
Connector Developer's Guide
/ ForgeRock Identity Management 7.1

Latest update: 7.1.6

ForgeRock AS.
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2012-2020 ForgeRock AS.

Abstract

Hands-on guide to developing connectors using the ForgeRock Open Connector Framework
(ICF). ICF provides connectors for a consistent generic layer between applications and
target resources.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© Copyright 2010–2020 ForgeRock, Inc. All rights reserved. ForgeRock is a registered trademark of ForgeRock, Inc. Other marks appearing herein may be trademarks of their respective owners.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, and distribution. No part of this product or document may be reproduced in any form by any means without prior
written authorization of ForgeRock and its licensors, if any.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESSED OR IMPLIED CONDITIONS, REPRESENTATIONS, AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, https://fontawesome.com/.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://fontawesome.com/
https://opensource.org/licenses/OFL-1.1

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. iii

Table of Contents
Overview ... iv
1. About the ForgeRock Open Connector Framework and ICF Connectors 1

Overview of the ICF Architecture .. 2
Overview of a Remote Connector Implementation ... 5
Overview of ICF Functionality ... 6

2. Using the ICF API ... 8
Before You Start Using the ICF API .. 8
About the Connector Facade ... 9
The Connector Messages Object .. 11
The API Configuration Object .. 11
Creating the Connector Info Manager ... 13
Creating the Connector Facade ... 14
Checking the Schema and the Supported Operations .. 15
How the ICF Framework Manages Connector Instances 18

3. Implementing the ICF SPI ... 26
Deciding on the Connector Type ... 26
Implementing the Configuration Interface ... 28
Implementing the Connector Interface .. 34
Implementing the Operation Interfaces ... 36
Common Exceptions .. 56
Generic Exception Rules .. 59

4. Writing Java Connectors .. 62
Deciding What Kind of Connector to Write .. 62
Before You Begin .. 63
Using the Connector Archetype ... 63
Implementing ICF Operations .. 65
Building the Java Connector .. 65

5. Writing Scripted Connectors With the Groovy Connector Toolkit 66
About the Groovy Scripting Language ... 66
Selecting a Scripted Connector Implementation .. 67
Implementing ICF Operations With Groovy Scripts .. 68
Advanced - Customizing the Configuration Initialization 87

6. Writing Scripted Connectors With the PowerShell Connector Toolkit 89
7. Troubleshooting Connectors .. 90

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. iv

Overview

Important

Connectors continue to be updated outside the IDM release. The latest version of this guide is available here.

This guide shows you how to use and develop ICF connectors.

Quick Start


About ICF

Learn about the ForgeRock
Open Connector Framework

and ICF connectors.


ICF API

Learn about the ICF API.


Java Connectors

Write Java connectors.


Groovy Connectors

Write scripted Groovy connectors.


PowerShell Connectors

Write scripted
PowerShell connectors.


Troubleshoot Connectors

Troubleshoot ICF and
connector problems.

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity
and Access Management solution. We help our customers deepen their relationships with their
customers, and improve the productivity and connectivity of their employees and partners. For more
information about ForgeRock and about the platform, see https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web
resources and collections of resources.

https://backstage.forgerock.com/docs/openicf/latest/connector-dev-guide/preface.html
https://www.forgerock.com

About the ForgeRock Open Connector Framework and ICF Connectors

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 1

Chapter 1

About the ForgeRock Open Connector
Framework and ICF Connectors

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

The ForgeRock Open Connector Framework (ICF) provides interoperability between identity,
compliance and risk management solutions. An ICF connector enables provisioning software, such as
IDM, to manage the identities that are maintained by a specific identity provider.

ICF connectors provide a consistent layer between identity applications and target resources, and
expose a set of operations for the complete lifecycle of an identity. The connectors provide a way to
decouple applications from the target resources to which data is provisioned.

ICF focuses on provisioning and identity management, but also provides general purpose capabilities,
including authentication, create, read, update, delete, search, scripting, and synchronization
operations. Connector bundles rely on the ICF Framework, but applications remain completely
separate from the connector bundles. This enables you to change and update connectors without
changing your application or its dependencies.

Many connectors have been built within the ICF framework, and are maintained and supported by
ForgeRock and by the ICF community. However, you can also develop your own ICF connector, to
address a requirement that is not covered by one of the existing connectors. In addition, {icf.abbr}
provides two scripted connector toolkits, that enable you to write your own connectors based on
Groovy or PowerShell scripts.

The ICF framework can use IDM, Sun Identity Manager, and Oracle Waveset connectors (version 1.1)
and can use ConnID connectors up to version 1.4.

This guide provides the following information:

• An overview of the ICF framework and its components

• Information on how to use the ICF existing connectors in your application (both locally and
remotely)

• Information on how to write your own Java and .NET connectors, scripted Groovy connectors, or
scripted PowerShell connectors

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

About the ForgeRock Open Connector Framework and ICF Connectors
Overview of the ICF Architecture

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 2

Overview of the ICF Architecture
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

ICF is situated between the identity management application and the target resource. The framework
provides a generic layer between the application and the connector bundle that accesses the
resource. The framework implements an API, that includes a defined set of operations. When you
are building a connector, you implement the Service Provider Interface (SPI), and include only those
operations that are supported by your target resource. Each connector implements a set of SPI
operations. The API operations call the SPI operations that you implement.

The following image shows a high-level overview of an ICF deployment.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

About the ForgeRock Open Connector Framework and ICF Connectors
Understanding the ICF Framework Components

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 3

Understanding the ICF Framework Components

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

When you are building, or modifying, an identity management application to use the ICF Framework
and its connectors, you use the following interfaces of the API:

• Connector Info Manager Component

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

About the ForgeRock Open Connector Framework and ICF Connectors
Understanding the ICF Framework Components

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 4

The connector info manager maintains a set of connector info instances, each of which describes an
available connector. The ICF Framework provides three different types of connector info manager:

• Local

A local connector info manager accesses the connector bundle or assembly directly.

• Remote

A remote connector info manager accesses the connector bundle or assembly through a remote
connector server.

• OSGi

An OSGi connector info manager accesses the connector bundle within the OSGi context.

For more information, see "Creating the Connector Info Manager".

• Connector Info Component

The connector info component provides meta information (display name, category, messages, and
so forth) for a given connector.

• Connector Key Component

The connector key component uniquely identifies a specific connector implementation.

• API Configuration

The API configuration holds the available configuration properties and values from both the API,
and the SPI, based on the connector type.

For more information, see "Implementing the Configuration Interface".

• Connector Facade Interface

The connector facade is the main interface through which an application invokes connector
operations. The connector facade represents a specific connector instance, that has been
configured in a specific way. For more information, see "Creating the Connector Facade".

When you are building a new connector, you implement the SPI, including the following interfaces:

• The connector interface.

The connector interface handles initialization and disposal of the connector, and determines
whether the connector is poolable. For more information, see "Implementing the Connector
Interface".

• The configuration interface.

About the ForgeRock Open Connector Framework and ICF Connectors
Overview of a Remote Connector Implementation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 5

The configuration interface implementation includes all of the required information to enable
the connector to connect to the target system, and to perform its operations. The configuration
interface implements getters and setters for each of its defined properties. It also provides a
validate method that determines whether all the required properties are available, and valid. For
more information, see "Implementing the Configuration Interface".

The ICF framework uses the configuration interface implementation to build the configuration
properties inside the API configuration.

When the configuration interface is implemented, it becomes available to the default API
configuration.

• Any operations that the target resource can support, such as CreateOp, UpdateOp, DeleteOp and so forth.
For more information, see "Implementing the Operation Interfaces".

Overview of a Remote Connector Implementation
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

Connectors can run locally (on the same host as your application) or remotely (on a host that is
remote to your application). Connectors that run remotely require a connector server, running on the
same host as the connector. Applications access the connector implementation through the connector
server.

Note

The ICF framework can support both local and remote connector implementations simultaneously.

Connector servers also enable you to run connector bundles that are written in C# on a .NET
platform, and to access them over the network from a Java or .NET application.

The following image shows a high-level overview of an ICF deployment, including a remote connector
server.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

About the ForgeRock Open Connector Framework and ICF Connectors
Overview of ICF Functionality

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 6

For more information about connector servers, and how to use them in your application, see "Remote
Connectors" in the Connectors Guide.

Overview of ICF Functionality
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

ICF provides many capabilities, including the following:

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

About the ForgeRock Open Connector Framework and ICF Connectors
Overview of ICF Functionality

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 7

• Connector pooling

• Timeouts on all operations

• Search filtering

• Search and synchronization buffering and result streaming

• Scripting with Groovy, JavaScript, shell, and PowerShell

• Classloader isolation

• An independent logging API/SPI

• Java and .NET platform support

• Opt-in operations that support both simple and advanced implementations for the same CRUD
operation

• A logging proxy that captures all API calls

• A Maven connector archetype to create connectors

Using the ICF API
Before You Start Using the ICF API

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 8

Chapter 2

Using the ICF API

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

This chapter describes how to use the ICF API, which enables you to call ICF connector
implementations from your application. The chapter demonstrates creating a connector facade,
required for applications to access connectors, and then how to call the various ICF operations from
your application.

Before You Start Using the ICF API
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

Before you can use an ICF connector in your application, you must download the ICF framework
libraries, and the required connector bundles.

The easiest way to start using the ICF framework, from Java, is to use the sample Maven project file
as a starting point. This sample project includes comprehensive comments about its use.

To use a .NET connector remotely, you must install the .NET remote connector server, as described
in "Set Up a .NET RCS" in the Connectors Guide. You must also download and install the specific
connectors that you want to use from the ForgeRock BackStage download site.

You can now start integrating the connector with your application.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/downloads

Using the ICF API
About the Connector Facade

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 9

About the Connector Facade
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

An application interacts with a connector through an instance of the ConnectorFacade class. The
following diagram shows the creation and configuration of the connector facade. The components
shown here are described in more detail in the sections that follow.

The connector facade is instantiated and configured in the following steps:

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Using the ICF API
About the Connector Facade

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 10

1. The application creates a LocalConnectorInfoManager instance (or instances) and adds the individual
connector bundles (or assemblies).

The LocalConnectorInfoManager processes these bundles or assemblies to instantiate a ConnectorInfo
object.

To be processed by the connector info manager, the connector bundle or assembly must have the
following characteristics:

Java Connector Bundle

The META-INF/MANIFEST.MF file must include the following entries:

ConnectorBundle-FrameworkVersion - Minimum required ICF Framework version (either 1.1, 1.4, or
1.5)
ConnectorBundle-Name - Unique name of the connector bundle
ConnectorBundle-Version - Version of the connector bundle

The combination of the ConnectorBundle-Name and the ConnectorBundle-Version must be unique.

The connector bundle JAR must contain at least one class, that has the ConnectorClass
annotation and implements the Connector interface.

.NET Connector Assembly

The AssemblyInfo.cs is used to determine the bundle version, from the AssemblyVersion property.

The bundle name is derived from the Name property of the assembly. For more information, see
the corresponding Microsoft documentation.

Warning

If you change the name of your assembly, you must adjust the bundleName property in your connector
configuration file, accordingly.

The connector assembly DLL must contain at least one class, that has the
ConnectorClassAttribute attribute and implements the Connector interface.

2. For each connector, the LocalConnectorInfoManager processes the MessageCatalog, which contains the
localized help and description messages for the configuration, and any log or error messages for
the connector.

Your application can use this information to provide additional help during the connector
configuration process.

3. For each connector, the LocalConnectorInfoManager then processes the ConfigurationClass, to build the
configuration properties for the connector.

4. Your application finds the connector info by its connector key. When the application has the
connector info, it creates an API Configuration object that customises the following components:

https://msdn.microsoft.com/en-us/library/system.reflection.assemblyname.name(v=vs.110).aspx

Using the ICF API
The Connector Messages Object

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 11

• Object pool configuration

• Result handler configuration

• Configuration properties

• Timeout configuration

The API Configuration object is described in more detail in "The API Configuration Object".

5. The ConnectorFacade takes this customized API configuration object, determines which connector to
use and how to configure it, and implements all of the ICF API operations.

The Connector Messages Object
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

The Connector Messages interface sets the message catalog for each connector, and enables
messages to be localized. The interface has one method (format()), which formats a given message key
in the current locale.

For more information, see the corresponding Javadoc.

The API Configuration Object
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

The API Configuration Object holds the runtime configuration of the connector facade instance.
The ICF framework creates a default API Configuration Object inside the Connector Info Object.
The application creates a copy of the API Configuration Object and customises it according to its
requirements. The API Configuration Object includes the following components:

Object Pool Configuration

The object pool configuration specifies the pool configuration for poolable connectors only. Non-
poolable connectors ignore this parameter. The object pool configuration includes the following
parameters:

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
../apidocs/?org/identityconnectors/framework/common/objects/ConnectorMessages.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Using the ICF API
The API Configuration Object

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 12

maxObjects

The maximum number of idle and active instances of the connector.

maxIdle

The maximum number of idle instances of the connector.

maxWait

The maximum time, in milliseconds, that the pool waits for an object before timing out. A
value of 0 means that there is no timeout.

minEvictableIdleTimeMillis

The maximum time, in milliseconds, that an object can be idle before it is removed. A value of
0 means that there is no idle timeout.

minIdle

The minimum number of idle instances of the connector.

Results Handler Configuration

The results handler configuration defines how the ICF framework chains together the different
results handlers to filter search results.

enableNormalizingResultsHandler

boolean

If the connector implements the attribute normalizer interface, you can enable this interface
by setting this configuration property to true. If the connector does not implement the
attribute normalizer interface, the value of this property has no effect.

enableFilteredResultsHandler

boolean

If the connector uses the filtering and search capabilities of the remote connected system,
you can set this property to false. If the connector does not use the remote system's filtering
and search capabilities (for example, the CSV file connector), you must set this property to
true, otherwise the connector performs an additional, case-sensitive search, which can cause
problems.

enableCaseInsensitiveFilter

boolean

Using the ICF API
Creating the Connector Info Manager

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 13

By default, the filtered results handler (described previously) is case sensitive. If the filtered
results handler is enabled this property allows you to enable case insensitive filtering. When
case insensitive filtering is not enabled, a search will not return results unless the case
matches exactly. For example, a search for lastName = "Jensen" will not match a stored user
with lastName : jensen.

enableAttributesToGetSearchResultsHandler

boolean

By default, IDM determines which attributes that should be retrieved in a search. If the
enableAttributesToGetSearchResultsHandler property is set to true the ICF framework removes all
attributes from the READ/QUERY response, except for those that are specifically requested.
For performance reasons, it is recommended that you set this property to false for local
connectors, and to true for remote connectors.

Configuration Properties

The Configuration Properties object is built and populated by the framework as it parses the
connectors configuration class.

Timeout Configuration

The timeout configuration enables you to configure timeout values per operation type. By default,
there is no timeout configured for any operation type.

Creating the Connector Info Manager
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

You must initiate a specific connector info manager type, depending on whether your connector is
local or remote. The following samples show how to create a local connector info manager and a
remote connector info manager.

1. Create a ConnectorInfoManager and a ConnectorKey for the connector.

The ConnectorKey uniquely identifies the connector instance. The ConnectorKey class takes a bundleName
(the name of the Connector bundle), a bundleVersion (the version of the Connector bundle) and a
connectorName (the name of the Connector)

The ConnectorInfoManager retrieves a ConnectorInfo object for the connector by its connector key.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Using the ICF API
Creating the Connector Facade

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 14

Acquiring a Local Connector Info Object (Java)

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

ConnectorInfoManagerFactory fact = ConnectorInfoManagerFactory.getInstance();
File bundleDirectory = new File("/connectorDir/bundles/myconnector");
URL url = IOUtil.makeURL(bundleDirectory,
 "/dist/org.identityconnectors.myconnector-1.0.jar");
ConnectorInfoManager manager = fact.getLocalManager(url);
ConnectorKey key = new ConnectorKey("org.identityconnectors.myconnector",
 "1.0", "MyConnector");

Acquiring a Remote Connector Info Object (Java)

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

ConnectorInfoManagerFactory fact = ConnectorInfoManagerFactory.getInstance();
File bundleDirectory = new File("/connectorDir/bundles/myconnector");
URL url = IOUtil.makeURL(bundleDirectory,
 "/dist/org.identityconnectors.myconnector-1.0.jar");
ConnectorInfoManager manager = fact.getLocalManager(url);
ConnectorKey key = new ConnectorKey("org.identityconnectors.myconnector",
 "1.0", "MyConnector");

Creating the Connector Facade
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

Applications access the connector API through a ConnectorFacade class, and interact with the connector
through a ConnectorFacade instance.

The following steps describe how to create a ConnectorFacade in your application.

1. Create a ConnectorInfoManager and acquire the ConnectorInfo object for your connector, as described
in the previous section.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Using the ICF API
Checking the Schema and the Supported Operations

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 15

2. From the ConnectorInfo object, create the default APIConfiguration.

APIConfiguration apiConfig = info.createDefaultAPIConfiguration();

3. Use the default APIConfiguration to set the ObjectPoolConfiguration, ResultsHandlerConfiguration,
ConfigurationProperties, and TimeoutConfiguration.

ConfigurationProperties properties = apiConfig.getConfigurationProperties();

4. Set all of the ConfigurationProperties that you need for the connector, using setPropertyValue().

properties.setPropertyValue("host", SAMPLE_HOST);
properties.setPropertyValue("adminName", SAMPLE_ADMIN);
properties.setPropertyValue("adminPassword", SAMPLE_PASSWORD);
properties.setPropertyValue("useSSL", false);

5. Use the newInstance() method of the ConnectorFacadeFactory to create a new instance of the
connector.

ConnectorFacade conn = ConnectorFacadeFactory.getInstance()
 .newInstance(apiConfig);

6. Validate that you have set up the connector configuration correctly.

conn.validate();

7. Use the new connector with the supported operations (described in the following sections).

conn.[authenticate|create|update|delete|search|...]

Checking the Schema and the Supported Operations
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

Different connectors support different subsets of the overall set of operations provided by OpenICF.
When your connector is ready to use, you can use the ConnectorFacade to determine which operations
your connector supports.

The quickest way to check whether an operation is supported is to determine whether that specific
operation is part of the set of supported operations. The following sample test checks if the
CreateApiOp is supported:

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Using the ICF API
Checking the Schema and the Supported Operations

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 16

Set<Class< ? extends APIOperation>> ops = conn.getSupportedOperations();
return ops.contains(CreateApiOp.class);

Note that a connector might support a particular operation, only for specific object classes. For
example, the connector might allow you to create a user, but not a group.

To be able to determine the list of supported operations for each object class, you need to check the
schema. To determine whether the connector supports an operation for a specific object class, check
the object class on which you plan to perform the operation, as shown in the following example.

Schema schema = conn.schema();
Set<ObjectClassInfo> objectClasses = schema.getObjectClassInfo();
Set<ObjectClassInfo> ocinfos = schema
 .getSupportedObjectClassesByOperation(CreateApiOp.class);

for(ObjectClassInfo oci : objectClasses) {
 // Check that the operation is supported for your object class.
 if (ocinfos.contains(ocinfo)) {
 // object class is supported
 }
}

In addition to determining the supported operations for an object class, your application can check
which attributes are required and which attributes are allowed for a particular object class. The
ObjectClassInfo class contains this information as a set of AttributeInfo objects.

The following example shows how to retrieve the attributes for an object class.

Schema schema = conn.schema();
Set<ObjectClassInfo> objectClasses = schema.getObjectClassInfo();
for(ObjectClassInfo oci : objectClasses) {
 Set<AttributeInfo> attributeInfos = oci.getAttributeInfo();
 String type = oci.getType();
 if(ObjectClass.ACCOUNT_NAME.equals(type)) {
 for(AttributeInfo info : attributeInfos) {
 System.out.println(info.toString());
 }
 }
}

Using the schema object, you can obtain the following information:

• Object classes and their attributes

• Operation options per operation

The following example shows how to retrieve the schema as a list of ObjectClass objects, from the
ObjectClassInfo class.

ObjectClass objectClass = new ObjectClass(objectClassInfo.getType());

Using the ICF API
Operation Options

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 17

Operation Options

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

Operation options provide an extension point to an operation, enabling you to request additional
information from the application, for each operation. The connector framework includes a number of
predefined operation options for the most common use cases. For example, the option OP_ATTRIBUTES_
TO_GET enables you to specify a list of attributes that should be returned by an operation. When you
write a connector, you must define the operation options that your connector supports in the schema,
so that the application knows which operation options are supported.

For a list of the predefined operation options, see the corresponding Javadoc.

ICF Special Attributes

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

ICF includes a number of special attributes, that all begin and end with __ (for example __NAME__,
and __UID__). These special attributes are essentially functional aliases for specific attributes or
object types. The purpose of the special attributes is to enable a connector developer to create a
contract regarding how a property can be referenced, regardless of the application that is using
the connector. In this way, the connector can map specific object information between an arbitrary
application and the resource, without knowing how that information is referenced in the application.

The special attributes are used extensively in the generic LDAP connector, which can be used with
ForgeRock Directory Services (DS), Active Directory, OpenLDAP, and other LDAP directories. Each of
these directories might use a different attribute name to represent the same type of information. For
example, Active Directory uses unicodePassword and DS uses userPassword to represent the same thing, a
user's password. The LDAP connector uses the special OpenICF __PASSWORD__ attribute to abstract that
difference.

For a list of the special attributes, see the corresponding Javadoc.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
../apidocs/?org/identityconnectors/framework/common/objects/OperationOptions.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
../apidocs/?org/identityconnectors/framework/common/objects/OperationalAttributeInfos.html

Using the ICF API
How the ICF Framework Manages Connector Instances

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 18

How the ICF Framework Manages Connector Instances
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

The ICF framework supports multiple connector types, based on the implementation of the connector
interface, and the configuration interface. These two interfaces determine the following:

• Whether the connector instance is obtained from a pool or whether a new instance is created for
each operation

• Whether the connector configuration instance is retained, and reused for each operation, (stateful
configuration) or a new configuration instance is created for each operation (stateless).

Connector developers determine what type of connector to implement, assessing the best match for
the resource to which they are connecting. The interaction between the connector and configuration
interface implementations is described in detail in "Deciding on the Connector Type". This section
illustrates how the ICF framework manages connector instantiation, depending on the connector
type.

Connector Instantiation for a Stateless, Non-Poolable Connector

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

The most basic connector has a stateless configuration, and is not pooled. A basic connector is
initialized as follows:

1. The application calls an operation (for example, CREATE) on the connector facade.

2. The ICF framework creates a new configuration instance, and initializes it with its configuration
properties.

3. When the framework has the configuration instance, with all the attributes in the configuration
set, the framework creates a new connector instance, and initializes it, with the configuration that
has been set.

4. The framework executes the operation (for example, CREATE) on the connector instance.

5. The connector instance executes the operation on the resource.

6. The framework calls the dispose() method to release all resources that the connector instance was
using.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Using the ICF API
Connector Instantiation for a Stateless, Poolable Connector

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 19

The following illustration shows the initialization process for a basic connector, and references the
numbered steps in the preceding list.

Connector Instantiation for a Stateless, Poolable Connector

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

The second connector type has a stateless configuration, but can be pooled. A stateless, poolable
connector is instantiated as follows:

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Using the ICF API
Connector Instantiation for a Stateless, Poolable Connector

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 20

1. The application calls an operation (for example, CREATE) on the connector facade.

2. The ICF framework calls on the object pool, to borrow a live connector instance to execute the
operation.

If the object pool has an idle connector instance available, the framework borrows that one
instance (step 5a in the illustration that follows).

The framework calls the checkAlive method on the customized connector instance with its
configuration, to check if the instance that was borrowed from the pool is still alive, and ready to
execute the operation. If the instance is no longer alive and ready, the framework disposes of the
instance and borrows another one.

The thread that borrows the object has exclusive access to that connector instance, that is, it is
thread-safe.

3. If the object pool has no idle connector instances, the pool creates a new connector instance.

4. The framework creates a new configuration instance, and initializes it with its configuration
properties.

5. The framework initializes the borrowed connector instance, with the configuration that has been
set.

6. The framework executes the operation (for example, CREATE) on the connector instance.

7. The connector instance executes the operation on the resource.

8. When the operation is complete, the framework releases the connector instance back into the
pool. No dispose() method is called.

The following illustration shows the initialization process for a stateless, poolable connector, and
references the numbered steps in the preceding list.

Using the ICF API
Connector Instantiation for a Stateful, Non-Poolable Connector

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 21

Connector Instantiation for a Stateful, Non-Poolable Connector

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

The third connector type has a stateful configuration, and cannot be pooled. A stateful, non-poolable
connector is instantiated as follows:

1. The ICF framework creates a new configuration instance, initializes it with its configuration
properties, and stores it in the connector facade, before any operations are called.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Using the ICF API
Connector Instantiation for a Stateful, Non-Poolable Connector

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 22

This single configuration instance is shared between multiple threads. The framework does not
guarantee isolation, so connector developers must ensure that their implementation is thread-
safe.

2. The application calls an operation (for example, CREATE) on the connector facade.

3. The ICF framework creates a new connector instance, and calls the init() method on that
connector instance, with the stored configuration. The framework initializes the connector with
the single configuration instance stored within the connector facade.

4. The framework executes the operation (for example, CREATE) on the connector instance.

5. The connector instance executes the operation on the resource.

6. The framework calls the dispose() method to release all resources that the connector instance was
using.

Note that the customized config instance remains in the connector facade, and is reused for the
next operation.

The following illustration shows the initialization process for a non-poolable connector, with a stateful
configuration. The illustration references the numbered steps in the preceding list.

Using the ICF API
Connector Instantiation for a Stateful, Poolable Connector

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 23

Connector Instantiation for a Stateful, Poolable Connector

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

The fourth connector type has a stateful configuration, and can be pooled. A stateful, poolable
connector is instantiated as follows:

1. The ICF framework creates a new configuration instance, initializes it with its configuration
properties, and stores it in the connector facade, before any operations are called.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Using the ICF API
Connector Instantiation for a Stateful, Poolable Connector

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 24

This single configuration instance is shared between multiple threads. The framework does not
guarantee isolation, so connector developers must ensure that their implementation is thread-
safe.

2. The application calls an operation (for example, CREATE) on the connector facade.

3. The framework calls on the object pool, to borrow a live connector instance to execute the
operation.

If the object pool has an idle connector instance available, the framework borrows that one
instance (step 5a in the illustration that follows).

The framework calls the checkAlive method on the customized connector instance with its
configuration, to check if the instance that was borrowed from the pool is still alive, and ready to
execute the operation. If the instance is no longer alive and ready, the framework disposes of the
instance and borrows another one.

The thread that borrows the object has exclusive access to that connector instance, that is, it is
thread-safe.

4. If the object pool has no idle connector instances, the pool creates a new connector instance.

5. The framework initializes the borrowed connector instance, with the stored configuration.

6. The framework executes the operation (for example, CREATE) on the connector instance.

7. The connector instance executes the operation on the resource.

8. When the operation is complete, the framework releases the connector instance back into the
pool. No dispose() method is called.

The following illustration shows the initialization process for a stateful, poolable connector, and
references the numbered steps in the preceding list.

Using the ICF API
Connector Instantiation for a Stateful, Poolable Connector

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 25

Implementing the ICF SPI
Deciding on the Connector Type

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 26

Chapter 3

Implementing the ICF SPI

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

This chapter describes the ICF SPI, which enables you to create connectors that are compatible with
the ICF framework.

The SPI includes a number of interfaces, but you need only implement those that are supported
by the target resource to which you are connecting. For information about how to get started with
writing connectors, see "Writing Java Connectors" and "Writing Scripted Connectors With the Groovy
Connector Toolkit".

The order in which you implement your connector is as follows:

1. Decide on the connector type (see "Deciding on the Connector Type".

2. Implement the configuration interface (see "Implementing the Configuration Interface".

3. Implement the connector interface (see "Implementing the Connector Interface".

4. Implement the operation interfaces (see "Implementing the Operation Interfaces".

Deciding on the Connector Type
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

ICF supports multiple connector types, based on the implementation of the connector interface, and
the configuration interface. These two interfaces determine whether the connector can be pooled,
and whether its configuration is stateful. Before you begin developing your connector, decide on
the connector type, based on the system to which you are connecting. For an overview of how the
ICF framework manages each connector type, see "How the ICF Framework Manages Connector
Instances".

This section outlines the different connector types.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Implementing the ICF SPI
Deciding on the Connector Type

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 27

Connector

The basic connector is a non-poolable connector. Each operation is executed on a new instance
of the connector. ICF creates a new instance of the Connector class and uses a new or existing
instance of the connector configuration to initialise the instance before the operation is executed.
After the execution, ICF disposes of the connector instance.

Poolable Connector

Before an operation is executed, an existing connector instance is pulled from the Connector
Pool. If there is no existing instance, a new instance is created. After the operation execution, the
Connector instance is released and placed back into pool.

The ICF framework pools instances of a poolable connector, rather than pooling connections
within the connector.

Configuration

For a basic (non-stateful) configuration, each time the configuration is used (when an operation is
validated or a new connector instance is initialised, a new Configuration instance is created and
configured with the Configuration properties.

Stateful Configuration

With a stateful configuration, the configuration instance is created only once and is used until the
Facade or Connector Pool that is associated with the Configuration is disposed of.

The following table illustrates how these elements combine to determine the connector type.

Connector Types

 Connector Poolable Connector
Configuration Entirely stateless combination. A

new Configuration and Connector
instance are created for each
operation.

Connector initialisation is an
expensive operation, so it is
preferable to keep connector
instances in a pool. A new
configuration is required only when
a new connector instance is added
to the pool.

Stateful Configuration The configuration can be used
to make the heavy resource
initialisation. The less intensive
connector instance can then
execute the operation.

The configuration must be shared
between the instances in the same
pool and the connector initialisation
is expensive.

For detailed information on how the ICF framework manages each of these connector types, see
"How the ICF Framework Manages Connector Instances".

Implementing the ICF SPI
Implementing the Configuration Interface

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 28

Implementing the Configuration Interface
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

The ICF connector framework uses the configuration interface implementation to build the
configuration properties inside the API configuration.

The configuration interface implementation includes the required information to enable the
connector to connect to the target system, and to perform its operations. The configuration interface
implements getters and setters for each of its defined properties. It also provides a validate method
that your application can use to check whether all the required properties are available, and valid,
before passing them to the connector.

The configuration interface has three methods:

• setConnectorMessages(ConnectorMessages messages) sets the message catalog instance, that enables the
connector to provide localized messages.

The message catalog is defined in the file Messages.properties, and can be localized as required by
appending the locale to the file name, for example, Messages_fr.properties.

For more information on the message catalog, see "The Connector Messages Object".

• getConnectorMessages() returns the message catalog that is set by
setConnectorMessages(ConnectorMessages)

• validate() checks that all the required properties have been set and that their values are valid

The purpose of this method is to test that the configuration that the application provides to your
connector is valid.

Each property that is declared is not necessarily required. If a property is required, it must be
included in the ConfigurationProperty annotation.

The ConfigurationProperty annotation (Java) or attribute (.NET) enables you to add custom meta
information to properties. The ICF framework scans the meta information and collects this
information to build the ConfigurationProperties object inside the APIConfiguration. The following meta
information can be provided:

Element Description Implementation in Java Implementation in C#
order The order in which this

property is displayed
helpMessageKey Enables you to change

the default help message
key

propertyName.help help_propertyName

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Implementing the ICF SPI
Implementing the Configuration Interface

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 29

Element Description Implementation in Java Implementation in C#
displayMessageKey Enables you to change

the default display
message key

propertyName.display display_propertyName

groupMessageKey Enables you to change
the default group
message key

propertyName.group group_propertyName

confidential Indicates that this is a
confidential property
and that its value
should be encrypted by
the application when
persisted

required Boolean, indicates
whether the property is
required

operations The array of operations
that require this property

The following examples show how the meta information is provided, in both Java and C#.

Stateless Configuration Implementation (Java)

public class SampleConfiguration extends AbstractConfiguration {

 /**
 * {@inheritDoc}
 */
 public void validate() {
 }

 @ConfigurationProperty(
 order = 1,
 helpMessageKey = "passwordFieldName.help",
 displayMessageKey = "passwordFieldName.display",
 groupMessageKey = "authenticateOp.group",
 confidential = false,
 required = false,
 operations = {AuthenticateOp.class,CreateOp.class}
)
 public String getPasswordFieldName() {
 return passwordFieldName;
 }

 public void setPasswordFieldName(String value) {
 passwordFieldName = value;
 }
}

Implementing the ICF SPI
Implementing the Configuration Interface

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 30

Stateful Configuration Implementation (Java)

public class SampleConfiguration extends AbstractConfiguration
 implements StatefulConfiguration {

 /**
 * {@inheritDoc}
 */
 public void release() {
 }

 /**
 * {@inheritDoc}
 */
 public void validate() {
 }
}

Stateless Configuration Implementation (C#)

public class ActiveDirectoryConfiguration : AbstractConfiguration
 {

 [ConfigurationProperty(
 Order = 1,
 HelpMessageKey = "help_PasswordFieldName",
 DisplayMessageKey = "display_PasswordFieldName",
 GroupMessageKey = "group_PasswordFieldName",
 Confidential = false,
 Required = false,
 OperationTypes = new[] { typeof(AuthenticateOp) })
]
 public String PasswordFieldName
 { get; set; }

 public override void Validate()
 {
 throw new NotImplementedException();
 }
 }

Implementing the ICF SPI
Validate Operation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 31

Stateful Configuration Implementation (C#)

public class ActiveDirectoryConfiguration : AbstractConfiguration,
 StatefulConfiguration
 {

 public override void Validate()
 {
 throw new NotImplementedException();
 }

 public void Release()
 {
 throw new NotImplementedException();
 }
 }

Validate Operation

The validate operation validates the connector configuration. A valid configuration is one that is
ready to be used by the connector.

A configuration that is ready, has the following characteristics:

• It is complete, that is all required properties are present and have values

• All property values are well-formed, that is, they are in the expected range and have the expected
format

ValidateApiOp

The validate operation returns a ConfigurationException in the following situations:

• The Framework version is not compatible with the connector

• The connector does not have the required attributes in MANIFEST.MF

• The ConfigurationProperties cannot be merged into the configuration

Implementation of the valid operation, at the API Level

@Test
 public void ValidateTest() {
 logger.info("Running Validate Test");
 final ConnectorFacade facade = createConnectorFacade(BasicConnector.class, null);
 facade.validate();
 }

Implementing the ICF SPI
Validate SPI Implementation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 32

Validate SPI Implementation

The validate() method of the configuration operation must return one of the following:

• RuntimeException if the configuration is not valid

• NullPointerException if a required configuration property is null

• IllegalArgumentException if a required configuration property is blank

Implementation of the validate method

public void validate() {
 if (StringUtil.isBlank(host)) {
 throw new IllegalArgumentException("Host User cannot be null or empty.");
 }

 Assertions.blankCheck(remoteUser, "remoteUser");

 Assertions.nullCheck(password, "password");
}

Supported Configuration Types

The ICF framework supports a limited number of configuration property types. This limitation
is necessary, because ICF must serialise and deserialize the configuration property values when
sending them over the network.

You can use any of the following types, or an array of these types. Lists of types are not supported.

 String.class
 long.class
 Long.class
 char.class
 Character.class
 double.class
 Double.class
 float.class
 Float.class
 int.class
 Integer.class
 boolean.class
 Boolean.class
 URI.class
 File.class
 GuardedByteArray.class
 GuardedString.class
 Script.class

Implementing the ICF SPI
Supported Configuration Types

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 33

 typeof(string),
 typeof(long),
 typeof(long?),
 typeof(char),
 typeof(char?),
 typeof(double),
 typeof(double?),
 typeof(float),
 typeof(float?),
 typeof(int),
 typeof(int?),
 typeof(bool),
 typeof(bool?),
 typeof(Uri),
 typeof(FileName),
 typeof(GuardedByteArray),
 typeof(GuardedString),
 typeof(Script)

The framework introspects the implemented configuration class and adds all properties that have a
set/get method to the ConfigurationProperties object.

The ConfigurationClass annotation (Java) or attribute (.NET) provides additional information to the ICF
framework about the configuration class. The following information is provided:

Element Description
privateProperty If this is set, the property is hidden from the

application, and the application cannot set the
property through the APIConfiguration.

skipUnsupported If the type of an added property is not supported,
the framework throws an exception. To avoid the
exception, set the value of skipUnsupported to true.

ConfigurationClass Annotation in Java

@ConfigurationClass(ignore = { "privateProperty", "internalProperty" }, skipUnsupported = true)

ConfigurationClass Attribute in C#

[ConfigurationClass(Ignore = { "privateProperty", "internalProperty" }, SkipUnsupported = true)]

Implementing the ICF SPI
Implementing the Connector Interface

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 34

Implementing the Connector Interface
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

The connector interface declares a connector, and manages its life cycle. You must implement the
connector interface. A typical connector lifecycle is as follows:

• The connector creates a connection to the target system.

• Any operations implemented in the connector are called.

• The connector discards the connection and disposes of any resources it has used.

The connector interface has only three methods:

• init(Configuration) initializes the connector with its configuration

• getConfiguration() returns the configuration that was passed to init(Configuration)

• dispose() disposes of any resources that the connector uses.

The ConnectorClass, which is the implementation of the connector interface, must have the
ConnectorClass annotation (Java) or attribute (.NET) so that the ICF framework can find the connector
class. The following table shows the elements within the connector class.

Element Description
configurationClass The configuration class

for the connector.
displayNameKey A key in the message

catalog that holds a
human readable name for
the connector.

categoryKey The category to which the
connector belongs, such
as LDAP, or DB.

messageCatalogPaths The resource path(s) to
the message catalog.
If multiple paths are
provided, the message
catalogs are collated.
By default, if no path is
specified, the connector-
package.Messages.
properties is used

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Implementing the ICF SPI
Implementing a Poolable Connector Interface

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 35

The following examples show the connector interface implementation, in Java and C#.

Connector Interface Implementation in Java

@ConnectorClass(
 displayNameKey = "Sample.connector.display",
 configurationClass = SampleConfiguration.class)
public class SampleConnector implements Connector...

Connector Interface Implementation in C#

[ConnectorClass(
 "connector_displayName",
 typeof (SampleConfiguration)
]
public class SampleConnector : Connector ...

Implementing a Poolable Connector Interface

Certain connectors support the ability to be pooled. For a pooled connector, ICF maintains a pool
of connector instances and reuses these instances for multiple provisioning and reconciliation
operations. When an operation must be executed, an existing connector instance is taken from the
connector pool. If no connector instance exists, a new instance is initialized. When the operation has
been executed, the connector instance is released back into the connector pool, ready to be used for a
subsequent operation.

For an unpooled connector, a new connector instance is initialized for every operation. When the
operation has been executed, ICF disposes of the connector instance. Because the initialization
of a connector is an expensive operation, reducing the number of connector initializations can
substantially improve performance.

The following connection pooling configuration parameters can be set:

maxObjects

The maximum number of connector instances in the pool (both idle and active). The default value
is 10 instances.

maxIdle

The maximum number of idle connector instances in the pool. The default value is 10 idle
instances.

maxWait

The maximum period to wait for a free connector instance to become available before failing. The
default period is 150000 milliseconds, or 15 seconds.

Implementing the ICF SPI
Implementing the Operation Interfaces

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 36

minEvictableIdleTimeMillis

The minimum period to wait before evicting an idle connector instance from the pool. The default
period is 120000 milliseconds, or 2 minutes.

A connection pool cleaner thread runs every minute and closes connections whose lastUsed time is
larger than the minEvictableIdleTimeMillis.

minIdle

The minimum number of idle connector instances in the pool. The default value is 1 instance.

A PoolableConnector extends the connector interface with the checkAlive() method. You should use a
PoolableConnector when the init(Configuration) method is so expensive that it is worth keeping the
connector instance in a pool and reusing it between operations. When an existing connector instance
is pooled, the framework calls the checkAlive() method. If this method throws an error, the framework
discards it from the pool and obtains another instance, or creates a new connector instance and calls
the init() method. The checkAlive() method is used to make sure that the instance in the pool is still
operational.

Implementing the Operation Interfaces
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

The SPI provides several operations. The subset of operations that you implement will depend on
the target resource to which you are connecting. Each operation interface defines an action that the
connector can perform on the target resource.

The following sections describe the operation interfaces that are provided by the SPI, and provide
examples of how they can be implemented in your connector. The sections include the API- and SPI-
level rules for each operation.

Authenticate Operation

The authenticate operation authenticates an object on the target system, based on two parameters,
usually a unique identifier (username) and a password. If possible, your connector should try to
authenticate these credentials natively.

If authentication fails, the connector should throw a runtime exception. The exception must be
an IllegalArgumentException or, if a native exception is available and is of type RuntimeException, that
native runtime exception. If the native exception is not a RuntimeException, it should be wrapped in a
RuntimeException, and then thrown.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Implementing the ICF SPI
Authenticate Operation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 37

The exception should provide as much detail as possible for logging problems and failed
authentication attempts. Several exceptions are provided in the exceptions package, for this purpose.
For example, one of the most common authentication exceptions is the InvalidPasswordException.

For more information about the common exceptions provided in the OpenICF framework, see
"Common Exceptions".

Using the ICF Authenticate Operation

This section shows how your application can use the framework's authentication operation, and how to
write a unit test for this operation, when you are developing your connector.

The authentication operation throws a RuntimeException if the credentials do not pass authentication,
otherwise returns the UID.

Sample Unit Test for the Authentication Operation (Java)

@Test
public void authenticateTest() {
 logger.info("Running Authentication Test");
 final ConnectorFacade facade = createConnectorFacade(BasicConnector.class, null);
 final OperationOptionsBuilder builder = new OperationOptionsBuilder();
 Uid uid =
 facade.authenticate(ObjectClass.ACCOUNT, "username", new GuardedString("Passw0rd"
 .toCharArray()), builder.build());
 Assert.assertEquals(uid.getUidValue(), "username");
}

Implementing the Authenticate Operation in Your Connector

To implement the authenticate operation in your connector, add the AuthenticateOp interface to your
connector class, for example:
@ConnectorClass(
 displayNameKey = "Sample.connector.display",
 configurationClass = SampleConfiguration.class)
public class SampleConnector implements Connector, AuthenticateOp...

For more information, see the AuthenticateOp JavaDoc.

The SPI provides the following detailed exceptions:

• UnknownUidException - the UID does not exist on the resource

(org.identityconnectors.framework.common.exceptions.UnknownUidException)

• ConnectorSecurityException - base exception for all security-related exceptions

(org.identityconnectors.framework.common.exceptions.ConnectorSecurityException)

../apidocs/?org/identityconnectors/framework/spi/operations/AuthenticateOp.html

Implementing the ICF SPI
Create Operation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 38

• InvalidCredentialException - generic invalid credential exception that should be used if the specific
error cannot be obtained

(org.identityconnectors.framework.common.exceptions.UnknownUidException)

• InvalidPasswordException - the password provided is incorrect

(org.identityconnectors.framework.common.exceptions.InvalidPasswordException)

• PasswordExpiredException - the password is correct, but has expired

(org.identityconnectors.framework.common.exceptions.PasswordExpiredException)

• PermissionDeniedException - the user can be identified but does not have permission to
authenticate

(org.identityconnectors.framework.common.exceptions.PermissionDeniedException)

Implementation of the Authentication Operation, at the SPI Level

public Uid authenticate(final ObjectClass objectClass, final String userName,
 final GuardedString password, final OperationOptions options) {
 if (ObjectClass.ACCOUNT.equals(objectClass)) {
 return new Uid(userName);
 } else {
 logger.warn("Authenticate of type {0} is not supported", configuration
 .getConnectorMessages().format(objectClass.getDisplayNameKey(),
 objectClass.getObjectClassValue()));
 throw new UnsupportedOperationException("Authenticate of type"
 + objectClass.getObjectClassValue() + " is not supported");
 }
}

Create Operation

The create operation interface enables the connector to create objects on the target system. The
operation includes one method (create()). The method takes an ObjectClass, and any provided
attributes, and creates the object and its UID. The connector must return the UID so that the caller
can refer to the created object.

The connector should make a best effort to create the object, and should throw an informative
RuntimeException, indicating to the caller why the operation could not be completed. Defaults can be
used for any required attributes, as long as the defaults are documented.

The UID is never passed in with the attribute set for this method. If the resource supports a mutable
UID, you can create a resource-specific attribute for the ID, such as unix_uid.

If the create operation is only partially successful, the connector should attempt to roll back the
partial change. If the target system does not allow this, the connector should report the partial
success of the create operation and throw a RetryableException. For example:

Implementing the ICF SPI
Create Operation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 39

public static RetryableException wrap(final String message, final Uid uid) {
 return new RetryableException(message, new AlreadyExistsException().initUid(Assertions
 .nullChecked(uid, "Uid")));
}

Using the ICF Create Operation

The following exceptions are thrown by the Create API operation:

• IllegalArgumentException - if ObjectClass} is missing, or if elements of the set produce duplicate values
of Attribute#getName()

• NullPointerException - if the createAttributes parameter is null

• RuntimeException - if the Connector SPI throws a native exception

Consumption of the Create Operation, at the API Level

@Test
public void createTest() {
 logger.info("Running Create Test");
 final ConnectorFacade facade = createConnectorFacade(BasicConnector.class, null);
 final OperationOptionsBuilder builder = new OperationOptionsBuilder();
 Set<Attribute> createAttributes = new HashSet<Attribute>();
 createAttributes.add(new Name("Foo"));
 createAttributes.add(AttributeBuilder.buildPassword("Password".toCharArray()));
 createAttributes.add(AttributeBuilder.buildEnabled(true));
 Uid uid = facade.create(ObjectClass.ACCOUNT, createAttributes, builder.build());
 Assert.assertEquals(uid.getUidValue(), "foo");
}

Implementing the Create Operation in Your Connector

The SPI provides the following detailed exceptions:

• UnsupportedOperationException - the create operation is not supported for the specified object class

• InvalidAttributeValueException - a required attribute is missing, an attribute is present that cannot be
created, or a provided attribute has an invalid value

• AlreadyExistsException - an object with the specified Name already exits on the target system

• PermissionDeniedException - the target resource will not allow the connector to perform the specified
operation

• ConnectorIOException, ConnectionBrokenException, ConnectionFailedException - a problem as occurred with
the connection

• RuntimeException - thrown if anything else goes wrong. You should try to throw a native exception in
this case.

Implementing the ICF SPI
Delete Operation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 40

Implementation of the Create Operation, at the SPI Level

public Uid create(final ObjectClass objectClass, final Set<Attribute> createAttributes,
 final OperationOptions options) {
 if (ObjectClass.ACCOUNT.equals(objectClass) || ObjectClass.GROUP.equals(objectClass)) {
 Name name = AttributeUtil.getNameFromAttributes(createAttributes);
 if (name != null) {
 // do real create here
 return new Uid(AttributeUtil.getStringValue(name).toLowerCase());
 } else {
 throw new InvalidAttributeValueException("Name attribute is required");
 }
 } else {
 logger.warn("Delete of type {0} is not supported", configuration.getConnectorMessages()
 .format(objectClass.getDisplayNameKey(), objectClass.getObjectClassValue()));
 throw new UnsupportedOperationException("Delete of type"
 + objectClass.getObjectClassValue() + " is not supported");
 }
}

Delete Operation

The delete operation interface enables the connector to delete an object on the target system. The
operation includes one method (delete()). The method takes an ObjectClass, a Uid, and any operation
options.

The connector should call the native delete methods to remove the object, specified by its unique ID.

Using the ICF Delete Operation

The following exceptions are thrown by the Delete API operation:

• UnknownUidException - the UID does not exist on the resource

Consumption of the Delete Operation, at the API Level

@Test
public void deleteTest() {
 logger.info("Running Delete Test");
 final ConnectorFacade facade = createConnectorFacade(BasicConnector.class, null);
 final OperationOptionsBuilder builder = new OperationOptionsBuilder();
 facade.delete(ObjectClass.ACCOUNT, new Uid("username"), builder.build());
}

Implementing the ICF SPI
Resolve Username Operation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 41

Implementing the Delete Operation in Your Connector

Implementation of the Delete Operation, at the SPI Level

public void delete(final ObjectClass objectClass, final Uid uid, final OperationOptions options) {
 if (ObjectClass.ACCOUNT.equals(objectClass) || ObjectClass.GROUP.equals(objectClass)) {
 // do real delete here
 } else {
 logger.warn("Delete of type {0} is not supported", configuration.getConnectorMessages()
 .format(objectClass.getDisplayNameKey(), objectClass.getObjectClassValue()));
 throw new UnsupportedOperationException("Delete of type"
 + objectClass.getObjectClassValue() + " is not supported");
 }
}

Resolve Username Operation

The resolve username operation enables the connector to resolve an object to its UID, based on its
username. This operation is similar to the simple authentication operation. However, the resolve
username operation does not include a password parameter, and does not attempt to authenticate the
credentials. Instead, it returns the UID that corresponds to the supplied username.

The implementation must, however, validate the username (that is, the connector must throw an
exception if the username does not correspond to an existing object). If the username validation
fails, the the connector should throw a runtime exception, either an IllegalArgumentException or, if a
native exception is available and is of type RuntimeException, simply throw that exception. If the native
exception is not a RuntimeException, it should be wrapped in a RuntimeException, and then thrown.

The exception should provide as much detail as possible for logging problems and failed attempts.
Several exceptions are provided in the exceptions package, for this purpose. For example, one of the
most common exceptions is the UnknownUidException.

Using the ICF Resolve Username Operation

The operation throws a RuntimeException if the username validation fails, otherwise returns the UID.

Consumption of the ResolveUsername operation, at the API Level

@Test
public void resolveUsernameTest() {
 logger.info("Running ResolveUsername Test");
 final ConnectorFacade facade = createConnectorFacade(BasicConnector.class, null);
 final OperationOptionsBuilder builder = new OperationOptionsBuilder();
 Uid uid = facade.resolveUsername(ObjectClass.ACCOUNT, "username", builder.build());
 Assert.assertEquals(uid.getUidValue(), "username");
}

Implementing the ICF SPI
Schema Operation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 42

Implementing the Resolve Username Operation in Your Connector

The SPI provides the following detailed exceptions:

• UnknownUidException - the UID does not exist on the resource

Implementation of the ResolveUsername Operation, at the SPI Level

public Uid resolveUsername(final ObjectClass objectClass, final String userName,
 final OperationOptions options) {
 if (ObjectClass.ACCOUNT.equals(objectClass)) {
 return new Uid(userName);
 } else {
 logger.warn("ResolveUsername of type {0} is not supported", configuration
 .getConnectorMessages().format(objectClass.getDisplayNameKey(),
 objectClass.getObjectClassValue()));
 throw new UnsupportedOperationException("ResolveUsername of type"
 + objectClass.getObjectClassValue() + " is not supported");
 }
}

Schema Operation

The Schema Operation interface enables the connector to describe the types of objects that it can
handle on the target system, and the operations and options that the connector supports for each
object type.

The operation has one method, schema(), which returns the types of objects on the target system that
the connector supports. The method should return the object class name, its description, and a set of
attribute definitions.

The implementation of this operation includes a mapping between the native object class and the
corresponding connector object. The special Uid attribute should not be returned, because it is not
a true attribute of the object, but a reference to it. For more information about special attributes in
ICF, see "ICF Special Attributes".

If your resource object class has a writable unique ID attribute that is different to its Name, your
schema should contain a resource-specific attribute that represents this unique ID. For example, a
Unix account object might contain a unix_uid.

Implementing the ICF SPI
Schema Operation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 43

Using the ICF Schema Operation

Consumption of the Schema Operation, at the API Level

@Test
public void schemaTest() {
 logger.info("Running Schema Test");
 final ConnectorFacade facade = createConnectorFacade(BasicConnector.class, null);
 Schema schema = facade.schema();
 Assert.assertNotNull(schema.findObjectClassInfo(ObjectClass.ACCOUNT_NAME));
}

Implementing the Schema Operation in Your Connector

Implementation of the SchemaOp operation, at the SPI Level

public Schema schema() {
 if (null == schema) {
 final SchemaBuilder builder = new SchemaBuilder(BasicConnector.class);
 // Account
 ObjectClassInfoBuilder accountInfoBuilder = new ObjectClassInfoBuilder();
 accountInfoBuilder.addAttributeInfo(Name.INFO);
 accountInfoBuilder.addAttributeInfo(OperationalAttributeInfos.PASSWORD);
 accountInfoBuilder.addAttributeInfo(PredefinedAttributeInfos.GROUPS);
 accountInfoBuilder.addAttributeInfo(AttributeInfoBuilder.build("firstName"));
 accountInfoBuilder.addAttributeInfo(AttributeInfoBuilder.define("lastName")
 .setRequired(true).build());
 builder.defineObjectClass(accountInfoBuilder.build());

 // Group
 ObjectClassInfoBuilder groupInfoBuilder = new ObjectClassInfoBuilder();
 groupInfoBuilder.setType(ObjectClass.GROUP_NAME);
 groupInfoBuilder.addAttributeInfo(Name.INFO);
 groupInfoBuilder.addAttributeInfo(PredefinedAttributeInfos.DESCRIPTION);
 groupInfoBuilder.addAttributeInfo(AttributeInfoBuilder.define("members").setCreatable(
 false).setUpdateable(false).setMultiValued(true).build());

 // Only the CRUD operations
 builder.defineObjectClass(groupInfoBuilder.build(), CreateOp.class, SearchOp.class,
 UpdateOp.class, DeleteOp.class);

 // Operation Options
 builder.defineOperationOption(OperationOptionInfoBuilder.buildAttributesToGet(),
 SearchOp.class);

 // Support paged Search
 builder.defineOperationOption(OperationOptionInfoBuilder.buildPageSize(),
 SearchOp.class);
 builder.defineOperationOption(OperationOptionInfoBuilder.buildPagedResultsCookie(),
 SearchOp.class);

 // Support to execute operation with provided credentials
 builder.defineOperationOption(OperationOptionInfoBuilder.buildRunWithUser());
 builder.defineOperationOption(OperationOptionInfoBuilder.buildRunWithPassword());

Implementing the ICF SPI
Script On Connector Operation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 44

 schema = builder.build();
 }
 return schema;
}

Script On Connector Operation

The script on connector operation runs a script in the environment of the connector. This is different
to the script on resource operation, which runs a script on the target resource that the connector
manages.

The corresponding API operation (scriptOnConnectorApiOp) provides a minimum contract to which
the connector must adhere. (See the javadoc for more information). If you do not implement the
scriptOnConnector interface in your connector, the framework provides a default implementation. If you
intend your connector to provide more to the script than what is required by this minimum contract,
you must implement the scriptOnConnectorOp interface.

Using the ICF Script on Connector Operation

The API operation allows an application to run a script in the context of any connector.

This operation runs the script in the same JVM or .Net Runtime as the connector. That is, if you are
using a local framework, the script runs in your JVM. If you are connected to a remote framework, the
script runs in the remote JVM or .Net Runtime.

Consumption of the ScriptOnConnector operation, at the API Level

@Test
public void runScriptOnConnectorTest() {
 logger.info("Running RunScriptOnConnector Test");
 final ConnectorFacade facade = createConnectorFacade(BasicConnector.class, null);
 final OperationOptionsBuilder builder = new OperationOptionsBuilder();
 builder.setRunAsUser("admin");
 builder.setRunWithPassword(new GuardedString("Passw0rd".toCharArray()));

 final ScriptContextBuilder scriptBuilder =
 new ScriptContextBuilder("Groovy", "return argument");
 scriptBuilder.addScriptArgument("argument", "value");

 Object result = facade.runScriptOnConnector(scriptBuilder.build(), builder.build());
 Assert.assertEquals(result, "value");
}

Implementing the Script on Connector Operation in Your Connector

The scriptOnConnector SPI operation takes the following parameters:

• request - the script and the arguments to be run

../apidocs/?org/identityconnectors/framework/api/operations/ScriptOnConnectorApiOp.html

Implementing the ICF SPI
Script On Resource Operation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 45

• options - additional options that control how the script is run

The operation returns the result of the script. The return type must be a type that the framework
supports for serialization. See the ObjectSerializerFactory javadoc for a list of supported return
types.

Implementation of the ScriptOnConnector operation, at the SPI Level

public Object runScriptOnConnector(ScriptContext request, OperationOptions options) {
 final ScriptExecutorFactory factory =
 ScriptExecutorFactory.newInstance(request.getScriptLanguage());
 final ScriptExecutor executor =
 factory.newScriptExecutor(getClass().getClassLoader(), request.getScriptText(),
 true);

 if (StringUtil.isNotBlank(options.getRunAsUser())) {
 String password = SecurityUtil.decrypt(options.getRunWithPassword());
 // Use these to execute the script with these credentials
 }
 try {
 return executor.execute(request.getScriptArguments());
 } catch (Throwable e) {
 logger.warn(e, "Failed to execute Script");
 throw ConnectorException.wrap(e);
 }
}

Script On Resource Operation

The script on resource operation runs a script directly on the target resource (unlike the "Script On
Connector Operation", which runs a script in the context of a specific connector.)

Implement this interface if your connector intends to support the ScriptOnResourceApiOp API operation.
If your connector implements this interface, you must document the script languages that the
connector supports, as well as any supported OperationOptions.

Using the ICF Script on Resource Operation

The contract at the API level is intentionally very loose. Each connector decides what script
languages it supports, what running a script on a target resource actually means, and what script
options (if any) the connector supports.

../apidocs/?org/identityconnectors/framework/common/serializer/ObjectSerializerFactory.html

Implementing the ICF SPI
Search Operation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 46

Consumption of the ScriptOnResource operation, at the API Level

@Test
public void runScriptOnResourceTest() {
 logger.info("Running RunScriptOnResource Test");
 final ConnectorFacade facade = createConnectorFacade(BasicConnector.class, null);
 final OperationOptionsBuilder builder = new OperationOptionsBuilder();
 builder.setRunAsUser("admin");
 builder.setRunWithPassword(new GuardedString("Passw0rd".toCharArray()));

 final ScriptContextBuilder scriptBuilder = new ScriptContextBuilder("bash", "whoami");

 Object result = facade.runScriptOnResource(scriptBuilder.build(), builder.build());
 Assert.assertEquals(result, "admin");
}

Implementing the Script on Resource Operation in Your Connector

The scriptOnResource SPI operation takes the following parameters:

• request - the script and the arguments to be run

• options - additional options that control how the script is run

The operation returns the result of the script. The return type must be a type that the framework
supports for serialization. See the ObjectSerializerFactory javadoc for a list of supported return
types.

Implementation of the ScriptOnResource operation, at the SPI Level

public Object runScriptOnResource(ScriptContext request, OperationOptions options) {
 try {
 // Execute the script on remote resource
 if (StringUtil.isNotBlank(options.getRunAsUser())) {
 String password = SecurityUtil.decrypt(options.getRunWithPassword());
 // Use these to execute the script with these credentials
 return options.getRunAsUser();
 }
 throw new UnknownHostException("Failed to connect to remote SSH");
 } catch (Throwable e) {
 logger.warn(e, "Failed to execute Script");
 throw ConnectorException.wrap(e);
 }
}

Search Operation

The search operation enables the connector to search for objects on the target system.

The ICF framework handles searches as follows:

../apidocs/?org/identityconnectors/framework/common/serializer/ObjectSerializerFactory.html

Implementing the ICF SPI
Search Operation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 47

1. The application sends a query, with a search filter, to the OpenICF framework

2. The framework submits the query, with the filter, to the connector

3. The connector implements the createFilterTranslator() method to obtain a FilterTranslator object

4. The framework then uses this FilterTranslator object to transform the filter to a format that the
executeQuery() method expects

You can implement the FilterTranslator object in two ways:

• The FilterTranslator translates the original filter into one or more native queries.

The framework then calls the executeQuery() method for each native query.

• The FilterTranslator does not modify the original filter.

The framework then calls the executeQuery() method with the original ICF filter.

Using this second approach enables your connector to distinguish between a search and a get
operation and to benefit from the visitor design pattern.

Based on the resultsHandlerConfiguration, the OpenICF framework can perform additional filtering on
the returning results. For more information on the resultsHandlerConfiguration, see Results Handler
Configuration.

The connector facade calls the executeQuery method once for each native query that the filter
translator produces. If the filter translator produces more than one native query, the connector
facade merges the results from each query and eliminates any duplicates.

Note that this implies an in-memory data structure that holds a set of UID values. Memory usage, in
the event of multiple queries, will be O(N) where N is the number of results. It is therefore important
that the filter translator for the connector implement OR operators, if possible.

Whether the application calls a get API operation, or a search API operation, the ICF framework
translates that request to a search request on the connector.

Using the ICF Get Operation

The GetApiOp returns null when the UID does not exist on the resource.

Implementing the ICF SPI
Search Operation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 48

Consumption of the Get operation, at the API Level

@Test
public void getObjectTest() {
 logger.info("Running GetObject Test");
 final ConnectorFacade facade = createConnectorFacade(BasicConnector.class, null);
 final OperationOptionsBuilder builder = new OperationOptionsBuilder();
 builder.setAttributesToGet(Name.NAME);
 ConnectorObject co =
 facade.getObject(ObjectClass.ACCOUNT, new Uid(
 "3f50eca0-f5e9-11e3-a3ac-0800200c9a66"), builder.build());
 Assert.assertEquals(co.getName().getNameValue(), "Foo");
}

Using the ICF Search Operation

Consumption of the Search operation, at the API Level

@Test
public void searchTest() {
 logger.info("Running Search Test");
 final ConnectorFacade facade = createConnectorFacade(BasicConnector.class, null);
 final OperationOptionsBuilder builder = new OperationOptionsBuilder();
 builder.setPageSize(10);
 final ResultsHandler handler = new ToListResultsHandler();

 SearchResult result =
 facade.search(ObjectClass.ACCOUNT, FilterBuilder.equalTo(new Name("Foo")), handler,
 builder.build());
 Assert.assertEquals(result.getPagedResultsCookie(), "0");
 Assert.assertEquals(((ToListResultsHandler) handler).getObjects().size(), 1);
}

Implementing the ICF SPI
Sync Operation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 49

Implementing the Search Operation in Your Connector

Implementation of the Search operation, at the SPI Level

public FilterTranslator<String> createFilterTranslator(ObjectClass objectClass,
 OperationOptions options) {
 return new BasicFilterTranslator();
}

public void executeQuery(ObjectClass objectClass, String query, ResultsHandler handler,
 OperationOptions options) {
 final ConnectorObjectBuilder builder = new ConnectorObjectBuilder();
 builder.setUid("3f50eca0-f5e9-11e3-a3ac-0800200c9a66");
 builder.setName("Foo");
 builder.addAttribute(AttributeBuilder.buildEnabled(true));

 for (ConnectorObject connectorObject : CollectionUtil.newSet(builder.build())) {
 if (!handler.handle(connectorObject)) {
 // Stop iterating because the handler stopped processing
 break;
 }
 }
 if (options.getPageSize() != null && 0 < options.getPageSize()) {
 logger.info("Paged Search was requested");
 ((SearchResultsHandler) handler).handleResult(new SearchResult("0", 0));
 }
}

Sync Operation

The sync operation polls the target system for synchronization events, that is, native changes to
target objects.

The operation has two methods:

• sync() - request synchronization events from the target system

This method calls the specified handler, once, to pass back each matching synchronization event.
When the method returns, it will no longer invoke the specified handler.

• getLatestSyncToken() - returns the token corresponding to the most recent synchronization event

Implementing the ICF SPI
Sync Operation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 50

Using the ICF Sync Operation

Consumption of the Sync Operation (getLatestSyncToken() Method), at the API Level

@Test
public void getLatestSyncTokenTest() {
 logger.info("Running GetLatestSyncToken Test");
 final ConnectorFacade facade = createConnectorFacade(BasicConnector.class, null);
 SyncToken token = facade.getLatestSyncToken(ObjectClass.ACCOUNT);
 Assert.assertEquals(token.getValue(), 10);
}

The getLatestSyncToken method throws an IllegalArgumentException if the objectClass is null or invalid.

Consumption of the Sync Operation (sync() Method), at the API Level

@Test
public void syncTest() {
 logger.info("Running Sync Test");
 final ConnectorFacade facade = createConnectorFacade(BasicConnector.class, null);
 final OperationOptionsBuilder builder = new OperationOptionsBuilder();
 builder.setPageSize(10);
 final SyncResultsHandler handler = new SyncResultsHandler() {
 public boolean handle(SyncDelta delta) {
 return false;
 }
 };

 SyncToken token =
 facade.sync(ObjectClass.ACCOUNT, new SyncToken(10), handler, builder.build());
 Assert.assertEquals(token.getValue(), 10);
}

The sync method throws an IllegalArgumentException if the objectClass or handler is null, or if any
argument is invalid.

Implementing the Sync Operation in Your Connector

Implementation of the Sync Operation at the SPI Level

public void sync(ObjectClass objectClass, SyncToken token, SyncResultsHandler handler,
 final OperationOptions options) {
 if (ObjectClass.ALL.equals(objectClass)) {
 //
 } else if (ObjectClass.ACCOUNT.equals(objectClass)) {
 final ConnectorObjectBuilder builder = new ConnectorObjectBuilder();
 builder.setUid("3f50eca0-f5e9-11e3-a3ac-0800200c9a66");
 builder.setName("Foo");
 builder.addAttribute(AttributeBuilder.buildEnabled(true));

 final SyncDeltaBuilder deltaBuilder = new SyncDeltaBuilder();
 deltaBuilder.setObject(builder.build());

Implementing the ICF SPI
Test Operation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 51

 deltaBuilder.setDeltaType(SyncDeltaType.CREATE);
 deltaBuilder.setToken(new SyncToken(10));

 for (SyncDelta connectorObject : CollectionUtil.newSet(deltaBuilder.build())) {
 if (!handler.handle(connectorObject)) {
 // Stop iterating because the handler stopped processing
 break;
 }
 }
 } else {
 logger.warn("Sync of type {0} is not supported", configuration.getConnectorMessages()
 .format(objectClass.getDisplayNameKey(), objectClass.getObjectClassValue()));
 throw new UnsupportedOperationException("Sync of type"
 + objectClass.getObjectClassValue() + " is not supported");
 }
 ((SyncTokenResultsHandler) handler).handleResult(new SyncToken(10));
}

public SyncToken getLatestSyncToken(ObjectClass objectClass) {
 if (ObjectClass.ACCOUNT.equals(objectClass)) {
 return new SyncToken(10);
 } else {
 logger.warn("Sync of type {0} is not supported", configuration.getConnectorMessages()
 .format(objectClass.getDisplayNameKey(), objectClass.getObjectClassValue()));
 throw new UnsupportedOperationException("Sync of type"
 + objectClass.getObjectClassValue() + " is not supported");
 }
}

Test Operation

The test operation tests the connector configuration. Unlike validation, testing a configuration
verifies that every part of the environment that is referred to by the configuration is available. The
operation therefore validates that the connection details that are provided in the configuration are
accurate, and that the backend is accessible when using them.

For example, the connector might make a physical connection to the host that is specified in the
configuration, to check that it exists and that the credentials supplied in the configuration are valid.

The test operation can be invoked before the configuration has been validated, or can validate the
configuration before testing it.

Using the ICF Test Operation

At the API level, the test operation throws a RuntimeException if the configuration is not valid, or if the
test fails. Your connector implementation should throw the most specific exception available. When
no specific exception is available, your connector implementation should throw a ConnectorException.

Implementing the ICF SPI
Update Operation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 52

Consumption of the Test Operation at the API Level

@Test
public void testTest() {
 logger.info("Running Test Test");
 final ConnectorFacade facade = createConnectorFacade(BasicConnector.class, null);
 facade.test();
}

Implementing the Test Operation in Your Connector

Implementation of the Test Operation at the SPI Level

public void test() {
 logger.ok("Test works well");
}

Update Operation

If your connector will allow an authorized caller to update (modify or replace) objects on the target
system, you must implement either the update operation, or the "Update Attribute Values Operation".
At the API level update operation calls either the UpdateOp or the UpdateAttributeValuesOp, depending on
what you have implemented.

The update operation is somewhat simpler to implement than the "Update Attribute Values
Operation", because the update attribute values operation must handle any type of update that the
caller might specify. However a true implementation of the update attribute values operation offers
better performance and atomicity semantics.

Using the ICF Update Operation

At the API level, the update operation returns an UnknownUidException if the UID does not exist on
the target system resource and if the connector does not implement the "Update Attribute Values
Operation" interface.

Implementing the ICF SPI
Update Operation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 53

Consumption of the Update Operation at the API Level

@Test
public void updateTest() {
 logger.info("Running Update Test");
 final ConnectorFacade facade = createConnectorFacade(BasicConnector.class, null);
 final OperationOptionsBuilder builder = new OperationOptionsBuilder();
 Set<Attribute> updateAttributes = new HashSet<Attribute>();
 updateAttributes.add(new Name("Foo"));

 Uid uid = facade.update(ObjectClass.ACCOUNT, new Uid("Foo"), updateAttributes, builder
 .build());
 Assert.assertEquals(uid.getUidValue(), "foo");
}

Implementing the Update Operation in Your Connector

At the SPI level, the update operation returns an UnknownUidException if the UID does not exist on the
target system.

Implementation of the Update Operation at the SPI Level

public Uid update(ObjectClass objectClass, Uid uid, Set<Attribute> replaceAttributes,
 OperationOptions options) {
 AttributesAccessor attributesAccessor = new AttributesAccessor(replaceAttributes);
 Name newName = attributesAccessor.getName();
 Uid uidAfterUpdate = uid;
 if (newName != null) {
 logger.info("Rename the object {0}:{1} to {2}", objectClass.getObjectClassValue(), uid
 .getUidValue(), newName.getNameValue());
 uidAfterUpdate = new Uid(newName.getNameValue().toLowerCase());
 }

 if (ObjectClass.ACCOUNT.equals(objectClass)) {

 } else if (ObjectClass.GROUP.is(objectClass.getObjectClassValue())) {
 if (attributesAccessor.hasAttribute("members")) {
 throw new InvalidAttributeValueException(
 "Requested to update a read only attribute");
 }
 } else {
 logger.warn("Update of type {0} is not supported", configuration.getConnectorMessages()
 .format(objectClass.getDisplayNameKey(), objectClass.getObjectClassValue()));
 throw new UnsupportedOperationException("Update of type"
 + objectClass.getObjectClassValue() + " is not supported");
 }
 return uidAfterUpdate;
}

Implementing the ICF SPI
Update Attribute Values Operation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 54

Suggested Approach for Deleting Attributes and Removing Attribute Values

If the target resource to which you are connecting supports the removal of attributes, you can
implement the removal in several ways. All the samples in this document assume the following syntax
rules for deleting attributes or removing their values.

Update Syntax rule Query filter
Set an empty attribute value [""] (application sends an

attribute value that is a list
containing one empty string)

equal=""

Set an attribute value to null [] (application sends an attribute
value that is an empty list)

ispresent search returns 1

Removing an attribute null (application sends an
attribute value that is null

ispresent search returns 1

Update Attribute Values Operation

The update attribute values operation is an advanced implementation of the update operation. You
should implement this operation if you want your connector to offer better performance and atomicity
for the following methods:

• UpdateApiOp.addAttributeValues(ObjectClass, Uid, Set, OperationOptions)

• UpdateApiOp.removeAttributeValues(ObjectClass, Uid, Set, OperationOptions)

Implementing the ICF SPI
Update Attribute Values Operation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 55

Consumption of the Add and Remove Attribute Values Methods at the API Level

@Test
public void addAttributeValuesTest() {
 logger.info("Running AddAttributeValues Test");
 final ConnectorFacade facade = createConnectorFacade(BasicConnector.class, null);
 final OperationOptionsBuilder builder = new OperationOptionsBuilder();
 Set<Attribute> updateAttributes = new HashSet<Attribute>();
 // add 'group2' to existing groups
 updateAttributes.add(AttributeBuilder.build(PredefinedAttributes.GROUPS_NAME, "group2"));

 Uid uid =
 facade.addAttributeValues(ObjectClass.ACCOUNT, new Uid("Foo"), updateAttributes,
 builder.build());
 Assert.assertEquals(uid.getUidValue(), "foo");
}

@Test
public void removeAttributeValuesTest() {
 logger.info("Running RemoveAttributeValues Test");
 final ConnectorFacade facade = createConnectorFacade(BasicConnector.class, null);
 final OperationOptionsBuilder builder = new OperationOptionsBuilder();
 Set<Attribute> updateAttributes = new HashSet<Attribute>();
 // remove 'group2' from existing groups
 updateAttributes.add(AttributeBuilder.build(PredefinedAttributes.GROUPS_NAME, "group2"));

 Uid uid =
 facade.removeAttributeValues(ObjectClass.ACCOUNT, new Uid("Foo"), updateAttributes,
 builder.build());
 Assert.assertEquals(uid.getUidValue(), "foo");
}

Implementing the Update Attribute Values Operation in Your Connector

At the SPI level, the update attribute values operation returns an UnknownUidException when the UID
does not exist on the resource.

Implementation of the update attribute values operation, at the SPI Level

public Uid addAttributeValues(ObjectClass objectClass, Uid uid, Set<Attribute> valuesToAdd,
 OperationOptions options) {
 return uid;
}

public Uid removeAttributeValues(ObjectClass objectClass, Uid uid,
 Set<Attribute> valuesToRemove, OperationOptions options) {
 return uid;
}

Implementing the ICF SPI
Common Exceptions

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 56

Common Exceptions
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

The following sections describe the commonly used exceptions that can be thrown, depending on the
operation.

AlreadyExistsException
The AlreadyExistsException is thrown if a create operation attempts to create an object that exists prior
to the method execution, or if an update operation attempts to rename an object to that exists prior to
the method execution.

ConfigurationException
A ConfigurationException is thrown if a configuration problem is encountered when the connector
bundles are loaded. A ConfigurationException can also be thrown during validation operations in the
SPI.

ConnectionBrokenException
A ConnectionBrokenException is thrown when a connection to a target resource instance fails during
an operation. An instance of the ConnectionBrokenException generally wraps the native exception (or
describes the native error) that is returned by the target resource.

ConnectionFailedException
A ConnectionFailedException is thrown when a connector cannot reach the target resource. An instance
of the ConnectionFailedException generally wraps the native exception (or describes the native error)
that is returned by the target resource.

ConnectorException
This is the base exception for the connector framework. The framework only throws exceptions that
extend ConnectorException.

ConnectorIOException
This is the base exception for all Input-Output (I/O-related) exceptions, including instance connection
failure, socket error and so forth.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Implementing the ICF SPI
ConnectorSecurityException

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 57

ConnectorSecurityException

This is the base exception for all security-related exceptions.

InvalidAttributeValueException

An InvalidAttributeValueException is thrown when an attempt is made to add to an attribute a value
that conflicts with the attribute's schema definition. This might happen, for example, in the following
situations:

• The connector attempts to add an attribute with no value when the attribute is required to have at
least one value

• The connector attempts to add more than one value to a single valued-attribute

• The connector attempts to add a value that conflicts with the attribute type

• The connector attempts to add a value that conflicts with the attribute syntax

InvalidCredentialException

An InvalidCredentialException indicates that user authentication has failed. This exception is thrown by
the connector when authentication fails, and when the specific reason for the failure is not known.
For example, the connector might throw this exception if a user has entered an incorrect password,
or username.

InvalidPasswordException

An InvalidPasswordException is thrown when a password credential is invalid.

OperationTimeoutException

An OperationTimeoutException is thrown when an operation times out. The framework cancels an
operation when the corresponding method has been executing for longer than the limit specified in
APIConfiguration.

PasswordExpiredException

A PasswordExpiredException indicates that a user password has expired. This exception is thrown by
the connector when it can determine that a password has expired. For example, after successfully
authenticating a user, the connector might determine that the user's password has expired. The
connector throws this exception to notify the application, which can then take the appropriate steps
to notify the user.

Implementing the ICF SPI
PermissionDeniedException

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 58

PermissionDeniedException
A PermissionDeniedException is thrown when the target resource will not allow a connector to perform a
particular operation. An instance of the PermissionDeniedException generally describes a native error (or
wraps a native exception) that is returned by the target resource.

PreconditionFailedException
A PreconditionFailedException is thrown to indicate that a resource's current version does not match the
version provided. This exception is equivalent to the HTTP status: 412 Precondition Failed.

PreconditionRequiredException
A PreconditionRequiredException is thrown to indicate that a resource requires a version, but that no
version was supplied in the request. This exception is equivalent to the HTTP status: 428 Precondition
 Required.

RetryableException
A RetryableException indicates that the failure might be temporary, and that retrying the same request
might succeed in the future.

UnknownUidException
An UnknownUidException is thrown when a UID that is specified as input to a connector operation
identifies no object on the target resource. When you implement the AuthenticateOp, your connector
can throw this exception if it is unable to locate the account necessary to perform authentication.

NullPointerException (c# NullReferenceException)
Generic native exception

UnsupportedOperationException (c# NotSupportedException)
Generic native exception

IllegalStateException (c# InvalidOperationException)
Generic native exception

IllegalArgumentException (c# ArgumentException)
Generic native exception

Implementing the ICF SPI
Mapping ICF Exceptions to ForgeRock® Common REST Exceptions

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 59

Mapping ICF Exceptions to ForgeRock® Common REST Exceptions

The following table maps the errors that are thrown by the OpenICF framework to the errors that are
returned by the Common REST implementation.

ICF Exception Common REST Exception HTTP Error Code
AlreadyExistsException ConflictException
ConfigurationException InternalServerErrorException
ConnectionBrokenException InternalServerErrorException
ConnectionFailedException ConnectionFailedException
ConnectorException InternalServerErrorException
ConnectorIOException InternalServerErrorException
ConnectorSecurityException ForbiddenException
InvalidAttributeValueException BadRequestException
InvalidCredentialException ForbiddenException
InvalidPasswordException ForbiddenException
OperationTimeoutException
PasswordExpiredException ForbiddenException
PermissionDeniedException ForbiddenException
PreconditionFailedException PreconditionFailedException
PreconditionRequiredException PreconditionRequiredException
RetryableException RetryableException

(ServiceUnavailableException)
UnknownUidException NotFoundException
UnsupportedOperationException NotSupportedException
IllegalArgumentException InternalServerErrorException
NullPointerException InternalServerErrorException

Generic Exception Rules
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

The generic exception rules are common to all API or SPI level operations and are described in the
following sections.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Implementing the ICF SPI
Framework (API Level) Exception Rules

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 60

Framework (API Level) Exception Rules

IllegalArgumentException or NullPointerException

Thrown when the ObjectClass is null or the name is blank.

OperationTimeoutException

Thrown when the operation timed out.

ConnectionFailedException

Thrown if any problem occurs with the connector server connection.

UnsupportedOperationException

Thrown if the connector does not implement the required interface.

ConnectorIOException

Thrown if the connector failed to initialize a remote connection due to a SocketException.

ConnectorException

Thrown in the following situations:

• The connector failed to initiate the remote connection due to a SocketException

• An unexpected request was sent to the remote connector server

• An unexpected response was received from the remote connector server

InvalidCredentialException

Thrown if the remote framework key is invalid

The following exceptions are thrown specifically in the context of a poolable connector.

ConnectorException

Thrown if the pool has no available connectors after the maxWait time has elapsed.

IllegalStateException

Thrown if the object pool has already shut down.

Connector (SPI Level) Exception Rules

InvalidAttributeValueException

Thrown when single-valued attribute has multiple values.

Implementing the ICF SPI
Connector (SPI Level) Exception Rules

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 61

IllegalArgumentException

Thrown when the value of the __PASSWORD__ or the __CURRENT_PASSWORD__ attribute is not a
GuardedString.

IllegalStateException

Thrown when the Attribute name is blank.

PermissionDeniedException

Thrown when the target resource will not allow a specific operation to be performed. An instance
of the PermissionDeniedException generally describes a native error that is returned by (or wraps a
native exception that is thrown by) the target resource.

ConnectorIOException, ConnectionBrokenException, ConnectionFailedException

Thrown when any problem occurs with the connection to the target resource.

PreconditionFailedException

Thrown when the current version of the resource object does not match the version provided by
the connector.

PreconditionRequiredException

Thrown when a resource object requires a version, but no version was supplied in the getRevision
operation.

Writing Java Connectors
Deciding What Kind of Connector to Write

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 62

Chapter 4

Writing Java Connectors

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

If none of the existing ICF connectors are suitable for your deployment, you can write your own
connector. This chapter describes the steps to develop an OpenICF-compatible Java connector.
Similar chapters exist to help you with writing scripted Groovy, and PowerShell connectors.

Deciding What Kind of Connector to Write
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

In general, it takes longer to write a new Java connector than it does to use one of the scripted
connector toolkits to write a scripted connector. Before you can write a Java connector, you must
have a good understanding of the ICF SPI (see "Implementing the ICF SPI").

Scripted connectors do not require a complete understanding of the SPI, so connector development
should be faster. The scripted connector implementations provided with IDM follow a general pattern
and you can assess which implementation to use based on what the connector must be able to do.

For example, if you need to connect to a database, use the scriptedSQL implementation. To execute
a remote command over SSH, use the scriptedSSH implementation. The details of these different
scripted connector types are described in "Selecting a Scripted Connector Implementation".

If the main purpose of your connector is to call a number of stored procedures or perform some SQL
inserts, you can avoid learning the OpenICF SPI and focus on the required "actions" (create, delete,
update, and so on). You can then implement these actions in a scripted connector. When you have
stable scripts that do what they need to do, package them in a .jar, version them and your connector
development is complete.

If you need to connect to new system with a client/server API in written in Java, you must write a new
Java connector. This chapter helps you get started with that process.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Writing Java Connectors
Before You Begin

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 63

Before You Begin
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

Before you start developing your own connector, familiarize yourself with the structure of the SPI,
by reading "Implementing the ICF SPI" and the corresponding Javadoc for the ICF framework and its
supported operations.

Using the Connector Archetype
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

ICF provides a Maven connector archetype that enables you to get started with connector
development.

The connector archetype assumes that you have Apache Maven installed on your system. Before you
use the connector archetype, add the following to your Maven settings.xml file, replacing backstage-
username and backstage-password with your ForgeRock Backstage credentials:

 <servers>
 ...
 <server>
 <username>backstage-username</username>
 <password>backstage-password</password>
 <id>archetype</id>
 </server>
 </servers>
 ...
 <profiles>
 <profile>
 <id>test</id>
 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>
 <repositories>
 <repository>
 <id>archetype</id>
 <url>https://maven.forgerock.org/artifactory/private-releases</url>
 </repository>
 </repositories>
 </profile>
 </profiles>

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
../apidocs/index.html?org/identityconnectors/framework/spi/package-frame.html
../apidocs/index.html?org/identityconnectors/framework/spi/operations/package-frame.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Writing Java Connectors
Using the Connector Archetype

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 64

To start building a connector by using the connector archetype, execute the following command,
customizing these options to describe your new connector:

• -DartifactId=sample-connector

• -Dversion=0.0-SNAPSHOT

• -Dpackage=org.forgerock.openicf.connectors.sample

• -DconnectorName=Sample

This command imports the connector archetype and generates a new connector project:
mvn archetype:generate \
 -DarchetypeGroupId=org.forgerock.openicf \
 -DarchetypeArtifactId=connector-archetype \
 -DarchetypeVersion=1.4.0 \
 -DremoteRepositories=https://maven.forgerock.org/artifactory/private-releases \
 -DarchetypeRepository=https://maven.forgerock.org/artifactory/private-releases \
 -DgroupId=org.forgerock.openicf.connectors \
 -DartifactId=sample-connector \
 -Dversion=0.0-SNAPSHOT \
 -Dpackage=org.forgerock.openicf.connectors.sample \
 -DconnectorName=Sample
[INFO] Scanning for projects...
[INFO]
[INFO] --
[INFO] Building Maven Stub Project (No POM) 1
[INFO] --
[INFO]
[INFO] >>> maven-archetype-plugin:3.0.1:generate (default-cli) > generate-sources @ standalone-pom >>>
[INFO]
[INFO] <<< maven-archetype-plugin:3.0.1:generate (default-cli) < generate-sources @ standalone-pom <<<
[INFO]
[INFO] --- maven-archetype-plugin:3.0.1:generate (default-cli) @ standalone-pom ---
[INFO] Generating project in Interactive mode
...
ALL_OPERATIONS: n
OP_AUTHENTICATE: n
OP_CREATE: y
OP_DELETE: y
OP_RESOLVEUSERNAME: n
OP_SCHEMA: n
OP_SCRIPTONCONNECTOR: n
OP_SCRIPTONRESOURCE: n
OP_SEARCH: y
OP_SYNC: n
OP_TEST: y
OP_UPDATE: y
OP_UPDATEATTRIBUTEVALUES: n
attributeNormalizer: n
compatibility_version: 1.1
connectorName: Sample
framework_version: 1.0
jira_componentId: 10191
jira_fixVersionIds: 0
poolableConnector: n

Writing Java Connectors
Implementing ICF Operations

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 65

 Y: :

At this point, you can enter Y (YES) to accept the default project, or N (NO) to customize the project
for your connector.

You will notice in the preceding output that the default connector supports only the create, delete,
search, test, and update operations, and is not a poolable connector. To add support for additional
operations, or to change any of the connector parameters, enter N (NO). The archetype then prompts
you to set values for each additional parameter.

After you have imported the archetype once, you can use the local version of the archetype, as
follows:
mvn archetype:generate -DarchetypeCatalog=local

Implementing ICF Operations
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

When you have generated the archetype, implement the ICF operations that your connector will
support.

For information about implementing operations, and examples for a Java connector, see
"Implementing the ICF SPI".

Then build the connector, as follows:

Building the Java Connector
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

cd /path/to/sample-connector/
mvn install

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Writing Scripted Connectors With the Groovy Connector Toolkit
About the Groovy Scripting Language

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 66

Chapter 5

Writing Scripted Connectors With the Groovy
Connector Toolkit

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

The Groovy Connector Toolkit enables you to run Groovy scripts to interact with any external
resource.

The Groovy Connector Toolkit is not a complete connector, in the traditional sense. Rather, it is
a framework within which you must write your own Groovy scripts to address the requirements
of your deployment. The toolkit is bundled with IDM in the JAR openidm/connectors/groovy-
connector-1.5.20.12.jar.

IDM provides a number of deployment-specific scripts to help you get started with the Groovy
Connector Toolkit. These scripts demonstrate how the toolkit can be used. The scripts cannot be used
"as is" in your deployment, but can be used as a starting point on which to base your customization.

The Groovy Connector Toolkit can be used with any ICF-enabled project (that is, any project in which
the ForgeRock Open Connector Framework is installed).

About the Groovy Scripting Language
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

Groovy is a powerful, convenient scripting language for the Java platform. Groovy enables you to
take advantage of existing Java resources, and generally makes development quicker. Syntactically,
Groovy is similar to JavaScript. Extensive information about Groovy is available on the Groovy
documentation site.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
http://www.groovy-lang.org/documentation.html

Writing Scripted Connectors With the Groovy Connector Toolkit
Selecting a Scripted Connector Implementation

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 67

Selecting a Scripted Connector Implementation
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

The Groovy Connector Toolkit provides five default connector implementations. The default
implementations should address the requirements of most target resources. If you use one of the
default implementations, you need only write the accompanying scripts and point your connector
to their location. If your target resource is not covered by the default implementations, you can use
the Maven archetype to create a new connector project, and write a custom Groovy-based connector
from scratch.

The following list describes the default scripted connector implementations provided with the Groovy
Connector Toolkit:

• GROOVY - a basic non-pooled Groovy connector, provided in the org.forgerock.openicf.connectors.groovy.
ScriptedConnector class.

POOLABLEGROOVY - a poolable Groovy connector, provided in the org.forgerock.openicf.connectors.groovy.
ScriptedPoolableConnector class.

CREST - a connector based on the ForgeRock® Common REST API, and provided in the org.forgerock.
openicf.connectors.groovy.ScriptedCRESTConnector class. The Scripted CREST connector takes a schema
configuration file to define the attribute mapping from the ICF connector object to the Common
REST resource.

REST - a scripted REST connector, provided in the org.forgerock.openicf.connectors.groovy.
ScriptedRESTConnector class. The scripted REST connector enables you to connect to any resource,
over HTTP/REST. The connector creates the HTTP/REST context (specifying the content type,
authentication mode, encoding, and so on), and manages the connection. The connector relies on
the Groovy scripting language and its RESTClient package.

SQL - a scripted SQL connector, provided in the org.forgerock.openicf.connectors.groovy.
ScriptedSQLConnector class. The scripted SQL connector uses Groovy scripts to interact with a JDBC
database.

When you have selected a scripted connector implementation, write the required scripts that
correspond to that connector type. "Implementing ICF Operations With Groovy Scripts" provides
information and examples on how to write scripts for the basic scripted connector implementation,
and information on the extensions available for the other implementations.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://maven.forgerock.org/artifactory/webapp/#/artifacts/browse/tree/General/releases/org/forgerock/openicf/connectors/groovy-connector/1.4.3.0/groovy-connector-1.4.3.0.pom

Writing Scripted Connectors With the Groovy Connector Toolkit
Implementing ICF Operations With Groovy Scripts

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 68

Implementing ICF Operations With Groovy Scripts
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

The Groovy Connector Toolkit enables you to run a Groovy script for any ICF operation, such as
search, update, create, and so forth, on any external resource.

You must write a Groovy script that corresponds to each operation that your connector will support.
For information about all the operations that are supported by the ICF framework, see "Implementing
the ICF SPI".

Your scripted connector can implement the following ICF interfaces:

"Authenticate Operation"

Provides simple authentication with two parameters, presumed to be a user name and password.

"Create Operation"

Creates an object and its uid.

"Delete Operation"

Deletes an object, referenced by its uid.

"Resolve Username Operation"

Resolves an object to its uid based on its username.

"Schema Operation"

Describes the object types, operations, and options that the connector supports.

"Script On Connector Operation"

Enables IDM to run a script in the context of the connector. Any script that runs on the connector
has the following characteristics:

• The script runs in the same execution environment as the connector and has access to all the
classes to which the connector has access.

• The script has access to a connector variable that is equivalent to an initialized instance of the
connector. At a minimum, the script can access the connector configuration.

• The script has access to any script-arguments passed in by IDM.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Writing Scripted Connectors With the Groovy Connector Toolkit
Variables Available to All Groovy Scripts

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 69

"Script On Resource Operation"

Runs a script directly on the target resource that is managed by the connector.

"Search Operation"

Searches the target resource for all objects that match the specified object class and filter.

"Sync Operation"

Polls the target resource for synchronization events, that is, native changes to objects on the
target resource.

"Test Operation"

Tests the connector configuration. Testing a configuration checks that all elements of the
environment that are referred to by the configuration are available. For example, the connector
might make a physical connection to a host that is specified in the configuration to verify that it
exists and that the credentials that are specified in the configuration are valid.

This operation might need to connect to the resource, and, as such, might take some time. Do not
invoke this operation too often, such as before every provisioning operation. The test operation
is not intended to check that the connector is alive (that is, that its physical connection to the
resource has not timed out).

You can invoke the test operation before a connector configuration has been validated.

"Update Operation"

Updates (modifies or replaces) objects on a target resource.

The following sections provide more information and pointers to sample scripts for all the operations
that are implemented in the Groovy Connector Toolkit.

Variables Available to All Groovy Scripts

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

The following variables are available to all scripts used by the Groovy Connector. Additional variables
are available to specific scripts, as described in the sections that follow:

configuration

A handle to the connector's configuration object is injected into all scripts.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Writing Scripted Connectors With the Groovy Connector Toolkit
Variables Available to All Groovy Scripts

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 70

operation

The connector injects the name of the action or operation into the script, to indicate which action
is being called.

The sample scripts for the Groovy connector define one script file per action. You can use a
single file, or amalgamate multiple actions into one file. For example, the CREATE and UPDATE
operations often share the same code.

The operation type can be one of the following:

• ADD_ATTRIBUTE_VALUES

• AUTHENTICATE

• CREATE

• DELETE

• GET_LATEST_SYNC_TOKEN

• REMOVE_ATTRIBUTE_VALUES

• RESOLVE_USERNAME

• RUNSCRIPTONCONNECTOR

• RUNSCRIPTONRESOURCE

• SCHEMA

• SEARCH

• SYNC

• TEST

• UPDATE

options

The ICF framework passes an OperationOptions object to most of the operations. The Groovy
connector injects this object, as is, into the scripts. For example, the search, query, and sync
operations pass the attributes to get as an operation option.

The most common options are as follows:

• AttributesToGet (String[]) for search and sync operations

• RunAsUser (String) for any operation

• RunWithPassword (GuardedString) for any operation

Writing Scripted Connectors With the Groovy Connector Toolkit
Writing an Authenticate Script

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 71

• PagedResultsCookie (String) for search operations

• PagedResultsOffset (Int) for search operations

• PageSize (Int) for search operations

• SortKeys (Sortkey[]) for search operations

objectClass

The category or type of object that is managed by the connector, such as ACCOUNT and GROUP.

log

A handle to the default ICF logging facility.

connection

Available to the ScriptedREST, ScriptedCREST, and ScriptedSQL implementations, this variable
initiates the HTTP or SQL connection to the resource.

Writing an Authenticate Script

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

An authenticate script is required if you want to use pass-through authentication to the backend
resource. If your connector does not need to authenticate to the resource, the authenticate script
should allow the authId to pass through by default.

A sample authenticate script for an SQL database is provided in openidm/samples/scripted-sql-with-
mysql/tools/AuthenticateScript.groovy

Input variables:

The following variables are available to the authenticate script:

configuration

A handler to the connector's configuration object.

options

A handler to the Operation Options.

operation

An OperationType that corresponds to the action (AUTHENTICATE).

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Writing Scripted Connectors With the Groovy Connector Toolkit
Writing a Test Script

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 72

objectClass

The object class being used to authenticate, such as __ACCOUNT__ or __GROUP__.

username

A string that provides the username to authenticate.

password

A guarded string that provides the password with which to authenticate.

log

A logger instance for the connector.

Returns: The user unique ID (ICF __UID__). The type of the returned UID must be a string or a Uid. The
script must throw an exception in the case of failure.

Authenticate Script

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

def operation = operation as OperationType
def configuration = configuration as ScriptedConfiguration
def username = username as String
def log = log as Log
def objectClass = objectClass as ObjectClass
def options = options as OperationOptions
def password = password as GuardedString;

if (username.equals("TEST")) {
 def clearPassword = SecurityUtil.decrypt(password)
 if ("Passw0rd".equals(clearPassword)) {
 return new Uid(username);
 }
}

Writing a Test Script

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

A test script tests the connection to the external resource to ensure that the other operations that are
provided by the connector can succeed.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Writing Scripted Connectors With the Groovy Connector Toolkit
Writing a Create Script

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 73

A sample test script for an SQL database is provided in openidm/samples/scripted-sql-with-mysql/tools/
TestScript.groovy

Input variables:

The following variables are available to the test script:

configuration

A handler to the connector's configuration object.

operation

An OperationType that corresponds to the action (TEST).

log

A logger instance for the connector.

Returns: Nothing, if the test is successful. The script can throw any exception if it fails.

Test Script

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

import org.identityconnectors.common.logging.Log
 import org.forgerock.openicf.connectors.groovy.OperationType
 import org.forgerock.openicf.misc.scriptedcommon.ScriptedConfiguration

 def operation = operation as OperationType
 def configuration = configuration as ScriptedConfiguration
 def log = log as Log

 log.info("This is a TestScript")
 throw new MissingResourceException("Test Failed", operation.name(), "")

Writing a Create Script

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

A create script creates a new object on the external resource. If your connector does not support
creating an object, this script should throw an UnsupportedOperationException.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Writing Scripted Connectors With the Groovy Connector Toolkit
Writing a Create Script

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 74

A sample create script for an SQL database is provided in openidm/samples/scripted-sql-with-mysql/tools/
CreateScript.groovy

Input variables:

The following variables are available to a create script:

configuration

A handler to the connector's configuration object.

options

A handler to the Operation Options.

operation

An OperationType that corresponds to the action (CREATE).

objectClass

The object class that is created, such as __ACCOUNT__ or __GROUP__.

attributes

The set of attributes that describe the object to be created.

id

The UID of the object to be created, if specified. If the UID is null, the UID should be generated
by the server. The UID corresponds to the ICF __NAME__ attribute if it is provided as part of the
attribute set.

log

A logger instance for the connector.

Returns: The user unique ID (ICF __UID__) of the newly created object. The type of the returned UID
must be a string or a Uid. If a null value or an object type other than string or Uid is returned, the
script must throw an exception.

Writing Scripted Connectors With the Groovy Connector Toolkit
Writing a Search or Query Script

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 75

Create Script

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

def operation = operation as OperationType
 def configuration = configuration as SapConfiguration
 def log = log as Log
 def objectClass = objectClass as ObjectClass
 def createAttributes = new AttributesAccessor(attributes as Set<Attribute>)
 def name = id as String
 def options = options as OperationOptions

 log.info("Entering {0} script",operation);

 assert operation == OperationType.CREATE, 'Operation must be a CREATE'
 // We only deal with users
 assert objectClass.getObjectClassValue() == ObjectClass.ACCOUNT_NAME

 def password = createAttributes.getPassword() as GuardedString;
 assert password != null, 'Password must be provided on create'

 //...
 def uid = createTheUser(createAttributes);
 return uid

Writing a Search or Query Script

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

A search script searches for one or more objects on the external resource. Connectors that do not
support searches should throw an UnsupportedOperationException.

A sample search script for an SQL database is provided in openidm/samples/scripted-sql-with-mysql/tools/
SearchScript.groovy

Input variables:

The following variables are available to the search script:

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Writing Scripted Connectors With the Groovy Connector Toolkit
Writing a Search or Query Script

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 76

configuration

A handler to the connector's configuration object.

options

A handler to the Operation Options.

operation

An OperationType that corresponds to the action (SEARCH).

objectClass

The object class to search, such as __ACCOUNT__ or __GROUP__.

filter

The ICF native Query filter for this operation.

query

A Map representation of the native Query filter that is easy to process.

Provides a convenient way to access the query filter parameter. For example:
query = [operation: "CONTAINS", left: attribute, right: "value", not: true/false]
 query = [operation: "ENDSWITH", left: attribute, right: "value", not: true/false]
 query = [operation: "STARTSWITH", left: attribute, right: "value", not: true/false]
 query = [operation: "EQUALS", left: attribute, right: "value", not: true/false]
 query = [operation: "GREATERTHAN", left: attribute, right: "value", not: true/false]
 query = [operation: "GREATERTHANOREQUAL", left: attribute, right: "value", not: true/false]
 query = [operation: "LESSTHAN", left: attribute, right: "value", not: true/false]
 query = [operation: "LESSTHANOREQUAL", left: attribute, right: "value", not: true/false]
 query = null : then we assume we fetch everything

 // AND and OR filter - embed these left/right queries:
 query = [operation: "AND", left: query1, right: query2]
 query = [operation: "OR", left: query1, right: query2]

For example, the equality query filter "sn == Smith" would be represented by the following query
Map:
[operation: "EQUALS", left: "sn", right: "Smith", not: false]

handler

A Closure handler for processing the search results.

log

A logger instance for the connector.

Returns: Optionally, the script can return a search result. The result can be be returned as a
SearchResult object or as a String that represents the pagedResultsCookie to be used for the next paged
results.

Writing Scripted Connectors With the Groovy Connector Toolkit
Writing a Search or Query Script

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 77

Returning Search Results

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

In a search operation, a result handler (callback) is passed to the script to return the results one by
one. The handler must be called for every query result. The handler variable that is passed to the
script is a Groovy Closure. You can call the handler in the following ways:

• Using an ICF ConnectorObject object.

You can use the ConnectorObjectBuilder to build this object. For example:
def builder = new ConnectorObjectBuilder()
 builder.setUid(uidValue)
 builder.setName(nameValue)
 builder.setObjectClass(ObjectClass.ACCOUNT)
 builder.addAttribute("sn", snValue)

 // Call the handler with the ConnectorObject object
 handler builder.build()

• Using a Groovy Closure.

In this case the Closure delegates calls to a specific Object that implements these calls. For
example:
handler { // The handler parameter here is a Closure
 uid uidValue // (mandatory), the method resolution for 'uid' is delegated to the Object
 // handling the Closure. This is the ICF __UID__
 id nameValue // (mandatory), the method resolution for 'id' is delegated to the Object
 // handling the Closure. This is the ICF __NAME__
 attribute "sn", snValue // (optional), the method resolution for 'id' is delegated to the
 // Object handling the Closure
 // attribute <attribute2Name>, <attribute2Value>
 // etc...
 }

In the following example, the handler is called within a loop to return all the results of a query:

 for (user in userList) {
 handler {
 uid user.userName
 id user.userName
 user.attributes.each(){ key,value -> attribute key, value }
 }
 }

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Writing Scripted Connectors With the Groovy Connector Toolkit
Writing an Update Script

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 78

Writing an Update Script

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

An update script updates an object in the external resource. Connectors that do not support update
operations should throw an UnsupportedOperationException.

A sample update script for an SQL database is provided in openidm/samples/scripted-sql-with-mysql/
tools/UpdateScript.groovy

Input variables:

The following variables are available to an update script:

configuration

A handler to the connector's configuration object.

options

A handler to the Operation Options.

operation

An OperationType that corresponds to the action (UPDATE).

objectClass

The object class that is updated, such as __ACCOUNT__ or __GROUP__.

attributes

A collection of ConnectorAttributes that represent the entry attributes to update.

uid

The UID of the object to be updated. The UID corresponds to the OpenICF UID attribute.

id

The name of the object to be updated (optional). The id corresponds to the ICF __NAME__ attribute.
It will not be injected and set unless the update is a rename.

log

A logger instance for the connector.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Writing Scripted Connectors With the Groovy Connector Toolkit
Writing a Delete Script

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 79

Returns: The user unique ID (ICF __UID__) of the updated object. The type of the returned UID must
be a string or a Uid. If the UID is not modified by the update operation, return the value of the uid
injected into the script.

Update Script

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

def operation = operation as OperationType
def updateAttributes = attributes as Set<Attribute>
def configuration = configuration as ScriptedConfiguration
def id = id as String
def log = log as Log
def objectClass = objectClass as ObjectClass
def options = options as OperationOptions
def uid = uid as Uid

log.ok("Update...")
switch (operation) {
 case OperationType.UPDATE:
 switch (objectClass) {
 case ObjectClass.ACCOUNT:
// ...
 for (Attribute a : updateAttributes) {
 if (a.is(Name.NAME)) {
// ...
return uid

Writing a Delete Script

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

A delete script deletes an object in the external resource. Connectors that do not support delete
operations should throw an UnsupportedOperationException.

A sample delete script for an SQL database is provided in openidm/samples/scripted-sql-with-mysql/tools/
DeleteScript.groovy

Input variables:

The following variables are available to an update script:

configuration

A handler to the connector's configuration object.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Writing Scripted Connectors With the Groovy Connector Toolkit
Writing a Synchronization Script

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 80

options

A handler to the Operation Options.

operation

An OperationType that corresponds to the action (DELETE).

objectClass

The object class that is deleted, such as __ACCOUNT__ or __GROUP__.

uid

The UID of the object to be deleted. The UID corresponds to the OpenICF __UID__ attribute.

log

A logger instance for the connector.

Returns: This script has no return value but should throw an exception if the delete is unsuccessful.

Writing a Synchronization Script

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

A synchronization script synchronizes objects between two resources. The script should retrieve all
objects in the external resource that have been updated since some defined token.

A sample synchronization script for an SQL database is provided in openidm/samples/scripted-sql-with-
mysql/tools/SyncScript.groovy

Input variables:

The following variables are available to a sync script:

configuration

A handler to the connector's configuration object.

options

A handler to the Operation Options.

operation

An OperationType that corresponds to the action (GET_LATEST_SYNC_TOKEN or SYNC).

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Writing Scripted Connectors With the Groovy Connector Toolkit
Writing a Synchronization Script

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 81

objectClass

The object class that is synchronized, such as __ACCOUNT__ or __GROUP__.

token

The value of the sync token.

handler

A Closure handler for processing the sync results.

log

A logger instance for the connector.

Returns:

If the operation type is GET_LATEST_SYNC_TOKEN, the script must return an object that represents the last
known SyncToken for the corresponding ObjectClass. For example:
def operation = operation as OperationType
def configuration = configuration as ScriptedConfiguration
def log = log as Log
def objectClass = objectClass as ObjectClass
def options = options as OperationOptions
def token = token as Object

case OperationType.GET_LATEST_SYNC_TOKEN:
 switch (objectClass) {
 case ObjectClass.ACCOUNT:
 return new SyncToken(17);
 case ObjectClass.GROUP:
 return new SyncToken(16);
 case ObjectClass.ALL:
 return new SyncToken(17);
//

If the operation type is SYNC, the script must return a new SyncToken for the corresponding ObjectClass.
A Sync result handler (callback) is passed to the script to return the Sync results one by one. The
handler must be called for each result.

The handler variable that is passed to the script is a Groovy Closure. It can be called in the following
ways:

• With an ICF SyncDelta object.

You can use a SyncDeltaBuilder to build this object. For example:

Writing Scripted Connectors With the Groovy Connector Toolkit
Writing a Synchronization Script

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 82

def builder = new SyncDeltaBuilder()
builder.setUid(uidValue)
builder.setToken(new SyncToken(5))
builder.setDeltaType(SyncDeltaType.CREATE)
builder.setObject(connectorObject) // Use the ConnectorObjectBuilder class to build the ConnectorObject
 object.

// Call the handler with the SyncDelta object
handler builder.build()

• Using a Groovy Closure.

In this case, the Closure delegates calls to a specific Object that implements these calls. For
example:
handler { // The handler parameter here
 is a Closure
 syncToken tokenValue // (mandatory), the method resolution for 'syncToken' is delegated to
 the Object handling the Closure
 <DELTA_TYPE>() // (mandatory), DELTA_TYPE should be one of: CREATE, UPDATE, DELETE,
 CREATE_OR_UPDATE
 object connectorObject // (optional if DELTA_TYPE is a DELETE), the method resolution for
 'object' is delegated to the Object handling the Closure
 previousUid prevUidValue // (optional), use only if UID has changed
}

In the following example, the handler is called twice - first for a CREATE and then for a DELETE:
// CREATE
handler({
 syncToken 15
 CREATE()
 object {
 id nameValue
 uid uidValue as String
 objectClass ObjectClass.GROUP
 attribute 'gid', gidValue
 attribute 'description', descriptionValue
 }
})

// DELETE
handler({
 syncToken 16
 DELETE(uidValue)
}

Optionally, when the action is SYNC, you might want to return a SyncToken at the end of the script.
This is a convenient way to update the sync token if no relevant sync events are found.

Writing Scripted Connectors With the Groovy Connector Toolkit
Writing a Schema Script

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 83

Writing a Schema Script

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

A schema script builds the schema for the connector, either from a static, predefined schema, or by
reading the schema from the external resource. The script should use the builder object to create the
schema.

A sample schema script for an SQL database is provided in openidm/samples/scripted-sql-with-mysql/
tools/SchemaScript.groovy

Input variables:

The following variables are available to a sync script:

configuration

A handler to the connector's configuration object.

operation

An OperationType that corresponds to the action (SCHEMA).

builder

An instance of the ICFObjectBuilder. The schema() method should be called with a Closure parameter
defining the schema objects.

For more information, see "Using the builder Parameter".

log

A logger instance for the connector.

Returns: This script has no return value.

Using the builder Parameter

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

The builder.schema() must call the delegates objectClass method and operationOption method to define
the schema.

Call the objectClass() method for each object type (account, group, and so on) that must be defined.
Include the call to the following delegates:

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Writing Scripted Connectors With the Groovy Connector Toolkit
Writing a Resolve Username Script

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 84

• type() - the name for this object type

• attribute() - define a single attribute for this object type

• attributes() - define multiple attribute for this object type

• disable() - list the operations for which this object type is forbidden

The following example defines a simple ACCOUNT object type:
builder.schema({
 objectClass {
 type ObjectClass.ACCOUNT_NAME
 attribute OperationalAttributeInfos.PASSWORD
 attribute PredefinedAttributeInfos.DESCRIPTION
 attribute 'groups', String.class, EnumSet.of(MULTIVALUED)
 attributes {
 userName String.class, REQUIRED
 email REQUIRED, MULTIVALUED
 __ENABLE__ Boolean.class
 createDate NOT_CREATABLE, NOT_UPDATEABLE
 lastModified Long.class, NOT_CREATABLE, NOT_UPDATEABLE, NOT_RETURNED_BY_DEFAULT
 passwordHistory String.class, MULTIVALUED, NOT_UPDATEABLE, NOT_READABLE,
 NOT_RETURNED_BY_DEFAULT
 firstName()
 sn()
 }
 }
}

Writing a Resolve Username Script

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

A resolve username script resolves an object to its uid based on its username.

A sample resolve username script for an SQL database is provided in openidm/samples/scripted-sql-with-
mysql/tools/ResolveUsernameScript.groovy

Input variables:

The following variables are available to a resolve username script:

configuration

A handler to the connector's configuration object.

options

A handler to the Operation Options.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Writing Scripted Connectors With the Groovy Connector Toolkit
Writing a Run On Resource Script

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 85

operation

An OperationType that corresponds to the action (RESOLVE_USERNAME).

objectClass

The object class for which the username is resolved, such as __ACCOUNT__ or __GROUP__.

username

A string that represents the username of the object.

log

A logger instance for the connector.

Returns: The user unique ID (ICF __UID__) of the object. The type of the returned UID must be a string
or a Uid. If a null value or an object type other than string or Uid is returned, the script must throw an
exception.

Resolve Username Script

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

def operation = operation as OperationType
def configuration = configuration as ScriptedConfiguration
def username = username as String
def log = log as Log
def objectClass = objectClass as ObjectClass
def options = options as OperationOptions
if (objectClass.is(ObjectClass.ACCOUNT_NAME)) {
 if (username.equals("TESTOK1")) {
 return new Uid("123")
 }
 throw new UnknownUidException();
}

Writing a Run On Resource Script

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

A run on resource script runs directly on the target resource that is managed by the connector.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Writing Scripted Connectors With the Groovy Connector Toolkit
Writing a Run On Resource Script

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 86

A sample run on resource script for a connector that connects to DS over REST is provided in openidm/
samples/scripted-rest-with-dj/tools/ScriptOnResourceScript.groovy

Input variables:

The following variables are available to a run on resource script:

configuration

A handler to the connector's configuration object.

options

A handler to the Operation Options.

operation

An OperationType that corresponds to the action (RUNSCRIPTONRESOURCE).

arguments

The arguments (Map) of the script (can be null).

log

A logger instance for the connector.

Returns: Any object that is returned by the script.

Run on Resource Script

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

import groovyx.net.http.RESTClient
import org.apache.http.client.HttpClient
import org.forgerock.openicf.connectors.scriptedrest.ScriptedRESTConfiguration
import org.forgerock.openicf.connectors.groovy.OperationType
import org.identityconnectors.common.logging.Log
import org.identityconnectors.framework.common.objects.OperationOptions

def operation = operation as OperationType
def configuration = configuration as ScriptedRESTConfiguration
def httpClient = connection as HttpClient
def connection = customizedConnection as RESTClient
def log = log as Log
def options = options as OperationOptions
def scriptArguments = scriptArguments as Map
def scriptLanguage = scriptLanguage as String
def scriptText = scriptText as String

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Writing Scripted Connectors With the Groovy Connector Toolkit
Writing a Run On Connector Script

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 87

Writing a Run On Connector Script

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

A run on connector script enables IDM to run a script in the context of the connector.

Input variables:

The following variables are available to a run on connector script:

configuration

A handler to the connector's configuration object.

options

A handler to the Operation Options.

operation

An OperationType that corresponds to the action (RUNSCRIPTONCONNECTOR).

arguments

The arguments (Map) of the script (can be null).

log

A logger instance for the connector.

Returns: Any object that is returned by the script.

Advanced - Customizing the Configuration Initialization
Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

Connectors created with the Groovy Connector Toolkit are, by default, stateful connectors. This
means that the connector configuration instance is created only once.

The Groovy Connector Toolkit is precompiled code, and connector configurations are initialized
in a specific way. If you have specific initialization requirements, you can customize the way
in which the connector configuration instance is initialized, before the first script is evaluated.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Writing Scripted Connectors With the Groovy Connector Toolkit
Advanced - Customizing the Configuration Initialization

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 88

The CustomizerScript.groovy file enables you to define custom closures to interact with the default
implementation.

The CustomizerScript.groovy file, provided with each compiled connector implementation, defines
closures, such as init {}, decorate {}, and destroy {}. These closures are called during the lifecycle of
the configuration.

When you unpack the Groovy Connector Toolkit JAR file, the CustomizerScript.groovy file is located at
org/forgerock/openicf/connectors/connector-implementation.

Writing Scripted Connectors With the PowerShell Connector Toolkit

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 89

Chapter 6

Writing Scripted Connectors With the
PowerShell Connector Toolkit

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

You can use the PowerShell Connector Toolkit to create connectors that can provision any Microsoft
system, including, but not limited to, Active Directory, Microsoft SQL, MS Exchange, Sharepoint,
Office365, and Azure. Essentially, any task that can be performed with PowerShell can be executed
through connectors based on this toolkit.

The PowerShell Connector Toolkit is not a complete connector, in the traditional sense. Rather, it is a
framework within which you must write your own PowerShell scripts to address the requirements of
your Microsoft Windows ecosystem.

Connectors created with the PowerShell Connector Toolkit run on the .NET platform and require
the installation of a .NET connector server on the Windows system. To install the .NET connector
server, follow the instructions in "Set Up a .NET RCS" in the Connectors Guide. These connectors
also require PowerShell V2.

The PowerShell Connector Toolkit is available from the ForgeRock BackStage download site. To
install the connector, download the archive (mspowershell-connector-1.4.7.0.zip) and extract the
MsPowerShell.Connector.dll to the same folder in which the Connector Server (connectorserver.exe) is
located. IDM provides sample connector configurations and scripts that will enable you to get started
with this toolkit.

About PowerShell

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

PowerShell combines a command-line shell and scripting language, built on the .NET Framework. For more
information, see PowerShell Documentation.

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html
https://docs.microsoft.com/en-us/powershell/

Troubleshooting Connectors

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 90

Chapter 7

Troubleshooting Connectors

Important

Connectors continue to be released outside the IDM release. For the latest documentation, refer to the ICF
documentation.

Sometimes it is difficult to assess whether the root of a problem is at the ICF or connector level, or at
the application level.

If you are using ICF connectors with IDM, you can adjust the log levels for specific parts of the
system in the path/to/openidm/conf/logging.properties file.

The ICF API sets the LoggingProxy at a very high level. You can consider the Logging Proxy as the
border between the application (IDM) and the ICF framework.

To start a troubleshooting process, you should therefore enable the Logging Proxy and set it at a level
high enough to provide the kind of information you need:
org.identityconnectors.framework.impl.api.LoggingProxy.level=FINE

org.identityconnectors.framework.impl.api.LoggingProxy.level=DEBUG

#Enable the LoggingProxy
org.identityconnectors.framework.impl.api.LoggingProxy.level=FINE

#Select the operation you want to trace, to trace all add:
org.identityconnectors.framework.api.operations.level=FINE

#To trace only some:
org.identityconnectors.framework.api.operations.CreateApiOp.level=FINE
org.identityconnectors.framework.api.operations.UpdateApiOp.level=FINE
org.identityconnectors.framework.api.operations.DeleteApiOp.level=FINE

The complete list of operations that you can trace is as follows:

https://backstage.forgerock.com/docs/openicf/latest/index.html
https://backstage.forgerock.com/docs/openicf/latest/index.html

Troubleshooting Connectors

Connector Developer's Guide ForgeRock Identity Management 7.1 (2025-02-04)
Copyright © 2012-2020 ForgeRock AS. All rights reserved. 91

 AuthenticationApiOp
 CreateApiOp
 DeleteApiOp
 GetApiOp
 ResolveUsernameApiOp
 SchemaApiOp
 ScriptOnConnectorApiOp
 ScriptOnResourceApiOp
 SearchApiOp
 SyncApiOp
 TestApiOp
 UpdateApiOp
 ValidateApiOp

To enable logging in the remote Java Connector Server, edit the xml configuration file /lib/framework/
logback.xml to uncomment the following line:

 <logger name="org.identityconnectors.framework.impl.api.LoggingProxy" level="DEBUG" additivity="false">
 <appender-ref ref="TRACE-FILE"/>
 </logger>

To enable logging in the remote .NET Connector Server, edit the configuration file
ConnectorServer.exe.config, setting the following value to true

 <add key="logging.proxy" value="false"/>

	Connector Developer's Guide
	Table of Contents
	Overview
	Chapter 1. About the ForgeRock Open Connector Framework and ICF Connectors
	Overview of the ICF Architecture
	Understanding the ICF Framework Components

	Overview of a Remote Connector Implementation
	Overview of ICF Functionality

	Chapter 2. Using the ICF API
	Before You Start Using the ICF API
	About the Connector Facade
	The Connector Messages Object
	The API Configuration Object
	Creating the Connector Info Manager
	Creating the Connector Facade
	Checking the Schema and the Supported Operations
	Operation Options
	ICF Special Attributes

	How the ICF Framework Manages Connector Instances
	Connector Instantiation for a Stateless, Non-Poolable Connector
	Connector Instantiation for a Stateless, Poolable Connector
	Connector Instantiation for a Stateful, Non-Poolable Connector
	Connector Instantiation for a Stateful, Poolable Connector

	Chapter 3. Implementing the ICF SPI
	Deciding on the Connector Type
	Implementing the Configuration Interface
	Validate Operation
	ValidateApiOp

	Validate SPI Implementation
	Supported Configuration Types

	Implementing the Connector Interface
	Implementing a Poolable Connector Interface

	Implementing the Operation Interfaces
	Authenticate Operation
	Using the ICF Authenticate Operation
	Implementing the Authenticate Operation in Your Connector

	Create Operation
	Using the ICF Create Operation
	Implementing the Create Operation in Your Connector

	Delete Operation
	Using the ICF Delete Operation
	Implementing the Delete Operation in Your Connector

	Resolve Username Operation
	Using the ICF Resolve Username Operation
	Implementing the Resolve Username Operation in Your Connector

	Schema Operation
	Using the ICF Schema Operation
	Implementing the Schema Operation in Your Connector

	Script On Connector Operation
	Using the ICF Script on Connector Operation
	Implementing the Script on Connector Operation in Your Connector

	Script On Resource Operation
	Using the ICF Script on Resource Operation
	Implementing the Script on Resource Operation in Your Connector

	Search Operation
	Using the ICF Get Operation
	Using the ICF Search Operation
	Implementing the Search Operation in Your Connector

	Sync Operation
	Using the ICF Sync Operation
	Implementing the Sync Operation in Your Connector

	Test Operation
	Using the ICF Test Operation
	Implementing the Test Operation in Your Connector

	Update Operation
	Using the ICF Update Operation
	Implementing the Update Operation in Your Connector
	Suggested Approach for Deleting Attributes and Removing Attribute Values

	Update Attribute Values Operation
	Implementing the Update Attribute Values Operation in Your Connector

	Common Exceptions
	AlreadyExistsException
	ConfigurationException
	ConnectionBrokenException
	ConnectionFailedException
	ConnectorException
	ConnectorIOException
	ConnectorSecurityException
	InvalidAttributeValueException
	InvalidCredentialException
	InvalidPasswordException
	OperationTimeoutException
	PasswordExpiredException
	PermissionDeniedException
	PreconditionFailedException
	PreconditionRequiredException
	RetryableException
	UnknownUidException
	NullPointerException (c# NullReferenceException)
	UnsupportedOperationException (c# NotSupportedException)
	IllegalStateException (c# InvalidOperationException)
	IllegalArgumentException (c# ArgumentException)
	Mapping ICF Exceptions to ForgeRock® Common REST Exceptions

	Generic Exception Rules
	Framework (API Level) Exception Rules
	Connector (SPI Level) Exception Rules

	Chapter 4. Writing Java Connectors
	Deciding What Kind of Connector to Write
	Before You Begin
	Using the Connector Archetype
	Implementing ICF Operations
	Building the Java Connector

	Chapter 5. Writing Scripted Connectors With the Groovy Connector Toolkit
	About the Groovy Scripting Language
	Selecting a Scripted Connector Implementation
	Implementing ICF Operations With Groovy Scripts
	Variables Available to All Groovy Scripts
	Writing an Authenticate Script
	Writing a Test Script
	Writing a Create Script
	Writing a Search or Query Script
	Returning Search Results

	Writing an Update Script
	Writing a Delete Script
	Writing a Synchronization Script
	Writing a Schema Script
	Using the builder Parameter

	Writing a Resolve Username Script
	Writing a Run On Resource Script
	Writing a Run On Connector Script

	Advanced - Customizing the Configuration Initialization

	Chapter 6. Writing Scripted Connectors With the PowerShell Connector Toolkit
	Chapter 7. Troubleshooting Connectors

