Create the CACerts truststore so that AM can validate the client identity:
$ keytool -import \
-noprompt \
-trustcacerts \
-file $oauth2_client_keystore_directory/client.cert.pem \
-keystore $oauth2_client_keystore_directory/cacerts.p12 \
-storepass changeit \
-storetype PKCS12 \
-alias client-cert

Certificate was added to keystore

Acting As an OAuth 2.0 Resource Server
mTLS Using Standard TLS Client Certificate Authentication

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 149

Set Up AM for HTTPS (Server-Side) in Tomcat

This procedure sets up AM for HTTPS in Tomcat. For more information, see Configuring AM's
Container for HTTPS in AM's Installation Guide.

1. Add the following connector configuration to AM's Tomcat server.xml, replacing the values for the
keystore directories with your paths:
<Connector port="8445" protocol="HTTP/1.1" SSLEnabled="true" scheme="https" secure="true">
 <SSLHostConfig protocols="+TLSv1.2,-TLSv1.1,-TLSv1,-SSLv2Hello,-SSLv3"
 certificateVerification="optionalNoCA"
 truststoreFile="oauth2_client_keystore_directory/cacerts.p12"
 truststorePassword="changeit"
 truststoreType="PKCS12">
 <Certificate certificateKeystoreFile="am_keystore_directory/keystore.p12"
 certificateKeystorePassword="changeit"
 certificateKeystoreType="PKCS12"/>
 </SSLHostConfig>
</Connector>

The optionalNoCA property allows the presentation of client certificates to be optional. Tomcat does
not check them against the list of trusted CAs.

2. In AM, export an environment variable for the base64-encoded value of the password (changeit)
for the cacerts.p12 truststore:
$ export PASSWORDSECRETID='Y2hhbmdlaXQ='

3. Restart AM, and make sure that you can access it on the secure port https://
openam.example.com:8445/openam.

Set Up IG for HTTPS (Server-Side) in Tomcat

This procedure sets up IG for HTTPS in Tomcat. For other container types, see "Configuring IG for
HTTPS (Server-Side) in Jetty" and "Configuring IG for HTTPS (Server-Side) in JBoss EAP".

If IG is installed in standalone mode, follow "Set Up IG for HTTPS (Server-Side) in Standalone Mode"
instead.

1. Add the following connector configuration to IG's Tomcat server.xml, replacing the values for the
keystore directories with your paths:
<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true" scheme="https" secure="true">
 <SSLHostConfig protocols="+TLSv1.2,-TLSv1.1,-TLSv1,-SSLv2Hello,-SSLv3"
 certificateVerification="optionalNoCA"
 truststoreFile="oauth2_client_keystore_directory/cacerts.p12"
 truststorePassword="changeit"
 truststoreType="PKCS12">
 <Certificate certificateKeystoreFile="ig_keystore_directory/keystore.p12"
 certificateKeystorePassword="changeit"
 certificateKeystoreType="PKCS12" />
 </SSLHostConfig>
</Connector>

https://backstage.forgerock.com/docs/am/7/install-guide/configure-container-HTTPS.html
https://backstage.forgerock.com/docs/am/7/install-guide/configure-container-HTTPS.html
https://openam.example.com:8445/openam
https://openam.example.com:8445/openam

Acting As an OAuth 2.0 Resource Server
mTLS Using Standard TLS Client Certificate Authentication

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 150

The optionalNoCA property allows the presentation of client certificates to be optional. Tomcat does
not check them against the list of trusted CAs.

2. Restart IG, and make sure that you can access the welcome page on the secure port https://
openig.example.com:8443.

Set Up IG for HTTPS (Server-Side) in Standalone Mode

This procedure sets up IG for HTTPS in standalone mode. Before you start, install IG in standalone
mode, as described in "Downloading and Starting IG in Standalone Mode" in the Getting Started
Guide.

When IG is installed in web container mode, follow "Set Up IG for HTTPS (Server-Side) in Tomcat"
instead.

1. In ig_keystore_directory, add a file called keystore.pass containing the keystore password:
$ cd $ig_keystore_directory
$ echo -n changeit > keystore.pass

2. Add the following route to IG, replacing instances of ig_keystore_directory and
oauth2_client_keystore_directory with your path:
Linux

$HOME/.openig/config/admin.json

Windows

%appdata%\OpenIG\config\admin.json

{
 "mode": "DEVELOPMENT",
 "connectors": [
 {
 "port": 8080
 },
 {
 "port": 8443,
 "tls": {
 "type": "ServerTlsOptions",
 "config": {
 "alpn": {
 "enabled": true
 },
 "clientAuth": "REQUEST",
 "keyManager": {
 "type": "SecretsKeyManager",
 "config": {
 "signingSecretId": "key.manager.secret.id",
 "secretsProvider": {
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "<ig_keystore_directory>/keystore.p12",
 "storePassword": "keystore.pass",

https://openig.example.com:8443
https://openig.example.com:8443

Acting As an OAuth 2.0 Resource Server
mTLS Using Standard TLS Client Certificate Authentication

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 151

 "secretsProvider": "SecretsPasswords",
 "mappings": [
 {
 "secretId": "key.manager.secret.id",
 "aliases": [
 "openig-server"
]
 }
]
 }
 }
 }
 },
 "trustManager": {
 "type": "SecretsTrustManager",
 "config": {
 "verificationSecretId": "trust.manager.secret.id",
 "secretsProvider": {
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "<oauth2_client_keystore_directory>/cacerts.p12",
 "storePassword": "keystore.pass",
 "secretsProvider": "SecretsPasswords",
 "mappings": [
 {
 "secretId": "trust.manager.secret.id",
 "aliases": [
 "client-cert"
]
 }
]
 }
 }
 }
 }
 }
 }
 }
],
 "heap": [
 {
 "name": "SecretsPasswords",
 "type": "FileSystemSecretStore",
 "config": {
 "directory": "<ig_keystore_directory>",
 "format": "PLAIN"
 }
 }
]
}

Notice the following features of the route:

• IG starts on port 8080, and on 8443 over TLS.

• IG's private keys for TLS are managed by the SecretsKeyManager, which references the
KeyStoreSecretStore that holds the keys.

Acting As an OAuth 2.0 Resource Server
mTLS Using Standard TLS Client Certificate Authentication

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 152

• The password of the KeyStoreSecretStore is provided by the FileSystemSecretStore.

• The KeyStoreSecretStore maps the keystore alias to the secret ID for retrieving the private
signing keys.

3. Start IG:
$ /path/to/identity-gateway/bin/start.sh
...
... started in 1234ms on ports : [8080 8443]

Set Up AM As an Authorization Server With mTLS

Before you start, install and configure AM on http://openam.example.com:8088/openam, with the
default configuration. If you use a different configuration, substitute in the tutorial accordingly.

1. Select Applications > Agents > Identity Gateway, add an agent with the following values:

• Agent ID: ig_agent

• Password: password

• Token Introspection: Realm Only

2. Configure an OAuth 2.0 Authorization Server:

a. Select  Services > Add a Service > OAuth2 Provider, and add a service with the default
values.

b. On the Advanced tab, select the following value:

• Support TLS Certificate-Bound Access Tokens: enabled

3. Configure an OAuth 2.0 client to request access_tokens:

a. Select  Applications > OAuth 2.0 > Clients, and add a client with the following values:

• Client ID: client-application

• Client secret: password

• Scope(s): test

b. On the Advanced tab, select the following values:

• Grant Types: Client Credentials

The password is the only grant type used by the client in the example.

• Token Endpoint Authentication Method: tls_client_auth

http://openam.example.com:8088/openam

Acting As an OAuth 2.0 Resource Server
mTLS Using Standard TLS Client Certificate Authentication

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 153

c. On the signing and Encryption tab, select the following values:

• mTLS Subject DN: CN=test

When this option is set, AM requires the subject DN in the client certificate to have the
same value. This ensures that the certificate is from the client, and not just any valid
certificate trusted by the trust manager.

• Use Certificate-Bound Access Tokens: Enabled

4. Set up AM secret stores to trust the client certificate:

a. Select  Secret Stores, and add a store with the following values:

• Secret Store ID: trusted-ca-certs

• Store Type: Keystore

• File: $oauth2_client_keystore_directory/cacerts.p12

• Keystore type: PKCS12

• Store password secret ID: passwordSecretId

b. Select Mappings and add the following mapping:

• Secret ID: am.services.oauth2.tls.client.cert.authentication

• Aliases: client-cert

When the token endpoint authentication method is tls_client_auth, this secret is used to
validate the client certificate. Add an alias in this list for each client that uses tls_client_auth.
For certificates signed by a CA, add the CA certificate to the list.

Set Up IG As a Resource Server With mTLS

1. Set an environment variable for the IG agent password, and then restart IG:
$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

2. Add the following route to IG:

Linux

$HOME/.openig/config/routes/mtls-certificate.json

Windows

%appdata%\OpenIG\config\routes\mtls-certificate.json

Acting As an OAuth 2.0 Resource Server
mTLS Using Standard TLS Client Certificate Authentication

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 154

{
 "name": "mtls-certificate",
 "condition": "${matches(request.uri.path, '/mtls-certificate')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://openam.example.com:8088/openam/",
 "version": "7"
 }
 }
],
 "handler": {
 "type": "Chain",
 "capture": "all",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": [
 "test"
],
 "requireHttps": false,
 "accessTokenResolver": {
 "type": "ConfirmationKeyVerifierAccessTokenResolver",
 "config": {
 "delegate": {
 "name": "token-resolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }

Acting As an OAuth 2.0 Resource Server
mTLS Using Standard TLS Client Certificate Authentication

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 155

 }
 }
 }
 }
 }
 }
 }
],
 "handler": {
 "name": "StaticResponseHandler-1",
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/plain"]
 },
 "entity": "mTLS\n Valid token: ${contexts.oauth2.accessToken.token}\n Confirmation keys:
 ${contexts.oauth2}"
 }
 }
 }
 }
}

Notice the following features of the route:

• The route matches requests to /mtls-certificate.

• The OAuth2ResourceServerFilter uses the ConfirmationKeyVerifierAccessTokenResolver to
validate the certificate thumbprint against the thumbprint from the resolved access_token,
provided by AM.

The ConfirmationKeyVerifierAccessTokenResolver then delegates token resolution to the
TokenIntrospectionAccessTokenResolver.

• The providerHandler adds an authorization header to the request, containing the username and
password of the OAuth 2.0 client with the scope to examine (introspect) access_tokens.

• The OAuth2ResourceServerFilter checks that the resolved token has the required scopes, and
injects the token info into the context.

• The StaticResponseHandler returns the content of the access_token from the context.

Test the Setup

1. Get an access_token from AM, over TLS:

Acting As an OAuth 2.0 Resource Server
mTLS Using Standard TLS Client Certificate Authentication

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 156

$ mytoken=$(curl --request POST \
--cacert $am_keystore_directory/openam-server.cert.pem \
--cert $oauth2_client_keystore_directory/client.cert.pem \
--key $oauth2_client_keystore_directory/client.key.pem \
--header 'cache-control: no-cache' \
--header 'content-type: application/x-www-form-urlencoded' \
--data 'client_id=client-application&grant_type=client_credentials&scope=test' \
https://openam.example.com:8445/openam/oauth2/access_token | jq -r .access_token)

2. Introspect the access_token on AM:
$ curl --request POST \
-u ig_agent:password \
--header 'content-type: application/x-www-form-urlencoded' \
--data token=${mytoken} \
http://openam.example.com:8088/openam/oauth2/realms/root/introspect | jq

{
 "active": true,
 "scope": "test",
 "client_id": "client-application",
 "user_id": "client-application",
 "token_type": "Bearer",
 "exp": 1550590833,
 "sub": "client-application",
 "iss": "http://openam.example.com:8088/openam/oauth2",
 "cnf": {
 "x5t#S256": "T4u...R9Q"
 }
}

The cnf property indicates the value of the confirmation code, as follows:

• x5: X509 certificate

• t: thumbprint

• #: separator

• S256: algorithm used to hash the raw certificate bytes

3. Access the IG route to validate the token's confirmation thumbprint with the
ConfirmationKeyVerifierAccessTokenResolver:
$ curl --request POST \
--cacert $ig_keystore_directory/openig-server.cert.pem \
--cert $oauth2_client_keystore_directory/client.cert.pem \
--key $oauth2_client_keystore_directory/client.key.pem \
--header "authorization: Bearer ${mytoken}" \
https://openig.example.com:8443/mtls-certificate

mTLS
 Valid token: 2Bp...s_k
 Confirmation keys: {
 ...
 }

Acting As an OAuth 2.0 Resource Server
mTLS Using Trusted Headers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 157

The validated token and confirmation keys are displayed.

mTLS Using Trusted Headers

IG can validate the thumbprint of certificate-bound access_tokens by reading the client certificate
from a configured, trusted HTTP header.

Use this method when TLS is terminated at a reverse proxy or load balancer before IG. IG cannot
authenticate the client through the TLS connection's client certificate because:

• If the connection is over TLS, the connection presents the certificate of the TLS termination point
before IG.

• If the connection is not over TLS, the connection presents no client certificate.

If the client is connected directly to IG through a TLS connection, for which IG is the TLS termination
point, use the example in "mTLS Using Standard TLS Client Certificate Authentication".

Configure the proxy or load balancer to:

• Forward the encoded certificate to IG in the trusted header.

Encode the certificate in an HTTP-header compatible format that can convey a full certificate, so
that IG can rebuild the certificate.

• Strip the trusted header from incoming requests, and change the default header name to something
an attacker can't guess.

Because there is a trust relationship between IG and the TLS termination point, IG doesn't
authenticate the contents of the trusted header. IG accepts any value in a header from a trusted
TLS termination point.

Use this example when the IG instance is running behind a load balancer or other ingress point. If
the IG instance is running behind the TLS termination point, consider the example in "mTLS Using
Standard TLS Client Certificate Authentication".

The following image illustrates the connections and certificates required by the example:

Acting As an OAuth 2.0 Resource Server
mTLS Using Trusted Headers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 158

Connections for mTLS Using Trusted Headers

Clie n t

AM

Bin d c lie n t ce rt ifica te to
toke n with con firm a t ion

ke y

IG

Ve rify con firm a t ion ke y
m a tch e s c lie n t ce rt ifica te

Clie n t re g is t ra t ion

Toke n b ou n d to ce rt ifica te

In t ros p e ct ion

TLS con n e ct ion

- Clie n t a u th e n t ica t ion

- No ce rt ifica te va lid a t ion

- Sa m e c lie n t ce rt ifica te p re s e n te d

TLSTLS

TLS

Toke n b ou n d to ce rt ifica te

Proxy

(Ex, NGNIX)

Ce rt ifica te

Ce rt ifica te

Ce rt ifica te

Acting As an OAuth 2.0 Resource Server
mTLS Using Trusted Headers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 159

Data Flow for mTLS Using Trusted Headers

Client

Client

Authorizat ion Server
AM

Authorizat ion Server
AM

Load Balancer
or Reverse Proxy

Load Balancer
or Reverse Proxy

Resource Server
IG

Resource Server
IG

Obt ain Access_Token

1 (TLS) Request access_token

2 Bind the client cert ificate
thum brint to the access_token

3 (TLS) Return access_token

Access a Resource

4 (TLS) Send request with access_token

5 Strip the t rusted header from
the request , to prevent forgery

6 Read client cert ificate from the
incom ing TLS connect ion

7 Add a nam ed header to request ,
containing the client cert ificate

8 Forward incom ing request , containing
access_token and client cert ificate

9 Read client cert ificate from nam ed HTTP
header, and com pute its thum bprint

1 0 Read client cert ificate bound to token by AM,
through int rospect ion, and find its thum bprint

1 1 Confirm that the two thum bprints m atch

1 2 Cont inue standard OAuth 2.0 flow

1 3 Allow access to protected resources

1 4 (TLS) Allow access to protected resources

Set Up mTLS Using Trusted Headers

1. Set up the keystores, truststores, AM, and IG as described in "mTLS Using Standard TLS Client
Certificate Authentication".

2. Base64-encode the value of $oauth2_client_keystore_directory/client.cert.pem. The value is used in
the final POST.

3. Add the following route to IG:

Acting As an OAuth 2.0 Resource Server
mTLS Using Trusted Headers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 160

Linux

$HOME/.openig/config/routes/mtls-header.json

Windows

%appdata%\OpenIG\config\routes\mtls-header.json

{
 "name": "mtls-header",
 "condition": "${matches(request.uri.path, '/mtls-header')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://openam.example.com:8088/openam/",
 "version": "7"
 }
 }
],
 "handler": {
 "type": "Chain",
 "capture": "all",
 "config": {
 "filters": [
 {
 "name": "CertificateThumbprintFilter-1",
 "type": "CertificateThumbprintFilter",
 "config": {
 "certificate": "${pemCertificate(decodeBase64(request.headers['ssl_client_cert'][0]))}",
 "failureHandler": {
 "type": "ScriptableHandler",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "def response = new Response(Status.TEAPOT);",
 "response.entity = 'Failure in CertificateThumbprintFilter'",
 "return response"
]
 }
 }
 }
 },
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": [

Acting As an OAuth 2.0 Resource Server
mTLS Using Trusted Headers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 161

 "test"
],
 "requireHttps": false,
 "accessTokenResolver": {
 "type": "ConfirmationKeyVerifierAccessTokenResolver",
 "config": {
 "delegate": {
 "name": "token-resolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
 }
 }
 }
 }
 }
 }
],
 "handler": {
 "name": "StaticResponseHandler-1",
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/plain"]
 },
 "entity": "mTLS\n Valid token: ${contexts.oauth2.accessToken.token}\n Confirmation keys:
 ${contexts.oauth2}"
 }
 }
 }
 }
}

Notice the following features of the route compared to mtls-certificate.json:

• The route matches requests to /mtls-header.

• The CertificateThumbprintFilter extracts a Java certificate from the trusted header, computes
the SHA-256 thumbprint of that certificate, and makes the thumbprint available for the
ConfirmationKeyVerifierAccessTokenResolver.

Acting As an OAuth 2.0 Resource Server
mTLS Using Trusted Headers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 162

4. Test the setup:

a. Get an access_token from AM, over TLS:
$ mytoken=$(curl --request POST \
--cacert $am_keystore_directory/openam-server.cert.pem \
--cert $oauth2_client_keystore_directory/client.cert.pem \
--key $oauth2_client_keystore_directory/client.key.pem \
--header 'cache-control: no-cache' \
--header 'content-type: application/x-www-form-urlencoded' \
--data 'client_id=client-application&grant_type=client_credentials&scope=test' \
https://openam.example.com:8445/openam/oauth2/access_token | jq -r .access_token)

b. Introspect the access_token on AM:
$ curl --request POST \
-u ig_agent:password \
--header 'content-type: application/x-www-form-urlencoded' \
--data token=${mytoken} \
http://openam.example.com:8088/openam/oauth2/realms/root/introspect | jq

{
 "active": true,
 "scope": "test",
 "client_id": "client-application",
 "user_id": "client-application",
 "token_type": "Bearer",
 "exp": 157...994,
 "sub": "client-application",
 "iss": "http://openam.example.com:8088/openam/oauth2",
 "cnf": {
 "x5t#S256": "1QG...Wgc"
 },
 "authGrantId": "lto...8vw",
 "auditTrackingId": "119...480"
}

The cnf property indicates the value of the confirmation code, as follows:

• x5: X509 certificate

• t: thumbprint

• #: separator

• S256: algorithm used to hash the raw certificate bytes

c. Access the IG route to validate the confirmation key, using the base64-encoded value of
$oauth2_client_keystore_directory/client.cert.pem:

Acting As an OAuth 2.0 Resource Server
Using the OAuth 2.0 Context to Log in to the Sample Application

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 163

$ curl --request POST \
--header "authorization:Bearer $mytoken" \
--header 'ssl_client_cert:base64-encoded-cert'
http://openig.example.com:8080/mtls-header

Valid token: zw5...Sj1
 Confirmation keys: {
 ...
 }

The validated token and confirmation keys are displayed.

Using the OAuth 2.0 Context to Log in to the Sample
Application
The introspection returns scopes in the context. This section contains an example route that retrieves
the scopes, assigns them as the IG session username and password, and uses them to log the user
directly in to the sample application.

For information about the context, see "OAuth2Context" in the Configuration Reference.

Log in to the Sample Application By Using the Token Info

1. Set up AM:

a. Set up AM as described in "Validating Access_Tokens Through the Introspection Endpoint".

b. Select  Identities, and change the email address of George to george.

c. Select  Scripts > OAuth2 Access Token Modification Script, and replace the default script
as follows:
import org.forgerock.http.protocol.Request
import org.forgerock.http.protocol.Response
import com.iplanet.sso.SSOException
import groovy.json.JsonSlurper

def attributes = identity.getAttributes(["mail"].toSet())
accessToken.setField("mail", attributes["mail"][0])
accessToken.setField("password", "C0stanza")

The AM script adds user profile information to the access_token, and adds a password field with
the value C0stanza.

Do not use this example in production! If the token is stateless and unencrypted, the
password value is easily accessible when you have the token.

2. Set up IG:

Acting As an OAuth 2.0 Resource Server
Using the OAuth 2.0 Context to Log in to the Sample Application

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 164

a. Set an environment variable for the IG agent password, and then restart IG:
$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

b. Add the following route to IG:

Linux

$HOME/.openig/config/routes/rs-pwreplay.json

Windows

%appdata%\OpenIG\config\routes\rs-pwreplay.json

{
 "name" : "rs-pwreplay",
 "baseURI" : "http://app.example.com:8081",
 "condition" : "${matches(request.uri.path, '^/rs-pwreplay')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://openam.example.com:8088/openam/",
 "version": "7"
 }
 }
],
 "handler" : {
 "type" : "Chain",
 "config" : {
 "filters" : [
 {
 "name" : "OAuth2ResourceServerFilter-1",
 "type" : "OAuth2ResourceServerFilter",
 "config" : {
 "scopes" : ["mail", "employeenumber"],
 "requireHttps" : false,
 "realm" : "OpenIG",
 "accessTokenResolver": {
 "name": "TokenIntrospectionAccessTokenResolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "type": "Chain",
 "config": {

Acting As an OAuth 2.0 Resource Server
Using the OAuth 2.0 Context to Log in to the Sample Application

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 165

 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
 }
 }
 }
 },
 {
 "type": "AssignmentFilter",
 "config": {
 "onRequest": [{
 "target": "${session.username}",
 "value": "${contexts.oauth2.accessToken.info.mail}"
 },
 {
 "target": "${session.password}",
 "value": "${contexts.oauth2.accessToken.info.password}"
 }
]
 }
 },
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "${session.username}"
],
 "password": [
 "${session.password}"
]
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route compared to rs-introspect.json:

• The route matches requests to /rs-pwreplay.

Acting As an OAuth 2.0 Resource Server
Caching Access_Tokens

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 166

• The AssignmentFilter accesses the context, and injects the username and password into the
SessionContext, ${session}.

• The StaticRequestFilter retrieves the username and password from session, and replaces
the original HTTP GET request with an HTTP POST login request that contains the
credentials to authenticate.

3. Test the setup:

a. In a terminal window, use a curl command similar to the following to retrieve an
access_token:
$ mytoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=george&password=C0stanza&scope=mail%20employeenumber" \
http://openam.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

b. Validate the access_token returned in the previous step:
$ curl -v http://openig.example.com:8080/rs-pwreplay --header "Authorization: Bearer ${mytoken}"

HTML for the sample application is displayed.

Caching Access_Tokens
This section builds on the example in "Validating Access_Tokens Through the Introspection Endpoint"
to cache access_tokens.

When the access_token is not cached, IG calls AM to validate the access_token. After the
access_token is cached, IG doesn't validate the access_token with AM.

(From AM 6.5.3.) When an access_token is revoked on AM, the CacheAccessTokenResolver can delete
the token from the cache when both of the following conditions are true:

• The notification property of AmService is enabled.

• The delegate AccessTokenResolver provides the token metadata required to update the cache.

When a refresh_token is revoked on AM, all associated access_tokens are automatically and
immediately revoked.

Cache Access_Tokens

1. Set up AM as described in "Validating Access_Tokens Through the Introspection Endpoint".

2. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:
$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

Acting As an OAuth 2.0 Resource Server
Caching Access_Tokens

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 167

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

b. Add the following route to IG:

Linux

$HOME/.openig/config/routes/rs-introspect-cache.json

Windows

%appdata%\OpenIG\config\routes\rs-introspect-cache.json

{
 "name": "rs-introspect-cache",
 "baseURI": "http://app.example.com:8081",
 "condition": "${matches(request.uri.path, '^/rs-introspect-cache$')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "url": "http://openam.example.com:8088/openam",
 "realm": "/",
 "version": "7",
 "agent" : {
 "username" : "ig_agent",
 "passwordSecretId" : "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": [
 "mail",
 "employeenumber"
],
 "requireHttps": false,
 "realm": "OpenIG",
 "accessTokenResolver": {
 "name": "CacheAccessTokenResolver-1",
 "type": "CacheAccessTokenResolver",
 "config": {
 "enabled": true,
 "defaultTimeout ": "1 hour",
 "maximumTimeToCache": "1 day",
 "delegate": {

Acting As an OAuth 2.0 Resource Server
Caching Access_Tokens

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 168

 "name": "TokenIntrospectionAccessTokenResolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": {
 "type": "Delegate",
 "capture": "all",
 "config": {
 "delegate": "ForgeRockClientHandler"
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html"]
 },
 "entity": "<html><body><h2>Decoded access_token: ${contexts.oauth2.accessToken.info}</
h2></body></html>"
 }
 }
 }
 }
}

Notice the following features of the route compared to rs-introspect.json, in "Validating
Access_Tokens Through the Introspection Endpoint":

• The OAuth2ResourceServerFilter uses a CacheAccessTokenResolver
to cache the access_token, and then delegate token resolution to the
TokenIntrospectionAccessTokenResolver.

Acting As an OAuth 2.0 Resource Server
Caching Access_Tokens

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 169

• The TokenIntrospectionAccessTokenResolver uses a ForgeRockClientHandler and a capture
decorator to capture IG's interactions with AM.

3. Test the setup:

a. In a terminal window, use a curl command similar to the following to retrieve an
access_token:
$ mytoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=george&password=C0stanza&scope=mail%20employeenumber" \
http://openam.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

b. Access the route, using the access_token returned in the previous step:
$ curl http://openig.example.com:8080/rs-introspect-cache --header "Authorization: Bearer
 ${mytoken}"

{
 active = true,
 scope = employeenumber mail,
 client_id = client - application,
 user_id = george,
 token_type = Bearer,
 exp = 158...907,
 sub = george,
 iss = http://openam.example.com:8088/openam/oauth2, ...
 ...
}

c. In the route log, note that IG calls AM to introspect the access_token:
POST http://openam.example.com:8088/openam/oauth2/realms/root/introspect HTTP/1.1

d. Access the route again, and in the route log note that this time IG doesn't call AM, because
the token is cached.

Disable the cache and repeat the previous steps to cause IG to call AM to validate the
access_token for each request.

Acting As an OpenID Connect Relying Party
About IG With OpenID Connect

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 170

Chapter 11

Acting As an OpenID Connect Relying Party
The following sections provide an overview of how IG supports OpenID Connect 1.0, and examples of
to set up IG as an OpenID Connect relying party in different deployment scenarios:

• "About IG With OpenID Connect"

• "Using AM As a Single OpenID Connect Provider"

• "Using Multiple OpenID Connect Providers"

• "Discovering and Dynamically Registering With OpenID Connect Providers"

About IG With OpenID Connect
IG supports OpenID Connect 1.0, an authentication layer built on OAuth 2.0. OpenID Connect 1.0 is a
specific implementation of OAuth 2.0, where the identity provider holds the protected resource that
the third-party application wants to access. For more information, see OpenID Connect.

OpenID Connect refers to the following entities:

• End user: An OAuth 2.0 resource owner whose user information the application needs to access.

The end user wants to use an application through an existing identity provider account without
signing up and creating credentials for another web service.

• Relying Party (RP): An OAuth 2.0 client that needs access to the end user's protected user
information.

For example, an online mail application needs to know which end user is accessing the application
in order to present the correct inbox.

As another example, an online shopping site needs to know which end user is accessing the site in
order to present the right offerings, account, and shopping cart.

• OpenID Provider (OP): An OAuth 2.0 authorization server and also resource server that holds the
user information and grants access.

The OP requires the end user to give the RP permission to access to some of its user information.
Because OpenID Connect 1.0 defines unique identification for an account (subject identifier +
issuer identifier), the RP can use that identification to bind its own user profile to a remote identity.

http://openid.net/developers/specs/

Acting As an OpenID Connect Relying Party
Using AM As a Single OpenID Connect Provider

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 171

For the online mail application, this key could be used to access the mailboxes and related account
information. For the online shopping site, this key could be used to access the offerings, account,
shopping cart and others. The key makes it possible to serve users as if they had local accounts.

• UserInfo: The protected resource that the third-party application wants to access. The information
about the authenticated end user is expressed in a standard format. The user-info endpoint is
hosted on the authorization server and is protected with OAuth 2.0.

When IG acts as an OpenID Connect relying party, its role is to retrieve user information from the
OpenID provider, and then to inject that information into the context for use by subsequent filters
and handlers.

Using AM As a Single OpenID Connect Provider
This section gives an example of how to set up AM as an OpenID Connect identity provider, and IG as
a relying party for browser requests to the home page of the sample application.

The following sequence diagram shows the flow of information for a request to access the home page
of the sample application, using AM as a single, preregistered OpenID Connect identity provider, and
IG as a relying party:

Acting As an OpenID Connect Relying Party
Using AM As a Single OpenID Connect Provider

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 172

Inform at ion Flow for Requests Using AM as a Single OpenID Connect Ident ity Provider

Browser

Browser

IG
Relying party

IG
Relying party

Configurer

Configurer

AM
Authorizat ion server

AM
Authorizat ion server

Sam ple app

Sam ple app

Register AM as an authorizat ion server

One authorizat ion server registered
before request flow starts

Regist rat ion okay

Request

Request to access sam ple app
(app.example.com/home/id_token)

1 . Unaut hent icat ed brow ser redirect ed t o single pre-regist ered aut horizat ion server

Use client regist rat ion to
determ ine authorizat ion endpoint

Request authent icat ion
(/home/id_token/login?registration=myid&goto=...

Log in

Authorize and return access_code (/home/id_token/callback)

Autom at ically redirect request with access_code
(openig.example.com/home/id_token/callback)

Create session

Send access code (openam.example.com/access_token)

access_token

Request authorizat ion

Authorizat ion

Request com plet ion

Request redirect the request to the original URL
(app.example.com/home/id_token)

Redirect

Forward request with access_token and user inform at ion
(app.example.com/home/id_token)

Use AM As a Single OpenID Connect Provider

Before you start, prepare AM, IG, and the sample application as described in "Example Installation
for This Guide".

1. Set Up AM as an OpenID Connect provider:

a. Select  Identities, and add a user with the following values:

Acting As an OpenID Connect Relying Party
Using AM As a Single OpenID Connect Provider

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 173

• ID/username: george

• First name: george

• Last name: costanza

• Password: C0stanza

• Email Address: george@example.com

• Employee number: 123

b. (For AM 6.5.3 and later versions) Select  Services > Add a Service, and add a Validation
Service with the following Valid goto URL Resources:

• http://openig.example.com:8080/*

• http://openig.example.com:8080/*?*

c. Create an OAuth 2.0 Authorization Server:

i. Select  Services > Add a Service > OAuth2 Provider.

ii. Add a service with the default values.

d. Create an OAuth 2.0 Client to request OAuth 2.0 access_tokens:

i. Select  Applications > OAuth 2.0 > Clients.

ii. Add a client with the following values:

• Client ID: oidc_client

• Client secret: password

• Redirection URIs: http://openig.example.com:8080/home/id_token/callback

• Scope(s): openid, profile, and email

e. (From AM 6.5) On the Advanced tab, select the following values:

• Grant Types: Authorization Code and Resource Owner Password Credentials

f. On the Signing and Encryption tab, change ID Token Signing Algorithm to HS256, HS384, or
HS512. The algorithm must be HMAC.

g. Log out of AM.

2. Set up IG:

Acting As an OpenID Connect Relying Party
Using AM As a Single OpenID Connect Provider

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 174

a. Set an environment variable for oidc_client, and then restart IG:
$ export OIDC_SECRET_ID='cGFzc3dvcmQ='

b. Add the following route to IG, to serve .css and other static resources for the sample
application:

Linux

$HOME/.openig/config/routes/static-resources.json

Windows

%appdata%\OpenIG\config\routes\static-resources.json

{
 "name" : "sampleapp_resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${matches(request.uri.path,'^/css')}",
 "handler": "ReverseProxyHandler"
}

c. Add the following route to IG:

Linux

$HOME/.openig/config/routes/07-openid.json

Windows

%appdata%\OpenIG\config\routes\07-openid.json

{
 "name": "07-openid",
 "baseURI": "http://app.example.com:8081",
 "condition": "${matches(request.uri.path, '^/home/id_token')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "OAuth2ClientFilter-1",
 "type": "OAuth2ClientFilter",
 "config": {
 "clientEndpoint": "/home/id_token",
 "failureHandler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 500,
 "headers": {
 "Content-Type": [
 "text/plain"

Acting As an OpenID Connect Relying Party
Using AM As a Single OpenID Connect Provider

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 175

]
 },
 "entity": "Error in OAuth 2.0 setup."
 }
 },
 "registrations": [
 {
 "name": "oidc-user-info-client",
 "type": "ClientRegistration",
 "config": {
 "clientId": "oidc_client",
 "clientSecretId": "oidc.secret.id",
 "issuer": {
 "name": "Issuer",
 "type": "Issuer",
 "config": {
 "wellKnownEndpoint": "http://openam.example.com:8088/openam/oauth2/.well-
known/openid-configuration"
 }
 },
 "scopes": [
 "openid",
 "profile",
 "email"
],
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "tokenEndpointAuthMethod": "client_secret_basic"
 }
 }
],
 "requireHttps": false,
 "cacheExpiration": "disabled"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

For information about how to set up the IG route in Studio, see "OpenID Connect Relying
Party in Structured Editor" in the Studio User Guide.

Notice the following features about the route:

• The route matches requests to /home/id_token.

• The OAuth2ClientFilter enables IG to act as a relying party. It uses a single client registration
that is defined inline and refers to the AM server configured in "Using AM As a Single
OpenID Connect Provider".

• The filter has a base client endpoint of /home/id_token, which creates the following service
URIs:

• Requests to /home/id_token/login start the delegated authorization process.

Acting As an OpenID Connect Relying Party
Authenticating Automatically to the Sample Application

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 176

• Requests to /home/id_token/callback are expected as redirects from the OAuth 2.0
Authorization Server (OpenID Connect provider). This is why the redirect URI in the
client profile in AM is set to http://openig.example.com:8080/home/id_token/callback.

• Requests to /home/id_token/logout remove the authorization state for the end user, and
redirect to the specified URL if a goto parameter is provided.

These endpoints are implicitly reserved. Attempts to access them directly can cause
undefined errors.

• For convenience in this test, "requireHttps" is false. In production environments, set it
to true. So that you see the delegated authorization process when you make a request,
"requireLogin" has the default value true.

• The target for storing authorization state information is ${attributes.openid}. This is where
subsequent filters and handlers can find access tokens and user information.

3. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

b. Go to http://openig.example.com:8080/home/id_token.

The AM login page is displayed.

c. Log in to AM as user george, password C0stanza, and then allow the application to access user
information.

The home page of the sample application is displayed.

Authenticating Automatically to the Sample Application
To authenticate automatically to the sample application, change the last name of the user george to
match the password C0stanza, and add a StaticRequestFilter like the following to the end of the chain
in 07-openid.json:
{
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "${attributes.openid.user_info.sub}"
],
 "password": [
 "${attributes.openid.user_info.family_name}"
]
 }
 }
}

http://openig.example.com:8080/home/id_token

Acting As an OpenID Connect Relying Party
Using Multiple OpenID Connect Providers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 177

The StaticRequestFilter retrieves the username and password from the context, and replaces the
original HTTP GET request with an HTTP POST login request containing credentials.

Using Multiple OpenID Connect Providers
This section builds on the example in "Using AM As a Single OpenID Connect Provider" to give an
example of using OpenID Connect with two identity providers.

The client registration for the AM provider is declared in the heap, and a second client registration
defines Google as an alternative identity provider. The Nascar page helps the user to choose an
identity provider.

Set Up Multiple OpenID Connect Providers

1. Set up AM as the first OpenID Connect provider, as described in "Use AM As a Single OpenID
Connect Provider".

2. Set up Google as the second OpenID Connect identity provider, using the following hints:

1. Go to https://console.cloud.google.com/apis/credentials.

2. Create credentials for an OAuth 2.0 client ID with the following options:

• Application type: Web application

• Authorized redirect URI: http://openig.example.com:8080/home/id_token/callback

3. Make a note of the ID and password for the Google identity provider.

Set Up IG for Multiple OpenID Connect Providers

1. Add the following route to IG, to serve .css and other static resources for the sample application:
Linux
$HOME/.openig/config/routes/static-resources.json

Windows
%appdata%\OpenIG\config\routes\static-resources.json

{
 "name" : "sampleapp_resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${matches(request.uri.path,'^/css')}",
 "handler": "ReverseProxyHandler"
}

2. Add the following route to IG:
Linux

https://console.cloud.google.com/apis/credentials

Acting As an OpenID Connect Relying Party
Using Multiple OpenID Connect Providers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 178

$HOME/.openig/config/routes/07-openid-nascar.json

Windows

%appdata%\OpenIG\config\routes\07-openid-nascar.json

{
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "openam",
 "type": "ClientRegistration",
 "config": {
 "clientId": "oidc_client",
 "clientSecretId": "oidc.secret.id",
 "issuer": {
 "name": "Issuer",
 "type": "Issuer",
 "config": {
 "wellKnownEndpoint": "http://openam.example.com:8088/openam/oauth2/.well-known/openid-
configuration"
 }
 },
 "scopes": [
 "openid",
 "profile",
 "email"
],
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "tokenEndpointAuthMethod": "client_secret_basic"
 }
 },
 {
 "name": "google",
 "type": "ClientRegistration",
 "config": {
 "clientId": "googleClientId",
 "clientSecretId": "google.secret.id",
 "issuer": {
 "name": "accounts.google.com",
 "type": "Issuer",
 "config": {
 "wellKnownEndpoint": "https://accounts.google.com/.well-known/openid-configuration"
 }
 },
 "scopes": [
 "openid",
 "profile"
],
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 },
 {
 "name": "NascarPage",
 "type": "StaticResponseHandler",

Acting As an OpenID Connect Relying Party
Using Multiple OpenID Connect Providers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 179

 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html"]
 },
 "entity": "<html><body><p><a href='/home/id_token/login?
registration=oidc_client&issuer=Issuer&goto=${urlEncodeQueryParameterNameOrValue('http://
openig.example.com:8080/home/id_token')}'>AM Login</p><p><a href='/home/
id_token/login?registration=googleClientId&issuer=accounts.google.com&goto=
${urlEncodeQueryParameterNameOrValue('http://openig.example.com:8080/home/id_token')}'>Google Login</
a></p></body></html>"
 }
 }
],
 "name": "07-openid-nascar",
 "baseURI": "http://app.example.com:8081",
 "condition": "${matches(request.uri.path, '^/home/id_token')}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "OAuth2ClientFilter",
 "config": {
 "clientEndpoint": "/home/id_token",
 "failureHandler": {
 "type": "StaticResponseHandler",
 "config": {
 "comment": "Trivial failure handler for debugging only",
 "status": 500,
 "reason": "Error",
 "headers": {
 "Content-Type": ["text/plain"]
 },
 "entity": "${attributes.openid}"
 }
 },
 "loginHandler": "NascarPage",
 "registrations": ["openam", "google"],
 "requireHttps": false,
 "cacheExpiration": "disabled"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Consider the differences with 07-openid.json:

• The heap objects openam and google define two client registrations to authenticate IG to identity
providers.

• The heap object NascarPage is a StaticResponseHandler that provides links to the two client
registrations.

Acting As an OpenID Connect Relying Party
Discovering and Dynamically Registering With OpenID Connect Providers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 180

• The OAuth2ClientFilter uses a loginHandler that refers to NascarPage to allow users to choose from
the two client registrations.

3. In the route, replace both occurrences of googleClientId by the Google identity provider ID
retrieved in "Set Up Multiple OpenID Connect Providers".

4. Set environment variables for the identity providers' passwords:

a. Set an environment variable for the password of the AM identity provider, oidc_client:
$ export OIDC.SECRET.ID='cGFzc3dvcmQ='

b. Set an environment variable for the password of the Google identity provider, using the
password retrieved in "Set Up Multiple OpenID Connect Providers":
$ export GOOGLE.SECRET.ID='base64-encoded-google-client-password'

The passwords are retrieved by the default SystemAndEnvSecretStore, and must be base64-
encoded.

Test the Setup

1. Log out of AM.

2. Go to http://openig.example.com:8080/home/id_token.

The Nascar page offers the choice of identity provider.

3. Select a provider, log in with your credentials, and then allow the application to access user
information.

For AM, use the following credentials: username george, password C0stanza. For the Google
identity provider, use the Google credentials.

The home page of the sample application is displayed.

Discovering and Dynamically Registering With OpenID
Connect Providers
OpenID Connect defines mechanisms for discovering and dynamically registering with an identity
provider that is not known in advance, as specified in the following publications: OpenID Connect
Discovery, OpenID Connect Dynamic Client Registration, and RFC 7591 - OAuth 2.0 Dynamic Client
Registration Protocol.

In dynamic registration, issuer and client registrations are generated dynamically. They are held in
memory and can be reused, but do not persist when IG is restarted.

http://openig.example.com:8080/home/id_token
http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
https://tools.ietf.org/html/rfc7591
https://tools.ietf.org/html/rfc7591

Acting As an OpenID Connect Relying Party
Discovering and Dynamically Registering With OpenID Connect Providers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 181

This section builds on the example in "Using AM As a Single OpenID Connect Provider" to give an
example of discovering and dynamically registering with an identity provider that is not known in
advance. In this example, the client sends a signed JWT to the authorization server.

To facilitate the example, a WebFinger service is embedded in the sample application. In a normal
deployment, the WebFinger server is likely to be a service on the issuer's domain.

Dynamic Registration With OpenID Connect Providers

1. Create a key /path/to/keystore.jks:
$ keytool -genkey \
 -alias myprivatekeyalias \
 -keyalg RSA \
 -keysize 2048 \
 -keystore /path/to/keystore.jks \
 -storepass keystore \
 -storetype JKS \
 -keypass keystore \
 -validity 360 \
 -dname "CN=openig.example.com, OU=example, O=com, L=fr, ST=fr, C=fr"

2. Set up AM:

a. Set up AM as described in "Use AM As a Single OpenID Connect Provider".

b. Select the user george, and change the last name to C0stanza. Note that, for this example, the
last name must be the same as the password.

c. Configure the OAuth 2.0 Authorization Server for dynamic registration:

i. Select  Services > OAuth2 Provider.

ii. On the Advanced tab, add the following scopes to Client Registration Scope Whitelist:
openid, profile, email.

iii. On the Client Dynamic Registration tab, select these settings:

• Allow Open Dynamic Client Registration: Enabled

• Generate Registration Access Tokens: Disabled

d. Configure the authentication method for the OAuth 2.0 Client:

i. Select  Applications > OAuth 2.0 > Clients.

ii. Select oidc_client, and on the Advanced tab, select Token Endpoint Authentication
Method: private_key_jwt.

3. Set up IG:

Acting As an OpenID Connect Relying Party
Discovering and Dynamically Registering With OpenID Connect Providers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 182

a. In the IG configuration, set an environment variable for the KeyStore password, and then
restart IG:
$ export KEYSTORE_SECRET_ID='a2V5c3RvcmU='

The password is retrieved by the default SystemAndEnvSecretStore, and must be base64-
encoded.

b. Add the following route to IG, to serve .css and other static resources for the sample
application:

Linux

$HOME/.openig/config/routes/static-resources.json

Windows

%appdata%\OpenIG\config\routes\static-resources.json

{
 "name" : "sampleapp_resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${matches(request.uri.path,'^/css')}",
 "handler": "ReverseProxyHandler"
}

c. Add the following script to IG:

Linux

$HOME/.openig/scripts/groovy/discovery.groovy

Windows

%appdata%\OpenIG\scripts\groovy\discovery.groovy

/*
 * OIDC discovery with the sample application
 */
response = new Response(Status.OK)
response.getHeaders().put(ContentTypeHeader.NAME, "text/html");
response.entity = """
<!doctype html>
<html>
 <head>
 <title>OpenID Connect Discovery</title>
 <meta charset='UTF-8'>
 </head>
 <body>
 <form id='form' action='/discovery/login?'>
 Enter your user ID or email address:
 <input type='text' id='discovery' name='discovery'
 placeholder='george or george@example.com' />
 <input type='hidden' name='goto'
 value='${contexts.router.originalUri}' />
 </form>
 <script>

Acting As an OpenID Connect Relying Party
Discovering and Dynamically Registering With OpenID Connect Providers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 183

 // Make sure sampleAppUrl is correct for your sample app.
 window.onload = function() {
 document.getElementById('form').onsubmit = function() {
 // Fix the URL if not using the default settings.
 var sampleAppUrl = 'http://app.example.com:8081/';
 var discovery = document.getElementById('discovery');
 discovery.value = sampleAppUrl + discovery.value.split('@', 1)[0];
 };
 };
 </script>
 </body>
</html>""" as String
return response

The script transforms the input into a discovery value for IG. This is not a requirement for
deployment, only a convenience for the purposes of this example. Alternatives are described
in the discovery protocol specification.

d. Add the following route to IG, replacing /path/to/keystore.jks with your path:

Linux

$HOME/.openig/config/routes/07-discovery.json

Windows

%appdata%\OpenIG\config\routes\07-discovery.json

{
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "SecretsProvider-1",
 "type": "SecretsProvider",
 "config": {
 "stores": [
 {
 "type": "KeyStoreSecretStore",
 "config": {
 "file": "/path/to/keystore.jks",
 "mappings": [
 {
 "aliases": ["myprivatekeyalias"],
 "secretId": "private.key.jwt.signing.key"
 }
],
 "storePassword": "keystore.secret.id",
 "storeType": "JKS",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
]
 }
 },
 {

Acting As an OpenID Connect Relying Party
Discovering and Dynamically Registering With OpenID Connect Providers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 184

 "name": "DiscoveryPage",
 "type": "ScriptableHandler",
 "config": {
 "type": "application/x-groovy",
 "file": "discovery.groovy"
 }
 }
],
 "name": "07-discovery",
 "baseURI": "http://app.example.com:8081",
 "condition": "${matches(request.uri.path, '^/discovery')}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "DynamicallyRegisteredClient",
 "type": "OAuth2ClientFilter",
 "config": {
 "clientEndpoint": "/discovery",
 "requireHttps": false,
 "requireLogin": true,
 "target": "${attributes.openid}",
 "failureHandler": {
 "type": "StaticResponseHandler",
 "config": {
 "comment": "Trivial failure handler for debugging only",
 "status": 500,
 "reason": "Error",
 "headers": {
 "Content-Type": ["text/plain"]
 },
 "entity": "${attributes.openid}"
 }
 },
 "loginHandler": "DiscoveryPage",
 "discoverySecretId": "private.key.jwt.signing.key",
 "tokenEndpointAuthMethod": "private_key_jwt",
 "secretsProvider": "SecretsProvider-1",
 "metadata": {
 "client_name": "My Dynamically Registered Client",
 "redirect_uris": ["http://openig.example.com:8080/discovery/callback"],
 "scopes": ["openid", "profile", "email"]
 }
 }
 },
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "${attributes.openid.user_info.sub}"
],
 "password": [
 "${attributes.openid.user_info.family_name}"
]
 }

Acting As an OpenID Connect Relying Party
Discovering and Dynamically Registering With OpenID Connect Providers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 185

 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Consider the differences with 07-openid.json:

• The route matches requests to /discovery.

• The OAuth2ClientFilter uses DiscoveryPage as the login handler, and specifies metadata to
prepare the dynamic registration request.

• DiscoveryPage uses a ScriptableHandler and script to provide the discovery parameter and
goto parameter.

If there is a match, then it can use the issuer's registration endpoint and avoid an additional
request to look up the user's issuer using the WebFinger protocol.

If there is no match, IG uses the discovery value as the resource for a WebFinger request
using OpenID Connect Discovery protocol.

• IG uses the discovery parameter to find an identity provider. IG extracts the domain host
and port from the value, and attempts to find a match in the supportedDomains lists for issuers
configured for the route.

• When discoverySecretId is set, the tokenEndpointAuthMethod is always private_key_jwt. Clients
send a signed JWT to the authorization server.

Redirects IG to the end user's browser, using the goto parameter, after the process is
complete and IG has injected the OpenID Connect user information into the context.

4. Test the setup:

a. Log out of AM.

b. Go to http://openig.example.com:8080/discovery.

c. Enter the following email address: george@example.com. The AM login page is displayed.

d. Log in as user george, password C0stanza, and then allow the application to access user
information. The sample application returns George's page.

http://tools.ietf.org/html/rfc7033
http://openig.example.com:8080/discovery

Transforming OpenID Connect ID Tokens Into SAML Assertions

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 186

Chapter 12

Transforming OpenID Connect ID Tokens Into
SAML Assertions
This chapter builds on the example in "Acting As an OpenID Connect Relying Party" to transform
OpenID Connect ID tokens into SAML 2.0 assertions.

Many enterprises use existing or legacy, SAML 2.0-based SSO, but many mobile and social
applications are managed by OpenID Connect. Use the IG TokenTransformationFilter to bridge the
gap between OpenID Connect and SAML 2.0 frameworks.

The following figure illustrates the data flow. For a more detailed view of the flow, see "Flow of
Events".

Token Transformation

OpenAM

gateway.example.com/id_tokenBrowser

STS RESTOAuth2/OIDC

Application

2

1

3 54

6

1. A user tries to access to a protected resource.

2. If the user is not authenticated, the OAuth2ClientFilter redirects the request to AM. After
authentication, AM asks for the user's consent to give IG access to private information.

Transforming OpenID Connect ID Tokens Into SAML Assertions

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 187

3. If the user consents, AM returns an id_token to the OAuth2ClientFilter. The filter opens the
id_token JWT and makes it available in attributes.openid.id_token and attributes.openid.id_token_
claims for downstream filters.

4. The TokenTransformationFilter calls the AM STS to transform the id_token into a SAML 2.0
assertion.

5. The STS validates the signature, decodes the payload, and verifies that the user issued the
transaction. The STS then issues a SAML assertion to IG on behalf of the user.

6. The TokenTransformationFilter makes the result of the token transformation available to
downstream handlers in the issuedToken property of the ${contexts.sts} context.

The following sequence diagram shows a more detailed view of the flow:

Transforming OpenID Connect ID Tokens Into SAML Assertions

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 188

Flow of Events

Token Transform at ion Code Flow for Unauthent icated User Agent
IG

Relying Part y
AM

Ident it y Provider

User Agent

User Agent

OAuth2ClientFilter

OAuth2ClientFilter

TokenTransform at ionFilter

TokenTransform at ionFilter

Authorizat ion Server

Authorizat ion Server

User Info End Point

User Info End Point

STS

STS

OpenID Connect Aut horizat ion Flow

1 Request to access to route.

2 Redirect for authorizat ion.

3 Request authorizat ion.

4 User agent
not authent icated

5 Request authent icat ion.

6 Provide authent icat ion.

7 Request consent to share private inform at ion with IG.

8 Give consent .

9 Redirect request and include authorizat ion code.

1 0 Redirect authorizat ion code.

1 1 Exchange authorizat ioncode for access_token and id_token

1 2 Validate id_token.

1 3 Use access_token to get other user info.

1 4 Return other user info.

1 5 Insert user info and tokens
into the request context .

1 6 Display id_token

Add the token t ransform at ion
filter to the route, and access
the route again.

Token Transform at ion Code Flow for Aut hent icat ed User Agent

1 7 Request to access route.

1 8 Session valid
so forward request .

1 9 Provide id_token and request t ransform at ion into SAML assert ion.

2 0 Transform id_token.

2 1 Return the SAML assert ion.

2 2 Insert SAML assert ion into the dedicated context .

2 3 Display id_token and SAML assert ion.

Transform OpenID Connect ID Tokens Into SAML Assertions

1. Set up an AM Security Token Service (STS), where the subject confirmation method is Bearer.
For more information about setting up a REST STS instance, see AM's Security Token Service
(STS) Guide.

a. Set up AM as described in "Use AM As a Single OpenID Connect Provider".

https://backstage.forgerock.com/docs/am/7/sts-guide/
https://backstage.forgerock.com/docs/am/7/sts-guide/

Transforming OpenID Connect ID Tokens Into SAML Assertions

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 189

b. Select Applications > Agents > Identity Gateway, add an agent with the following values:

• Agent ID: ig_agent

• Password: password

Leave all other values as default.

For AM 6.5.x and earlier versions, set up an agent as described in "Set Up an IG Agent in AM
6.5 and Earlier".

c. Create a Bearer Module:

i. In the top level realm, select  Authentication > Modules, and add a module with the
following values:

• Module name: oidc

• Type: OpenID Connect id_token bearer

ii. In the configuration page, enter the following values:

• OpenID Connect validation configuration type: Client Secret

• OpenID Connect validation configuration value: password

This is the password of the OAuth 2.0/OpenID Connect client.

• Client secret: password

• Name of OpenID Connect ID Token Issuer: http://openam.example.com:8088/openam/oauth2

• Audience name: oidc_client

This is the name of the OAuth 2.0/OpenID Connect client.

• List of accepted authorized parties: oidc_client

Leave all other values as default, and save your settings.

d. Create an instance of STS REST.

i. In the top level realm, select STS, and add a Rest STS instance with the following values:

• Deployment URL Element: openig

This value identifies the STS instance and is used by the instance parameter in the
TokenTransformationFilter.

• SAML2 Token

Transforming OpenID Connect ID Tokens Into SAML Assertions

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 190

• SAML2 issuer Id: OpenAM

• Service Provider Entity Id: openig_sp

• NameIdFormat: Select urn:oasis:names:tc:SAML:2.0:nameid-format:transient

Note

For STS, it isn't necessary to create a SAML SP configuration in AM.

• OpenID Connect Token

• OpenIdConnect Token Provider Issuer Id: oidc

• Token signature algorithm: Enter a value that is consistent with "Using AM As a
Single OpenID Connect Provider", for example, HMAC SHA 256

• Client Secret: password

• Issued Tokens Audience: oidc_client

ii. On the SAML 2 Token tab, add the following Attribute Mappings:

• Key:userName, Value:uid

• Key:password, Value:mail

e. Log out of AM.

2. Set up IG:

a. Set an environment variable for oidc_client and ig_agent, and then restart IG:
$ export OIDC_SECRET_ID='cGFzc3dvcmQ='
$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

b. Add the following route to IG:
Linux
$HOME/.openig/config/routes/50-idtoken.json

Windows
%appdata%\OpenIG\config\routes\50-idtoken.json

{
 "name": "50-idtoken",
 "baseURI": "http://app.example.com:8081",
 "condition": "${matches(request.uri.path, '^/home/id_token')}",
 "heap": [
 {

Transforming OpenID Connect ID Tokens Into SAML Assertions

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 191

 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://openam.example.com:8088/openam/",
 "version": "7"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "OAuth2ClientFilter-1",
 "type": "OAuth2ClientFilter",
 "config": {
 "clientEndpoint": "/home/id_token",
 "failureHandler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 500,
 "headers": {
 "Content-Type": [
 "text/plain"
]
 },
 "entity": "An error occurred during the OAuth2 setup."
 }
 },
 "registrations": [
 {
 "name": "oidc-user-info-client",
 "type": "ClientRegistration",
 "config": {
 "clientId": "oidc_client",
 "clientSecretId": "oidc.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "issuer": {
 "name": "Issuer",
 "type": "Issuer",
 "config": {
 "wellKnownEndpoint": "http://openam.example.com:8088/openam/oauth2/.well-
known/openid-configuration"
 }
 },
 "scopes": [
 "openid",
 "profile",
 "email"
],

Transforming OpenID Connect ID Tokens Into SAML Assertions

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 192

 "tokenEndpointAuthMethod": "client_secret_basic"
 }
 }
],
 "requireHttps": false,
 "cacheExpiration": "disabled"
 }
 },
 {
 "name": "TokenTransformationFilter-1",
 "type": "TokenTransformationFilter",
 "config": {
 "idToken": "${attributes.openid.id_token}",
 "instance": "openig",
 "amService": "AmService-1"
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "reason": "Found",
 "status": 200,
 "headers": {
 "Content-Type": ["text/plain"]
 },
 "entity": "{\"id_token\":\n\"${attributes.openid.id_token}\"} \n\n\n{\"saml_assertions
\":\n\"${contexts.sts.issuedToken}\"}"
 }
 }
 }
 }
}

For information about how to set up the IG route in Studio, see "Token Transformation in
Structured Editor" in the Studio User Guide.

Notice the following features of the route:

• The route matches requests to /home/id_token.

• The AmService in the heap is used for authentication and REST STS requests.

• The OAuth2ClientFilter enables IG to act as an OpenID Connect relying party:

• The client endpoint is set to /home/id_token, so the service URIs for this filter on the IG
server are /home/id_token/login, /home/id_token/logout, and /home/id_token/callback.

• For convenience in this test, requireHttps is false. In production environments, set it to
true. So that you see the delegated authorization process when you make a request,
requireLogin is true.

• The target for storing authorization state information is ${attributes.openid}. Subsequent
filters and handlers can find access tokens and user information at this target.

Transforming OpenID Connect ID Tokens Into SAML Assertions

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 193

• The ClientRegistration holds configuration provided in "Using AM As a Single OpenID
Connect Provider", and used by IG to connect with AM.

• The TokenTransformationFilter transforms an id_token into a SAML assertion:

• The id_token parameter defines where this filter gets the id_token created by the
OAuth2ClientFilter.

The TokenTransformationFilter makes the result of the token transformation available to
downstream handlers in the issuedToken property of the ${contexts.sts} context.

• The instance parameter must match the Deployment URL Element for the REST STS instance.

Errors that occur during token transformation cause an error response to be returned to
the client and an error message to be logged for the IG administrator.

• When the request succeeds, a StaticResponseHandler retrieves and displays the id_token
from the target {attributes.openid.id_token}.

3. Test the setup:

a. Go to http://openig.example.com:8080/home/id_token.

The AM login screen is displayed.

b. Log in to AM as username george, password C0stanza.

An OpenID Connect request to access private information is displayed.

c. Select Allow.

The id_token and SAML assertions are displayed:
{"id_token": "eyAidHlwIjogIkpXVCIsICJhbGciOiAiSFMyNTYiIH0.eyAiYXRfaGFzaCI6ICJ . . ."}

{"saml_assertions":
<"saml:Assertion xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion" Version= . . ."}

http://openig.example.com:8080/home/id_token

Supporting UMA Resource Servers
About IG As an UMA Resource Server

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 194

Chapter 13

Supporting UMA Resource Servers
IG includes support for User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization
specifications. This chapter describes UMA 2.0, and applies to IG 5.5 and later versions, used with
AM 5.5 and later versions. For earlier versions, see their documentation.

• "About IG As an UMA Resource Server"

• "Limitations Of IG As an UMA Resource Server"

• "Setting Up the UMA Example"

• "Editing the Example to Match Custom Settings"

• "Understanding the UMA API With an API Descriptor"

About IG As an UMA Resource Server
The following figure shows an UMA environment, with IG protecting a resource, and AM acting as an
authorization server. For information about UMA, see AM's User-Managed Access (UMA) 2.0 Guide.

https://docs.kantarainitiative.org/uma/wg/oauth-uma-grant-2.0-08.html
https://backstage.forgerock.com/docs/am/7/uma-guide/index.html

Supporting UMA Resource Servers
About IG As an UMA Resource Server

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 195

Control

AuthorizeAccess

Manage

Protect

UMA Grant

P
ro

te
c

tio
n

 A
P

I
(req

u
ires PA

T)

Requesting Party Token

Protection API Access Token

Pro t e c t e d Re so u rce

(requires RPT)

Resource Owner

F o r g e R o c k

Id en t it y Ga t ew ay

Resource Server

F o r g e R o c k

Access Man ag em en t

Authorization Server

R e q u e s t i n g

Party

Client

Redirect to Auth Server

(on behalf of Requesting Party)

The following figure shows the data flow when the resource owner registers a resource with AM, and
sets up a share using a Protection API Token (PAT):

Supporting UMA Resource Servers
About IG As an UMA Resource Server

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 196

UMA 2.0 Flow for Protect ing a Resource

Resource Owner (RO)

Resource Owner (RO)

IG
Resource Server (RS)

IG
Resource Server (RS)

AM
Authorizat ion Server (AS)

AM
Authorizat ion Server (AS)

1 Authent icat ion, authorizat ion, consent , with scope "um a_protect ion"

2 Protect ion API token (PAT)

3 Create a share, including the PAT and a
pat tern to define resources included in the share

4 Registers resource on Authz Server at
Resource Regist rat ion endpoint

5 URL to a page where RO can define the policies
for the share

6 Configure policy condit ions after registering
the resource

The following figure shows the data flow when the client accesses the resource, using a Requesting
Party Token (RPT):

Supporting UMA Resource Servers
Limitations Of IG As an UMA Resource Server

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 197

UMA 2.0 Grant Flow

Client
(On Behalf of Request ing Party)

Client
(On Behalf of Request ing Party)

IG
Resource Server (RS)

IG
Resource Server (RS)

AM
Authorizat ion Server (AS)

AM
Authorizat ion Server (AS)

1 Request access to a shared resource

2 Find resource set in the shares configured
for the request

3 Request a perm ission t icket for the
resource being accessed

4 Perm ission t icket

5 HTTP 401 Unauthorized Response, including
perm ission t icket and URL of UMA Authz Server

6 Authent icate with OpenID Connect

7 id_token

8 Request an RPT, including perm ission t icket and id_token

9 RPT

1 0 Request access to a shared resource, with the RPT

1 1 Int rospect the RPT

1 2 Perm issions associated with the RPT

alt [If request ing part y aut horized for resource]

1 3 Return the resource

[If request ing part y not aut horized for resource]

1 4 HTTP 401 Unauthorized Response, including perm ission t icket and URL of UMA Authz Server

For information about CORS support, see Configuring CORS Support in AM's Security Guide. This
procedure describes how to modify the AM configuration to allow cross-site access.

Limitations Of IG As an UMA Resource Server
When using IG as an UMA resource server, note the following points:

• IG depends on the resource owner for the PAT.

https://backstage.forgerock.com/docs/am/7/security-guide/enable-cors-support.html

Supporting UMA Resource Servers
Setting Up the UMA Example

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 198

When a PAT expires, no refresh token is available to IG. The resource owner must repeat the entire
share process with a new PAT in order to authorize access to protected resources. The resource
owner should delete the old resource and create a new one.

• Data about PATs and shared resources is held in memory.

IG has no mechanism for persisting the data across restarts. When IG stops and starts again, the
resource owner must repeat the entire share process.

• UMA client applications for sharing and accessing protected resources must deal with UMA error
conditions and IG error conditions.

• By default, the REST API to manage share objects exposed by IG is protected only by CORS.

• When matching protected resource paths with share patterns, IG takes the longest match.

For example, if resource owner Alice shares /photos/.* with Bob, and /photos/vacation.png with
Charlie, and then Bob attempts to access /photos/vacation.png, IG applies the sharing permissions for
Charlie, not Bob. As a result, Bob can be denied access.

Setting Up the UMA Example
This section describes tasks to set up AM as an authorization server:

• Enabling cross-origin resource sharing (CORS) support in AM

• Configuring AM as an authorization server

• Registering UMA client profiles with AM

• Setting up a resource owner (Alice) and requesting party (Bob)

Caution

The settings in this section are suggestions for this tutorial. They are not intended as instructions for setting up
AM CORS support on a server in production.

If you need to accept all origins, by allowing the use of Access-Control-Allowed-Origin=*, do not allow Content-
Type headers. Allowing the use of both types of headers exposes AM to cross-site request forgery (CSRF)
attacks.

Enable CORS Support for AM

Before you start, prepare AM, IG, and the sample application as described in "Example Installation
for This Guide".

Supporting UMA Resource Servers
Setting Up the UMA Example

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 199

If you use different settings for the sample application, see "Editing the Example to Match Custom
Settings".

1. Set up AM:

a. Find the name of the AM session cookie:
$ curl http://openam.example.com:8088/openam/json/serverinfo/* | jq .cookieName

The rest of the steps in this procedure assume that you are using the default AM session
cookie, iPlanetDirectoryPro. If not, substitute the value in the procedure.

b. Create an OAuth 2.0 Authorization Server:

i. Select  Services > Add a Service > OAuth2 Provider.

ii. Add a service with the default values.

c. Configure an UMA Authorization Server:

i. Select  Services > Add a Service > UMA Provider.

ii. Add a service with the default values.

d. Add an OAuth 2.0 client for UMA protection:

i. Select  Applications > OAuth 2.0 > Clients.

ii. Add a client with these values:

• Client ID: OpenIG

• Client secret: password

• Scope: uma_protection

iii. (From AM 6.5) On the Advanced tab, select the following option:

• Grant Types: Resource Owner Password Credentials

e. Add an OAuth 2.0 client for accessing protected resources:

i. Select  Applications > OAuth 2.0 > Clients.

ii. Add a client with these values:

• Client ID: UmaClient

• Client secret: password

• Scope: openid

Supporting UMA Resource Servers
Setting Up the UMA Example

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 200

iii. (From AM 6.5) On the Advanced tab, select the following option:

• Grant Types: Resource Owner Password Credentials and UMA

f. Select  Identities, and add an identity for a resource owner, with the following values:

• ID: alice

• Password: UMAexamp1e

g. Select  Identities, and add an identity for a requesting party, with the following values:

• ID: bob

• Password: UMAexamp1e

h. Enable the CORS filter on AM:

i. In a terminal window, retrieve an access_token from AM:
$ mytoken=$(curl --request POST \
--header "Accept-API-Version: resource=2.1" \
--header "X-OpenAM-Username: amadmin" \
--header "X-OpenAM-Password: password" \
--header "Content-Type: application/json" \
--data "{}" \
http://openam.example.com:8088/openam/json/authenticate | jq -r ".tokenId")

ii. Using the token retrieved in the previous step, enable the CORS filter on AM, by using the
use the /global-config/services/CorsService REST endpoint:
$ curl \
 --request PUT \
 --header "Content-Type: application/json" \
 --header "iplanetDirectoryPro: $mytoken" http://openam.example.com:8088/openam/json/global-
config/services/CorsService/configuration/CorsService \
 --data '{
 "acceptedMethods": [
 "POST",
 "GET",
 "PUT",
 "DELETE",
 "PATCH",
 "OPTIONS"
],
 "acceptedOrigins": [
 "http://app.example.com:8081",
 "http://openig.example.com:8080",
 "http://openam.example.com:8088/openam"
],
 "allowCredentials": true,
 "acceptedHeaders": [
 "Authorization",
 "Content-Type",
 "iPlanetDirectoryPro",

Supporting UMA Resource Servers
Setting Up the UMA Example

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 201

 "X-OpenAM-Username",
 "X-OpenAM-Password",
 "Accept",
 "Accept-Encoding",
 "Connection",
 "Content-Length",
 "Host",
 "Origin",
 "User-Agent",
 "Accept-Language",
 "Referer",
 "Dnt",
 "Accept-Api-Version",
 "If-None-Match",
 "Cookie",
 "X-Requested-With",
 "Cache-Control",
 "X-Password",
 "X-Username",
 "X-NoSession"
],
 "exposedHeaders": [
 "Access-Control-Allow-Origin",
 "Access-Control-Allow-Credentials",
 "Set-Cookie",
 "WWW-Authenticate"
],
 "maxAge": 600,
 "enabled": true,
 "allowCredentials": true
 }'

{
 "_id": "CorsService",
 "_rev": "300529028",
 "maxAge": 600,
 "exposedHeaders": ["Access-Control-Allow-Origin", "Access-Control-Allow-Credentials", "WWW-
Authenticate", "Set-Cookie"],
 "acceptedOrigins": ["http://openig.example.com:8080", "http://app.example.com:8081", "http://
openam.example.com:8088/openam"],
 "acceptedMethods": ["DELETE", "POST", "GET", "OPTIONS", "PUT", "PATCH"],
 "acceptedHeaders": ["Cookie", "Origin", "X-Username", "Accept", "X-Requested-With",
 "Connection", "User-Agent", "Referer", "Host", "Dnt", "X-NoSession", "Accept-Encoding",
 "iPlanetDirectoryPro", "If-None-Match", "Authorization", "Cache-Control", "X-OpenAM-
Username", "X-Password", "Accept-Language", "Content-Length", "X-OpenAM-Password", "Accept-
Api-Version", "Content-Type"],
 "enabled": true,
 "allowCredentials": true,
 "_type": {
 "_id": "CorsService",
 "name": "CORS Service",
 "collection": true
 }
}

Tip

To delete the CORS configuration and create another, first run the following command:

Supporting UMA Resource Servers
Setting Up the UMA Example

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 202

$ curl \
 --request DELETE \
 --header "X-Requested-With: XMLHttpRequest" \
 --header "iplanetDirectoryPro: $mytoken" \
 http://openam.example.com:8088/openam/json/global-config/services/CorsService/CorsService/
configuration/CorsService

2. Set up IG as an UMA resource server:

a. Add the following route to IG, to serve .css and other static resources for the sample
application:

Linux

$HOME/.openig/config/routes/static-resources.json

Windows

%appdata%\OpenIG\config\routes\static-resources.json

{
 "name" : "sampleapp_resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${matches(request.uri.path,'^/css')}",
 "handler": "ReverseProxyHandler"
}

b. Add the following route to IG:

Linux

$HOME/.openig/config/admin.json

Windows

%appdata%\OpenIG\config\admin.json

Standalone mode

Supporting UMA Resource Servers
Setting Up the UMA Example

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 203

{
 "prefix": "openig",
 "connectors": [
 { "port" : 8080 }
],
 "heap": [
 {
 "name": "ClientHandler",
 "type": "ClientHandler"
 },
 {
 "name": "ApiProtectionFilter",
 "type": "CorsFilter",
 "config": {
 "policies": [
 {
 "origins": ["http://app.example.com:8081"],
 "acceptedMethods": ["GET", "POST", "DELETE"],
 "acceptedHeaders": ["Content-Type"]
 }
]
 }
 }
]
}

Web container mode

{
 "prefix": "openig",
 "heap": [
 {
 "name": "ClientHandler",
 "type": "ClientHandler"
 },
 {
 "name": "ApiProtectionFilter",
 "type": "CorsFilter",
 "config": {
 "policies": [
 {
 "origins": ["http://app.example.com:8081"],
 "acceptedMethods": ["GET", "POST", "DELETE"],
 "acceptedHeaders": ["Content-Type"]
 }
]
 }
 }
]
}

Notice the following feature of the route:

• The default ApiProtectionFilter is overridden by the CorsFilter, which allows requests
from the origin http://app.example.com:8081. For information, see "AdminHttpApplication
(admin.json)" in the Configuration Reference.

Supporting UMA Resource Servers
Setting Up the UMA Example

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 204

c. Add the following route to IG:

Linux

$HOME/.openig/config/routes/00-uma.json

Windows

%appdata%\OpenIG\config\routes\00-uma.json

{
 "name": "00-uma",
 "condition": "${request.uri.host == 'app.example.com'}",
 "heap": [
 {
 "name": "UmaService",
 "type": "UmaService",
 "config": {
 "protectionApiHandler": "ClientHandler",
 "wellKnownEndpoint": "http://openam.example.com:8088/openam/uma/.well-known/uma2-
configuration",
 "resources": [
 {
 "comment": "Protects all resources matching the following pattern.",
 "pattern": ".*",
 "actions": [
 {
 "scopes": [
 "#read"
],
 "condition": "${request.method == 'GET'}"
 },
 {
 "scopes": [
 "#create"
],
 "condition": "${request.method == 'POST'}"
 }
]
 }
]
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "CorsFilter",
 "config": {
 "policies": [
 {
 "origins": ["http://app.example.com:8081"],
 "acceptedMethods": ["GET"],
 "acceptedHeaders": ["Authorization"],
 "exposedHeaders": ["WWW-Authenticate"],
 "allowCredentials": true

Supporting UMA Resource Servers
Setting Up the UMA Example

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 205

 }
]
 }
 },
 {
 "type": "UmaFilter",
 "config": {
 "protectionApiHandler": "ClientHandler",
 "umaService": "UmaService"
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route:

• The route matches requests from app.example.com.

• The UmaService describes the resources that a resource owner can share, using AM as the
authorization server. It provides a REST API to manage sharing of resource sets.

• The CorsFilter defines the policy for cross-origin requests, listing the methods and headers
that the request can use, the headers that are exposed to the frontend JavaScript code, and
whether the request can use credentials.

• The UmaFilter manages requesting party access to protected resources, using the
UmaService. Protected resources are on the sample application, which responds to
requests on port 8081.

d. Restart IG to reload the configuration.

3. Test the setup:

a. If necessary, log out of AM, and then go to http://app.example.com:8081/uma/.

b. Share resources:

i. Select Alice shares resources.

ii. On Alice's page, select Share with Bob. The following items are displayed:

• The PAT that Alice receives from AM.

• The metadata for the resource set that Alice registers through IG.

• The result of Alice authenticating with AM in order to create a policy.

• The successful result when Alice configures the authorization policy attached to the
shared resource.

http://app.example.com:8081/uma/

Supporting UMA Resource Servers
Editing the Example to Match Custom Settings

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 206

Tip

If the step fails, run the following command to get an access token for Alice:

$ curl -X POST \
-H "Cache-Control: no-cache" \
-H "Content-Type: application/x-www-form-urlencoded" \
-d
 'grant_type=password&scope=uma_protection&username=alice&password=UMAexamp1e&client_id=OpenIG&client_secret=password'
 \
http://openam.example.com:8088/openam/oauth2/access_token

{"access_token":"AQI...QAA*","scope":"uma_protection","token_type":"Bearer","expires_in":3599}

If you fail to get an access token, check that AM is configured as described in "Setting Up the
UMA Example". If you continue to have problems, make sure that your IG configuration matches
that shown when you are running the test on http://app.example.com:8081/uma/.

c. Access resources:

i. Go back to the first page, and select Bob accesses resources.

ii. On Bob's page, select Get Alice's resources. The following items are displayed:

• The WWW-Authenticate Header.

• The OpenID Connect Token that Bob gets to obtain the RPT.

• The RPT that Bob gets in order to request the resource again.

• The final response containing the body of the resource.

Editing the Example to Match Custom Settings
If you use a configuration that is different to that described in this chapter, consider the following
tasks to adjust the sample to your configuration:

1. Unpack the UMA files from the sample application described in "Downloading and Starting the
Sample Application" in the Getting Started Guide to temporary folder:

http://app.example.com:8081/uma/

Supporting UMA Resource Servers
Understanding the UMA API With an API Descriptor

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 207

$ mkdir /tmp/uma
$ cd /tmp/uma
$ jar -xvf /path/to/IG-sample-application-7.0.2.jar webroot-uma
created: webroot-uma/
inflated: webroot-uma/bob.html
inflated: webroot-uma/common.js
inflated: webroot-uma/alice.html
inflated: webroot-uma/index.html
inflated: webroot-uma/style.css

2. Edit the configuration in common.js, alice.html, and bob.html to match your settings.

3. Repack the UMA sample client files and then restart the sample application:

$ jar -uvf /path/to/IG-sample-application-7.0.2.jar webroot-uma
adding: webroot-uma/(in = 0) (out= 0)(stored 0%)
adding: webroot-uma/bob.html(in = 26458) (out= 17273)(deflated 34%)
adding: webroot-uma/common.js(in = 3652) (out= 1071)(deflated 70%)
adding: webroot-uma/alice.html(in = 27775) (out= 17512)(deflated 36%)
adding: webroot-uma/index.html(in = 22046) (out= 16060)(deflated 27%)
adding: webroot-uma/style.css(in = 811) (out= 416)(deflated 48%)
updated module-info: module-info.class

4. If necessary, adjust the CORS settings for AM.

Understanding the UMA API With an API Descriptor
The UMA share endpoint serves API descriptors at runtime. When you retrieve an API descriptor for
the endpoint, a JSON that describes the API for the endpoint is returned.

You can use the API descriptor with a tool such as Swagger UI to generate a web page that helps you
to view and test the endpoint. For information, see "Understanding IG APIs With API Descriptors".

http://swagger.io/swagger-ui/

Configuring Routers and Routes
Configuring Routers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 208

Chapter 14

Configuring Routers and Routes
The following sections provide an overview of how IG uses routers and routes to handle requests and
their context:

• "Configuring Routers"

• "Configuring Routes"

• "Creating and Editing Routes Through Common REST"

• "Preventing the Reload of Routes"

• "Accessing Reserved Routes"

For information about creating routes in Studio, see the Studio User Guide.

Configuring Routers
The following config.json file configures a Router:

{
 "handler": {
 "type": "Router",
 "name": "_router",
 "baseURI": "http://app.example.com:8081",
 "capture": "all"
 },
 "heap": [
 {
 "name": "JwtSession",
 "type": "JwtSession"
 },
 {
 "name": "capture",
 "type": "CaptureDecorator",
 "config": {
 "captureEntity": true,
 "_captureContext": true
 }
 }
]
}

Configuring Routers and Routes
Configuring Routes

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 209

In this configuration, all requests are passed with the default settings to the Router. The Router scans
$HOME/.openig/config/routes at startup, and rescans the directory every 10 seconds. If routes have been
added, deleted, or changed, the router applies the changes.

The main router and any subrouters are used to build the monitoring endpoints. For information
about monitoring endpoints, see "Monitoring Endpoints" in the Configuration Reference. For
information about the parameters of a router, see "Router" in the Configuration Reference.

Configuring Routes
Routes are JSON configuration files that handle requests and their context, and then hand off any
request they accept to a handler. Another way to think of a route is like an independent dispatch
handler, as described in "DispatchHandler" in the Configuration Reference.

Routes can have a base URI to change the scheme, host, and port of the request.

For information about the parameters of routes, see "Route" in the Configuration Reference.

Configuring Objects Inline or In the Heap

If you use an object only once in the configuration, you can declare it inline in the route and do not
need to name it. However, when you need use an object multiple times, declare it in the heap, and
then reference it by name in the route.

The following route shows an inline declaration for a handler. The handler is a router to route
requests to separate route configurations:
{
 "handler": {
 "type": "Router"
 }
}

The following example shows a named router in the heap, and a handler references the router by its
name:
{
 "handler": "My Router",
 "heap": [
 {
 "name": "My Router",
 "type": "Router"
 }
]
}

Notice that the heap takes an array. Because the heap holds all configuration objects at the same
level, you can impose any hierarchy or order when referencing objects. Note that when you declare

Configuring Routers and Routes
Setting Route Conditions

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 210

all objects in the heap and reference them by name, neither hierarchy nor ordering are obvious from
the structure of the configuration file alone.

Setting Route Conditions

When a route has a condition, it can handle only requests that meet the condition. When a route has
no condition, it can handle any request.

A condition can be based on a characteristic of the request, context, or IG runtime environment,
such as system properties or environment variables. Conditions are defined using IG expressions, as
described in "Expressions" in the Configuration Reference.

Because routes define the conditions on which they accept a request, the router does not have to
know about specific routes in advance. In other words, you can configure the router first and then
add routes while IG is running.

The following example shows a route with no condition. This route accepts any request:
{
 "name": "myroute",
 "handler": {
 "type": "ReverseProxyHandler"
 }
}

The following example shows the same route with a condition. This route accepts only requests whose
path starts with mycondition:
{
 "name": "myroute",
 "handler": {
 "type": "ReverseProxyHandler"
 },
 "condition": "${matches(request.uri.path, '^/mycondition')}"
}

The following table lists some of the conditions used in routes in this guide:

Example Conditions and Requests

Condition Requests That Meet the Condition

"${matches(request.uri.path, '^/login')}" http://app.example.com/login, . . .

"${request.uri.host == 'api.example.com'}" http://api.example.com/, https://api.example.com/
home, http://api.example.com:8080/home, . . .

"${matches(contexts.client.remoteAddress,
 '127.0.0.1')}"

http://localhost:8080/keygen, http://127.0.0.1:8080/
keygen, . . .

Where /keygen is not mandatory and could be
anything else.

Configuring Routers and Routes
Configuring Route Names, IDs, and Filenames

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 211

Condition Requests That Meet the Condition

"${matches(request.uri.query, 'demo=simple')}" http://openig.example.com:8080/login?
demo=simple, . . .

For information about URI query, see query in "URI"
in the Configuration Reference.

"${request.uri.scheme == 'http'}" http://openig.example.com:8080, . . .

"${matches(request.uri.path, '^/dispatch') or
 matches(request.uri.path, '^/mylogin')}"

http://openig.example.com:8080/dispatch, http://
openig.example.com:8080/mylogin, . . .

"${request.uri.host == 'sp1.example.com' and not
 matches(request.uri.path, '^/saml')}"

http://sp1.example.com:8080/, http://sp1.example.
com/mypath, . . .

Not http://sp1.example.com:8080/saml, http://sp1.
example.com/saml, . . .

"condition": "${matches (request.uri.path,
 '&{uriPath}')}"

http://openig.example.com:8080/hello, when the
following property is configured:
{
 "properties": {
 "uriPath": "hello"
 }
}

For information about including properties in the
configuration, see "Properties" in the Configuration
Reference.

"condition": "${request.headers['X-Forwarded-
Host'][0] == 'service.example.com'}"

Requests with the header X-Forwarded-Host, whose
first value is service.example.com.

Configuring Route Names, IDs, and Filenames

The filenames of routes have the extension .json, in lowercase.

The Router scans the routes folder for files with the .json extension, and uses the route's name
property to order the routes in the configuration. If the route does not have a name property, the
Router uses the route ID.

The route ID is managed as follows:

• When you add a route manually to the routes folder, the route ID is the value of the _id field. If
there is no _id field, the route ID is the filename of the added route.

• When you add a route through the Common REST endpoint, the route ID is the value of the
mandatory _id field.

• When you add a route through Studio, you can edit the default route ID.

Configuring Routers and Routes
Creating and Editing Routes Through Common REST

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 212

Caution

The filename of a route cannot be default.json, and the route's name property and route ID cannot be default.

Creating and Editing Routes Through Common REST
Note

When IG is in production mode, you cannot manage, list, or even read routes through Common REST. For
information about switching to development mode, see "Switching from Production Mode to Development
Mode" in the Getting Started Guide.

Note

If an AM policy agent is configured in the same container as IG, by default the policy agent intercepts requests
to manage routes. When you try to add a route through Common REST, the policy agent redirects the request
to AM and the route is not added.

To override this behavior, add the URL pattern /openig/api/* to the list of not-enforced URI in the policy agent
profile. For more information about configuring policy agents, see the Java Agent's User Guide.

Through Common REST, you can read, add, delete, and edit routes on IG without manually accessing
the file system. You can also list the routes in the order that they are loaded in the configuration, and
set fields to filter the information about the routes.

The following examples show some ways to manage routes through Common REST. For more
information, see "About ForgeRock Common REST" in the Configuration Reference.

To Manage Routes Through Common REST

Before you start, prepare IG as described in Getting Started Guide.

1. Add the following route to IG:

Linux

$HOME/.openig/config/routes/00-crest.json

Windows

%appdata%\OpenIG\config\routes\00-crest.json

https://backstage.forgerock.com/docs/openam-jee-policy-agents/5.5/java-agents-guide/

Configuring Routers and Routes
Creating and Editing Routes Through Common REST

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 213

{
 "name": "crest",
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "reason": "OK",
 "headers": {
 "Content-Type": ["text/plain"]
 },
 "entity": "Hello world!"
 }
 },
 "condition": "${matches(request.uri.path, '^/crest')}"
}

To check that the route is working, access the route on: http://openig.example.com:8080/crest.

2. To read a route through Common REST:

• Enter the following command in a terminal window:
$ curl -v http://openig.example.com:8080/openig/api/system/objects/_router/routes/00-crest\?
_prettyPrint\=true

The route is displayed. Note that the route _id is displayed in the JSON of the route.

3. To add a route through Common REST:

• Move $HOME/.openig/config/routes/00-crest.json to /tmp/00-crest.json.

• Check in $HOME/.openig/logs/route-system.log that the route has been removed from the
configuration, where $HOME/.openig is the instance directory. To double check, go to http://
openig.example.com:8080/crest. You should get an HTTP 404 error.

• Enter the following command in a terminal window:
$ curl -X PUT http://openig.example.com:8080/openig/api/system/objects/_router/routes/00-crest -d
 "@/tmp/00-crest.json" --header "Content-Type: application/json"

This command posts the file in /tmp/00-crest.json to the routes directory.

• Check in $HOME/.openig/logs/route-system.log that the route has been added to
configuration, where $HOME/.openig is the instance directory. To double-check, go to http://
openig.example.com:8080/crest. You should see the "Hello world!" message.

4. To edit a route through Common REST:

• Edit /tmp/00-crest.json to change the message displayed by the response handler in the route.

• Enter the following command in a terminal window:

http://openig.example.com:8080/crest
http://openig.example.com:8080/crest
http://openig.example.com:8080/crest
http://openig.example.com:8080/crest
http://openig.example.com:8080/crest

Configuring Routers and Routes
Preventing the Reload of Routes

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 214

$ curl -X PUT http://openig.example.com:8080/openig/api/system/objects/_router/routes/00-crest -d
 "@/tmp/00-crest.json" --header "Content-Type: application/json" --header "If-Match: *"

This command deploys the route with the new configuration. Because the changes are persisted
into the configuration, the existing $HOME/.openig/config/routes/00-crest.json is replaced with the
edited version in /tmp/00-crest.json.

• Check in $HOME/.openig/logs/route-system.log that the route has been updated, where $HOME/.openig
is the instance directory. To double-check, go to http://openig.example.com:8080/crest to
confirm that the displayed message has changed.

5. To delete a route through Common REST:

• Enter the following command in a terminal window:
$ curl -X DELETE http://openig.example.com:8080/openig/api/system/objects/_router/routes/00-crest

• Check in $HOME/.openig/logs/route-system.log that the route has been removed from the
configuration, where $HOME/.openig is the instance directory. To double-check, go to http://
openig.example.com:8080/crest. You should get an HTTP 404 error.

6. To list the routes deployed on the router, in the order that they are tried by the router:

• Enter the following command in a terminal window:
$ curl "http://openig.example.com:8080/openig/api/system/objects/_router/routes?_queryFilter=true"

The list of loaded routes is displayed.

Preventing the Reload of Routes
To prevent routes from being reloaded after startup, stop IG, edit the router scanInterval, and restart
IG. When the interval is set to disabled, routes are loaded only at startup:
{
 "name": "Router",
 "type": "Router",
 "config": {
 "scanInterval": "disabled"
 }
}

The following example changes the location where the router looks for the routes:
{
 "name": "Router",
 "type": "Router",
 "config": {
 "directory": "/path/to/safe/routes",
 "scanInterval": "disabled"
 }
}

http://openig.example.com:8080/crest
http://openig.example.com:8080/crest
http://openig.example.com:8080/crest

Configuring Routers and Routes
Accessing Reserved Routes

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 215

Accessing Reserved Routes
IG uses an ApiProtectionFilter to protect the reserved routes. By default, the filter allows access
to reserved routes only from the loopback address. To override this behavior, declare a custom
ApiProtectionFilter in the top-level heap. For an example, see the CORS filter described in "Setting Up
the UMA Example".

Proxying WebSocket Traffic

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 216

Chapter 15

Proxying WebSocket Traffic
When a user agent requests an upgrade from HTTP or HTTPS to the WebSocket protocol, IG detects
the request and performs an HTTP handshake request between the user agent and the protected
application.

If the handshake is successful, IG upgrades the connection and provides a dedicated tunnel to route
WebSocket traffic between the user agent and the protected application. IG does not intercept
messages to or from the WebSocket server.

The tunnel remains open until it is closed by the user agent or protected application. When the user
agent closes the tunnel, the connection between IG and the protected application is automatically
closed.

The following sequence diagram shows the flow of information when IG proxies WebSocket traffic:

Proxying WebSocket Traffic

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 217

Flow of Information to Proxy WebSocket Traffic

WebSocket client

WebSocket client

IG

IG

WebSocket server

WebSocket server

Perform handshake and creat e t unnel

WebSocket handshake request

HTTP filtering
(for exam ple, execute IG filters for authent icat ion)

WebSocket handshake request

Creat ion of WebSocket tunnel

WebSocket handshake response

Upgrade Client -IG connect ion from
HTTP to WebSocket protocol

WebSocket handshake response

Send m essage

WebSocket fram e

Push through tunnel

WebSocket fram e

Receive m essage

WebSocket fram e

Push through tunnel

WebSocket fram e

Proxying WebSocket Traffic

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 218

To set up IG to proxy WebSocket traffic, configure the websocket property of ReverseProxyHandler. By
default, IG does not proxy WebSocket traffic. For more information, see "ReverseProxyHandler" in
the Configuration Reference.

Configure Proxying for WebSocket Traffic

1. Set up AM:

a. (For AM 6.5.x and earlier versions) Select  Identities > demo, and set the demo user
password to Ch4ng31t.

b. (For AM 6.5.3 and later versions) Select  Services > Add a Service, and add a Validation
Service with the following Valid goto URL Resources:

• http://openig.example.com:8080/*

• http://openig.example.com:8080/*?*

c. Select Applications > Agents > Identity Gateway, add an agent with the following values:

• Agent ID: ig_agent

• Password: password

Leave all other values as default.

For AM 6.5.x and earlier versions, set up an agent as described in "Set Up an IG Agent in AM
6.5 and Earlier".

2. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:
$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

b. Add the following route to IG, to serve .css and other static resources for the sample
application:

Linux

$HOME/.openig/config/routes/static-resources.json

Windows

%appdata%\OpenIG\config\routes\static-resources.json

Proxying WebSocket Traffic

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 219

{
 "name" : "sampleapp_resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${matches(request.uri.path,'^/css')}",
 "handler": "ReverseProxyHandler"
}

c. Add the following route to IG:

Linux

$HOME/.openig/config/routes/websocket.json

Windows

%appdata%\OpenIG\config\routes\websocket.json

{
 "name": "websocket",
 "baseURI": "http://app.example.com:8081",
 "condition": "${matches(request.uri.path, '^/websocket')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://openam.example.com:8088/openam/",
 "version": "7"
 }
 },
 {
 "name": "ReverseProxyHandler",
 "type": "ReverseProxyHandler",
 "config": {
 "websocket": {
 "enabled": true
 }
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "SingleSignOnFilter-1",
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"

Proxying WebSocket Traffic

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 220

 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

For information about how to set up the route in Studio, see "Proxy for WebSocket Traffic in
Structured Editor" in the Studio User Guide.

Notice the following features of the route:

• The route matches requests to /websocket, the endpoint on the sample app that exposes a
WebSocket server.

• The SingleSignOnFilter redirects unauthenticated requests to AM for authentication.

• The ReverserProxyHandler enables IG to proxy WebSocket traffic, and, after IG upgrades
the HTTP connection to the WebSocket protocol, passes the messages to the WebSocket
server.

3. Test the setup:

a. If you are logged in to AM, log out.

b. Go to http://openig.example.com:8080/websocket.

The SingleSignOnFilter redirects the request to AM for authentication.

c. Log in to AM as user demo, password Ch4ng31t.

AM authenticates the user, creates an SSO token, and redirects the request back to the
original URI, with the token in a cookie.

The request then passes to the ReverseProxyHandler, which routes the request to the HTML
page /websocket/index.html of the sample app. The page initiates the HTTP handshake for
connecting to the WebSocket endpoint /websocket/echo.

d. Enter text on the WebSocket echo screen, and note that the text is echoed back.

http://openig.example.com:8080/websocket

Implementing Not-Enforced URIs for Authentication
Implementing Not-Enforced URIs With a SwitchFilter

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 221

Chapter 16

Implementing Not-Enforced URIs for
Authentication
By default, IG routes protect resources (such as a websites or applications) from all requests on
the route's condition path. Some parts of the resource, however, do not need to be protected. For
example, it can be okay for unauthenticated requests to access the welcome page of a web site, or an
image or favicon.

The following sections give examples of routes that do not enforce authentication for a specific
request URL or URL pattern, but enforce authentication for other request URLs:

• "Implementing Not-Enforced URIs With a SwitchFilter"

• "Implementing Not-Enforced URIs With a DispatchHandler"

Implementing Not-Enforced URIs With a SwitchFilter

Not Enforce URIs by Using a SwitchFilter

Before you start:

• Prepare IG and the sample app as described in Getting Started Guide

• Install and configure AM on http://openam.example.com:8088/openam, using the default
configuration.

1. On your system, add the following data in a comma-separated value file called /tmp/userfile (on
Windows C:\Temp\userfile):
username,password,fullname,email
george,C0stanza,George Costanza,george@example.com
kramer,N3wman12,Kramer,kramer@example.com
bjensen,H1falutin,Babs Jensen,bjensen@example.com
demo,Ch4ng31t,Demo User,demo@example.com
kvaughan,B5ibery12,Kirsten Vaughan,kvaughan@example.com
scarter,S9rain12,Sam Carter,scarter@example.com

2. Set up AM:

a. (For AM 6.5.x and earlier versions) Select  Identities > demo, and set the demo user
password to Ch4ng31t.

http://openam.example.com:8088/openam

Implementing Not-Enforced URIs for Authentication
Implementing Not-Enforced URIs With a SwitchFilter

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 222

b. (For AM 6.5.3 and later versions) Select  Services > Add a Service, and add a Validation
Service with the following Valid goto URL Resources:

• http://openig.example.com:8080/*

• http://openig.example.com:8080/*?*

c. Select Applications > Agents > Identity Gateway, add an agent with the following values:

• Agent ID: ig_agent

• Password: password

Leave all other values as default.

For AM 6.5.x and earlier versions, set up an agent as described in "Set Up an IG Agent in AM
6.5 and Earlier".

3. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:
$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

b. Add the following route to IG, to serve .css and other static resources for the sample
application:
Linux
$HOME/.openig/config/routes/static-resources.json

Windows
%appdata%\OpenIG\config\routes\static-resources.json

{
 "name" : "sampleapp_resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${matches(request.uri.path,'^/css')}",
 "handler": "ReverseProxyHandler"
}

c. Add the following route to IG:
Linux
$HOME/.openig/config/routes/not-enforced-switch.json

Windows
%appdata%\OpenIG\config\routes\not-enforced-switch.json

{

Implementing Not-Enforced URIs for Authentication
Implementing Not-Enforced URIs With a SwitchFilter

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 223

 "properties": {
 "notEnforcedPathPatterns": "^/home|^/favicon.ico|^/css"
 },
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://openam.example.com:8088/openam/",
 "version": "7"
 }
 }
],
 "name": "not-enforced-switch",
 "condition": "${matches(request.uri.path, '^/')}",
 "baseURI": "http://app.example.com:8081",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "SwitchFilter-1",
 "type": "SwitchFilter",
 "config": {
 "onRequest": [{
 "condition": "${matches(request.uri.path, '&{notEnforcedPathPatterns}')}",
 "handler": "ReverseProxyHandler"
 }]
 }
 },
 {
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 },
 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${true}",
 "credentials": {
 "type": "FileAttributesFilter",
 "config": {
 "file": "/tmp/userfile",
 "key": "email",
 "value": "${contexts.ssoToken.info.uid}@example.com",
 "target": "${attributes.credentials}"
 }
 },
 "request": {

Implementing Not-Enforced URIs for Authentication
Implementing Not-Enforced URIs With a SwitchFilter

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 224

 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "${attributes.credentials.username}"
],
 "password": [
 "${attributes.credentials.password}"
]
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

Notice the following features of the route:

• The route condition is /, so the route matches all requests.

• The SwitchFilter passes requests on the path ^/home, ^/favicon.ico, and ^/css directly
to the ReverseProxyHandler. All other requests continue the along the chain to the
SingleSignOnFilter.

• If the request does not have a valid AM session cookie, the SingleSignOnFilter redirects
the request to AM for authentication. The SingleSignOnFilter stores the cookie value in an
SsoTokenContext.

• Because the PasswordReplayFilter detects that the response is a login page, it uses
the FileAttributesFilter to replay the password, and logs the request into the sample
application.

4. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

b. Access the route on the not-enforced URL http://openig.example.com:8080/home. The home
page of the sample app is displayed without authentication.

c. Access the route on the enforced URL http://openig.example.com:8080/profile. The
SingleSignOnFilter redirects the request to AM for authentication.

d. Log in to AM as user demo, password Ch4ng31t. The PasswordReplayFilter replays the
credentials for the demo user. The request is passed to the sample app's profile page for the
demo user.

http://openig.example.com:8080/home
http://openig.example.com:8080/profile

Implementing Not-Enforced URIs for Authentication
Implementing Not-Enforced URIs With a DispatchHandler

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 225

Implementing Not-Enforced URIs With a DispatchHandler
To use a DispatchHandler for not-enforced URIs, replace the route in "Implementing Not-Enforced
URIs With a SwitchFilter" with the following route. If the request is on the path ^/home, ^/favicon.ico,
or ^/css, the DispatchHandler sends it directly to the ReverseProxyHandler, without authentication. It
passes all other requests into the Chain for authentication.
{
 "properties": {
 "notEnforcedPathPatterns": "^/home|^/favicon.ico|^/css"
 },
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://openam.example.com:8088/openam/",
 "version": "7"
 }
 }
],
 "name": "not-enforced-dispatch",
 "condition": "${matches(request.uri.path, '^/')}",
 "baseURI": "http://app.example.com:8081",
 "handler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${matches(request.uri.path, '&{notEnforcedPathPatterns}')}",
 "handler": "ReverseProxyHandler"
 },
 {
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "SingleSignOnFilter",
 "config": {
 "amService": "AmService-1"
 }
 },
 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${true}",
 "credentials": {

Implementing Not-Enforced URIs for Authentication
Implementing Not-Enforced URIs With a DispatchHandler

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 226

 "type": "FileAttributesFilter",
 "config": {
 "file": "/tmp/userfile",
 "key": "email",
 "value": "${contexts.ssoToken.info.uid}@example.com",
 "target": "${attributes.credentials}"
 }
 },
 "request": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "${attributes.credentials.username}"
],
 "password": [
 "${attributes.credentials.password}"
]
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
 }
]
 }
 }
}

Configuration Templates
Proxy and Capture

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 227

Chapter 17

Configuration Templates
This chapter contains template routes for common configurations. To use a template, set up IG as
described in Getting Started Guide, and modify the template for your deployment. Before you use
a route in production, review the points in "General Security Considerations" in the Maintenance
Guide.

• "Proxy and Capture"

• "Simple Login Form"

• "Login Form With Cookie From Login Page"

• "Login Form With Password Replay and Cookie Filters"

• "Login Which Requires a Hidden Value From the Login Page"

• "HTTP and HTTPS Application"

• "AM Integration With Headers"

Proxy and Capture
If you installed and configured IG with a router and default route as described in Getting Started
Guide, then you already proxy and capture the application requests coming in and the server
responses going out.

This template route uses a DispatchHandler to change the scheme to HTTPS on login:

Proxy and Capture

{
 "heap": [
 {
 "name": "ReverseProxyHandler",
 "type": "ReverseProxyHandler",
 "comment": "Testing only: blindly trust the server cert for HTTPS.",
 "config": {
 "tls": {
 "type": "ClientTlsOptions",
 "config": {
 "trustManager": {
 "type": "TrustAllManager"

Configuration Templates
Proxy and Capture

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 228

 }
 }
 },
 "hostnameVerifier": "ALLOW_ALL"
 }
 }
],
 "handler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${request.uri.path == '/login'}",
 "handler": "ReverseProxyHandler",
 "baseURI": "https://app.example.com:8444"
 },
 {
 "condition": "${request.uri.scheme == 'http'}",
 "handler": "ReverseProxyHandler",
 "baseURI": "http://app.example.com:8081"
 },
 {
 "handler": "ReverseProxyHandler",
 "baseURI": "https://app.example.com:8444"
 }
]
 }
 },
 "condition": "${matches(request.uri.query, 'demo=capture')}"
}

To try this example with the sample application:

1. Add the following route to IG:
Linux
$HOME/.openig/config/routes/20-capture.json

Windows
%appdata%\OpenIG\config\routes\20-capture.json

2. Add the following route to serve static resources, such as .css, for the sample application:
Linux
$HOME/.openig/config/routes/static-resources.json

Windows
%appdata%\OpenIG\config\routes\static-resources.json

{
 "name" : "sampleapp_resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${matches(request.uri.path,'^/css')}",
 "handler": "ReverseProxyHandler"
}

Configuration Templates
Simple Login Form

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 229

3. Go to http://openig.example.com:8080/login?demo=capture.

The login page of the sample application is displayed.

To use this as a default route with a real application:

1. Replace the test ReverseProxyHandler with one that is configured to trust the application's public
key server certificate. Otherwise, use a ReverseProxyHandler that references a truststore holding
the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL connections.

In production, do not use TrustAllManager for TrustManager, or ALLOW_ALL for hostname verification.
For information, see "ReverseProxyHandler" in the Configuration Reference.

2. Change the baseURI settings to match the target application.

3. Remove the route-level condition on the handler that specifies a demo query string parameter.

Simple Login Form
This template route intercepts the login page request, replaces it with a login form, and logs the user
into the target application with hard-coded username and password:

Simple Login Form

{
 "heap": [
 {
 "name": "ReverseProxyHandler",
 "type": "ReverseProxyHandler",
 "comment": "Testing only: blindly trust the server cert for HTTPS.",
 "config": {
 "tls": {
 "type": "ClientTlsOptions",
 "config": {
 "trustManager": {
 "type": "TrustAllManager"
 }
 }
 },
 "hostnameVerifier": "ALLOW_ALL"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "PasswordReplayFilter",

http://openig.example.com:8080/login?demo=capture

Configuration Templates
Simple Login Form

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 230

 "config": {
 "loginPage": "${request.uri.path == '/login'}",
 "request": {
 "method": "POST",
 "uri": "https://app.example.com:8444/login",
 "form": {
 "username": [
 "MY_USERNAME"
],
 "password": [
 "MY_PASSWORD"
]
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 },
 "condition": "${matches(request.uri.query, 'demo=simple')}"
}

To try this example with the sample application:

1. Add the following route to IG:
Linux
$HOME/.openig/config/routes/21-simple.json

Windows
%appdata%\OpenIG\config\routes\21-simple.json

2. Replace MY_USERNAME with demo, and MY_PASSWORD with Ch4ng31t.

3. Add the following route to serve static resources, such as .css, for the sample application:
Linux
$HOME/.openig/config/routes/static-resources.json

Windows
%appdata%\OpenIG\config\routes\static-resources.json

{
 "name" : "sampleapp_resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${matches(request.uri.path,'^/css')}",
 "handler": "ReverseProxyHandler"
}

4. Go to http://openig.example.com:8080/login?demo=simple.

The sample application profile page for the demo user displays the following information about
the request:

http://openig.example.com:8080/login?demo=simple

Configuration Templates
Login Form With Cookie From Login Page

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 231

Method POST
URI /login
Cookies
Headers content-type: application/x-www-form-urlencoded
content-length: 31
host: app.example.com:8444
connection: Keep-Alive
user-agent: Apache-HttpAsyncClient/4.1.2 (Java/1.8.0_144)

To use this as a default route with a real application:

1. Replace the test ReverseProxyHandler with one that is configured to trust the application's public
key server certificate. Otherwise, use a ReverseProxyHandler that references a truststore holding
the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL connections.

In production, do not use TrustAllManager for TrustManager, or ALLOW_ALL for hostname verification.
For information, see "ReverseProxyHandler" in the Configuration Reference.

2. Change the uri, form, and baseURI to match the target application.

3. Remove the route-level condition on the handler that specifies a demo query string parameter.

Login Form With Cookie From Login Page
Like the previous route, this template route intercepts the login page request, replaces it with the
login form, and logs the user into the target application with hard-coded username and password.
This route also adds a CookieFilter to manage cookies.

The route uses a default CookieFilter to manage cookies. In this default configuration, cookies from
the protected application are intercepted and stored in the IG session. They are not sent to the
browser. For information, see "CookieFilter" in the Configuration Reference.

Login Form With Cookie From Login Page

{
 "heap": [
 {
 "name": "ReverseProxyHandler",
 "type": "ReverseProxyHandler",
 "comment": "Testing only: blindly trust the server cert for HTTPS.",
 "config": {
 "tls": {
 "type": "ClientTlsOptions",
 "config": {
 "trustManager": {
 "type": "TrustAllManager"
 }
 }

Configuration Templates
Login Form With Cookie From Login Page

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 232

 },
 "hostnameVerifier": "ALLOW_ALL"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${request.uri.path == '/login'}",
 "request": {
 "method": "POST",
 "uri": "https://app.example.com:8444/login",
 "form": {
 "username": [
 "MY_USERNAME"
],
 "password": [
 "MY_PASSWORD"
]
 }
 }
 }
 },
 {
 "type": "CookieFilter"
 }
],
 "handler": "ReverseProxyHandler"
 }
 },
 "condition": "${matches(request.uri.query, 'demo=cookie')}"
}

To try this example with the sample application:

1. Add the following route to IG:

Linux

$HOME/.openig/config/routes/22-cookie.json

Windows

%appdata%\OpenIG\config\routes\22-cookie.json

2. Replace MY_USERNAME with kramer, and MY_PASSWORD with N3wman12.

3. Add the following route to serve static resources, such as .css, for the sample application:

Linux

$HOME/.openig/config/routes/static-resources.json

Windows

Configuration Templates
Login Form With Password Replay and Cookie Filters

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 233

%appdata%\OpenIG\config\routes\static-resources.json

{
 "name" : "sampleapp_resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${matches(request.uri.path,'^/css')}",
 "handler": "ReverseProxyHandler"
}

4. Go to http://openig.example.com:8080/login?demo=cookie.

The sample application page is displayed.
Method POST
URI /login
Cookies
Headers content-type: application/x-www-form-urlencoded
 content-length: 31
 host: app.example.com:8444
 connection: Keep-Alive
 user-agent: Apache-HttpAsyncClient/... (Java/...)

5. Refresh your connection to http://openig.example.com:8080/login?demo=cookie.

Compared to the example in "Login Form With Cookie From Login Page", this example displays
additional information about the session cookie:
Cookies session-cookie=123...

To use this as a default route with a real application:

1. Replace the test ReverseProxyHandler with one that is configured to trust the application's public
key server certificate. Otherwise, use a ReverseProxyHandler that references a truststore holding
the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL connections.

In production, do not use TrustAllManager for TrustManager, or ALLOW_ALL for hostname verification.
For information, see "ReverseProxyHandler" in the Configuration Reference.

2. Change the uri and form to match the target application.

3. Remove the route-level condition on the handler that specifies a demo query string parameter.

Login Form With Password Replay and Cookie Filters
When a user without a valid session tries to access a protected application, this template route works
with an application to return a login page.

The route uses a PasswordReplayFilter to find the login page by using a pattern that matches a mock
AM Classic UI page.

http://openig.example.com:8080/login?demo=cookie
http://openig.example.com:8080/login?demo=cookie

Configuration Templates
Login Form With Password Replay and Cookie Filters

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 234

Cookies sent by the user-agent are retained in the CookieFilter, and not forwarded to the protected
application. Similarly, set-cookies sent by the protected application are retained in the CookieFilter
and not forwarded back to the user-agent.

The route uses a default CookieFilter to manage cookies. In this default configuration, cookies from
the protected application are intercepted and stored in the IG session. They are not sent to the
browser. For information, see "CookieFilter" in the Configuration Reference.

Login Form With Password Replay and Cookie Filters

{
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPageContentMarker": "OpenAM\\s\\(Login\\)",
 "request": {
 "comments": [
 "An example based on OpenAM classic UI: ",
 "uri is for the OpenAM login page; ",
 "IDToken1 is the username field; ",
 "IDToken2 is the password field; ",
 "host takes the OpenAM FQDN:port.",
 "The sample app simulates OpenAM."
],
 "method": "POST",
 "uri": "http://app.example.com:8081/openam/UI/Login",
 "form": {
 "IDToken0": [
 ""
],
 "IDToken1": [
 "demo"
],
 "IDToken2": [
 "Ch4ng31t"
],
 "IDButton": [
 "Log+In"
],
 "encoded": [
 "false"
]
 },
 "headers": {
 "host": [
 "app.example.com:8081"
]
 }
 }
 }
 },
 {

Configuration Templates
Login Which Requires a Hidden Value From the Login Page

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 235

 "type": "CookieFilter"
 }
],
 "handler": "ReverseProxyHandler"
 }
 },
 "condition": "${matches(request.uri.query, 'demo=classic')}"
}

To try this example with the sample application:

1. Save the file as $HOME/.openig/config/routes/23-classic.json.

2. Use the following curl command to check that it works:
$ curl -D- http://openig.example.com:8080/login?demo=classic

HTTP/1.1 200 OK
Set-Cookie: IG_SESSIONID=24446BA29E866F840197C8E0EAD57A89; Path=/; HttpOnly
...

To use this as a default route with a real application:

1. Change the uri and form to match the target application.

2. Remove the route-level condition on the handler that specifies a demo query string parameter.

Login Which Requires a Hidden Value From the Login Page
This template route extracts a hidden value from the login page, and includes it the static login form
that it then POSTs to the target application.

Login Which Requires a Hidden Value From the Login Page

{
 "properties": {
 "appBaseUri": "https://app.example.com:8444"
 },
 "heap": [
 {
 "name": "ReverseProxyHandler",
 "type": "ReverseProxyHandler",
 "comment": "Testing only: blindly trust the server cert for HTTPS.",
 "config": {
 "tls": {
 "type": "ClientTlsOptions",
 "config": {
 "trustManager": {
 "type": "TrustAllManager"
 }
 }
 },
 "hostnameVerifier": "ALLOW_ALL"

Configuration Templates
Login Which Requires a Hidden Value From the Login Page

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 236

 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${request.uri.path == '/login'}",
 "loginPageExtractions": [
 {
 "name": "hidden",
 "pattern": "loginToken\\s+value=\"(.*)\""
 }
],
 "request": {
 "method": "POST",
 "uri": "${appBaseUri}/login",
 "form": {
 "username": [
 "MY_USERNAME"
],
 "password": [
 "MY_PASSWORD"
],
 "hiddenValue": [
 "${attributes.extracted.hidden}"
]
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 },
 "condition": "${matches(request.uri.query, 'demo=hidden')}",
 "baseURI": "${appBaseUri}"
}

The parameters in the PasswordReplayFilter form, MY_USERNAME and MY_PASSWORD, can have string values
or can use expressions.

To try this example with the sample application:

1. Add the following route to IG:
Linux

$HOME/.openig/config/routes/24-hidden.json

Windows

%appdata%\OpenIG\config\routes\24-hidden.json

2. Replace MY_USERNAME with scarter, and MY_PASSWORD with S9rain12.

Configuration Templates
HTTP and HTTPS Application

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 237

3. Add the following route to serve static resources, such as .css, for the sample application:
Linux
$HOME/.openig/config/routes/static-resources.json

Windows
%appdata%\OpenIG\config\routes\static-resources.json

{
 "name" : "sampleapp_resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${matches(request.uri.path,'^/css')}",
 "handler": "ReverseProxyHandler"
}

4. Go to http://openig.example.com:8080/login?demo=hidden.

To use this as a default route with a real application:

1. Replace the test ReverseProxyHandler with one that is configured to trust the application's public
key server certificate. Otherwise, use a ReverseProxyHandler that references a truststore holding
the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL connections.

In production, do not use TrustAllManager for TrustManager, or ALLOW_ALL for hostname verification.
For information, see "ReverseProxyHandler" in the Configuration Reference.

2. Change the loginPage, loginPageExtractions, uri, and form to match the target application.

3. Remove the route-level condition on the handler that specifies a demo query string parameter.

HTTP and HTTPS Application
This template route proxies traffic to an application with both HTTP and HTTPS ports. The
application uses HTTPS for authentication and HTTP for the general application features. Assuming
that all login requests are made over HTTPS, you must add the login filters and handlers to the chain.

HTTP and HTTPS Application

{
 "heap": [
 {
 "name": "ReverseProxyHandler",
 "type": "ReverseProxyHandler",
 "comment": "Testing only: blindly trust the server cert for HTTPS.",
 "config": {
 "tls": {
 "type": "ClientTlsOptions",
 "config": {

http://openig.example.com:8080/login?demo=hidden

Configuration Templates
HTTP and HTTPS Application

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 238

 "trustManager": {
 "type": "TrustAllManager"
 }
 }
 },
 "hostnameVerifier": "ALLOW_ALL"
 }
 }
],
 "handler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${request.uri.scheme == 'http'}",
 "handler": "ReverseProxyHandler",
 "baseURI": "http://app.example.com:8081"
 },
 {
 "condition": "${request.uri.path == '/login'}",
 "handler": {
 "type": "Chain",
 "config": {
 "comment": "Add one or more filters to handle login.",
 "filters": [],
 "handler": "ReverseProxyHandler"
 }
 },
 "baseURI": "https://app.example.com:8444"
 },
 {
 "handler": "ReverseProxyHandler",
 "baseURI": "https://app.example.com:8444"
 }
]
 }
 },
 "condition": "${matches(request.uri.query, 'demo=https')}"
}

To try this example with the sample application:

1. Add the following route to IG:
Linux
$HOME/.openig/config/routes/25-https.json

Windows
%appdata%\OpenIG\config\routes\25-https.json

2. Add the following route to serve static resources, such as .css, for the sample application:
Linux
$HOME/.openig/config/routes/static-resources.json

Windows

Configuration Templates
AM Integration With Headers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 239

%appdata%\OpenIG\config\routes\static-resources.json

{
 "name" : "sampleapp_resources",
 "baseURI" : "http://app.example.com:8081",
 "condition": "${matches(request.uri.path,'^/css')}",
 "handler": "ReverseProxyHandler"
}

3. Go to http://openig.example.com:8080/login?demo=https.

The login page of the sample application is displayed.

To use this as a default route with a real application:

1. Replace the test ReverseProxyHandler with one that is configured to trust the application's public
key server certificate. Otherwise, use a ReverseProxyHandler that references a truststore holding
the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL connections.

In production, do not use TrustAllManager for TrustManager, or ALLOW_ALL for hostname verification.
For information, see "ReverseProxyHandler" in the Configuration Reference.

2. Change the loginPage, loginPageExtractions, uri, and form to match the target application.

3. Remove the route-level condition on the handler that specifies a demo query string parameter.

AM Integration With Headers
This template route logs the user into the target application by using headers such as those passed in
from an AM policy agent. If the passed in header contains only a user name or subject and requires
a lookup to an external data source, you must add an attribute filter to the chain to retrieve the
credentials.

AM Integration With Headers

{
 "heap": [
 {
 "name": "ReverseProxyHandler",
 "type": "ReverseProxyHandler",
 "comment": "Testing only: blindly trust the server cert for HTTPS.",
 "config": {
 "tls": {
 "type": "ClientTlsOptions",
 "config": {
 "trustManager": {
 "type": "TrustAllManager"
 }

http://openig.example.com:8080/login?demo=https

Configuration Templates
AM Integration With Headers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 240

 }
 },
 "hostnameVerifier": "ALLOW_ALL"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "PasswordReplayFilter",
 "config": {
 "loginPage": "${request.uri.path == '/login'}",
 "request": {
 "method": "POST",
 "uri": "https://app.example.com:8444/login",
 "form": {
 "username": [
 "${request.headers['username'][0]}"
],
 "password": [
 "${request.headers['password'][0]}"
]
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 },
 "condition": "${matches(request.uri.query, 'demo=headers')}"
}

To try this example with the sample application:

1. Add the route to IG:

Linux

$HOME/.openig/config/routes/26-headers.json

Windows

%appdata%\OpenIG\config\routes\26-headers.json

2. Use the curl command to simulate the headers being passed in from an AM policy agent, as in the
following example:
$ curl \
--header "username: kvaughan" \
--header "password: B5ibery12" \
http://openig.example.com:8080/login?demo=headers

...
<title id="welcome">Howdy, kvaughan</title>
...

Configuration Templates
AM Integration With Headers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 241

To use this as a default route with a real application:

1. Replace the test ReverseProxyHandler with one that is configured to trust the application's public
key server certificate. Otherwise, use a ReverseProxyHandler that references a truststore holding
the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL connections.

In production, do not use TrustAllManager for TrustManager, or ALLOW_ALL for hostname verification.
For information, see "ReverseProxyHandler" in the Configuration Reference.

2. Change the loginPage, uri, and form to match the target application.

3. Remove the route-level condition on the handler that specifies a demo query string parameter.

Extending IG
Extending IG Through Scripts

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 242

Chapter 18

Extending IG
To achieve complex server interactions or intensive data transformations that you can't currently
achieve with scripts or existing handlers, filters, or expressions, extend IG through scripting and
customization. The following sections describe how to extend IG:

• "Extending IG Through Scripts"

• "Extending IG Through the Java API"

• "Recording Custom Audit Events"

Extending IG Through Scripts
The following sections describe how to extend IG through scripts:

• "About Scripting"

• "Scripting Dispatch"

• "Scripting HTTP Basic Authentication"

• "Scripting Authentication to LDAP-Enabled Servers"

• "Scripting SQL Queries"

About Scripting

Important

When you are writing scripts or Java extensions, never use a Promise blocking method, such as get(),
getOrThrow(), or getOrThrowUninterruptibly(), to obtain the response.

A promise represents the result of an asynchronous operation. Therefore, using a blocking method to wait for
the result can cause deadlocks and/or race issues.

IG supports the Groovy dynamic scripting language through the use the scriptable objects. For
information about scriptable object types, their configuration, and properties, see "Scripts" in the
Configuration Reference.

Extending IG
About Scripting

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 243

Scriptable objects are configured by the script's Internet media type, and either a source script
included in the JSON configuration, or a file script that IG reads from a file. The configuration can
optionally supply arguments to the script.

IG provides global variables to scripts at runtime, and provides access to Groovy's built-in
functionality. Scripts can access the request and the context, store variables across executions,
write messages to logs, make requests to a web service or to an LDAP directory service, and access
responses returned in promise callback methods.

Before trying the scripts in this chapter, install and configure IG as described in Getting Started
Guide.

When developing and debugging your scripts, consider configuring a capture decorator to log
requests, responses, and context data in JSON form. You can then turn off capturing when you move
to production. For details, see "CaptureDecorator" in the Configuration Reference.

Using a Reference File Script

The following example defines a ScriptableFilter written in Groovy, and stored in the following file:
Linux

$HOME/.openig/scripts/groovy/SimpleFormLogin.groovy

Windows

%appdata%\OpenIG\scripts\groovy\SimpleFormLogin.groovy

{
 "name": "SimpleFormLogin",
 "type": "ScriptableFilter",
 "config": {
 "type": "application/x-groovy",
 "file": "SimpleFormLogin.groovy"
 }
}

Relative paths in the file field depend on how IG is installed. If IG is installed in an application server,
then paths for Groovy scripts are relative to $HOME/.openig/scripts/groovy (or %appdata%\OpenIG\scripts
\groovy).

The base location $HOME/.openig/scripts/groovy (or %appdata%\OpenIG\scripts\groovy) is on the classpath
when the scripts are executed. If some Groovy scripts are not in the default package, but instead
have their own package names, they belong in the directory corresponding to their package name.
For example, a script in package com.example.groovy belongs in $HOME/.openig/scripts/groovy/com/example/
groovy/ (or %appdata%\OpenIG\scripts\groovy\com\example\groovy\).

Scripting in Studio

You can use Studio to configure a ScriptableFilter or ScriptableThrottlingPolicy, or use scripts to
configure scopes in OAuth2ResourceServerFilter.

Extending IG
Scripting Dispatch

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 244

During configuration, you can enter the script directly into the object, or you can use a stored
reference script. Note the following points about creating and using reference scripts:

• When you enter a script directly into an object, the script is added to the list of reference scripts.

• You can use a reference script in multiple objects in a route, but if you edit a reference script, all
objects that use it are updated with the change.

• If you delete an object that uses a script, or remove the object from the chain, the script that it
references remains in the list of scripts.

• If a reference script is used in an object, you can't rename or delete the script.

For an example of creating a ScriptableThrottlingPolicy in Studio, see "Configuring Scriptable
Throttling". For information about using Studio, see "Adding Configuration to a Route" in the Studio
User Guide.

Scripting Dispatch
To route requests when the conditions are complicated, use a ScriptableHandler instead of a
DispatchHandler as described in "DispatchHandler" in the Configuration Reference.

1. Add the following script to IG:
Linux

$HOME/.openig/scripts/groovy/DispatchHandler.groovy

Windows

%appdata%\OpenIG\scripts\groovy\DispatchHandler.groovy

/*
 * Copyright 2014-2020 ForgeRock AS. All Rights Reserved
 *
 * Use of this code requires a commercial software license with ForgeRock AS.
 * or with one of its affiliates. All use shall be exclusively subject
 * to such license between the licensee and ForgeRock AS.
 */

/*
 * This simplistic dispatcher matches the path part of the HTTP request.
 * If the path is /mylogin, it checks Username and Password headers,
 * accepting bjensen:H1falutin, and returning HTTP 403 Forbidden to others.
 * Otherwise it returns HTTP 401 Unauthorized.
 */

// Rather than return a Promise of a response from an external source,
// this script returns the response itself.
response = new Response(Status.OK);

switch (request.uri.path) {

 case "/mylogin":

Extending IG
Scripting Dispatch

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 245

 if (request.headers.Username.values[0] == "bjensen" &&
 request.headers.Password.values[0] == "H1falutin") {

 response.status = Status.OK
 response.entity = "<html><p>Welcome back, Babs!</p></html>"

 } else {

 response.status = Status.FORBIDDEN
 response.entity = "<html><p>Authorization required</p></html>"

 }

 break

 default:

 response.status = Status.UNAUTHORIZED
 response.entity = "<html><p>Please log in.</p></html>"

 break

}

// Return the locally created response, no need to wrap it into a Promise
return response

2. Add the following route to IG, to set up headers required by the script when the user logs in:

Linux

$HOME/.openig/config/routes/98-dispatch.json

Windows

%appdata%\OpenIG\config\routes\98-dispatch.json

{
 "heap": [
 {
 "name": "DispatchHandler",
 "type": "DispatchHandler",
 "config": {
 "bindings": [{
 "condition": "${matches(request.uri.path, '/mylogin')}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "Username": [
 "bjensen"
],

Extending IG
Scripting HTTP Basic Authentication

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 246

 "Password": [
 "H1falutin"
]
 }
 }
 }
],
 "handler": "Dispatcher"
 }
 }
 },
 {
 "handler": "Dispatcher",
 "condition": "${matches(request.uri.path, '/dispatch')}"
 }
]
 }
 },
 {
 "name": "Dispatcher",
 "type": "ScriptableHandler",
 "config": {
 "type": "application/x-groovy",
 "file": "DispatchHandler.groovy"
 }
 }
],
 "handler": "DispatchHandler",
 "condition": "${matches(request.uri.path, '^/dispatch') or matches(request.uri.path, '^/mylogin')}"
}

3. Go to http://openig.example.com:8080/dispatch, and click log in.

The HeaderFilter sets Username and Password headers in the request, and passes the request to the
script. The script responds, Welcome back, Babs!

Scripting HTTP Basic Authentication
HTTP Basic authentication calls for the user agent such as a browser to send a user name and
password to the server in an Authorization header. HTTP Basic authentication relies on an encrypted
connection to protect the user name and password credentials, which are base64-encoded in the
Authorization header, not encrypted.

1. Add the following script to IG, to add an Authorization header based on a username and password
combination:
Linux
$HOME/.openig/scripts/groovy/BasicAuthFilter.groovy

Windows
%appdata%\OpenIG\scripts\groovy\BasicAuthFilter.groovy

/*
 * Copyright 2014-2020 ForgeRock AS. All Rights Reserved

http://openig.example.com:8080/dispatch

Extending IG
Scripting HTTP Basic Authentication

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 247

 *
 * Use of this code requires a commercial software license with ForgeRock AS.
 * or with one of its affiliates. All use shall be exclusively subject
 * to such license between the licensee and ForgeRock AS.
 */

/*
 * Perform basic authentication with the user name and password
 * that are supplied using a configuration like the following:
 *
 * {
 * "name": "BasicAuth",
 * "type": "ScriptableFilter",
 * "config": {
 * "type": "application/x-groovy",
 * "file": "BasicAuthFilter.groovy",
 * "args": {
 * "username": "bjensen",
 * "password": "H1falutin"
 * }
 * }
 * }
 */

def userPass = username + ":" + password
def base64UserPass = userPass.getBytes().encodeBase64()
request.headers.add("Authorization", "Basic ${base64UserPass}" as String)

// Credentials are only base64-encoded, not encrypted: Set scheme to HTTPS.

/*
 * When connecting over HTTPS, by default the client tries to trust the server.
 * If the server has no certificate
 * or has a self-signed certificate unknown to the client,
 * then the most likely result is an SSLPeerUnverifiedException.
 *
 * To avoid an SSLPeerUnverifiedException,
 * set up HTTPS correctly on the server.
 * Either use a server certificate signed by a well-known CA,
 * or set up the gateway to trust the server certificate.
 */
request.uri.scheme = "https"

// Calls the next Handler and returns a Promise of the Response.
// The Response can be handled with asynchronous Promise callbacks.
next.handle(context, request)

2. Add the following route to IG, to set up headers required by the script when the user logs in:

Linux

$HOME/.openig/config/routes/09-basic.json

Windows

%appdata%\OpenIG\config\routes\09-basic.json

{
 "handler": {

Extending IG
Scripting Authentication to LDAP-Enabled Servers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 248

 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "ScriptableFilter",
 "config": {
 "type": "application/x-groovy",
 "file": "BasicAuthFilter.groovy",
 "args": {
 "username": "bjensen",
 "password": "H1falutin"
 }
 },
 "capture": "filtered_request"
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "reason": "OK",
 "headers": {
 "Content-Type": ["text/plain"]
 },
 "entity": "Hello bjensen!"
 }
 }
 }
 },
 "condition": "${matches(request.uri.path, '^/basic')}"
}

When the request path matches /basic, the route calls the Chain, which runs the ScriptableFilter.
The capture setting captures the request as updated by the ScriptableFilter. Finally, IG returns a
static page.

3. Go to http://openig.example.com:8080/basic.

The captured request in the console log shows that the scheme is now HTTPS, and that the
Authorization header is set for HTTP Basic:
GET https://app.example.com:8081/basic HTTP/1.1
...
Authorization: Basic Ymp...aW4=

Scripting Authentication to LDAP-Enabled Servers

Many organizations use an LDAP directory service, such as ForgeRock Directory Services (DS), to
store user profiles and authentication credentials. This section describes how to authenticate to DS
by using a script and a ScriptableFilter.

DS is secure by default, so connections between IG and DS must be configured for TLS. For
convenience, this example uses a TrustAllManager to blindly accept any certificate presented by DS.

http://openig.example.com:8080/basic

Extending IG
Scripting Authentication to LDAP-Enabled Servers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 249

In a production environment, use a TrustManager that is configured to accept only the appropriate
certificates.

If the LDAP connection in your deployment is not secured with TLS, you can remove SSL options from
the example script, and remove the TrustAllManager from the example route.

For more information about attributes and types for interacting with LDAP, see AttributeParser in
DS's Javadoc. The ConnectionFactory heartbeat is enabled by default. For information about how to
disable it, see LdapConnectionFactory in DS's Javadoc.

Authenticate to an LDAP Server

1. Install an LDAP directory server, such as DS, and then generate or import some sample users
who can authenticate over LDAP. For information about setting up DS and importing sample
data, see Install DS for Evaluation in DS's Installation Guide.

2. Add the following script to IG:

Linux

$HOME/.openig/scripts/groovy/LdapsAuthFilter.groovy

Windows

%appdata%\OpenIG\scripts\groovy\LdapsAuthFilter.groovy

import org.forgerock.opendj.ldap.*
import org.forgerock.opendj.security.SslOptions;

/* Perform LDAP authentication based on user credentials from a form,
 * connecting to an LDAPS enabled server.
 *
 * If LDAP authentication succeeds, then return a promise to handle the response.
 * If there is a failure, produce an error response and return it.
 */

username = request.form?.username[0]
password = request.form?.password[0]

// Update port number to match the LDAPS port of your directory service.
host = ldapHost ?: "localhost"
port = ldapPort ?: 1636

// Include options for SSL.
// In this example, the keyManager is not set (no mTLS enabled), and both
// the trustManager and the LDAP secure protocol are specified from the
// script arguments (see 'trustManager' and 'protocols' arguments).
// In a development environment (when there is no TLS), the SslOptions can be removed completely.
ldapOptions = ldap.defaultOptions(context)
SslOptions sslOptions = SslOptions.newSslOptions(null, trustManager)
 .enabledProtocols(protocols);
ldapOptions = ldapOptions.set(CommonLdapOptions.SSL_OPTIONS, sslOptions);

// Include SSL options in the LDAP connection
client = ldap.connect(host, port as Integer, ldapOptions)
try {

https://backstage.forgerock.com/docs/ds/7/javadoc/org/forgerock/opendj/ldap/AttributeParser.html
https://backstage.forgerock.com/docs/ds/7/javadoc/org/forgerock/opendj/ldap/LdapConnectionFactory.html
https://www.forgerock.com/platform/directory-services/
https://backstage.forgerock.com/docs/ds/7/install-guide/setup-ds.html

Extending IG
Scripting Authentication to LDAP-Enabled Servers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 250

 // Assume the username is an exact match of either
 // the user ID, the email address, or the user's full name.
 filter = "(|(uid=%s)(mail=%s)(cn=%s))"

 user = client.searchSingleEntry(
 "ou=people,dc=example,dc=com",
 ldap.scope.sub,
 ldap.filter(filter, username, username, username))

 client.bind(user.name as String, password?.toCharArray())

 // Authentication succeeded.

 // Set a header (or whatever else you want to do here).
 request.headers.add("Ldap-User-Dn", user.name.toString())

 // Most LDAP attributes are multi-valued.
 // When you read multi-valued attributes, use the parse() method,
 // with an AttributeParser method
 // that specifies the type of object to return.
 attributes.cn = user.cn?.parse().asSetOfString()

 // When you write attribute values, set them directly.
 user.description = "New description set by my script"

 // Here is how you might read a single value of a multi-valued attribute:
 attributes.description = user.description?.parse().asString()

 // Call the next handler. This returns when the request has been handled.
 return next.handle(context, request)

} catch (AuthenticationException e) {
 // LDAP authentication failed, so fail the response with
 // HTTP status code 403 Forbidden.
 response = new Response(Status.FORBIDDEN)
 response.headers['Content-Type'] = "text/html; charset=utf-8"
 response.entity = "<html><p>Authentication failed: " + e.message + "</p></html>"

} catch (Exception e) {
 // Something other than authentication failed on the server side,
 // so fail the response with HTTP 500 Internal Server Error.
 response = new Response(Status.INTERNAL_SERVER_ERROR)
 response.headers['Content-Type'] = "text/html; charset=utf-8"
 response.entity = "<html><p>Server error: " + e.message + "</p></html>"

} finally {
 client.close()
}

// Return the locally created response, no need to wrap it into a Promise
return response

Information about the script is given in the script comments. If necessary, adjust the script to
match your DS installation.

3. Add the following route to IG:

Extending IG
Scripting Authentication to LDAP-Enabled Servers

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 251

Linux

$HOME/.openig/config/routes/10-ldap.json

Windows

%appdata%\OpenIG\config\routes\10-ldap.json

{
 "heap": [
 {
 "name": "DsTrustManager",
 "type": "TrustAllManager"
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "ScriptableFilter",
 "config": {
 "args": {
 "ldapHost": "localhost",
 "ldapPort": 1636,
 "protocols": "TLSv1.3",
 "trustManager": "${heap['DsTrustManager']}"
 },
 "type": "application/x-groovy",
 "file": "LdapsAuthFilter.groovy"
 }
 }
],
 "handler": {
 "type": "ScriptableHandler",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "dn = request.headers['Ldap-User-Dn'].values[0]",
 "entity = '<html><body><p>Ldap-User-Dn: ' + dn + '</p></body></html>'",
 "",
 "response = new Response(Status.OK)",
 "response.entity = entity",
 "return response"
]
 }
 }
 }
 },
 "condition": "${matches(request.uri.path, '^/ldap')}"
}

Notice the following features of the route:

• The route matches requests to /ldap.

Extending IG
Scripting SQL Queries

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 252

• The ScriptableFilter calls LdapsAuthFilter.groovy to authenticate the user over a secure LDAP
connection, using the username and password provided in the request.

• The script uses TrustAllManager to blindly accept any certificate presented by DS.

• The script receives a connection to the DS server, using TLS options. Using the credentials
in the request, the script tries to perform an LDAP bind operation. If the bind succeeds (the
credentials are accepted by the LDAP server), the request continues to the ScriptableHandler.
Otherwise, the request stops with an error.

• The ScriptableHandler returns the user DN.

4. Go to http://openig.example.com:8080/ldap?username=abarnes&password=chevron to specify
credentials for the sample user abarnes.

The script returns the user DN:
Ldap-User-Dn: uid=abarnes,ou=People,dc=example,dc=com

Scripting SQL Queries

This example builds on "Logging In With Credentials From a Database" to use scripts to look up
credentials in a database, set the credentials in headers, and set the scheme in HTTPS to protect the
request.

1. Set up and test the example in "Logging In With Credentials From a Database".

2. Add the following script to IG, to look up user credentials in the database, by email address, and
set the credentials in the request headers for the next handler:

Linux

$HOME/.openig/scripts/groovy/SqlAccessFilter.groovy

Windows

%appdata%\OpenIG\scripts\groovy\SqlAccessFilter.groovy

http://openig.example.com:8080/ldap?username=abarnes&password=chevron

Extending IG
Scripting SQL Queries

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 253

/*
 * Copyright 2014-2020 ForgeRock AS. All Rights Reserved
 *
 * Use of this code requires a commercial software license with ForgeRock AS.
 * or with one of its affiliates. All use shall be exclusively subject
 * to such license between the licensee and ForgeRock AS.
 */

/*
 * Look up user credentials in a relational database
 * based on the user's email address provided in the request form data,
 * and set the credentials in the request headers for the next handler.
 */

def client = new SqlClient(dataSource)
def credentials = client.getCredentials(request.form?.mail[0])
request.headers.add("Username", credentials.Username)
request.headers.add("Password", credentials.Password)

// The credentials are not protected in the headers, so use HTTPS.
request.uri.scheme = "https"

// Calls the next Handler and returns a Promise of the Response.
// The Response can be handled with asynchronous Promise callbacks.
next.handle(context, request)

3. Add the following script to IG to access the database, and get credentials:

Linux

$HOME/.openig/scripts/groovy/SqlClient.groovy

Windows

%appdata%\OpenIG\scripts\groovy\SqlClient.groovy

/*
 * Copyright 2014-2020 ForgeRock AS. All Rights Reserved
 *
 * Use of this code requires a commercial software license with ForgeRock AS.
 * or with one of its affiliates. All use shall be exclusively subject
 * to such license between the licensee and ForgeRock AS.
 */

import groovy.sql.Sql

import javax.naming.InitialContext
import javax.sql.DataSource

/**
 * Access a database with a well-known structure,
 * in particular to get credentials given an email address.
 */
class SqlClient {

 // DataSource supplied as constructor parameter.
 def sql

Extending IG
Scripting SQL Queries

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 254

 SqlClient(DataSource dataSource) {
 if (dataSource == null) {
 throw new IllegalArgumentException("DataSource is null")
 }
 this.sql = new Sql(dataSource)
 }

 // The expected table is laid out like the following.

 // Table USERS
 // --
 // | USERNAME | PASSWORD | EMAIL |...|
 // --
 // | <username>| <passwd> | <mail@...>|...|
 // --

 String tableName = "USERS"
 String usernameColumn = "USERNAME"
 String passwordColumn = "PASSWORD"
 String mailColumn = "EMAIL"

 /**
 * Get the Username and Password given an email address.
 *
 * @param mail Email address used to look up the credentials
 * @return Username and Password from the database
 */
 def getCredentials(mail) {
 def credentials = [:]
 def query = "SELECT " + usernameColumn + ", " + passwordColumn +
 " FROM " + tableName + " WHERE " + mailColumn + "='$mail';"

 sql.eachRow(query) {
 credentials.put("Username", it."$usernameColumn")
 credentials.put("Password", it."$passwordColumn")
 }
 return credentials
 }
}

4. Add the following route to IG to set up headers required by the scripts when the user logs in:

Linux

$HOME/.openig/config/routes/11-db.json

Windows

%appdata%\OpenIG\config\routes\11-db.json

{
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "JdbcDataSource-1",
 "type": "JdbcDataSource",

Extending IG
Scripting SQL Queries

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 255

 "config": {
 "driverClassName": "org.h2.Driver",
 "jdbcUrl": "jdbc:h2:tcp://localhost/~/test",
 "username": "sa",
 "passwordSecretId": "database.password",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "ScriptableFilter",
 "config": {
 "args": {
 "dataSource": "${heap['JdbcDataSource-1']}"
 },
 "type": "application/x-groovy",
 "file": "SqlAccessFilter.groovy"
 }
 },
 {
 "type": "StaticRequestFilter",
 "config": {
 "method": "POST",
 "uri": "http://app.example.com:8081/login",
 "form": {
 "username": [
 "${request.headers['Username'][0]}"
],
 "password": [
 "${request.headers['Password'][0]}"
]
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 },
 "condition": "${matches(request.uri.path, '^/db')}"
}

Notice the following features of the route:

• The route matches requests to /db.

• The JdbcDataSource in the heap sets up the connection to the database.

• The ScriptableFilter calls SqlAccessFilter.groovy to look up credentials over SQL.

SqlAccessFilter.groovy, in turn, calls SqlClient.groovy to access the database to get the credentials.

• The StaticRequestFilter uses the credentials to build a login request.

Extending IG
Extending IG Through the Java API

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 256

Although the script sets the scheme to HTTPS, for convenience in this example, the
StaticRequestFilter resets the URI to HTTP.

5. To test the setup, go to a URL with a query string parameter that specifies an email address in
the database, such as http://openig.example.com:8080/db?mail=george@example.com.

The sample application profile page for George is displayed.

Extending IG Through the Java API
Important

When you are writing scripts or Java extensions, never use a Promise blocking method, such as get(),
getOrThrow(), or getOrThrowUninterruptibly(), to obtain the response.

A promise represents the result of an asynchronous operation. Therefore, using a blocking method to wait for
the result can cause deadlocks and/or race issues.

IG includes a complete Java application programming interface to allow you to customize IG to
perform complex server interactions or intensive data transformations that you cannot achieve
with scripts or the existing handlers, filters, and expressions described in "Expressions" in the
Configuration Reference. The following sections describe how to extend IG through the Java API:

• "Key Extension Points"

• "Implementing a Customized Sample Filter"

• "Implementing a Class Alias Resolver"

• "Configuring the Heap Object for the Customization"

• "Embedding the Customization in IG"

Key Extension Points

Interface Stability: Evolving, as defined in "ForgeRock Product Stability Labels" in the Release Notes.

The following interfaces are available:

Decorator

A Decorator adds new behavior to another object without changing the base type of the object.

When suggesting custom Decorator names, know that IG reserves all field names that use only
alphanumeric characters. To avoid clashes, use dots or dashes in your field names, such as my-
decorator.

http://openig.example.com:8080/db?mail=george@example.com
../apidocs
../apidocs/org/forgerock/openig/decoration/Decorator.html

Extending IG
Key Extension Points

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 257

ExpressionPlugin

An ExpressionPlugin adds a node to the Expression context tree, alongside env (for environment
variables), and system (for system properties). For example, the expression ${system['user.home']}
yields the home directory of the user running the application server for IG.

In your ExpressionPlugin, the getKey() method returns the name of the node, and the getObject()
method returns the unified expression language context object that contains the values needed to
resolve the expression. The plugins for env and system return Map objects, for example.

When you add your own ExpressionPlugin, you must make it discoverable within your custom
library. You do this by adding a services file named after the plugin interface, where
the file contains the fully qualified class name of your plugin, under META-INF/services/
org.forgerock.openig.el.ExpressionPlugin in the .jar file for your customizations. When you have
more than one plugin, add one fully qualified class name per line. For details, see the reference
documentation for the Java class ServiceLoader. If you build your project using Maven, then
you can add this under the src/main/resources directory. Add custom libraries, as described in
"Embedding the Customization in IG".

Be sure to provide some documentation for IG administrators on how your plugin extends
expressions.

Filter

A Filter serves to process a request before handing it off to the next element in the chain, in a
similar way to an interceptor programming model.

The Filter interface exposes a filter() method, which takes a Context, a Request, and the
Handler, which is the next filter or handler to dispatch to. The filter() method returns a Promise
that provides access to the Response with methods for dealing with both success and failure
conditions.

A filter can elect not to pass the request to the next filter or handler, and instead handle the
request itself. It can achieve this by merely avoiding a call to next.handle(context, request),
creating its own response object and returning that in the promise. The filter is also at liberty to
replace a response with another of its own. A filter can exist in more than one chain, therefore
should make no assumptions or correlations using the chain it is supplied. The only valid use of a
chain by a filter is to call its handle() method to dispatch the request to the rest of the chain.

Handler

A Handler generates a response for a request.

The Handler interface exposes a handle() method, which takes a Context, and a Request. It
processes the request and returns a Promise that provides access to the Response with methods
for dealing with both success and failure conditions. A handler can elect to dispatch the request
to another handler or chain.

../apidocs/org/forgerock/openig/el/ExpressionPlugin.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ServiceLoader.html
../apidocs/org/forgerock/http/Filter.html
../apidocs/org/forgerock/http/Context.html
../apidocs/org/forgerock/http/protocol/Request.html
../apidocs/org/forgerock/http/Handler.html
../apidocs/org/forgerock/util/Promise.html
../apidocs/org/forgerock/http/protocol/Response.html
../apidocs/org/forgerock/http/Handler.html
../apidocs/org/forgerock/http/Context.html
../apidocs/org/forgerock/http/protocol/Request.html
../apidocs/org/forgerock/util/promise/Promise.html
../apidocs/org/forgerock/http/protocol/Response.html

Extending IG
Implementing a Customized Sample Filter

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 258

ClassAliasResolver

A ClassAliasResolver makes it possible to replace a fully qualified class name with a short name (an
alias) in an object declaration's type.

The ClassAliasResolver interface exposes a resolve(String) method to do the following:

• Return the class mapped to a given alias

• Return null if the given alias is unknown to the resolver

All resolvers available to IG are asked until the first non-null value is returned or until all
resolvers have been contacted.

The order of resolvers is nondeterministic. To prevent conflicts, don't use the same alias for
different types.

Implementing a Customized Sample Filter

The SampleFilter class implements the Filter interface to set a header in the incoming request and in
the outgoing response.

In the following example, the sample filter adds an arbitrary header:

../apidocs/org/forgerock/openig/alias/ClassAliasResolver.html

Extending IG
Implementing a Customized Sample Filter

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 259

package org.forgerock.openig.doc.examples;

import org.forgerock.http.Filter;
import org.forgerock.http.Handler;
import org.forgerock.http.protocol.Request;
import org.forgerock.http.protocol.Response;
import org.forgerock.openig.heap.GenericHeaplet;
import org.forgerock.openig.heap.HeapException;
import org.forgerock.services.context.Context;
import org.forgerock.util.promise.NeverThrowsException;
import org.forgerock.util.promise.Promise;

/**
 * Filter to set a header in the incoming request and in the outgoing response.
 */
public class SampleFilter implements Filter {

 /** Header name. */
 String name;

 /** Header value. */
 String value;

 /**
 * Set a header in the incoming request and in the outgoing response.
 * A configuration example looks something like the following.
 *
 * <pre>
 * {
 * "name": "SampleFilter",
 * "type": "SampleFilter",
 * "config": {
 * "name": "X-Greeting",
 * "value": "Hello world"
 * }
 * }
 * </pre>
 *
 * @param context Execution context.
 * @param request HTTP Request.
 * @param next Next filter or handler in the chain.
 * @return A {@code Promise} representing the response to be returned to the client.
 */
 @Override
 public Promise<Response, NeverThrowsException> filter(final Context context,
 final Request request,
 final Handler next) {

 // Set header in the request.
 request.getHeaders().put(name, value);

 // Pass to the next filter or handler in the chain.
 return next.handle(context, request)
 // When it has been successfully executed, execute the following callback
 .thenOnResult(response -> {
 // Set header in the response.
 response.getHeaders().put(name, value);
 });

Extending IG
Implementing a Class Alias Resolver

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 260

 }

 /**
 * Create and initialize the filter, based on the configuration.
 * The filter object is stored in the heap.
 */
 public static class Heaplet extends GenericHeaplet {

 /**
 * Create the filter object in the heap,
 * setting the header name and value for the filter,
 * based on the configuration.
 *
 * @return The filter object.
 * @throws HeapException Failed to create the object.
 */
 @Override
 public Object create() throws HeapException {

 SampleFilter filter = new SampleFilter();
 filter.name = config.get("name").as(evaluatedWithHeapProperties()).required().asString();
 filter.value = config.get("value").as(evaluatedWithHeapProperties()).required().asString();

 return filter;
 }
 }
}

The corresponding filter configuration is similar to this:
{
 "name": "SampleFilter",
 "type": "org.forgerock.openig.doc.examples.SampleFilter",
 "config": {
 "name": "X-Greeting",
 "value": "Hello world"
 }
}

Note how type is configured with the fully qualified class name for SampleFilter. To simplify the
configuration, implement a class alias resolver, as described in "Implementing a Class Alias
Resolver".

Implementing a Class Alias Resolver

To simplify the configuration of a customized object, implement a ClassAliasResolver to allow the use of
short names instead of fully qualified class names.

In the following example, a ClassAliasResolver is created for the SampleFilter class:
package org.forgerock.openig.doc.examples;

import java.util.HashMap;
import java.util.Map;

Extending IG
Implementing a Class Alias Resolver

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 261

import org.forgerock.openig.alias.ClassAliasResolver;

/**
 * Allow use of short name aliases in configuration object types.
 *
 * This allows a configuration with {@code "type": "SampleFilter"}
 * instead of {@code "type": "org.forgerock.openig.doc.examples.SampleFilter"}.
 */
public class SampleClassAliasResolver implements ClassAliasResolver {

 private static final Map<String, Class<?>> ALIASES =
 new HashMap<>();

 static {
 ALIASES.put("SampleFilter", SampleFilter.class);
 }

 /**
 * Get the class for a short name alias.
 *
 * @param alias Short name alias.
 * @return The class, or null if the alias is not defined.
 */
 @Override
 public Class<?> resolve(final String alias) {
 return ALIASES.get(alias);
 }
}

With this ClassAliasResolver, the filter configuration in "Implementing a Customized Sample Filter" can
use the alias instead of the fully qualified class name, as follows:
{
 "name": "SampleFilter",
 "type": "SampleFilter",
 "config": {
 "name": "X-Greeting",
 "value": "Hello world"
 }
}

To create a customized ClassAliasResolver, add a services file with the following characteristics:

• Name the file after the class resolver interface.

• Store the file under META-INF/services/org.forgerock.openig.alias.ClassAliasResolver, in the
customization .jar file.

If you build your project using Maven, you can add the file under the src/main/resources directory.

• In your ClassAliasResolver file, add a line for the fully qualified class name of your resolver as
follows:
org.forgerock.openig.doc.examples.SampleClassAliasResolver

If you have more than one resolver in your .jar file, add one line for each fully qualified class name.

Extending IG
Configuring the Heap Object for the Customization

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 262

Configuring the Heap Object for the Customization

Objects are added to the heap and supplied with configuration artifacts at initialization time. To be
integrated with the configuration, a class must have an accompanying implementation of the Heaplet
interface. The easiest and most common way of exposing the heaplet is to extend the GenericHeaplet
class in a nested class of the class you want to create and initialize, overriding the heaplet's create()
method.

Within the create() method, you can access the object's configuration through the config field.

Embedding the Customization in IG

After building your customizations into a .jar file, add it to the configuration as follows:

• For IG installed in standalone mode, create the directory $HOME/.openig/extra, where $HOME/.openig is
the instance directory, and add the .jar file to the directory.

• For IG installed in web container mode, include the .jar file in the IG .war file, as follows:

1. Unpack IG-7.0.2.war

2. Include the .jar library in WEB-INF/lib

3. Create a new .war file

The following example adds the .jar file sample-filter to custom.war:
$ mkdir root && cd root
$ jar -xf ~/Downloads/IG-7.0.2.war
$ cp ~/Documents/sample-filter/target/sample-filter-1.0.0-SNAPSHOT.jar WEB-INF/lib
$ jar -cf ../custom.war *

Deploy custom.war in the same way as you deploy IG-7.0.2.war.

Recording Custom Audit Events
This section describes how to record a custom audit event to standard output. The example is based
on the example in "Validating Access_Tokens Through the Introspection Endpoint", adding an audit
event for the custom topic OAuth2AccessTopic.

To record custom audit events to other outputs, adapt the route in the following procedure to use
another audit event handler.

For information about how to configure supported audit event handlers, and exclude sensitive data
from log files, see "Auditing Your Deployment" in the Maintenance Guide. For more information about
audit event handlers, see "Audit Framework" in the Configuration Reference.

../apidocs/org/forgerock/openig/heap/Heaplet.html
../apidocs/org/forgerock/openig/heap/GenericHeaplet.html

Extending IG
Recording Custom Audit Events

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 263

Record Custom Audit Events to Standard Output

Before you start, prepare IG and the sample application as described in Getting Started Guide.

1. Set up AM as described in "Validating Access_Tokens Through the Introspection Endpoint".

2. Define the schema of an event topic called OAuth2AccessTopic by adding the following route to IG:

Linux

$HOME/.openig/audit-schemas/OAuth2AccessTopic.json

Windows

%appdata%\OpenIG\audit-schemas/OAuth2AccessTopic.json

{
 "schema": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "id": "OAuth2Access",
 "type": "object",
 "properties": {
 "_id": {
 "type": "string"
 },
 "timestamp": {
 "type": "string"
 },
 "transactionId": {
 "type": "string"
 },
 "eventName": {
 "type": "string"
 },
 "accessToken": {
 "type": "object",
 "properties": {
 "scopes": {
 "type": "array",
 "items": {
 "type": "string"
 }
 },
 "expiresAt": "number",
 "sub": "string"
 },
 "required": ["scopes"]
 },
 "resource": {
 "type": "object",
 "properties": {
 "path": {
 "type": "string"
 },
 "method": {
 "type": "string"
 }

Extending IG
Recording Custom Audit Events

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 264

 }
 }
 }
 },
 "filterPolicies": {
 "field": {
 "includeIf": [
 "/_id",
 "/timestamp",
 "/eventName",
 "/transactionId",
 "/accessToken",
 "/resource"
]
 }
 },
 "required": ["_id", "timestamp", "transactionId", "eventName"]
}

Notice that the schema includes the following fields:

• Mandatory fields _id, timestamp, transactionId, and eventName.

• accessToken, to include the access_token scopes, expiry time, and the subject.

• resource, to include the path and method.

• filterPolicies, to specify additional event fields to include in the logs.

3. Define a script to generate audit events on the topic named OAuth2AccessTopic, by adding the
following file to the IG configuration as:

Linux

$HOME/.openig/scripts/groovy/OAuth2Access.groovy

Windows

%appdata%\OpenIG\scripts\groovy/OAuth2Access.groovy

import static org.forgerock.json.resource.Requests.newCreateRequest;
import static org.forgerock.json.resource.ResourcePath.resourcePath;

// Helper functions
def String transactionId() {
 return contexts.transactionId.transactionId.value;
}

def JsonValue auditEvent(String eventName) {
 return json(object(field('eventName', eventName),
 field('transactionId', transactionId()),
 field('timestamp', clock.instant().toEpochMilli())));
}

def auditEventRequest(String topicName, JsonValue auditEvent) {
 return newCreateRequest(resourcePath("/" + topicName), auditEvent);
}

Extending IG
Recording Custom Audit Events

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 265

def accessTokenInfo() {
 def accessTokenInfo = contexts.oauth2.accessToken;
 return object(field('scopes', accessTokenInfo.scopes as List),
 field('expiresAt', accessTokenInfo.expiresAt),
 field('sub', accessTokenInfo.info.sub));
}

def resourceEvent() {
 return object(field('path', request.uri.path),
 field('method', request.method));
}

// --

// Build the event
JsonValue auditEvent = auditEvent('OAuth2AccessEvent')
 .add('accessToken', accessTokenInfo())
 .add('resource', resourceEvent());

// Send the event
auditService.handleCreate(context, auditEventRequest("OAuth2AccessTopic", auditEvent));

// Continue onto the next filter
return next.handle(context, request)

The script generates audit events named OAuth2AccessEvent, on a topic named OAuth2AccessTopic. The
events conform to the topic schema.

4. Set an environment variable for the IG agent password, and then restart IG:
$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

5. Add the following route to IG:

Linux

$HOME/.openig/config/routes/30-custom.json

Windows

%appdata%\OpenIG\config\routes\30-custom.json

{
 "name": "30-custom",
 "baseURI": "http://app.example.com:8081",
 "condition": "${matches(request.uri.path, '^/rs-introspect-audit')}",
 "heap": [
 {
 "name": "AuditService-1",
 "type": "AuditService",
 "config": {
 "config": {},
 "eventHandlers": [
 {
 "class": "org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditEventHandler",

Extending IG
Recording Custom Audit Events

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 266

 "config": {
 "name": "jsonstdout",
 "elasticsearchCompatible": false,
 "topics": [
 "OAuth2AccessTopic"
]
 }
 }
]
 }
 },
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://openam.example.com:8088/openam/",
 "version": "7"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": [
 "mail",
 "employeenumber"
],
 "requireHttps": false,
 "realm": "OpenIG",
 "accessTokenResolver": {
 "name": "token-resolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }

Extending IG
Recording Custom Audit Events

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 267

 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
 }
 }
 }
 },
 {
 "type": "ScriptableFilter",
 "config": {
 "type": "application/x-groovy",
 "file": "OAuth2Access.groovy",
 "args": {
 "auditService": "${heap['AuditService-1']}",
 "clock": "${heap['Clock']}"
 }
 }
 }
],
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 200,
 "headers": {
 "Content-Type": ["text/html"]
 },
 "entity": "<html><body><h2>Decoded access_token: ${contexts.oauth2.accessToken.info}</h2></
body></html>"
 }
 }
 }
 }
}

Notice the following features of the route:

• The route matches requests to /rs-introspect-audit.

• The accessTokenResolver uses the token introspection endpoint to validate the access_token.

• The HttpBasicAuthenticationClientFilter adds the credentials to the outgoing token
introspection request.

• The ScriptableFilter uses the Groovy script OAuth2Access.groovy to generate audit events named
OAuth2AccessEvent, with a topic named OAuth2AccessTopic.

• The audit service publishes the custom audit event to the JsonStdoutAuditEventHandler. A
single line per audit event is published to standard output.

Test the Setup

1. In a terminal window, use a curl command similar to the following to retrieve an access_token:

Extending IG
Recording Custom Audit Events

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 268

$ mytoken=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=george&password=C0stanza&scope=mail%20employeenumber" \
http://openam.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

2. Access the route, with the access_token returned in the previous step:
$ curl -v http://openig.example.com:8080/rs-introspect-audit --header "Authorization: Bearer
 ${mytoken}"

Information about the decoded access_token is returned.

3. Search the standard output for an audit message like the following example, that includes an
audit event on the topic OAuth2AccessTopic:
{
 "_id": "fa2...-14",
 "timestamp": 155...541,
 "eventName": "OAuth2AccessEvent",
 "transactionId": "fa2...-13",
 "accessToken": {
 "scopes": ["employeenumber", "mail"],
 "expiresAt": 155...000,
 "sub": "george"
 },
 "resource": {
 "path": "/rs-introspect-audit",
 "method": "GET"
 },
 "source": "audit",
 "topic": "OAuth2AccessTopic",
 "level": "INFO"
}

Throttling the Rate of Requests to Protected Applications
About Throttling

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 269

Chapter 19

Throttling the Rate of Requests to Protected
Applications
To protect applications from being overused by clients, use a throttling filter to limit how many
requests can be made in a defined time. The maximum number of requests that are allowed in a
defined time is called the throttling rate. The following sections describe how to set up simple,
mapped, and scriptable throttling filters:

• "About Throttling"

• "Configuring Simple Throttling"

• "Configuring Mapped Throttling"

• "Configuring Scriptable Throttling"

About Throttling
The throttling filter uses the token bucket algorithm, allowing some unevenness or bursts in the
request flow. The following image shows how IG manages requests for a throttling rate of 10
requests/10 seconds:

Se conds

1

r eq1 r eq2
R

e
q

u
e

sts

2

r eq11

3

r eq12

r eq13

4 5

r eq14

8 9 107

r eq16

6

r eq15

11 12 13 14 17

r eq17

18

r eq18

191615 20

r eq3

r eq4

r eq5

r eq6

r eq7

r eq8

r eq9

r eq10

r eq19

r eq20

r eq21

X
X

r eq22

r eq23

r eq24X

X
r eq25

• At 7 seconds, 2 requests have previously passed when there is a burst of 9 requests. IG allows 8
requests, but disregards the 9th because the throttling rate for the 10-second throttling period has
been reached.

Throttling the Rate of Requests to Protected Applications
Configuring Simple Throttling

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 270

• At 8 and 9 seconds, although 10 requests have already passed in the 10-second throttling period, IG
allows 1 request each second.

• At 17 seconds, 4 requests have passed in the previous 10-second throttling period, and IG allows
another burst of 6 requests.

When the throttling rate is reached, IG issues an HTTP status code 429 Too Many Requests and a Retry-
After header like the following, where the value is the number of seconds to wait before trying the
request again:
GET http://openig.example.com:8080/home/throttle-scriptable HTTP/1.1
. . .

HTTP/1.1 429 Too Many Requests
Retry-After: 10

Configuring Simple Throttling
This section describes how to use Studio to configure a simple throttling filter that applies a
throttling rate of 6 requests/10 seconds. When an application is protected by this throttling filter, no
more than 6 requests, irrespective of their origin, can access the sample application in a 10 second
period.

Simple Throttling

All requests Throttled requests
User

Sample applicationIG

T h r o t t l i n g r a t e

6 req/10 sec

Configure Simple Throttling

1. Add the following route to IG:

Linux

$HOME/.openig/config/routes/00-throttle-simple.json

Windows

%appdata%\OpenIG\config\routes\00-throttle-simple.json

Throttling the Rate of Requests to Protected Applications
Configuring Simple Throttling

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 271

{
 "name": "00-throttle-simple",
 "baseURI": "http://app.example.com:8081",
 "condition": "${matches(request.uri.path, '^/home/throttle-simple')}",
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "ThrottlingFilter",
 "name": "ThrottlingFilter-1",
 "config": {
 "requestGroupingPolicy": "",
 "rate": {
 "numberOfRequests": 6,
 "duration": "10 s"
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

For information about how to set up the IG route in Studio, see "Simple Throttling Filter in
Structured Editor" in the Studio User Guide.

Notice the following features of the route:

• The route matches requests to /home/throttle-simple.

• The ThrottlingFilter contains a request grouping policy that is blank. This means that all
requests are in the same group.

• The rate defines the number of requests allowed to access the sample application in a given
time.

2. Test the setup:

a. With IG and the sample application running, use curl, a bash script, or another tool to access
the following route in a loop: http://openig.example.com:8080/home/simple-throttle.

Accessing the route in a loop runs the request multiple times in quick succession, allowing
you to test the throttling rate.
$ curl -v http://openig.example.com:8080/home/throttle-simple/\[01-10\] \
> /tmp/simple-throttle.txt 2>&1

b. Search the output file to see the result:

http://openig.example.com:8080/home/simple-throttle

Throttling the Rate of Requests to Protected Applications
Configuring Mapped Throttling

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 272

$ grep "< HTTP/1.1" /tmp/simple-throttle.txt | sort | uniq -c

6 < HTTP/1.1 200 OK
4 < HTTP/1.1 429 Too Many Requests

Notice that the first six requests returned a success response, and the following four requests
returned an HTTP 429 Too Many Requests. This result demonstrates that the throttling filter has
allowed only six requests to access the application, and has blocked the other requests.

Configuring Mapped Throttling
This section describes how to configure a mapped throttling policy, where the grouping policy defines
criteria to group requests, and the rate policy defines the criteria by which rates are mapped.

The following image illustrates how different throttling rates can be applied to users.

The following image illustrates how each user with a gold status has a throttling rate of 6 requests/10
seconds, and each user with a silver status has 3 requests/10 seconds. The bronze status is not
mapped to a throttling rate, and so a user with the bronze status has the default rate.

Mapped Throttling

Requests Throt t led requestsUser 1
gold status

User 2
gold status

User 3
silver status

User 4
bronze status

Sam ple applicat ionIG

Throt t ling rate
3 req/10 sec

Throt t ling rate
6 req/10 sec

Default throt t ling
rate 1 req/10 sec

Throt t ling rate
6 req/10 sec

Configure Mapped Throttling

1. Set up AM:

a. Set up AM as described in "Validating Access_Tokens Through the Introspection Endpoint".

Throttling the Rate of Requests to Protected Applications
Configuring Mapped Throttling

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 273

b. Select  Scripts > OAuth2 Access Token Modification Script, and replace the default script
as follows:

import org.forgerock.http.protocol.Request
import org.forgerock.http.protocol.Response

def attributes = identity.getAttributes(["mail", "employeeNumber"].toSet())
accessToken.setField("mail", attributes["mail"][0])
def mail = attributes['mail'][0]
if (mail.endsWith('@example.com')) {
 status = "gold"
} else if (mail.endsWith('@other.com')) {
 status = "silver"
} else {
 status = "bronze"
}
accessToken.setField("status", status)

The AM script adds user profile information to the access_token, and defines the content of
the users status field according to the email domain.

2. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:
$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

b. Add the following route to IG:

Linux

$HOME/.openig/config/routes/00-throttle-mapped.json

Windows

%appdata%\OpenIG\config\routes\00-throttle-mapped.json

{
 "name": "00-throttle-mapped",
 "baseURI": "http://app.example.com:8081",
 "condition": "${matches(request.uri.path, '^/home/throttle-mapped')}",
 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"

Throttling the Rate of Requests to Protected Applications
Configuring Mapped Throttling

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 274

 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://openam.example.com:8088/openam/",
 "version": "7"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": [
 "mail",
 "employeenumber"
],
 "requireHttps": false,
 "realm": "OpenIG",
 "accessTokenResolver": {
 "name": "token-resolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
 }
 }
 }
 },
 {
 "name": "ThrottlingFilter-1",
 "type": "ThrottlingFilter",
 "config": {
 "requestGroupingPolicy": "${contexts.oauth2.accessToken.info.mail}",
 "throttlingRatePolicy": {
 "name": "MappedPolicy",
 "type": "MappedThrottlingPolicy",
 "config": {
 "throttlingRateMapper": "${contexts.oauth2.accessToken.info.status}",
 "throttlingRatesMapping": {
 "gold": {
 "numberOfRequests": 6,

Throttling the Rate of Requests to Protected Applications
Configuring Mapped Throttling

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 275

 "duration": "10 s"
 },
 "silver": {
 "numberOfRequests": 3,
 "duration": "10 s"
 },
 "bronze": {
 "numberOfRequests": 1,
 "duration": "10 s"
 }
 },
 "defaultRate": {
 "numberOfRequests": 1,
 "duration": "10 s"
 }
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

For information about how to set up the IG route in Studio, see "Mapped Throttling Filter in
Structured Editor" in the Studio User Guide.

Notice the following features of the route:

• The route matches requests to /home/throttle-mapped.

• The OAuth2ResourceServerFilter validates requests with the AccessTokenResolver, and
makes it available for downstream components in the oauth2 context.

• The ThrottlingFilter bases the request grouping policy on the AM user's email. The
throttling rate is applied independently to each email address.

The throttling rate is mapped to the AM user's status, which is defined by the email domain,
in the AM script.

3. Test the setup:

a. Get an access_token for George from AM:
$ george_token=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=george&password=C0stanza&scope=mail%20employeenumber" \
http://openam.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

b. Using the access_token for authentication, access the route multiple times. The following
example accesses the route 10 times, and writes the output to a file:
$ curl -v http://openig.example.com:8080/home/throttle-mapped/\[01-10\] --header
 "Authorization:Bearer ${george_token}" > /tmp/george.txt 2>&1

Throttling the Rate of Requests to Protected Applications
Considerations for Dynamic Throttling

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 276

c. Search the output file to see the result:
$ grep "< HTTP/1.1" /tmp/george.txt | sort | uniq -c

6 < HTTP/1.1 200
4 < HTTP/1.1 429

Notice that with a gold status, George can access the route 6 times in 10 seconds.

d. In AM, change George's email to george@other.com, and then run the last two steps again to see
how the access is reduced.

Considerations for Dynamic Throttling

The following image illustrates what can happen when the throttling rate defined by
throttlingRateMapping changes frequently or quickly:

Dynamic Throttling Rate

2 sec

0 sec

Sam ple applicat ionIG
Throt t led
requests

George

gold status
Throt t ling rate

6 req/10 sec

Throt t ling rate

6 req/10 sec

Throt t ling rate

3 req/10 sec
George

sliver status

X

Request 1
Request 2
Request 3
Request 4
Request 5

Request 6

Request 7

Request 10

Request 12

Request 8
Request 9

George

gold status Request 11

Throttling the Rate of Requests to Protected Applications
Configuring Scriptable Throttling

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 277

In the image, George starts out with a gold status. In a two second period, he sends five requests,
is downgraded to silver, sends four requests, is upgraded back to gold, and then sends three more
requests.

After making five requests with a gold status, George has almost reached his throttling rate. When his
status is downgraded to silver, those requests are disregarded and the full throttling rate for silver is
applied. George can now make three more requests even though he had nearly reached his throttling
rate with a gold status.

After making three requests with a silver status, George has reached his throttling rate. When he
makes a fourth request, the request is refused.

George is now upgraded back to gold and can now make six more requests even though he had
reached his throttling rate with a silver status.

When you configure requestGroupingPolicy and throttlingRateMapper, bear in mind what happens when
the throttling rate defined by the throttlingRateMapper is changed.

Configuring Scriptable Throttling
This section builds on the example in "Configuring Mapped Throttling". It creates a scriptable
throttling filter, where the script applies a throttling rate of 6 requests/10 seconds to requests from
gold status users. For all other requests, the script returns null, and applies the default rate of 1
request/10 seconds.

Configure Scriptable Throttling

1. Set up AM as described in "Configure Mapped Throttling".

2. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:
$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-encoded.

b. Add the following route to IG:
Linux
$HOME/.openig/config/routes/00-throttle-scriptable.json

Windows
%appdata%\OpenIG\config\routes\00-throttle-scriptable.json

{
 "name": "00-throttle-scriptable",
 "baseURI": "http://app.example.com:8081",
 "condition": "${matches(request.uri.path, '^/home/throttle-scriptable')}",

Throttling the Rate of Requests to Protected Applications
Configuring Scriptable Throttling

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 278

 "heap": [
 {
 "name": "SystemAndEnvSecretStore-1",
 "type": "SystemAndEnvSecretStore"
 },
 {
 "name": "AmService-1",
 "type": "AmService",
 "config": {
 "agent": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id"
 },
 "secretsProvider": "SystemAndEnvSecretStore-1",
 "url": "http://openam.example.com:8088/openam/",
 "version": "7"
 }
 }
],
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "name": "OAuth2ResourceServerFilter-1",
 "type": "OAuth2ResourceServerFilter",
 "config": {
 "scopes": [
 "mail",
 "employeenumber"
],
 "requireHttps": false,
 "realm": "OpenIG",
 "accessTokenResolver": {
 "name": "token-resolver-1",
 "type": "TokenIntrospectionAccessTokenResolver",
 "config": {
 "amService": "AmService-1",
 "providerHandler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HttpBasicAuthenticationClientFilter",
 "config": {
 "username": "ig_agent",
 "passwordSecretId": "agent.secret.id",
 "secretsProvider": "SystemAndEnvSecretStore-1"
 }
 }
],
 "handler": "ForgeRockClientHandler"
 }
 }
 }
 }
 }
 },
 {

Throttling the Rate of Requests to Protected Applications
Configuring Scriptable Throttling

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 279

 "name": "ThrottlingFilter-1",
 "type": "ThrottlingFilter",
 "config": {
 "requestGroupingPolicy": "${contexts.oauth2.accessToken.info.mail}",
 "throttlingRatePolicy": {
 "type": "DefaultRateThrottlingPolicy",
 "config": {
 "delegateThrottlingRatePolicy": {
 "name": "ScriptedPolicy",
 "type": "ScriptableThrottlingPolicy",
 "config": {
 "type": "application/x-groovy",
 "source": [
 "if (contexts.oauth2.accessToken.info.status == status) {",
 " return new ThrottlingRate(rate, duration)",
 "} else {",
 " return null",
 "}"
],
 "args": {
 "status": "gold",
 "rate": 6,
 "duration": "10 seconds"
 }
 }
 },
 "defaultRate": {
 "numberOfRequests": 1,
 "duration": "10 s"
 }
 }
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
}

For information about how to set up the IG route in Studio, see "Scriptable Throttling Filter in
Structured Editor" in the Studio User Guide.

Notice the following features of the route, compared to 00-throttle-mapped.json:

• The route matches requests to /home/throttle-scriptable.

• The DefaultRateThrottlingPolicy delegates the management of throttling to the
ScriptableThrottlingPolicy.

• The script applies a throttling rate to requests from users with gold status. For all other
requests, the script returns null and the default rate is applied.

3. Test the setup:

a. Get an access_token for George from AM:

Throttling the Rate of Requests to Protected Applications
Configuring Scriptable Throttling

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 280

$ george_token=$(curl -s \
--user "client-application:password" \
--data "grant_type=password&username=george&password=C0stanza&scope=mail%20employeenumber" \
http://openam.example.com:8088/openam/oauth2/access_token | jq -r ".access_token")

b. Using the access_token for authentication, access the route multiple times. The following
example accesses the route 10 times, and writes the output to a file:
$ curl -v http://openig.example.com:8080/home/throttle-scriptable/\[01-10\] --header
 "Authorization:Bearer ${george_token}" > /tmp/george.txt 2>&1

c. Search the output file to see the result:
$ grep "< HTTP/1.1" /tmp/george.txt | sort | uniq -c

6 < HTTP/1.1 200
4 < HTTP/1.1 429

Notice that with a gold status, George can access the route 6 times in 10 seconds.

d. In AM, change George's email to george@other.com, and then run the last two steps again to see
how the access is reduced.

SAML 2.0 and Multiple Applications

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 281

Chapter 20

SAML 2.0 and Multiple Applications
The chapter extends the example in "Acting As a SAML 2.0 Service Provider" with the service
provider sp, to add a second service provider.

The new service provider has entity ID sp2 and runs on the host sp2.example.com. To prevent unwanted
behavior, the service providers must have different values.

1. Add sp2.example.com to your /etc/hosts file:
127.0.0.1 localhost openam.example.com openig.example.com app.example.com sp.example.com
 sp2.example.com

2. In IG, configure the service provider files for sp2, using the files you created in Step 2:

a. In fedlet.cot, add sp2 to the list of sun-fm-trusted-providers:
cot-name=Circle of Trust
sun-fm-cot-status=Active
sun-fm-trusted-providers=openam, sp, sp2
sun-fm-saml2-readerservice-url=
sun-fm-saml2-writerservice-url=

b. Copy sp.xml to sp2.xml, and copy sp-extended.xml to sp2-extended.xml.

c. In both files, search and replace the following strings:

• entityID="sp": replace with entityID="sp2"

• sp.example.com: replace with sp2.example.com

• metaAlias="/sp": replace with metaAlias="/sp2"

• /metaAlias/sp: replace with /metaAlias/sp2

d. Restart IG.

3. In AM, set up a remote service provider for sp2, as in Step 3:

a. Select  Applications > Federation > Entity Providers.

b. Drag in or import sp2.xml created in the previous step.

c. Select Circles of Trust: Circle of Trust

4. Add the following routes to IG:

SAML 2.0 and Multiple Applications

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 282

Linux

$HOME/.openig/config/routes/saml-sp2.json

Windows

%appdata%\OpenIG\config\routes\saml-sp2.json

{
 "name": "saml-sp2",
 "condition": "${matches(request.uri.host, 'sp2.example.com') and matches(request.uri.path, '^/
saml')}",
 "handler": {
 "type": "SamlFederationHandler",
 "config": {
 "comment": "Use unique session properties for this SP.",
 "assertionMapping": {
 "sp2Username": "cn",
 "sp2Password": "sn"
 },
 "authnContext": "sp2AuthnContext",
 "sessionIndexMapping": "sp2SessionIndex",
 "subjectMapping": "sp2SubjectName",
 "redirectURI": "/sp2"
 }
 }
}

Linux

$HOME/.openig/config/routes/federate-sp2.json

Windows

%appdata%\OpenIG\config\routes\federate-sp2.json

{
 "name": "federate-sp2",
 "condition": "${matches(request.uri.host, 'sp2.example.com') and not matches(request.uri.path, '^/
saml')}",
 "baseURI": "http://app.example.com:8081",
 "handler": {
 "type": "DispatchHandler",
 "config": {
 "bindings": [
 {
 "condition": "${empty session.sp2Username}",
 "handler": {
 "type": "StaticResponseHandler",
 "config": {
 "status": 302,
 "reason": "Found",
 "headers": {
 "Location": [
 "http://sp2.example.com:8080/saml/SPInitiatedSSO?metaAlias=/sp2"
]
 }
 }
 }

SAML 2.0 and Multiple Applications

Gateway Guide ForgeRock Identity Gateway 7 (2022-02-21)
Copyright © 2011-2021 ForgeRock AS. All rights reserved. 283

 },
 {
 "handler": {
 "type": "Chain",
 "config": {
 "filters": [
 {
 "type": "HeaderFilter",
 "config": {
 "messageType": "REQUEST",
 "add": {
 "x-username": ["${session.sp2Username[0]}"],
 "x-password": ["${session.sp2Password[0]}"]
 }
 }
 }
],
 "handler": "ReverseProxyHandler"
 }
 }
 }
]
 }
 }
}

5. Test the setup:

a. Log out of AM, and test the setup with the following links:

• IDP-initiated SSO

• SP-initiated SSO

b. Log in to AM with username george and password C0stanza.

IG returns the response page showing that the George has logged in.

http://openam.example.com:8088/openam/idpssoinit?metaAlias=/idp&spEntityID=sp2
http://sp2.example.com:8080/home/federate

	Gateway Guide
	Table of Contents
	Preface
	About This Guide
	Example Installation for This Guide
	External Tools Used In This Guide

	Chapter 1. About IG
	IG As an HTTP Gateway
	Processing Requests and Responses
	IG Object Model
	Configuring IG
	Configuration Directories and Files
	Using Comments in IG Configuration Files

	Development Mode and Production Mode
	Decorators
	Decorating Objects, the Route Handler, and the Heap
	Decorating Individual Objects In a Route
	Decorating the Route Handler
	Decorating the Route Heap
	Decorating a Named Object Differently In Different Parts of the Configuration
	Decorating IG's Interactions With AM

	Using Multiple Decorators for the Same Object
	Guidelines for Naming Decorators

	Configuration Parameters Declared as Property Variables
	Changing the Configuration and Restarting IG
	Understanding IG APIs With API Descriptors
	Sessions
	About Stateful Sessions
	About Stateless Sessions

	Secrets
	Secret Names and Types
	Validating the Signature of Signed Tokens
	Using Multiple Secret Stores in a Configuration
	Algorithms for Elliptic Curve Digital Signatures

	Chapter 2. Installation in Detail
	About Securing Connections
	Installing IG in Standalone Mode
	Configuring IG For HTTPS (Server-Side)
	Adding .jar Files for IG Extensions

	Installing IG in Apache Tomcat
	About Using Tomcat
	Configuring Cookie Domains in Tomcat
	Configuring IG for HTTPS (Server-Side) in Tomcat
	Configuring Access to MySQL Over JNDI in Tomcat
	Session Stickiness and Session Replication for Tomcat

	Installing IG in Jetty
	About Using Jetty
	Configuring Cookie Domains in Jetty
	Configuring IG for HTTPS (Server-Side) in Jetty
	Configuring Access MySQL Over JNDI in Jetty
	Session Stickiness and Session Replication for Jetty

	Installing IG in JBoss EAP
	Configuring Cookie Domains in JBoss EAP
	Configuring IG for HTTPS (Server-Side) in JBoss EAP

	Preparing the Network
	Changing the Default Location of the Configuration Folders
	Preparing For Load Balancing and Failover
	Configuring IG For HTTPS (Client-Side)
	Using JWT Sessions
	Encrypting JWT Sessions
	Sharing JWT Session Between Multiple Instances of IG

	Setting Up AM

	Chapter 3. Getting Login Credentials From Data Sources
	Logging In With Credentials From a File
	Logging In With Credentials From a Database

	Chapter 4. Getting Login Credentials From AM
	Chapter 5. Single Sign-On and Cross-Domain Single Sign-On
	Authenticating With SSO
	Authenticating With CDSSO
	Using WebSocket Notifications to Evict the Session Info Cache

	Chapter 6. Enforcing Policy Decisions From AM
	About Policy Enforcement
	Enforcing AM Policy Decisions In the Same Domain
	Enforcing AM Policy Decisions In Different Domains
	Using WebSocket Notifications to Evict the Policy Cache

	Chapter 7. Hardening Authorization With Advice From AM
	Stepping Up the Authentication Level for an AM Session
	Increasing Authorization for a Single Transaction

	Chapter 8. Protecting Against CSRF Attacks
	Chapter 9. Acting As a SAML 2.0 Service Provider
	About SAML 2.0 SSO and Federation
	About SP-Initiated SSO
	About IDP-Initiated SSO

	Set Up SAML 2.0 SSO and Federation
	Using a Non-Transient NameID Format
	Example Fedlet Files

	Chapter 10. Acting As an OAuth 2.0 Resource Server
	About IG As an OAuth 2.0 Resource Server
	Validating Access_Tokens Through the Introspection Endpoint
	Validating Stateless Access_Tokens With the StatelessAccessTokenResolver
	Validating Signed Access_Tokens With the StatelessAccessTokenResolver and JwkSetSecretStore
	Validating Signed Access_Tokens With the StatelessAccessTokenResolver and KeyStoreSecretStore
	Validating Encrypted Access_Tokens With the StatelessAccessTokenResolver and KeyStoreSecretStore

	Validating Certificate-Bound Access Tokens
	mTLS Using Standard TLS Client Certificate Authentication
	mTLS Using Trusted Headers

	Using the OAuth 2.0 Context to Log in to the Sample Application
	Caching Access_Tokens

	Chapter 11. Acting As an OpenID Connect Relying Party
	About IG With OpenID Connect
	Using AM As a Single OpenID Connect Provider
	Authenticating Automatically to the Sample Application

	Using Multiple OpenID Connect Providers
	Discovering and Dynamically Registering With OpenID Connect Providers

	Chapter 12. Transforming OpenID Connect ID Tokens Into SAML Assertions
	Chapter 13. Supporting UMA Resource Servers
	About IG As an UMA Resource Server
	Limitations Of IG As an UMA Resource Server
	Setting Up the UMA Example
	Editing the Example to Match Custom Settings
	Understanding the UMA API With an API Descriptor

	Chapter 14. Configuring Routers and Routes
	Configuring Routers
	Configuring Routes
	Configuring Objects Inline or In the Heap
	Setting Route Conditions
	Configuring Route Names, IDs, and Filenames

	Creating and Editing Routes Through Common REST
	Preventing the Reload of Routes
	Accessing Reserved Routes

	Chapter 15. Proxying WebSocket Traffic
	Chapter 16. Implementing Not-Enforced URIs for Authentication
	Implementing Not-Enforced URIs With a SwitchFilter
	Implementing Not-Enforced URIs With a DispatchHandler

	Chapter 17. Configuration Templates
	Proxy and Capture
	Simple Login Form
	Login Form With Cookie From Login Page
	Login Form With Password Replay and Cookie Filters
	Login Which Requires a Hidden Value From the Login Page
	HTTP and HTTPS Application
	AM Integration With Headers

	Chapter 18. Extending IG
	Extending IG Through Scripts
	About Scripting
	Using a Reference File Script
	Scripting in Studio

	Scripting Dispatch
	Scripting HTTP Basic Authentication
	Scripting Authentication to LDAP-Enabled Servers
	Scripting SQL Queries

	Extending IG Through the Java API
	Key Extension Points
	Implementing a Customized Sample Filter
	Implementing a Class Alias Resolver
	Configuring the Heap Object for the Customization
	Embedding the Customization in IG

	Recording Custom Audit Events

	Chapter 19. Throttling the Rate of Requests to Protected Applications
	About Throttling
	Configuring Simple Throttling
	Configuring Mapped Throttling
	Considerations for Dynamic Throttling

	Configuring Scriptable Throttling

	Chapter 20. SAML 2.0 and Multiple Applications

