
Self-Service Reference
/ ForgeRock Identity Management 7.1

Latest update: 7.1.6

ForgeRock AS.
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2018-2020 ForgeRock AS.

Abstract

Reference documentation for ForgeRock® Identity Management Self-Service.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© Copyright 2010–2020 ForgeRock, Inc. All rights reserved. ForgeRock is a registered trademark of ForgeRock, Inc. Other marks appearing herein may be trademarks of their respective owners.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, and distribution. No part of this product or document may be reproduced in any form by any means without prior
written authorization of ForgeRock and its licensors, if any.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESSED OR IMPLIED CONDITIONS, REPRESENTATIONS, AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, https://fontawesome.com/.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://fontawesome.com/
https://opensource.org/licenses/OFL-1.1

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. iii

Table of Contents
Overview ... v
1. About User Self-Service .. 1

The Self-Service Process Flow ... 1
2. Self-Registration .. 5

Configure User Self-Registration ... 5
Configure the User Self-Registration Form .. 9
Configuring Emails for Self-Service Registration ... 9
Configure User Preferences .. 10
Configure Multiple User Self-Registration Flows ... 12
Example Self-Registration REST Requests ... 15

3. Social Registration .. 23
OpenID Connect Authorization Code Flow ... 24
Many Social Identity Providers, One Schema ... 26
Amazon Social Identity Provider .. 28
Apple Social Identity Provider ... 31
Facebook Social Identity Provider ... 34
Google Social Identity Provider ... 38
Instagram Social Identity Provider .. 40
LinkedIn Social Identity Provider .. 43
Microsoft Social Identity Provider ... 48
Salesforce Social Identity Provider .. 51
Twitter Social Identity Provider ... 54
Setting Up Vkontakte as an IDM Social Identity Provider 57
WeChat Social Identity Provider .. 61
WordPress Social Identity Provider ... 64
Yahoo Social Identity Provider .. 67
Custom Social Identity Provider .. 70
Configure the Social Providers Authentication Module .. 75
Account Claiming: Links Between Accounts and Social Identity Providers 75
Manage Social Identity Providers Over REST .. 80
Test Social Identity Providers .. 82
Scenarios When Registering With a Social ID .. 83
Social Identity Widgets .. 85
Social Identity Provider Button and Badge Properties .. 86

4. Progressive Profile .. 88
Configure a Progressive Profile Completion Form ... 88
The auth.profile.json File ... 92
Progressive Profile Completion and Metadata ... 93
REST Requests in a Progressive Profile Completion Process 94

5. Password Reset ... 97
User Password Reset Configuration Files .. 98
Configuring Emails for Password Reset ... 100
REST Requests in a Password Reset Process ... 101

6. Username Retrieval ... 105

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. iv

Username Retrieval Configuration ... 106
Configuring Emails for Forgotten Username .. 107
REST Requests in a Forgotten Username Process ... 108

7. Additional Configuration .. 110
Configure Notification Emails .. 111
Configure Privacy and Consent .. 112
Configure UMA, Trusted Devices, and Privacy ... 116
Terms & Conditions ... 118
Tokens and User Self-Service .. 123
End User UI Notifications ... 123
Configure Google reCAPTCHA ... 124
Configure Identity Fields ... 125
Configure Security Questions .. 125
Add Custom Policies for Self-Registration and Password Reset 131
Self-Service End User UI ... 131

8. Custom Self-Service Stages ... 136
Sample Stage .. 136
Creating a Configuration for the Sample Stage ... 137
Testing the Custom Stage ... 138

A. Self-Service Stage Reference .. 140
All-In-One Registration .. 140
OpenAM Auto-Login Stage .. 141
Attribute Collection Stage ... 142
Captcha Stage ... 142
Conditional User Stage .. 143
Consent Stage ... 144
Email Validation Stage .. 144
IDM User Details Stage ... 145
KBA Security Answer Definition Stage .. 146
KBA Security Answer Verification Stage .. 147
KBA Update Stage ... 148
Local Auto-Login Stage .. 148
Parameters Stage .. 149
Patch Object Stage .. 150
Password Reset Stage ... 150
Self-Registration Stage .. 151
Social User Claim Stage .. 151
Terms and Conditions Stage .. 153
User Query Stage .. 154

IDM Glossary ... 156

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. v

Overview
Reference documentation for the ForgeRock® Identity Management Self-Service REST API.

Note

This guide is reference documentation for IDM's self-contained service. If you are using the platform-based
service using trees, see the Platform Self-Service Guide instead.

If you are just getting started, we recommend the platform-based version of self-service.

Quick Start


Self-Service Overview

Understand Self-Service Processes


Self-Registration

Configure User Self-Registration


Social Registration

Configure Registration Using
Social Identity Providers


Progressive Profile

Progressive Profile Completion


Password Reset

Password Reset Process


Username Retrieval

Configure Username Retrieval


Additional Configuration

Additional configuration
options for additional

features such as reCAPTCHA,
notifications, and the End User UI


Custom Stages

Add a Custom Stage
to Self-Service


Stage Reference

Reference appendix of
available self-service stages

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity
and Access Management solution. We help our customers deepen their relationships with their
customers, and improve the productivity and connectivity of their employees and partners. For more
information about ForgeRock and about the platform, see https://www.forgerock.com.

This guide is intended for anyone developing a self-service application that acts as a client of
ForgeRock Identity Management (IDM).

https://backstage.forgerock.com/docs/platform/7.1/platform-self-service-guide/index.html
https://www.forgerock.com

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. vi

This guide is written with the expectation that you already have basic familiarity with the following
topics:

• REST APIs

• JavaScript Object Notation (JSON) and basic IDM configuration

About User Self-Service
The Self-Service Process Flow

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 1

Chapter 1

About User Self-Service
IDM provides a sample End User UI that implements a number of self-service processes, such as self-
registration and password reset, based on a Self-Service REST API.

Self-service processes are configured in files named selfservice-process-name.json in your project's conf
directory. Every self-service process steps through a series of stages, each with its own requirements,
until the end of the process is reached or until the process exits with an exception. The flow through
the stages differs, depending on how you have configured the process.

You can customize the default processes, or write your own custom processes by implementing
the stages described in "Self-Service Stage Reference". For information about how self-service is
implemented in the default End User UI, see "Self-Service End User UI". For information on how to
customize the End User UI, see the following Git repository: Identity Management (End User) - UI.

The Self-Service REST API supports only two HTTP requests:

• GET which obtains the requirements for that stage

• POST with _action=submitRequirements

The response to the POST request instructs the client how to proceed. The response can have one of
two outcomes:

• Success—all requirements have been submitted and the process advances to the next stage.

• Failure—the behavior here differs by stage. Certain stages will exit with an exception, others
will convert the exception into an error that the client must handle, others will simply return the
requirements again.

The Self-Service Process Flow
Each self-service process advances through the stages in the order in which they are listed in the
stageConfigs array in the process configuration file. The password reset process, for example, might
include the following stages:

https://github.com/ForgeRock/end-user-ui

About User Self-Service
The Self-Service Process Flow

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 2

{
 "stageConfigs" : [
 {
 "name": "parameters",
 ...
 },
 {
 "name" : "userQuery",
 ...
 },
 {
 "name" : "validateActiveAccount",
 ...
 },
 {
 "name" : "emailValidation",
 ...
 },
 {
 "name" : "kbaSecurityAnswerVerificationStage",
 ...
 },
 {
 "name" : "resetStage",
 ..
 }
],
 ...
}

A process definition also includes an optional snapshotToken and storage parameter, for example:
{
 "stageConfigs" : [
 ...
],
 "snapshotToken" : {
 "type" : "jwt",
 "jweAlgorithm" : "RSAES_PKCS1_V1_5",
 "encryptionMethod" : "A128CBC_HS256",
 "jwsAlgorithm" : "HS256",
 "tokenExpiry" : 300
 },
 "storage" : "stateless"
}

The snapshotToken specifies the format of the token that is passed between the client and the server
with each request. By default, this is a JWT token, stored statelessly, which means that the state
is stored in the client, rather than on the server side. Because some legacy clients cannot handle
the long URLs provided in a JWT token, you can store the snapshot token locally, as a uuid with the
following configuration:

About User Self-Service
The Self-Service Process Flow

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 3

{
 ...
 "snapshotToken" : {
 "type" : "uuid"
 },
 "storage" : "local"
}

In this case, the 16-character token is stored in the IDM repository, in the jsonstorage table. To
use this feature, copy /path/to/openidm/samples/example-configurations/self-service/jsonstore.json to
your project's conf/ directory. This file stores the configuration for the uuid token and includes the
following settings:

• entryExpireSeconds—the amount of time before the password reset URL expires.

• cleanupDwellSecondsliteral—how often the server checks for and expires tokens.

The value of cleanupDwellSecondsliteral should be a fraction of entryExpireSeconds so that expiration
occurs close to the expected expiration time. The check is performed on a periodic basis.

For more information on the self-service tokens, see "Tokens and User Self-Service".

If you do not include the snapshotToken and storage in the configuration, the default stateless
configuration applies.

When a stage advances, it can optionally insert parameters into the process context or state for
consumption by stages that occur later in the process. The snapshot token is essentially the state
of the stage. It is the container in which state, successAdditions and other data are stored, and then
returned to the client at the end of the process, as an encrypted blob named token.

Sample configurations for each default self-service process are available in the /path/to/openidm/
samples/example-configurations/self-service directory.

Each self service process has a specific endpoint under openidm/selfservice with the name of the
process; for example openidm/selfservice/reset for the Password Reset process. If you create a custom
self-service process with a configuration file such as selfservice-myprocess.json, you produce an
endpoint such as http://localhost:8080/openidm/selfservice/myprocess.

All REST actions occur against that endpoint. For example, the following initial GET request against
the password reset endpoint returns the requirements for the following stage:

About User Self-Service
The Self-Service Process Flow

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 4

curl \
 --header "X-OpenIDM-Username: anonymous" \
 --header "X-OpenIDM-Password: anonymous" \
 --header "Accept-API-Version: resource=1.0" \
 --request GET \
 "http://localhost:8080/openidm/selfservice/reset"
{
 "_id": "1",
 "_rev": "-852427048",
 "type": "captcha",
 "tag": "initial",
 "requirements": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Captcha stage",
 "type": "object",
 "required": [
 "response"
],
 "properties": {
 "response": {
 "recaptchaSiteKey": "6LcvE1IUAAAAAA5AI1SZzZJl-AlGvHM_dzUg-0_S",
 "description": "Captcha response",
 "type": "string"
 }
 }
 }
}

The default End User UI implements the following processes:

• Self-registration (under the endpoint selfservice/registration)

• Social registration (under the endpoint selfservice/socialUserClaim)

• Password reset (under the endpoint selfservice/reset)

• Forgotten username retrieval (under the endpoint selfservice/username)

• Progressive profile completion (under selfservice/profile)

• Security question updates (under selfservice/kbaUpdate)

• Terms and conditions (under selfservice/termsAndConditions)

The remainder of this guide describes each stage, its requirements, and expected responses.

Self-Registration
Configure User Self-Registration

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 5

Chapter 2

Self-Registration
This chapter describes the configuration, and the requests and responses for user self-registration.

Quick Start


Configuration

Configure User Self-Registration.


Registration Form

Configure the User
Self-Registration Form


Email Registration

Configure Emails for
Self-Service Registration


User Preferences

Configure Synchronization
Filters With User Preferences


Multiple Registration Flows

Configure Multiple User
Self-Registration Flows


Examples

Example Self-Registration
REST Requests

Configure User Self-Registration
To set up basic user self-registration, you'll need at least the following configuration files:

ui-configuration.json

You can find this file in the default IDM project configuration directory, openidm/conf.

To enable self-service registration in the UI, enable the following boolean property in ui-
configuration.json:
"selfRegistration" : true,

selfservice-registration.json

You can find a template version of this file in the following directory: openidm/samples/example-
configurations/self-service. This includes the following properties:

• allInOneRegistration: determines whether IDM collects all user registration information in one or
multiple pages. By default, it's set to true:

Self-Registration
Configure User Self-Registration

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 6

"allInOneRegistration" : true,

• stageConfigs: configuration details for the stages included in the self-registration process. While
the specific stages included may vary, most processes will include at least:

• idmUserDetails: includes the IDM property for email addresses (mail), whether or not
registration with social identity providers is enabled, and what data is required from new
users, as described in "Configure the User Self-Registration Form".

• registrationPreferences: lists preferences to include as defined in the managed.json file. For more
information, see "Configure User Preferences".

• snapshotToken: configuration details for the token used to store the user's details during the
registration process.

• storage: determines how a user's details are stored for consumption by later stages in the
registration process. By default, this is set to stateless.

Depending on how you configure User Self-Registration, you may need to set up additional
configuration files, as discussed in "Configure the User Self-Registration Form".

Common components included in self-registration include:

• Email validation

If you have included email verification, you must configure an outgoing email server. For details
about the required addition to selfservice-registration.json, see "Configuring Emails for Self-Service
Registration".

• Security questions (KBA)

If you have configured security questions, users who self-register must create these questions
during registration and answer them during the password reset process. You can also configure the
system to force users who have been created during a reconciliation from an external data store to
add security questions. The relevant code block is shown here, which includes security questions
as a stage in the user self-registration process. For related configuration options, see "Configure
Security Questions".
{
 "name" : "kbaSecurityAnswerDefinitionStage",
 "kbaConfig" : null
},

• Google ReCAPTCHA

If you've activated Google reCAPTCHA for user self-service registration, you'll see the following
code block:

Self-Registration
Configure Self-Registration From the Admin UI

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 7

{
 "name" : "captcha",
 "recaptchaSiteKey" : "<siteKey>",
 "recaptchaSecretKey" : "<secretKey>",
 "recaptchaUri" : "https://www.google.com/recaptcha/api/siteverify"
},

As suggested by the code, you'd substitute the actual siteKey and secretKey assigned by Google for
your domain. For more information, see "Configure Google reCAPTCHA".

• Terms & Conditions

If you've set up Terms & Conditions, users who self-register will have to accept them, based on
criteria you create, as discussed in "Terms & Conditions". If you've included Terms & Conditions
with user self-registration, you'll see the following code block:
{
 "name" : "termsAndConditions"
},

New users will have to manually accept these conditions before they complete the self-registration
process.

• Privacy & Consent

If you've configured Privacy & Consent, you'll see a code block with the consent name. The following
code block includes template Privacy & Consent terms in English (en) and French (fr):
{
 "name" : "consent",
 "consentTranslations" : {
 "en" : "Please consent to sharing your data with whomever we like.",
 "fr" : "Veuillez accepter le partage de vos données avec les services de notre choix."
 }
},

Note

Substitute Privacy & Consent content that meets the requirements of your legal authorities.

For audit activity data related to user self-registration, see Query the Activity Audit Log in the Audit
Guide.

Configure Self-Registration From the Admin UI

To configure user self-registration from the Admin UI, select Configure > User Registration, and
select Enable User Registration on the page that appears. When you enable self-registration from
the Admin UI, IDM will create selfservice-registration.json for you, if it is not already present. When
enabled, you'll see a pop-up window that specifies User Registration Settings, including the following:

Self-Registration
Managing User Self-Registration Over REST

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 8

• Identity Resource, typically managed/user.

• Identity Email Field, typically mail or email.

• Success URL for the End User UI; users who successfully log in are redirected to that URL. By
default, the success URL is http://localhost:8080/#dashboard/.

• Preferences, which set up default marketing preferences for new users. New users can change
these preferences during registration, or from the End User UI.

• Advanced Options, Snapshot Token, typically a JSON Web Token (JWT).

• Advanced Options, Token Lifetime, with a default of 300 seconds.

Once active, you'll see three tabs under User Registration in the Admin UI:

• Registration Form, as described in "Configure the User Self-Registration Form"

• Social, as described in "Social Registration"

• Options, as described in "Additional Configuration"

Managing User Self-Registration Over REST

To display the current user self-registration configuration over REST, run the following command:
curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Accept-API-Version: resource=1.0" \
 --request GET \
 "http://localhost:8080/openidm/config/selfservice/registration"

Unless you have disabled file writes, the output will match the contents of your project's selfservice-
registration.json file. For information on disabling file writes, see "Disabling Automatic Configuration
Updates" in the Security Guide.

If needed, you can update this configuration by including the desired contents of the file:
curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Accept-API-Version: resource=1.0" \
 --header "Content-Type: application/json" \
 --request PUT \
 --data '{ <Insert file contents here> }' \
 "http://localhost:8080/openidm/config/selfservice/registration"

Self-Registration
Configure the User Self-Registration Form

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 9

Configure the User Self-Registration Form
During user self-registration, IDM lists the attributes that users see in the user registration form, as
defined in the selfservice-registration.json file. You can modify the properties shown to users in the
registrationProperties code block:
"registrationProperties" : [
 "userName",
 "givenName",
 "sn",
 "mail"
],

If you add a managed user property to the registrationProperties code block, IDM includes it in the
user self-registration screen.

Alternatively, you can add a managed user property in the Admin UI. Select Configure > User
Registration, and add a property under the Registration Form tab. This action also adds a managed
user property to the noted code block.

In either case, you can change the order of properties; IDM shows the order you configure in the user
self-registration screen.

You can also set up user self-registration via configuration files, as described in the following table:

User Self-Registration Configuration Files

File Name Description
external.email.json To enable email verification, you must configure an outgoing email server.
managed.json You can customize user self-registration based on entries in this file. To change

the labels seen by end users, change the associated title.
policy.json For more information, see "Add Custom Policies for Self-Registration and

Password Reset".
selfservice.kba.json See "Configure Security Questions".
selfservice-
registration.json

See "Configure User Self-Registration".

ui-configuration.json See "Configure User Self-Registration".

Configuring Emails for Self-Service Registration
To configure emails for self-service registration, you can add the following code block to the
selfservice-registration.json file:

Self-Registration
Configure User Preferences

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 10

{
 "name" : "emailValidation",
 "identityEmailField" : "mail",
 "emailServiceUrl" : "external/email",
 "emailServiceParameters" : {
 "waitForCompletion" : false
 },
 "from" : "info@example.com",
 "subject" : "Register new account",
 "mimeType" : "text/html",
 "subjectTranslations" : {
 "en" : "Register new account",
 "fr" : "Créer un nouveau compte"
 },
 "messageTranslations" : {
 "en" : "<h3>This is your registration email.</h3><h4>Email verification link</
a></h4>",
 "fr" : "<h3>Ceci est votre mail d'inscription.</h3><h4>Lien de vérification
 email</h4>"
 },
 "verificationLinkToken" : "%link%",
 "verificationLink" : "https://localhost:8443/#/registration/"
},

As suggested by the code block, it includes default registration email messages in English (en) and
French (fr). The verificationLink sent with the email takes users to the IDM self-registration URL.

As noted in "Managing User Self-Registration Over REST", you can make these changes over the
following endpoint URI: /openidm/config/selfservice/registration

If desired, you can also configure self-service registration emails through the Admin UI. Select
Configure > User Registration. If needed, activate the Enable User Registration Option. Under the
Options tab, in the Email Validation box, select the  icon. The Configure Validation Email pop-up
should appear.

When you use the Admin UI to customize self-registration emails, you can review the changes in the
selfservice-registration.json file.

Configure User Preferences
You can set up preferences for managed users, such as those related to marketing and news updates.
You can then use those preferences as a filter when reconciling users to a target repository.

In the default project, common marketing preference options are included for the managed user
object. To find these preferences in the Admin UI, select Configure > Managed Objects and select the
User managed object. Under the Preferences tab, you'll see keys and descriptions. You can also see
these preferences in the managed.json file, illustrated here:

Self-Registration
Reviewing Preferences as an End User

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 11

"preferences" : {
 "title" : "Preferences",
 "description" : "Preferences",
 "viewable" : true,
 "searchable" : false,
 "userEditable" : true,
 "type" : "object",
 "usageDescription" : "",
 "isPersonal" : false,
 "properties" : {
 "updates" : {
 "description" : "Send me news and updates",
 "type" : "boolean"
 },
 "marketing": {
 "description" : "Send me special offers and services",
 "type" : "boolean"
 }
 },
 "order": [
 "updates",
 "marketing"
],
 "required": []
},

Reviewing Preferences as an End User

When regular users log in to the End User UI, they'll see the preferences described in "Configure
User Preferences". When they accept the preferences, their managed user objects are updated with
entries similar to the following:
"preferences" : {
 "updates" : true,
 "marketing" : true
},

User Preferences and Reconciliation

You can configure user preferences as a filter for reconciliation. For example, if some of your users
do not want marketing emails, you can filter those users out of any reconciliation operation.

1. To configure user preferences as a filter, log in to the Admin UI.

2. Select Configure > Mappings. Choose a mapping.

3. Under the Association tab, select Individual Record Validation.

4. Based on the options in the Valid Source drop-down list, you can select Validate based on user
 preferences. Users who have selected a preference such as Send me special offers will then be
reconciled from the source to the target repository.

Self-Registration
Configure Multiple User Self-Registration Flows

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 12

Note

What IDM does during this reconciliation depends on the policy associated with the UNQUALIFIED situation
for a validSource. The default action is to delete the target object (user). For more information, see "How
Synchronization Situations Are Assessed" in the Synchronization Guide.

Alternatively, edit the mapping file directly. The following excerpt of a mapping file includes
preferences as conditions to define a validSource on an individual record validation. IDM applies these
conditions at the next reconciliation.
"validSource" : {
 "type" : "text/javascript",
 "globals" : {
 "preferences" : [
 "updates",
 "marketing"
]
 },
 "file" : "ui/preferenceCheck.js"
},
"validTarget" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" : ""
}

Configure Multiple User Self-Registration Flows
You can set up multiple self-registration flows, with features limited only by the capabilities listed in
"Self-Registration".

Note

Multiple self-registration flows, and customization of the End User UI beyond what is described in this
document (and the noted public Git repository), are not supported.

For additional information on customizing the End User UI, see the following ForgeRock Git repository:
ForgeRock/end-user-ui: Identity Management (End User).

For example, you may want to set up different portals for regular employees and contractors. You'd
configure each portal with different self-registration flows, managed by the same IDM backend. Each
portal would use the appropriate registration API.

To prepare for this section, you'll need a selfservice-registration.json file. You can find a copy in the
following directory: /path/to/openidm/samples/example-configurations/self-service.

To avoid errors when using this file, you should either:

https://github.com/ForgeRock/end-user-ui
https://github.com/ForgeRock/end-user-ui

Self-Registration
Configure Multiple User Self-Registration Flows

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 13

• Copy the following files from the same directory:

selfservice.terms.json
selfservice-termsAndConditions.json

• Delete the termsAndConditions code block from the respective selfservice-registration*.json files.

User self-registration is normally coded in the selfservice-registration.json file. In preparation, copy
this file to the selfservice-registration*.json to the names shown in the following list:

• Employee Portal

• Configuration file: selfservice-registrationEmployee.json

• URL: https://localhost:8443/openidm/selfservice/registrationEmployee

• verificationLink: https://localhost:8443/#/registrationEmployee

• Contractor Portal

• Configuration file: selfservice-registrationContractor.json

• URL: https://localhost:8443/openidm/selfservice/registrationContractor

• verificationLink: https://localhost:8443/#/registrationContractor

Edit the configuration file for each portal.

1. Modify the verificationLink URL associated with each portal as described.

2. Edit your access configuration (conf/access.json), by adding an endpoint for each new self-service
registration file, after the selfservice/registration section. For example, the following code excerpt
would apply to the registrationEmployee and registrationContractor endpoints:
{
 "pattern" : "selfservice/registrationEmployee",
 "roles" : "*",
 "methods" : "read,action",
 "actions" : "submitRequirements"
},
{
 "pattern" : "selfservice/registrationContractor",
 "roles" : "*",
 "methods" : "read,action",
 "actions" : "submitRequirements"
},

3. Modify the functionality of each selfservice-registration*.json file as desired. For guidance, see
the sections noted in the following table:

Self-Registration
Configure Multiple User Self-Registration Flows

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 14

Configuring selfservice-registration*.json Files for Different Portals

Feature Code Block Link
Social Registration "socialRegistrationEnabled" : true, "Social

Registration"
Properties
requested during
self-registration

"registrationProperties" : [
 "userName",
 "givenName",
 "sn",
 "mail"
],

"Configure the User
Self-Registration
Form"

Terms & Conditions {
 "name" : "termsAndConditions"
}

"Terms &
Conditions"

Privacy & Consent {
 "name" : "consent",
 "consentTranslations" : {
 "en" : "substitute appropriate Privacy & Consent
 wording",
 "fr" : "substitute appropriate Privacy & Consent
 wording, in French"
 }
},

reCAPTCHA {
 "name" : "captcha",
 "recaptchaSiteKey" : "<siteKey>",
 "recaptchaSecretKey" : "<secretKey>",
 "recaptchaUri" : "https://www.google.com/recaptcha/api/
siteverify"
}

"Configure Google
reCAPTCHA"

Email Validation "Configuring Emails
for Self-Service
Registration"

Security Questions {
 "name" : "kbaSecurityAnswerDefinitionStage",
 "kbaConfig" : null
},

"Configure Security
Questions"

If you leave out the code blocks associated with the feature, you won't see that feature in the self-
service registration flow. In that way, you can set up different self-service registration flows for
the Employee and Contractor portals.

Once you've configured both portals, you can make REST calls to both URLs:

https://localhost:8443/openidm/selfservice/registrationEmployee
https://localhost:8443/openidm/selfservice/registrationContractor

Self-Registration
Example Self-Registration REST Requests

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 15

For more advice on how you can create custom registration flows, see the following public ForgeRock
Git repository: Identity Management (End User) - UI.

Note

The changes described in this section require changes to the End User UI source code as described in the
noted public Git repository. Pay particular attention to the instructions associated with the Registration.vue
file.

Example Self-Registration REST Requests
The REST calls shown in this chapter assume that user registration is enabled with the default
security questions, and that the configuration is similar to that shown in the sample registration
configuration file (samples/example-configurations/self-service/selfservice-registration.json):

+ Example Self-Registration Configuration

{
 "allInOneRegistration" : true,
 "stageConfigs" : [
 {
 "name": "parameters",
 "parameterNames" : [
 "returnParams"
]
 },
 {
 "name" : "idmUserDetails",
 "identityEmailField" : "mail",
 "socialRegistrationEnabled" : true,
 "identityServiceUrl" : "managed/user",
 "registrationProperties" : [
 "userName",
 "givenName",
 "sn",
 "mail"
],
 "registrationPreferences": ["marketing", "updates"]
 },
 {
 "name" : "termsAndConditions"
 },
 {
 "name" : "emailValidation",
 "identityEmailField" : "mail",
 "emailServiceUrl" : "external/email",
 "emailServiceParameters" : {
 "waitForCompletion" : false
 },
 "from" : "info@admin.org",
 "subject" : "Register new account",
 "mimeType" : "text/html",

https://github.com/ForgeRock/end-user-ui

Self-Registration
Example Self-Registration REST Requests

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 16

 "subjectTranslations" : {
 "en" : "Register new account",
 "fr" : "Créer un nouveau compte"
 },
 "messageTranslations" : {
 "en" : "<h3>This is your registration email.</h3><h4>Email
 verification link</h4>",
 "fr" : "<h3>Ceci est votre email d'inscription.</h3><<h4>Lien de
 vérification email</h4>"
 },
 "verificationLinkToken" : "%link%",
 "verificationLink" : "https://idm.example.com:8443/#/registration/"
 },
 {
 "name" : "kbaSecurityAnswerDefinitionStage",
 "kbaConfig" : null
 },
 {
 "name" : "selfRegistration",
 "identityServiceUrl" : "managed/user"
 },
 {
 "name" : "localAutoLogin",
 "successUrl" : "",
 "identityUsernameField": "userName",
 "identityPasswordField": "password"
 }
],
 "storage" : "stateless"
}

1. The client loads the initial registration form. The server returns the initial tag to indicate the
start of the registration process:
curl \
 --header "X-OpenIDM-Username: anonymous" \
 --header "X-OpenIDM-Password: anonymous" \
 --header "X-OpenIDM-NoSession: true" \
 --request GET \
 "https://idm.example.com:8443/openidm/selfservice/registration"
{
 "_id": "1",
 "_rev": "1113597344",
 "type": "parameters",
 "tag": "initial",
 "requirements": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Parameters",
 "type": "object",
 "properties": {
 "returnParams": {
 "description": "Parameter named 'returnParams'",
 "type": "string"
 }
 }
 }
}

Self-Registration
Example Self-Registration REST Requests

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 17

The client sends an empty POST request with the submitRequirements action.

The server returns the following:

• The initial tag to indicate the start of the registration process.

• A token that must be provided in subsequent steps.

• A JSON requirements object that must be provided in subsequent steps.

+ Example Registration Submission

curl \
 --header "Content-type: application/json" \
 --header "X-OpenIDM-Password: anonymous" \
 --header "X-OpenIDM-Username: anonymous" \
 --header "X-OpenIDM-NoSession: true" \
 --request POST \
 --data '{"input":{"input":{}}}' \
 https://idm.example.com:8443/openidm/selfservice/registration?_action=submitRequirements
{
 "type":"allInOneRegistration",
 "tag":"initial",
 "requirements":{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "description":"All-In-One Registration",
 "type":"object",
 "properties":{
 "response":{
 "recaptchaSiteKey":"6Lf...1ry",
 "description":"Captcha response",
 "type":"string"
 },
 "kba":{
 "type":"array",
 "minItems":2,
 "items":{
 "type":"object",
 "oneOf":[
 {
 "$ref":"#/definitions/systemQuestion"
 },
 {
 "$ref":"#/definitions/userQuestion"
 }
]
 },
 "questions":[
 {
 "question":{
 "en":"What's your favorite color?",
 "en_GB":"What is your favourite colour?",
 "fr":"Quelle est votre couleur préférée?"
 },
 "id":"1"

Self-Registration
Example Self-Registration REST Requests

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 18

 },
 {
 "question":{
 "en":"Who was your first employer?"
 },
 "id":"2"
 }
]
 },
 "user":{
 "default":{
 },
 "description":"User Object",
 "type":"object"
 },
 "accept":{
 "description":"Accept",
 "type":"string"
 }
 },
 "required":[
 "response",
 "accept",
 "kba"
],
 "terms":"These are our terms and conditions",
 "termsVersion":"1.0",
 "uiConfig":{
 "displayName":"We have updated our terms",
 "purpose":"To proceed, accept these terms",
 "buttonText":"Accept"
 },
 "createDate":"2018-11-05T13:14:00.540Z",
 "definitions":{
 "systemQuestion":{
 "description":"System Question",
 "type":"object",
 "required":[
 "questionId",
 "answer"
],
 "properties":{
 "questionId":{
 "description":"Id of predefined question",
 "type":"string"
 },
 "answer":{
 "description":"Answer to the referenced question",
 "type":"string"
 }
 },
 "additionalProperties":false
 },
 "userQuestion":{
 "description":"User Question",
 "type":"object",
 "required":[
 "customQuestion",
 "answer"

Self-Registration
Example Self-Registration REST Requests

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 19

],
 "properties":{
 "answer":{
 "description":"Answer to the question",
 "type":"string"
 },
 "customQuestion":{
 "description":"Question defined by the user",
 "type":"string"
 }
 },
 "additionalProperties":false
 },
 "providers":{
 "type":"array",
 "items":{
 "type":"object",
 "oneOf":[
]
 }
 }
 },
 "socialRegistrationEnabled":false,
 "registrationForm":null,
 "registrationProperties":{
 "properties":{
 "userName":{
 "title":"Username",
 "description":"Username",
 "viewable":true,
 "type":"string",
 "searchable":true,
 "userEditable":true,
 "usageDescription":"",
 "isPersonal":true,
 "policies":[
 {
 "policyId" : "minimum-length",
 "params" : {
 "minLength" : 1
 }
 },
 {
 "policyId":"unique"
 },
 {
 "policyId":"no-internal-user-conflict"
 },
 {
 "policyId":"cannot-contain-characters",
 "params":{
 "forbiddenChars":[
 "/"
]
 }
 }
]
 },
 "givenName":{

Self-Registration
Example Self-Registration REST Requests

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 20

 "title":"First Name",
 "description":"First Name",
 "viewable":true,
 "type":"string",
 "searchable":true,
 "userEditable":true,
 "usageDescription":"",
 "isPersonal":true
 },
 "sn":{
 "title":"Last Name",
 "description":"Last Name",
 "viewable":true,
 "type":"string",
 "searchable":true,
 "userEditable":true,
 "usageDescription":"",
 "isPersonal":true
 },
 "mail":{
 "title":"Email Address",
 "description":"Email Address",
 "viewable":true,
 "type":"string",
 "searchable":true,
 "userEditable":true,
 "usageDescription":"",
 "isPersonal":true,
 "policies":[
 {
 "policyId":"valid-email-address-format"
 }
]
 }
 },
 "required":[
 "userName",
 "givenName",
 "sn",
 "mail"
]
 },
 "registrationPreferences":{
 "updates":{
 "description":"Send me news and updates",
 "type":"boolean"
 },
 "marketing":{
 "description":"Send me special offers and services",
 "type":"boolean"
 }
 },
 "stages":[
 "captcha",
 "termsAndConditions",
 "kbaSecurityAnswerDefinitionStage",
 "idmUserDetails"
]
 },

Self-Registration
Example Self-Registration REST Requests

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 21

 "token":"eyJ0eXAiOiJKV1QiLCJjdHkiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.ZXlKMGVYQ...2h-k"
}

2. The client sends a POST request with the requirements. The server responds with a request for
the emailed code:
curl \
 --header "Content-type: application/json" \
 --header "X-OpenIDM-Password: anonymous" \
 --header "X-OpenIDM-Username: anonymous" \
 --header "X-OpenIDM-NoSession: true" \
 --request POST \
 --data '{
 "input":{
 "user":{
 "userName":"bjensen",
 "givenName":"Babs",
 "sn":"Jensen",
 "mail":"babs.k.jensen@gmail.com",
 "preferences":{
 "updates":false,
 "marketing":false
 },
 "password":"Passw0rd"
 },
 "kba":[
 {
 "answer":"red",
 "questionId":"1"
 },
 {
 "answer":"forgerock",
 "questionId":"2"
 }
],
 "response":"03AMGVjXggloUomtJx2Q0_wAjzyb9lN3LJBRIN67O85eGJIejO6WMlZGZ2jqnz...",
 "g-recaptcha-response":"03AMGVjXggloUomtJx2Q0_wAjzyb9lN3LJBRIN67O85eGJIejO...",
 "accept":"true"
 },
 "token":"eyJ0eXAiOiJKV1QiLCJjdHkiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.ZXlKMGVYQWlPa..."
}' \
https://idm.example.com:8443/openidm/selfservice/registration?_action=submitRequirements
{
 "type":"emailValidation",
 "tag":"validateCode",
 "requirements":{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "description":"Verify emailed code",
 "type":"object",
 "required":[
 "code"
],
 "properties":{
 "code":{
 "description":"Enter code emailed",
 "type":"string"
 }

Self-Registration
Example Self-Registration REST Requests

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 22

 }
 },
 "token":"eyJ0eXAiOiJKV1QiLCJjdHkiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.ZXlKMGVYQWl..."
}

Note

By default, the snapshot token expires after 300 seconds. If the delay between the first request and the
second request is greater than that period, the snapshot token will be invalid and the initial request must
be sent again to obtain a fresh snapshot token. You can change the snapshot token expiration time in the
self-service process configuration file (selfservice-registration.json in this case).

The following excerpt of the configuration file shows the default snapshotToken configuration. To change the
expiration time, set the tokenExpiry property:
"snapshotToken" : {
 "type" : "jwt",
 "jweAlgorithm" : "RSAES_PKCS1_V1_5",
 "encryptionMethod" : "A128CBC_HS256",
 "jwsAlgorithm" : "HS256",
 "tokenExpiry" : 300
},

3. The email verification link redirects to:

https://idm.example.com:8443/#/registration/&token=eyJ0e..."

The client is registered and logged into the End User UI.

Social Registration

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 23

Chapter 3

Social Registration
IDM provides a standards-based solution for social authentication requirements, based on the OAuth
2.0 and OpenID Connect 1.0 standards. They are similar, as OpenID Connect 1.0 is an authentication
layer built on OAuth 2.0.

This chapter describes how to configure IDM to register and authenticate users with multiple social
identity providers.

To configure different social identity providers, you'll take the same general steps:

• Set up the provider. You'll need information such as a Client ID and Client Secret to set up an
interface with IDM.

• Configure the provider on IDM.

• Set up User Registration. Activate Social Registration in the applicable Admin UI screen or
configuration file.

• After configuration is complete, test the result. For a common basic procedure, see "Test Social
Identity Providers".

You can configure how IDM handles authentication using social identity providers by opening the
Admin UI and selecting Configure > Authentication > Modules > Social Providers. The Social
Providers authentication module is enabled by default. For more information, see "Configure the
Social Providers Authentication Module".

To understand how data is transmitted between IDM and a social identity provider, read "OpenID
Connect Authorization Code Flow".

Note

For all social identity providers, set up a FQDN for IDM, along with information in a DNS server, or system
hosts files. For test purposes, FQDNs that comply with RFC 2606, such as localhost and openidm.example.com,
are acceptable.

When you've configured one or more social identity providers, you can activate the Social
Registration option in User Registration. This action adds:

• The following setting to the selfservice-registration.json configuration file:
"socialRegistrationEnabled" : true,

http://openid.net/connect/

Social Registration
OpenID Connect Authorization Code Flow

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 24

• The following configuration file: selfservice-socialUserClaim.json, discussed in "Account Claiming:
Links Between Accounts and Social Identity Providers".

Under the Social tab, you'll see a list of property mappings as defined in the
selfservice.propertymap.json file.

One or more source properties in this file takes information from a social identity provider. When
a user registers with their social identity account, that information is reconciled to the matching
target property for IDM. For example, the email property from a social identity provider is normally
reconciled to the IDM managed user mail property.

OpenID Connect Authorization Code Flow
The OpenID Connect Authorization Code Flow specifies how IDM (Relying Party) interacts with the
OpenID Provider (Social ID Provider), based on the use of the OAuth 2.0 authorization grant. The
following sequence diagram illustrates successful processing from the authorization request, through
grant of the authorization code, access token, ID token, and provisioning from the social identity
provider to IDM.

Social Registration
OpenID Connect Authorization Code Flow

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 25

OpenID Connect Authorization Code Flow for Social ID Providers

OpenID Connect Authorizat ion Code Flow
OpenID Provider

(Socia l ID Provider)
Relying Party
(OpenIDM)

Relying Party
(OpenIDM)

End User

End User

Authorizat ion Endpoint

Authorizat ion Endpoint

Token Endpoint

Token Endpoint

User Info Endpoint

User Info Endpoint

1 Access OpenIDM Login Screen

2 Prepare Authorizat ion Request

3 Authorizat ion Request

4 Authent icate End User

5 Consent /authorizat ion

6 Redirect with ...

7 ... Authorizat ion Code

8 Authorizat ion Code

9 Access Token and ID Token

1 0 Validate ID Token and get End User subject ID

1 1 Access Token

1 2 User Info Response (Account Provisioning)

The following list describes details of each item in the authorization flow:

1. A user navigates to the IDM End User UI, and selects the Sign In link for the desired social
identity provider.

2. IDM prepares an authorization request.

3. IDM sends the request to the Authorization Endpoint that you configured for the social identity
provider, with a Client ID.

4. The social identity provider requests end user authentication and consent.

5. The end user transmits authentication and consent.

6. The social identity provider sends a redirect message, with an authorization code, to the end
user's browser. The redirect message goes to an oauthReturn endpoint, configured in ui.context-
oauth.json in your project's conf/ directory.

When you configure a social identity provider, you'll find the endpoint in the applicable
configuration file with the following property: redirectUri.

Social Registration
Many Social Identity Providers, One Schema

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 26

7. The browser transmits the redirect message, with the authorization code, to IDM.

8. IDM records the authorization code, and sends it to the social identity provider Token Endpoint.

9. The social identity provider token endpoint returns access and ID tokens.

10. IDM validates the token, and sends it to the social identity provider User Info Endpoint.

11. The social identity provider responds with information on the user's account, that IDM can
provision as a new Managed User.

You'll configure these credentials and endpoints, in some form, for each social identity provider.

Many Social Identity Providers, One Schema
Most social identity providers include common properties, such as name, email address, icon
configuration, and location.

IDM includes two sets of property maps that translate information from a social identity provider to
your managed user objects. These property maps are as follows:

• The identityProviders.json file includes a propertyMap code block for each supported provider.
This file maps properties from the provider to a generic managed user object. You should not
customize this file. To use this file, copy /path/to/openidm/samples/example-configurations/self-service/
identityProviders.json to your project's conf/ directory.

• The selfservice.propertymap.json file translates the generic managed user properties to the managed
user schema that you have defined in managed.json. If you have customized the managed user
schema, this is the file that you must change, to indicate how your custom schema maps to the
generic managed user schema.

Examine conf/identityProviders.json. The following excerpt shows the Facebook propertyMap:

Social Registration
Many Social Identity Providers, One Schema

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 27

"propertyMap" : [
 {
 "source" : "id",
 "target" : "id"
 },
 {
 "source" : "name",
 "target" : "displayName"
 },
 {
 "source" : "first_name",
 "target" : "givenName"
 },
 {
 "source" : "last_name",
 "target" : "familyName"
 },
 {
 "source" : "email",
 "target" : "email"
 },
 {
 "source" : "email",
 "target" : "username"
 },
 {
 "source" : "locale",
 "target" : "locale"
 }
]

The source lists the Facebook property, the target lists the corresponding property for a generic
managed user.

IDM then processes that information through the selfservice.propertymap.json file, where the source
corresponds to the generic managed user and the target corresponds to your customized managed
user schema (defined in your project's managed.json file).
{
 "properties" : [
 {
 "source" : "givenName",
 "target" : "givenName"
 },
 {
 "source" : "familyName",
 "target" : "sn"
 },
 {
 "source" : "email",
 "target" : "mail"
 },
 {
 "source" : "postalAddress",
 "target" : "postalAddress",
 "condition" : "/object/postalAddress pr"
 },

Social Registration
Amazon Social Identity Provider

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 28

 {
 "source" : "addressLocality",
 "target" : "city",
 "condition" : "/object/addressLocality pr"
 },
 {
 "source" : "addressRegion",
 "target" : "stateProvince",
 "condition" : "/object/addressRegion pr"
 },
 {
 "source" : "postalCode",
 "target" : "postalCode",
 "condition" : "/object/postalCode pr"
 },
 {
 "source" : "country",
 "target" : "country",
 "condition" : "/object/country pr"
 },
 {
 "source" : "phone",
 "target" : "telephoneNumber",
 "condition" : "/object/phone pr"
 },
 {
 "source" : "username",
 "target" : "userName"
 }
]
}

Tip

To take additional information from a social identity provider, make sure the property is mapped through the
identityProviders.json and selfservice.propertymap.json files.

Several of the property mappings include a pr presence expression which is a filter that returns all
records with the given attribute. For more information, see "Presence Expressions" in the Object
Modeling Guide.

Amazon Social Identity Provider
• "Set Up Amazon"

• "Configure an Amazon Social Identity Provider"

• "Configure User Registration to Link to Amazon"

• "Amazon Social Identity Provider Configuration Details"

Social Registration
Set Up Amazon

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 29

Note

Amazon as a social identity provider requires access over secure HTTP (HTTPS).

Set Up Amazon
To set up Amazon as a social identity provider, first Register for Login With Amazon. You will need an
Amazon account.

Then, create a security profile. You will need the following information:

• Security Profile Name (The name of your app)

• Security Profile Description

• Consent Privacy Notice URL

• Consent Logo Image (optional)

When complete and saved, you should see a list of security profiles with OAuth2 credentials. You should
be able to find the Client ID and Client Secret from this screen.

You still need to configure the web settings for your new Security Profile. From the Amazon
Developer Console dashboard, select Apps and Services > Login with Amazon, then select Manage >
Web Settings.

In the Web Settings for your app, you'll need to set either of the following properties:

• Allowed Origins, which should match the URL for your registration page, such as https://openidm.
example.com:8443

• Allowed Return URLs, which should match the redirect URIs described in "Configure an Amazon
Social Identity Provider". You may see URIs such as https://openidm.example.com:8443/.

Configure an Amazon Social Identity Provider
1. To configure an Amazon social identity provider, log in to the Admin UI and navigate to Configure

> Social ID Providers.

2. Enable the Amazon social identity provider.

In the Amazon Provider pop-up that appears, the values for Redirect URI should match the values that
you've entered for Allowed Return URLs in "Set Up Amazon".

3. Include the values that Amazon created for Client ID and Client Secret, as described in "Set Up
Amazon".

4. Under regular and Advanced Options, include the options shown in the following appendix: "Amazon
Social Identity Provider Configuration Details".

https://developer.amazon.com/docs/login-with-amazon/register-web.html
https://developer.amazon.com/docs/login-with-amazon/register-web.html#create-a-new-security-profile

Social Registration
Configure User Registration to Link to Amazon

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 30

When you enable an Amazon social identity provider in the Admin UI, IDM generates a conf/
identityProvider-amazon.json file.

When you review that file, you should see information beyond what you see in the Admin UI. The first
part of the file includes the name of the provider, endpoints, as well as the values for clientId and
clientSecret.
{
 "provider" : "amazon",
 "authorizationEndpoint" : "https://www.amazon.com/ap/oa",
 "tokenEndpoint" : "https://api.amazon.com/auth/o2/token",
 "userInfoEndpoint" : "https://api.amazon.com/user/profile"
 "enabled" : true,
 "clientId" : "<someUUID>",
 "clientSecret" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "<hashValue>",
 "data" : "<encryptedValue>",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "<encryptedValue>",
 "mac" : "<hashValue>"
 }
 }
 },
 "scope" : [
 "profile"
],
...

You should also see UI settings related to the social identity provider icon (badge) and the sign-in
button, described in "Social Identity Provider Button and Badge Properties".

You'll see links related to the authenticationIdKey, redirectUri, and configClass; the location may vary.

The file includes schema information, which includes properties for each social identity account, as
collected by IDM, as well as the order in which it appears in the Admin UI. When you've registered
a user with an Amazon social identity, you can verify this by selecting Manage > Amazon, and then
selecting a user.

Another part of the file includes a propertyMap, which maps user information entries between the source
(social identity provider) and the target (IDM).

If you need more information about the properties in this file, refer to the following appendix:
"Amazon Social Identity Provider Configuration Details".

Configure User Registration to Link to Amazon
Once you've configured the Amazon social identity provider, you can activate it through User
Registration. To do so in the Admin UI, select Configure > User Registration, and activate that

Social Registration
Amazon Social Identity Provider Configuration Details

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 31

feature. Under the Social tab that appears, enable Social Registration. For more information on IDM
user self-service features, see "Admin UI" in the Setup Guide.

When you enable Social Registration, you're allowing users to register on IDM through all active
social identity providers.

Amazon Social Identity Provider Configuration Details

You can set up the Amazon social identity provider through the Admin UI or in a conf/identityProvider-
amazon.json file. IDM generates the identityProvider-amazon.json file when you configure and enable this
social identity provider in the Admin UI. Alternatively, you can create the file manually.

The following table includes the information shown in the Admin UI Amazon Provider pop-up window,
along with associated information in the identityProvider-amazon.json file:

Amazon Social Identity Provider Configuration Properties

Property (UI) Property (JSON file) Description
Client ID clientId The client identifier for your Amazon App
Client Secret clientSecret Used with the Client ID to access the applicable

Amazon API
Scope scope An array of strings that allows access to user data;

see Amazon's Customer Profile Documentation.
Authorization Endpoint authorizationEndpoint Typically https://www.amazon.com/ap/oa.
Token Endpoint tokenEndpoint Endpoint that receives a one-time authorization code,

and returns an access token; typically https://api.
amazon.com/auth/o2/token

User Info Endpoint userInfoEndpoint Endpoint that transmits scope-related fields; typically
https://api.amazon.com/user/profile

Not in the Admin UI name Name of the social identity provider
Not in the Admin UI type Authentication module
Not in the Admin UI authenticationId Authentication identifier, as returned from the User

Info Endpoint for each social identity provider
Not in the Admin UI propertyMap Mapping between Amazon and IDM

For information on social identity provider buttons and badges, see "Social Identity Provider Button
and Badge Properties".

Apple Social Identity Provider
To configure Apple as a social identity provider (Sign in with Apple), you'll need an Apple developer
account.

https://developer.amazon.com/public/apis/engage/login-with-amazon/docs/customer_profile.html

Social Registration
Apple Social Identity Provider

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 32

• "Configure Apple Login"

• "Configure an Apple Identity Provider"

• "Configure User Registration through Apple"

• "Apple Social Identity Provider Configuration Details"

Configure Apple Login

You need a client ID and client secret for your application. In the Apple developer portal, the client ID
is called a Services ID.

1. Log in to the Apple Developer Portal.

2. Select Certificates, Identifiers and Profiles > Identifiers.

3. On the Identifiers page, select Register a New Identifier, then select Services IDs.

4. Enter a Description and Identifier for this Services ID, and make sure that Sign in With Apple is
enabled.

Important

The Identifier you specify here will be your OAuth Client ID.

5. Click Configure.

6. On the Web Authentication Configuration screen, enter the Web Domain on which IDM runs, and
specify the redirect URL used during the OAuth flow (Return URLs).

The redirect URL must have the following format:

https://idm.example.com/redirect

Note

You must use a real domain (FQDN) here. Apple does not allow localhost URLs. If you enter an IP address
such as 127.0.0.1, it will fail later in the OAuth flow.

7. Click Save > Continue > Register.

8. Generate the client secret.

Instead of using simple strings as OAuth client secrets, Apple uses a public/private key pair,
where the client secret is a signed JWT. To register the private key with Apple:

a. Select Certificates, Identifiers and Profiles > Keys, then click the + icon to register a new key.

https://developer.apple.com/

Social Registration
Apple Social Identity Provider Configuration Details

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 33

b. Enter a Key Name and enable Sign In with Apple.

c. Click Configure, then select the primary App ID that you created previously.

d. Apple generates a new private key, in a .p8 file.

Caution

You can only download this key once. Ensure that you save this file, because you will not be able to
download it again.

Rename the file to key.txt, then locate the Key ID in that file.

e. Use this private key to generate a client secret JWT. Sign the JWT with your private key,
using an ES256 algorithm.

Configure an Apple Identity Provider

1. To configure an Apple social identity provider, log in to the Admin UI and select Configure >
Social ID Providers.

2. Enable the Apple social identity provider.

In the Apple Provider window, enter the Redirect URI that you set up in "Configure Apple Login".

3. Enter your Client ID and Client Secret.

Configure User Registration through Apple

When you have configured the Apple social identity provider, you can activate it through User
Registration.

1. In the Admin UI, select Configure > User Registration > Enable User Registration.

2. On the Social tab, enable Social Registration.

For more information, see "Self-Service End User UI".

Apple Social Identity Provider Configuration Details

You can set up the Apple social identity provider through the Admin UI or in a conf/identityProvider-
apple.json file. IDM generates the identityProvider-apple.json file when you configure and enable this
social identity provider in the Admin UI. Alternatively, you can create the file manually.

The following table includes the information shown in the Admin UI Apple Provider pop-up window,
along with associated information in the identityProvider-apple.json file.

Social Registration
Facebook Social Identity Provider

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 34

Apple Social Identity Provider Configuration Properties

Property (UI) Property (JSON file) Description
Client ID clientId The client identifier for your Apple App. In the Apple

developer portal, the client ID is called a Services ID.
Client Secret clientSecret Used with the Client ID to access the applicable Apple

API.
Scope scope An array of strings that allows access to user data.
Authorization Endpoint authorizationEndpoint Typically, https://appleid.apple.com/auth/authorize.
Token Endpoint tokenEndpoint Endpoint that receives a one-time authorization code,

and returns an access token. Typically, https://
appleid.apple.com/auth/token.

Well-Known Endpoint wellKnownEndpoint Access for other URIs. Typically, https://appleid.
apple.com/.well-known/openid-configuration.

Issuer issuer The token issuer. Typically, https://appleid.apple.
com.

Not in the Admin UI provider Name of the social identity provider.
Not in the Admin UI configClass Configuration class for the authentication module.
Not in the Admin UI basicAuth Whether to use basic authentication.
Not in the Admin UI propertyMap Mapping between Apple and IDM.

For information on social identity provider buttons and badges, see "Social Identity Provider Button
and Badge Properties".

Facebook Social Identity Provider
• "Set Up Facebook"

• "Configure a Facebook Social Identity Provider"

• "Configure User Registration to Link to Facebook"

• "Facebook Social Identity Provider Configuration Details"

Social Registration
Set Up Facebook

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 35

Note

As of October 2018, Facebook as a social identity provider requires access over secure HTTP (HTTPS).

Set Up Facebook

To set up Facebook as a social identity provider, navigate to the Facebook for Developers page. You'll
need a Facebook account. While you could use a personal Facebook account, it is best to use an
organizational account to avoid problems if specific individuals leave your organization. When you set
up a Facebook social identity provider, you'll need to perform the following tasks:

• In the Facebook for Developers page, select My Apps and Add a New App. For IDM, you'll create a
Website application.

• You'll need to include the following information when creating a Facebook website application:

• Display Name

• Contact Email

• IDM URL

• When complete, you should see your App. Navigate to Basic Settings.

• Make a copy of the App ID and App Secret for when you configure the Facebook social identity
provider in IDM.

• In the settings for your App, you should see an entry for App Domains, such as example.com, as well as a
Website Site URL, such as https://idm.example.com/.

For Facebook's documentation on the subject, see Facebook Login for the Web with the JavaScript
SDK.

Configure a Facebook Social Identity Provider

1. To configure a Facebook social identity provider, log in to the Admin UI and navigate to
Configure > Social ID Providers.

2. Enable the Facebook social identity provider.

3. Include the values that Facebook created for App ID and App Secret, as described in "Set Up
Facebook".

4. Under regular and Advanced Options, include the options shown in the following appendix:
"Facebook Social Identity Provider Configuration Details".

When you enable a Facebook social identity provider in the Admin UI, IDM generates the
identityProvider-facebook.json file in your project's conf/ subdirectory.

https://developers.facebook.com/apps/
https://developers.facebook.com/docs/facebook-login/web
https://developers.facebook.com/docs/facebook-login/web

Social Registration
Configure User Registration to Link to Facebook

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 36

It includes parts of the file that you may have configured through the Admin UI. While the labels in
the UI specify App ID and App Secret, you'll see them as clientId and clientSecret, respectively, in the
configuration file.
{
 "provider" : "facebook",
 "authorizationEndpoint" : "https://www.facebook.com/dialog/oauth",
 "tokenEndpoint" : "https://graph.facebook.com/v2.7/oauth/access_token",
 "userInfoEndpoint" : "https://graph.facebook.com/me?
fields=id,name,picture,email,first_name,last_name,locale"
 "clientId" : "<someUUID>",
 "clientSecret" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "<hashValue>",
 "data" : "<encryptedValue>",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "<encryptedValue>",
 "mac" : "<hashValue>"
 }
 }
 },
 "scope" : [
 "email",
 "user_birthday"
],
...

You should also see UI settings related to the social identity provider icon (badge) and the sign-in
button, described in "Social Identity Provider Button and Badge Properties".

You'll see links related to the authenticationIdKey, redirectUri, and configClass; the location may vary.

The file includes schema information, which includes properties for each social identity account, as
collected by IDM, as well as the order in which it appears in the Admin UI. When you've registered a
user with a Facebook social identity, you can verify this by selecting Manage > Facebook, and then
selecting a user.

Another part of the file includes a propertyMap, which maps user information entries between the source
(social identity provider) and the target (IDM).

If you need more information about the properties in this file, refer to the following appendix:
"Facebook Social Identity Provider Configuration Details".

Configure User Registration to Link to Facebook

Once you've configured the Facebook social identity provider, you can activate it through User
Registration. To do so in the Admin UI, select Configure > User Registration, and under the Social

Social Registration
Facebook Social Identity Provider Configuration Details

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 37

tab, enable the option associated with Social Registration. For more information about user self-
service features, see "Self-Service End User UI".

When you enable social registration, you're allowing users to register on IDM through all active social
identity providers.

Facebook Social Identity Provider Configuration Details

You can set up the Facebook social identity provider through the Admin UI or in a conf/
identityProvider-facebook.json file. IDM generates the identityProvider-facebook.json file when you
configure and enable this social identity provider in the Admin UI. Alternatively, you can create the
file manually.

The following table includes the information shown in the Admin UI Facebook Provider pop-up
window, along with associated information in the identityProvider-facebook.json file:

Facebook Social Identity Provider Configuration Properties

Property (UI) Property (JSON file) Description
App ID clientId The client identifier for your Facebook App
App Secret clientSecret Used with the App ID to access the applicable

Facebook API
Scope scope An array of strings that allows access to user

data; see Facebook's Permissions Reference
Documentation.

Authorization Endpoint authorizationEndpoint For Facebook's implementation, see their
documentation on how they Manually Build a Login
Flow.

Token Endpoint tokenEndpoint Endpoint that receives a one-time authorization
code, and returns an access token. For Facebook's
implementation, see their documentation on how they
Manually Build a Login Flow.

User Info Endpoint userInfoEndpoint Endpoint that transmits scope-related fields through
Facebook's API. The default endpoint includes
the noted field properties as a list, as defined in
Facebook's Permissions Reference.

Not in the Admin UI name Name of the Social ID provider
Not in the Admin UI type Authentication module
Not in the Admin UI authenticationId Authentication identifier, as returned from the User

Info Endpoint for each social identity provider
Not in the Admin UI propertyMap Mapping between Facebook and IDM

For information on social identity provider buttons and badges, see "Social Identity Provider Button
and Badge Properties".

https://developers.facebook.com/docs/facebook-login/permissions
https://developers.facebook.com/docs/facebook-login/manually-build-a-login-flow/
https://developers.facebook.com/docs/facebook-login/manually-build-a-login-flow/
https://developers.facebook.com/docs/facebook-login/manually-build-a-login-flow/
https://developers.facebook.com/docs/facebook-login/manually-build-a-login-flow/
https://developers.facebook.com/docs/facebook-login/permissions

Social Registration
Google Social Identity Provider

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 38

Google Social Identity Provider
• "Set Up Google".

• "Configure a Google Social Identity Provider".

• "Configure User Registration to Link to Google".

• "Google Social Identity Provider Configuration Details".

Set Up Google
To set up Google as a social identity provider, navigate to the Google API Manager. You'll need
a Google account. If you have GMail, you already have a Google account. While you could use a
personal Google account, it is best to use an organizational account to avoid problems if specific
individuals leave your organization. When you set up a Google social identity provider, you'll need to
perform the following tasks:

Plan ahead. It may take some time before the Google+ API that you configure for IDM is ready for use.

• In the Google API Manager, select and enable the Google+ API. It is one of the Google "social" APIs.

• Create a project for IDM.

• Create OAuth client ID credentials. You'll need to configure an OAuth consent screen with at least a
product name and email address.

• When you set up a Web application for the client ID, you'll need to set up a web client with:

• Authorized JavaScript origins

The origin URL for IDM, typically a URL such as https://openidm.example.com:8443

• Authorized redirect URIs

The redirect URI after users are authenticated, typically, https://openidm.example.com:8443/

• In the list of credentials, you'll see a unique Client ID and Client secret. You'll need this information
when you configure the Google social identity provider, as described in "Configure a Google Social
Identity Provider".

For Google's procedure, see the Google Identity Platform documentation on Setting Up OAuth 2.0.

Configure a Google Social Identity Provider
1. To configure a Google social identity provider, log in to the Admin UI and navigate to Configure >

Social ID Providers.

2. Enable the Google social identity provider, and if needed, select the edit icon.

https://console.developers.google.com
https://developers.google.com/identity/protocols/OpenIDConnect#appsetup

Social Registration
Configure User Registration to Link to Google

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 39

3. Include the Google values for Client ID and Client Secret for your project, as described earlier in
this section.

4. Under regular and Advanced Options, include the options shown in the following appendix: "Google
Social Identity Provider Configuration Details".

When you enable a Google social identity provider in the Admin UI, IDM generates the
identityProvider-google.json file in your project's conf/ subdirectory.

When you review that file, you should see information from what you configured in the Admin UI, and
beyond. The first part of the file includes the name of the provider, endpoints, as well as the values
for clientId and clientSecret.
{
 "enabled" : true,
 "authorizationEndpoint" : "https://accounts.google.com/o/oauth2/v2/auth",
 "tokenEndpoint" : "https://www.googleapis.com/oauth2/v4/token",
 "userInfoEndpoint" : "https://www.googleapis.com/oauth2/v3/userinfo",
 "wellKnownEndpoint" : "https://accounts.google.com/.well-known/openid-configuration",
 "issuer": "https://accounts.google.com",
 "clientId" : "<someUUID>",
 "clientSecret" : {encrypted-client-secret},
...

You should also see UI settings related to the social identity provider icon (badge) and the sign-in
button, described in "Social Identity Provider Button and Badge Properties".

You'll see links related to the authenticationIdKey, redirectUri, scopes, and configClass; the location may
vary.

The file includes schema information, which includes properties for each social identity account, as
collected by IDM, as well as the order in which it appears in the Admin UI. When you've registered
a user with a Google social identity, you can verify this by selecting Manage > Google, and then
selecting a user.

Another part of the file includes a propertyMap, which maps user information entries between the source
(social identity provider) and the target (IDM).

If you need more information about the properties in this file, refer to the following appendix: "Google
Social Identity Provider Configuration Details".

Configure User Registration to Link to Google

Once you've configured the Google social identity provider, you can activate it through User
Registration. To do so in the Admin UI, select Configure > User Registration, and under the Social
tab, enable the option associated with Social Registration. For more information on user self-service
features, see "Self-Service End User UI".

When you enable social registration, you're allowing users to register on IDM through all active social
identity providers.

Social Registration
Google Social Identity Provider Configuration Details

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 40

Google Social Identity Provider Configuration Details

You can set up the Google social identity provider through the Admin UI or in a conf/identityProvider-
google.json file. IDM generates the identityProvider-google.json file when you configure and enable this
social identity provider in the Admin UI. Alternatively, you can create the file manually.

The following table includes the information shown in the Admin UI Google Provider pop-up window,
along with associated information in the identityProvider-google.json file:

Google Social Identity Provider Configuration Properties

Property (UI) Property (JSON file) Description
Client ID clientId The client identifier for your Google Identity Platform

project.
Client Secret clientSecret Used with the Client ID to access the configured

Google API.
Scope scope An array of strings that allows access to user data;

see Google's documentation on Authorization Scopes.
Authorization Endpoint authorizationEndpoint Per RFC 6749, "used to interact with the resource

owner and obtain an authorization grant". For
Google's implementation, see Forming the URL.

Token Endpoint tokenEndpoint Endpoint that receives a one-time authorization grant,
and returns an access and ID token.

User Info Endpoint userInfoEndpoint Endpoint that receives an access token, and returns
information about the user.

Well-Known Endpoint wellKnownEndpoint Access URL for Google's Discovery Document.
Issuer issuer The token issuer. Typically, https://accounts.google.

com.
Not in the Admin UI name Name of the social identity provider.
Not in the Admin UI type Authentication module.
Not in the Admin UI authenticationId Authentication identifier, as returned from the User

Info Endpoint for each social identity provider.
Not in the Admin UI propertyMap Mapping between Google and IDM.

For information on social identity provider buttons and badges, see "Social Identity Provider Button
and Badge Properties".

Instagram Social Identity Provider
1. "Set Up Instagram"

2. "Configure an Instagram Social Identity Provider"

https://developers.google.com/identity/protocols/googlescopes
https://tools.ietf.org/html/rfc6749#section-3.1
https://developers.google.com/identity/protocols/OAuth2UserAgent#formingtheurl
https://developers.google.com/identity/protocols/OpenIDConnect#discovery

Social Registration
Set Up Instagram

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 41

3. "Configure User Registration to Link to Instagram"

4. "Instagram Social Identity Provider Configuration Details"

Set Up Instagram

To set up Instagram as a social identity provider, navigate to Facebook for Developers, and follow
the steps. You'll need a minimum of:

• An Instagram account

• A Facebook developer account

• An application name and description

• A website URL for your app, such as http://openidm.example.com:8080

• A Redirect URL for IDM, such as http://openidm.example.com:8080/

Configure an Instagram Social Identity Provider

To Configure an Instagram Social Identity Provider:

1. Log in to the Admin UI.

2. From the navigation bar, click Configure > Social ID Providers.

3. Enable the Instagram social identity provider.

4. In the Instagram Provider modal, verify the Redirect URI matches what you entered in "Set Up
Instagram".

5. Enter the Client ID and Client Secret from "Set Up Instagram".

6. Enter the other configuration details and Advanced Options, per the following:

• "Instagram Social Identity Provider Configuration Details"

• "Social Identity Provider Button and Badge Properties"

7. Click Save.

When you enable an Instagram social identity provider in the Admin UI, IDM generates a conf/
identityProvider-instagram.json file. The file contains all options configured using the Admin UI and
more. The first part of the file includes the name of the provider, endpoints, and scopes, as well as
the values of clientId and clientSecret.

https://developers.facebook.com/docs/instagram-basic-display-api/getting-started

Social Registration
Configure User Registration to Link to Instagram

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 42

{
 "provider" : "instagram",
 ...
 "clientId" : "<Client_ID_Name>",
 "clientSecret" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "<hashValue>",
 "data" : "<encryptedValue>",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "<encryptedValue>",
 "mac" : "<hashValue>"
 }
 }
 },
 "authorizationEndpoint" : "https://api.instagram.com/oauth/authorize/",
 "tokenEndpoint" : "https://api.instagram.com/oauth/access_token",
 "userInfoEndpoint" : "https://graph.instagram.com/me?fields=id,username",
 "redirectUri" : "http://openidm.example.com:8080/",
 "scope" : [
 "user_profile",
],
...

Another part of the file includes a propertyMap, which maps user information entries between the source
(social identity provider) and the target (IDM).

The file includes schema information for each social identity account, as collected by IDM, as well as
the order in which it appears in the Admin UI. When you've registered a user with an Instagram
social identity, you can verify this by selecting Manage > Instagram, and then selecting a user.
For more information about the properties in this file, refer to "Instagram Social Identity Provider
Configuration Details".

Configure User Registration to Link to Instagram

After you configure the Instagram social identity provider, you can activate it through User
Registration. To do so in the Admin UI, select Configure > User Registration, and activate that
feature. Under the Social tab that appears, enable Social Registration. For more information on IDM
user self-service features, see "Self-Service End User UI".

Social Registration
Instagram Social Identity Provider Configuration Details

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 43

Note

When you enable Social Registration, you're allowing users to register on IDM through all active social identity
providers.

Instagram Social Identity Provider Configuration Details

You can set up the Instagram social identity provider through the Admin UI or in a conf/
identityProvider-instagram.json file. IDM generates the identityProvider-instagram.json file when you
configure and enable this social identity provider in the Admin UI. Alternatively, you can create the
file manually.

The following table includes the information shown in the Admin UI Instagram Provider pop-up
window, along with associated information in the identityProvider-instagram.json file:

Instagram Social Identity Provider Configuration Properties

Property (UI) Property (JSON file) Description
Client ID clientId Your Instagram App client identifier
Client Secret clientSecret Used with the Client ID to access the Instagram API
Scope scope An array of strings that allows access to user data
Authorization Endpoint authorizationEndpoint Typically https://api.instagram.com/oauth/authorize/;

known as an Instagram Authorize URL
Token Endpoint tokenEndpoint Endpoint that receives a one-time authorization code,

and returns an access token; typically https://api.
instagram.com/oauth/access_token

User Info Endpoint userInfoEndpoint Endpoint that transmits scope-related fields; typically
https://graph.instagram.com/me?fields=id,username

Not in the Admin UI provider Name of the social identity provider
Not in the Admin UI configClass Configuration class for the authentication module
Not in the Admin UI basicAuth Whether to use basic authentication
Not in the Admin UI propertyMap Mapping between Instagram and IDM

For information on social identity provider buttons and badges, see "Social Identity Provider Button
and Badge Properties".

LinkedIn Social Identity Provider
• "Set Up a LinkedIn App"

• "Configure a LinkedIn Social Identity Provider"

Social Registration
Set Up a LinkedIn App

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 44

• "Configure User Registration With LinkedIn"

• "LinkedIn Social Identity Provider Configuration Details"

Set Up a LinkedIn App

Before you start, you will need a LinkedIn account. You can use a personal LinkedIn account for
testing, but you should ultimately use an organizational account to avoid problems if individuals leave
your organization.

To set up a LinkedIn app:

1. Log in to LinkedIn and navigate to LinkedIn Developers -> MyApps.

2. Select Create app and enter the following information:

• App name. Enter any unique name that is fewer than 50 characters.

• Company. The company name that will be associated with this application.

• Privacy policy URL. An optional URL that displays your company's Privacy Policy.

• Business email. The business email address that is associated with this application.

• App logo. The logo that is displayed to users when they authenticate with this app.

3. Select the products that should be integrated into the app.

4. Accept LinkedIn's legal terms.

5. Select Verify to associate the app with your company, then follow the verification approval
process.

6. After you have approved the app, select it under My Apps, then select the Auth tab.

7. Take note of the Client ID and Client Secret—you will need them in the next procedure.

8. The app should have the following Permissions:

• r_emailaddress

• r_liteprofile

• w_member_social

9. Under OAuth 2.0 settings, select Add redirect URL and enter the FQDN and port number of your
IDM instance. For example, http://openidm.example.com:8080/

https://www.linkedin.com/developer/apps/

Social Registration
Configure a LinkedIn Social Identity Provider

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 45

Note

For LinkedIn's procedure, see their documentation on Authenticating with OAuth 2.0.

Configure a LinkedIn Social Identity Provider

1. To configure a LinkedIn social identity provider, log in to the Admin UI and navigate to Configure
> Social ID Providers.

2. Enable the LinkedIn social identity provider.

3. Make sure that the Redirect URI on this screen matches the OAuth 2.0 Redirect URL that you
entered in "Set Up a LinkedIn App".

4. Copy the Client ID and Client Secret that you obtained in "Set Up a LinkedIn App".

5. (Optional) Change any of the Advanced Options listed in "LinkedIn Social Identity Provider
Configuration Details".

6. Select Save.

When you enable a LinkedIn social identity provider, IDM generates the corresponding
identityProvider-linkedIn.json file in your project's conf/ subdirectory.

When you review that file, you should see information beyond what you see in the Admin UI. The first
part of the file includes the name of the provider, endpoints, as well as the clientId and encrypted
clientSecret.

https://docs.microsoft.com/en-us/linkedin/shared/authentication/authentication

Social Registration
Configure User Registration With LinkedIn

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 46

{
 "provider" : "linkedIn",
 "authorizationEndpoint" : "https://www.linkedin.com/oauth/v2/authorization",
 "tokenEndpoint" : "https://www.linkedin.com/oauth/v2/accessToken",
 "userInfoEndpoint" : "https://api.linkedin.com/v2/me?
projection=(id,firstName,lastName,profilePicture(displayImage~:playableStreams))",
 "emailAddressEndpoint" : "https://api.linkedin.com/v2/emailAddress?
q=members&projection=(elements*(handle~))",
 "clientId" : "77l9udb8qmqihq",
 "clientSecret" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "2cmC36Ds++6xAtRhlvNOEw==",
 "data" : "TJ7VOHjJI0VWWedTKX4agviqc3H3Un5RDVAWyB2u64g=",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "QbGAUSuOMrCh1i8F0fWGyA==",
 "mac" : "rUFVcSJ5+s+LZL6YFB3rFQ=="
 }
 }
 },
 "scope" : [
 "r_liteprofile",
 "r_emailaddress"
],
...

You should also see UI settings related to the social identity provider icon (badge) and the sign-in
button, described in "Social Identity Provider Button and Badge Properties".

The file includes schema information, indicating the properties of each social identity account that will
be collected by IDM, and the order in which these properties appear in the Admin UI. When you have
registered a user with a LinkedIn social identity, you can verify these properties by selecting Manage
> LinkedIn, then selecting the user.

Further down in the file, the propertyMap maps user information between the source (social identity
provider) and the target (IDM).

For more information about the properties in this file, see "LinkedIn Social Identity Provider
Configuration Details".

Configure User Registration With LinkedIn

After you have configured the LinkedIn social identity provider, activate it by enabling User
Registration:

1. Select Configure > User Registration > Enable.

2. On the Social tab, enable Social Registration. For more information about user self-service
features, see "Self-Service End User UI".

Social Registration
LinkedIn Social Identity Provider Configuration Details

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 47

Note

When you enable social registration, you are allowing users to register in IDM through all active social identity
providers.

LinkedIn Social Identity Provider Configuration Details

You can set up the LinkedIn social identity provider through the Admin UI or in a conf/
identityProvider-linkedIn.json file. IDM generates the identityProvider-linkedIn.json file when you
configure and enable this social identity provider in the Admin UI. Alternatively, you can create the
file manually.

The following table includes the information shown in the Admin UI LinkedIn Provider pop-up
window, along with associated information in the identityProvider-linkedIn.json file:

LinkedIn Social Identity Provider Configuration Properties

Property (UI) Property (JSON file) Description
Client ID clientId The client identifier for your LinkedIn Application
Client Secret clientSecret Used with the Client ID to access the applicable

LinkedIn API
Scope scope An array of strings that allows access to user data;

see LinkedIn's documentation on Lite Profile Fields.
Authorization Endpoint authorizationEndpoint Per RFC 6749, "used to interact with the resource

owner and obtain an authorization grant". For
LinkedIn's implementation, see their documentation
on Authenticating with OAuth 2.0.

Token Endpoint tokenEndpoint Endpoint that receives a one-time authorization
code, and returns an access token. For LinkedIn's
implementation, see their documentation on
Authenticating with OAuth 2.0.

User Info Endpoint userInfoEndpoint Endpoint that transmits scope-related fields through
LinkedIn's API.

Email Address Endpoint emailAddressEndpoint API that must be called to retrieve the email address
of the user.

Well-Known Endpoint wellKnownEndpoint Not used for LinkedIn
Not in the Admin UI name Name of the social identity provider
Not in the Admin UI type Authentication module
Not in the Admin UI authenticationId Authentication identifier, as returned from the User

Info Endpoint for each social identity provider
Not in the Admin UI propertyMap Mapping between LinkedIn and IDM

https://docs.microsoft.com/en-us/linkedin/shared/references/v2/profile/lite-profile
https://tools.ietf.org/html/rfc6749#section-3.1
https://docs.microsoft.com/en-us/linkedin/shared/authentication/authentication
https://docs.microsoft.com/en-us/linkedin/shared/authentication/authentication
https://docs.microsoft.com/en-us/linkedin/shared/authentication/authentication

Social Registration
Microsoft Social Identity Provider

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 48

For information on social identity provider buttons and badges, see "Social Identity Provider Button
and Badge Properties".

Microsoft Social Identity Provider
• "Set Up Microsoft"

• "Configure a Microsoft Social Identity Provider"

• "Configure User Registration to Link to Microsoft"

• "Microsoft Social Identity Provider Configuration Details"

Note

Microsoft as a social identity provider requires access over secure HTTP (HTTPS). This example assumes that
you've configured IDM on https://openidm.example.com:8443. Substitute your URL for openidm.example.com.

Set Up Microsoft
For Microsoft documentation on how to set up a social identity provider, navigate to the following
article: Sign-in Microsoft Account & Azure AD users in a single app . You'll need a Microsoft account.

To set up Microsoft as a social identity provider:

• Navigate to the Microsoft app registration portal at https://apps.dev.microsoft.com/ and sign in with
your Microsoft account.

• Select Add an App and give your app a name.

The portal will assign your app a unique Application ID.

• To find your Application Secret, select Generate New Password. That password is your Application
Secret.

Tip

Save your new password. It is the only time you'll see the Application Secret for your new app.

• Select Add Platform. You'll choose a Web platform, enable Allow Implicit Flow and set up the following
value for Redirect URI:

• https://openidm.example.com:8443/

If desired, you can also enter the following information:

• Logo image

https://docs.microsoft.com/en-us/azure/active-directory/develop/active-directory-appmodel-v2-overview
https://apps.dev.microsoft.com/

Social Registration
Configure a Microsoft Social Identity Provider

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 49

• Terms of Service URL

• Privacy Statement URL

The OAuth2 credentials for your new Microsoft App include an Application ID and Application Secret for
your app.

Configure a Microsoft Social Identity Provider
1. To configure a Microsoft social identity provider, log in to the Admin UI and navigate to

Configure > Social ID Providers.

2. Enable the Microsoft social identity provider.

In the Microsoft Provider pop-up that appears, the values for Redirect URI should match the values
that you've entered for Allowed Return URLs in "Set Up Microsoft".

3. Include the values that Microsoft created for Client ID and Client Secret, as described in "Set Up
Microsoft".

4. Under regular and Advanced Options, include the options shown in the following appendix:
"Microsoft Social Identity Provider Configuration Details".

When you enable a Microsoft social identity provider in the Admin UI, IDM generates the
identityProvider-microsoft.json file in your project's conf/ subdirectory.

It includes parts of the file that you may have configured through the Admin UI. While the labels
in the UI specify Application ID and Application Secret, you'll see them as clientId and clientSecret,
respectively, in the configuration file.
"provider" : "microsoft",
 "authorizationEndpoint" : "https://login.microsoftonline.com/common/oauth2/v2.0/authorize",
 "tokenEndpoint" : "https://login.microsoftonline.com/common/oauth2/v2.0/token",
 "userInfoEndpoint" : "https://graph.microsoft.com/v1.0/me"
 "clientId" : "<someUUID>",
 "clientSecret" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "<hashValue>",
 "data" : "<encryptedValue>",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "<encryptedValue>",
 "mac" : "<hashValue>"
 }
 }
 },
 "scope" : [
 "User.Read"
],
...

Social Registration
Configure User Registration to Link to Microsoft

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 50

You should also see UI settings related to the social identity provider icon (badge) and the sign-in
button, described in "Social Identity Provider Button and Badge Properties".

You'll see links related to the authenticationIdKey, redirectUri, and configClass; the location may vary.

The file includes schema information, which includes properties for each social identity account, as
collected by IDM, as well as the order in which it appears in the Admin UI. When you've registered a
user with a Microsoft social identity, you can verify this by selecting Manage > Microsoft, and then
selecting a user.

Another part of the file includes a propertyMap, which maps user information entries between the source
(social identity provider) and the target (IDM).

If you need more information about the properties in this file, refer to the following appendix:
"Microsoft Social Identity Provider Configuration Details".

Configure User Registration to Link to Microsoft
Once you've configured the Microsoft social identity provider, you can activate it through User
Registration. To do so in the Admin UI, select Configure > User Registration, and activate that
feature. Under the Social tab that appears, enable Social Registration. For more information on IDM
user self-service features, see "Self-Service End User UI".

When you enable Social Registration, you're allowing users to register on IDM through all active
social identity providers.

Microsoft Social Identity Provider Configuration Details
You can set up the Microsoft social identity provider through the Admin UI or in a conf/
identityProvider-microsoft.json file. IDM generates the identityProvider-microsoft.json file when you
configure and enable this social identity provider in the Admin UI. Alternatively, you can create the
file manually.

The following table includes the information shown in the Admin UI Microsoft Provider pop-up
window, along with associated information in the identityProvider-microsoft.json file:

Microsoft Social Identity Provider Configuration Properties

Property (UI) Property (JSON file) Description
Application ID clientId The client identifier for your Microsoft App
Application Secret clientSecret Used with the Application ID; shown as application

password
Scope scope OAuth 2 scopes; for more information, see Microsoft

Graph Permission Scopes.
Authorization Endpoint authorizationEndpoint Typically https://login.microsoftonline.com/common/

oauth2/v2.0/authorize

https://developer.microsoft.com/en-us/graph/docs/authorization/permission_scopes
https://developer.microsoft.com/en-us/graph/docs/authorization/permission_scopes

Social Registration
Salesforce Social Identity Provider

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 51

Property (UI) Property (JSON file) Description
Token Endpoint tokenEndpoint Endpoint that receives a one-time authorization code

and returns an access token; typically https://login.
microsoftonline.com/common/oauth2/v2.0/token

User Info Endpoint userInfoEndpoint Endpoint that transmits scope-related fields; typically
https://graph.microsoft.com/v1.0/me

Not in the Admin UI name Name of the social identity provider
Not in the Admin UI type Authentication module
Not in the Admin UI authenticationId Authentication identifier, as returned from the User

Info Endpoint for each social identity provider
Not in the Admin UI propertyMap Mapping between Microsoft and IDM

For information on social identity provider buttons and badges, see "Social Identity Provider Button
and Badge Properties".

Salesforce Social Identity Provider
• "Set Up Salesforce"

• "Configure a Salesforce Social Identity Provider"

• "Configure User Registration to Link to Salesforce"

• "Salesforce Social Identity Provider Configuration Details"

Note

When you configure a Salesforce app, look for a Consumer Key and a Consumer Secret. IDM uses this
information as a clientId and clientSecret, respectively.

For reference, read through the following Salesforce documentation: Connected Apps Overview.

Set Up Salesforce
To set up Salesforce as a social identity provider, you will need a Salesforce developer account. Log
in to the Salesforce Developers Page with your developer account credentials and create a new
Connected App.

Note

These instructions were written with the Winter '19 Release of the Salesforce API. The menu items might differ
slightly if you are working with a different version of the API.

Under App Setup, select Create > Apps > Connected Apps > New. You will need to add the following
information:

https://help.salesforce.com/articleView?id=connected_app_overview.htm&type=0
https://developer.salesforce.com/

Social Registration
Configure a Salesforce Social Identity Provider

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 52

• Connected App Name

• API Name (defaults to the Connected App Name)

• Contact Email

• Activate the following option: Enable OAuth Settings

• Callback URL (also known as the Redirect URI for other providers), for example https://
localhost:8443/.

The Callback URL must correspond to the URL that you use to log in to the IDM Admin UI.

• Add the following OAuth scopes:

• Access and Manage your data (api)

• Access your basic information (id, profile, email, address, phone)

• Perform requests on your behalf at any time (refresh_token, offline_access)

• Provide access to your data via the Web (web)

Note that these must be added even if you are otherwise planning to use the full OAuth scope.

After you have saved the Connected App, it might take a few minutes for the new app to appear
under Administration Setup > Manage Apps > Connected Apps.

Select the new Connected App then locate the Consumer Key and Consumer Secret (under the API
list). You'll use that information as shown here:

• Salesforce Consumer Key = IDM Client ID

• Salesforce Consumer Secret = IDM Client Secret

Configure a Salesforce Social Identity Provider

1. To configure a Salesforce social identity provider, log in to the Admin UI and navigate to
Configure > Social ID Providers.

2. Enable the Salesforce social identity provider.

In the Salesforce Provider pop-up that appears, the values for Redirect URI should match the value
that you've entered for Callback URL in "Set Up Salesforce".

3. Include the values that Salesforce created for Consumer Key and Consumer Secret, as described in "Set
Up Salesforce".

4. Under regular and Advanced Options, include the options shown in the following appendix:
"Salesforce Social Identity Provider Configuration Details".

Social Registration
Configure User Registration to Link to Salesforce

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 53

When you enable a Salesforce social identity provider in the Admin UI, IDM generates the
identityProvider-salesforce.json file in your project's conf/ subdirectory.

It includes parts of the file that you may have configured through the Admin UI. While the labels
in the UI specify Consumer Key and Consumer Secret, you'll see them as clientId and clientSecret,
respectively, in the configuration file.
{
 "provider" : "salesforce",
 "authorizationEndpoint" : "https://login.salesforce.com/services/oauth2/authorize",
 "tokenEndpoint" : "https://login.salesforce.com/services/oauth2/token",
 "userInfoEndpoint" : "https://login.salesforce.com/services/oauth2/userinfo",
 "clientId" : "<someUUID>",
 "clientSecret" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "<hashValue>",
 "data" : "<encryptedValue>",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "<encryptedValue>",
 "mac" : "<hashValue>"
 }
 }
 },
 "scope" : [
 "id",
 "api",
 "web"
],

You should also see UI settings related to the social identity provider icon (badge) and the sign-in
button, described in "Social Identity Provider Button and Badge Properties".

You'll see links related to the authenticationIdKey, redirectUri, and configClass; the location may vary.

The file includes schema information, which includes properties for each social identity account, as
collected by IDM, as well as the order in which it appears in the Admin UI. When you've registered a
user with a Salesforce social identity, you can verify this by selecting Manage > Salesforce, and then
selecting a user.

Another part of the file includes a propertyMap, which maps user information entries between the source
(social identity provider) and the target (IDM).

If you need more information about the properties in this file, refer to the following appendix:
"Salesforce Social Identity Provider Configuration Details".

Configure User Registration to Link to Salesforce
Once you've configured the Salesforce social identity provider, you can activate it through User
Registration. To do so in the Admin UI, select Configure > User Registration, and activate that

Social Registration
Salesforce Social Identity Provider Configuration Details

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 54

feature. Under the Social tab that appears, enable Social Registration. For more information on IDM
user self-service features, see "Self-Service End User UI".

When you enable Social Registration, you're allowing users to register on IDM through all active
social identity providers.

Salesforce Social Identity Provider Configuration Details
You can set up the Salesforce social identity provider through the Admin UI or in a conf/
identityProvider-salesforce.json file. IDM generates the identityProvider-salesforce.json file when you
configure and enable this social identity provider in the Admin UI. Alternatively, you can create the
file manually.

The following table includes the information shown in the Admin UI Salesforce Provider pop-up
window, along with associated information in the identityProvider-salesforce.json file:

Salesforce Social Identity Provider Configuration Properties

Property (UI) Property (JSON file) Description
Client ID clientId The client identifier for your Salesforce App
Client Secret clientSecret Used with the Client ID to access the applicable

Salesforce API
Scope scope An array of strings that allows access to user data
Authorization Endpoint authorizationEndpoint A typical URL: https://login.salesforce.com/

services/oauth2/authorize.
Token Endpoint tokenEndpoint Endpoint that receives a one-time authorization code,

and returns an access token; such as https://login.
salesforce.com/services/oauth2/token

User Info Endpoint userInfoEndpoint Endpoint that transmits scope-related fields; a typical
URL: https://login.salesforce.com/services/oauth2/
userinfo

Not in the Admin UI provider Name of the social identity provider
Not in the Admin UI configClass Configuration class for the authentication module
Not in the Admin UI basicAuth Whether to use basic authentication
Not in the Admin UI propertyMap Mapping between Salesforce and IDM

Twitter Social Identity Provider
• "Set Up Twitter"

• "Configure Twitter as a Social Identity Provider"

• "Configure User Registration to Link to Twitter"

Social Registration
Set Up Twitter

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 55

• "Twitter Social Identity Provider Configuration Details"

Set Up Twitter

To set up Twitter as a social identity provider, navigate to the following page: Single-user OAuth
with Examples . You'll need a Twitter account. You can then navigate to the Twitter Application
Management page, where you can select Create New App and enter at least the following
information:

• Name

• Description

• Website, such as http://openidm.example.com:8080

• Callback URL, such as http://openidm.example.com:8080/; required for IDM; for other providers, known
as RedirectURI

When complete and saved, you should see a Consumer Key and Consumer Secret for your new web app.

Note

Twitter Apps use the OAuth 1.0a protocol. Fortunately, with IDM, you can use the same process used to
configure OIDC and OAuth 2 social identity providers.

Configure Twitter as a Social Identity Provider

1. To configure Twitter as a social identity provider, log in to the Admin UI and navigate to
Configure > Social ID Providers.

2. Enable the Twitter social identity provider.

In the Twitter Provider pop-up that appears, the values for Callback URL should use the same value
shown in "Set Up Twitter".

3. Include the values that Twitter created for Consumer Key and Consumer Secret, as described in "Set
Up Twitter".

4. Under regular and Advanced Options, if necessary, include the options shown in the following
appendix: "Twitter Social Identity Provider Configuration Details".

When you enable a Twitter social identity provider in the Admin UI, IDM generates the
identityProvider-twitter.json file in your project's conf/ subdirectory.

When you review that file, you should see information beyond what you see in the Admin UI. The
first part of the file includes the name of the provider, endpoints, as well as information from the

https://dev.twitter.com/oauth/overview/single-user
https://dev.twitter.com/oauth/overview/single-user
https://apps.twitter.com/
https://apps.twitter.com/

Social Registration
Configure User Registration to Link to Twitter

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 56

Consumer Key and Consumer Secret, you'll see them as clientId and clientSecret, respectively, in the
configuration file.
{
 "provider" : "twitter",
 "requestTokenEndpoint" : "https://api.twitter.com/oauth/request_token",
 "authorizationEndpoint" : "https://api.twitter.com/oauth/authenticate",
 "tokenEndpoint" : "https://api.twitter.com/oauth/access_token",
 "userInfoEndpoint" : "https://api.twitter.com/1.1/account/verify_credentials.json",
 "clientId" : "<Client_ID_Name>",
 "clientSecret" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "<hashValue>",
 "data" : "<encryptedValue>",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "<encryptedValue>",
 "mac" : "<hashValue>"
 }
 }
 },

You should also see UI settings related to the social identity provider icon (badge) and the sign-in
button, described in "Social Identity Provider Button and Badge Properties".

You'll see links related to the authenticationIdKey, redirectUri, and configClass.

The next part of the file includes schema information, which includes properties for each social identity
account, as collected by IDM, as well as the order in which it appears in the Admin UI. When you've
registered a user with a Twitter social identity, you can verify this by selecting Manage > Twitter,
and then selecting a user.

Another part of the file includes a propertyMap, which maps user information entries between the source
(social identity provider) and the target (IDM).

If you need more information about the properties in this file, refer to the following appendix:
"Twitter Social Identity Provider Configuration Details".

Configure User Registration to Link to Twitter

Once you've configured the Twitter social identity provider, you can activate it through User
Registration. To do so in the Admin UI, select Configure > User Registration, and activate that
feature. Under the Social tab that appears, enable Social Registration. For more information on IDM
user self-service features, see "Self-Service End User UI".

When you enable Social Registration, you're allowing users to register on IDM through all active
social identity providers.

Social Registration
Twitter Social Identity Provider Configuration Details

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 57

Twitter Social Identity Provider Configuration Details

You can set up the Twitter social identity provider through the Admin UI or in a conf/identityProvider-
twitter.json file. IDM generates the identityProvider-twitter.json file when you configure and enable
the Twitter social identity provider in the Admin UI. Alternatively, you can create that file manually.

The following table includes the information shown in the Admin UI Twitter Provider pop-up window,
along with associated information in the identityProvider-twitter.json file.

Twitter Social Identity Provider Configuration Properties

Property (UI) Property (JSON file) Description
Consumer Key clientId The client identifier for your Twitter App
Consumer Secret clientSecret Used with the Client ID to access the applicable

Twitter API
Authorization Endpoint authorizationEndpoint Typically https://api.twitter.com/oauth/authenticate;

known as a Twitter Authorize URL
Access Token Endpoint tokenEndpoint Endpoint that receives a one-time authorization code,

and returns an access token; typically https://api.
twitter.com/oauth/access_token

User Info Endpoint userInfoEndpoint Access for other URIs; typically https://api.twitter.
com/1.1/account/verify_credentials.json

Request Token Endpoint requestTokenEndpoint Endpoint that receives a one-time authorization code,
and returns an access token; typically https://api.
twitter.com/oauth/request_token

Not in the Admin UI provider Name of the social identity provider
Not in the Admin UI authenticationIdKey The user identity property, such as _id
Not in the Admin UI configClass Configuration class for the authentication module
Not in the Admin UI basicAuth Whether to use basic authentication
Not in the Admin UI propertyMap Mapping between Twitter and IDM

For information on social identity provider buttons and badges, see "Social Identity Provider Button
and Badge Properties".

Setting Up Vkontakte as an IDM Social Identity Provider
• "Set Up Vkontakte"

• "Configure a Vkontakte Social Identity Provider"

• "Configure User Registration to Link to Vkontakte"

• "Vkontakte Social Identity Provider Configuration Details"

Social Registration
Set Up Vkontakte

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 58

Note

When you configure a Vkontakte app, look for an Application ID and a Secure Key. IDM uses this information as
a clientId and clientSecret, respectively.

Set Up Vkontakte
To set up Vkontakte as a social identity provider, navigate to the following Vkontakte page:
Vkontakte Developers Page . You'll need a Vkontakte account. Find a My Apps link. You can then
create an application with the following information:

• Title (The name of your app)

• Platform (Choose Website)

• Site Address (The URL of your IDM deployment, such as http://openidm.example.com:8080/

• Base domain (Example: example.com)

• Authorized Redirect URI (Example: http://openidm.example.com:8080/)

• API Version; for the current VKontakte API version, see VK Developers Documentation, API
Versions section. The default VKontakte API version used for IDM 7.1 is 5.73.

If you leave and need to return to Vkontakte, navigate to https://vk.com/dev and select My Apps. You
can then Manage the new apps that you've created.

Navigate to the Settings for your app, where you'll find the Application ID and Secure Key for your
app. You'll use that information as shown here:

• Vkontakte Application ID = IDM Client ID

• Vkontakte Secure Key = IDM Client Secret

Configure a Vkontakte Social Identity Provider
1. To configure a Vkontakte social identity provider, log in to the Admin UI and navigate to

Configure > Social ID Providers.

2. Enable the Vkontakte social identity provider.

In the Vkontakte Provider pop-up that appears, the values for Redirect URI should match the values
that you've entered for Authorized Redirect URI in "Set Up Vkontakte".

3. Include the values that Vkontakte created for Client ID and Client Secret, as described in "Set Up
Vkontakte".

4. Under regular and Advanced Options, include the options shown in the following appendix:
"Vkontakte Social Identity Provider Configuration Details".

https://vk.com/dev
https://vk.com/dev
https://vk.com/dev/versions
https://vk.com/dev/versions

Social Registration
Configure a Vkontakte Social Identity Provider

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 59

When you enable a Vkontakte social identity provider in the Admin UI, IDM generates the
identityProvider-vkontakte.json file in your project's conf/ subdirectory.

When you review that file, you should see information beyond what you see in the Admin UI. The
first part of the file includes the name of the provider, endpoints, as well as information from the
Consumer Key and Consumer Secret, you'll see them as clientId and clientSecret, respectively, in the
configuration file.
{
 "provider" : "vkontakte",
 "configClass" : "org.forgerock.oauth.clients.vk.VKClientConfiguration",
 "basicAuth" : false,
 "clientId" : "<someUUID>",
 "clientSecret" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "<hashValue>",
 "data" : "<encryptedValue>",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "<encryptedValue>",
 "mac" : "<hashValue>"
 }
 }
 },
 "authorizationEndpoint" : "https://oauth.vk.com/authorize",
 "tokenEndpoint" : "https://oauth.vk.com/access_token",
 "userInfoEndpoint" : "https://api.vk.com/method/users.get",
 "redirectUri" : "http://openidm.example.com:8080/",
 "apiVersion" : "5.73",
 "scope" : [
 "email"
],
...

You should also see UI settings related to the social identity provider icon (badge) and the sign-in
button, described in "Social Identity Provider Button and Badge Properties".

You'll see links related to the authenticationIdKey, redirectUri, and configClass; the location may vary.

The file includes schema information, which includes properties for each social identity account, as
collected by IDM, as well as the order in which it appears in the Admin UI. When you've registered a
user with a Vkontakte social identity, you can verify this by selecting Manage > Vkontakte, and then
selecting a user.

Another part of the file includes a propertyMap, which maps user information entries between the source
(social identity provider) and the target (IDM).

If you need more information about the properties in this file, refer to the following appendix:
"Vkontakte Social Identity Provider Configuration Details".

Social Registration
Configure User Registration to Link to Vkontakte

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 60

Configure User Registration to Link to Vkontakte

Once you've configured the Vkontakte social identity provider, you can activate it through User
Registration. To do so in the Admin UI, select Configure > User Registration, and activate that
feature. Under the Social tab that appears, enable Social Registration. For more information on IDM
user self-service features, see "Self-Service End User UI".

When you enable Social Registration, you're allowing users to register on IDM through all active
social identity providers.

Vkontakte Social Identity Provider Configuration Details

You can set up the Vkontakte social identity provider through the Admin UI or in a conf/
identityProvider-vkontakte.json file. IDM generates the identityProvider-vkontakte.json file when you
configure and enable this social identity provider in the Admin UI. Alternatively, you can create the
file manually.

The following table includes the information shown in the Admin UI Vkontakte Provider pop-up
window, along with associated information in the identityProvider-vkontakte.json file:

Vkontakte Social Identity Provider Configuration Properties

Property (UI) Property (JSON file) Description
Application ID clientId The client identifier for your Vkontakte App
Secure Key clientSecret Used with the Client ID to access the applicable

Vkontakte API
Scope scope An array of strings that allows access to user data.
Authorization Endpoint authorizationEndpoint Typically https://oauth.vk.com/authorize.
Token Endpoint tokenEndpoint Endpoint that receives a one-time authorization code,

and returns an access token; typically "https://oauth.
vk.com/access_token

User Info Endpoint userInfoEndpoint Endpoint that transmits scope-related fields; typically
https://api.vk.com/method/users.get

API Version apiVersion Version of the applicable VKontakte API, available
from VK Developers Documentation, API Versions
section. The default VKontakte API version used for
IDM 7.1 is 5.73.

Not in the Admin UI provider Name of the social identity provider
Not in the Admin UI configClass Configuration class for the authentication module
Not in the Admin UI basicAuth Whether to use basic authentication
Not in the Admin UI authenticationIdKey The user identity property, such as id
Not in the Admin UI propertyMap Mapping between Vkontakte and IDM

https://vk.com/dev/versions

Social Registration
WeChat Social Identity Provider

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 61

For information on social identity provider buttons and badges, see "Social Identity Provider Button
and Badge Properties".

WeChat Social Identity Provider
• "Set Up WeChat"

• "Configure a WeChat Social Identity Provider"

• "Configure User Registration to Link to WeChat"

• "WeChat Social Identity Provider Configuration Details"

These requirements assume that you have a WeChat developer account where you can get access
to create WeChat web application credentials. To verify access, you'll need the WeChat app on your
mobile phone.

Set Up WeChat

To set up WeChat as a social identity provider, you'll need to get the following information for your
WeChat app. The name may be different in WeChat.

• Client ID (WeChat uses appid as of this writing.)

• Client Secret (WeChat uses secret as of this writing.)

• Scope

• Authorization Endpoint URL

• Token Endpoint URL

• User Info Endpoint URL

• Redirect URI, normally something like http://openidm.example.com/

WeChat Unique Requirements

Before testing WeChat, be prepared for the following special requirements:

• WeChat works only if you deploy IDM on one of the following ports: 80 or 443.

For more information on how to configure IDM to use these ports, see "Host and Port Information" in the
Installation Guide.

• For registration and sign-in, WeChat requires the use of a mobile device with a Quick Response (QR) code
reader.

Social Registration
Configure a WeChat Social Identity Provider

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 62

• For sign-in, you'll also need to install the WeChat app on your mobile device.

Configure a WeChat Social Identity Provider
1. To configure a WeChat social identity provider, log in to the Admin UI and navigate to Configure

> Social ID Providers.

2. Enable the WeChat social identity provider.

In the WeChat Provider pop-up that appears, the values for Redirect URI should match the values that
you've entered for Allowed Return URLs in "Set Up WeChat".

3. Include the values that WeChat created for Client ID and Client Secret, as described in "Set Up
WeChat".

4. Under regular and Advanced Options, include the options shown in the following appendix: "WeChat
Social Identity Provider Configuration Details".

When you enable a WeChat social identity provider in the Admin UI, IDM generates the
identityProvider-wechat.json file in your project's conf/ subdirectory.

When you review that file, you should see information from what you configured in the Admin UI, and
beyond. The first part of the file includes the name of the provider, endpoints, scopes, as well as the
values for clientId and clientSecret.
{
 "provider" : "wechat",
 ...
 "clientId" : "<someUUID>",
 "clientSecret" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "<hashValue>",
 "data" : "<encryptedValue>",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "<encryptedValue>",
 "mac" : "<hashValue>"
 }
 }
 },
 "authorizationEndpoint" : "https://open.weixin.qq.com/connect/qrconnect",
 "tokenEndpoint" : "https://api.wechat.com/sns/oauth2/access_token",
 "refreshTokenEndpoint" : "https://api.wechat.com/sns/oauth2/refresh_token",
 "userInfoEndpoint" : "https://api.wechat.com/sns/userinfo",
 "redirectUri" : "http://openidm.example.com:8080/",
 "scope" : [
 "snsapi_login"
],
...

Social Registration
Configure User Registration to Link to WeChat

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 63

You should also see UI settings related to the social identity provider icon (badge) and the sign-in
button, described in "Social Identity Provider Button and Badge Properties".

You'll see links related to the authenticationIdKey, redirectUri, and configClass; the location may vary.

The file includes schema information, which includes properties for each social identity account, as
collected by IDM, as well as the order in which it appears in the Admin UI. When you've registered
a user with a WeChat social identity, you can verify this by selecting Manage > WeChat, and then
selecting a user.

Another part of the file includes a propertyMap, which maps user information entries between the source
(social identity provider) and the target (IDM).

If you need more information about the properties in this file, refer to the following appendix:
"WeChat Social Identity Provider Configuration Details".

Configure User Registration to Link to WeChat

Once you've configured the WeChat social identity provider, you can activate it through User
Registration. To do so in the Admin UI, select Configure > User Registration, and activate that
feature. Under the Social tab that appears, enable Social Registration. For more information on IDM
user self-service features, see "Self-Service End User UI".

When you enable Social Registration, you're allowing users to register on IDM through all active
social identity providers.

WeChat Social Identity Provider Configuration Details

You can set up the WeChat social identity provider through the Admin UI or in a conf/identityProvider-
wechat.json file. IDM generates the identityProvider-wechat.json file when you configure and enable this
social identity provider in the Admin UI. Alternatively, you can create the file manually.

The following table includes the information shown in the Admin UI WeChat Provider pop-up window,
along with associated information in the identityProvider-wechat.json file.

Note

WeChat supports URLs on one of the following ports: 80 or 443. For more information on how to configure IDM
to use these ports, see "Host and Port Information" in the Installation Guide.

WeChat Social Identity Provider Configuration Properties

Property (UI) Property (JSON file) Description
Client ID clientId The client identifier for your WeChat App
Client Secret clientSecret Used with the Client ID to access the applicable

WeChat API

Social Registration
WordPress Social Identity Provider

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 64

Property (UI) Property (JSON file) Description
Scope scope An array of strings that allows access to user data
Authorization Endpoint authorizationEndpoint Typically https://open.weixin.qq.com/connect/

qrconnect.
Token Endpoint tokenEndpoint Endpoint that receives a one-time authorization code,

and returns an access token; typically https://api.
wechat.com/sns/oauth2/access_token

Refresh Token Endpoint refreshTokenEndpoint Endpoint that receives a one-time authorization code,
and returns a refresh token; typically https://api.
wechat.com/sns/oauth2/refresh_token

User Info Endpoint userInfoEndpoint Endpoint that transmits scope-related fields; typically
https://api.wechat.com/user/profile

Not in the Admin UI provider Name of the social identity provider
Not in the Admin UI configClass Configuration class for the authentication module
Not in the Admin UI basicAuth Whether to use basic authentication
Not in the Admin UI propertyMap Mapping between WeChat and IDM

For information on social identity provider buttons and badges, see "Social Identity Provider Button
and Badge Properties".

WordPress Social Identity Provider
• "Set Up WordPress"

• "Configure a WordPress Social Identity Provider"

• "Configure User Registration to Link to WordPress"

• "WordPress Social Identity Provider Configuration Details"

Set Up WordPress
To set up WordPress as a social identity provider, navigate to the following WordPress Developers
page: Developer Resources . You'll need a WordPress account. You can then navigate to the
WordPress My Applications page, where you can create a new web application, with the following
information:

• Name

• Description

• Website URL, which becomes your Application URL

• Redirect URL(s); for IDM, normally http://openidm.example.com:8080/

https://developer.wordpress.com/
https://developer.wordpress.com/apps/

Social Registration
Configure a WordPress Social Identity Provider

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 65

• Type, which allows you to select Web clients

When complete and saved, you should see a list of OAuth Information for your new web application.
That information should include your Client ID and Client Secret.

Configure a WordPress Social Identity Provider
1. To configure a WordPress social identity provider, log in to the Admin UI and navigate to

Configure > Social ID Providers.

2. Enable the WordPress social identity provider.

In the WordPress Provider pop-up that appears, the values for Redirect URI should match the values
that you've entered for Allowed Return URLs in "Set Up WordPress".

3. Include the values that WordPress created for Client ID and Client Secret, as described in "Set Up
WordPress".

4. Under regular and Advanced Options, include the options shown in the following appendix:
"WordPress Social Identity Provider Configuration Details".

When you enable a WordPress social identity provider in the Admin UI, IDM generates the
identityProvider-wordpress.json file in your project's conf/ subdirectory.

When you review that file, you should see information beyond what you see in the Admin UI. The first
part of the file includes the name of the provider, endpoints, as well as the values for clientId and
clientSecret.
{
 "provider" : "wordpress",
 "authorizationEndpoint" : "https://public-api.wordpress.com/oauth2/authorize",
 "tokenEndpoint" : "https://public-api.wordpress.com/oauth2/token",
 "userInfoEndpoint" : "https://public-api.wordpress.com/rest/v1.1/me/",
 "enabled" : true,
 "clientId" : "<someUUID>",
 "clientSecret" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "<hashValue>",
 "data" : "<encryptedValue>",
 "keySize" : 16,
 "purpose" : "idm.config.encryption",
 "iv" : "<encryptedValue>",
 "mac" : "<hashValue>"
 }
 }
 },
 "scope" : [
 "auth"
],
...

Social Registration
Configure User Registration to Link to WordPress

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 66

You should also see UI settings related to the social identity provider icon (badge) and the sign-in
button, described in "Social Identity Provider Button and Badge Properties".

You'll see links related to the authenticationIdKey, redirectUri, and configClass; the location may vary.

The file includes schema information, which includes properties for each social identity account, as
collected by IDM, as well as the order in which it appears in the Admin UI. When you've registered a
user with a Wordpress social identity, you can verify this by selecting Manage > Wordpress, and then
selecting a user.

Another part of the file includes a propertyMap, which maps user information entries between the source
(social identity provider) and the target (IDM).

If you need more information about the properties in this file, refer to the following appendix:
"WordPress Social Identity Provider Configuration Details".

Configure User Registration to Link to WordPress

Once you've configured the WordPress social identity provider, you can activate it through User
Registration. To do so in the Admin UI, select Configure > User Registration, and activate that
feature. Under the Social tab that appears, enable Social Registration. For more information on IDM
user self-service features, see "Self-Service End User UI".

When you enable Social Registration, you're allowing users to register on IDM through all active
social identity providers.

WordPress Social Identity Provider Configuration Details

You can set up the WordPress social identity provider through the Admin UI or in a conf/
identityProvider-wordpress.json file. IDM generates the identityProvider-wordpress.json file when you
configure and enable this social identity provider in the Admin UI. Alternatively, you can create the
file manually.

The following table includes the information shown in the Admin UI WordPress Provider pop-up
window, along with associated information in the identityProvider-wordpress.json file:

WordPress Social Identity Provider Configuration Properties

Property (UI) Property (JSON file) Description
Client ID clientId The client identifier for your WordPress App
Client Secret clientSecret Used with the Client ID to access the applicable

WordPress API
Scope scope An array of strings that allows access to user

data; see WordPress's OAuth2 Authentication
Documentation.

https://developer.wordpress.com/docs/oauth2/

Social Registration
Yahoo Social Identity Provider

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 67

Property (UI) Property (JSON file) Description
Authorization Endpoint authorizationEndpoint Typically https://public-api.wordpress.com/oauth2/

authorize; known as a WordPress Authorize URL.
Token Endpoint tokenEndpoint Endpoint that receives a one-time authorization

code, and returns an access token; typically https://
public-api.wordpress.com/oauth2/token; known as a
WordPress Request Token URL.

User Info Endpoint userInfoEndpoint Endpoint that transmits scope-related fields; typically
https://public-api.wordpress.com/rest/v1.1/me/

Not in the Admin UI name Name of the social identity provider
Not in the Admin UI type Authentication module
Not in the Admin UI authenticationId Authentication identifier, as returned from the User

Info Endpoint for each social identity provider
Not in the Admin UI propertyMap Mapping between WordPress and IDM

For information on social identity provider buttons and badges, see "Social Identity Provider Button
and Badge Properties".

Yahoo Social Identity Provider
• "Set Up Yahoo"

• "Configure Yahoo as a Social Identity Provider"

• "Configure User Registration to Link to Yahoo"

• "Yahoo Social Identity Provider Configuration Details"

Set Up Yahoo

To set up Yahoo as a social identity provider, navigate to the following page: Yahoo OAuth 2.0 Guide
. You'll need a Yahoo account. You can then navigate to the Create an App page, where you can
follow the Yahoo process to create a new web application with the following information:

• Application Name

• Web Application

• Callback Domain, such as openidm.example.com; required for IDM

• API Permissions; for whatever you select, choose Read/Write. IDM only reads Yahoo user
information.

When complete and saved, you should see a Client ID and Client Secret for your new web app.

https://developer.yahoo.com/oauth2/guide/
https://developer.yahoo.com/apps/

Social Registration
Configure Yahoo as a Social Identity Provider

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 68

Note

Yahoo supports URLs using only HTTPS, only on port 443. For more information on how to configure IDM to
use these ports, see "Host and Port Information" in the Installation Guide.

Configure Yahoo as a Social Identity Provider
1. To configure Yahoo as a social identity provider, log in to the Admin UI and navigate to Configure

> Social ID Providers.

2. Enable the Yahoo social identity provider.

In the Yahoo Provider pop-up that appears, the values for Redirect URI should use the same Callback
Domain as shown in "Set Up Yahoo".

3. Include the values that Yahoo created for Client ID and Client Secret, as described in "Set Up
Yahoo".

4. Click Show Advanced Options, and enter information, as necessary. A complete list of options is
available here: "Yahoo Social Identity Provider Configuration Details".

When you enable a Yahoo social identity provider in the Admin UI, IDM generates the
identityProvider-yahoo.json file in your project's conf/ subdirectory.

When you review that file, you should see information beyond what you see in the Admin UI. The
first part of the file includes the name of the provider, the scope, and UI settings related to the social
identity provider icon (badge) and the sign-in button. For more information on the icon and button,
see "Social Identity Provider Button and Badge Properties".
{
 "provider" : "yahoo",
 "scope" : [
 "openid",
 "sdpp-w"
],
 "uiConfig" : {
 "iconBackground" : "#7B0099",
 "iconClass" : "fa-yahoo",
 "iconFontColor" : "white",
 "buttonClass" : "fa-yahoo",
 "buttonDisplayName" : "Yahoo",
 "buttonCustomStyle" : "background-color: #7B0099; border-color: #7B0099; color:white;",
 "buttonCustomStyleHover" : "background-color: #7B0099; border-color: #7B0099; color:white;"
 },

Another part of the file includes a propertyMap, which maps user information entries between the source
(social identity provider) and the target (IDM).

The next part of the file includes schema information, which includes properties for each social identity
account, as collected by IDM, as well as the order in which it appears in the Admin UI. When you've
registered a user with a Yahoo social identity, you can verify this by selecting Manage > Yahoo, and
then selecting a user.

Social Registration
Configure User Registration to Link to Yahoo

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 69

Next, there's the part of the file that you may have configured through the Admin UI, plus additional
information on the redirectUri, the configClass, and the authenticationIdKey:

 "authorizationEndpoint" : "https://api.login.yahoo.com/oauth2/request_auth",
 "tokenEndpoint" : "https://api.login.yahoo.com/oauth2/get_token",
 "wellKnownEndpoint" : "https://api.login.yahoo.com/.well-known/openid-configuration",
 "issuer" : "https://api.login.yahoo.com",
 "clientId" : "<Client_ID_Name>",
 "clientSecret" : {encrypted-client-secret},
 "authenticationIdKey" : "sub",
 "redirectUri" : "https://openidm.example.com/",
 "basicAuth" : false,
 "configClass" : "org.forgerock.oauth.clients.oidc.OpenIDConnectClientConfiguration",
 "enabled" : true

If you need more information about the properties in this file, refer to the following appendix: "Yahoo
Social Identity Provider Configuration Details".

Configure User Registration to Link to Yahoo
Once you've configured the Yahoo social identity provider, you can activate it through User
Registration. To do so in the Admin UI, select Configure > User Registration, and activate that
feature. Under the Social tab that appears, enable Social Registration. For more information on IDM
user self-service features, see "Self-Service End User UI".

When you enable Social Registration, you're allowing users to register on IDM through all active
social identity providers.

Yahoo Social Identity Provider Configuration Details
You can set up the Yahoo social identity provider through the Admin UI or in a conf/identityProvider-
yahoo.json file. IDM generates the identityProvider-yahoo.json file when you configure and enable this
social identity provider in the Admin UI. Alternatively, you can create the file manually.

The following table includes the information shown in the Admin UI Yahoo Provider pop-up window,
along with associated information in the identityProvider-yahoo.json file.

Note

Yahoo supports URLs using only HTTPS, only on port 443. For more information on how to configure IDM to
use these ports, see "Host and Port Information" in the Installation Guide.

Yahoo Social Identity Provider Configuration Properties

Property (UI) Property (JSON file) Description
Client ID clientId The client identifier for your Yahoo App.
Client Secret clientSecret Used with the Client ID to access the applicable

Yahoo API.

Social Registration
Custom Social Identity Provider

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 70

Property (UI) Property (JSON file) Description
Scope scope An array of strings that allows access to user data.
Authorization Endpoint authorizationEndpoint Typically, https://api.login.yahoo.com/oauth2/

request_auth; known as a Yahoo Authorize URL.
Token Endpoint tokenEndpoint Endpoint that receives a one-time authorization code,

and returns an access token. Typically, https://api.
login.yahoo.com/oauth2/get_token.

Well-Known Endpoint wellKnownEndpoint Access for other URIs. Typically, https://login.yahoo.
com/.well-known/openid-configuration.

Issuer issuer The token issuer. Typically, https://api.login.yahoo.
com.

Not in the Admin UI provider Name of the social identity provider.
Not in the Admin UI configClass Configuration class for the authentication module.
Not in the Admin UI basicAuth Whether to use basic authentication.
Not in the Admin UI propertyMap Mapping between Yahoo and IDM.

For information on social identity provider buttons and badges, see "Social Identity Provider Button
and Badge Properties".

Custom Social Identity Provider
As suggested in the introduction to this chapter, you'll need to take four basic steps to configure a
custom social identity provider:

• "Prepare IDM"

• "Set Up a Custom Social Identity Provider"

• "Configure a Custom Social Identity Provider"

• "Configure User Registration to Link to a Custom Provider"

• "Custom Social Identity Provider Configuration Details"

Note

These instructions require the social identity provider to be fully compliant with The OAuth 2.0 Authorization
Framework or the OpenID Connect standards.

Prepare IDM

While IDM includes provisions to work with OpenID Connect 1.0 and OAuth 2.0 social identity
providers, connections to those providers are not supported, other than those specifically listed in

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749
http://openid.net/connect/

Social Registration
Prepare IDM

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 71

this chapter. If you haven't already, copy /path/to/openidm/samples/example-configurations/self-service/
identityProviders.json to your project's conf/ directory.

To set up another social provider, first add a code block to conf/identityProviders.json:

+ Example Code Block

{
 "provider" : "<providerName>",
 "authorizationEndpoint" : "",
 "tokenEndpoint" : "",
 "userInfoEndpoint" : "",
 "wellKnownEndpoint" : "",
 "clientId" : "",
 "clientSecret" : "",
 "uiConfig" : {
 "iconBackground" : "",
 "iconClass" : "",
 "iconFontColor" : "",
 "buttonImage" : "",
 "buttonClass" : "",
 "buttonCustomStyle" : "",
 "buttonCustomStyleHover" : "",
 "buttonDisplayName" : ""
 },
 "scope" : [],
 "authenticationIdKey" : "",
 "schema" : {
 "id" : "urn:jsonschema:org:forgerock:openidm:identityProviders:api:<providerName>",
 "viewable" : true,
 "type" : "object",
 "$schema" : "http://json-schema.org/draft-03/schema",
 "properties" : {
 "id" : {
 "title" : "ID",
 "viewable" : true,
 "type" : "string",
 "searchable" : true
 },
 "name" : {
 "title" : "Name",
 "viewable" : true,
 "type" : "string",
 "searchable" : true
 },
 "first_name" : {
 "title" : "First Name",
 "viewable" : true,
 "type" : "string",
 "searchable" : true
 },
 "last_name" : {
 "title" : "Last Name",
 "viewable" : true,
 "type" : "string",
 "searchable" : true
 },

Social Registration
Prepare IDM

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 72

 "email" : {
 "title" : "Email Address",
 "viewable" : true,
 "type" : "string",
 "searchable" : true
 },
 "locale" : {
 "title" : "Locale Code",
 "viewable" : true,
 "type" : "string",
 "searchable" : true
 }
 },
 "order" : [
 "id",
 "name",
 "first_name",
 "last_name",
 "email",
 "locale"
],
 "required" : []
 },
 "propertyMap" : [
 {
 "source" : "id",
 "target" : "id"
 },
 {
 "source" : "name",
 "target" : "displayName"
 },
 {
 "source" : "first_name",
 "target" : "givenName"
 },
 {
 "source" : "last_name",
 "target" : "familyName"
 },
 {
 "source" : "email",
 "target" : "email"
 },
 {
 "source" : "email",
 "target" : "username"
 },
 {
 "source" : "locale",
 "target" : "locale"
 }
],
 "redirectUri" : "http://openidm.example.com:8080/",
 "configClass" : "org.forgerock.oauth.clients.oidc.OpenIDConnectClientConfiguration",
 "basicAuth" : false,
 "enabled" : true

Social Registration
Set Up a Custom Social Identity Provider

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 73

},

Modify this code block for your selected social provider. Some of these properties may appear under
other names. For example, some providers specify an App ID that you'd include as a clientId.

Additional changes may be required, especially depending on how the provider implements the
OAuth2 or OpenID Connect standards.

In the propertyMap code block, you should substitute the properties from the selected social
identity provider for various values of source. Make sure to trace the property mapping through
selfservice.propertymap.json to the Managed User property shown in managed.json. For more information
on this multi-step mapping, see "Many Social Identity Providers, One Schema".

As shown in "OpenID Connect Authorization Code Flow", user provisioning information goes through
the User Info Endpoint. Some providers, such as LinkedIn and Facebook, may require a list of
properties with the endpoint. Consult the documentation for your provider for details.

For more information on the uiConfig code block, see "Social Identity Provider Button and Badge
Properties".

Both files, identityProviders.json and identityProvider-custom.json, should include the same information
for the new custom identity provider. For property details, see "Custom Social Identity Provider
Configuration Details".

Once you've included information from your selected social identity provider, proceed with the
configuration process. You'll use the same basic steps described for other specified social providers.

Set Up a Custom Social Identity Provider
Every social identity provider should be able to provide the information you need to specify
properties in the code block shown in "Prepare IDM".

In general, you'll need an authorizationEndpoint, a tokenEndpoint and a userInfoEndpoint. To link to the
custom provider, you'll also have to copy the clientId and clientSecret that you created with that
provider. In some cases, you'll get this information in a slightly different format, such as an App ID and
App Secret.

For the propertyMap, check the source properties. You may need to revise these properties to match
those available from your custom provider.

For examples, refer to the specific social identity providers documented in this chapter.

Configure a Custom Social Identity Provider
1. To configure a custom social identity provider, log in to the Admin UI and navigate to Configure >

Social ID Providers.

2. Enable the custom social identity provider. The name you see is based on the name property in the
relevant code block in the identityProviders.json file.

Social Registration
Configure User Registration to Link to a Custom Provider

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 74

3. If you haven't already done so, include the values provided by your social identity provider for
the properties shown. For more information, see the following appendix: "Custom Social Identity
Provider Configuration Details".

Configure User Registration to Link to a Custom Provider
Once you've configured a custom social identity provider, you can activate it through User
Registration. To do so in the Admin UI, select Configure > User Registration, and under the Social
tab, enable the option associated with Social Registration. For more information about user self-
service features, see "Admin UI" in the Setup Guide.

When you enable social identity providers, you're allowing users to register on IDM through all active
social identity providers.

Custom Social Identity Provider Configuration Details
When you set up a custom social identity provider, starting with "Prepare IDM", you'll see
configuration details in your conf/identityProviders.json file. The following table includes the
information shown in the relevant Admin UI pop-up window.

IDM generates the content of identityProvider-custom.json after you configure and enable the custom
social identity provider using the Admin UI. Before you can activate this feature in the Admin UI,
copy /path/to/openidm/samples/example-configurations/self-service/identityProviders.json to your project's
conf/ directory. You can also manually create this file.

Custom Social Identity Provider Configuration Properties

Property (UI) Property (JSON file) Description
Client ID clientId The client identifier for your social identity provider
Client Secret clientSecret Used with the Client ID
Scope scope An array of strings that allows access to user data;

varies by provider.
Authorization Endpoint authorizationEndpoint Every social identity provider should have an

authorization endpoint to authenticate end users.
Token Endpoint tokenEndpoint Endpoint that receives a one-time authorization code,

and returns an access token.
User Info Endpoint userInfoEndpoint Endpoint that transmits scope-related fields.
Not in the Admin UI name Name of the social identity provider
Not in the Admin UI type Authentication module
Not in the Admin UI authenticationId Authentication identifier, as returned from the User

Info Endpoint for each social identity provider
Not in the Admin UI propertyMap Mapping between the social identity provider and

IDM

Social Registration
Configure the Social Providers Authentication Module

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 75

For information on social identity provider buttons and badges, see "Social Identity Provider Button
and Badge Properties".

Configure the Social Providers Authentication Module
The SOCIAL_PROVIDERS authentication module incorporates the requirements from social identity
providers who rely on either the OAuth2 or OpenID Connect standards. The Social Providers
authentication module is enabled by default. To configure or disable this module in the Admin UI,
select Configure > Authentication, choose the Modules tab, then select Social Providers from the list
of modules.

Authentication settings can be configured from the Admin UI, or by making changes directly in
the authentication.json file for your project. IDM includes the following code block in the default
authentication.json file:
{
 "name" : "SOCIAL_PROVIDERS",
 "properties" : {
 "defaultUserRoles" : [
 "internal/role/openidm-authorized"
],
 "augmentSecurityContext" : {
 "type" : "text/javascript",
 "globals" : { },
 "file" : "auth/populateAsManagedUserFromRelationship.js"
 },
 "propertyMapping" : {
 "userRoles" : "authzRoles"
 }
 },
 "enabled" : true
}

The authentication properties are described in detail in "Authentication and Session Module
Configuration" in the Authentication and Authorization Guide.

Account Claiming: Links Between Accounts and Social Identity
Providers
If your users have one or more social identity providers, they can link them to the same IDM user
account. This section assumes that you have configured one or more of the social identity providers
described in "Social Registration".

Conversely, you should not be able to link more than one IDM account with a single social identity
provider account.

When social accounts are associated with an IDM account, IDM creates a managed record, which
uses the name of the social identity provider name as the managed object type, and the subject

Social Registration
When the Email Address is New

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 76

is used as the _id. This combination has a unique constraint; if you try to associate a second IDM
account with the same social account, IDM detects a conflict, which prevents the association.

The default process uses the email address associated with the account. Once you've configured
social identity providers, you can see this filter in the selfservice-socialUserClaim.json file:
{
 "name" : "socialUserClaim",
 "identityServiceUrl" : "managed/user",
 "claimQueryFilter" : "/mail eq \"{{mail}}\""
},

You can modify the claimQueryFilter to a different property such as telephoneNumber. Make sure that
property is:

• Set to "required" in the managed.json file; the default list for managed users is shown here:
"required" : [
 "userName",
 "givenName",
 "sn",
 "mail"
]

• Unique; for example, if multiple users have the same telephone number, IDM responds with error
messages shown in "When Multiple Users have the Same Email Address".

Based on the claimQueryFilter, what IDM does depends on the following scenarios:

• "When the Email Address is New"

• "When One User has the Same Email Address"

• "When Multiple Users have the Same Email Address"

When the Email Address is New

When you register with a social identity provider, IDM checks the email address of that account
against the managed user data store.

If that email address doesn't exist for any IDM managed user, IDM takes available identifying
information, and pre-populates the self-registration screen. If all required information is included,
IDM proceeds to other screens, depending on what you've activated in this section: "Additional
Configuration".

When One User has the Same Email Address

When you register with a social identity provider, IDM checks the email address of that account
against the managed user data store.

Social Registration
When Multiple Users have the Same Email Address

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 77

If that email address exists for one IDM managed user, IDM gives you a chance to link to that
account, with the following message:
We found an existing account with the same email address
<substitute email address>. To continue, please enter your password to
link accounts.

In the text box, users are expected to enter their IDM account password.

When Multiple Users have the Same Email Address
When you register with a social identity provider, IDM checks the email address of that account
against the managed user data store.

If that email address exists for multiple IDM managed users, IDM denies the login attempt, with the
following error message:
Unable to authenticate using login provider

IDM denies further attempts to login with that account with the following message:
Forbidden request error

For information about customizing the End User UI, see the Github repository: ForgeRock/end-user-
ui.

The Process for End Users
When your users register with a social identity provider, as defined in "Social Registration", they
create an account in the IDM managed user data store. As an end user, you can link additional social
identity providers to that data store, from the End User UI, using the following steps:

1. Navigate to the End User UI, at an URL such as http://IDM.example.com:8080.

2. Log in to the account, either as an IDM user, or with a social identity provider.

3. Navigate to Profile () > Social Sign-in. You should see a list of configured social identity
providers.

4. Connect to the social identity providers of your choice. Unless you've already signed in with that
social provider, you should be prompted to log in to that provider.

5. To test the result, log out and log back in, using the link for the newly linked social identity
provider.

Reviewing Linked Accounts as an Administrator
You can review social identity accounts linked to an IDM account, from the Admin UI and from the
command line. You can disable or delete social identity provider information for a specific user from
the command line, as described in "Reviewing Linked Accounts Over REST".

https://github.com/ForgeRock/end-user-ui
https://github.com/ForgeRock/end-user-ui

Social Registration
Reviewing Linked Accounts as an Administrator

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 78

When you activate a social identity provider, IDM creates a new managed object for that provider.
You can review that managed object in the managed.json file, as well as in the Admin UI, by selecting
Configure > Managed Objects.

The information shown is reflected in the schema in the identityProvider-providername.json file for the
selected provider.

Note

Do not edit social identity provider profile information through IDM. Any changes that you make won't be
synchronized with that provider.

Reviewing Linked Accounts Over REST

To identify linked social identity provider accounts for a user, you must specifically add the idps
field to your user query. For example, the following query shows bjensen's linked social identity
information:
curl \
 --header "X-OpenIDM-Username:openidm-admin" \
 --header "X-OpenIDM-Password:openidm-admin" \
 --header "Accept-API-Version: resource=1.0" \
 --request GET \
 "http://localhost:8080/openidm/managed/user?_queryFilter=userName+eq+'bjensen'&_fields=idps"
{
 "result": [
 {
 "_id": "bjensen",
 "_rev": "000000003062291c",
 "idps": [
 {
 "_ref": "managed/google/108246554379618660085",
 "_refResourceCollection": "managed/google",
 "_refResourceId": "108246554379618660085",
 "_refProperties": {
 "_id": "ba01a4c3-8a7f-468b-8b09-95f5d34f05ea",
 "_rev": "0000000098619792"
 }
 }
]
 }
],
 ...
}

For more information about a specific social identity provider, query the identity relationship using
the referred resource ID. The following example shows the information collected from the Google
provider for bjensen:

Social Registration
Reviewing Linked Accounts as an Administrator

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 79

curl \
 --header "X-OpenIDM-Username:openidm-admin" \
 --header "X-OpenIDM-Password:openidm-admin" \
 --header "Accept-API-Version: resource=1.0" \
 --request GET \
 "http://localhost:8080/openidm/managed/google/108246554379618660085"
{
 "_id": "108246554379618660085",
 "_rev": "00000000e5cace4d",
 "sub": "108246554379618660085",
 "name": "Barbara Jensen",
 "given_name": "Barbara",
 "family_name": "Jensen",
 "picture": "https://lh3.googleusercontent.com/-XdUIqdMkCWA/AAAAAAAAAAI/AAAAAAAAAAA/4252rscbv5M/
photo.jpg",
 "email": "babs.jensen@gmail.com",
 "email_verified": true,
 "locale": "en",
 "_meta": {
 "subject": "108246554379618660085",
 "scope": [
 "openid",
 "profile",
 "email"
],
 "dateCollected": "2018-03-08T02:07:27.882"
 }
}

When a user disables logins through one specific social identity provider in the End User UI, that
sets "enabled" : false in the data for that provider. However, that user's social identity information is
preserved.

Alternatively, you can use a REST call to disable logins to a specific social identity provider. The
following REST call removes a user's ability to log in through Google:
curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Accept-API-Version: resource=1.0" \
 --header "Content-type: application/json" \
 --request POST \
 "http://localhost:8080/openidm/managed/user/9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb?
_action=unbind&provider=google"

In this case, the REST call deletes all Google social identity provider information for that user.

Reviewing Linked Accounts From the Admin UI

When you configure a social identity provider, IDM includes two features in the Admin UI.

• The ability to review the social identity accounts linked to specific users. To see how this works, log
in to the Admin UI, and select Manage > User, and select a user. Under the Identity Providers tab,
you can review the social identity providers associated with a specific account.

Social Registration
Manage Social Identity Providers Over REST

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 80

• A managed object for each provider. For example, if you've enabled Google as a social identity
provider, select Manage > Google. In the screen that appears, you can select the ID for any Google
social identity account that has been used or linked to an existing IDM account, and review the
profile information shared from that provider.

Manage Social Identity Providers Over REST
You can identify the current status of configured social identity providers with the following REST
call:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
http://localhost:8080/openidm/authentication

The output that you see includes JSON information from each configured social identity provider, as
described in the identityProvider-provider file in your project's conf/ subdirectory.

One key line from this output specifies whether the social identity provider is enabled:
"enabled" : true

If the SOCIAL_PROVIDERS authentication module is disabled, you'll see the following output from that
REST call:
{
 "providers" : []
}

For more information, see "Configure the Social Providers Authentication Module".

If the SOCIAL_PROVIDERS module is disabled, you can still review the standard configuration of each
social provider (enabled or not) by running the same REST call on a different endpoint (do not forget
the s at the end of identityProviders):
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
http://localhost:8080/openidm/identityProviders

Note

If you have not configured a social identity provider, you'll see the following output from the REST call on the
openidm/identityProviders endpoint:

Social Registration
Manage Social Identity Providers Over REST

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 81

{
 "providers" : []
}

You can still get information about the available configuration for social identity providers on a
slightly different endpoint:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
http://localhost:8080/openidm/config/identityProviders

The config in the endpoint refers to the configuration, starting with the identityProviders.json
configuration file. Note how it matches the corresponding term in the endpoint.

You can review information for a specific provider by including the name with the endpoint. For
example, if you've configured LinkedIn as described in "LinkedIn Social Identity Provider", run the
following command:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
http://localhost:8080/openidm/config/identityProvider/linkedIn

The above command differs in subtle ways. The config in the endpoint points to configuration
data. The identityProvider at the end of the endpoint is singular, which matches the corresponding
configuration file, identityProvider-linkedIn.json. And linkedIn includes a capital I in the middle of the
word.

In a similar fashion, you can delete a specific provider:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
http://localhost:8080/openidm/config/identityProvider/linkedIn

If you have the information needed to set up a provider, such as the output from the previous two
REST calls, you can use the following command to add a provider:
curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Accept-API-Version: resource=1.0" \
 --header "Content-type: application/json" \
 --request PUT \
--data '{
 <Include content from an identityProvider-linkedIn.json file>
}' \
http://localhost:8080/openidm/config/identityProvider/linkedIn

Social Registration
Test Social Identity Providers

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 82

IDM incorporates the given information in a file named for the provider, in this case, identityProvider-
linkedIn.json.

You can even disable a social identity provider with a PATCH REST call, as shown:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-type: application/json" \
--request PATCH \
--data '[
 {
 "operation":"replace",
 "field" : "enabled",
 "value" : false
 }
]' \
http://localhost:8080/openidm/config/identityProvider/linkedIn

You can reverse the process by substituting true for false in the previous PATCH REST call.

You can manage the social identity providers associated with individual users over REST, as
described in "Manage Social Identity Providers Over REST".

Test Social Identity Providers
In all cases, once configuration is complete, you should test the social identity provider. To do so, go
through the steps in the following procedure:

1. Navigate to the login screen for the End User UI, https://openidm.example.com:8443.

2. Select the Register link (after the "Don't have an account?" question) on the login page.

3. You should see a link to sign in with your selected social identity provider. Select that link.

Note

If you do not see a link to sign in with any social identity provider, you probably did not enable the option
associated with Social Registration. To make sure, access the Admin UI, and select Configure > User
Registration.

Warning

If you see a redirect URI error from a social identity provider, check the configuration for your web
application in the social identity provider developer console. There may be a mistake in the redirect URI or
redirect URL.

4. Follow the prompts from your social identity provider to log in to your account.

Social Registration
Scenarios When Registering With a Social ID

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 83

Note

If there is a problem with the interface to the social identity provider, you might see a Register Your
Account screen with information acquired from that provider.

5. Because security questions are enabled by default, you must add at least one security question
and answer to proceed. For more information, see "Configure Security Questions".

When the Social ID registration process is complete, you are redirected to the End User UI at
https://openidm.example.com:8443.

6. You should now be able to use the sign in link for your social identity provider to log in to IDM.

Scenarios When Registering With a Social ID
When users connect to IDM with a social identity provider, it could be the first time they're
connecting to your system. They could already have an regular IDM account. They could already have
registered with a different social identity provider. This section describes what happens during the
self-registration process. The process varies depending on whether there's an existing account in the
IDM managed user store.

Social Registration
Scenarios When Registering With a Social ID

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 84

When Registering Social Identity Providers on IDM

Flow When Registering With a Social ID Account
ForgeRock Ident it y M anagem ent (IDM)

Browser (End User)

Browser (End User)

Social ID Provider

Social ID Provider

Self-Regist rat ion
(Self-Service)

Self-Regist rat ion
(Self-Service)

Managed Object

Managed Object

1 Connect to the
Register Your Account page

2 Display configured social ID providers

3 Select a social ID provider

4 Connect to selected social ID provider

5 Prom pt for login

6 Authent icate

7 Prom pt to accept sharing
account inform at ion

8 Accept condit ions

9 Not ify IDM

1 0 Use the m anaged object service

1 1 Review em ail addresses
of exist ing users

1 2
If em ail address found,
incorporate social ID info
and skip to step 17

1 3 Return to Self-Regist rat ion
for final quest ion(s)

1 4 Prom pt user for security quest ions, reCAPTCHA (if configured)

1 5 User configures security quest ions, sat isfies reCAPTCHA

1 6 Create a new m anaged user,
or update exist ing user

1 7 Redirect user to the Success URL

The following list describes each item in the flow shown in the adjacent figure:

1. From the IDM End User UI, the user selects the Register link

2. The self-registration Interface returns a Register Your Account page at http://localhost:8080/#/
registration with a list of configured providers.

3. The user then selects one configured social identity provider.

Social Registration
Social Identity Widgets

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 85

4. IDM connects to the selected social identity provider.

5. The social identity provider requests end user authentication.

6. The end user authenticates with the social identity provider.

7. The social identity provider prompts the user to accept sharing selected account information.

8. The user accepts the conditions presented by the social identity provider.

9. The social identity provider notifies IDM of the user registration request.

10. IDM passes responsibility to the administrative interface.

11. IDM uses the email address from the social identity provider, and compares it with email
addresses of existing managed users.

12. If the email address is found, IDM links the social identity information to that account (and skips
to step 16).

13. IDM returns to the self-registration (Self-Service) interface.

14. The self-registration interface prompts the user for additional information, such as security
questions, and reCAPTCHA, if configured per "Configure Google reCAPTCHA".

15. The user responds appropriately.

16. IDM creates a new managed user. If the user has already been created, IDM reviews data from
the social identity provider, and updates the user data for the managed/provider to conform. In
this case, the provider is a social identity provider such as Google.

17. The user is redirected to the Success URL.

Social Identity Widgets
The Admin UI includes widgets that can help you measure the success of your social identity efforts.
To add these widgets, take the following steps:

1. Log in to the Admin UI.

2. Select Dashboards, and choose the dashboard to which you want to add the widget.

For more information about managing dashboards in the UI, see "Manage Dashboards" in the
Setup Guide.

3. Select Add Widget.

In the Add Widget window, scroll down to the Social item which includes the following graphical
widgets:

Social Registration
Social Identity Provider Button and Badge Properties

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 86

• Social Registration (year)

• Daily Social Registration

• Daily Social Logins

4. Select the widget you want to add and select Settings to configure the widget.

Optionally, select Preview to see what the widget will look like with the configuration you have
applied. Your IDM system must contain some social data to display the preview.

The following example shows daily social registrations, in pie chart form:

Daily Social Registrations on IDM

Social Identity Provider Button and Badge Properties
You can configure buttons and badges for each social identity provider, using the Admin UI or by
editing the associated identityProvider-name.json file. The Admin UI displays examples during social
identity provider configuration.

Badges appear in the Admin UI under Configure > Social ID Providers, and in the End User UI under
My Account > Sign-in & Security > Social Sign-in.

Social Registration
Social Identity Provider Button and Badge Properties

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 87

Buttons appear in the IDM login screens, and when you select Register from the End User UI login
screen.

Example Button Example Badges

How IDM displays buttons and badges changes based on how many social identity providers are
enabled:

• For up to three social identity providers, IDM displays large buttons, with the text Register with
Provider.

• For four or more social identity providers, IDM displays smaller buttons with icons.

Note

For seven or more social identity providers, horizontal scrolling may be required.

Properties for Social Identity Provider Buttons and Badges

Property (UI) Property (JSON file) Description
Badge background color iconBackground Color for the social identity provider icon.
Badge icon classname iconClass Name of the icon class. Can be a Font Awesome name

like fa-google.
Badge font color iconFontColor Color for the social identity provider icon font.
Button image path buttonImage Looks in openidm/ui/admin/extension and then

openidm/ui/admin/default for an image file. Takes
precedence over the Button icon classname.

Button icon classname buttonClass Name for the social identity provider class. Can be a
Font Awesome name like fa-yahoo.

Button display name buttonDisplayName Name to display on large buttons.
Button styles buttonCustomStyle Custom styles, such as background-color: #7B0099;

 border-color: #7B0099; color:white;.
Button hover styles buttonCustomStyleHover Custom styles for the hover state of a button, such as

background-color: #7B0099; border-color: #7B0099;
 color:white;.

Progressive Profile
Configure a Progressive Profile Completion Form

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 88

Chapter 4

Progressive Profile
Progressive profile completion lets you gather profile attributes asynchronously to enrich your users'
profile data, and enhance engagement with your customer base. Profile completion requires the
creation of one or more forms to collect user data.

IDM implements progressive profile completion as a default self-service process. You can use this
process as an example of how to build additional functionality into a custom client application, using
the Self-Service REST API.

After activating "Self-Registration", users need only the following information to register:

• User name

• First name

• Last name

• Email address

Progressive profile completion lets you collect additional information, limited by the attributes
defined in the managed.json file for your project.

In the following sections, you'll examine how you use progressive profile completion to ask or require
more information from users. You're limited only by what properties are defined in your project's
managed.json file.

Configure a Progressive Profile Completion Form
If you're testing progressive profile completion, you can start from the selfservice-profile.json file in
the following directory: openidm/samples/example-configurations/self-service/

Copy this file to your project's conf/ directory and start IDM. After the conditions shown in this
configuration file are met, end users will see a form prompting them to add a telephone number.

Progressive Profile
Configure a Progressive Profile Completion Form

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 89

{
 "stageConfigs" : [
 {
 "name" : "conditionaluser",
 "identityServiceUrl" : "managed/user",
 "condition" : {
 "type" : "loginCount",
 "interval" : "at",
 "amount" : 25
 },
 "evaluateConditionOnField" : "user",
 "onConditionTrue" : {
 "name" : "attributecollection",
 "identityServiceUrl" : "managed/user",
 "uiConfig" : {
 "displayName" : "Add your telephone number",
 "purpose" : "Help us verify your identity",
 "buttonText" : "Save"
 },
 "attributes" : [
 {
 "name" : "telephoneNumber",
 "isRequired" : true
 }
]
 }
 }
]
}

The following table includes a detailed list of each property shown in this file:

The selfservice-profile.json File

Property Description
stageConfigs Progressive profile completion is a stage of user self-service.
name conditionaluser sets up conditions for end users.
identityServiceUrl managed/user specifies IDM Managed Users.
condition Condition when to display the form.
type Type of condition; for a list of conditions, see "Progressive Profile Completion

Conditions".
evaluateConditionOnField IDM evaluates the condition, per user.
onConditionTrue Presents the form with the following properties.
name Data that you collect with the form is an attributeCollection.
uiConfig Labels to include the in the form seen by the end user.
displayName Form title.
purpose Form explanation.
buttonText Customizable.

Progressive Profile
Progressive Profile Completion Conditions

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 90

Property Description
attributes Attribute name from managed.json.
isRequired If an end user has to enter data to complete a connection to IDM.

The default progressive profile completion process involves two mandatory stages:

• Conditional User Stage

• Attribute Collection Stage

With the previous configuration, users logging in to the End User UI must submit a telephone number
on the 25th login.

Progressive Profile Completion Conditions
You can set up a number of different conditions for when users are prompted to add information to
their profiles. IDM includes the following pre-defined criteria:

loginCount

May specify at or every number of logins, as defined by the following value: amount.

Note

End users can bypass progressive profile completion screens, when configured with a loginCount. Every
time they see such a request, they can open a new browser window to bypass that request, and log in to
the End User UI. They won't have to provide the information requested, even if you've set the attribute as
Required under the Attributes tab.

timeSince

May specify a time since the user was created, the createDate, in years, months, weeks, days, hours, and
minutes.

profileCompleteness

Based on the number of items completed by the user from managed.json, in percent, as defined by
percentLessThan; for more information, see "Defining Overall Profile Completion".

propertyValue

Based on the value of a specific user entry, such as postalAddress, which can be defined by
"Presence Expressions" in the Object Modeling Guide.

Custom Progressive Profile Conditions
You can also set up custom conditions with query filters and scripts. These criteria may deviate from
standard query filters described in "Construct Queries" in the Object Modeling Guide and standard
scripted conditions described in "Add Conditional Policy Definitions" in the Object Modeling Guide.

Progressive Profile
Progressive Profile Completion Conditions

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 91

• A queryFilter. For example, the following query filter checks user information for users who live in
the city of Portland:
"condition" : {
 "type" : "queryFilter",
 "filter" : "/city eq \"Portland\""
 },

In addition, you can also reference metadata, as described in "Track User Metadata" in the Object
Modeling Guide. For example, the following query filter searches for users with:

• A loginCount greater than or equal to five.

• Does not have a telephone number:
"filter" : "(/_meta/loginCount ge 5 and !(/telephoneNumber pr))"

Warning

If you include _meta in query filters, the Admin UI will not work for the subject progressive profiling form.

While it's technically possible to include a number like 5 in the Admin UI with the query filter, IDM would
write the number as a string to the selfservice-profile.json file. You'd still have to change that number
directly in the noted file.

• An inline script (scripted), or a reference to a script file; IDM works with scripts written in either
JavaScript or Groovy. For example, you could set up a script here:
"condition" : {
 "type" : "scripted",
 "script" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" : "<some script code>"
 },

Alternatively, you could point to some JavaScript or Groovy file:
"condition" : {
 "type" : "scripted",
 "script" : {
 "type" : "text/javascript",
 "globals" : { },
 "file" : "path/to/someScript.js"
 },

For the script code, you'll need to reference fields directly, and not by object.field. For example, the
following code would test for the presence of a telephone number:
typeof telephoneNumber === 'undefined' || telephoneNumber === ''

While you can also reference metadata for scripts, you can't check for all available fields, as there is
no outer object field. However, you can refer to fields that are part of the user object.

Progressive Profile
Configuring Progressive Profile Completion Through the Admin UI

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 92

Configuring Progressive Profile Completion Through the Admin UI

The UI is straightforward; in the Admin UI, when you select Configure > Progressive Profile, you'll
add a New Form, with:

• Attributes defined in managed.json.

• Conditions that may be based on a query filter, a script, or pre-defined criteria such as number of
logins.

What you configure in the Admin UI is written to the selfservice-profile.json file. The information
under the following Admin UI Progressive Profile Completion page tabs is written to the following
code blocks in that file:

• Details: uiConfig

• Display Condition: condition

• Attributes: attributes

Warning

When you use the UI, you must specify a property under the Attributes tab. Otherwise, IDM won't display a
Progressive Profile form. To specify a property, select Configure > Progressive Profile. Select a Progressive
Profile form > Attributes tab > Add a Property. Be sure to select an Attribute Name based on user properties
configured in the managed.json file.

The auth.profile.json File
Note

To use auth.profile.json, copy the file from /path/to/openidm/samples/example-configurations/self-service/
to your project's conf/ directory.

In some circumstances, you may wish to create a temporary role for users who are in the middle of
progressive profile completion, such as if you wish to enable access to an endpoint, while prohibiting
access to other parts of the End User UI (as well as the rest of IDM).

To do this, you may optionally define an authenticationRole in auth.profile.json, which you can use as a
role assignment in access.json or elsewhere.

For example, if you wished to assign access to a custom endpoint for users who have incomplete
profiles, you could modify auth.profile.json to include a custom authenticationRole called incomplete-
profile:

Progressive Profile
Progressive Profile Completion and Metadata

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 93

{
 "profileEnhancementProcesses": [
 "selfservice/termsAndConditions",
 "selfservice/kbaUpdate",
 "selfservice/profile"
],
 "authenticationRole": "incomplete-profile",
 "authorizationRole": "internal/role/openidm-authorized"
}

You could then give access to this role to your custom endpoint in access.json:
{
 "pattern" : "endpoint/extra-steps",
 "roles" : "incomplete-profile",
 "methods" : "read",
 ...
},

Access for these and other roles is governed by the access.json script. For more information, see
"Configure Access Control in access.json" in the Authentication and Authorization Guide.

The role specified in authenticationRole can be an existing role, or it can be a placeholder string. If it is
a placeholder, it will not function as a real role, but can still be used for access in access.json, and will
appear in access and authentication log files in the openidim/audit directory.

Progressive Profile Completion and Metadata
Progressive profile completion requires that you track object metadata. Configure tracking of the
following data:

• createDate: The date the user was created; used in the onCreateUser.js script in the openidm/bin/
defaults/script directory.

• loginCount: The number of logins, by user.

• stagesCompleted: Used to track progressive profile forms, and whether they've been completed, by
user.

User acceptance of Terms & Conditions is tracked by default (see "Terms & Conditions").

Defining Overall Profile Completion

A user profile is based on every item in managed.json where both viewable and userEditable are set to
true. Every qualifying item has equal weight.

So, if there are 20 qualifying items in managed.json, a user who has entries for 10 items has a Profile
completion percentage of 50.

Progressive Profile
REST Requests in a Progressive Profile Completion Process

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 94

REST Requests in a Progressive Profile Completion Process
The following REST requests and responses demonstrate the flow through a profile completion
process, given the previous configuration:

1. Client attempts a login for the 25th time:
curl \
 --header "X-OpenIDM-Username: bjensen" \
 --header "X-OpenIDM-Password: Passw0rd" \
 --header "X-OpenIDM-NoSession: false" \
 --request POST \
 "https://localhost:8443/openidm/authentication?_action=login"
{
 "_id": "login",
 "authorization": {
 "userRolesProperty": "authzRoles",
 "processesRequired": true,
 "component": "managed/user",
 "authLogin": true,
 "authenticationIdProperty": "username",
 "roles": [],
 "ipAddress": "0:0:0:0:0:0:0:1",
 "protectedAttributeList": ["password"],
 "requiredProfileProcesses": ["selfservice/profile"],
 "id": "51c6c46d-3d7b-4671-8295-0c8ee39e8549",
 "moduleId": "MANAGED_USER",
 "queryId": "credential-query"
 },
 "authenticationId": "bjensen"
}

Note

The values of the requiredProfileProcesses and roles properties in the returned output trigger the
remainder of the process. If requiredProfileProcesses is present and not empty, there are processes that
must be completed. Ultimately, the process must return a full access role (such as internal/role/openidm-
authorized) and continue to the user profile page.

2. Server sends a GET request to the profile endpoint and returns "type": "conditionaluser" and "tag":
 "initial" to start the profile completion process:
curl \
 --header "X-OpenIDM-Username: anonymous" \
 --header "X-OpenIDM-Password: anonymous" \
 --request GET \
 "https://localhost:8443/openidm/selfservice/profile"
{
 "_id": "1",
 "_rev": "991096945",
 "type": "conditionaluser",
 "tag": "initial",
 "requirements": {
 "$schema": "http://json-schema.org/draft-04/schema#",

Progressive Profile
Viewing Profile Completeness

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 95

 "description": "Attribute Details",
 "type": "object",
 "properties": {},
 "attributes": [{
 "name": "telephoneNumber",
 "isRequired": true,
 "schema": {
 "type": "string",
 "title": "Telephone Number",
 "description": "Telephone Number",
 "viewable": true,
 "userEditable": true,
 "pattern": "^\\+?([0-9\\- \\(\\)])*$",
 "usageDescription": "",
 "isPersonal": true
 },
 "value": null
 }],
 "uiConfig": {
 "displayName": "Add your telephone number",
 "purpose": "Help us verify your identity",
 "buttonText": "Save"
 }
 }
}

3. Client submits requirements, in this case, the required profile field. Server response includes
"tag": "end" and "success": true to signal the end of the profile process:
curl \
 --header "X-OpenIDM-Username: anonymous" \
 --header "X-OpenIDM-Password: anonymous" \
 --request POST \
 --data '{
 "input":{
 "attributes":{
 "telephoneNumber":"555-555-1234"
 }
 }
 }'
 "https://localhost:8443/openidm/selfservice/reset?_action=submitRequirements"
{
 "type": "conditionaluser",
 "tag": "end",
 "status": {
 "success": true
 },
 "additions": {}
}

Viewing Profile Completeness
You can view how complete a profile is, presented as the percentage of user-editable attributes that
have been filled out on a profile. To do so, send a REST call to the selfservice/profile/completeness
endpoint:

Progressive Profile
Viewing Profile Completeness

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 96

curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --request GET \
"http://localhost:8080/openidm/selfservice/profile/completeness/managed/user/3a8cabef-
d4a3-4f60-926a-52f27257bde6"
{
 "_id": "managed/user/3a8cabef-d4a3-4f60-926a-52f27257bde6",
 "_rev": "00000000c38d9344",
 "completeness": 42.857143
}

Password Reset

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 97

Chapter 5

Password Reset
IDM supports self-service user password reset. When enabled, users who forget their passwords can
log in to the IDM End User UI, and can verify their identities with options such as email validation
and security questions.

You can also generate random passwords when users are created. For more information, see
"Generating Random Passwords" in the Security Guide.

Password reset lets registered users reset their own passwords. The following stages can be included
in a password reset process:

• Captcha Stage (optional)

• User Query Stage (mandatory)

• Email Validation Stage (optional)

• KBA Security Answer Verification Stage (optional)

• Password Reset Stage (mandatory)

If all of these stages are configured, the password reset configuration (in conf/selfservice-profile.json
looks similar to the following:

+ Example password reset configuration

{
 "stageConfigs" : [
 {
 "name" : "captcha",
 "recaptchaSiteKey" : "...",
 "recaptchaSecretKey" : "...",
 "recaptchaUri" : "https://www.google.com/recaptcha/api/siteverify"
 },
 {
 "name" : "userQuery",
 "validQueryFields" : [
 "userName",
 "mail",
 "givenName",
 "sn"
],
 "identityIdField" : "_id",
 "identityEmailField" : "mail",

Password Reset
User Password Reset Configuration Files

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 98

 "identityUsernameField" : "userName",
 "identityServiceUrl" : "managed/user"
 },
 {
 "name" : "emailValidation",
 "identityEmailField" : "mail",
 "emailServiceUrl" : "external/email",
 "emailServiceParameters" : {
 "waitForCompletion" : false
 },
 "from" : "info@example.com",
 "subject" : "Reset password email",
 "mimeType" : "text/html",
 "subjectTranslations" : {
 "en" : "Reset your password",
 "fr" : "Réinitialisez votre mot de passe"
 },
 "messageTranslations" : {
 "en" : "...Click to reset your password...",
 "fr" : "...Cliquez pour réinitialiser votre mot de passe..."
 },
 "verificationLinkToken" : "%link%",
 "verificationLink" : "https://localhost:8443/#/passwordreset/"
 },
 {
 "name" : "kbaSecurityAnswerVerificationStage",
 "kbaPropertyName" : "kbaInfo",
 "identityServiceUrl" : "managed/user",
 "kbaConfig" : null
 },
 {
 "name" : "resetStage",
 "identityServiceUrl" : "managed/user",
 "identityPasswordField" : "password"
 }
],
 "snapshotToken" : {
 "type" : "jwt",
 "jweAlgorithm" : "RSAES_PKCS1_V1_5",
 "encryptionMethod" : "A128CBC_HS256",
 "jwsAlgorithm" : "HS256",
 "tokenExpiry" : "300"
 },
 "storage" : "stateless"
}

User Password Reset Configuration Files
To set up basic user password reset features, you'll need at least the following configuration files:

• selfservice-reset.json

You can find a template version of this file in the following directory: openidm/samples/example-
configurations/self-service.

Password Reset
User Password Reset Configuration Files

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 99

• ui-configuration.json

You can find this file in the default IDM project configuration directory, openidm/conf.

To set up self-service user password reset registration, enable the following boolean in ui-
configuration.json:
"passwordReset" : true,

You can include several features with user password reset, as shown in the following excerpts of the
selfservice-reset.json file:

• If you've activated Google reCAPTCHA for user self-service registration, you'll see the following
code block:
{
 "name" : "captcha",
 "recaptchaSiteKey" : "<siteKey>",
 "recaptchaSecretKey" : "<secretKey>",
 "recaptchaUri" : "https://www.google.com/recaptcha/api/siteverify"
},

As suggested by the code, you'd substitute the actual siteKey and secretKey assigned by Google for
your domain. For more information, see "Configure Google reCAPTCHA".

• For password reset, IDM needs to verify user identities. To ensure that password reset links are
sent to the right user, include the following code block:
{
 "name" : "userQuery",
 "validQueryFields" : [
 "userName",
 "mail",
 "givenName",
 "sn"
],
 "identityIdField" : "_id",
 "identityEmailField" : "mail",
 "identityUsernameField" : "userName",
 "identityServiceUrl" : "managed/user"
},

This code lets IDM verify user identities by their username, email address, first name (givenName), or
last name (sn, short for surname).

• If you have included email verification, you must configure an outgoing email server. For details
about the required addition to selfservice-registration.json, see "Configuring Emails for Password
Reset".

• If you've configured security questions, users who self-register will have to create questions and
answers during the self-registration process.

If the feature is enabled, users who've been reconciled from external data stores will also be
prompted, once, upon their next login, to add security questions and answers. The relevant code

Password Reset
Configuring Password Reset From the Admin UI

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 100

block is shown here, which points IDM to other configuration files as discussed in links from this
section.
{
 "name" : "kbaSecurityAnswerDefinitionStage",
 "kbaConfig" : null
},

Configuring Password Reset From the Admin UI
To configure Password Reset from the Admin UI, select Configure > Password Reset. When you
select Enable Password Reset, you'll see a Configure Password Reset Form that lets you specify the:

• Identity Resource, typically managed/user

• Advanced Options, Snapshot Token, typically a JSON Web Token (JWT)

• Advanced Options, Token Lifetime, with a default of 300 seconds

You can also add these settings to the following configuration file: selfservice-reset.json. When you
modify these settings in the Admin UI, IDM creates the file for you.

Configuring Emails for Password Reset
To configure emails for password reset, you can add the following code block to the selfservice-
reset.json file:
{
 "name" : "emailValidation",
 "identityEmailField" : "mail",
 "emailServiceUrl" : "external/email",
 "emailServiceParameters" : {
 "waitForCompletion" : false
 },
 "from" : "info@example.com",
 "subject" : "Reset password email",
 "mimeType" : "text/html",
 "subjectTranslations" : {
 "en" : "Reset your password",
 "fr" : "Réinitialisez votre mot de passe"
 },
 "messageTranslations" : {
 "en" : "<h3>Click to reset your password</h3><h4>Password reset link</h4>",
 "fr" : "<h3>Cliquez pour réinitialiser votre mot de passe</h3><h4>Mot de passe
 lien de réinitialisation</h4>"
 },
 "verificationLinkToken" : "%link%",
 "verificationLink" : "https://localhost:8443/#/passwordreset/"
},

As suggested by the code block, it includes default password reset email messages in English (en) and
French (fr). The verificationLink sent with the email takes users to the IDM password reset URL.

Password Reset
REST Requests in a Password Reset Process

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 101

As noted in "REST Requests in a Password Reset Process", you can make these changes over the
following endpoint URI: /openidm/config/selfservice/reset

If desired, you can also configure self-service password reset emails through the Admin UI. Select
Configure > Password Reset. If needed, activate the Enable Password Reset option, and in the Email
Validation box, select the  icon. The Configure Validation Email pop-up dialog box should appear.

When you use the Admin UI to customize password reset emails, you can review the changes in the
selfservice-reset.json file.

REST Requests in a Password Reset Process
The following REST requests and responses demonstrate the flow through a simple password reset
process. To keep the process simple, this flow does not include the Google ReCAPTCHA stage, or the
Security Answer Verification stage:

1. Client initiates the password reset,

The server returns the initial tag:
curl \
--request GET \
"https://localhost:8443/openidm/selfservice/reset"
{
 "type": "parameters",
 "tag": "initial",
 "requirements": {
 "$schema": "http://json-schema.org/draft-04/schema#",
 "description": "Parameters",
 "type": "object",
 "properties": {
 "returnParams": {
 "description": "Parameter named 'returnParams'",
 "type": "string"
 }
 }
 }
}

2. Initial requirements submission with an empty payload.

The server returns requirements for the userQuery stage, and the JWT:

Password Reset
REST Requests in a Password Reset Process

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 102

curl \
--header "X-OpenIDM-Username: anonymous" \
--header "X-OpenIDM-Password: anonymous" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "input":{}
}' \
"https://localhost:8443/openidm/selfservice/reset?_action=submitRequirements"
{
 "type": "userQuery",
 "tag": "initial",
 "requirements": {
 "$schema": "http:\/\/json-schema.org\/draft-04\/schema#",
 "description": "Find your account",
 "type": "object",
 "required": [
 "queryFilter"
],
 "properties": {
 "queryFilter": {
 "description": "filter string to find account",
 "type": "string"
 }
 }
 },
 "token": "eyJ0e...FYkE"
}

3. The client provides the requirements for the userQuery stage, along with the JWT. The process
progresses to the emailValidation stage:

Password Reset
REST Requests in a Password Reset Process

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 103

curl \
--header "X-OpenIDM-Username: anonymous" \
--header "X-OpenIDM-Password: anonymous" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "token": "eyJ0e...FYkE",
 "input": {"queryFilter": "userName eq \"bjensen\""}
}' \
"https://localhost:8443/openidm/selfservice/reset?_action=submitRequirements"
{
 "type": "emailValidation",
 "tag": "validateCode",
 "requirements": {
 "$schema": "http:\/\/json-schema.org\/draft-04\/schema#",
 "description": "Verify emailed code",
 "type": "object",
 "required": [
 "code"
],
 "properties": {
 "code": {
 "description": "Enter code emailed",
 "type": "string"
 }
 }
 },
 "token": "eyJ0e...FYkE"
}

The server converts that requirement and token to a URL that is emailed.

4. The user receives an email with the password reset link.

Clicking the link sends another POST request to the emailValidation stage, along with the token,
and a code:
curl \
--header "X-OpenIDM-Username: anonymous" \
--header "X-OpenIDM-Password: anonymous" \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/#/passwordreset/&token=eyJ0e...FYkE&code=code"

The process advances to the reset stage and returns its requirements.

5. After email validation, the client submits the new password. The process advances to the reset
stage, updates the managed object, and exits:

Password Reset
REST Requests in a Password Reset Process

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 104

curl \
--header "X-OpenIDM-Username: anonymous" \
--header "X-OpenIDM-Password: anonymous" \
--request POST \
--header "Content-Type: application/json" \
--data {
 "token": "eyJ0e...FYkE",
 "input": {
 "password": "Passw0rd"
 }
} \
"https://localhost:8443/openidm/selfservice/reset?_action=submitRequirements"
{
 "type": "resetStage",
 "tag": "end",
 "status": {
 "success": true
 },
 "additions": {
 }
}

Username Retrieval

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 105

Chapter 6

Username Retrieval
Username retrieval lets registered users retrieve a forgotten username, based on the provision
of alternative information in the user record, such as email address, last name, or given name.
Depending on how this process is configured, the retrieved username can be emailed to the user or
displayed directly.

The REST requests in this section assume that the username is emailed to the user, and that the
configuration is similar to that in the example configuration file (samples/example-configurations/self-
service/selfservice-username.json):

+ Example username retrieval configuration

{
 "stageConfigs" : [
 {
 "name" : "userQuery",
 "validQueryFields" : [
 "mail",
 "givenName",
 "sn"
],
 "identityIdField" : "_id",
 "identityEmailField" : "mail",
 "identityUsernameField" : "userName",
 "identityServiceUrl" : "managed/user"
 },
 {
 "name" : "emailUsername",
 "emailServiceUrl" : "external/email",
 "emailServiceParameters" : {
 "waitForCompletion" : false
 },
 "from" : "info@admin.org",
 "mimeType" : "text/html",
 "subjectTranslations" : {
 "en" : "Account Information - username"
 },
 "messageTranslations" : {
 "en" : "<h3>Username is:</h3>
%username%"
 },
 "usernameToken" : "%username%"
 },
 {
 "name" : "retrieveUsername"
 }
],
 "storage" : "stateless"

Username Retrieval
Username Retrieval Configuration

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 106

}

Username Retrieval Configuration
To set up basic forgotten username configuration, you'll need at least the following configuration
files:

• selfservice-username.json

You can find a template version of this file in the following directory: openidm/samples/example-
configurations/self-service.

• ui-configuration.json

You can find this file in the default IDM project configuration directory, openidm/conf.

To set up forgotten username retrieval, enable the following boolean in ui-configuration.json:
"forgotUsername" : true,

You can include several features with forgotten username retrieval, as shown in the following
excerpts of the selfservice-reset.json file:

• If you've activated Google reCAPTCHA for forgotten username retrieval, you'll see the following
code block:
{
 "name" : "captcha",
 "recaptchaSiteKey" : "<siteKey>",
 "recaptchaSecretKey" : "<secretKey>",
 "recaptchaUri" : "https://www.google.com/recaptcha/api/siteverify"
},

As suggested by the code, you'd substitute actual siteKey and secretKey assigned by Google for your
domain. For more information, see "Configure Google reCAPTCHA".

• For forgotten username retrieval, IDM needs to verify user identities. To ensure that usernames are
sent to the right user, include the following code block:
{
 "name" : "userQuery",
 "validQueryFields" : [
 "mail",
 "givenName",
 "sn"
],
 "identityIdField" : "_id",
 "identityEmailField" : "mail",
 "identityUsernameField" : "userName",
 "identityServiceUrl" : "managed/user"
},

Username Retrieval
Configuring Forgotten Username Retrieval From the Admin UI

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 107

This code allows IDM to verify user identities by their username, email address, first name
(givenName), or last name (sn, short for surname).

• If you have included email verification, you must configure an outgoing email server. For details
about the required addition to selfservice-registration.json, see "Configuring Emails for Forgotten
Username".

• The following code block, after confirming user identity, allows IDM to display the username:
{
 "name" : "retrieveUsername"
}

Configuring Forgotten Username Retrieval From the Admin UI

To configure forgotten username retrieval from the Admin UI, select Configure > Forgotten
Username. When you select Enable Forgotten Username Retrieval, you'll see a Configure Forgotten
Username Form that allows you to specify the:

• Identity Resource, typically managed/user

• Advanced Options, Snapshot Token, typically a JSON Web Token (JWT).

• Advanced Options, Token Lifetime, with a default of 300 seconds

You can also add these settings to the following configuration file: selfservice-username.json. When you
modify these settings in the Admin UI, IDM creates the file for you.

Configuring Emails for Forgotten Username
To configure emails for forgotten username functionality, you can add the following code block to the
selfservice-username.json file:
{
 "name" : "emailUsername",
 "emailServiceUrl" : "external/email",
 "emailServiceParameters" : {
 "waitForCompletion" : false
 },
 "from" : "info@example.com",
 "mimeType" : "text/html",
 "subjectTranslations" : {
 "en" : "Account Information - username"
 },
 "messageTranslations" : {
 "en" : "<h3>Username is:</h3>
%username%"
 },
 "usernameToken" : "%username%"
},

Username Retrieval
REST Requests in a Forgotten Username Process

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 108

As suggested by the code block, it includes default email messages in English (en), with a usernameToken
that includes the actual username in the message.

As noted in "Username Retrieval", you can make these changes over the following endpoint URI: /
openidm/config/selfservice/username

If desired, you can also configure forgotten username retrieval emails through the Admin UI. Select
Configure > Forgotten Username. If needed, activate the Enable Forgotten Username Retrieval
option, and in the Email Username box, select the  icon. The Configure Email Username pop-up
should appear.

When you use the Admin UI to customize forgotten username retrieval emails, you can review the
changes in the selfservice-username.json file.

REST Requests in a Forgotten Username Process
The following REST requests and responses demonstrate the flow through a forgotten username
process:

1. Client initiates the username retrieval process. The server returns the initial set of requirements:
curl \
 --header "X-OpenIDM-Username: anonymous" \
 --header "X-OpenIDM-Password: anonymous" \
 --header "X-OpenIDM-NoSession: true" \
 --request GET \
 "https://localhost:8443/openidm/selfservice/username"
{
 "_id":"1",
 "_rev":"959264722",
 "type":"userQuery",
 "tag":"initial",
 "requirements":{
 "$schema":"http://json-schema.org/draft-04/schema#",
 "description":"Find your account",
 "type":"object",
 "required":[
 "queryFilter"
],
 "properties":{
 "queryFilter":{
 "description":"filter string to find account",
 "type":"string"
 }
 }
 }
}

2. Client submits the requirements, along with the token. Server returns the username and the end
tag to indicate the end of the process:

Username Retrieval
REST Requests in a Forgotten Username Process

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 109

curl \
 --header "X-OpenIDM-Username: anonymous" \
 --header "X-OpenIDM-Password: anonymous" \
 --request POST \
 --data '{
 "token": "eyJ0eXAiOiJKV1QiLCJjdHkiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.ZXlKMGVY...W5ywOcr8",
 {
 "input":{
 "queryFilter":"mail eq \"babs.k.jensen@gmail.com\""
 }
}' \
 "https://localhost:8443/openidm/selfservice/username?_action=submitRequirements"
{
 "type":"retrieveUsername",
 "tag":"end",
 "status":{
 "success":true
 },
 "additions":{
 "userName":"bjensen"
 }
}

Additional Configuration

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 110

Chapter 7

Additional Configuration
This chapter describes additional configuration options for user self-service.

Additional Configuration Options


Email Notification

Configure Notification Emails.


Privacy & Consent

Configure Privacy and Consent.


UMA & Trusted Devices

Set Up User-Managed
Access (UMA), Trusted
Devices, and Privacy.


Terms & Conditions

Configure Terms & Conditions.


User Self-Service Tokens

Tokens and User Self-Service.


End User UI Notifications

Configure End User
UI Notifications.


reCAPTCHA

Configure Google reCAPTCHA.


Identity Fields

Configure Identity
Field Associations.


Security Questions

Configure Security
Questions (KBA).


Custom Policies

Add Custom Policies for Self-
Registration and Password Reset.


End User UI

Configure Self-
Service End User UI.

Additional Configuration
Configure Notification Emails

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 111

Configure Notification Emails
When you configure the outbound email service, IDM can use that service to notify users of
significant events, primarily related to user self-service. For specifics, see the following table for
related notification emails:

Configuring Notification Emails

Situation Configuration File Details
When a user is successfully
registered

emailTemplate-welcome.json See "User Self-Registration Email
Template"

When a user asks for their
forgotten username

selfservice-username.json See "Configuring Emails for
Forgotten Username"

When a user registers using self-
service and needs to verify their
email address

selfservice-registration.json See "Configuring Emails for Self-
Service Registration"

When a user asks for a password
reset

selfservice-reset.json See "Configuring Emails for
Password Reset"

Each email template can specify an email address to use in the From field. If this field is left blank,
IDM will default to the address specified in Email Settings.

Note

Email templates utilize Handlebar expressions to reference object data dynamically. For example, to reference
the userName of an object:

{{object.userName}}

Note

Some email providers, such as Google, will override the From address you specify in the templates, and instead
use the address used to authenticate with the SMTP server. The email address specified in the template may
still be present, but in an email header hidden from most users, such as X-Google-Original-From.

User Self-Registration Email Template

When a new user registers through the IDM self-registration interface (and if you have configured
outbound email), that user will get a welcome email as configured in the emailTemplate-welcome.json file:

https://handlebarsjs.com/guide/

Additional Configuration
Managing Email Templates from the Admin UI

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 112

{
 "enabled" : true,
 "from" : "",
 "subject" : {
 "en" : "Your account has been created"
 },
 "message" : {
 "en" : "<html><body><p>Welcome to OpenIDM. Your username is '{{object.userName}}'.</p></body></
html>"
 },
 "defaultLocale" : "en"
}

You may want to make the following changes:

• Add an email address to the from property, perhaps an email address for your organization's
systems administrator.

• Set up appropriate locale(s).

• Modify the subject line as needed.

• Include a welcome message appropriate to your organization.

Managing Email Templates from the Admin UI
The Admin UI includes tools that can help you customize email messages related to two
administrative tasks: creating users and resetting passwords.

To configure these messages from the Admin UI, select Configure > Email Settings > Templates,
where you'll see the following option:

• Welcome: To configure emails that notify a user of a newly created account, as defined in
emailTemplate-welcome.json.

Note

IDM sends the same welcome email to users created with a REST call. For an example of user creation over
REST, see "Managed Users" in the Object Modeling Guide.

Configure Privacy and Consent
As an end user, you might want to control what happens to your personal data. For IDM, that means
control of how your data is shared with external systems. The example in "Marketo Connector" in the
Connectors Guide shows how you can generate a marketing leads database, only for those users who
have selected a specific preference. Also read "Configure Privacy and Consent".

IDM allows you to regulate access to two different kinds of personal data:

Additional Configuration
Configure Privacy and Consent

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 113

• User information: while marketers want user information such as addresses and telephone
numbers, IDM allows you to let individual users decide whether to share that data. For more
information, see "Regulating HTTP Access to Personal Data".

• Account information: by default, IDM prevents REST-based access to passwords with the private
scope, as defined in the managed.json file. You can extend this protection to other properties. For
more information, see "Restricting HTTP Access to Sensitive Data".

You can configure Privacy and Consent for users who register directly through IDM, or through a
social identity provider. For more information on the registration process, see "Configure User Self-
Registration" and "Social Registration".

When you have configured Privacy and Consent, end users must agree to share their data before they
can obtain a registered account.

To configure Privacy and Consent, edit the following configuration files:

• In selfservice-registration.json, add the following JSON object:
{
 "name" : "consent",
 "consentTranslations" : {
 "en" : "<Substitute appropriate Privacy and Consent wording>",
 "fr" : "<Substitute appropriate Privacy and Consent wording, in French>"
 }
},

Add custom privacy and consent notices for all your required languages in the consentTranslations
property.

Alternatively, send the corresponding request over REST to the /openidm/config/selfservice/
registration endpoint.

• In the mapping configuration, include:
"consentRequired" : true,

+ To Configure Privacy and Consent in the Admin UI

1. Select Configure > Mappings, and select the mapping for which you want to configure Privacy
and Consent.

Important

Although the Admin UI includes the Privacy & Consent switch for all mappings, it makes sense to
configure Privacy and Consent only for mappings from the Managed Object source to an external
target resource. In other words, end users give their consent to transfer some or all of their managed
user data to an external system.

2. On the Advanced tab of the mapping, select Enable Privacy & Consent, then select Save.

Additional Configuration
Regulating HTTP Access to Personal Data

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 114

3. Select Configure > User Registration, and Enable User Registration (if it is not already
enabled).

4. On the Options tab, select Privacy & Consent, then add custom privacy notices for all required
languages.

Regulating HTTP Access to Personal Data

In some cases, you might want to allow users to choose whether to share their personal data.
"Configure User Preferences" describes how to allow users to select basic preferences for updates
and marketing. They can select these preferences when they register and in the End User UI.

Examine the managed.json file for your project. Every relevant property should include two settings that
determine whether a user can choose to share or not share that property:

• isPersonal: When set to true, specifies personally identifying information. By default, the isPersonal
option for userName and postalAddress is set to true.

usageDescription: Includes additional information that can help users understand the sensitivity of a
specific property such as telephoneNumber.

The consentedMappings property in a managed user object enables the user to specify an array of
mappings (target systems) with which they consent to sharing their identifying information. The
following sample excerpt of the default managed user object schema shows the consentedMappings
property definition:
"consentedMappings": {
 "title": "Consented Mappings",
 "description": "Consented Mappings",
 "type": "array",
 "viewable": false,
 "searchable": false,
 "userEditable": true,
 "usageDescription": "",
 "isPersonal": false,
 "items": {
 "type": "object",
 "title": "Consented Mapping",
 "properties": {
 "mapping": {
 "title": "Mapping",
 "description": "Mapping",
 "type": "string",
 "viewable": true,
 "searchable": true,
 "userEditable": true
 },
 "consentDate": {
 "title": "Consent Date",
 "description": "Consent Date",
 "type": "string",

Additional Configuration
Restricting HTTP Access to Sensitive Data

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 115

 "viewable": true,
 "searchable": true,
 "userEditable": true
 }
 },
 "order": [
 "mapping",
 "consentDate"
],
 "required": [
 "mapping",
 "consentDate"
]
 },
 "returnByDefault": false,
 "isVirtual": false
}

Restricting HTTP Access to Sensitive Data

You can protect specific sensitive managed data by marking the corresponding properties as private.
Private data, whether it is encrypted or not, is not accessible over the REST interface. Properties that
are marked as private are removed from an object when that object is retrieved over REST.

To mark a property as private, set its scope to private in the conf/managed.json file.

The following extract of the managed.json file shows how HTTP access is prevented on the password
property:
{
 "objects": [
 {
 "name": "user",
 "schema": {
 "id" : "http://jsonschema.net",
 "title" : "User",
 ...
 "properties" : {
 ...
 "password" : {
 "title" : "Password",
 ...
 "encryption" : {
 "purpose": "idm.password.encryption"
 },
 "scope" : "private",
 ...
 }
]
}

Tip

To configure private properties by using the Admin UI:

Additional Configuration
Configure UMA, Trusted Devices, and Privacy

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 116

1. Select Configure > Managed Objects, and select the object type whose property values you want to make
private (for example User).

2. On the Properties tab, select the property that must be private and select the Private checkbox.

A potential caveat relates to private properties. If you use an HTTP GET request, you won't even see
private properties. Even if you know all relevant private properties, a PUT request would replace
the entire object in the repository. In addition, that require would effectively remove all private
properties from the object. To work around this limitation, use a POST request to update only those
properties that require change.

For example, to update the givenName of user jdoe, you could run the following command:
$ curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--cacert ca-cert.pem \
--request POST \
--data '[
 {
 "operation": "replace",
 "field": "/givenName",
 "value": "Jon"
 }
]' \
"https://localhost:8443/openidm/managed/user?_action=patch&_queryId=for-userName&uid=jdoe"

Note

The filtering of private data applies only to direct HTTP read and query calls on managed objects. No automatic
filtering is done for internal callers, and the data that these callers choose to expose.

Configure UMA, Trusted Devices, and Privacy
In the following sections, you will refer to AM documentation to set up User-Managed Access (UMA),
Trusted Devices, and Privacy for your end users. The section requires IDM authentication with AM
bearer tokens and the rsFilter authentication module. For more information, see "Authenticate
through AM" in the Authentication and Authorization Guide.

Tip

If you want to configure both UMA and Trusted Devices in AM, configure these features in the following order,
as described in the sections that follow:

1. Set up UMA

2. Use AM to configure UMA-based resources

3. Configure Trusted Devices

Additional Configuration
User Managed Access in IDM

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 117

If you have to reconfigure UMA at a later date, you'll have to first disable Trusted Devices. You can enable
Trusted Devices, once again, afterwards.

User Managed Access in IDM
When you integrate IDM with ForgeRock Access Management (AM) you can take advantage of
AM's abilities to work with User-Managed Access (UMA) workflows. AM and IDM use a common
installation of ForgeRock Directory Services (DS) to store user data.

When you have configured IDM to authenticate through AM bearer tokens, you can configure AM to
work with UMA. For more information, see the AM User-Managed Access (UMA) Guide. From that
guide, you need to know how to:

• Set up AM as an authorization server.

• Register resource sets and client agents in AM.

• Help users manage access to their protected resources through AM.

Pay close attention to the AM documentation on configuring an OAuth 2.0 UMA Client and UMA
Server. You may need to add specific grant types to each OAuth 2.0 application.

If you follow AM documentation to set up UMA, you'll see instructions on setting up users as resource
owners and requesting parties. If you set up users in AM, be sure to include the following information
for each user:

• First Name

• Last Name

• Email Address

AM writes this information to the common DS user data store. You can then synchronize these users
to the IDM Managed User data store, with a command such as:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?_action=recon&mapping=systemLdapAccounts_managedUser"

After your users have shared UMA resources from the AM Self-Service UI, they can view what they've
done and shared in the IDM End User UI, by selecting the Sharing icon ().

Configuring Trusted Devices on IDM
You can configure Trusted Devices through AM, using the following sections of the AM
Authentication and Single Sign-On Guide: Configuring Authentication Chains and Device ID (Match)
Authentication Module. You can use the techniques described in these sections to set up different
authentication chains for administrators and regular users.

https://backstage.forgerock.com/docs/am/7.1/uma-guide
https://backstage.forgerock.com/docs/am/7.1/authentication-guide/about-authentication-modules-and-chains.html#configure-authn-chains
https://backstage.forgerock.com/docs/am/7.1/authentication-guide/configure-authn-modules-hints.html#device-id-match-hints
https://backstage.forgerock.com/docs/am/7.1/authentication-guide/configure-authn-modules-hints.html#device-id-match-hints

Additional Configuration
Terms & Conditions

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 118

You can create an AM authentication chain with the following modules and criteria:

AM Authentication Chain Modules

Module Criteria
Data Store Requisite
Device Id (Match) Sufficient
Device Id (Save) Required

This is different from the authentication chain described in the following section of the AM
Authentication and Single Sign-On Guide: Device ID (Match) Authentication Module, as it does not
include the HOTP Authentication Module.

When trusted devices are enabled, users are presented with a prompt on a screen with the following
question "Add to Trusted Devices?". If the user selects Yes, that user is prompted for the name of the
Trusted Device.

Note

In default configurations, trusted devices are not saved for the AM amadmin account. However, you can set
up different AM administrative users as described in the following section of the AM Setup and Maintenance
Guide: Delegating Realm Administration Privileges.

You can set up different authentication chains for regular and administrative users, as described in the AM
Authentication and Single Sign-On Guide.

Terms & Conditions
Most entities require users to accept Terms & Conditions. By default, this feature is active for user
self-registration in IDM. When a user accepts Terms & Conditions, IDM records relevant information
in the _meta data for that user, as described in "Identifying When a User Accepts Terms & Conditions".

Note

To use this feature, auth.profile.json must be present in the /path/to/openidm/conf/ directory.

Terms & Conditions Configuration Files

selfservice.terms.json

Exists in the /path/to/openidm/conf/ directory and contains the default Terms & Conditions
language:

https://backstage.forgerock.com/docs/am/7.1/authentication-guide/configure-authn-modules-hints.html#device-id-match-hints
https://backstage.forgerock.com/docs/am/7.1/authentication-guide/configure-authn-modules-hints.html#hotp-module-conf-hints
https://backstage.forgerock.com/docs/am/7.1/admin-guide/#delegating-realm-administration-privileges
https://backstage.forgerock.com/docs/am/7.1/authentication-guide
https://backstage.forgerock.com/docs/am/7.1/authentication-guide

Additional Configuration
Terms & Conditions Configuration Files

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 119

{
 "versions": [
 {
 "version": "0.0",
 "termsTranslations": {
 "en": "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor
 incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation
 ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
 voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non
 proident, sunt in culpa qui officia deserunt mollit anim id est laborum."
 },
 "createDate": "2019-10-28T04:20:11.320Z"
 }
],
 "active": "0.0",
 "uiConfig": {
 "displayName": "We've updated our terms",
 "purpose": "You must accept the updated terms in order to proceed.",
 "buttonText": "Accept"
 }
}

selfservice-termsAndConditions.json

To force existing IDM users to accept new Terms & Conditions during login, copy selfservice-
termsAndConditions.json from your project's conf directory to your project directory, and edit the
file, as necessary.

The following example applies Terms & Conditions to the managed/user store:
{
 "stageConfigs" : [
 {
 "name" : "conditionaluser",
 "identityServiceUrl" : "managed/user",
 "condition" : {
 "type" : "terms"
 },
 "evaluateConditionOnField" : "user",
 "onConditionTrue" : {
 "name" : "termsAndConditions"
 }
 },
 {
 "name" : "patchObject",
 "identityServiceUrl" : "managed/user"
 }
]
}

Note

IDM does not support <form> elements or <script> tags in Terms & Conditions text.

Additional Configuration
Preview Terms & Conditions as an End User

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 120

Substitute Terms & Conditions content to meet the legal requirements of your applicable governing entities.

selfservice.terms.json Details

Property Description
version Specifies a version number (must be unique).
termsTranslations Supports Terms & Conditions in different languages.

Note

For Terms & Conditions in multiple languages, what the end user sees depends
on their browser default language, based on ISO-639 language codes:

First, IDM determines the active version, as defined in the
selfservice.terms.json file:

• If the browser default language matches one of the configured Terms &
Conditions languages, IDM displays it.

• If the browser default language does not match any configured Terms &
Conditions languages:

• IDM displays the en language.

• If there is no en language, IDM displays the first configured language for the
active version.

createDate Creation date.
active Specifies the version of Terms & Conditions shown to users; must match an

existing version.
displayName The title of the Terms & Conditions page, as seen by end users.
purpose Help text shown below the displayName.
buttonText Button text shown to the end user for acceptance.

Preview Terms & Conditions as an End User

To preview Terms & Conditions in the End User UI:

1. Create a regular user.

2. Log in to the End User UI as the new user.

IDM prompts you to accept the default Terms & Conditions.

Additional Configuration
Updating Terms & Conditions over REST

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 121

Updating Terms & Conditions over REST

You can manage the configuration for Terms & Conditions over the following endpoints:

• openidm/config/selfservice.terms

• openidm/config/selfservice/termsAndConditions

For example, the following command would replace the value of buttonText:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[{
 "operation" : "replace",
 "field" : "uiConfig/buttonText",
 "value" : "OK"
}]' \
"http://localhost:8080/openidm/config/selfservice.terms"

Identifying When a User Accepts Terms & Conditions

You can identify when a user accepts Terms & Conditions, as well as the associated version. To do so,
take the following steps:

• If needed, find identifying information for all managed users:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryId=query-all"

• Use REST to get a specific user's information. This example illustrates how a user with a userName of
kvaughan has already accepted a specific version of Terms & Conditions:

Additional Configuration
Configuring Terms & Conditions in the Admin UI

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 122

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=userName+eq+'kvaughan'&_fields=*,/_meta/*"
{
 "result": [
 {
 ...
 "userName": "kvaughan",
 ...
 "termsAccepted": {
 "acceptDate": "2018-04-12T22:55:33.370Z",
 "termsVersion": "2.0"
 },
 "createDate": "2018-04-12T22:55:33.395Z",
 "lastChanged": {
 "date": "2018-04-12T22:55:33.395Z"
 },
 "loginCount": 1,
 "_rev": "00000000776f8be1",
 "_id": "69124007-05ec-46e1-a8a8-ecc3d94db124"
 }
 }
],
 ...
}

Configuring Terms & Conditions in the Admin UI

From the Admin UI, select Configure > Terms & Conditions. You can then create a new version,
which prompts you to configure the following:

• Version number (must be unique).

• If there are existing Terms & Conditions, you'll see a Make active switch for the new Terms &
Conditions.

• Locale, in ISO-639 format.

• Terms & Conditions, in the specified language locales. You can set up Terms & Conditions in text
and/or basic HTML.

Once you've added Terms & Conditions in all desired locales, select Save to save them in the
selfservice.terms.json file.

Note

The Admin UI does not let you delete existing Terms & Conditions.

Once you have at least one set of Terms & Conditions, you should see a Settings tab, where you can:

Additional Configuration
Tokens and User Self-Service

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 123

• Require acceptance; the next time any end user logs into IDM, that user will see a copy of your
Terms & Conditions, with the Header, Description, and Button Text.

• To make sure new users have to accept these Terms & Conditions, select Configure > User
Registration in the Admin UI. Enable Terms & Conditions under the Options tab. For more
information, see "Self-Registration". Users who self-register will see the following message, with a
link to those Terms & Conditions:
By creating an account, you agree to the Terms & Conditions

These changes are recorded in _meta data for each user, and can be retrieved through REST calls
described in "Identifying When a User Accepts Terms & Conditions".

Tokens and User Self-Service
Many processes within user self-service involve multiple stages, such as user self-registration,
password reset, and forgotten username. As the user transitions from one stage to another, IDM uses
JWT tokens to represent the current state of the process. As each stage is completed, IDM returns a
new token. Each request that follows includes that latest token.

For example, users who use these features to recover their usernames and passwords get two tokens
in the following scenario:

• The user goes through the forgotten username process, gets a JWT Token with a lifetime (default =
300 seconds) that lets the user get to the next step in the process.

• With username in hand, that user may then start the password reset process. That user gets a
second JWT token, with the token lifetime configured for that process.

Note

The default IDM JWT token is encrypted and stateless. However, if you need a token that can be included in a
link that works in all email clients, change the snapshotToken type in the appropriate configuration file to uuid.

End User UI Notifications
Whenever there are changes related to individual users, IDM sends notifications to the affected user.
When the user logs in to the End User UI, they can find their notifications by selecting the bell ()
icon.

Notifications are configured in notification-*.json files, as described in "Custom Notifications" in the
Audit Guide.

IDM includes a notifications endpoint that can help you identify all notifications:

Additional Configuration
Configure Google reCAPTCHA

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 124

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/internal/notification?_queryFilter=true"

To list notifications by user ID, include the _notifications field in a query on that ID:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/e3a9385b-733f-4a1c-891b-c89292b30d70?_fields=_notifications/*"

You can filter notifications with any of the properties shown in the following table:

End User Notification Properties

Property Description
createDate Creation date
notificationType Message type: limited to info, warning, or error
message Message seen by the end user

You can get additional information from the activity audit log, in the audit/activity.audit.json file,
including the following:

• The userId who made the change.

• The runAs name of the user who made the change.

• If configured in "Fields to Watch", any watched fields that have changed.

• If the password was changed, as indicated by the passwordChanged property.

Configure Google reCAPTCHA
Google reCAPTCHA helps prevent bots from registering users or resetting passwords on your
system. For Google documentation on this feature, see Google reCAPTCHA. IDM works with Google
reCAPTCHA v2.

To use Google reCAPTCHA, you will need a Google account and your domain name (RFC 2606-
compliant URLs such as localhost and example.com are acceptable for test purposes). Google then
provides a site key and a secret key that you can include in the self-service function configuration.

For example, you can set up reCAPTCHA by adding the following code block to the configuration
file for user self-registration selfservice-registration.json, password reset, selfservice-reset.json, and
forgotten username selfservice-username.json functionality.

https://www.google.com/recaptcha

Additional Configuration
Configure Identity Fields

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 125

{
 "name" : "captcha",
 "recaptchaSiteKey" : "< Insert Site Key Here >",
 "recaptchaSecretKey" : "< Insert Secret Key Here >",
 "recaptchaUri" : "https://www.google.com/recaptcha/api/siteverify"
},

You may also add the reCAPTCHA keys through the UI for each of these self-service features.

Configure Identity Fields
It is possible to adjust the property associated with a field in user self-service. Properties that are
used by self-service functions can be set using identity field properties in your configuration. For
example, if you had changed the mail property in managed/user to instead be email, you would then
update identityEmailField in your self-service configuration to be "identityEmailField" : "email",. There
are currently six identity fields that can be customized:

• identityServiceUrl - sets where self-service stores and retrieves its data, such as managed/user.

• identityUsernameField - sets the property associated with the username of the user.

• identityEmailField - sets the property associated with the email address of the user.

• identityPasswordField - sets the property associated with the password of the user.

• identityIdField - sets the property associated with the ID of the user, which is used when performing
user queries.

• identityAccountStatus - sets the property associated with the account status of the user, which is used
when performing user queries.

Not every identity field is used in each self-service stage. For more information about which fields are
required for each stage, see "Self-Service Stage Reference".

Note

If you have removed usernames from your managed/user schema in favor of using another property (such as
email), you will still need to set identityUsernameField to the new property in order for self-service to function
correctly.

Configure Security Questions
IDM uses security questions to let users verify their identities. Security questions are sometimes
referred to as Knowledge-Based Authentication (KBA). When an administrator has configured
security questions, self-service users can choose from the questions set in the selfservice.kba.json file,
as described in "Security Questions and Self-Registration".

Additional Configuration
Security Questions and Self-Registration

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 126

You can prompt users to update their security questions. As these questions may be subject to risks,
you can set up IDM to prompt the user to update and/or add security questions, courtesy of the
selfservice-kbaUpdate.json file. For more information, see "Prompt to Update Security Questions".

Security Questions and Self-Registration
The user is prompted to enter answers to pre-configured or custom security questions, during the
self-registration process. These questions are used to help verify an identity when a user requests a
password reset. These questions do not apply for users who need username retrieval.

The template version of the selfservice.kba.json file includes minimumAnswersToDefine, which requires a
user to define at least that many security questions and answers, along with minimumAnswersToVerify,
which requires a user to answer (in this case), at least one of those questions when asking for a
password reset.
{
 "kbaPropertyName" : "kbaInfo",
 "minimumAnswersToDefine": 2,
 "minimumAnswersToVerify": 1,
 "questions" : {
 "1" : {
 "en" : "What's your favorite color?",
 "en_GB" : "What is your favourite colour?",
 "fr" : "Quelle est votre couleur préférée?"
 },
 "2" : {
 "en" : "Who was your first employer?"
 }
 }
}

You can change or add questions in JSON format, or if you're configuring user self-registration, you
can also edit these questions through the Admin UI. From the Admin UI, select Configure > User
Registration. Enable User Registration, select Options > Security Questions, and select the edit icon
to add, edit, or delete these questions.

Any change you make to the security questions under User Registration also applies to Password
Reset. To confirm, select Configure > Password Reset. Enable Password Reset, and edit the Security
Questions. You'll see the same questions there.

In addition, individual users can configure their own questions and answers:

• During the user self-registration process.

• From the End User UI, in the user's Profile section (), under Account Security > Security
Questions.

Important

A managed user's security questions can only be changed through the selfservice/userupdate endpoint, or
when the user is created through selfservice/registration, and provides their own questions. You cannot
manipulate a user's kbaInfo property directly through the managed/user endpoint.

Additional Configuration
Security Questions and Self-Registration

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 127

When the answers to security questions are hashed, they are converted to lowercase. If you intend to pre-
populate answers with a mapping, the openidm.hash function, or the secureHash mechanism, you must provide
the string in lowercase to match the value of the answer.

KBA Answer Hashing

By default, KBA answers are SHA-256 hashed upon save. To specify another type of hashing, edit
the self-service KBA configuration (You can edit the self-service KBA configuration over REST at the config/selfservice.kba
endpoint, or directly in the conf/selfservice.kba.json file.):

+ Using the Filesystem

Add the secureHash property to the conf/selfservice.kba.json file:
"secureHash" : {
 "algorithm": "{type}",
 "configProp": value
}

For example, to use BCRYPT hashing:
"secureHash": {
 "algorithm": "BCRYPT",
 "cost": 13
}

+ Using REST

1. Get the current self-service KBA configuration (You can edit the self-service KBA configuration over REST at
the config/selfservice.kba endpoint, or directly in the conf/selfservice.kba.json file.):

Additional Configuration
Security Questions and Self-Registration

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 128

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/config/selfservice.kba"
{
 "_id": "selfservice.kba",
 "kbaPropertyName": "kbaInfo",
 "minimumAnswersToDefine": 2,
 "minimumAnswersToVerify": 1,
 "questions": {
 "1": {
 "en": "What's your favorite color?",
 "en_GB": "What is your favourite colour?",
 "fr": "Quelle est votre couleur préférée?"
 },
 "2": {
 "en": "Who was your first employer?"
 }
 }
}

2. Add the secureHash property for the alternative hashing, and replace the self-service KBA
configuration (You can edit the self-service KBA configuration over REST at the config/selfservice.kba endpoint, or
directly in the conf/selfservice.kba.json file.). For example, to use BCRYPT hashing:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PUT \
--data '{
 "_id": "selfservice.kba",
 "kbaPropertyName": "kbaInfo",
 "minimumAnswersToDefine": 2,
 "minimumAnswersToVerify": 1,
 "questions": {
 "1": {
 "en": "What'\''s your favorite color?",
 "en_GB": "What is your favourite colour?",
 "fr": "Quelle est votre couleur préférée?"
 },
 "2": {
 "en": "Who was your first employer?"
 }
 },
 "secureHash": {
 "algorithm": "BCRYPT",
 "cost": 13
 }
}' \
"http://localhost:8080/openidm/config/selfservice.kba"
{
 "_id": "selfservice.kba",
 "kbaPropertyName": "kbaInfo",
 "minimumAnswersToDefine": 2,

Additional Configuration
KBA Attempts Account Lockout

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 129

 "minimumAnswersToVerify": 1,
 "questions": {
 "1": {
 "en": "What's your favorite color?",
 "en_GB": "What is your favourite colour?",
 "fr": "Quelle est votre couleur préférée?"
 },
 "2": {
 "en": "Who was your first employer?"
 }
 },
 "secureHash": {
 "algorithm": "BCRYPT",
 "cost": 13
 }
}

Supported Hashing Algorithms and Configuration Properties

Algorithm Config Property and Description
BCRYPT cost - Value between 4 and 31. Default is 13.
PBKDF2 hashLength - Byte-length of the generated hash. Default is 16.

iterations - Number of cryptographic iterations. Default is 20000.

hmac - HMAC algorithm. Default is SHA3-256.
SCRYPT hashLength - Byte-length of the generated hash, must be greater

than or equal to 8. Default is 16.

n - CPU/Memory cost parameter. Must be greater than 1, a power
of 2, and less than 2^(128 * r / 8). Default is 32768.

p - Parallelization parameter. Must be a positive integer less than
or equal to Integer.MAX_VALUE / (128 * r * 8). Default is 1.

r - Block size. Must be greater than or equal to 1. Default is 8.
SHA-256 This is the default hashing.
SHA-384 N/A
SHA-512 N/A

KBA Attempts Account Lockout

To configure account lockout based on the security questions, add the following lines to your
selfservice.kba.json file:
"numberOfAttemptsAllowed" : 2,
"kbaAttemptsPropertyName" : "lockoutproperty"

Additional Configuration
Prompt to Update Security Questions

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 130

With this configuration, users who make more than two mistakes in answering security questions
are prevented from using the password reset facility until the kbaAttemptsPropertyName field is removed,
or the number is set to a value lower than the numberOfAttemptsAllowed. The number of mistakes is
recorded in whatever property you assign to kbaAttemptsPropertyName (lockoutproperty, in this example).

If you are using an explicit mapping for managed user objects, you must add this lockoutproperty to
your database schema and to the objectToColumn mapping in your repository configuration file.

For example, the previous configuration would require the following addition to your conf/
repo.jdbc.json file:
"explicitMapping" : {
 "managed/user": {
 "table" : "managed_user",
 "objectToColumn": {
 ...
 "lockoutproperty" : "lockoutproperty",
 ...
 }

You would also need to create a lockoutproperty column in the openidm.managed_user table, with datatype
VARCHAR. For example:
mysql> show columns from managed_user;

+----------------------+--------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+----------------------+--------------+------+-----+---------+-------+
objectid	varchar(38)	NO	PRI	NULL	
rev	varchar(38)	NO		NULL	
username	varchar(255)	YES	UNI	NULL	
password	varchar(511)	YES		NULL	
accountstatus	varchar(255)	YES	MUL	NULL	
postalcode	varchar(255)	YES		NULL	
lockoutproperty	varchar(255)	YES		NULL	
...

Warning

Once you deploy these IDM self-service features, you should never remove or change existing security
questions, as users may have included those questions during the user self-registration process.

Prompt to Update Security Questions

IDM supports a requirement for users to update their security questions, in the selfservice-
kbaUpdate.json file. You can find this file in the following directory: /path/to/openidm/samples/example-
configurations/self-service.

Alternatively, if you set up security questions from the Admin UI, you can navigate to Configure
> Security Questions > Update Form, and select Enable Update. This action adds a selfservice-
kbaUpdate.json file to your project's conf/ subdirectory.

Additional Configuration
Add Custom Policies for Self-Registration and Password Reset

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 131

For more information on this configuration file, see "Conditional User Stage".

Add Custom Policies for Self-Registration and Password Reset
IDM defines policies for usernames and passwords, in the openidm/bin/defaults/script/policy.js file. To
enforce these policies for user self-registration and password reset, add the following objects to your
conf/policy.json file, under resources:
{
 "resource" : "selfservice/registration",
 "calculatedProperties" : {
 "type" : "text/javascript",
 "source" : "require('selfServicePolicies').getRegistrationProperties()"
 }
},
{
 "resource" : "selfservice/reset",
 "calculatedProperties" : {
 "type" : "text/javascript",
 "source" : "require('selfServicePolicies').getResetProperties()"
 }
},

Self-Service End User UI
This chapter includes the steps that you would take to verify functionality from an end user point of
view. Some of the options described in this chapter can be used to help support compliance with the
General Data Protection Regulation (GDPR).

For information about customizing the End User UI, see the Github repository: ForgeRock/end-user-
ui.

Localizing the End User UI

The End User UI is configured in US English. For more information on how to localize and modify the
messages in the End User UI, see the following section of the ForgeRock Identity Management (End
User) repository on " Translations and Text".

Change the End User UI Path

By default, the End User UI is registered at the root context and is accessible at the URL https://
localhost:8443. To specify a different URL, edit the project-dir/conf/ui.context-enduser.json file, setting
the urlContextRoot property to the new URL.

For example, to change the End User UI URL to https://localhost:8443/exampleui, edit the file as
follows:

https://github.com/ForgeRock/end-user-ui
https://github.com/ForgeRock/end-user-ui
https://github.com/ForgeRock/end-user-ui

Additional Configuration
Provide a Logout URL to External Applications

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 132

"urlContextRoot" : "/exampleui",

Alternatively, to change the End User UI URL in the Admin UI, follow these steps:

1. Log in to the Admin UI.

2. Select Configure > System Preferences, and select the Self-Service UI tab.

3. Specify the new context route in the Relative URL field.

Provide a Logout URL to External Applications

By default, an End User UI session is invalidated when a user clicks on the Log out link. In certain
situations, external applications might require a distinct logout URL to which users can be routed, to
terminate their UI session.

The logout URL is #logout, appended to the UI URL; for example, https://localhost:8443/#logout/.

The logout URL effectively performs the same action as clicking on the Log out link of the UI.

Privacy: My Account Information in the End User UI

While end users can find their information in the End User UI, you can use REST calls and audit
logs to find the same information. Some of the information in this section, such as Trusted Devices
and UMA-based sharing, might require integration with ForgeRock Access Management (AM), as
described in the Platform Setup Guide.

What the enduser sees upon log in to the End User UI depends on which features are configured.

• When you log in to the End User UI, you'll be taken to the IDM Profile page (), with at least the
following information under settings:

• Account Security

• Preferences

• Account Controls

• You'll see at least a Dashboard () and a Profile icon () in the left hand pane. If you've configured
UMA as described in "Configure UMA, Trusted Devices, and Privacy", you'll also see a Sharing icon
(). To see descriptions with each icon, select the Menu icon ():

https://backstage.forgerock.com/docs/platform/7.1/platform-setup-guide/index.html

Additional Configuration
Privacy: My Account Information in the End User UI

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 133

Icons in the End User UI

• When you add features described earlier in this chapter, you'll see additional options in the profile
page, as described in the following table:

Information in the End User Profile Page

Title Description Section
Account Security Password and

Security Questions,
default

"Configure Security Questions"

Social Sign-in Links to Social
Identity Provider
Accounts

"Social Registration"

Authorized
Applications

Applications that
can access an
account

"Authorized Applications"

Trusted Devices Based on system
and browser

"Configuring Trusted Devices on IDM"

Preferences Default "Configure User Preferences"
Personal Data
Sharing

Provides control "Personal Data Sharing"

Account Controls Includes collected
account data
(Default)

"Account Controls"

Personal Information

End users can find their account details in the End User UI, by selecting the Profile icon () > Edit
Personal Info. By default, user information includes at least the following properties: Username, First
Name, Last Name, and Email Address.

Additional Configuration
Privacy: My Account Information in the End User UI

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 134

Each user can modify this information as needed, as long as "userEditable" : true for the property in
your project's managed.json file. For more information, see "Create and Modify Object Types" in the
Object Modeling Guide.

Sign-In & Security
Under this tab, end users can change their passwords. They can also add, delete, or modify security
questions, and link or unlink supported social identity accounts. For more information, see "Configure
Security Questions" and "Social Registration".

Preferences
The preferences tab allows end users to modify marketing preferences, as defined in the managed.json
file, and the Managed Object User property Preferences tab. For more information, see "Configure
User Preferences".

End users can toggle marketing preferences. When IDM includes a mapping to a marketing
database, these preferences are sent to that database. This can help administrators use IDM to target
marketing campaigns and identify potential leads.

Trusted Devices
A trusted device uses AM's Device ID (Match) and Device ID (Save) authentication modules, as
described in the AM Authentication and Single Sign-On Guide. When such modules are configured
(see "Configuring Trusted Devices on IDM"), end users can add such devices the first time they log in
from a new location.

During the login process, when an end user selects Log In, that user is prompted for a Trusted Device
Name. Users see their added devices under the Trusted Devices tab.

A trusted device entry is paired with a specific browser on a specific system. The next time the same
end user logs in from the same browser and system, in the same location, that user should not be
prompted to enter a trusted device again.

End users can remove their trusted devices from the tab.

Authorized Applications
The Authorized Applications section is specific to end users as OAuth 2 clients. and reflects the
corresponding section of the AM Self-Service dashboard, as described in the following section of the
AM OAuth 2.0 Guide on: User Consent Management.

Personal Data Sharing
This section assumes that as an administrator, you've followed the instructions in "Configure Privacy
and Consent" to enable Privacy & Consent.

https://backstage.forgerock.com/docs/am/7.1/authentication-guide
https://backstage.forgerock.com/docs/am/7.1/oauth2-guide/#oauth2-user-consent

Additional Configuration
Privacy: My Account Information in the End User UI

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 135

End users who see a Personal Data Sharing section have control of whether personal data is shared
with an external database, such as one that might contain marketing leads.

The managed object record for end users who consent to sharing such data is shown in REST output
and the audit activity log as one consentedMappings object:
"consentedMappings" : [{
 "mapping" : "managedUser_systemLdapAccounts",
 "consentDate" : "2017-08-25T18:13:08.358Z"
}

If enabled, end users will see a Personal Data Sharing section in their profiles. If they select the Allow
link, they can see the data properties that would be shared with the external database.

This option supports the right to restrict processing of user personal data.

Account Controls

The Account Controls section allows end users to download their account data (in JSON format), and
to delete their accounts from IDM.

Important

When end users delete their accounts, the change is propagated to external systems by implicit sync. However,
it is then up to the administrator of the external system to make sure that any additional user information is
purged from that system.

To modify the message associated with the Delete Your Account option, refer to the section about
Translations in the README of the public ForgeRock Identity Management (End User) Git repository.
Find the translation.json file, search for the deleteAccount code block, and edit the information.

The options shown in this section can help meet requirements related to data portability, as well as
the right to be forgotten.

https://github.com/ForgeRock/end-user-ui

Custom Self-Service Stages
Sample Stage

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 136

Chapter 8

Custom Self-Service Stages
This chapter demonstrates how to build, deploy, and configure a custom stage, and how to add it to
a self-service process. You can use the classes in the sample project as a basis to develop your own
stages.

To implement a custom stage in the End User UI, see the following instructions from the ForgeRock
End User UI Git Repository: How to Add a Self-Service Stage to the UI.

Sample Stage
ForgeRock provides a sample custom stage project with the minimum classes and project file
required for any self-service stage. The sample project has a dependency on the forgerock-selfservice-
core artifact. Engage ForgeRock support for access to the required repositories.

The sample project implements a stage named MathProblem, which generates a simple math problem
that must be completed in order to progress to the next stage.

The project includes the following files, required for any custom self-service stage:

A Maven project file (pom.xml)

Pay particular attention to the maven-bundle-plugin in this file:

<plugins>
 <plugin>
 <groupId>org.apache.felix</groupId>
 <artifactId>maven-bundle-plugin</artifactId>
 <extensions>true</extensions>
 <configuration>
 <instructions>
 <Fragment-Host>org.forgerock.openidm.selfservice</Fragment-Host>
 </instructions>
 </configuration>
 </plugin>
</plugins>

This plugin indicates that Apache Felix should attach the custom stage artifact to IDM’s self-
service bundle.

A configuration class

(src/main/java/org/forgerock/selfservice/custom/MathProblemStageConfig.java)

https://github.com/ForgeRock/end-user-ui#how-to-add-a-self-service-stage-to-the-ui

Custom Self-Service Stages
Creating a Configuration for the Sample Stage

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 137

The configuration class reads configuration data from a corresponding configuration (JSON) file.
The class represents each configuration item for the stage as properties of the class.

An implementation class

(src/main/java/org/forgerock/selfservice/custom/MathProblemStage.java)

The implementation class is the main orchestration class for the stage.

Build the Sample Stage

To build the sample stage, you must have Apache Maven installed.

1. Clone the ForgeRock Selfservice Custom Stage repository.

2. Change to the root directory of the project you cloned:
cd /path/to/forgerock-selfservice-custom-stage

3. This version of IDM works with version 26.1.x of ForgeRock Commons. Locate the latest version
26.1.x tag:

a. List the latest tags for this version:
git tag --list | grep 26.1
26.1.0-20210407090058-81dd8fe
...
26.1.0-latest

b. Check out the latest version:
git checkout -b test tags/26.1.0-latest
Switched to a new branch 'test'

4. Build the sample stage:
mvn clean install

This build process creates the forgerock-selfservice-custom-stage/self-service/forgerock-selfservice -
custom-stage/target/forgerock-selfservice-custom-stage-version.jar file.

5. Copy the compiled stage to the openidm/bundle directory:
cp target/forgerock-selfservice-custom-stage-version.jar /path/to/openidm/bundle/

6. Restart IDM.

Creating a Configuration for the Sample Stage
To create a configuration for this stage, examine the configuration class (MathProblemStageConfig.java).
Three configuration properties must be specified in the corresponding configuration file:

https://maven.apache.org/install.html
https://stash.forgerock.org/projects/COMMONS/repos/forgerock-selfservice-custom-stage/

Custom Self-Service Stages
Testing the Custom Stage

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 138

• class

For the default IDM self-service stages, you specify the stage name in the configuration, in the format
"name" : "stage-name". For example:

"name" : "captcha"

For custom stages, you must specify the stage configuration class, in the format "class" : "stage_
config_classname". For example:

"class" : "org.forgerock.selfservice.custom.MathProblemStageConfig"

• leftValue

• rightValue

The configuration for this stage will therefore look something like the following:
{
 "class" : "org.forgerock.selfservice.custom.MathProblemStageConfig",
 "leftValue" : int,
 "rightValue" : int
},

Important

When you write a custom stage, the equals and hashCode methods must be overridden to include local class
members.

Testing the Custom Stage
Stages are implemented as part of a self-service process. For more information, see "The Self-Service
Process Flow". To test your custom stage, you need to add it to a self-service process. You can create
a new process, or use one of the default processes available through the Admin UI.

In this example, we add the custom stage to the User Registration process and test it as part of self-
registration, as follows:

1. In the Admin UI Select Configure > User Registration > Enable to enable user registration.

This step creates a selfservice-registration.json file in your project's conf directory. There are a
number of stages in that process by default, for example, the parameters stage:

Custom Self-Service Stages
Testing the Custom Stage

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 139

"stageConfigs" : [
 {
 "name" : "parameters",
 "parameterNames" : [
 "returnParams"
]
 },

...
]

2. Add your custom stage to the process by creating a configuration item in the stageConfigs array:
"stageConfigs" : [
 {
 "name" : "parameters",
 "parameterNames" : [
 "returnParams"
]
 },
 {
 "class" : "org.forgerock.selfservice.custom.MathProblemStageConfig",
 "leftValue" : 12,
 "rightValue" : 4
 },
...
]

Note that self-service stages can generally not be configured in random order. For example, some
stages require input from the process state that has been populated by a preceding stage. For the
purposes of this example, add the MathProblem stage directly after the parameters stage.

3. Disable all-in-one registration.

By default, the registration phase has all-in-one registration enabled. All-in-one registration
covers a number of registration stages. For the purposes of testing the custom stage, disable all-
in-one registration by setting "allInOneRegistration" : false in selfservice-registration.json. For
more information, see "All-In-One Registration".

4. Save the changes to the selfservice-registration.json file.

IDM reloads the configuration automatically—you do not need to restart the server.

5. Log in to the End User UI (at https://localhost:8443/ by default) and select Register.

The first stage to be displayed should be the Math Problem you configured previously.

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 140

Appendix A. Self-Service Stage Reference

This chapter describes the individual stages that can be called by a self-service process, the purpose
of the stage, any required parameters, dependencies on preceding or following stages, and the
expected stage output.

The stages are listed in alphabetical order, for ease of reference, but they cannot be configured
in random order. For example, some stages require input from the process state that has been
populated by a preceding stage.

The identityServiceURL is a required parameter for most self-service stages. The self-service stages
operate on a managed object. The identityServiceURL indicates the object type, for example, managed/
user.

All-In-One Registration
A registration process that consists of more than one stage can include an optional "super stage"
named allInOneRegistration, that is set outside of the stageConfigs array as follows:
"allInOneRegistration" : true

All-in-one registration covers a number of registration stages. If this property is true, in the
registration process configuration, IDM scans the configuration for any of the following stages:

• parameters

• captcha

• termsAndConditions

• kbaSecurityAnswerDefinitionStage

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 141

• consent

• idmUserDetails

If any of these stages are found, the individual stages are effectively removed from the configuration,
and a new configuration is generated that accumulates all the found stages.

The purpose of all-in-one registration is to obtain a set of initial requirements, then to advance to the
end of all six stages simultaneously. This lets self-registration be completed on a single registration
form. As the process advances, it gathers any output, errors, and others from all six stages (or
however many stages have been configured). The process then returns whatever was gathered from
the cumulative stages, including any outstanding requirements. Depending on the output, the process
might be required to go through the stages more than once, as the outstanding requirements are
provided.

Important

All-in-one registration requires multiple registration stages. If your registration process includes only one stage,
for example, consent, allInOneRegistration must be set to false, to preserve the registration flow.

If all-in-one registration is false, any additional stages listed in the registration process (selfservice-
registration.json) must be listed after the parameters and idmUserDetails stages. If a stage occurs before the
idmUserDetails stage without all-in-one registration, both social and regular registration will not work.

OpenAM Auto-Login Stage
This stage is used to perform auto-login when IDM is configured with ForgeRock Access Management
(AM). The stage is similar to the local auto-login stage, but also requires the returnParams stored in
state (populated in the Parameters Stage).

Example configuration

{
 "name" : "openAmAutoLogin",
 "identityUsernameField": "userName",
 "identityPasswordField": "password",
 "openAMBaseUrl" : "http://AM.example.com:8080/openam/",
 "authenticationEndpoint" : "json/realms/root/authenticate"
}

Dependencies

This stage should appear towards the end of a process—it cannot be the first stage in a process.

Required Parameters

• authenticationEndpoint - the AM Authentication Endpoint URL.

• openAMBaseUrl - the URL of the AM server.

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 142

• identityUsernameField - the managed object property that contains the username.

• identityPasswordField - the managed object property that contains the user password.

Attribute Collection Stage
The purpose of this stage is to collect managed object properties to insert into the user profile. The
list of properties to be collected is defined as part of the configuration.

This stage updates the managed object directly, and checks whether attributes are required. If
required attributes are not provided, the stage returns the list of requirements again. This stage can
throw an exception if there is an error attempting to save the updated attributes.

Example configuration

{
 "name" : "attributecollection",
 "identityServiceUrl" : "managed/user",
 "uiConfig" : {
 "displayName" : "Add your telephone number",
 "purpose" : "Help us verify your identity",
 "buttonText" : "Save"
 },
 "attributes" : [
 {
 "name" : "telephoneNumber",
 "isRequired" : true
 }
]
}

Dependencies

No dependencies on previous or following stages. This stage can occur anywhere in a process.

Required Parameters

• identityServiceUrl - the managed object type on which this stage acts

• uiConfig - how the requirements list is conveyed to an end user

• attributes - the array of attributes to be collected. For each attribute, the isRequired parameter
indicates whether the attribute is mandatory for the stage to proceed.

Captcha Stage
This stage verifies a response variable populated in state by the reCaptcha mechanism. If the response
is missing, or if validation fails (typically, if the configuration does not include the required reCaptcha
configuration parameters), the stage throws a bad request exception. If validation succeeds, the
process advances to the next stage.

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 143

Example configuration

{
 "name" : "captcha",
 "recaptchaSiteKey" : "6LdahVIUAAAAAJcwGTWdl4OsG9tpdgFIyZKUSzyU",
 "recaptchaSecretKey" : "6LdahVIUAAAAANF-O17E-b8PyBqLrhLaOHUX8ch-",
 "recaptchaUri" : "https://www.google.com/recaptcha/api/siteverify"
},

Dependencies

No dependencies on previous or following stages. This stage can occur anywhere in a process.

Required Parameters

• recaptchaSiteKey - invokes the reCAPTCHA service

• recaptchaSecretKey - authorizes communication between IDM and the reCAPTCHA server to verify
the user's response

• recaptchaUri - the reCaptcha verification API

Conditional User Stage
Defines a condition, that results in a boolean (true or false). The outcome of the condition determines
which stage should be executed next.

Example configuration

{
 "name": "conditionaluser",
 "identityServiceUrl": "managed/user",
 "condition": {
 "type": "kbaQuestions"
 },
 "evaluateConditionOnField": "user",
 "onConditionFalse": {
 "name": "kbaUpdateStage",
 "kbaConfig": null,
 "identityServiceUrl" : "managed/user",
 "uiConfig" : {
 "displayName" : "Update your security questions",
 "purpose" : "Please review and update your security questions",
 "buttonText" : "Update"
 }
 }
}

Dependencies

No dependencies on previous or following stages. This stage can occur anywhere in a process. If
the condition evaluates to true, the process moves on to the next stage.

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 144

Required Parameters

• identityServiceUrl - the managed object type on which this stage acts.

• condition - the condition type, which can be one of the following:

• kbaQuestions - a boolean (true or false) that indicates whether configured security questions
have been answered.

• queryFilter - a common filter expression such as "filter" : "/co eq \"US\"".

• script - lets you configure a custom scripted condition.

• loginCount - a condition based on the number of password or social authentication-based login
requests.

• terms - a boolean (true or false) that indicates whether configured Terms and Conditions have
been accepted.

• timesincelogin - sets a condition based on the period of time since the last login, in years,
months, weeks, days, hours, and minutes.

• evaluateConditionOnField - the property on which the condition should be evaluated.

• onConditionFalse - the details of the stage to be called if the condition evaluates to false.

Consent Stage
This stage evaluates a boolean consentGiven (true or false). The user is prompted to consent for each
mapping that is set to require consent. If consent is required but not given, the stage fails with an
exception. It is up to the client to handle that exception, for example, to prevent registration if the
user does not provide consent.

Dependencies

No dependencies on previous or following stages. This stage can occur anywhere in a process.

Required Parameters

• None.

Email Validation Stage
This stage retrieves the email address from state (or in response to initial requirements), then verifies
the validity of the email address with the user who submitted the requirements through an email
process.

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 145

Example configuration

{
 "name" : "emailValidation",
 "identityEmailField" : "mail",
 "emailServiceUrl" : "external/email",
 "emailServiceParameters" : {
 "waitForCompletion" : false
 },
 "from" : "info@admin.org",
 "subject" : "Reset password email",
 "mimeType" : "text/html",
 "subjectTranslations" : {
 "en" : "Reset your password",
 "fr" : "Réinitialisez votre mot de passe"
 },
 "messageTranslations" : {
 "en" : "Click to reset your password Password reset link",
 "fr" : "Cliquez pour réinitialiser votre mot de passeMot de passe lien de
 réinitialisation"
 },
 "verificationLinkToken" : "%link%",
 "verificationLink" : "https://localhost:8443/#/passwordreset/"
},

Dependencies

This stage expects a preceding stage to populate the user email address in state. The stage has no
downstream dependencies.

Required Parameters

• Email configuration. For more information, see "Configuring Emails for Self-Service
Registration".

IDM User Details Stage
This stage collects new user data and stores it in state. This is the only stage that sets up a user from
nothing. The stage does not create a managed object directly—it simply gathers and stores the data.
The Self-Registration Stage consumes the stored user data and creates the managed object from it.

The IDM User Details stage executes multiple times, requesting additional requirements each time.
There are different ways for the stage to advance, depending on how the user create request is
initiated.

If the user completes a self-service registration form, the input contains a user object, collected from
the form, and populates that user in state. If the user registers through social authentication, the
stage reads the profile from the remote identity provider, normalizes it, then maps it to a user object.
That user object is then put into state.

If the new user object in state is incomplete or does not meet policy requirements, the stage returns
a new set of requirements, indicating the collected data and the missing data. The registering user is

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 146

requested to submit the additional data, then the stage revalidates the object in state. When all of the
required data to register a user is present, the process advances to the next stage.

Important

The user data remains in state—no managed user object is created.

Example configuration

{
 "name" : "idmUserDetails",
 "identityEmailField" : "mail",
 "socialRegistrationEnabled" : true,
 "identityServiceUrl" : "managed/user",
 "registrationProperties" : [
 "userName",
 "givenName",
 "sn",
 "mail"
],
 "registrationPreferences": ["marketing", "updates"]
},

Dependencies

This stage must occur in any registration process. It has no dependencies on previous stages
but must have the Self-Registration Stage somewhere downstream in the process, to create the
managed user object.

Required Parameters

• identityEmailField - the attribute on the managed user object that contains the user email.

• identityServiceUrl - the managed object type on which this stage acts.

• socialRegistrationEnabled - optional, false if not specified. Indicates whether the stage must read
the user profile from a remote identity provider and normalize it.

• registrationProperties - an array of properties that must be provided by a registering user in
order for the stage to progress.

• registrationPreferences - optional, an array of properties that can be requested after the user has
provided the required properties.

KBA Security Answer Definition Stage
In the context of registration, this stage supplies security questions to the user and captures the
answers provided by the user.

The stage validates any answers against the user object. If the requirement is not met (incorrect
number of questions answered correctly), the stage throws a bad request exception and increments

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 147

the failure count of the managed user. If the requirement is met (correct number of questions
answered correctly), the process advances to the next stage.

This stage also disallows users from entering custom questions that duplicate any questions defined
by the administrator, regardless of the locale. It does this comparison by removing any special
characters and making a lowercase comparison. For example, What Is YoUr FaVorite COLOR???? would be
evaluated as the same question as what is your favorite color?.

Example configuration

{
 "name" : "kbaSecurityAnswerDefinitionStage",
 "kbaConfig" : null
},

Dependencies

The stage depends on a previous stage to populate the user ID in state. It has no dependencies on
following stages.

Required Parameters

• kbaConfig - reads the KBA configuration from the corresponding selfservice.kba.json file.

KBA Security Answer Verification Stage
This stage verifies security answers and validates user lockout. The stage requires a user ID in state.

The stage reads the user object and validates that the user has not already failed to answer the
security questions. The stage then obtains the configured security questions, and returns the
minimum number of randomly selected questions as a requirement.

The stage validates any answers against the user object. If the requirement is not met (incorrect
number of questions answered correctly) the stage throws a bad request exception and increments
the failure count of the managed user. If the requirement is met (correct number of questions
answered correctly) the process advances to the next stage.

Example configuration

{
 "name" : "kbaSecurityAnswerDefinitionStage",
 "kbaConfig" : null
},

Dependencies

The stage depends on a previous stage to populate the user ID in state. It has no dependencies on
following stages.

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 148

Required Parameters

• kbaConfig - reads the KBA configuration from the corresponding selfservice.kba.json file.

KBA Update Stage
The KBA Update stage is used as part of progressive profile completion to let users update
their existing security questions and to add any additional questions that are needed. This stage
updates the user object directly. If a user fails to provide sufficient questions, the stage returns
the requirements again. If the object cannot be updated, the stage throws an exception. The stage
outputs nothing to the state and has no downstream dependencies.

Example configuration

{
 "name": "kbaUpdateStage",
 "kbaConfig": null,
 "identityServiceUrl" : "managed/user",
 "uiConfig" : {
 "displayName" : "Update your security questions",
 "purpose" : "Please review and update your security questions",
 "buttonText" : "Update"
 }
}

Dependencies

No dependencies on previous or following stages. This stage can occur anywhere in a process. If
the condition evaluates to true, the process moves on to the next stage.

Required Parameters

• kbaConfig - returns the minimum number of security questions that must be provided.

• identityServiceUrl - the managed object type on which this stage acts.

• uiConfig - how the requirements are conveyed to an end user.

Local Auto-Login Stage
This stage is used to perform auto-login with IDM. The stage obtains the OAuth Login from state, and
populates the user object (username and password) in state.

The stage adds the OAuth login to the successAdditions (with a value of true) and adds the successURL
from its own configuration. If IDM can obtain all those details from state, it takes the user object,
locates the username and password, and generates a CREDENTIAL_JWT. That JWT is then placed in the
successAdditions parameter.

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 149

If IDM is unable to generate the CREDENTIAL_JWT, it generates an internal server error (500).

Example configuration

{
 "name" : "localAutoLogin",
 "successUrl" : "",
 "identityUsernameField": "userName",
 "identityPasswordField": "password"
}

Dependencies

This stage should appear towards the end of a process—it cannot be the first stage in a process.

Required Parameters

• successURL - the URL to which an end user should be redirected following successful registration.

• identityUsernameField - the managed object property that contains the username.

• identityPasswordField - the managed object property that contains the user password.

Parameters Stage
This stage captures parameters in the original request. To advance, the stage assesses the input
body. Any values that have been passed in and are listed in the configuration are put into state. The
stage ignores any values that are not listed in the configuration. The self-service mechanism passes
the parameters back to the client at the end of the process.

By default, this stage is required only if you are integrating IDM with AM. The stage is added
automatically if you use the UI to configure a self-service process, but can generally be ignored
unless a custom client or UI requires it.

Example configuration

{
 "name" : "parameters",
 "parameterNames" : [
 "returnParams"
]
}

Dependencies

In all of the default IDM self-service processes, this must be the first stage in the process. In a
custom process, the stage has no order dependencies, and can occur anywhere in a process. All
this stage does is to copy named parameters into successAdditions for the process to output at
tag:end.

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 150

Required Parameters

• parameterNames - a list of parameters the stage supports. These parameters are returned in the
requirements.

Patch Object Stage
Currently, this stage is used only to patch the managed object with the terms and conditions
acceptance obtained from state. If the terms and conditions state is not present, the stage simply
advances to the next stage in the process.

Example configuration

{
 "name" : "patchObject",
 "identityServiceUrl" : "managed/user"
}

Dependencies

This stage requires the Terms and Conditions Stage to have preceded it. It can be followed by any
stage and can occur anywhere in a process.

Requirements

• identityServiceUrl - the managed object type on which this stage acts.

Password Reset Stage
This stage updates the managed object directly, changing the value of the configured
identityPasswordField. To gather the initial requirements, the stage reads the managed user object, and
checks that the email and userID of the object match what is in state. If they do not match, the stage
exits with a Bad request exception.

If they do match, the stage returns with its requirements (the new password value). When the
requirements are submitted, the stage advances, locates the userId again, and applies the new
password. If the password is empty, the stage throws an exception. If the password is valid, the stage
patches the managed user object directly to update the password. If the patch fails, the stage returns
the requirements again, along with an error message (for example, a password policy requirement).

Example configuration

{
 "name" : "resetStage",
 "identityServiceUrl" : "managed/user",
 "identityPasswordField" : "password"
}

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 151

Dependencies

This stage cannot be the first stage in a process. It expects a previous stage to populate the userId
and mail attributes of the user in state.

Required Parameters

• identityServiceUrl - the managed object type on which this stage acts.

• identityPasswordField - the managed object property that contains the user password.

Self-Registration Stage
This is currently the final stage in the default user registration process. The stage obtains all the user
details from state. When the stage advances, it checks state for any idpdata, combines that with the
user data, and creates the managed user object. This stage must occur in any registration process.

Note

If you are integrating IDM with AM, the OpenAM Auto-Login Stage can follow this stage.

Example configuration

{
 "name" : "selfRegistration",
 "identityServiceUrl" : "managed/user"
},

Dependencies

This stage must come after a stage that has populated the user in state. If the user is absent, the
stage exits with an illegal argument exception.

Required Parameters

• identityServiceUrl - the managed object type that the stage creates.

Social User Claim Stage
This stage enables an existing managed user to claim a social identity. The stage obtains a CLIENT_
TOKEN from some social identity provider. That token includes the following data:

• OAuth token

• Identity provider name

• Renewal token

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 152

• Expiration date

Using the CLIENT_TOKEN, the stage retrieves the user profile from the social identity provider and
normalizes the profile into a user object (using the regular normalization mapping for social identity
providers). For more information on this mapping, see "Many Social Identity Providers, One Schema".

If the stage is unable to retrieve the user profile, or unable to normalize it using the mapping, it exits
with an exception. It does not return any missing requirements.

When the user profile has been normalized, the stage attempts to identify any existing managed
users that match the profile. If there are no matches, it simply advances to the next stage in the
process. If it finds a match, it extracts the existing managed object and returns that as a new set of
requirements.

The new requirement is that the user must provide their password, either their managed/user
password, or the password to another social identity provider, if they registered through a separate
identity provider.

The stage then does the following:

• Verifies the login

• Creates a managed/idp object for the user

• Establishes a relationship between the managed object and the idp object

• Puts OAUTH_LOGIN:true into state

• Puts a claimedProfile containing the URL of the managed object that was claimed into
successAdditions

Example configuration

{
 "name" : "socialUserClaim",
 "identityServiceUrl" : "managed/user",
 "claimQueryFilter" : "/mail eq \"{{mail}}\""
},

Dependencies

This stage has no dependencies on previous or subsequent stages and can occur anywhere in a
process.

Required Parameters

• identityServiceUrl - the managed object type against which the stage verifies the profile.

• claimQueryFilter - the query filter that is used to locate the managed object from the social
identity provider profile.

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 153

Notice the double-brace notation in preceding example "claimQueryFilter" : "/mail eq
 \"{{mail}}\"". This notation indicates that the named property from the user object in state is
substituted for the double-braced value. In this example, {{mail}} would become the value of the
mail property of the user in state, such as bjensen@example.com, if that was in the user in state. You
can use this notation with any user property.

Terms and Conditions Stage
This stage evaluates a boolean accepted (true or false).

Example configuration

This stage is configured in a selfservice.terms.json file in the project conf directory and includes
the following parameters:
{
 "versions" : [
 {
 "version" : "1",
 "termsTranslations" : {
 "en" : "Sample terms and conditions"
 },
 "createDate" : "2018-04-10T09:52:25.478Z"
 }
],
 "uiConfig" : {
 "displayName" : "We have updated our terms",
 "purpose" : "To proceed, accept these terms",
 "buttonText" : "Accept"
 },
 "active" : "1"
}

The stage can stand on its own (as it does in the default registration configuration) or be called
from the Conditional User Stage with a configuration similar to the following:
{
 "name" : "conditionaluser",
 "identityServiceUrl" : "managed/user",
 "condition" : {
 "type" : "terms"
 },
 "evaluateConditionOnField" : "user",
 "onConditionTrue" : {
 "name" : "termsAndConditions"
 }
},

Dependencies

Configured as part of the Conditional User Stage. Must have the Patch Object Stage somewhere
downstream. This stage can occur anywhere in a process.

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 154

Requirements

Requires Terms and Conditions to be accepted before continuing to the next stage:

• If accept is absent, the stage returns the requirements again.

• If accept is present but false, the stage generates an exception. It is up to the client to handle
that exception.

• If accept is true, this stage puts all the outputs into state and advances to the next stage.

Outputs

TERMS_ACCEPTED, TERMS_DATE, and TERMS_VERSION

User Query Stage
This stage queries the managed user repository for a user, based on the supplied query fields. If the
stage identifies a user, it populates the mail, userId, userName, and accountStatus fields in state.

Example configuration

{
 "name" : "userQuery",
 "validQueryFields" : [
 "userName",
 "mail",
 "givenName",
 "sn"
],
 "identityIdField" : "_id",
 "identityEmailField" : "mail",
 "identityUsernameField" : "userName",
 "identityServiceUrl" : "managed/user",
 "identityAccountStatusField" : "accountStatus"
},

Dependencies

This stage has no dependencies on preceding or following stages, but cannot be the only stage in
a process.

Required Parameters

• validQueryFields - an array of fields on which the query can be based.

• identityIdField - the managed object property that contains the user ID to be provided to state.

• identityEmailField - the managed object property that contains the user mail to be provided to
state.

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 155

• identityUsernameField - the managed object property that contains the username to be provided
to state.

• identityAccountStatusField - the managed object property that contains the user account status to
be provided to state.

• identityServiceUrl - the managed object type on which this stage acts.

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 156

IDM Glossary

correlation query A correlation query specifies an expression that matches existing
entries in a source repository to one or more entries in a target
repository. A correlation query might be built with a script, but it
is not the same as a correlation script. For more information, see
"Correlating Source Objects With Existing Target Objects" in the
Synchronization Guide.

correlation script A correlation script matches existing entries in a source repository,
and returns the IDs of one or more matching entries on a target
repository. While it skips the intermediate step associated with a
correlation query, a correlation script can be relatively complex, based
on the operations of the script.

entitlement An entitlement is a collection of attributes that can be added to a user
entry via roles. As such, it is a specialized type of assignment. A user or
device with an entitlement gets access rights to specified resources.
An entitlement is a property of a managed object.

JCE Java Cryptographic Extension, which is part of the Java Cryptography
Architecture, provides a framework for encryption, key generation,
and digital signatures.

JSON JavaScript Object Notation, a lightweight data interchange format
based on a subset of JavaScript syntax. For more information, see the
JSON site.

JSON Pointer A JSON Pointer defines a string syntax for identifying a specific value
within a JSON document. For information about JSON Pointer syntax,
see the JSON Pointer RFC.

http://www.json.org
https://tools.ietf.org/html/rfc6901

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 157

JWT JSON Web Token. As noted in the JSON Web Token draft IETF Memo,
"JSON Web Token (JWT) is a compact URL-safe means of representing
claims to be transferred between two parties." For IDM, the JWT is
associated with the JWT_SESSION authentication module.

managed object An object that represents the identity-related data managed by IDM.
Managed objects are configurable, JSON-based data structures that
IDM stores in its pluggable repository. The default configuration of
a managed object is that of a user, but you can define any kind of
managed object, for example, groups or roles.

mapping A policy that is defined between a source object and a target object
during reconciliation or synchronization. A mapping can also define a
trigger for validation, customization, filtering, and transformation of
source and target objects.

OSGi A module system and service platform for the Java programming
language that implements a complete and dynamic component model.
For more information, see What is OSGi? Currently, only the Apache
Felix container is supported.

reconciliation During reconciliation, comparisons are made between managed
objects and objects on source or target systems. Reconciliation can
result in one or more specified actions, including, but not limited to,
synchronization.

resource An external system, database, directory server, or other source of
identity data to be managed and audited by the identity management
system.

REST Representational State Transfer. A software architecture style for
exposing resources, using the technologies and protocols of the World
Wide Web. REST describes how distributed data objects, or resources,
can be defined and addressed.

role IDM distinguishes between two distinct role types - provisioning roles
and authorization roles. For more information, see "Managed Roles"
in the Object Modeling Guide.

source object In the context of reconciliation, a source object is a data object
on the source system, that IDM scans before attempting to find a
corresponding object on the target system. Depending on the defined
mapping, IDM then adjusts the object on the target system (target
object).

synchronization The synchronization process creates, updates, or deletes objects on a
target system, based on the defined mappings from the source system.
Synchronization can be scheduled or on demand.

http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
https://www.osgi.org/resources/what-is-osgi/
http://felix.apache.org/
http://felix.apache.org/

Self-Service Reference ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2018-2020 ForgeRock AS. All rights reserved. 158

system object A pluggable representation of an object on an external system. For
example, a user entry that is stored in an external LDAP directory is
represented as a system object in IDM for the period during which
IDM requires access to that entry. System objects follow the same
RESTful resource-based design principles as managed objects.

target object In the context of reconciliation, a target object is a data object on the
target system, that IDM scans after locating its corresponding object
on the source system. Depending on the defined mapping, IDM then
adjusts the target object to match the corresponding source object.

	Self-Service Reference
	Table of Contents
	Overview
	Chapter 1. About User Self-Service
	The Self-Service Process Flow

	Chapter 2. Self-Registration
	Configure User Self-Registration
	Configure Self-Registration From the Admin UI
	Managing User Self-Registration Over REST

	Configure the User Self-Registration Form
	Configuring Emails for Self-Service Registration
	Configure User Preferences
	Reviewing Preferences as an End User
	User Preferences and Reconciliation

	Configure Multiple User Self-Registration Flows
	Example Self-Registration REST Requests

	Chapter 3. Social Registration
	OpenID Connect Authorization Code Flow
	Many Social Identity Providers, One Schema
	Amazon Social Identity Provider
	Set Up Amazon
	Configure an Amazon Social Identity Provider
	Configure User Registration to Link to Amazon
	Amazon Social Identity Provider Configuration Details

	Apple Social Identity Provider
	Apple Social Identity Provider Configuration Details

	Facebook Social Identity Provider
	Set Up Facebook
	Configure a Facebook Social Identity Provider
	Configure User Registration to Link to Facebook
	Facebook Social Identity Provider Configuration Details

	Google Social Identity Provider
	Set Up Google
	Configure a Google Social Identity Provider
	Configure User Registration to Link to Google
	Google Social Identity Provider Configuration Details

	Instagram Social Identity Provider
	Set Up Instagram
	Configure an Instagram Social Identity Provider
	Configure User Registration to Link to Instagram
	Instagram Social Identity Provider Configuration Details

	LinkedIn Social Identity Provider
	Set Up a LinkedIn App
	Configure a LinkedIn Social Identity Provider
	Configure User Registration With LinkedIn
	LinkedIn Social Identity Provider Configuration Details

	Microsoft Social Identity Provider
	Set Up Microsoft
	Configure a Microsoft Social Identity Provider
	Configure User Registration to Link to Microsoft
	Microsoft Social Identity Provider Configuration Details

	Salesforce Social Identity Provider
	Set Up Salesforce
	Configure a Salesforce Social Identity Provider
	Configure User Registration to Link to Salesforce
	Salesforce Social Identity Provider Configuration Details

	Twitter Social Identity Provider
	Set Up Twitter
	Configure Twitter as a Social Identity Provider
	Configure User Registration to Link to Twitter
	Twitter Social Identity Provider Configuration Details

	Setting Up Vkontakte as an IDM Social Identity Provider
	Set Up Vkontakte
	Configure a Vkontakte Social Identity Provider
	Configure User Registration to Link to Vkontakte
	Vkontakte Social Identity Provider Configuration Details

	WeChat Social Identity Provider
	Set Up WeChat
	Configure a WeChat Social Identity Provider
	Configure User Registration to Link to WeChat
	WeChat Social Identity Provider Configuration Details

	WordPress Social Identity Provider
	Set Up WordPress
	Configure a WordPress Social Identity Provider
	Configure User Registration to Link to WordPress
	WordPress Social Identity Provider Configuration Details

	Yahoo Social Identity Provider
	Set Up Yahoo
	Configure Yahoo as a Social Identity Provider
	Configure User Registration to Link to Yahoo
	Yahoo Social Identity Provider Configuration Details

	Custom Social Identity Provider
	Prepare IDM
	Set Up a Custom Social Identity Provider
	Configure a Custom Social Identity Provider
	Configure User Registration to Link to a Custom Provider
	Custom Social Identity Provider Configuration Details

	Configure the Social Providers Authentication Module
	Account Claiming: Links Between Accounts and Social Identity Providers
	When the Email Address is New
	When One User has the Same Email Address
	When Multiple Users have the Same Email Address
	The Process for End Users
	Reviewing Linked Accounts as an Administrator
	Reviewing Linked Accounts Over REST
	Reviewing Linked Accounts From the Admin UI

	Manage Social Identity Providers Over REST
	Test Social Identity Providers
	Scenarios When Registering With a Social ID
	Social Identity Widgets
	Social Identity Provider Button and Badge Properties

	Chapter 4. Progressive Profile
	Configure a Progressive Profile Completion Form
	Progressive Profile Completion Conditions
	Custom Progressive Profile Conditions

	Configuring Progressive Profile Completion Through the Admin UI

	The auth.profile.json File
	Progressive Profile Completion and Metadata
	Defining Overall Profile Completion

	REST Requests in a Progressive Profile Completion Process
	Viewing Profile Completeness

	Chapter 5. Password Reset
	User Password Reset Configuration Files
	Configuring Password Reset From the Admin UI

	Configuring Emails for Password Reset
	REST Requests in a Password Reset Process

	Chapter 6. Username Retrieval
	Username Retrieval Configuration
	Configuring Forgotten Username Retrieval From the Admin UI

	Configuring Emails for Forgotten Username
	REST Requests in a Forgotten Username Process

	Chapter 7. Additional Configuration
	Configure Notification Emails
	User Self-Registration Email Template
	Managing Email Templates from the Admin UI

	Configure Privacy and Consent
	Regulating HTTP Access to Personal Data
	Restricting HTTP Access to Sensitive Data

	Configure UMA, Trusted Devices, and Privacy
	User Managed Access in IDM
	Configuring Trusted Devices on IDM

	Terms & Conditions
	Terms & Conditions Configuration Files
	Preview Terms & Conditions as an End User
	Updating Terms & Conditions over REST
	Identifying When a User Accepts Terms & Conditions
	Configuring Terms & Conditions in the Admin UI

	Tokens and User Self-Service
	End User UI Notifications
	Configure Google reCAPTCHA
	Configure Identity Fields
	Configure Security Questions
	Security Questions and Self-Registration
	KBA Answer Hashing

	KBA Attempts Account Lockout
	Prompt to Update Security Questions

	Add Custom Policies for Self-Registration and Password Reset
	Self-Service End User UI
	Localizing the End User UI
	Change the End User UI Path
	Provide a Logout URL to External Applications
	Privacy: My Account Information in the End User UI
	Personal Information
	Sign-In & Security
	Preferences
	Trusted Devices
	Authorized Applications
	Personal Data Sharing
	Account Controls

	Chapter 8. Custom Self-Service Stages
	Sample Stage
	Creating a Configuration for the Sample Stage
	Testing the Custom Stage

	Appendix A. Self-Service Stage Reference
	All-In-One Registration
	OpenAM Auto-Login Stage
	Attribute Collection Stage
	Captcha Stage
	Conditional User Stage
	Consent Stage
	Email Validation Stage
	IDM User Details Stage
	KBA Security Answer Definition Stage
	KBA Security Answer Verification Stage
	KBA Update Stage
	Local Auto-Login Stage
	Parameters Stage
	Patch Object Stage
	Password Reset Stage
	Self-Registration Stage
	Social User Claim Stage
	Terms and Conditions Stage
	User Query Stage

	IDM Glossary

