
Scripting Guide
/ ForgeRock Identity Management 7.1

Latest update: 7.1.6

ForgeRock AS.
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2011-2020 ForgeRock AS.

Abstract

Guide to scripting for ForgeRock® Identity Management.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© Copyright 2010–2020 ForgeRock, Inc. All rights reserved. ForgeRock is a registered trademark of ForgeRock, Inc. Other marks appearing herein may be trademarks of their respective owners.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, and distribution. No part of this product or document may be reproduced in any form by any means without prior
written authorization of ForgeRock and its licensors, if any.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESSED OR IMPLIED CONDITIONS, REPRESENTATIONS, AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, https://fontawesome.com/.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://fontawesome.com/
https://opensource.org/licenses/OFL-1.1

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. iii

Table of Contents
Overview ... iv
1. Script Configuration .. 1
2. Call a Script From the IDM Configuration ... 4
3. Validate Scripts Over REST .. 6
4. Create Custom Endpoints to Launch Scripts ... 8

Custom Endpoint Configuration ... 8
Custom Endpoint Scripts ... 9
Script Exceptions .. 11
Write an API Descriptor for a Custom Endpoint .. 12

5. Register Custom Scripted Actions ... 15
6. Request Context Chain .. 19
7. Script Triggers .. 20
8. Script Variables ... 22

Script Triggers Defined in the managed object configuration (You can edit the managed
object configuration over REST at the config/managed endpoint, or directly in the conf/managed.json file.) .. 22
Script Triggers Defined in Mappings ... 25
Script Triggers Defined in the router configuration (You can edit the router configuration
over REST at the config/router endpoint, or directly in the conf/router.json file.) 29
Variables Available to Scripts in Custom Endpoints ... 29
Variables Available to Role Assignment Scripts ... 30
The augmentSecurityContext Trigger .. 31
The identityServer Variable .. 32

A. Router Configuration .. 33
Filter Objects .. 33
Script Execution Sequence .. 35
Script Scope .. 36

B. Scripting Function Reference .. 39
Log Functions .. 55

IDM Glossary ... 60

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. iv

Overview
Scripting lets you extend IDM functionality. For example, you can provide custom logic between
source and target mappings, define correlation rules, filters, triggers, and so on. This guide shows
you how to use scripts in IDM and provides reference information on the script engine.

Quick Start


Script Configuration

Modify the parameters to
compile, debug, and run scripts.


Custom Endpoints

Run arbitrary scripts through the REST URI.


Script Triggers

Learn where and how you can trigger scripts.


Script Variables

Learn about the variables available to scripts.

IDM supports scripts written in JavaScript and Groovy and uses the following libraries:

• Rhino version 1.7.12 to run JavaScript.

Note

Rhino has limited support for ES6 / ES2015 (JavaScript version 1.7). For more information, see Rhino ES2015
Support.

• Groovy version 3.0.4 for Groovy script support.

• Lodash 3.10.1 and Handlebars 4.7.6 for Rhino scripting.

Note

Using Handlebars JS in server-side JS scripts requires synchronization; for example:

https://mozilla.github.io/rhino/compat/engines.html
https://mozilla.github.io/rhino/compat/engines.html

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. v

var Handlebars = require("lib/handlebars");
var result = new Packages.org.mozilla.javascript.Synchronizer(function() {
 var template = Handlebars.compile("Handlebars {{doesWhat}}");
 return template({ doesWhat: "rocks!" });
}, Handlebars)();
console.log(result);

• BouncyCastle 1.67 for signing JWTs.

Note

The BouncyCastle .JAR file that is bundled with IDM includes the org.bouncycastle.asn1.util.Dump command-
line utility. Although this utility is not used directly by IDM, it is possible to reference the utility in your
scripts. Due to a security vulnerability in this utility, you should not reference it in your scripts. For more
information, see the corresponding BouncyCastle issue.

Important

Script options and locations are defined in conf/script.json. Default scripts are located in (/path/to/openidm/
bin/defaults/script/). Do not modify the scripts in this directory. Rather copy the default scripts to a different
location, make the changes, and update the referenced scripts in the applicable conf/ file. You can put custom
scripts in any of the locations referenced in the sources property in conf/script.json.

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity
and Access Management solution. We help our customers deepen their relationships with their
customers, and improve the productivity and connectivity of their employees and partners. For more
information about ForgeRock and about the platform, see https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web
resources and collections of resources.

https://github.com/bcgit/bc-java/issues/634
https://www.forgerock.com

Script Configuration

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 1

Chapter 1

Script Configuration
To modify the parameters used for compiling, debugging, and running scripts, edit the script
configuration (You can manage the script configuration over REST at the config/script endpoint, or directly in the conf/script.json
file.).

Script Configuration Parameters

properties

Any custom properties.

ECMAScript

JavaScript debug and compile options. JavaScript is an ECMAScript language.

• javascript.optimization.level - The current optimization level. Expected integer range is from -1
to 9. For more information about optimization level, see Rhino Optimization.

The default value is 9.

• javascript.recompile.minimumInterval - The minimum time between script recompile.

The default value is 60000, or 60 seconds. This means that any changes made to scripts will
not get picked up for up to 60 seconds. If you are developing scripts, reduce this parameter to
around 100 (100 milliseconds).

If you set the javascript.recompile.minimumInterval to -1, or remove this property from the
script.json file, IDM does not poll JavaScript files to check for changes.

Groovy

Compilation and debugging options related to Groovy scripts. Many of these options are
commented out in the default script configuration file. Remove the comments to set these
properties:

• groovy.warnings - The Groovy script log level. Possible values are none, likely, possible, and
paranoia.

• groovy.source.encoding - The Groovy script encoding format. Possible values are UTF-8 and US-
ASCII.

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/Rhino/Optimization

Script Configuration

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 2

• groovy.target.directory - The compiled Groovy class output directory. The default directory is
install-dir/classes.

• groovy.target.bytecode - The Groovy script bytecode version. The default version is 1.5.

• groovy.classpath - The directory where the compiler should look for compiled classes. The default
classpath is install-dir/lib.

To call an external library from a Groovy script, you must specify the complete path to the .jar
file or files, as a value of this property. For example:
"groovy.classpath" : "/&{idm.install.dir}/lib/http-builder-0.7.1.jar:
 /&{idm.install.dir}/lib/json-lib-2.3-jdk15.jar:
 /&{idm.install.dir}/lib/xml-resolver-1.2.jar:
 /&{idm.install.dir}/lib/commons-collections-3.2.1.jar",

Note

If you're deploying on Microsoft Windows, use a semicolon (;) instead of a colon to separate directories
in the groovy.classpath.

• groovy.output.verbose - Verbosity of stack traces. Boolean, true or false.

• groovy.output.debug - Whether to output debug messages. Boolean, true or false.

• groovy.errors.tolerance - The number of non-fatal errors that can occur before a compilation is
aborted. The default is 10 errors.

• groovy.script.extension - Groovy script file extension. The default is .groovy.

• groovy.script.base - Groovy script base class. By default, any class extends groovy.lang.Script.

• groovy.recompile - Whether scripts can be recompiled. Boolean, true or false, with default true.

• groovy.recompile.minimumInterval - Groovy script minimum recompile interval.

The default value is 60000, or 60 seconds. Using the default value, any changes made to scripts
may not be in effect for up to 60 seconds. If you are developing scripts, reduce this parameter
to 100 (100 milliseconds).

• groovy.target.indy - Whether to use a Groovy indy test. Boolean, true orfalse, with default true.

• groovy.disabled.global.ast.transformations - A list of disabled Abstract Syntax Transformations
(ASTs).

sources

The directories where IDM looks for referenced scripts.

Excerpt of a script configuration (You can manage the script configuration over REST at the config/script endpoint, or
directly in the conf/script.json file.) displaying default directories:

http://docs.groovy-lang.org/latest/html/documentation/invokedynamic-support.html

Script Configuration

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 3

"sources" : {
 "default" : {
 "directory" : "&{idm.install.dir}/bin/defaults/script"
 },
 "install" : {
 "directory" : "&{idm.install.dir}"
 },
 "project" : {
 "directory" : "&{idm.instance.dir}"
 },
 "project-script" : {
 "directory" : "&{idm.instance.dir}/script"
}

Note

IDM loads scripts from sources in reverse order (bottom to top).

Note

By default, debug information (for example, file name and line number) is excluded from JavaScript and Groovy
exceptions. To troubleshoot script exceptions, you can include debug information by changing the following
settings to true in resolver/boot.properties:
javascript.exception.debug.info=false
groovy.exception.debug.info=false

Including debug information in a production environment is not recommended.

Call a Script From the IDM Configuration

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 4

Chapter 2

Call a Script From the IDM Configuration
To call a script from the IDM configuration, edit the configuration object to provide the script
sourceor to reference a file that contains the script source. For example:
{
 "type" : "text/javascript",
 "source": "scriptSource"
}

or
{
 "type" : "text/javascript",
 "file" : "file location"
}

Script variables are not necessarily simple key:value pairs, and can be any arbitrarily complex JSON
object.

type

string, required

Specifies the type of script to be executed. Supported types include text/javascript and groovy.

source

string, required if file is not specified

Specifies the source code of the script to be executed.

file

string, required if source is not specified

Specifies the file containing the source code of the script to execute. The file path must be
relative to project-dir. Absolute paths are not supported.

Tip

In general, you should namespace variables passed into scripts with the globals map. Passing variables in this
way prevents collisions with the top-level reserved words for script maps, such as source, file, and type. This
example uses the globals map to namespace the variables passed in the previous example.

Call a Script From the IDM Configuration

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 5

"script": {
 "type" : "text/javascript",
 "file" : "script/triggerEmailNotification.js",
 "globals" : {
 "fromSender" : "admin@example.com",
 "toEmail" : "user@example.com"
 }
}

+ Examples

The following example script (in the mapping configuration (You can manage the mapping configuration over
REST at the config/sync endpoint, directly in the conf/sync.json file, or in individual conf/mapping-<mappingName>.json files.))
determines whether to include or ignore a target object in the reconciliation process based on an
employeeType of true:
"validTarget" : {
 "type" : "text/javascript",
 "source" : "target.employeeType == 'external'"
}

The following example script (in the mapping configuration (You can manage the mapping configuration over
REST at the config/sync endpoint, directly in the conf/sync.json file, or in individual conf/mapping-<mappingName>.json files.))
sets the __PASSWORD__ attribute to defaultpwd when IDM creates a target object:
"onCreate" : {
 "type" : "text/javascript",
 "source" : "target.__PASSWORD__ = 'defaultpwd'"
}

Often, script files are reused in different contexts. You can pass variables to your scripts to
provide these contextual details at runtime. You pass variables to the scripts that are referenced
in configuration files by declaring the variable name in the script reference.

The following scheduled task configuration calls a script that triggers an email notification, but
sets the sender and recipient of the email in the schedule configuration, rather in the script itself:
{
 "enabled" : true,
 "type" : "cron",
 "schedule" : "0 0/1 * * * ?",
 "persisted" : true,
 "invokeService" : "script",
 "invokeContext" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "script/triggerEmailNotification.js",
 "fromSender" : "admin@example.com",
 "toEmail" : "user@example.com"
 }
 }
}

Validate Scripts Over REST

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 6

Chapter 3

Validate Scripts Over REST
IDM exposes a script endpoint over which scripts can be validated, by specifying the script
parameters as part of the JSON payload. This functionality lets you test how a script will operate in
your deployment, with complete control over the inputs and outputs. Testing scripts in this way can
be useful in debugging.

In addition, the script registry service supports calls to other scripts. For example, you might
have logic written in JavaScript, but also some code available in Groovy. Ordinarily, it would be
challenging to interoperate between these two environments, but this script service lets you call one
from the other on the IDM router.

The script endpoint supports two actions - eval and compile.

The eval action evaluates a script, by taking any actions referenced in the script, such as router calls
to affect the state of an object. For JavaScript scripts, the last statement that is executed is the value
produced by the script, and the expected result of the REST call.

The following REST call attempts to evaluate the autoPurgeAuditRecon.js script (provided in openidm/
bin/defaults/script/audit), but provides an incorrect purge type ("purgeByNumOfRecordsToKeep" instead of
"purgeByNumOfReconsToKeep"). The error is picked up in the evaluation. The example assumes that the
script exists in the directory reserved for custom scripts (openidm/script):
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "type": "text/javascript",
 "file": "script/autoPurgeAuditRecon.js",
 "globals": {
 "input": {
 "mappings": ["%"],
 "purgeType": "purgeByNumOfRecordsToKeep",
 "numOfRecons": 1
 }
 }
}' \
"http://localhost:8080/openidm/script?_action=eval"

"Must choose to either purge by expired or number of recons to keep"

Validate Scripts Over REST

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 7

Tip

The variables passed into this script are namespaced with the globals map. It is preferable to namespace
variables passed into scripts in this way, to avoid collisions with the top-level reserved words for script maps,
such as file, source, and type.

The compile action compiles a script, but does not execute it. A successful compilation returns true. An
unsuccessful compilation returns the reason for the failure.

The following REST call tests whether a transformation script will compile:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "type":"text/javascript",
 "source":"source.mail ? source.mail.toLowerCase() : null"
}' \
"http://localhost:8080/openidm/script?_action=compile"
True

If the script is not valid, the action returns an indication of the error, for example:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "type":"text/javascript",
 "source":"source.mail ? source.mail.toLowerCase()"
}' \
"http://localhost:8080/openidm/script?_action=compile"
{
 "code": 400,
 "reason": "Bad Request",
 "message": "missing : in conditional expression (386...BF2#1)in 386...BF2 at line number 1 at column
 number 39"
}

Create Custom Endpoints to Launch Scripts
Custom Endpoint Configuration

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 8

Chapter 4

Create Custom Endpoints to Launch Scripts
Custom endpoints let you run arbitrary scripts through the REST API.

A custom endpoint configuration (You can create and change custom endpoint configurations over REST at the config/
endpoint/<name> endpoint, or in files named conf/endpoint-<>name>.json, where <name> generally describes the purpose of the
endpoint.) includes an inline script or a reference to a script file, in either JavaScript or Groovy. The
script provides the endpoint functionality.

A sample custom endpoint configuration is provided in the openidm/samples/example-configurations/
custom-endpoint directory. The sample includes three files:

conf/endpoint-echo.json

Provides the configuration for the endpoint.

script/echo.js

Provides the endpoint functionality in JavaScript.

script/echo.groovy

Provides the endpoint functionality in Groovy.

Note

This sample endpoint is described in detail in "Create a Custom Endpoint" in the Samples Guide.

Custom Endpoint Configuration
A custom endpoint configuration (You can create and change custom endpoint configurations over REST at the config/
endpoint/<name> endpoint, or in files named conf/endpoint-<>name>.json, where <name> generally describes the purpose of the
endpoint.) has the following structure:
{
 "context" : "context path",
 "type" : "script language",
 "source" : "script source" | "file" : "script file",
 "apiDescription" : "API descriptor object"
}

context

string, optional

Create Custom Endpoints to Launch Scripts
Custom Endpoint Scripts

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 9

The root URL path for the endpoint, in other words, the route to the endpoint. An endpoint
with the context endpoint/test is addressable over REST at the URL http://localhost:8080/openidm/
endpoint/test or by using a script such as openidm.read("endpoint/test").

Endpoint contexts support wild cards, as shown in the preceding example. The endpoint/
linkedview/* route matches the following patterns:
endpoint/linkedView/managed/user/bjensen
endpoint/linkedView/system/ldap/account/bjensen
endpoint/linkedView/
endpoint/linkedView

The context parameter is not mandatory in the endpoint configuration file. If you do not include a
context, the route to the endpoint is identified by the name of the file. For example, in the sample
endpoint configuration provided in openidm/samples/example-configurations/custom-endpoint/conf/
endpoint-echo.json, the route to the endpoint is endpoint/echo.

type

string, required

The type of script to be executed, either text/javascript or groovy.

file or source

The path to the script file, or the script itself, inline.

For example:
"file" : "workflow/gettasksview.js"

or
"source" : "require('linkedView').fetch(request.resourcePath);"

apiDescription

JSON object, optional

Describes the custom endpoint and includes its documentation in the "REST API Explorer".

Note

You must set authorization for any custom endpoints that you add, for example, by restricting the methods
to the appropriate roles. For more information, see "Authorization and Roles" in the Authentication and
Authorization Guide.

Custom Endpoint Scripts
The custom endpoint script files in the samples/example-configurations/custom-endpoint/script directory
demonstrate all the HTTP operations that can be called by a script. Each HTTP operation is

Create Custom Endpoints to Launch Scripts
Custom Endpoint Scripts

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 10

associated with a method - create, read, update, delete, patch, action, or query. Requests sent to the custom
endpoint return a list of the variables available to each method.

All scripts are invoked with a global request variable in their scope. This request structure carries all
the information about the request.

Warning

Read requests on custom endpoints must not modify the state of the resource, either on the client or the server,
as this can make them susceptible to CSRF exploits.

The standard READ endpoints are safe from Cross Site Request Forgery (CSRF) exploits because they are
inherently read-only. That is consistent with the Guidelines for Implementation of REST, from the US National
Security Agency, as "... CSRF protections need only be applied to endpoints that will modify information in
some way."

Custom endpoint scripts must return a JSON object. The structure of the return object depends on
the method in the request.

The following example shows the create method in the echo.js file:
if (request.method === "create") {
 return {
 method: "create",
 resourceName: request.resourcePath,
 newResourceId: request.newResourceId,
 parameters: request.additionalParameters,
 content: request.content,
 context: context.current
 }
}

The following example shows the query method in the echo.groovy file:
else if (request instanceof QueryRequest) {
 // query results must be returned as a list of maps
 return [
 [
 method: "query",
 resourceName: request.resourcePath,
 pagedResultsCookie: request.pagedResultsCookie,
 pagedResultsOffset: request.pagedResultsOffset,
 pageSize: request.pageSize,
 queryId: request.queryId,
 queryFilter: request.queryFilter.toString(),
 parameters: request.additionalParameters,
 context: context.toJsonValue().getObject()
]
]
}

Depending on the method, the variables available to the script can include the following:

resourceName

The name of the resource, without the endpoint/ prefix, such as echo.

Create Custom Endpoints to Launch Scripts
Script Exceptions

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 11

newResourceId

The identifier of the new object, available as the results of a create request.

revision

The revision of the object.

parameters

Any additional parameters provided in the request. The sample code returns request parameters
from an HTTP GET with ?param=x, as "parameters":{"param":"x"}.

content

Content based on the latest revision of the object, using getObject.

context

The context of the request, including headers and security. For more information, see "Request
Context Chain".

Paging parameters

The pagedResultsCookie, pagedResultsOffset, and pageSize parameters are specific to query methods.
For more information see "Page Query Results" in the Object Modeling Guide.

Query parameters

The queryId and queryFilter parameters are specific to query methods. For more information see
"Construct Queries" in the Object Modeling Guide.

Script Exceptions
Some custom endpoint scripts require exception-handling logic. To return meaningful messages in
REST responses and in logs, you must comply with the language-specific method of throwing errors.

A script written in JavaScript should comply with the following exception format:
throw {
 "code": 400, // any valid HTTP error code
 "message": "custom error message",
 "detail" : {
 "var": parameter1,
 "complexDetailObject" : [
 "detail1",
 "detail2"
]
 }
}

Create Custom Endpoints to Launch Scripts
Write an API Descriptor for a Custom Endpoint

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 12

Any exceptions will include the specified HTTP error code, the corresponding HTTP error message,
such as Bad Request, a custom error message that can help you diagnose the error, and any additional
detail that you think might be helpful.

A script written in Groovy should comply with the following exception format:
import org.forgerock.json.resource.ResourceException
import org.forgerock.json.JsonValue

throw new ResourceException(404, "Your error message").setDetail(new JsonValue([
 "var": "parameter1",
 "complexDetailObject" : [
 "detail1",
 "detail2"
]
]))

Write an API Descriptor for a Custom Endpoint
Most IDM endpoints are described in the "REST API Explorer". Documentation is not generated
automatically for custom endpoints.

To generate the documentation for your custom endpoint in the API Explorer, add an apiDescription
object to your custom endpoint configuration file. The apiDescription object includes the following
properties:

title

The endpoint name, which expresses its purpose. For example, Audit, or Authentication.

description

A description of the endpoint.

mvccSupported

Boolean, true or false.

Indicates whether object versioning is supported. If you want to use If-None-Match or If-Match
headers in read, delete, and patch requests, you must set "mvccSupported" : true.

Operations

An object that describes each operation supported on that endpoint (create, read, update, delete,
patch, actions, and queries).

resourceSchema

The schema for the objects at this endpoint.

Create Custom Endpoints to Launch Scripts
Write an API Descriptor for a Custom Endpoint

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 13

To see examples of the API descriptors included in IDM, log in to the Admin UI then point your
browser to http://localhost:8080/openidm?_crestapi.

Compare the descriptors at that URL with what you see in the API Explorer.

In addition, the sample configuration file (openidm/samples/example-configurations/custom-endpoint/conf/
endpoint-echo.json) shows how API descriptors must be constructed:

+ Sample API Descriptor Object

{
 "apiDescription" : {
 "title" : "Echo",
 "description" : "Service that echo's your HTTP requests.",
 "mvccSupported" : false,
 "create" : {
 "description" : "Echo a CREATE request.",
 "mode" : "ID_FROM_SERVER",
 "singleton" : false
 },
 "read" : { "description" : "Echo a READ request." },
 "update" : { "description" : "Echo an UPDATE request." },
 "delete" : { "description" : "Echo a DELETE request." },
 "patch" : {
 "description" : "Echo a PATCH request.",
 "operations" : ["ADD", "REMOVE", "REPLACE", "INCREMENT", "COPY", "MOVE", "TRANSFORM"]
 },
 "actions" : [
 {
 "description" : "Echo an ACTION request.",
 "name" : "echo",
 "request" : { "type" : "object" },
 "response" : {
 "title" : "Echo action response",
 "type" : "object",
 "properties" : {
 "method" : {
 "type" : "string",
 "enum" : ["action"]
 },
 "action" : { "type" : "string" },
 "content" : { "type" : "object" },
 "parameters" : { "type" : "object" },
 "context" : { "type" : "object" }
 }
 }
 }
],
 "queries" : [
 {
 "description" : "Echo a query-filter request.",
 "type" : "FILTER",
 "queryableFields" : ["*"]
 },
 {
 "description" : "Echo a query-all request.",
 "type" : "ID",

http://localhost:8080/admin
http://localhost:8080/openidm?_crestapi
http://localhost:8080/admin/#apiExplorer

Create Custom Endpoints to Launch Scripts
Write an API Descriptor for a Custom Endpoint

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 14

 "queryId" : "query-all"
 },
 {
 "description" : "Echo a query-all-ids request.",
 "type" : "ID",
 "queryId" : "query-all-ids"
 }
],
 "resourceSchema" : {
 "title" : "Echo resource",
 "type" : "object",
 "properties" : {
 "method" : {
 "title" : "CREST method",
 "type" : "string"
 },
 "resourceName" : { "type" : "string" },
 "parameters" : { "type" : "object" },
 "context" : { "type" : "object" }
 }
 }
 }
}

This object generates API documentation in the API explorer that looks like this:

Register Custom Scripted Actions

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 15

Chapter 5

Register Custom Scripted Actions
You can register custom scripts that initiate some arbitrary action on a managed object endpoint. You
can declare any number of actions in your managed object schema and associate those actions with a
script.

The return value of a custom scripted action is ignored. The managed object is returned as the
response of the scripted action, whether that object has been updated by the script or not.

Custom scripted actions have access to the following variables:

• context

• request

• resourcePath

• object

Example Scenario

In this scenario, you want your managed users to have the option to receive update notifications. You
can define an action that toggles the value of a specific property on the user object.

1. Add an updates property to the managed object configuration (You can edit the managed object configuration
over REST at the config/managed endpoint, or directly in the conf/managed.json file.):
"properties": {
 ...
 "updates": {
 "title": "Automatic Updates",
 "viewable": true,
 "type": "boolean",
 "searchable": true,
 "userEditable": true
 },
 ...
}

2. Add a toggleUpdates action to the managed user object definition:

Register Custom Scripted Actions

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 16

{
 "objects" : [
 {
 "name" : "user",
 "onCreate" : {
 ...
 },
 ...
 "actions" : {
 "toggleUpdates" : {
 "type" : "text/javascript",
 "source" : "openidm.patch(resourcePath, null, [{ 'operation' : 'replace',
 'field' : '/updates', 'value' : !object.updates }])"
 }
 },
 ...
 }
]
}

Note

The toggleUpdates action calls a script that changes the value of the user's updates property.

3. To call the script, specify the ID of the action in a POST request on the user object:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/managed/user/ID?_actionId=toggleUpdate"

Now you can test the functionality.

4. Create a managed user, bjensen, with an updates property set to true:

Register Custom Scripted Actions

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 17

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "userName":"bjensen",
 "sn":"Jensen",
 "givenName":"Barbara",
 "mail":"bjensen@example.com",
 "telephoneNumber":"5556787",
 "description":"Created by OpenIDM REST.",
 "updates": true,
 "password":"Passw0rd"
}' \
"http://localhost:8080/openidm/managed/user?_action=create"
{
 "_id": "9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb",
 "_rev": "0000000050c62938",
 "userName": "bjensen",
 "sn": "Jensen",
 "givenName": "Barbara",
 "mail": "bjensen@example.com",
 "telephoneNumber": "5556787",
 "description": "Created by OpenIDM REST.",
 "updates": true,
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

5. Run the toggleUpdates action on bjensen:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/managed/user/9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb?
_action=toggleUpdates"
{
 "_id": "9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb",
 "_rev": "00000000a92657c7",
 "userName": "bjensen",
 "sn": "Jensen",
 "givenName": "Barbara",
 "mail": "bjensen@example.com",
 "telephoneNumber": "5556787",
 "description": "Created by OpenIDM REST.",
 "updates": false,
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

Register Custom Scripted Actions

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 18

Note

Note in the command output that this action has set bjensen's updates property to false.

Request Context Chain

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 19

Chapter 6

Request Context Chain
The context chain of any request is established as follows:

1. The request starts with a root context, associated with a specific context ID.

2. The root context is wrapped in the security context that includes the authentication and
authorization detail for the request.

3. The security context is further wrapped by the HTTP context, with the target URI. The HTTP
context is associated with the normal parameters of the request, including a user agent,
authorization token, and method.

4. The HTTP context is wrapped by one or more server/router context(s), with an endpoint URI. The
request can have several layers of server and router contexts.

Script Triggers

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 20

Chapter 7

Script Triggers
Scripts can be triggered in different places, and by different events. The following list indicates
the configuration files in which scripts can be referenced, the events upon which the scripts can be
triggered and the actual scripts that can be triggered on each of these files.

Scripts called in mappings

Triggered by situation

onCreate, onUpdate, onDelete, onLink, onUnlink

Object filter

validSource, validTarget

Triggered when correlating objects

correlationQuery, correlationScript

Triggered on any reconciliation

result

Scripts inside properties

condition, transform

sync.json supports only one script per hook. If multiple scripts are defined for the same hook,
only the last one is kept.

Scripts inside policies

condition

Within a synchronization policy, you can use a condition script to apply different policies based
on the link type, for example:
"condition" : {
 "type" : "text/javascript",
 "source" : "linkQualifier == \"user\""
}

Script Triggers

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 21

Scripts called in the managed object configuration (You can edit the managed object configuration over REST at the
config/managed endpoint, or directly in the conf/managed.json file.)

onCreate, onRead, onUpdate, onDelete, onValidate, onRetrieve, onStore, onSync, postCreate,
postUpdate, and postDelete

The managed object configuration (You can edit the managed object configuration over REST at the config/managed
endpoint, or directly in the conf/managed.json file.) supports only one script per hook. If multiple scripts are
defined for the same hook, only the last one is kept.

Scripts called in the router configuration (You can edit the router configuration over REST at the config/router endpoint,
or directly in the conf/router.json file.)

onRequest, onResponse, onFailure

The router configuration (You can edit the router configuration over REST at the config/router endpoint, or directly in the
conf/router.json file.) supports multiple scripts per hook.

Script Variables
Script Triggers Defined in the managed object configuration (You can edit the managed object

configuration over REST at the config/managed endpoint, or directly in the conf/managed.json file.)

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 22

Chapter 8

Script Variables
The variables available to a script depend on several factors:

• The trigger that launches the script

• The configuration file in which that trigger is defined

• The object type:

• For objects defined in the managed object configuration (You can edit the managed object configuration over
REST at the config/managed endpoint, or directly in the conf/managed.json file.), the object type is either a managed
object, or a managed object property.

• For objects defined in the mapping configuration (You can manage the mapping configuration over REST at the
config/sync endpoint, directly in the conf/sync.json file, or in individual conf/mapping-<mappingName>.json files.), the object
can be an object-mapping object, a property object, or a policy object. For more information, see
"Policy Objects" in the Synchronization Guide).

The following tables list the variables available to scripts, based on the configuration file in which the
trigger is defined.

Script Triggers Defined in the managed object configuration
(You can edit the managed object configuration over REST at the config/managed
endpoint, or directly in the conf/managed.json file.)

For information about how managed objects are handled, and the available script triggers, see
"Managed Objects" in the Object Modeling Guide.

Managed Object Configuration Object
Trigger Variable
onCreate, postCreate • object: The content of the object being created.

• newObject: The object after the create operation is complete.

• context: Information related to the current request, such as client, end
user, and routing.

• resourceName: The resource path of the object of the query. For
example, if you create a managed user with ID 42f8a60e-2019-4110-

Script Variables
Script Triggers Defined in the managed object configuration (You can edit the managed object

configuration over REST at the config/managed endpoint, or directly in the conf/managed.json file.)

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 23

Managed Object Configuration Object
Trigger Variable

a10d-7231c3578e2b, resourceName returns managed/user/42f8a60e-2019-
4110-a10d-7231c3578e2b.

• request: Information related to the request, such as headers,
credentials, and the desired action. Also includes the endpoint, and
payload to be processed.

onUpdate, postUpdate

Returns JSON object

• object: The content of the object being updated.

• oldObject: The state of the object, before the update.

• newObject: Changes to be applied to the object. May continue with the
onUpdate trigger.

• context: Information related to the current request, such as client, end
user, and routing.

• resourceName: The resource path of the object the query.

• request: Information related to the request, such as headers,
credentials, and the desired action. Also includes the endpoint, and
payload to be processed.

onDelete, onRetrieve, onRead

Returns JSON object.

• object: The content of the object.

• context: Information related to the current request, such as client, end
user, and routing.

• resourceName: The resource path of the object the query.

• request: Information related to the request, such as headers,
credentials, and the desired action. Also includes the endpoint, and
payload to be processed.

postDelete

Returns JSON object.

• oldObject: Represents the deleted object.

• context: Information related to the current request, such as client, end
user, and routing.

• resourceName: The resource path of the object the query is performed
upon.

• request: Information related to the request, such as headers,
credentials, and the desired action. Also includes the endpoint, and
payload to be processed.

onSync

Returns JSON object

• oldObject: Represents the object prior to sync. If sync has not been run
before, the value will be null.

• newObject: Represents the object after sync is completed.

• context: Information related to the current request, such as client, end
user, and routing.

Script Variables
Script Triggers Defined in the managed object configuration (You can edit the managed object

configuration over REST at the config/managed endpoint, or directly in the conf/managed.json file.)

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 24

Managed Object Configuration Object
Trigger Variable

• request: Information related to the request, such as headers,
credentials, and the desired action. Also includes the endpoint, and
payload to be processed.

• resourceName: An object representing the resource path the query is
performed upon.

• syncResults: A map containing the results and details of the sync,
including:

• success (boolean): Success or failure of the sync operation.

• action: Returns the name of the action performed as a string.

• syncDetails: The mappings attempted during synchronization.
onStore, onValidate

Returns JSON object

• object: Represents the object being stored or validated

• value: The content to be stored or validated for the object

• context: Information related to the current request, such as client, end
user, and routing.

• resourceName: The resource path of the object the query is performed
upon.

• request: Information related to the request, such as headers,
credentials, and the desired action. Also includes the endpoint, and
payload to be processed.

property object
Trigger Variable
onRetrieve, onStore

Returns JSON object

• object: Represents the object being operated upon

• property: The value of the property being retrieved or stored

• propertyName: The name of the property being retrieved or stored

• context: Information related to the current request, such as client, end
user, and routing.

• resourceName: The resource path of the object the query is performed
upon.

• request: Information related to the request, such as headers,
credentials, and the desired action. Also includes the endpoint, and
payload to be processed.

onValidate

Returns JSON object

• property: The value of the property being validated

Script Variables
Script Triggers Defined in Mappings

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 25

property object
Trigger Variable

• context: Information related to the current request, such as client, end
user, and routing.

• resourceName: The resource path of the object the query is performed
upon.

• request: Information related to the request, such as headers,
credentials, and the desired action. Also includes the endpoint, and
payload to be processed.

Script Triggers Defined in Mappings
For information about how managed objects in mappings are handled, and the script triggers
available, see "Object-Mapping Objects" in the Synchronization Guide.

object-mapping object
Trigger Variable
correlationQuery,
correlationScript

Returns JSON object

• source: Represents the source object.

• linkQualifier: The link qualifier associated with the current sync.

• context: Information related to the current request, such as source and
target.

linkQualifiers

Returns JSON object

• mapping: The name of the current mapping.

• object: The value of the source object. During a DELETE event, that
source object may not exist, and may be null.

• oldValue: The former value of the deleted source object, if any. If the
source object is new, oldValue will be null. When there are deleted
objects, oldValue is populated only if the source is a managed object.

• returnAll (boolean): Link qualifier scripts must return every valid link
qualifier when returnAll is true, independent of the source object. If
returnAll is true, the script must not attempt to use the object variable,
because it will be null. It's best practice to configure scripts to start
with a check for the value of returnAll.

• context: Information related to the current request, such as source and
target.

onCreate

Returns JSON object

• source: Represents the source object.

• target: Represents the target object.

• situation: The situation associated with the current sync operation.

Script Variables
Script Triggers Defined in Mappings

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 26

object-mapping object
Trigger Variable

• linkQualifier: The link qualifier associated with the current sync
operation.

• context: Information related to the current sync operation.

• sourceId: The object ID for the source object.

• targetId: The object ID for the target object.

• mappingConfig: A configuration object representing the mapping being
processed.

onDelete, onUpdate

Returns JSON object

• source: Represents the source object.

• target: Represents the target object.

• oldTarget: Represents the target object prior to the DELETE or
UPDATE action.

• situation: The situation associated with the current sync operation.

• linkQualifier: The link qualifier associated with the current sync.

• context: Information related to the current sync operation.

• sourceId: The object ID for the source object.

• targetId: The object ID for the target object.

• mappingConfig: A configuration object representing the mapping being
processed.

onLink, onUnlink

Returns JSON object

• source: Represents the source object.

• target: Represents the target object.

• linkQualifier: The link qualifier associated with the current sync
operation.

• context: Information related to the current sync operation.

• sourceId: The object ID for the source object.

• targetId: The object ID for the target object.

• mappingConfig: A configuration object representing the mapping being
processed.

result

Returns JSON object of
reconciliation results

• source: Provides statistics about the source phase of the reconciliation.

• target: Provides statistics about the target phase of the reconciliation.

• context: Information related to the current operation, such as source
and target.

Script Variables
Script Triggers Defined in Mappings

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 27

object-mapping object
Trigger Variable

• global: Provides statistics about the entire reconciliation operation.
validSource

Returns boolean

• source: Represents the source object.

• linkQualifier: The link qualifier associated with the current sync
operation.

• context: Information related to the current sync operation.
validTarget

Returns boolean

• target: Represents the target object.

• linkQualifier: The link qualifier associated with the current sync
operation.

• context: Information related to the current sync operation.

property object
Trigger Variable
condition

Returns boolean

• object: The current object being mapped.

• context: Information related to the current operation, such as source
and target.

• linkQualifier: The link qualifier associated with the current sync
operation.

• target: Represents the target object.

• oldTarget: Represents the target object prior to any changes.

• oldSource: Available during UPDATE and DELETE operations
performed through implicit sync. With implicit synchronization, the
synchronization operation is triggered by a specific change to the
source object. As such, implicit sync can populate the old value within
the oldSource variable and pass it on to the sync engine.

During reconciliation operations oldSource will be undefined. A
reconciliation operation cannot populate the value of the oldSource
variable as it has no awareness of the specific change to the source
object. Reconciliation simply synchronizes the static source object to
the target.

transform

Returns JSON object

• source: Represents the source object.

• linkQualifier: The link qualifier associated with the current sync
operation.

• context: Information related to the current sync operation.

Script Variables
Script Triggers Defined in Mappings

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 28

policy object
Trigger Variable
action

Returns string OR JSON object

• source: Represents the source object.

• target: Represents the target object.

• sourceAction (boolean): Indicates whether the action is being
processed during the source or target synchronization phase (true if
performed during a source synchronization, false if performed during a
target synchronization).

• linkQualifier: The link qualifier used for this operation (default if no
other link qualifier is specified).

• context: Information related to the current sync operation.

• recon: Represents the reconciliation operation.

• The recon.actionParam object contains information about the current
reconciliation operation and includes the following variables:

• reconId: The ID of the reconciliation operation

• mapping: The mapping for which the reconciliation was performed, for
example, systemLdapAccounts_managedUser.

• situation: The situation encountered, for example, AMBIGUOUS.

• action: The default action that would be used for this situation, if not
for this script. The script being executed replaces the default action
(and is used instead of any other named action).

• sourceId: The _id value of the source record.

• linkQualifier: The link qualifier used for that mapping, (default if no
other link qualifier is specified).

• ambiguousTargetIds: An array of the target object IDs that were found
in an AMBIGUOUS situation during correlation.

• _action: The synchronization action (only performAction is supported).
postAction

Returns JSON object

• source: Represents the source object.

• target: Represents the target object.

• action: The sync action that was performed.

• sourceAction (boolean): Indicates whether the action is being
processed during the source or target synchronization phase (true if
performed during a source synchronization, false if performed during a
target synchronization).

Script Variables
Script Triggers Defined in the router configuration (You can edit the router configuration over REST at the

config/router endpoint, or directly in the conf/router.json file.)

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 29

policy object
Trigger Variable

• linkQualifier: The link qualifier used for this operation (default if no
other link qualifier is specified).

• reconId: Represents the ID of the reconciliation.

• situation: Represents the situation for this policy.

• context: Information related to the current operation, such as source
and target.

Script Triggers Defined in the router configuration (You can edit
the router configuration over REST at the config/router endpoint, or directly in the
conf/router.json file.)

Trigger Variable
onFailure exception
onRequest request
onResponse response

Variables Available to Scripts in Custom Endpoints
All custom endpoint scripts have a request variable in their scope, which is a JSON object containing
all information about the request. The parameters found in this object vary depending on the request
method. The request may include headers, credentials, and the desired action. The request normally
also includes the endpoint as well as the payload to be processed.

For more details about writing custom endpoint scripts, see "Custom Endpoint Scripts".

Variable Variable Parameters
request • method: The type of request, such as query, create, or delete.

• resourceName: The name of the resource associated with the request.

• revision: The revision number of the requested object.

• parameters: JSON object mapping any additional parameters sent in
the request.

• content: The contents of the requested object.

• context: Information related to the current request, such as client, end
user, and routing.

Script Variables
Variables Available to Role Assignment Scripts

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 30

Variable Variable Parameters
Only available in query requests

• pagedResultsCookie: Represents the cookie used for queryFilter
operations to track the results of a filtered query.

• pagedResultsOffset: Specifies how many records to skip before
returning a set of results.

• pageSize: Specifies how many results to return per page.

• queryExpression: A string containing a native query to query a system
resource directly.

• queryId: A string using the id of a predefined query object to return a
specific set of results from a queried object.

• queryFilter: A string with a common expression used to filter the
results of a queried object.

Only available in create requests

• newResourceId: The ID of the new object. Only available in create
requests.

Variables Available to Role Assignment Scripts
The optional onAssignment and onUnassignment event scripts specify what should happen to attributes that
are affected by role assignments in the Object Modeling Guide when those assignments are applied to
a user, or removed from a user.

These scripts have access to the following variables:

• sourceObject

• targetObject

• existingTargetObject

• linkQualifier

The standard assignment scripts, replaceTarget.js, mergeWithTarget.js, removeFromTarget.js, and noOp.js
have access to all the variables in the previous list, as well as the following:

• attributeName

• attributeValue

• attributesInfo

Script Variables
The augmentSecurityContext Trigger

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 31

Note

Role assignment scripts must always return targetObject, otherwise other scripts and code that occur
downstream of your script will not work as expected.

The augmentSecurityContext Trigger
The augmentSecurityContext trigger, defined in the authentication configuration (You can manage the
authentication configuration over REST at the config/authentication endpoint, or directly in the conf/authentication.json file.), can
reference a script that is executed after successful authentication. Such scripts can populate the
security context of the authenticated user. If the authenticated user is not found in the resource
specified by queryOnResource, the augmentSecurityContext can provide the required authorization map.

Such scripts have access to the following bindings:

• security - includes the authenticationId and the authorization key, which includes the moduleId.

The main purpose of an augmentSecurityContext script is to modify the authorization map that is part
of this security binding. The authentication module determines the value of the authenticationId,
and IDM attempts to populate the authorization map with the details that it finds, related to that
authenticationId value. These details include the following:

• security.authorization.component - the resource that contains the account (this will always will be
the same as the value of queryOnResource by default).

• security.authorization.id - the internal _id value that is associated with the account.

• security.authorization.roles - any roles that were determined, either from reading the userRoles
property of the account or from calculation.

• security.authorization.moduleId - the authentication module responsible for performing the original
authentication.

You can use the augmentSecurityContext script to change any of these authorization values. The script
can also add new values to the authorization map, which will be available for the lifetime of the
session.

• properties - corresponds to the properties map of the related authentication module.

• httpRequest - a reference to the Request object that was responsible for handling the incoming HTTP
request.

This binding is useful to the augment script because it has access to all of the raw details from the
HTTP request, such as the headers. The following code snippet shows how you can access a header
using the httpRequest binding. This example accesses the authToken request header:
httpRequest.getHeaders().getFirst('authToken').toString()

Script Variables
The identityServer Variable

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 32

The identityServer Variable
IDM provides an additional variable, named identityServer, to scripts. You can use this variable in
several ways. The ScriptRegistryService, described in "Validate Scripts Over REST", binds this variable
to:

• getProperty

Retrieves property information from system configuration files. Takes up to three parameters:

• The name of the property you are requesting.

• (Optional) The default result to return if the property wasn't set.

• (Optional) Boolean to determine whether or not to use property substitution when getting the
property.

For more information about property substitution, see "Property Value Substitution" in the Setup
Guide.

Returns the first property found following the same order of precedence IDM uses to check for
properties: environment variables, system.properties, boot.properties, then other configuration files.

For more information, see "Configure the Server" in the Setup Guide.

For example, you can retrieve the value of the openidm.config.crypto.alias property with the following
code: alias = identityServer.getProperty("openidm.config.crypto.alias", "true", true);

• getInstallLocation

Retrieves the IDM installation path, such as /path/to/openidm. May be superseded by an absolute
path.

• getProjectLocation

Retrieves the directory used when you started IDM. That directory includes configuration and
script files for your project.

For more information on the project location, see "Specify the Startup Configuration" in the
Installation Guide.

• getWorkingLocation

Retrieves the directory associated with database cache and audit logs. You can find db/ and audit/
subdirectories there.

For more information on the working location, see "Specify the Startup Configuration" in the
Installation Guide.

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 33

Appendix A. Router Configuration

The router service provides the uniform interface to all IDM objects: managed objects, system
objects, configuration objects, and so on.

The router configuration (You can edit the router configuration over REST at the config/router endpoint, or directly in the conf/
router.json file.) contains an array of filter objects:
{
 "filters": [filter object, ...]
}

Filter Objects
The required filters array defines a list of filters to be processed on each router request. Filters are
processed in the order in which they are specified in this array, and have the following configuration:
{
 "pattern": string,
 "methods": [string, ...],
 "condition": script object,
 "onRequest": script object,
 "onResponse": script object,
 "onFailure": script object
}

pattern

string, optional

Specifies a regular expression pattern matching the JSON pointer of the object to trigger scripts.
If not specified, all identifiers (including null) match. Pattern matching is done on the resource
name, rather than on individual objects.

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 34

methods

array of strings, optional

One or more methods for which the script(s) should be triggered. Supported methods are:
"create", "read", "update", "delete", "patch", "query", "action". If not specified, all methods are
matched.

condition

script object, optional

Specifies a script that is called first to determine if the script should be triggered. If the condition
yields "true", the other script(s) are executed. If no condition is specified, the script(s) are called
unconditionally.

onRequest

script object, optional

Specifies a script to execute before the request is dispatched to the resource. If the script throws
an exception, the method is not performed, and a client error response is provided.

onResponse

script object, optional

Specifies a script to execute after the request is successfully dispatched to the resource and a
response is returned. Throwing an exception from this script does not undo the method already
performed.

onFailure

script object, optional

Specifies a script to execute if the request resulted in an exception being thrown. Throwing an
exception from this script does not undo the method already performed.

Pattern Matching in the router configuration (You can edit the router configuration over REST at
the config/router endpoint, or directly in the conf/router.json file.)

Pattern matching can minimize overhead in the router service. The default router configuration
(You can edit the router configuration over REST at the config/router endpoint, or directly in the conf/router.json file.) includes
instances of the pattern filter object, that limit script requests to specified methods and endpoints.

Based on the following code snippet, the router service would trigger the policyFilter.js script for
CREATE and UPDATE calls to managed and internal objects:

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 35

{
 "pattern" : "^(managed|internal)($|(/.+))",
 "onRequest" : {
 "type" : "text/javascript",
 "source" : "require('policyFilter').runFilter()"
 },
 "methods" : [
 "create",
 "update"
]
}

Without this pattern, IDM would apply the policy filter to additional objects, such as the audit service,
which could affect performance.

Script Execution Sequence
All onRequest and onResponse scripts are executed in sequence. First, the onRequest scripts are executed
from the top down, then the onResponse scripts are executed from the bottom up.

client -> filter 1 onRequest -> filter 2 onRequest -> resource
client <- filter 1 onResponse <- filter 2 onResponse <- resource

The following sample router configuration (You can edit the router configuration over REST at the config/router endpoint,
or directly in the conf/router.json file.) shows the order in which the scripts would be executed:
{
 "filters" : [
 {
 "onRequest" : {
 "type" : "text/javascript",
 "source" : "require('router-authz').testAccess()"
 }
 },
 {
 "pattern" : "^managed/user",
 "methods" : [
 "read"
],
 "onRequest" : {
 "type" : "text/javascript",
 "source" : "console.log('requestFilter 1');"
 }
 },
 {
 "pattern" : "^managed/user",
 "methods" : [
 "read"
],
 "onResponse" : {
 "type" : "text/javascript",
 "source" : "console.log('responseFilter 1');"
 }

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 36

 },
 {
 "pattern" : "^managed/user",
 "methods" : [
 "read"
],
 "onRequest" : {
 "type" : "text/javascript",
 "source" : "console.log('requestFilter 2');"
 }
 },
 {
 "pattern" : "^managed/user",
 "methods" : [
 "read"
],
 "onResponse" : {
 "type" : "text/javascript",
 "source" : "console.log('responseFilter 2');"
 }
 }
]
}

This configuration would produce a log as follows:
requestFilter 1
requestFilter 2
responseFilter 2
responseFilter 1

+ Example Filter Configuration

This example executes a script after a managed user object is created or updated:
{
 "filters": [
 {
 "pattern": "^managed/user",
 "methods": [
 "create",
 "update"
],
 "onResponse": {
 "type": "text/javascript",
 "file": "scripts/afterUpdateUser.js"
 }
 }
]
}

Script Scope
Scripts are provided with the following scope:

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 37

{
 "openidm": openidm-functions object,
 "request": resource-request object,
 "response": resource-response object,
 "exception": exception object
}

openidm

openidm-functions object

Provides access to IDM resources.

request

resource-request object

The resource-request context, which has one or more parent contexts. Provided in the scope of all
scripts. For more information about the request context, see "Request Context Chain".

response

resource-response object

The response to the resource-request. Only provided in the scope of the "onResponse" script.

exception

exception object

The exception value that was thrown as a result of processing the request. Only provided in the
scope of the "onFailure" script. An exception object is defined as:
{
 "code": integer,
 "reason": string,
 "message": string,
 "detail": string
}

code

integer

The numeric HTTP code of the exception.

reason

string

The short reason phrase of the exception.

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 38

message

string

A brief message describing the exception.

detail

(optional), string

A detailed description of the exception, in structured JSON format, suitable for programmatic
evaluation.

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 39

Appendix B. Scripting Function Reference

Note

If you need to request specific resource versions, see "REST API Versioning" in the REST API Reference.

Functions (access to managed objects, system objects, and configuration objects) within IDM are
accessible to scripts via the openidm object, which is included in the top-level scope provided to each
script.

The script engine supports the following functions:

+ openidm.create(resourceName, newResourceId, content, params, fields)

This function creates a new resource object.

Parameters

resourceName

string

The container in which the object will be created, for example, managed/user.

newResourceId

string

The identifier of the object to be created, if the client is supplying the ID. If the server should
generate the ID, pass null here.

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 40

content

JSON object

The content of the object to be created.

params

JSON object (optional)

Additional parameters that are passed to the create request.

fields

JSON array (optional)

An array of the fields that should be returned in the result. The list of fields can include wild
cards, such as * or *_ref. If no fields are specified, the entire new object is returned.

Returns

The created resource object.

Throws

An exception is thrown if the object could not be created.

Example

openidm.create("managed/user", ID, JSON object);

+ openidm.patch(resourceName, rev, value, params, fields)

This function performs a partial modification of a managed or system object. Unlike the update
function, only the modified attributes are provided, not the entire object.

Parameters

resourceName

string

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 41

The full path to the object being updated, including the ID.

rev

string

The revision of the object to be updated. Use null if the object is not subject to revision
control, or if you want to skip the revision check and update the object, regardless of the
revision.

value

An array of one or more JSON objects

The value of the modifications to be applied to the object. The patch set includes the operation
type, the field to be changed, and the new values. A PATCH request can add, remove, replace, or
increment an attribute value.

A remove operation removes a property if the value of that property equals the specified value,
or if no value is specified in the request. The following example value removes the marital_
status property from the object, if the value of that property is single:
[
 {
 "operation": "remove",
 "field": "marital_status",
 "value": "single"
 }
]

For fields whose value is an array, it's not necessary to know the position of the value in the
array, as long as you specify the full object. If the full object is found in the array, that value is
removed. The following example removes user adonnelly from bjensen's reports:
{
 "operation": "remove",
 "field": "/manager",
 "value": {
 "_ref": "managed/user/adonnelly",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "adonnelly",
 "_refProperties": {
 "_id": "ed6620e4-98ba-410c-abc0-e06dc1be7aa7",
 "_rev": "000000008815942b"
 }
 }
}

If an invalid value is specified (that is a value that does not exist for that property in the
current object) the patch request is silently ignored.

A replace operation replaces an existing value, or adds a value if no value exists.

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 42

params

JSON object (optional)

Additional parameters that are passed to the patch request.

fields

JSON array (optional)

An array of the fields that should be returned in the result. The list of fields can include wild
cards, such as * or *_ref. If no fields are specified, the entire new object is returned.

Returns

The modified resource object.

Throws

An exception is thrown if the object could not be updated.

Examples

Patching an object to add a value to an array:
openidm.patch("managed/role/" + role._id, null, [{"operation":"add", "field":"/
members/-", "value": {"_ref":"managed/user/" + user._id}}]);

Patching an object to remove an existing property:
openidm.patch("managed/user/" + user._id, null,
 [{"operation":"remove", "field":"marital_status", "value":"single"}]);

Patching an object to replace a field value:
openidm.patch("managed/user/" + user._id, null, [{"operation":"replace", "field":"/
password", "value":"Passw0rd"}]);

Patching an object to increment an integer value:
openidm.patch("managed/user/" + user._id, null, [{"operation":"increment","field":"/
age","value":1}]);

+ openidm.read(resourceName, params, fields)

This function reads and returns a resource object.

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 43

Parameters

resourceName

string

The full path to the object to be read, including the ID.

params

JSON object (optional)

The parameters that are passed to the read request. Generally, no additional parameters
are passed to a read request, but this might differ, depending on the request. If you need to
specify a list of fields as a third parameter, and you have no additional params to pass, you
must pass null here. Otherwise, you simply omit both parameters.

fields

JSON array (optional)

An array of the fields that should be returned in the result. The list of fields can include wild
cards, such as * or *_ref. If no fields are specified, the entire object is returned.

Returns

The resource object, or null if not found.

Example

openidm.read("managed/user/"+userId, null, ["*", "manager"]);

+ openidm.update(resourceName, rev, value, params, fields)

This function updates an entire resource object.

Parameters

id

string

The complete path to the object to be updated, including its ID.

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 44

rev

string

The revision of the object to be updated. Use null if the object is not subject to revision
control, or if you want to skip the revision check and update the object, regardless of the
revision.

value

object

The complete replacement object.

params

JSON object (optional)

The parameters that are passed to the update request.

fields

JSON array (optional)

An array of the fields that should be returned in the result. The list of fields can include wild
cards, such as * or *_ref. If no fields are specified, the entire object is returned.

Returns

The modified resource object.

Throws

An exception is thrown if the object could not be updated.

Example

In this example, the managed user entry is read (with an openidm.read, the user entry that has
been read is updated with a new description, and the entire updated object is replaced with
the new value.
var user_read = openidm.read('managed/user/' + source._id);
user_read['description'] = 'The entry has been updated';
openidm.update('managed/user/' + source._id, null, user_read);

+ openidm.delete(resourceName, rev, params, fields)

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 45

This function deletes a resource object.

Parameters

resourceName

string

The complete path to the to be deleted, including its ID.

rev

string

The revision of the object to be deleted. Use null if the object is not subject to revision control,
or if you want to skip the revision check and delete the object, regardless of the revision.

params

JSON object (optional)

The parameters that are passed to the delete request.

fields

JSON array (optional)

An array of the fields that should be returned in the result. The list of fields can include wild
cards, such as * or *_ref. If no fields are specified, the entire object is returned.

Returns

Returns the deleted object if successful.

Throws

An exception is thrown if the object could not be deleted.

Example

openidm.delete('managed/user/'+ user._id, user._rev);

+ openidm.query(resourceName, params, fields)

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 46

This function performs a query on the specified resource object. For more information, see
"Construct Queries" in the Object Modeling Guide.

Parameters

resourceName

string

The resource object on which the query should be performed, for example, "managed/user", or
"system/ldap/account".

params

JSON object

The parameters that are passed to the query (_queryFilter, or _queryId). Additional parameters
passed to the query will differ, depending on the query.

Certain common parameters can be passed to the query to restrict the query results. The
following sample query passes paging parameters and sort keys to the query.
reconAudit = openidm.query("audit/recon", {
 "_queryFilter": queryFilter,
 "_pageSize": limit,
 "_pagedResultsOffset": offset,
 "_pagedResultsCookie": string,
 "_sortKeys": "-timestamp"
});

For more information about _queryFilter syntax, see "Common Filter Expressions" in the
Object Modeling Guide. For more information about paging, see "Page Query Results" in the
Object Modeling Guide.

fields

list

A list of the fields that should be returned in the result. The list of fields can include wild
cards, such as * or *_ref. The following example returns only the userName and _id fields:
openidm.query("managed/user", { "_queryFilter": "/userName sw \"user.1\""}, ["userName", "_id"]);

This parameter is particularly useful in enabling you to return the response from a query
without including intermediary code to massage it into the right format.

Fields are specified as JSON pointers.

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 47

Returns

The result of the query. A query result includes the following parameters:

query-time-ms

(For JDBC repositories only) the time, in milliseconds, that IDM took to process the query.

result

The list of entries retrieved by the query. The result includes the properties that were
requested in the query.

The following example shows the result of a custom query that requests the ID, user name,
and email address of all managed users in the repository.
{
 "result": [
 {
 "_id": "9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb",
 "_rev": "00000000a059dc9f",
 "userName": "bjensen",
 "mail": "bjensen@example.com"
 },
 {
 "_id": "42f8a60e-2019-4110-a10d-7231c3578e2b",
 "_rev": "00000000d84ade1c",
 "userName": "scarter",
 "mail": "scarter@example.com"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

Throws

An exception is thrown if the given query could not be processed.

Examples

The following sample query uses a _queryFilter to query the managed user repository:
openidm.query("managed/user", {'_queryFilter': userIdPropertyName + ' eq "' +
 security.authenticationId + '"'});

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 48

The following sample query references the for-userName query, defined in the repository
configuration, to query the managed user repository:
openidm.query("managed/user", {"_queryId": "for-userName", "uid":
 request.additionalParameters.uid });

+ openidm.action(resource, actionName, content, params, fields)

This function performs an action on the specified resource object. The resource and actionName are
required. All other parameters are optional.

Parameters

resource

string

The resource that the function acts upon, for example, managed/user.

actionName

string

The action to execute. Actions are used to represent functionality that is not covered by the
standard methods for a resource (create, read, update, delete, patch, or query). In general,
you should not use the openidm.action function for create, read, update, patch, delete or query
operations. Instead, use the corresponding function specific to the operation (for example,
openidm.create).

Using the operation-specific functions lets you benefit from the well-defined REST API, which
follows the same pattern as all other standard resources in the system. Using the REST API
enhances usability for your own API, and enforces the established patterns.

IDM-defined resources support a fixed set of actions. For user-defined resources (scriptable
endpoints) you can implement whatever actions you require.

Supported Actions Per Resource

The following list outlines the supported actions for each resource or endpoint. The actions
listed here are also supported over the REST interface.

Actions supported on the authentication endpoint (authentication/*)

reauthenticate

Actions supported on the configuration resource (config/)

No action parameter applies.

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 49

Actions supported on custom endpoints

Custom endpoints enable you to run arbitrary scripts through the REST URI, and are
routed at endpoint/name, where name generally describes the purpose of the endpoint.
For more information on custom endpoints, see "Create Custom Endpoints to Launch
Scripts". You can implement whatever actions you require on a custom endpoint. IDM
uses custom endpoints in its workflow implementation. Those endpoints, and their actions
are as follows:

endpoint/getprocessforuser - create, complete
endpoint/gettasksview - create, complete

Actions supported on the external endpoint

• external/email - send, for example:
{
 emailParams = {
 "from" : 'admin@example.com',
 "to" : user.mail,
 "subject" : 'Password expiry notification',
 "type" : 'text/plain',
 "body" : 'Your password will expire soon. Please change it!'
 }
 openidm.action("external/email", "send", emailParams);
}

• external/rest - call, for example:
openidm.action("external/rest", "call", params);

Actions supported on the info endpoint (info/*)

No action parameter applies.

Actions supported on managed resources (managed/*)

patch, triggerSyncCheck

Actions supported on the policy resource (policy)

validateObject, validateProperty

For example:
openidm.action("policy/" + fullResourcePath, "validateObject", request.content, { "external"
 : "true" });

Actions supported on the reconciliation resource (recon)

recon, reconById, cancel

For example:

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 50

openidm.action("recon/_id", "cancel", content, params);

Note

A cancel action requires the entire reconciliation resource path (_id).

Actions supported on the repository (repo)

command

For example:
var r, command = {
 "commandId": "purge-by-recon-number-of",
 "numberOf": numOfRecons,
 "includeMapping": includeMapping,
 "excludeMapping": excludeMapping
};
r = openidm.action("repo/audit/recon", "command", {}, command);

Actions supported on the script resource (script)

eval

For example:
openidm.action("script", "eval", getConfig(scriptConfig), {});

Actions supported on the synchronization resource (sync)

getLinkedResources, notifyCreate, notifyDelete, notifyUpdate, performAction

For example:
openidm.action('sync', 'performAction', content, params);

Actions supported on system resources (system/*)

availableConnectors, createCoreConfig, createFullConfig, test, testConfig, liveSync,
authenticate, script

For example:
openidm.action("system/ldap/account", "authenticate", {"username" : "bjensen", "password"
 : "Passw0rd"});

Actions supported on the task scanner resource (taskscanner)

execute, cancel

Actions supported on the workflow resource (workflow/*)

On workflow/processdefinition create, complete

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 51

On workflow/processinstance create, complete

For example:
var params = {
 "_key":"contractorOnboarding"
};
openidm.action('workflow/processinstance', 'create', params);

On workflow/taskinstance claim, create, complete

For example:
var params = {
 "userId":"manager1"
};
openidm.action('workflow/taskinstance/15', 'claim', params);

content

object

Content given to the action for processing.

params

object (optional)

Additional parameters passed to the script. The params object must be a set of simple key:value
pairs, and cannot include complex values. The parameters must map directly to URL
variables, which take the form name1=val1&name2=val2&....

fields

JSON array (optional)

An array of the fields that should be returned in the result. The list of fields can include wild
cards, such as * or *_ref. If no fields are specified, the entire object is returned.

Returns

The result of the action may be null.

Throws

If the action cannot be executed, an exception is thrown.

+ openidm.encrypt(value, cipher, alias)

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 52

This function encrypts a value.

Parameters

value

any

The value to be encrypted.

cipher

string

The cipher with which to encrypt the value, using the form "algorithm/mode/padding" or just
"algorithm". Example: AES/CBC/PKCS5Padding.

alias

string

The key alias in the keystore, such as openidm-sym-default (deprecated) or a purpose defined in
the secrets.json file, such as idm.password.encryption.

Returns

The value, encrypted with the specified cipher and key.

Throws

An exception is thrown if the object could not be encrypted.

+ openidm.decrypt(value)

This function decrypts a value.

Parameters

value

object

The value to be decrypted.

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 53

Returns

A deep copy of the value, with any encrypted value decrypted.

Throws

An exception is thrown if the object could not be decrypted for any reason. An error is thrown
if the value is passed in as a string - it must be passed in an object.

+ openidm.isEncrypted(object)

This function determines if a value is encrypted.

Parameters

object to check

any

The object whose value should be checked to determine if it is encrypted.

Returns

Boolean, true if the value is encrypted, and false if it is not encrypted.

Throws

An exception is thrown if the server is unable to detect whether the value is encrypted, for any
reason.

+ openidm.hash(value, algorithm)

This function calculates a value using a salted hash algorithm.

Parameters

value

any

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 54

The value to be hashed.

algorithm

string (optional)

The algorithm with which to hash the value. Example: SHA-512. If no algorithm is provided, a
null value must be passed, and the algorithm defaults to SHA-256. For a list of supported hash
algorithms, see "Encoding Attribute Values by Using Salted Hash Algorithms" in the Security
Guide.

Returns

The value, calculated with the specified hash algorithm.

Throws

An exception is thrown if the object could not be hashed for any reason.

+ openidm.isHashed(value)

This function detects whether a value has been calculated with a salted hash algorithm.

Parameters

value

any

The value to be reviewed.

Returns

Boolean, true if the value is hashed, and false otherwise.

Throws

An exception is thrown if the server is unable to detect whether the value is hashed, for any
reason.

+ openidm.matches(string, value)

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 55

This function detects whether a string, when hashed, matches an existing hashed value.

Parameters

string

any

A string to be hashed.

value

any

A hashed value to compare to the string.

Returns

Boolean, true if the hash of the string matches the hashed value, and false otherwise.

Throws

An exception is thrown if the string could not be hashed.

Log Functions
IDM also provides a logger object to access the Simple Logging Facade for Java (SLF4J) facilities. The
following code shows an example of the logger object.
logger.info("Parameters passed in: {} {} {}", param1, param2, param3);

To set the log level for JavaScript scripts, add the following property to your project's conf/
logging.properties file:

org.forgerock.openidm.script.javascript.JavaScript.level

The level can be one of SEVERE (highest value), WARNING, INFO, CONFIG, FINE, FINER, or FINEST (lowest
value). For example:
org.forgerock.openidm.script.javascript.JavaScript.level=WARNING

In addition, JavaScript has a useful logging function named console.log(). This function provides an
easy way to dump data to the IDM standard output (usually the same output as the OSGi console).

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 56

The function works well with the JavaScript built-in function JSON.stringify and provides fine-grained
details about any given object. For example, the following line will print a formatted JSON structure
that represents the HTTP request details to STDOUT.
console.log(JSON.stringify(context.http, null, 4));

Note

These logging functions apply only to JavaScript scripts. To use the logging functions in Groovy scripts, the
following lines must be added to the Groovy scripts:
import org.slf4j.*;
logger = LoggerFactory.getLogger('logger');

The script engine supports the following log functions:

+ logger.debug(string message, object... params)

Logs a message at DEBUG level.

Parameters

message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

A null value if successful.

Throws

An exception is thrown if the message could not be logged.

+ logger.error(string message, object... params)

Logs a message at ERROR level.

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 57

Parameters

message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

A null value if successful.

Throws

An exception is thrown if the message could not be logged.

+ logger.info(string message, object... params)

Logs a message at INFO level.

Parameters

message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

A null value if successful.

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 58

Throws

An exception is thrown if the message could not be logged.

+ logger.trace(string message, object... params)

Logs a message at TRACE level.

Parameters

message

string

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

A null value if successful.

Throws

An exception is thrown if the message could not be logged.

+ logger.warn(string message, object... params)

Logs a message at WARN level.

Parameters

message

string

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 59

The message format to log. Params replace {} in your message.

params

object

Arguments to include in the message.

Returns

A null value if successful.

Throws

An exception is thrown if the message could not be logged.

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 60

IDM Glossary

correlation query A correlation query specifies an expression that matches existing
entries in a source repository to one or more entries in a target
repository. A correlation query might be built with a script, but it
is not the same as a correlation script. For more information, see
"Correlating Source Objects With Existing Target Objects" in the
Synchronization Guide.

correlation script A correlation script matches existing entries in a source repository,
and returns the IDs of one or more matching entries on a target
repository. While it skips the intermediate step associated with a
correlation query, a correlation script can be relatively complex, based
on the operations of the script.

entitlement An entitlement is a collection of attributes that can be added to a user
entry via roles. As such, it is a specialized type of assignment. A user or
device with an entitlement gets access rights to specified resources.
An entitlement is a property of a managed object.

JCE Java Cryptographic Extension, which is part of the Java Cryptography
Architecture, provides a framework for encryption, key generation,
and digital signatures.

JSON JavaScript Object Notation, a lightweight data interchange format
based on a subset of JavaScript syntax. For more information, see the
JSON site.

JSON Pointer A JSON Pointer defines a string syntax for identifying a specific value
within a JSON document. For information about JSON Pointer syntax,
see the JSON Pointer RFC.

http://www.json.org
https://tools.ietf.org/html/rfc6901

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 61

JWT JSON Web Token. As noted in the JSON Web Token draft IETF Memo,
"JSON Web Token (JWT) is a compact URL-safe means of representing
claims to be transferred between two parties." For IDM, the JWT is
associated with the JWT_SESSION authentication module.

managed object An object that represents the identity-related data managed by IDM.
Managed objects are configurable, JSON-based data structures that
IDM stores in its pluggable repository. The default configuration of
a managed object is that of a user, but you can define any kind of
managed object, for example, groups or roles.

mapping A policy that is defined between a source object and a target object
during reconciliation or synchronization. A mapping can also define a
trigger for validation, customization, filtering, and transformation of
source and target objects.

OSGi A module system and service platform for the Java programming
language that implements a complete and dynamic component model.
For more information, see What is OSGi? Currently, only the Apache
Felix container is supported.

reconciliation During reconciliation, comparisons are made between managed
objects and objects on source or target systems. Reconciliation can
result in one or more specified actions, including, but not limited to,
synchronization.

resource An external system, database, directory server, or other source of
identity data to be managed and audited by the identity management
system.

REST Representational State Transfer. A software architecture style for
exposing resources, using the technologies and protocols of the World
Wide Web. REST describes how distributed data objects, or resources,
can be defined and addressed.

role IDM distinguishes between two distinct role types - provisioning roles
and authorization roles. For more information, see "Managed Roles"
in the Object Modeling Guide.

source object In the context of reconciliation, a source object is a data object
on the source system, that IDM scans before attempting to find a
corresponding object on the target system. Depending on the defined
mapping, IDM then adjusts the object on the target system (target
object).

synchronization The synchronization process creates, updates, or deletes objects on a
target system, based on the defined mappings from the source system.
Synchronization can be scheduled or on demand.

http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
https://www.osgi.org/resources/what-is-osgi/
http://felix.apache.org/
http://felix.apache.org/

Scripting Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 62

system object A pluggable representation of an object on an external system. For
example, a user entry that is stored in an external LDAP directory is
represented as a system object in IDM for the period during which
IDM requires access to that entry. System objects follow the same
RESTful resource-based design principles as managed objects.

target object In the context of reconciliation, a target object is a data object on the
target system, that IDM scans after locating its corresponding object
on the source system. Depending on the defined mapping, IDM then
adjusts the target object to match the corresponding source object.

	Scripting Guide
	Table of Contents
	Overview
	Chapter 1. Script Configuration
	Chapter 2. Call a Script From the IDM Configuration
	Chapter 3. Validate Scripts Over REST
	Chapter 4. Create Custom Endpoints to Launch Scripts
	Custom Endpoint Configuration
	Custom Endpoint Scripts
	Script Exceptions
	Write an API Descriptor for a Custom Endpoint

	Chapter 5. Register Custom Scripted Actions
	Chapter 6. Request Context Chain
	Chapter 7. Script Triggers
	Chapter 8. Script Variables
	Script Triggers Defined in the managed object configuration (You can edit the managed object configuration over REST at the config/managed endpoint, or directly in the conf/managed.json file.)
	Script Triggers Defined in Mappings
	Script Triggers Defined in the router configuration (You can edit the router configuration over REST at the config/router endpoint, or directly in the conf/router.json file.)
	Variables Available to Scripts in Custom Endpoints
	Variables Available to Role Assignment Scripts
	The augmentSecurityContext Trigger
	The identityServer Variable

	Appendix A. Router Configuration
	Filter Objects
	Pattern Matching in the router configuration (You can edit the router configuration over REST at the config/router endpoint, or directly in the conf/router.json file.)

	Script Execution Sequence
	Script Scope

	Appendix B. Scripting Function Reference
	Log Functions

	IDM Glossary

