
Security Guide
/ ForgeRock Identity Management 7.1

Latest update: 7.1.6

ForgeRock AS.
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2016-2021 ForgeRock AS.

Abstract

Guide to securing ForgeRock® Identity Management deployments.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© Copyright 2010–2020 ForgeRock, Inc. All rights reserved. ForgeRock is a registered trademark of ForgeRock, Inc. Other marks appearing herein may be trademarks of their respective owners.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, and distribution. No part of this product or document may be reproduced in any form by any means without prior
written authorization of ForgeRock and its licensors, if any.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESSED OR IMPLIED CONDITIONS, REPRESENTATIONS, AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, https://fontawesome.com/.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://fontawesome.com/
https://opensource.org/licenses/OFL-1.1

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. iii

Table of Contents
Overview ... iv
1. Secret Stores, Certificates and Keys ... 1

Configuring Secret Stores ... 1
Working With the Default Keystore ... 4
Using CA-Signed Certificates .. 7
Deleting Certificates .. 9
Removing Unused CA Certificates ... 9
Changing and Rotating Encryption Keys .. 10
Configuring IDM For a Hardware Security Module (HSM) Device 19

2. Secure Passwords ... 26
Enforcing Password Policy .. 26
Storing Separate Passwords Per Linked Resource ... 29
Generating Random Passwords ... 29
Modifying the password Property ... 30
Rate Limiting Emails ... 31

3. Secure Network Connections .. 32
Use TLS/SSL ... 32
Restrict REST Access to the HTTPS Port ... 32
Protect Sensitive REST Interface URLs ... 33
Enable HTTP Strict-Transport-Security .. 33
Restrict the HTTP Payload Size ... 34
Deploy Securely Behind a Load Balancer .. 35
Connect to IDM Through a Proxy Server ... 36

4. Protect IDM Data .. 37
Encoding Attribute Values ... 37
Structure of an Encrypted Object .. 41
Encrypting and Decrypting Properties Over REST ... 42
Securing the Repository .. 44
Protecting Sensitive Files and Directories ... 45
Removing or Protecting Development and Debug Tools 45
Adjusting Log Levels ... 46
Securing the API Explorer ... 46
Hide Unused REST Endpoints ... 47
Disabling Automatic Configuration Updates .. 47
Securing IDM Server Files With a Read-Only Installation 48

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. iv

Overview
Out of the box, IDM is set up for ease of development and deployment. When you deploy IDM in
production, there are specific precautions you should take to minimize security breaches. This guide
describes the IDM security mechanisms and strategies you can use to reduce risk and mitigate
threats to IDM security.

Quick Start


Certificates and Keys

Manage secrets, certificates and keys.


Passwords

Store and manage passwords securely.


Network

Secure network connections to IDM resources.


Data

Secure IDM stored data.

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity
and Access Management solution. We help our customers deepen their relationships with their
customers, and improve the productivity and connectivity of their employees and partners. For more
information about ForgeRock and about the platform, see https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web
resources and collections of resources.

https://www.forgerock.com

Secret Stores, Certificates and Keys
Configuring Secret Stores

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 1

Chapter 1

Secret Stores, Certificates and Keys
Encryption makes it possible to protect sensitive data. IDM depends on encryption to negotiate
secure network connections, and to keep sensitive data confidential. Encryption in turn depends on
keys. IDM stores keys in secret stores. This chapter describes the supported secret stores and the
features available for managing keys.

As a general precaution in production environments, avoid using self-signed certificates and
certificates associated with insecure ciphers.

IDM supports the following secret store types:

• File-based keystores

• Hardware Security Modules (HSM)

Configuring Secret Stores
Secret stores are configured in your project's conf/secrets.json file. The secrets.json file has the
following configuration by default:
{
 "stores": [
 {
 "name": "mainKeyStore",
 "class": "org.forgerock.openidm.secrets.config.FileBasedStore",
 "config": {
 "file": "&{openidm.keystore.location|&{idm.install.dir}/security/keystore.jceks}",
 "storetype": "&{openidm.keystore.type|JCEKS}",
 "providerName": "&{openidm.keystore.provider|SunJCE}",
 "storePassword": "&{openidm.keystore.password|changeit}",
 "mappings": [
 {
 "secretId" : "idm.default",
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": ["&{openidm.config.crypto.alias|openidm-sym-default}"]
 },
 ...
]
 }
 },
 {
 "name": "mainTrustStore",
 "class": "org.forgerock.openidm.secrets.config.FileBasedStore",
 "config": {

Secret Stores, Certificates and Keys
Configuring Secret Stores

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 2

 "file": "&{openidm.truststore.location|&{idm.install.dir}/security/truststore}",
 "storetype": "&{openidm.truststore.type|JKS}",
 "providerName": "&{openidm.truststore.provider|SUN}",
 "storePassword": "&{openidm.truststore.password|changeit}",
 "mappings": [
]
 }
 }
],
 "populateDefaults": true
}

The mainKeyStore and mainTrustStore properties configure the default secret stores. IDM requires these
properties in order to start up. Do not change the property names because they are also provided to
third-party products that need a single keystore and a single truststore.

mainKeyStore

The main keystore references a Java Cryptography Extension Keystore (JCEKS) located at /path/
to/openidm/security/keystore.jceks.

mainTrustStore

The main truststore references a file-based truststore located at /path/to/openidm/security/
truststore.

populateDefaults

When IDM first starts up, it checks the secrets configuration. If "populateDefaults": true, IDM
writes a number of encryption keys to the keystore, required to encrypt specific data.

You can manage these keystores and truststores using the keytool command, included in your Java
installation. For information about the keytool command, see https://docs.oracle.com/en/java/javase/
11/tools/keytool.html.

Each configured store has a name and class and the following configuration properties:

file

For file-based secret stores, this property references the path to the store file, for example, &{idm.
install.dir}/security/keystore.jceks}. Hardware security modules do not have a file property.

storetype

The type of secret store. IDM supports a number of store types, including JCEKS, JKS, PKCS #11,
and PKCS #12.

providerName

Sets the name of the cryptographic service provider, for example, SunPKCS11 or softHSM. If no
provider is specified, the JRE default is used.

https://docs.oracle.com/en/java/javase/11/tools/keytool.html
https://docs.oracle.com/en/java/javase/11/tools/keytool.html

Secret Stores, Certificates and Keys
Configuring Secret Stores

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 3

storePassword

The password to the secret store. For the default IDM keystore and trustore, the password is
changeit. You should change this password in a production deployment, as described in "Changing
the Default Keystore Password".

mappings

This object enables you to map keys and certificates in the secret stores to specific encryption
and decryption functionality in IDM. A secrets mapping object has the following structure:
{
 "secretId" : "idm.config.encryption",
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": ["&{openidm.config.crypto.alias|openidm-sym-default}"]
}

• secretId enables you to map a secret to one or more aliases and gives an indication of the
secret's purpose. For example, idm.config.encryption indicates the aliases that are used to
encrypt and decrypt sensitive configuration properties.

• types indicates what the keys are used for, for example, encryption and decryption of sensitive
property values.

• aliases are the key aliases in the secret store that are used for this purpose. You can add as
many aliases as necessary. The first alias in the list determines which alias is the active one.
Active secrets are used for signature generation and encryption.

The aliases in the default keystore are described in "Working With the Default Keystore".

The default secret IDs and the aliases to which they are mapped are listed in "Mapping SecretIDs
to Key Aliases".

Note

All these properties have a resolvable property value by default, for example &{openidm.keystore.location},
that enables you to use property value substitution. If no configuration expression has been set for that specific
property, the value following the vertical bar is used. In the following property, the password is changeit unless
you have set a configuration expression in one of the property resolver locations:

"storePassword": "&{openidm.keystore.password|changeit}"

For more information, see "Property Value Substitution" in the Setup Guide.

Mapping SecretIDs to Key Aliases

secretId alias Description
idm.default openidm-sym-default Encryption keystore for legacy JSON objects that do

not contain a purpose value in their $crypto block

Secret Stores, Certificates and Keys
Working With the Default Keystore

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 4

secretId alias Description
idm.config.encryption openidm-sym-default Encrypts configuration information
idm.password.encryption openidm-sym-default Encrypts managed user passwords
idm.jwt.session.module.
encryption

openidm-localhost Encrypts JWT session tokens

idm.jwt.session.module.
signing

openidm-jwtsessionhmac-
key

Signs JWT session tokens using HMAC

idm.selfservice.signing selfservice Signs JWT session tokens using RSA
idm.selfservice.
encryption

openidm-selfservice-key Encrypts JWT self-service tokens

Working With the Default Keystore
IDM generates a number of encryption keys in a JCEKS keystore the first time the server starts up.
These keys map to the secrets defined in "Mapping SecretIDs to Key Aliases". Note that the keystore,
and the keys, are generated at startup and are not prepackaged. The keys are generated only if they
do not already exist. You cannot specify custom aliases for these default keys.

To use a different keystore type, such as PKCS #12, create the keystore and generate the keys before
you start IDM. This prevents IDM from generating the keys on startup. You can also convert the
existing JCEKS keystore to a PKCS #12 keystore. If you use a different keystore type, you must edit
the openidm.keystore.type property (in the conf/secrets.json file) to match the new type.

Use the keytool command to list the default encryption keys, as follows:
keytool \
-list \
-keystore /path/to/openidm/security/keystore.jceks \
-storepass changeit \
-storetype JCEKS
Keystore type: JCEKS
Keystore provider: SunJCE

Your keystore contains 5 entries

openidm-sym-default, Nov 5, 2019, SecretKeyEntry,
openidm-jwtsessionhmac-key, Nov 5, 2019, SecretKeyEntry,
selfservice, Nov 5, 2019, PrivateKeyEntry,
Certificate fingerprint (SHA-256): E9:0B:BA:FB:58:73:02:FC...:7B
openidm-selfservice-key, Nov 5, 2019, SecretKeyEntry,
openidm-localhost, Nov 5, 2019, PrivateKeyEntry,
Certificate fingerprint (SHA-256): 21:50:6C:90:C7:A7:F7:32...:1B

Secret Stores, Certificates and Keys
Changing the Default Keystore Password

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 5

Note

If you are using IDM in a cluster, you must share these keys among all nodes in the cluster. The easiest way to
do this is to generate a keystore with the appropriate keys and share the keystore in some way, for example by
using a filesystem that is shared between the nodes.

Changing the Default Keystore Password

The default keystore password is changeit. You should change this password in a production
environment.

Change the Default Keystore Password

1. Shut down the server if it is running.

2. Use the keytool command to change the keystore password. The following command changes the
keystore password to newPassword:
keytool \
-storepasswd \
-keystore /path/to/openidm/security/keystore.jceks \
-storetype jceks \
-storepass changeit
New keystore password: newPassword
Re-enter new keystore password: newPassword

3. Change the passwords of the default encryption keys.

IDM uses a number of encryption keys, listed in "Mapping SecretIDs to Key Aliases", whose
passwords are also changeit by default. The passwords of each of these keys must match the
password of the keystore.

To get the list of keys in the keystore, run the following command:
keytool \
-list \
-keystore /path/to/openidm/security/keystore.jceks \
-storetype jceks \
-storepass newPassword
Keystore type: JCEKS
Keystore provider: SunJCE

Your keystore contains 5 entries

openidm-sym-default, May 4, 2021, SecretKeyEntry,
selfservice, May 4, 2021, PrivateKeyEntry, Certificate fingerprint (SHA-256): fingerprint
openidm-jwtsessionhmac-key, May 4, 2021, SecretKeyEntry,
openidm-localhost, May 4, 2021, PrivateKeyEntry, Certificate fingerprint (SHA-256): fingerprint
openidm-selfservice-key, May 4, 2021, SecretKeyEntry,

Change the passwords of each default encryption key as follows:

Secret Stores, Certificates and Keys
Changing the Default Keystore Password

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 6

keytool \
-keypasswd \
-alias openidm-localhost \
-keystore /path/to/openidm/security/keystore.jceks \
-storetype jceks \
-storepass newPassword
Enter key password for <openidm-localhost> changeit
New key password for <openidm-localhost>: newPassword
Re-enter new key password for <openidm-localhost>: newPassword

keytool \
-keypasswd \
-alias openidm-sym-default \
-keystore /path/to/openidm/security/keystore.jceks \
-storetype jceks \
-storepass newPassword
Enter key password for <openidm-sym-default> changeit
New key password for <openidm-sym-default>: newPassword
Re-enter new key password for <openidm-sym-default>: newPassword

keytool \
-keypasswd \
-alias openidm-selfservice-key \
-keystore /path/to/openidm/security/keystore.jceks \
-storetype jceks \
-storepass newPassword
Enter key password for <openidm-selfservice-key> changeit
New key password for <openidm-selfservice-key>: newPassword
Re-enter new key password for <openidm-selfservice-key>: newPassword

keytool \
-keypasswd \
-alias selfservice \
-keystore /path/to/openidm/security/keystore.jceks \
-storetype jceks \
-storepass newPassword
Enter key password for <selfservice> changeit
New key password for <selfservice>: newPassword
Re-enter new key password for <selfservice>: newPassword

keytool \
-keypasswd \
-alias openidm-jwtsessionhmac-key \
-keystore /path/to/openidm/security/keystore.jceks \
-storetype jceks \
-storepass newPassword
Enter key password for <openidm-jwtsessionhmac-key> changeit
New key password for <openidm-jwtsessionhmac-key>: newPassword
Re-enter new key password for <openidm-jwtsessionhmac-key>: newPassword

4. Configure a new expression resolver file in the Setup Guide to store just the keystore password.

a. Create a new directory in /path/to/openidm/resolver/ that will contain only the properties file
for keystore passwords. For example:
mkdir /path/to/openidm/resolver/keystore

Secret Stores, Certificates and Keys
Using CA-Signed Certificates

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 7

Important

Substituted properties are not encrypted by default. You must therefore secure access to this
directory, using the appropriate permissions.

b. Set the IDM_ENVCONFIG_DIRS environment variable to include the new directory:
export IDM_ENVCONFIG_DIRS=/path/to/openidm/resolver/,/path/to/openidm/resolver/keystore

c. Create a .json or .properties file in that secure directory, that contains the new keystore
password as a resolvable IDM property. For example, add one of the following files to that
directory:

keystorepwd.properties

openidm.keystore.password=newPassword

keystorepwd.json

{
 "openidm" : {
 "keystore" : {
 "password" : "newPassword"
 }
 }
}

5. Restart IDM.

Important

Repeat this procedure on each node if you run multiple nodes in a cluster to ensure that the new password is
present on all nodes.

Using CA-Signed Certificates
You can use existing CA-signed certificates to secure connections and data by importing the
certificates into the keystore, and referencing them your boot.properties file. Use the keytool
command to import an existing certificate into the keystore.

The following process imports a CA-signed certificate into the keystore, with the alias example-com.
Replace this alias with the alias of your certificate:

1. Stop the server if it is running.

2. Back up your existing openidm/security/keystore and openidm/security/truststore files.

3. Use the keytool command to import your existing certificate into the keystore.

Secret Stores, Certificates and Keys
Using CA-Signed Certificates

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 8

Substitute the following in this command:

• example-cert.p12 with the name of your certificate file.

• srcstorepass with the password that you set to open your certificate.

• example-com with the existing certificate alias.

• destination keystore password with the password you set for the keystore.

If you have not changed the default keystore password, it is changeit. In a production
environment, you should change the default keystore password. For more information, see
"Changing the Default Keystore Password".

keytool \
-importkeystore \
-srckeystore example-cert.p12 \
-srcstoretype PKCS12 \
-srcstorepass changeit \
-srcalias example-com \
-destkeystore keystore.jceks \
-deststoretype JCEKS \
-destalias openidm-localhost
Importing keystore example-cert.p12 to keystore.jceks...
Enter destination keystore password: changeit

The keytool command creates a trusted certificate entry with the specified alias and associates it
with the imported certificate. The certificate is imported into the keystore with the alias openidm-
localhost. If you want to use a different alias, you must modify your resolver/boot.properties file to
reference that alias, as shown in the following step.

Note

The certificate entry password must be the same as the IDM keystore password. If the source certificate
entry password is different from the target keystore password, use the -destkeypass option with the same
value as the -deststorepass option to make the certificate password match the target keystore password.
If you do not make these passwords the same, no error is generated when you import the certificate (or
when you read the certificate entry in the destination keystore), but IDM will fail to start with the following
exception:

java.security.UnrecoverableKeyException: Given final block not properly padded.

4. If you specified an alias other than openidm-localhost for the new certificate, change the value of
openidm.https.keystore.cert.alias in your resolver/boot.properties file to that alias. For example, if
your new certificate alias is example-com, change the boot.properties file as follows:
openidm.https.keystore.cert.alias=example-com

5. Restart the server for the new certificate to be taken into account.

Secret Stores, Certificates and Keys
Deleting Certificates

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 9

Deleting Certificates
If you are using CA-signed certificates for encryption, it is best practice to delete the unused default
certificates from the keystore and the truststore. You can delete certificates from a keystore using the
keytool command.

The following example deletes the openidm-localhost certificate from the keystore:
keytool \
-delete \
-alias openidm-localhost \
-keystore /path/to/openidm/security/keystore.jceks \
-storetype JCEKS \
-storepass changeit

The following example deletes the openidm-localhost certificate from the truststore:
keytool \
-delete \
-alias openidm-localhost \
-keystore /path/to/openidm/security/truststore \
-storepass changeit

You can use similar commands to delete custom certificates from the keystore and truststore,
specifying the certificate alias in the request.

Repeat these steps to delete all the default certificate aliases that you are not using in your
deployment.

Removing Unused CA Certificates
The Java and IDM truststore files include a number of root CA certificates. Although the probability of
a compromised root CA certificate is low, it is best practice to delete root CA certificates that are not
used in your deployment.

To review the list of root CA certificates in the IDM truststore, run the following command:
keytool \
-list \
-keystore /path/to/openidm/security/truststore \
-storepass changeit

On UNIX/Linux systems, you can find additional lists of root CA certificates in files named cacerts.
These include root CA certificates associated with your Java environment, such as Oracle JDK or
OpenJDK. You should be able to find that file in ${JAVA_HOME}/jre/lib/security/cacerts.

Before changing Java environment keystore files, make sure that the Java-related cacerts files are up
to date and verify that you have a supported Java version installed:

Secret Stores, Certificates and Keys
Changing and Rotating Encryption Keys

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 10

Supported Java Versions

Vendor Versions
OpenJDK, including OpenJDK-based distributions:

• AdoptOpenJDK/Eclipse Adoptium

• Amazon Corretto

• Azul Zulu

• Red Hat OpenJDK

ForgeRock tests most extensively with
AdoptOpenJDK/Eclipse Adoptium.

ForgeRock recommends using the HotSpot JVM.

11

Oracle Java 11

You can remove root CA certificates with the keytool command. For example, the following command
removes the hypothetical examplecomca2 certificate from the truststore:
keytool \
-delete \
-keystore /path/to/openidm/security/truststore \
-storepass changeit \
-alias examplecomca2

Repeat the process for all root CA certificates that are not used in your deployment.

On Windows systems, you can manage certificates with the Microsoft Management Console (MMC)
snap-in tool. For more information, see Working With Certificates in the Microsoft documentation.

Changing and Rotating Encryption Keys
Most regulatory requirements mandate that the keys used to decrypt sensitive data be rotated out
and replaced with new keys on a regular basis. The main purpose of rotating encryption keys is
to reduce the amount of data encrypted with that key, so that the potential impact of a security
breach with a specific key is reduced. You can update encryption keys in several ways, including the
following:

• "Rotating Encryption Keys Manually"

• "Using Scheduled Tasks to Rotate Keys"

• "Changing the Active Alias for Managed Object Encryption"

https://msdn.microsoft.com/en-us/library/ms788967(v=vs.110).aspx

Secret Stores, Certificates and Keys
Rotating Encryption Keys Manually

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 11

Rotating Encryption Keys Manually
IDM evaluates keys in secrets.json sequentially. For example, assume that you have added a new key
named my-new-key to the keystore, as described in "Using CA-Signed Certificates".

To use this new key to encrypt passwords, you would include my-new-key as the first alias in the idm.
password.encryption secret, as follows:
{
 "secretId" : "idm.password.encryption",
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": ["my-new-key", "&{openidm.config.crypto.alias|openidm-sym-default}"]
}

The properties that use this key (in this case, passwords) are re-encrypted with the new key the next
time the managed object is updated. You do not need to restart the server.

Important

If you rotate an encryption key, the active encryption key might not be the correct key to use for decryption of
properties that have already been encrypted with a previous key.

You must therefore keep all applicable keys in secrets.json until every object that is encrypted with old keys
have been updated with the latest key.

You can force key rotation on all managed objects by running the triggerSyncCheck action on the entire
managed object data set. The triggerSyncCheck action examines the crypto blob of each object and
updates the encrypted property with the correct key.

For example, the following command forces all managed user objects to use the new key:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/openidm/managed/user/?_action=triggerSyncCheck"
{
 "status": "OK",
 "countTriggered": 10
}

In a large managed object set, the triggerSyncCheck action can take a long time to run on only a
single node. You should therefore avoid using this action if your data set is large. An alternative
to running triggerSyncCheck over the entire data set is to iterate over the managed data set and call
triggerSyncCheck on each individual managed object. You can call this action manually or by using a
script.

The following example shows the manual commands that must be run to launch the triggerSyncCheck
action on all managed users. The first command uses a query filter to return all managed user IDs.
The second command iterates over the returned IDs calling triggerSyncCheck on each ID:

Secret Stores, Certificates and Keys
Using Scheduled Tasks to Rotate Keys

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 12

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
"https://localhost:8443/openidm/managed/user?_queryFilter=true&_fields=_id"
{
 "result": [
 {
 "_id": "9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb",
 "_rev": "000000004988917b"
 },
 {
 "_id": "55ef0a75-f261-47e9-a72b-f5c61c32d339",
 "_rev": "00000000dd89d671"
 },
 {
 "_id": "998a6181-d694-466a-a373-759a05840555",
 "_rev": "000000006fea54ad"
 },
 ...
]
}

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/openidm/managed/user/9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb?
_action=triggerSyncCheck"

In large data sets, the most efficient way to achieve key rotation is to use the scheduler service
to launch these commands. The following section shows how to use the scheduler service for this
purpose.

Using Scheduled Tasks to Rotate Keys

This example uses a script to generate multiple scheduled tasks. Each scheduled task iterates over a
subset of the managed object set (defined by the pageSize). The generated scheduled task then calls
another script that launches the triggerSyncCheck action on each managed object in that subset.

You can set up a similar schedule as follows:

1. Create a schedule configuration named schedule-triggerSyncCheck.json in your project's conf
directory. That schedule should look as follows:

Secret Stores, Certificates and Keys
Using Scheduled Tasks to Rotate Keys

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 13

{
 "enabled" : true,
 "persisted" : true,
 "type" : "cron",
 "schedule" : "0 * * * * ? *",
 "concurrentExecution" : false,
 "invokeService" : "script",
 "invokeContext" : {
 "waitForCompletion" : false,
 "script": {
 "type": "text/javascript",
 "name": "sync/scheduleTriggerSyncCheck.js"
 },
 "input": {
 "pageSize": 2,
 "managedObjectPath" : "managed/user",
 "quartzSchedule" : "0 * * * * ? *"
 }
 }
}

You can change the following parameters of this schedule configuration to suit your deployment:

pageSize

The number of objects that each generated schedule will handle. This value should be high
enough not to create too many schedules. The number of schedules that is generated is equal
to the number of objects in the managed object store, divided by the page size.

For example, if there are 500 managed users and a page size of 100, five schedules will be
generated (500/100).

managedObjectPath

The managed object set over which the scheduler iterates. For example, managed/user if you
want to iterate over the managed user object set.

quartzSchedule

The schedule at which these tasks should run. For example, to run the task every minute, this
value would be `0 * * * * ? *`.

2. The schedule calls a scheduleTriggerSyncCheck.js script, located in a directory named project-dir/
script/sync. Create the sync directory, and add that script as follows:
var managedObjectPath = object.managedObjectPath;
var pageSize = object.pageSize;
var quartzSchedule = object.quartzSchedule;

var managedObjects = openidm.query(managedObjectPath, {
 "_queryFilter": "true",
 "_fields": "_id"
});

Secret Stores, Certificates and Keys
Using Scheduled Tasks to Rotate Keys

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 14

var numberOfManagedObjects = managedObjects.result.length;

for (var i = 0; i < numberOfManagedObjects; i += pageSize) {
 var scheduleId = java.util.UUID.randomUUID().toString();
 var ids = managedObjects.result.slice(i, i + pageSize).map(function(obj) {
 return obj._id
 });
 var schedule = newSchedule(scheduleId, ids);
 openidm.create("/scheduler", scheduleId, schedule);
}

function newSchedule(scheduleId, ids) {
 var schedule = {
 "enabled": true,
 "persisted": true,
 "type": "cron",
 "schedule": quartzSchedule,
 "concurrentExecution": false,
 "invokeService": "script",
 "invokeContext": {
 "waitForCompletion": true,
 "script": {
 "type": "text/javascript",
 "name": "sync/triggerSyncCheck.js"
 },
 "input": {
 "ids": ids,
 "managedObjectPath": managedObjectPath,
 "scheduleId": scheduleId
 }
 }
 };
 return schedule;
}

3. Each generated scheduled task calls a script named triggerSyncCheck.js. Create that script in your
project's script/sync directory. The contents of the script are as follows:
var ids = object.ids;
var scheduleId = object.scheduleId;
var managedObjectPath = object.managedObjectPath;

for (var i = 0; i & lt; ids.length; i++) {
 openidm.action(managedObjectPath + "/" + ids[i], "triggerSyncCheck", {}, {});
}

openidm.delete("scheduler/" + scheduleId, null);

4. When you have set up the schedule configuration and the two scripts, you can test this key
rotation as follows:

a. Edit your project's conf/managed.json file to return user passwords by default by setting
"scope" : "public".

Secret Stores, Certificates and Keys
Using Scheduled Tasks to Rotate Keys

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 15

"password" : {
 ...
 "encryption" : {
 "purpose" : "idm.password.encryption"
 },
 "scope" : "public",
 ...
}

Because passwords are not returned by default, you will not be able to see the new
encryption on the password unless you change the property's scope.

b. Perform a GET request to return any managed user entry in your data set. For example:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--request GET \
"https://localhost:8443/openidm/managed/user/ccd92204-aee6-4159-879a-46eeb4362807"
{
 "_id" : "ccd92204-aee6-4159-879a-46eeb4362807",
 "_rev" : "0000000009441230",
 "preferences" : {
 "updates" : false,
 "marketing" : false
 },
 "mail" : "bjensen@example.com",
 "sn" : "Jensen",
 "givenName" : "Babs",
 "userName" : "bjensen",
 "password" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "openidm-sym-default",
 "salt" : "CVrKDuzfzunXfTDbCwU1Rw==",
 "data" : "1I5tWT5aRH/12hf5DgofXA==",
 "keySize" : 16,
 "purpose" : "idm.password.encryption",
 "iv" : "LGE+jnC3ZtyvrE5pfuSvtA==",
 "mac" : "BEXQ1mftxA63dXhJO6dDZQ=="
 }
 }
 },
 "accountStatus" : "active",
 "effectiveRoles" : [],
 "effectiveAssignments" : []
}

Notice that the user's password is encrypted with the default encryption key (openidm-sym-
default).

c. Create a new encryption key in the IDM keystore:

Secret Stores, Certificates and Keys
Using Scheduled Tasks to Rotate Keys

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 16

keytool \
-genseckey \
-alias my-new-key \
-keyalg AES \
-keysize 128 \
-keystore /path/to/openidm/security/keystore.jceks \
-storetype JCEKS

d. Shut down the server for keystore to be reloaded.

e. Change your project's conf/managed.json file to change the encryption purpose for managed
user passwords:
"password" : {
 ...
 "encryption" : {
 "purpose" : "idm.password.encryption2"
 },
 "scope" : "public",
 ...
}

f. Add the corresponding purpose to the secrets.json file in the mainKeyStore code block:
"idm.password.encryption2": {
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": [
 {
 "alias": "my-new-key"
 }
]
}

g. Restart the server and wait one minute for the first scheduled task to fire.

h. Perform a GET request again to return the entry of the managed user that you returned
previously:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--request GET \
"https://localhost:8443/openidm/managed/user/ccd92204-aee6-4159-879a-46eeb4362807"
{
 "_id" : "ccd92204-aee6-4159-879a-46eeb4362807",
 "_rev" : "0000000009441230",
 "preferences" : {
 "updates" : false,
 "marketing" : false
 },
 "mail" : "bjensen@example.com",
 "sn" : "Jensen",
 "givenName" : "Babs",
 "userName" : "bjensen",

Secret Stores, Certificates and Keys
Changing the Active Alias for Managed Object Encryption

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 17

 "password" : {
 "$crypto" : {
 "type" : "x-simple-encryption",
 "value" : {
 "cipher" : "AES/CBC/PKCS5Padding",
 "stableId" : "my-new-key",
 "salt" : "CVrKDuzfzunXfTDbCwU1Rw==",
 "data" : "1I5tWT5aRH/12hf5DgofXA==",
 "keySize" : 16,
 "purpose" : "idm.password.encryption2",
 "iv" : "LGE+jnC3ZtyvrE5pfuSvtA==",
 "mac" : "BEXQ1mftxA63dXhJO6dDZQ=="
 }
 }
 },
 "accountStatus" : "active",
 "effectiveRoles" : [],
 "effectiveAssignments" : []
}

Notice that the user password is now encrypted with my-new-key.

Changing the Active Alias for Managed Object Encryption

This example describes how you can configure and then change the managed object encryption key
with a scheduled task. You'll create a new key, set up a managed user, add the key to secrets.json,
restart IDM, run a triggerSyncCheck, and review the result.

1. Create a new key for the IDM keystore in the security/keystore.jceks file:
keytool \
-genseckey \
-alias my-new-key \
-keyalg AES \
-keysize 128 \
-keystore /path/to/openidm/security/keystore.jceks \
-storetype JCEKS

2. Solely for the purpose of this example, in managed.json, set "scope" : "public" to expose the applied
password encryption key.

3. Create a managed user:

Secret Stores, Certificates and Keys
Changing the Active Alias for Managed Object Encryption

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 18

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--header "Content-Type: application/json" \
--request PUT \
--data '{
 "userName": "rsutter",
 "sn": "Sutter",
 "givenName": "Rick",
 "mail": "rick@example.com",
 "telephoneNumber": "6669876987",
 "description": "Another user",
 "country": "USA",
 "password": "Passw0rd"
}' \
"https://localhost:8443/openidm/managed/user/ricksutter"

4. Add the newly created my-new-key alias to your conf/secrets.json file, in the idm.password.encryption
code block:
"idm.password.encryption": {
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": ["my-new-key", "&{openidm.config.crypto.alias|openidm-sym-default}"]
}

5. To apply the new key to your configuration, shut down and restart IDM.

6. Force IDM to update the key for your users with the triggerSyncCheck action:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--header "Content-Type: application/json" \
--request POST \
"https://localhost:8443/openidm/managed/user/?_action=triggerSyncCheck"

7. Review the result for the newly created user, ricksutter:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--cacert ca-cert.pem \
--request GET \
"https://localhost:8443/openidm/managed/user/ricksutter"

8. In the output, you should see the new my-new-key encryption key applied to that user's password:

Secret Stores, Certificates and Keys
Configuring IDM For a Hardware Security Module (HSM) Device

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 19

...
 "password": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "cipher": "AES/CBC/PKCS5Padding",
 "stableId": "my-new-key",
 "salt": "bGyKG3PKmwHONOfxerr1Qg==",
 "data": "6vXZiJ3ZNN/UUnsrT7dTQw==",
 "keySize": 16,
 "purpose": "idm.password.encryption",
 "iv": "doAdtxfWfFbrPIIfubGi5g==",
 "mac": "OML6xd9qvDtD5AvMc1Tc3A=="
 }
 }
 },
...

Configuring IDM For a Hardware Security Module (HSM)
Device
This section demonstrates how to use a PKCS #11 device, such as a hardware security module
(HSM), to store the keys used to secure communications. IDM supports retrieval of secrets from
HSMs either locally or over the network.

Note

On Windows systems using the 64-bit JDK, the Sun PKCS #11 provider is available only from JDK version
1.8b49 onwards. If you want to use a PKCS #11 device on Windows, either use the 32-bit version of the JDK, or
upgrade your 64-bit JDK to version 1.8b49 or higher.

Setting Up the HSM Configuration

This section assumes that you have access to an HSM device (or a software emulation of an HSM
device, such as SoftHSM) and that the HSM provider has been configured and initialized.

The command-line examples in this section use SoftHSM for testing purposes. Before you start, set
the correct environment variable for the SoftHSM configuration, for example:
export SOFTHSM2_CONF=/usr/local/Cellar/softhsm/2.0.0/etc/softhsm2.conf

Also initialize slot 0 on the provider, with a command similar to the following:
softhsm2-util --init-token --slot 0 --label "My token 1"

This token initialization requests two PINs—an SO PIN and a user PIN. You can use the SO PIN
to reinitialize the token. The user PIN is provided to IDM so that it can interact with the token.
Remember the values of these PINs because you will use them later in this section.

Secret Stores, Certificates and Keys
Setting Up the HSM Configuration

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 20

The PKCS #11 standard uses a configuration file to interact with the HSM device. The following
example shows a basic configuration file for SoftHSM:
name = softHSM
library = /usr/local/Cellar/softhsm/2.0.0/lib/softhsm/libsofthsm2.so
slot = 1
attributes(generate, *, *) = {
 CKA_TOKEN = true
}
attributes(generate, CKO_CERTIFICATE, *) = {
 CKA_PRIVATE = false
}
attributes(generate, CKO_PUBLIC_KEY, *) = {
 CKA_PRIVATE = false
}
attributes(*, CKO_SECRET_KEY, *) = {
 CKA_PRIVATE = false
 CKA_EXTRACTABLE = true
}

Your HSM configuration file must include at least the following settings:

name

A suffix to identify the HSM provider. This example uses the softHSM provider.

library

The path to the PKCS #11 library.

slot

The slot number to use, specified as a string. Make sure that the slot you specify here has been
initialized on the HSM device.

The attributes specify additional PKCS #11 attributes that are set by the HSM. For a complete list of
these attributes, see the PKCS #11 Reference.

Important

If you are using the JWT Session Module, you must set CKA_EXTRACTABLE = true for secret keys in your HSM
configuration file. For example:

attributes(*, CKO_SECRET_KEY, *) = {
 CKA_PRIVATE = false
 CKA_EXTRACTABLE = true
}

https://docs.oracle.com/en/java/javase/11/security/pkcs11-reference-guide1.html#GUID-30E98B63-4910-40A1-A6DD-663EAF466991

Secret Stores, Certificates and Keys
Populating the Default Encryption Keys

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 21

The HSM provider must allow secret keys to be extractable because the authentication service serializes the
JWT Session Module key and passes it to the authentication framework as a base 64-encoded string.

Populating the Default Encryption Keys

When IDM first starts up, it generates a number of encryption keys required to encrypt specific data.
If you are using an HSM provider, you must generate these keys manually. The secret keys must use
an HMAC algorithm. The following steps set up the required encryption keys.

Note

This procedure assumes that your HSM configuration file is located at /path/to/hsm/hsm.conf:

1. The openidm-sym-default key is the default symmetric key required to encrypt the configuration. The
following command generates that key in the HSM provider. The -providerArg must point to the
HSM configuration file described in "Setting Up the HSM Configuration".
keytool \
-genseckey \
-alias openidm-sym-default \
-keyalg HmacSHA256 \
-keysize 256 \
-keystore NONE \
-storetype PKCS11 \
-providerClass sun.security.pkcs11.SunPKCS11 \
-providerArg /path/to/hsm/hsm.conf
Enter keystore password:

Enter the password of your HSM device. If you are using SoftHSM, enter your user PIN as the
keystore password. The remaining sample steps use user PIN as the password.

2. The openidm-selfservice-key is used by the Self-Service UI to encrypt managed user passwords and
other sensitive data. Generate that key with a command similar to the following:
keytool \
-genseckey \
-alias openidm-selfservice-key \
-keyalg HmacSHA256 \
-keysize 256 \
-keystore NONE \
-storetype PKCS11 \
-providerClass sun.security.pkcs11.SunPKCS11 \
-providerArg /path/to/hsm/hsm.conf
Enter keystore password: user PIN

Enter the password of your HSM device. If you are using SoftHSM, enter your user PIN as the
keystore password.

3. The openidm-jwtsessionhmac-key is used by the JWT session module to encrypt JWT session cookies.
For more information, see "JWT_SESSION" in the Authentication and Authorization Guide.
Generate the JWT session module key with a command similar to the following:

Secret Stores, Certificates and Keys
Populating the Default Encryption Keys

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 22

keytool \
-genseckey \
-alias openidm-jwtsessionhmac-key \
-keyalg HmacSHA256 \
-keysize 256 \
-keystore NONE \
-storetype PKCS11 \
-providerClass sun.security.pkcs11.SunPKCS11 \
-providerArg /path/to/hsm/hsm.conf
Enter keystore password: user PIN

4. The openidm-localhost certificate is used to support SSL/TLS. Generate that certificate with a
command similar to the following:
keytool \
-genkey \
-alias openidm-localhost \
-keyalg RSA \
-keysize 2048 \
-keystore NONE \
-storetype PKCS11 \
-providerClass sun.security.pkcs11.SunPKCS11 \
-providerArg /path/to/hsm/hsm.conf
Enter keystore password: user PIN
What is your first and last name?
 [Unknown]: localhost
What is the name of your organizational unit?
 [Unknown]:
What is the name of your organization?
 [Unknown]: OpenIDM Self-Signed Certificate
What is the name of your City or Locality?
 [Unknown]:
What is the name of your State or Province?
 [Unknown]:
What is the two-letter country code for this unit?
 [Unknown]:
Is CN=localhost, OU=Unknown, O=OpenIDM Self-Signed Certificate, L=Unknown, ST=Unknown, C=Unknown
 correct?
 [no]: yes

5. The selfservice certificate secures requests from the End User UI. Generate that certificate with a
command similar to the following:

Secret Stores, Certificates and Keys
Populating the Default Encryption Keys

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 23

keytool \
-genkey \
-alias selfservice \
-keyalg RSA \
-keysize 2048 \
-keystore NONE \
-storetype PKCS11 \
-providerClass sun.security.pkcs11.SunPKCS11 \
-providerArg /path/to/hsm/hsm.conf
Enter keystore password: user PIN
What is your first and last name?
 [Unknown]: localhost
What is the name of your organizational unit?
 [Unknown]:
What is the name of your organization?
 [Unknown]: OpenIDM Self Service Certificate
What is the name of your City or Locality?
 [Unknown]:
What is the name of your State or Province?
 [Unknown]:
What is the two-letter country code for this unit?
 [Unknown]:
Is CN=localhost,O=OpenIDM Self Service Certificate,OU=None,L=None,ST=None,C=None?
 [no]: yes

6. If you are not using the HSM provider for the truststore, you must add the certificates generated
in the previous two steps to the default IDM truststore.

If you are using the HSM provider for the truststore, you can skip this step.

To add the openidm-localhost certificate to the IDM truststore, export the certificate from the HSM
provider, then import it into the truststore, as follows:
keytool \
-export \
-alias openidm-localhost \
-file exportedCert \
-keystore NONE \
-storetype PKCS11 \
-providerClass sun.security.pkcs11.SunPKCS11 \
-providerArg /path/to/hsm/hsm.conf
Enter keystore password: user PIN
Certificate stored in file exportedCert

keytool \
-import \
-alias openidm-localhost \
-file exportedCert \
-keystore /path/to/openidm/security/truststore
Enter keystore password: changeit
Owner: CN=localhost, OU=Unknown, O=OpenIDM Self-Signed Certificate, L=...
Issuer: CN=localhost, OU=Unknown, O=OpenIDM Self-Signed Certificate, L=...
Serial number: 5d2554bd
Valid from: Fri Aug 19 13:11:54 SAST 2016 until: Thu Nov 17 13:11:54 SAST 2016
Certificate fingerprints:
 MD5: F1:9B:72:7F:7B:79:58:29:75:85:82:EC:79:D8:F9:8D
 SHA1: F0:E6:51:75:AA:CB:14:3D:C5:E2:EB:E5:7C:87:C9:15:43:19:AF:36

Secret Stores, Certificates and Keys
Configuring IDM to Support an HSM Provider

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 24

 SHA256: 27:A5:B7:0E:94:9A:32:48:0C:22:0F:BB:7E:3C:22:2A:64:B5:45:24:14:70:...
 Signature algorithm name: SHA256withRSA
 Version: 3

Extensions:

#1: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: 7B 5A 26 53 61 44 C2 5A 76 E4 38 A8 52 6F F2 89 .Z&SaD.Zv.8.Ro..
0010: 20 04 52 EE .R.
]
]
Trust this certificate? [no]: yes
Certificate was added to keystore

The default truststore password is changeit.

Configuring IDM to Support an HSM Provider

To enable IDM to use an HSM provider, make the following configuration changes:

In your secret store configuration (conf/secrets.json)

Change the mainKeyStore and mainTrustStore to reference the HSM. For example:
{
 "stores": [
 {
 "name": "mainKeyStore",
 "class": "org.forgerock.openidm.secrets.config.HsmBasedStore",
 "config": {
 "storetype": "&{openidm.keystore.type|PKCS11}",
 "providerName": "&{openidm.keystore.provider|SunPKCS11-softHSM}",
 "storePassword": "&{openidm.keystore.password|changeit}",
 "mappings": [
 {
 "secretId" : "idm.default",
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": ["&{openidm.config.crypto.alias|openidm-sym-default}"]
 },
 {
 "secretId" : "idm.config.encryption",
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": ["&{openidm.config.crypto.alias|openidm-sym-default}"]
 },
 {
 "secretId" : "idm.password.encryption",
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": ["&{openidm.config.crypto.alias|openidm-sym-default}"]
 },
 {
 "secretId" : "idm.jwt.session.module.encryption",
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": ["&{openidm.https.keystore.cert.alias|openidm-localhost}"]
 },

Secret Stores, Certificates and Keys
Configuring IDM to Support an HSM Provider

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 25

 {
 "secretId" : "idm.jwt.session.module.signing",
 "types": ["SIGN", "VERIFY"],
 "aliases": ["&{openidm.config.crypto.jwtsession.hmackey.alias|openidm-jwtsessionhmac-
key}"]
 },
 {
 "secretId" : "idm.selfservice.signing",
 "types": ["SIGN", "VERIFY"],
 "aliases": ["selfservice"]
 },
 {
 "secretId" : "idm.selfservice.encryption",
 "types": ["ENCRYPT", "DECRYPT"],
 "aliases": ["&{openidm.config.crypto.selfservice.sharedkey.alias|openidm-selfservice-
key}"]
 }
]
 }
 },
 {
 "name": "mainTrustStore",
 "class": "org.forgerock.openidm.secrets.config.HsmBasedStore",
 "config": {
 "storetype": "&{openidm.keystore.type|PKCS11}",
 "providerName": "&{openidm.keystore.provider|SunPKCS11-softHSM}",
 "storePassword": "&{openidm.keystore.password|changeit}",
 "mappings": [
]
 }
 }
],
 "populateDefaults": false
}

Note

The "populateDefaults": false turns off the default key generation. This setting is required for an HSM
key provider.

In the IDM Java security file (conf/java.security)

Specify the location of your PKCS #11 configuration file. For example:
security.provider.14=SunPKCS11 /path/to/pkc11/config/pkcs11.conf

Templates for the pkcs11.conf file are included in your PKCS package.

You should now be able to start IDM with the keys in the HSM provider.

Secure Passwords
Enforcing Password Policy

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 26

Chapter 2

Secure Passwords
IDM provides password management features that help you enforce password policies, limit the
number of passwords users must remember, and allow users to reset and change their passwords.

Enforcing Password Policy
A password policy is a set of rules defining what sequence of characters constitutes an acceptable
password. Acceptable passwords generally are too complex for users or automated programs to
generate or guess.

Password policies set requirements for password length, character sets that passwords must contain,
dictionary words and other values that passwords must not contain. Password policies also require
that users not reuse old passwords, and that users change their passwords on a regular basis.

IDM enforces password policy rules as part of the general policy service. The default password policy
applies the following rules to passwords as they are created and updated:

• A password property is required for any user object.

• The value of a password cannot be empty.

• The password must include at least one capital letter.

• The password must include at least one number.

• The minimum length of a password is 8 characters.

• The password cannot contain the user name, given name, or family name.

You can change these validation requirements, or include additional requirements, by configuring the
policy for passwords.

Passwords are validated in several situations:

Password change and password reset

Password change refers to users changing their own passwords. Password reset refers to an
administrator setting a user or account password on behalf of a user.

Secure Passwords
Creating a Password History Policy

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 27

By default, IDM validates password values as they are provisioned.

Password recovery

Password recovery involves recovering a password or setting a new password when the password
has been forgotten.

Password history

You can add validation to prevent reuse of previous password values. For more information, see
"Creating a Password History Policy".

Password expiration

You can use workflows to ensure that users are able to change expiring passwords or to reset
expired passwords.

Creating a Password History Policy

The sample described in "Store Multiple Passwords For Managed Users" in the Samples Guide shows
how to set up a password history policy in a scenario where users have multiple different passwords
across resources. You can use the scripts provided in that sample to set up a simple password history
policy that prevents managed users from setting the same password that they used previously.

To create a password history policy based on the scripts in the multiple passwords sample, make the
following changes to your project:

1. Copy the pwpolicy.js script from the multiple passwords sample to your project's script directory:
cp /path/to/openidm/samples/multiple-passwords/script/pwpolicy.js /path/to/openidm/my-project-dir/
script/

The pwpolicy.js script contains an is-new policy definition that compares a new field value with the
list of historical values for that field.

The is-new policy takes a historyLength parameter that specifies the number of historical values on
which the policy should be enforced. This number must not exceed the historySize that you set in
conf/managed.json to be passed to the onCreate and onUpdate scripts.

2. Copy the onCreate-user-custom.js and onUpdate-user-custom.js scripts to your project's script
directory:
cp samples/multiple-passwords/script/onCreate-user-custom.js /my-project-dir/script/
cp samples/multiple-passwords/script/onUpdate-user-custom.js /my-project-dir/script/

These scripts validate the password history policy when a managed user is created or updated.

3. Update your policy configuration (conf/policy.json) to reference the new policy definition by
adding the policy script to the additionalFiles array:

Secure Passwords
Creating a Password History Policy

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 28

{
 "type" : "text/javascript",
 "file" : "policy.js",
 "additionalFiles": ["script/pwpolicy.js"],
 ...
}

4. Update your project's conf/managed.json file as follows:

• Add a fieldHistory property to the managed user object:
"fieldHistory" : {
 "title" : "Field History",
 "type" : "object",
 "viewable" : false,
 "searchable" : false,
 "userEditable" : false,
 "scope" : "private"
}

The value of this field is a map of field names to a list of historical values for that field. These
lists of values are used by the is-new policy to determine if a new value has already been used.

• Update the managed user object to call the scripts when a user is created, updated:
"name" : "user",
"onCreate" : {
 "type" : "text/javascript",
 "file" : "script/onCreate-user-custom.js",
 "historyFields" : [
 "password"
],
 "historySize" : 4
},
"onUpdate" : {
 "type" : "text/javascript",
 "file" : "script/onUpdate-user-custom.js",
 "historyFields" : [
 "password"
],
 "historySize" : 4
},
...

Important

If you have any other script logic that is executed on these events, you must update the scripts to include
that logic, or add the password history logic to your current scripts.

• Add the is-new policy to the list of policies enforced on the password property of a managed user.
Specify the number of historical values that the policy should check in historyLength property:

Secure Passwords
Storing Separate Passwords Per Linked Resource

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 29

"password" : {
 ...
 "policies" : [
 {
 "policyId" : "at-least-X-capitals",
 "params" : {
 "numCaps" : 1
 }
 },
 ...
 {
 "policyId" : "is-new",
 "params" : {
 "historyLength" : 4
 }
 },
 ...
]
}

You should now be able to test the password history policy by creating a new managed user, and
having that user update their password. If the user specifies the same password used within the
previous four passwords, the update request is denied with a policy error.

Storing Separate Passwords Per Linked Resource
You can store multiple passwords in a single managed user entry to enable synchronization of
different passwords on different external resources.

To store multiple passwords, extend the managed user schema to include additional properties for
each target resource. You can set separate policies on each of these new properties, to ensure that
the stored passwords adhere to the password policies of the specific external resources.

To use this custom managed object property and its policies to update passwords on an external
resource, you must make the corresponding configuration and script changes in your deployment.
For a detailed sample that implements multiple passwords, see "Store Multiple Passwords For
Managed Users" in the Samples Guide. That sample can also help you set up password history
policies.

Generating Random Passwords
In certain situations, you might want to generate a random password when users are created.

You can customize your user creation logic to include a randomly generated password that complies
with the default password policy. This functionality is included in the default crypto script, bin/
defaults/script/crypto.js, but is not invoked by default. For an example of how this functionality might
be used, see the openidm/bin/defaults/script/onCreateUser.js script. The following section of that file

Secure Passwords
Modifying the password Property

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 30

(commented out by default) means that users created through the Admin UI, or directly over the
REST interface, will have a randomly generated password added to their entry:
if (!object.password) {

 // generate random password that aligns with policy requirements
 object.password = require("crypto").generateRandomString([
 { "rule": "UPPERCASE", "minimum": 1 },
 { "rule": "LOWERCASE", "minimum": 1 },
 { "rule": "INTEGERS", "minimum": 1 },
 { "rule": "SPECIAL", "minimum": 1 }
], 16);

}

Note that changes made to scripts take effect after the time set in the recompile.minimumInterval,
described in "Script Configuration" in the Scripting Guide.

The generated password can be encrypted or hashed, in accordance with the managed user schema,
defined in conf/managed.json. For more information, see "Encoding Attribute Values". Note that
synchronizing hashed passwords is not supported.

You can use this random string generation in a number of situations. Any script handler that is
implemented in JavaScript can call the generateRandomString function.

Modifying the password Property
To use a property other than the default password property to store passwords, you must change the
following files:

policy.json

If you want to enforce password validation rules on a different property, change the password
property in this file.

managed.json

Modify the password object in this file, which also includes password complexity policies.

sync.json

If you change the password property, make sure that you limit the change to the appropriate
system, designated as source or target.

selfservice-reset.json

If you are setting up self-service password reset, as described in "Password Reset" in the Self-
Service Reference, change the value of identityPasswordField from password to the desired new
property.

Secure Passwords
Rate Limiting Emails

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 31

Every UI file that includes password as a property name

Whenever there's a way for a user to enter a password, the associated HTML page will include a
password entry. For example, the LoginTemplate.html file includes the password property. A full list of
default files with the password property include:

• _passwordFields.html

• _resetPassword.html

• ConfirmPasswordDialogTemplate.html

• EditPasswordPageView.html

• LoginTemplate.html

• MandatoryPasswordChangeDialogTemplate.html

• resetStage-initial.html

• UserPasswordTab.html

This list does not include any custom UI files that you might have created.

Rate Limiting Emails
No rate limiting is applied to password reset emails, or any emails sent by the IDM server. This
means that an attacker can potentially spam a known user account with an infinite number of
emails, filling that user's inbox. In the case of password reset, the spam attack can obscure an actual
password reset attempt.

In a production environment, you must configure email rate limiting through the network
infrastructure in which IDM runs. Configure the network infrastructure to detect and prevent
frequent repeated requests to publicly accessible web pages, such as the password reset page. You
can also handle rate limiting within your email server.

Secure Network Connections
Use TLS/SSL

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 32

Chapter 3

Secure Network Connections
This chapter explains how to secure incoming connections and ports. As a general precaution in
production environments, avoid communication over insecure HTTP.

• "Use TLS/SSL"

• "Restrict REST Access to the HTTPS Port"

• "Protect Sensitive REST Interface URLs"

• "Enable HTTP Strict-Transport-Security"

• "Restrict the HTTP Payload Size"

• "Deploy Securely Behind a Load Balancer"

• "Connect to IDM Through a Proxy Server"

Use TLS/SSL
Use TLS/SSL to access IDM, ideally with mutual authentication so that only trusted systems can
invoke each other. TLS/SSL protects data on the network. Mutual authentication with strong
certificates, imported into the truststore and keystore of each application, provides a level of
confidence for trusting application access.

Restrict REST Access to the HTTPS Port
In a production environment, you should restrict REST access to a secure port:

1. Edit your project's conf/jetty.xml file:

Comment out or delete the <Call name="addConnector"> code block that includes the openidm.port.http
property.

Secure Network Connections
Protect Sensitive REST Interface URLs

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 33

Note

Do not delete the <Call name="addConnector"> code blocks that contain the openidm.port.https and openidm.
port.mutualauth properties.

2. Edit resolver/boot.properties:

• Set the openidm.port.https port number.

• Set the openidm.port.mutualauth port number.

• Add the property openidm.https.enabled=true.

Use a certificate to secure REST access over HTTPS. You can use self-signed certificates in a test
environment. In production, all certificates should be signed by a certificate authority. The examples
in this guide assume a CA-signed certificate named ca-cert.pem.

Protect Sensitive REST Interface URLs
Anything attached to the router is accessible with the default policy, including the repository. If you
do not need such access, deny it in the authorization policy to reduce the attack surface.

In addition, you can deny direct HTTP access to system objects in production, particularly access to
action. As a rule of thumb, do not expose anything that is not used in production.

For an example that shows how to protect sensitive URLs, see "Configure Access Control in
access.json" in the Authentication and Authorization Guide.

Enable HTTP Strict-Transport-Security
HTTP Strict-Transport-Security (HSTS) is a web security policy that forces browsers to make secure
HTTPS connections to specified web applications. HSTS can protect websites against passive
eavesdropper and active man-in-the-middle attacks.

IDM provides an HSTS configuration but it is disabled by default. To enable HSTS, locate the
following excerpt in your conf/jetty.xml file:

Secure Network Connections
Restrict the HTTP Payload Size

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 34

<New id="tlsHttpConfig" class="org.eclipse.jetty.server.HttpConfiguration">
 ...
 <Call name="addCustomizer">
 <Arg>
 <New class="org.eclipse.jetty.server.SecureRequestCustomizer">
 <!-- Enable SNI Host Check when true -->
 <Arg name="sniHostCheck" type="boolean">true</Arg>
 <!-- Enable Strict-Transport-Security header and define max-age when >= 0 seconds -->
 <Arg name="stsMaxAgeSeconds" type="long">-1</Arg>
 <!-- If enabled, add includeSubDomains to Strict-Transport-Security header when true -->
 <Arg name="stsIncludeSubdomains" type="boolean">false</Arg>
 </New>
 </Arg>
 </Call>
...

Set the following arguments:

stsMaxAgeSeconds

This parameter sets the length of time, in seconds, that the browser should remember that a site
can only be accessed using HTTPS.

For example, the following setting applies the HSTS policy and remains in effect for an hour:
<Arg name="stsMaxAgeSeconds" type="long">3600</Arg>

stsMaxAgeSeconds

If this parameter is true>, the HSTS policy is applied to the domain of the issuing host as well as
its subdomains:
<Arg name="stsIncludeSubdomains" type="boolean">true</Arg>

For more information about HSTS, read this article.

Restrict the HTTP Payload Size
Restricting the size of HTTP payloads can protect the server against large payload HTTP DDoS
attacks. IDM includes a servlet filter that limits the size of an incoming HTTP request payload, and
returns a 413 Request Entity Too Large response when the maximum payload size is exceeded.

By default, the maximum payload size is 5MB. You can configure the maximum size in your project's
conf/servletfilter-payload.json file. That file has the following structure by default:

https://www.tunetheweb.com/security/http-security-headers/hsts/

Secure Network Connections
Deploy Securely Behind a Load Balancer

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 35

{
 "classPathURLs" : [],
 "systemProperties" : { },
 "requestAttributes" : { },
 "scriptExtensions" : { },
 "initParams" : {
 "maxRequestSizeInMegabytes" : 5
 },
 "urlPatterns" : [
 "/*"
],
 "filterClass" : "org.forgerock.openidm.jetty.LargePayloadServletFilter"
}

Change the value of the maxRequestSizeInMegabytes property to set a different maximum HTTP payload
size.

The remaining properties in this file are described in "Register Additional Servlet Filters" in the
Installation Guide.

Deploy Securely Behind a Load Balancer
IDM prevents URL-hijacking, with the following code block in the conf/jetty.xml file:
<Call name="addCustomizer">
 <Arg>
 <New class="org.eclipse.jetty.server.SecureRequestCustomizer">
 <!-- Enable SNI Host Check when true -->
 <Arg name="sniHostCheck" type="boolean">true</Arg>
 <!-- Enable Strict-Transport-Security header and define max-age when >= 0 seconds -->
 <Arg name="stsMaxAgeSeconds" type="long">-1</Arg>
 <!-- If enabled, add includeSubDomains to Strict-Transport-Security header when true -->
 <Arg name="stsIncludeSubdomains" type="boolean">false</Arg>
 </New>
 </Arg>
</Call>

If you are deploying IDM behind a system such as a load balancer, firewall, or a reverse proxy, you
must uncomment the next section in jetty.xml, so that Jetty honors X-Forwarded-Host headers:
 <Call name="addCustomizer">
 <Arg>
 <New class="org.eclipse.jetty.server.ForwardedRequestCustomizer">
 <Set name="forcedHost">
 <Call class="org.forgerock.openidm.jetty.Param" name="getProperty">
 <Arg>openidm.host</Arg>
 </Call>:<Call class="org.forgerock.openidm.jetty.Param" name="getProperty">
 <Arg>openidm.port.https</Arg>
 </Call>
 </Set>
 </New>
 </Arg>
</Call>

Secure Network Connections
Connect to IDM Through a Proxy Server

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 36

Connect to IDM Through a Proxy Server
To configure IDM to communicate through a proxy server:

1. Add the following JVM parameters to the value of OPENIDM_OPTS in your startup script (startup.sh or
startup.bat):

-Dhttps.proxyHost

Hostname or IP address of the proxy server; for example, proxy.example.com or 192.168.0.1.

-Dhttps.proxyPort

Port number used by IDM; for example, 8443 or 9443.

For example:
Only set OPENIDM_OPTS if not already set
[-z "$OPENIDM_OPTS"] && OPENIDM_OPTS="-Xmx1024m -Xms1024m -Dhttps.proxyHost=localhost -
Dhttps.proxyPort=8443"

2. Enable the ForwardedRequestCustomizer class so that Jetty honors X-Forwarded- headers.

To enable the class, uncomment the following excerpt in your conf/jetty.xml file:

<Call name="addCustomizer">
 <Arg>
 <New class="org.eclipse.jetty.server.ForwardedRequestCustomizer">
 <Set name="forcedHost">
 <Call class="org.forgerock.openidm.jetty.Param" name="getProperty">
 <Arg>openidm.host</Arg>
 </Call>:
 <Call class="org.forgerock.openidm.jetty.Param" name="getProperty">
 <Arg>openidm.port.https</Arg>
 </Call>
 </Set>
 </New>
 </Arg>
</Call>

For more information on this class, see the Jetty documentation.

https://www.eclipse.org/jetty/javadoc/jetty-9/org/eclipse/jetty/server/ForwardedRequestCustomizer.html

Protect IDM Data
Encoding Attribute Values

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 37

Chapter 4

Protect IDM Data
Beyond relying on end-to-end availability of TLS/SSL to protect data, IDM also supports explicit
encryption of data that goes on the network. This can be important if the TLS/SSL termination
happens prior to the final endpoint.

IDM also supports encryption of data stored in the repository, using the symmetric keys specified
in conf/secrets.json. This protects against some attacks on the data store. Explicit table mapping is
supported for encrypted string values.

IDM automatically encrypts sensitive data (such as passwords) in configuration files, and replaces
clear text values when the system first reads the configuration file. Take care with configuration files
that contain clear text values that IDM has not yet read and encrypted.

Encoding Attribute Values
There are two ways to encode attribute values for managed objects—reversible encryption and
salted hashing algorithms. Attribute values that might be encoded include passwords, authentication
questions, credit card numbers, and social security numbers. If passwords are already encoded
on the external resource, they are generally excluded from the synchronization process. For more
information, see "Secure Passwords".

You configure attribute value encoding, per schema property, in the managed object configuration
(You can edit the managed object configuration over REST at the config/managed endpoint, or directly in the conf/managed.json file.).
The following sections show how to use reversible encryption and salted hash algorithms to encode
attribute values.

Encoding Attribute Values With Reversible Encryption

The following managed object configuration (You can edit the managed object configuration over REST at the config/
managed endpoint, or directly in the conf/managed.json file.) encrypts and decrypts the password attribute using the
default symmetric key:

Protect IDM Data
Encoding Attribute Values With Reversible Encryption

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 38

{
 "objects" : [
 {
 "name" : "user",
 ...
 "schema" : {
 ...
 "properties" : {
 ...
 "password" : {
 "title" : "Password",
 ...
 "encryption" : {
 "purpose" : "idm.password.encryption"
 },
 "scope" : "private",
 }
 ...
 }
]
}

The settings for reversible encryption depend on the encryption capabilities of the underlying JVM.
See the explanations in javax.crypto.Cipher. You can accept the default settings, or specify the cipher
and the keySize, for example:
...
 "encryption" : {
 "purpose": "idm.password.encryption",
 "cipher": "AES/GCM/NoPadding",
 "keySize": 128
},

The syntax for the cipher is algorithm/mode/padding, for example, "cipher" : "AES/CBC/PKCS5Padding":

• The cipher algorithm defines how the plaintext is encrypted and decrypted.

The default algorithm is the Advanced Encryption Standard (AES).

• The cipher mode defines how a block cipher algorithm transforms data larger than a single block.

The default cipher mode is cipher block chaining (CBC).

• The cipher padding defines how to pad the plaintext to reach the appropriate size for the algorithm.

The default cipher padding is PKCS#5 padding.

• The cipher key size determines the encryption strength, where longer key lengths strengthen
encryption at the cost of lower performance.

The default keySize is 16.

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/Cipher.html

Protect IDM Data
Encoding Attribute Values by Using Salted Hash Algorithms

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 39

Note

If you change the default cipher, you must specify the algorithm, mode, and padding. If the algorithm does not
require a mode, use NONE. If the algorithm does not require padding, use NoPadding.

To encrypt attribute values from the command-line, see "encrypt" in the Setup Guide.

+ To Configure Encryption Through the UI

1. Select Configure > Managed Objects, and select the object type whose property values you
want to encrypt (for example User).

2. On the Properties tab, select the property whose value should be encrypted and select the
Encrypt checkbox.

Encoding Attribute Values by Using Salted Hash Algorithms

To encode attribute values with salted hash algorithms, add the secureHash property to the attribute
definition and define the hashing configuration. The configuration depends on the algorithm that you
choose.

If you do not specify an algorithm, SHA-256 is used by default. MD5 and SHA-1 are supported for
legacy reasons but you should use a more secure algorithm in production environments.

The following list shows the supported hash algorithms and their configurations:

SHA-256

"secureHash" : {
 "algorithm" : "SHA-256",
 "saltLength" : 16
}

SHA-384

"secureHash" : {
 "algorithm" : "SHA-384",
 "saltLength" : 16
}

SHA-512

"secureHash" : {
 "algorithm" : "SHA-512",
 "saltLength" : 16
}

Protect IDM Data
Encoding Attribute Values by Using Salted Hash Algorithms

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 40

Bcrypt

"secureHash" : {
 "algorithm" : "BCRYPT",
 "cost" : 16
}

Scrypt

"secureHash" : {
 "algorithm" : "SCRYPT",
 "hashLength" : 16,
 "saltLength" : 16,
 "n" : 32768,
 "r" : 8,
 "p" : 1
}

Password-Based Key Derivation Function 2 (PBKDF2)

"secureHash" : {
 "algorithm" : "PBKDF2",
 "hashLength" : 16,
 "saltLength" : 16,
 "iterations" : 10,
 "hmac" : "SHA-256"
}

Warning

Some one-way hash functions are designed to be computationally expensive. Functions such as PBKDF2,
Bcrypt, and Scrypt are designed to be relatively slow even on modern hardware. This makes them generally
less susceptible to brute force attacks. However, computationally expensive functions can dramatically increase
response times. If you use these functions, be aware of the performance impact and perform extensive testing
before deploying your service in production. Do not use functions like PBKDF2 and Bcrypt for any accounts that
are used for frequent, short-lived connections.

Hashing is a one-way operation, such that the original value cannot be recovered. Therefore, if you hash the
value of any property, you cannot synchronize that property value to an external resource. For managed object
properties with hashed values, you must either exclude those properties from the mapping or set a random
default value if the external resource requires the property.

The following excerpt of a managed object configuration shows that values of the password attribute
are hashed using the SHA-256 algorithm:

Protect IDM Data
Structure of an Encrypted Object

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 41

{
 "objects" : [
 {
 "name" : "user",
 ...
 "schema" : {
 ...
 "properties" : {
 ...
 "password" : {
 "title" : "Password",
 ...
 "secureHash" : {
 "algorithm" : "SHA-256"
 },
 "scope" : "private",
 }
 ...
 }
]
}

To hash attribute values from the command-line, see "secureHash" in the Setup Guide.

+ To Configure Hashing Through the UI

You can configure hashing of properties through the Admin UI, but the functionality is limited to
setting the hash algorithm. Not all algorithms are supported in the UI, and none of the enhanced
configuration options are supported. To configure attribute hashing in the UI:

1. Select Configure > Managed Objects, and select the object type whose property values you
want to hash (for example, User).

2. On the Properties tab, select the property whose value must be hashed, select Privacy &
Encryption, then select the Hashed checkbox.

3. Select the algorithm that should be used to hash the property value.

Structure of an Encrypted Object
Encrypted objects and properties, such as passwords, include a $crypto object, that has the following
structure:

Protect IDM Data
Encrypting and Decrypting Properties Over REST

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 42

"password": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "cipher": "AES/CBC/PKCS5Padding",
 "stableId": "openidm-sym-default",
 "salt": "Gwi+AGrn+VBOTmyq+TTuuw==",
 "data": "+9i7XAXpWZBXYTVEOBkM+w==",
 "keySize": 16,
 "purpose": "idm.password.encryption",
 "iv": "4xtI88eFu5tgfm8ooq+yqQ==",
 "mac": "N1zsYo71M/b/G6iLOhNohA=="
 }
 }
}

Most of the properties in the encrypted object value are self-explanatory and indicate how the
property was encrypted. Specific IDM properties include the following:

• The stableId indicates the key alias that was used to encrypt the property value.

• The purpose refers to the secret ID used to encrypt the property value. For more information about
secret IDs, see "Configuring Secret Stores".

Encrypting and Decrypting Properties Over REST
The openidm.encrypt and openidm.decrypt functions of the Resource API enable you to encrypt and
decrypt property values. To use these functions over the REST interface, run the ?_action=eval action
on the script endpoint.

The following example uses the openidm.encrypt function to encrypt a password value:

Protect IDM Data
Encrypting and Decrypting Properties Over REST

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 43

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--cacert ca-cert.pem \
--request POST \
--data '{
 "type": "text/javascript",
 "globals": {
 "val": {
 "myKey": "myPassword"
 }
 },
 "source":"openidm.encrypt(val,null,\"idm.password.encryption\");"
}' \
"https://localhost:8443/openidm/script?_action=eval"
{
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "cipher": "AES/CBC/PKCS5Padding",
 "stableId": "openidm-sym-default",
 "salt": "qAS/eG7zdnFyK5H8lXvqTA==",
 "data": "zewf6hR1yjp34EFJqUGpdnzzFCPJs2IaX4V97jdQlSI=",
 "keySize": 16,
 "purpose": "idm.password.encryption",
 "iv": "A4pIiY6kG6t0uLyLmJAoWQ==",
 "mac": "sFDJqg0Mmp0Ftl+1q1Bjzw=="
 }
 }
}

The following example uses the openidm.decrypt function to decrypt the password value:

Protect IDM Data
Securing the Repository

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 44

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Content-Type: application/json" \
--cacert ca-cert.pem \
--request POST \
--data '{
 "type": "text/javascript",
 "globals": {
 "val": {
 "$crypto": {
 "type": "x-simple-encryption",
 "value": {
 "cipher": "AES/CBC/PKCS5Padding",
 "stableId": "openidm-sym-default",
 "salt": "qAS/eG7zdnFyK5H8lXvqTA==",
 "data": "zewf6hR1yjp34EFJqUGpdnzzFCPJs2IaX4V97jdQlSI=",
 "keySize": 16,
 "purpose": "idm.password.encryption",
 "iv": "A4pIiY6kG6t0uLyLmJAoWQ==",
 "mac": "sFDJqg0Mmp0Ftl+1q1Bjzw=="
 }
 }
 }
 },
 "source":"openidm.decrypt(val);"
}' \
"https://localhost:8443/openidm/script?_action=eval"
{
 "myKey": "myPassword"
}

For more information about the openidm.encrypt and openidm.decrypt functions, see
openidm.encrypt(value, cipher, alias) and openidm.decrypt(value) in the Scripting Guide.

Securing the Repository
Configuration data and, in most deployments, user data, are stored in the IDM repository. In
production deployments, you must secure access to the repository, and encrypt sensitive stored data.

For JDBC repositories, use a strong password for the connection to the repository and change at least
the password of the database user (openidm by default). When you change the database username and/
or password, update your database connection configuration file (conf/datasource.jdbc-default.json).

For a DS repository, change the bindDN and bindPassword for the directory server user in the
ldapConnectionFactories property in the repo.ds.json file.

In both cases, the password is encrypted on server startup, using the key specified in the idm.password.
encryption secret ID in conf/secrets.json.

Protect IDM Data
Protecting Sensitive Files and Directories

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 45

Protecting Sensitive Files and Directories
Protect IDM files from access by unauthorized users. In particular, prevent other users from reading
files in at least the openidm/resolver/ and openidm/security/ directories.

The objective is to limit access to the user that is running the service. Depending on the operating
system and configuration, that user might be root, Administrator, openidm, or something similar.

Protecting Sensitive Files in Unix

1. Make sure that user and group ownership of the installation and project directories is limited to
the user running the IDM service.

2. Disable access of any sort for other users. One simple command for that purpose, from the /path/
to/openidm directory, is:
chmod -R o-rwx .

Protecting Sensitive Files in Windows

1. The IDM process in Windows is normally run by the Local System service account.

2. If you are concerned about the security of this account, you can set up a service account that only
has permissions for IDM-related directories, then remove User access to the directories noted
above. You should also configure the service account to deny local and remote login. For more
information, see the User Rights Assignment article in Microsoft's documentation.

Removing or Protecting Development and Debug Tools
Before you deploy IDM in production, remove or protect development and debug tools, including
the Felix web console that is exposed under /system/console. Authentication for this console is not
integrated with authentication for IDM.

+ Remove Tools

To remove the Felix web console:

1. Remove the web console bundle and all of the plugin bundles related to the web console:
rm /path/to/openidm/bundle/org.apache.felix.webconsole*.jar
rm /path/to/openidm/bundle/openidm-felix-webconsole-7.1.6.jar

2. Remove the felix.webconsole.json configuration file from your project's conf/ directory:

https://technet.microsoft.com/en-us/library/dn221963.aspx

Protect IDM Data
Adjusting Log Levels

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 46

rm /path/to/project-dir/conf/felix.webconsole.json

+ Protect Tools

To protect access to the Felix web console, change the credentials in your project's conf/
felix.webconsole.json file. These properties can be set using property substitution in the Setup
Guide. This file contains the username and password to access the console, by default:
{
 "username" : "&{openidm.felix.webconsole.username|admin}",
 "password" : "&{openidm.felix.webconsole.password|admin}"
}

Adjusting Log Levels
In production, set log levels to INFO to ensure that you capture enough information to help diagnose
issues, but do not expose unnecessary information. For more information, see "Configure Server
Logs" in the Monitoring Guide.

At start up and shut down, INFO can produce many messages. During stable operation, INFO generally
results in log messages only when coarse-grain operations such as scheduled reconciliation start or
stop.

Important

The default IDM log formatter encodes all control characters (such as newline characters) using URL-encoding,
to protect against log forgery. For more information, see "Configure Server Logs" in the Monitoring Guide.

Securing the API Explorer
The "REST API Explorer" serves up interactive REST API documentation. The API Explorer can help
you identify endpoints, and run REST calls against those endpoints. To protect production servers
from unauthorized API descriptor requests, IDM requires authentication, by default. The property
authEnabled protects static web resources from public view.

+ Default ui.context-api.json file

Protect IDM Data
Hide Unused REST Endpoints

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 47

{
 "enabled" : true,
 "authEnabled" : true,
 "urlContextRoot" : "/api",
 "defaultDir" : "&{idm.install.dir}/ui/api/default",
 "extensionDir" : "&{idm.install.dir}/ui/api/extension"
}

To completely disable the API Explorer, set the following property in your resolver/boot.properties file:
openidm.apidescriptor.enabled=false

Hide Unused REST Endpoints
The two main use cases for IDM are data synchronization and user self-service.

If you are using IDM only to synchronize data sources, do not expose the server externally. In this
case, all connections are initiated by IDM.

If you are using IDM only for user self-service, ensure that the server is placed behind a firewall
or proxy, such as ForgeRock Identity Gateway. At a minimum, hide the /admin endpoint in the web
interface via the proxy. Use the conf/access.json in the Authentication and Authorization Guide file as
a guide for proxy or firewall rules.

If you are using IDM for data synchronization and user self-service, it is preferable to run two IDM
servers or clusters, each with its own security model. Because the two use cases have very different
load characteristics and security implications, running them on separate servers can help to prevent
synchronization activity from impacting the performance on end-user systems.

Disabling Automatic Configuration Updates
By default, IDM polls the JSON files in the conf directory periodically for any changes to the
configuration. In a production system, it is recommended that you disable automatic polling for
updates to prevent untested configuration changes from disrupting your identity service.

To disable automatic polling for configuration changes, edit the conf/system.properties file for your
project, and uncomment the following line:
openidm.fileinstall.enabled=false

This setting also disables the file-based configuration view, which means that IDM reads its
configuration only from the repository.

https://backstage.forgerock.com/docs/ig/7.1

Protect IDM Data
Securing IDM Server Files With a Read-Only Installation

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 48

Important

Before you disable automatic polling, you must have started the server at least once to ensure that the
configuration has been loaded into the repository. Be aware, if automatic polling is enabled, IDM immediately
uses changes to scripts called from a JSON configuration file.

When your configuration is complete, you can disable writes to configuration files. To do so, add the
following line to the conf/config.properties file for your project:
felix.fileinstall.enableConfigSave=false

Securing IDM Server Files With a Read-Only Installation
One method of locking down the server is to install IDM on a read-only file system.

This section assumes that you have prepared the read-only volume appropriate for your Linux/UNIX
installation environment and that you have set up a regular Linux user named idm and a dedicated
volume for the /idm directory.

Configure the dedicated volume device, /dev/volume in the /etc/fstab file, as follows:
/dev/volume /idm ext4 ro,defaults 1,2

When you run the mount -a command, the /dev/volume volume device is mounted on the /idm directory.

You can switch between read-write and read-only mode for the /idm volume with the following
commands:
sudo mount -o remount,rw /idm
sudo mount -o remount,ro /idm

Confirm the result with the mount command, which should show that the /idm volume is mounted in
read-only mode:
/dev/volume on /idm type ext4 (ro)

Set up the /idm volume in read-write mode:
sudo mount -o remount,rw /idm

With the following commands, you can unpack the IDM binary in the /idm directory, and give user idm
ownership of all files in that directory:
sudo unzip /idm/IDM-7.1.6.zip
sudo chown -R idm.idm /idm

When you have installed IDM on a read-only file system, redirect audit and logging data to writable
volumes. This procedure assumes a user idm with Linux administrative (superuser) privileges.

Protect IDM Data
Securing IDM Server Files With a Read-Only Installation

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 49

1. Create an external directory where IDM can send logging, auditing, and internal repository
information:
sudo mkdir -p /var/log/openidm/audit
sudo mkdir /var/log/openidm/logs
sudo mkdir -p /var/cache/openidm/felix-cache
sudo mkdir /var/run/openidm

Alternatively, route audit data to a remote data store. For an example of how to send audit data to
a MySQL repository, see "Direct Audit Information To MySQL" in the Samples Guide.

2. Give the idm user ownership of the newly created directories:
sudo chown -R idm.idm /var/log/openidm
sudo chown -R idm.idm /var/cache/openidm
sudo chown -R idm.idm /var/run/openidm

3. Modify the following configuration files:

conf/audit.json

Make sure the handlerForQueries is the JSON audit event handler and change the logDirectory
property to the /var/log/openidm/audit subdirectory:
"eventHandlers" : [
 {
 "class" : "org.forgerock.audit.handlers.json.JsonAuditEventHandler",
 "config" : {
 "name" : "json",
 "logDirectory" : "/var/log/openidm/audit",
 ...
 },
 ...
 }
]

conf/logging.properties

Change the java.util.logging.FileHandler.pattern property as follows:

java.util.logging.FileHandler.pattern = /var/log/openidm/logs/openidm%u.log

conf/config.properties

Activate and redirect the org.osgi.framework.storage property as follows:
If this value is not absolute, then the felix.cache.rootdir controls
how the absolute location is calculated. (See buildNext property)
org.osgi.framework.storage=&{felix.cache.rootdir|&{user.dir}}/felix-cache

The following property is used to convert a relative bundle cache
location into an absolute one by specifying the root to prepend to
the relative cache path. The default for this property is the
current working directory.
felix.cache.rootdir=/var/cache/openidm

Protect IDM Data
Securing IDM Server Files With a Read-Only Installation

Security Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2016-2021 ForgeRock AS. All rights reserved. 50

Note

You might want to set up additional redirection for the following:

• Connectors. Depending on the connector, and the read-only volume, consider configuring connectors to direct
output to writable volumes.

• Scripts. If you are using Groovy, examine the conf/script.json file for your project. Make sure that output
such as to the groovy.target.directory is directed to an appropriate location, such as idm.data.dir.

Adjust the value of the OPENIDM_PID_FILE in the startup.sh and shutdown.sh scripts.

For RHEL 6 and Ubuntu 14.04 systems, the default shell is bash. You can set the value of OPENIDM_PID_
FILE for user idm by adding the following line to /home/idm/.bashrc:
export OPENIDM_PID_FILE=/var/run/openidm/openidm.pid

If you have set up a different command line shell, adjust your changes accordingly.

When you log in again as user idm, your OPENIDM_PID_FILE variable should redirect the process identifier
file, openidm.pid to the /var/run/openidm directory, ready for access by the shutdown.sh script.

While the volume is still mounted in read-write mode, start IDM normally:
./startup.sh -p project-dir

The first startup of IDM either processes the signed certificate that you added, or generates a self-
signed certificate, and encrypts any passwords in the various configuration files.

Stop IDM if it is running.

You can now mount the /idm directory in read-only mode. The configuration in /etc/fstab ensures that
Linux mounts the /idm directory in read-only mode the next time that system is booted.
sudo mount -o remount,ro /idm

You can now start IDM, configured on a secure read-only volume.
./startup.sh -p project-dir

	Security Guide
	Table of Contents
	Overview
	Chapter 1. Secret Stores, Certificates and Keys
	Configuring Secret Stores
	Working With the Default Keystore
	Changing the Default Keystore Password

	Using CA-Signed Certificates
	Deleting Certificates
	Removing Unused CA Certificates
	Changing and Rotating Encryption Keys
	Rotating Encryption Keys Manually
	Using Scheduled Tasks to Rotate Keys
	Changing the Active Alias for Managed Object Encryption

	Configuring IDM For a Hardware Security Module (HSM) Device
	Setting Up the HSM Configuration
	Populating the Default Encryption Keys
	Configuring IDM to Support an HSM Provider

	Chapter 2. Secure Passwords
	Enforcing Password Policy
	Creating a Password History Policy

	Storing Separate Passwords Per Linked Resource
	Generating Random Passwords
	Modifying the password Property
	Rate Limiting Emails

	Chapter 3. Secure Network Connections
	Use TLS/SSL
	Restrict REST Access to the HTTPS Port
	Protect Sensitive REST Interface URLs
	Enable HTTP Strict-Transport-Security
	Restrict the HTTP Payload Size
	Deploy Securely Behind a Load Balancer
	Connect to IDM Through a Proxy Server

	Chapter 4. Protect IDM Data
	Encoding Attribute Values
	Encoding Attribute Values With Reversible Encryption
	Encoding Attribute Values by Using Salted Hash Algorithms

	Structure of an Encrypted Object
	Encrypting and Decrypting Properties Over REST
	Securing the Repository
	Protecting Sensitive Files and Directories
	Removing or Protecting Development and Debug Tools
	Adjusting Log Levels
	Securing the API Explorer
	Hide Unused REST Endpoints
	Disabling Automatic Configuration Updates
	Securing IDM Server Files With a Read-Only Installation

