
Self-Service REST API Reference
/ ForgeRock Identity Management 6.0

Latest update: 6.0.0.7

Lana Frost

,
, ,



Copyright © 2018 ForgeRock AS.

Abstract

Reference documentation for the ForgeRock® Identity Management Self-Service REST
API.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, http://fontawesome.io.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
http://fontawesome.io
https://opensource.org/licenses/OFL-1.1


Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. iii

Table of Contents
Preface ......................................................................................................................... iv

1. Using This Guide .............................................................................................. iv
2. Accessing Documentation Online ...................................................................... iv
3. Using the ForgeRock.org Site ........................................................................... iv

1. Understanding Self-Service Processes ....................................................................... 1
1.1. The Self-Service Process Flow ........................................................................ 1

2. Self-Service Stages .................................................................................................... 5
2.1. All-In-One Registration ................................................................................... 5
2.2. OpenAM Auto-Login Stage ............................................................................. 6
2.3. Attribute Collection Stage .............................................................................. 7
2.4. Captcha Stage ................................................................................................ 7
2.5. Conditional User Stage .................................................................................. 8
2.6. Consent Stage ................................................................................................ 9
2.7. Email Validation Stage ................................................................................. 10
2.8. IDM User Details Stage ................................................................................ 10
2.9. KBA Security Answer Definition Stage .......................................................... 12
2.10. KBA Security Answer Verification Stage ..................................................... 12
2.11. KBA Update stage ...................................................................................... 13
2.12. Local Auto-Login Stage ............................................................................... 13
2.13. Parameters Stage ....................................................................................... 14
2.14. Patch Object Stage ..................................................................................... 15
2.15. Password Reset Stage ................................................................................ 15
2.16. Self-Registration Stage ............................................................................... 16
2.17. Social User Claim Stage ............................................................................. 16
2.18. Terms and Conditions Stage ....................................................................... 18
2.19. User Query Stage ....................................................................................... 19

3. Password Reset Process .......................................................................................... 21
3.1. REST Requests in a Password Reset Process ................................................ 22



Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. iv

Preface
ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity
and Access Management solution. We help our customers deepen their relationships with their
customers, and improve the productivity and connectivity of their employees and partners. For more
information about ForgeRock and about the platform, see https://www.forgerock.com.

1. Using This Guide
This guide is intended for anyone developing a self-service application that acts as a client of
ForgeRock Identity Management (IDM).

This guide is written with the expectation that you already have basic familiarity with the following
topics:

• REST APIs

• JavaScript Object Notation (JSON) and basic IDM configuration

2. Accessing Documentation Online
ForgeRock publishes comprehensive documentation online:

• The ForgeRock Knowledge Base offers a large and increasing number of up-to-date, practical
articles that help you deploy and manage ForgeRock software.

While many articles are visible to community members, ForgeRock customers have access to much
more, including advanced information for customers using ForgeRock software in a mission-critical
capacity.

• ForgeRock product documentation, such as this document, aims to be technically accurate and
complete with respect to the software documented. It is visible to everyone and covers all product
features and examples of how to use them.

3. Using the ForgeRock.org Site
The ForgeRock.org site has links to source code for ForgeRock open source software, as well as links
to the ForgeRock forums and technical blogs.

https://www.forgerock.com
https://backstage.forgerock.com/knowledge/kb
https://forgerock.org


Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. v

If you are a ForgeRock customer, raise a support ticket instead of using the forums. ForgeRock
support professionals will get in touch to help you.



Understanding Self-Service Processes
The Self-Service Process Flow

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 1

Chapter 1

Understanding Self-Service Processes
IDM provides a sample Self-Service UI that implements a number of processes, such as self-
registration and password reset, based on a Self-Service REST API.

Self-service processes are configured in files named selfservice-process-name.json in your project's conf
directory. Every self-service process steps through a series of stages, each with its own requirements,
until the end of the process is reached or until the process exits with an exception. The flow through
the stages differs, depending on how you have configured the process.

You can customize the default processes, or write your own custom processes by implementing the
stages described in "Self-Service Stages". For information about the default Self-Service UI, see
"Configuring User Self-Service" in the Integrator's Guide.

The Self-Service REST API supports only two HTTP requests:

• GET which obtains the requirements for that stage

• POST with _action=submitRequirements

The response to the POST request instructs the client how to proceed. The response can have one of
two outcomes:

• Success—all requirements have been submitted and the process advances to the next stage.

• Failure—the behavior here differs by stage. Certain stages will exit with an exception, others
will convert the exception into an error that the client must handle, others will simply return the
requirements again.

1.1. The Self-Service Process Flow
Each self-service process advances through the stages in the order in which they are listed in the
stageConfigs array in the process configuration file. The password reset process, for example, might
include the following stages:



Understanding Self-Service Processes
The Self-Service Process Flow

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 2

{
    "stageConfigs" : [
        {
            "name": "parameters",
            ...
        },
        {
            "name" : "userQuery",
            ...
        },
        {
            "name" : "validateActiveAccount",
            ...
        },
        {
            "name" : "emailValidation",
            ...
        },
        {
            "name" : "kbaSecurityAnswerVerificationStage",
            ...
        },
        {
            "name" : "resetStage",
            ..
        }
    ],
    ...
}

A process definition also includes an optional snapshotToken and storage parameter, for example:
{
    "stageConfigs" : [
    ],
    "snapshotToken" : {
        "type" : "jwt",
        "jweAlgorithm" : "RSAES_PKCS1_V1_5",
        "encryptionMethod" : "A128CBC_HS256",
        "jwsAlgorithm" : "HS256",
        "tokenExpiry" : 300
    },
    "storage" : "stateless"
}

The snapshotToken specifies the format of the token that is passed between the client and the server
with each request. By default, this is a JWT token, stored statelessly, which means that the state
is stored in the client, rather than on the server side. Because some legacy clients cannot handle
the long URLs provided in a JWT token, you can store the snapshot token locally, as a uuid with the
following configuration:



Understanding Self-Service Processes
The Self-Service Process Flow

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 3

{
...
    "snapshotToken" : {
        "type" : "uuid"
    },
    "storage" : "local"
}

In this case, the 16-character token is stored in the local JSON store. For more information, see
"Tokens and User Self-Service" in the Integrator's Guide.

If you do not include the snapshotToken and storage in the configuration, the default stateless
configuration applies.

When a stage advances, it can optionally insert parameters into the process context or state for
consumption by stages that occur later in the process. The snapshot token is essentially the state
of the stage. It is the container in which state, successAdditions and other data are stored, and then
returned to the client at the end of the process, as an encrypted blob named token.

Sample configurations for each default self-service process are available in the /path/to/openidm/
samples/example-configurations/self-service directory.

Each self service process has a specific endpoint under openidm/selfservice with the name of the
process; for example openidm/selfservice/reset for the Password Reset process. If you create a custom
self-service process with a configuration file such as selfservice-myprocess.json, you produce an
endpoint such as http://localhost:8080/openidm/selfservice/myprocess.

All REST actions occur against that endpoint. For example, the following initial GET request against
the password reset endpoint returns the requirements for the following stage:



Understanding Self-Service Processes
The Self-Service Process Flow

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 4

$ curl \
 --header "X-OpenIDM-Username: anonymous" \
 --header "X-OpenIDM-Password: anonymous" \
 --request GET \
 "http://localhost:8080/openidm/selfservice/reset"
{
  "_id": "1",
  "_rev": "-852427048",
  "type": "captcha",
  "tag": "initial",
  "requirements": {
    "$schema": "http://json-schema.org/draft-04/schema#",
    "description": "Captcha stage",
    "type": "object",
    "required": [
      "response"
    ],
    "properties": {
      "response": {
        "recaptchaSiteKey": "6LcvE1IUAAAAAA5AI1SZzZJl-AlGvHM_dzUg-0_S",
        "description": "Captcha response",
        "type": "string"
      }
    }
  }
}

The default Self-Service UI implements the following processes:

• Self-registration (under the endpoint selfservice/registration)

• Password reset (under the endpoint selfservice/reset)

• Forgotten username retrieval (under the endpoint selfservice/username)

• Social registration (under the endpoint selfservice/socialUserClaim)

• Progressive profile completion (under selfservice/profile)

• Security question updates (under selfservice/kbaUpdate)

• Terms and conditions (under selfservice/termsAndConditions)

The remainder of this guide describes each stage, its requirements, and expected responses. It also
describes the logical flow for each default self-service process.



Self-Service Stages
All-In-One Registration

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 5

Chapter 2

Self-Service Stages
This chapter describes the individual stages that can be called by a self-service process, the purpose
of the stage, any required parameters, dependencies on preceding or following stages, and the
expected stage output.

The stages are listed in alphabetical order, for ease of reference but they cannot be configured
in random order. For example, some stages require input from the process state that has been
populated by a preceding stage.

The identityServiceURL is a required parameter for most self-service stages. The self-service stages
operate on a managed object. The identityServiceURL indicates the object type, for example, managed/
user.

2.1. All-In-One Registration
A registration process that consists of more than one stage can include an optional "super stage"
named allInOneRegistration, that is set outside of the stageConfigs array as follows:
"allInOneRegistration" : true

All-in-one registration covers a number of registration stages. If this property is true, in the
registration process configuration, IDM scans the configuration for any of the following stages:

• parameters

• captcha

• termsAndConditions

• kbaSecurityAnswerDefinitionStage

• consent

• idmUserDetails

If any of these stages are found, the individual stages are effectively removed from the configuration
and a new configuration is generated that accumulates all the found stages.

The purpose of all-in-one registration is to obtain a set of initial requirements, then to advance to
the end of all six stages simultaneously. This enables self-registration to be completed on a single



Self-Service Stages
OpenAM Auto-Login Stage

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 6

registration form. As the process advances, it gathers any output, errors, and so on from all six stages
(or however many stages have been configured). The process then returns whatever was gathered
from the cumulative stages, including any outstanding requirements. Depending on the output, the
process might be required to go through the stages more than once, as the outstanding requirements
are provided.

Important

All-in-one registration requires multiple registration stages. If your registration process includes only one stage,
for example, consent, allInOneRegistration must be set to false, to preserve the registration flow.

If all-in-one registration is false, any additional stages listed in the registration process (selfservice-
registration.json) must be listed after the parameters and idmUserDetails stages. If a stage occurs before the
idmUserDetails stage without all-in-one registration, both social and regular registration will not work.

2.2. OpenAM Auto-Login Stage
This stage is used to perform auto-login with ForgeRock Access Management (AM). The stage is
similar to the local auto-login stage but also requires the returnParams in state (populated in the
Parameters Stage).

The stage obtains the user object but instead of creating a JWT, creates an AM authentication request.
If authentication fails, the server generates a bad request exception. If authentication is successful,
AM responds with a URL that is the successURL. The successURL is added to the successAdditions and the
process moves on to the next stage.

Example configuration

{
    "name" : "openAmAutoLogin",
    "authenticationEndpoint" : "https://openam.example.com:8443/openam/oauth2",
    "openAMBaseUrl" : "http://openam.example.com:8080",
    "identityUsernameField": "userName",
    "identityPasswordField": "password"
}    

Dependencies

This stage should appear towards the end of a process—it cannot be the first stage in a process.

Required Parameters

• authenticationEndpoint - the AM Authentication Endpoint URL.

• openAMBaseUrl - the URL of the AM server.

• identityUsernameField - the managed object property that contains the username.



Self-Service Stages
Attribute Collection Stage

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 7

• identityPasswordField - the managed object property that contains the user password.

2.3. Attribute Collection Stage
The purpose of this stage is to collect managed object properties to insert into the user profile. The
list of properties to be collected is defined as part of the configuration.

This stage updates the managed object directly, and checks whether attributes are required. If
required attributes are not provided, the stage returns the list of requirements again. This stage can
throw an exception if there is an error attempting to save the updated attributes.

Example configuration

{
    "name" : "attributecollection",
    "identityServiceUrl" : "managed/user",
    "uiConfig" : {
        "displayName" : "Add your telephone number",
        "purpose" : "Help us verify your identity",
        "buttonText" : "Save"
    },
    "attributes" : [
        {
            "name" : "telephoneNumber",
            "isRequired" : true
        }
    ]
}    

Dependencies

No dependencies on previous or following stages. This stage can occur anywhere in a process.

Required Parameters

• identityServiceUrl - the managed object type on which this stage acts

• uiConfig - how the requirements list is conveyed to an end user

• attributes - the array of attributes to be collected. For each attribute, the isRequired parameter
indicates whether the attribute is mandatory for the stage to proceed.

2.4. Captcha Stage
This stage verifies a response variable populated in state by the reCaptcha mechanism. If the response
is missing, or if validation fails (typically if the configuration does not include the required reCaptcha
configuration parameters) the stage throws a bad request exception. If validation succeeds, the
process advances to the next stage.



Self-Service Stages
Conditional User Stage

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 8

Example configuration

{
    "name" : "captcha",
    "recaptchaSiteKey" : "6LdahVIUAAAAAJcwGTWdl4OsG9tpdgFIyZKUSzyU",
    "recaptchaSecretKey" : "6LdahVIUAAAAANF-O17E-b8PyBqLrhLaOHUX8ch-",
    "recaptchaUri" : "https://www.google.com/recaptcha/api/siteverify"
},   

Dependencies

No dependencies on previous or following stages. This stage can occur anywhere in a process.

Required Parameters

• recaptchaSiteKey - invokes the reCAPTCHA service

• recaptchaSecretKey - authorizes communication between IDM and the reCAPTCHA server to verify
the user's response

• recaptchaUri - the reCaptcha verification API

2.5. Conditional User Stage
Defines a condition, that results in a boolean (true or false). The outcome of the condition determines
which stage should be executed next.

Example configuration

{
    "name": "conditionaluser",
    "identityServiceUrl": "managed/user",
    "condition": {
        "type": "kbaQuestions"
    },
    "evaluateConditionOnField": "user",
    "onConditionFalse": {
        "name": "kbaUpdateStage",
        "kbaConfig": null,
        "identityServiceUrl" : "managed/user",
        "uiConfig" : {
            "displayName" : "Update your security questions",
            "purpose" : "Please review and update your security questions",
            "buttonText" : "Update"
        }
    }
}    

Dependencies

No dependencies on previous or following stages. This stage can occur anywhere in a process. If
the condition evaluates to true, the process moves on to the next stage.



Self-Service Stages
Consent Stage

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 9

Required Parameters

• identityServiceUrl - the managed object type on which this stage acts

• condition - the condition type, which can be one of the following:

• kbaQuestions - a boolean (true or false) that indicates whether configured security questions
have been answered

• queryFilter - a common filter expression such as "filter" : "/co eq \"US\""

• script - enables you to configure a custom scripted condition

• loginCount - a condition based on the number of password or social authentication-based login
requests

• terms - a boolean (true or false) that indicates whether configured Terms and Confitions have
been accepted

• timesincelogin - sets a condition based on the period of time since the last login, in years,
months, weeks, days, hours, and minutes

• evaluateConditionOnField - the property on which the condition should be evaluated

• onConditionFalse - the details of the stage to be called if the condition evaluates to false

2.6. Consent Stage
This stage evaluates a boolean consentGiven (true or false). If consent is required but not given, the
stage fails with an exception. It is up to the client to handle that exception, for example, to prevent
registration if the user does not provide consent.

Example configuration

This stage is not configured in the same way as the other self-service stages (in the stageConfigs
array). The configuration is in a consent.json file in the project conf directory and includes only one
parameter:
{
    "enabled" : true
}    

Dependencies

No dependencies on previous or following stages. This stage can occur anywhere in a process.

Required Parameters

• None, other than for consent to be enabled with "enabled" : true in conf/consent.json.



Self-Service Stages
Email Validation Stage

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 10

2.7. Email Validation Stage
This stage retrieves the email address from state (or in response to initial requirements) then verifies
the validity of the email address with the user who submitted the requirements through an email
process.

Example configuration

{
    "name" : "emailValidation",
    "identityEmailField" : "mail",
    "emailServiceUrl" : "external/email",
    "emailServiceParameters" : {
        "waitForCompletion" : false
    },
    "from" : "info@admin.org",
    "subject" : "Reset password email",
    "mimeType" : "text/html",
    "subjectTranslations" : {
        "en" : "Reset your password",
        "fr" : "Réinitialisez votre mot de passe"
    },
    "messageTranslations" : {
        "en" : "Click to reset your password <a href=\"%link%\">Password reset link</a>",
        "fr" : "Cliquez pour réinitialiser votre mot de passe<a href=\"%link%\">Mot de passe lien de
 réinitialisation</a>"
    },
    "verificationLinkToken" : "%link%",
    "verificationLink" : "https://localhost:8443/#passwordReset/"
},   

Dependencies

This stage expects a preceding stage to populate the user email address in state. The stage has no
downstream dependencies.

Required Parameters

• Email configuration. For more information, see "Configuring Emails for Self-Service
Registration" in the Integrator's Guide.

2.8. IDM User Details Stage
This stage collects new user data and stores it in state. This is the only stage that sets up a user from
nothing. The stage does not create a managed object directly—it simply gathers and stores the data.
The Self-Registration Stage consumes the stored user data and creates the managed object from it.

The IDM User Details stage executes multiple times, requesting additional requirements each time.
There are different ways for the stage to advance, depending on how the user create request is
initiated.



Self-Service Stages
IDM User Details Stage

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 11

If the user completes a self-service registration form, the input contains a user object, collected from
the form, and populates that user in state. If the user registers through social authentication, the
stage reads the profile from the remote identity provider, normalizes it, then maps it to a user object.
That user object is then put into state.

If the new user object in state is incomplete or does not meet policy requirements, the stage returns
a new set of requirements, indicating the collected data and the missing data. The registering user is
requested to submit the additional data, then the stage revalidates the object in state. When all of the
required data to register a user is present, the process advances to the next stage.

Important

The user data remains in state—no managed user object is created.

Example configuration

{
    "name" : "idmUserDetails",
    "identityEmailField" : "mail",
    "socialRegistrationEnabled" : true,
    "identityServiceUrl" : "managed/user",
    "registrationProperties" : [
        "userName",
        "givenName",
        "sn",
        "mail"
    ],
    "registrationPreferences": ["marketing", "updates"]
},    

Dependencies

This stage must occur in any registration process. It has no dependencies on previous stages
but must have the Self-Registration Stage somewhere downstream in the process, to create the
managed user object.

Required Parameters

• identityEmailField - the attribute on the managed user object that contains the user email.

• identityServiceUrl - the managed object type on which this stage acts.

• socialRegistrationEnabled - optional, false if not specified. Indicates whether the stage must read
the user profile from a remote identity provider and normalize it.

• registrationProperties - an array of properties that must be provided by a registering user in
order for the stage to progress.

• registrationPreferences - optional, an array of properties that can be requested after the user has
provided the required properties.



Self-Service Stages
KBA Security Answer Definition Stage

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 12

2.9. KBA Security Answer Definition Stage
In the context of registration, this stage supplies security questions to the user and captures the
answers provided by the user.

The stage validates any answers against the user object. If the requirement is not met (incorrect
number of questions answered correctly) the stage throws a bad request exception and increments
the failure count of the managed user. If the requirement is met (correct number of questions
answered correctly) the process advances to the next stage.

This stage also disallows users from entering custom questions that duplicate any questions defined
by the administrator, regardless of the locale. It does this comparison by removing any special
characters and making a lower case comparision. For example, What Is YoUr FaVorite COLOR???? would
be evaluated as the same question as what is your favorite color?.

Example configuration

{
    "name" : "kbaSecurityAnswerDefinitionStage",
    "kbaConfig" : null
},   

Dependencies

The stage depends on a previous stage to populate the user ID in state. It has no dependencies on
following stages.

Required Parameters

• kbaConfig - reads the KBA configuration from the corresponding selfservice.kba.json file

2.10. KBA Security Answer Verification Stage
This stage verifies security answers and validates user lockout. The stage requires a user ID in state.

The stage reads the user object and validates that the user has not already failed to answer the
security questions. The stage then obtains the configured security questions, and returns the
minimum number of randomly selected questions as a requirement.

The stage validates any answers against the user object. If the requirement is not met (incorrect
number of questions answered correctly) the stage throws a bad request exception and increments
the failure count of the managed user. If the requirement is met (correct number of questions
answered correctly) the process advances to the next stage.

Example configuration

{
    "name" : "kbaSecurityAnswerDefinitionStage",
    "kbaConfig" : null
},   



Self-Service Stages
KBA Update stage

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 13

Dependencies

The stage depends on a previous stage to populate the user ID in state. It has no dependencies on
following stages.

Required Parameters

• kbaConfig - reads the KBA configuration from the corresponding selfservice.kba.json file

2.11. KBA Update stage
The KBA Update stage is used as part of progressive profile completion to enable users to update
their existing security questions and to add any additional questions that are needed. This stage
updates the user object directly. If a user fails to provide sufficient questions, the stage returns
the requirements again. If the object cannot be updated, the stage throws an exception. The stage
outputs nothing to the state and has no downstream dependencies.

Example configuration

{
    "name": "kbaUpdateStage",
    "kbaConfig": null,
    "identityServiceUrl" : "managed/user",
    "uiConfig" : {
        "displayName" : "Update your security questions",
        "purpose" : "Please review and update your security questions",
        "buttonText" : "Update"
    }
}    

Dependencies

No dependencies on previous or following stages. This stage can occur anywhere in a process. If
the condition evaluates to true, the process moves on to the next stage.

Required Parameters

• kbaConfig - returns the minimum number of security questions that must be provided

• identityServiceUrl - the managed object type on which this stage acts

• uiConfig - how the requirements are conveyed to an end user

2.12. Local Auto-Login Stage
This stage is used to perform auto-login with IDM. The stage obtains the OAuth Login from state and
populates the user object (username and password) in state.

The stage adds the OAuth login to the successAdditions (with a value of true) and adds the successURL
from its own configuration. If IDM can obtain all those details from state, it takes the user object,



Self-Service Stages
Parameters Stage

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 14

locates the username and password, and generates a CREDENTIAL_JWT. That JWT is then placed in the
successAdditions parameter.

If IDM is unable to generate the CREDENTIAL_JWT it generates an internal server error (500).

Example configuration

{
    "name" : "localAutoLogin",
    "successUrl" : "",
    "identityUsernameField": "userName",
    "identityPasswordField": "password"
}    

Dependencies

This stage should appear towards the end of a process—it cannot be the first stage in a process.

Required Parameters

• successURL - the URL to which an end-user should be redirected following successful registration.

• identityUsernameField - the managed object property that contains the username.

• identityPasswordField - the managed object property that contains the user password.

2.13. Parameters Stage
This stage captures parameters in the original request. To advance, the stage assesses the input
body. Any values that have been passed in and are listed in the configuration are put into state. The
stage ignores any values that are not listed in the configuration. The self-service mechanism passes
the parameters back to the client at the end of the process.

By default, this stage is required only if you are integrating IDM with ForgeRock Access
Management. The stage is added automatically if you use the UI to configure a self-service process,
but can generally be ignored unless a custom client or UI requires it.

Example configuration

{
    "name" : "parameters",
    "parameterNames" : [
        "returnParams"
    ]
}    

Dependencies

In all of the default IDM self-service processes, this must be the first stage in the process. In a
custom process, the stage has no order dependencies, and can occur anywhere in a process. All
this stage does is to copy named parameters into successAdditions for the process to output at
tag:end.



Self-Service Stages
Patch Object Stage

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 15

Required Parameters

• parameterNames - a list of parameters the stage supports. These parameters are returned in the
requirements.

2.14. Patch Object Stage
Currently, this stage is used only to patch the managed object with the terms and conditions
acceptance obtained from state. If the terms and conditions state is not present, the stage simply
advances to the next stage in the process.

Example configuration

{
    "name" : "patchObject",
    "identityServiceUrl" : "managed/user"
}    

Dependencies

This stage requires the Terms and Conditions Stage to have preceded it. It can be followed by any
stage and can occur anywhere in a process.

Requirements

• identityServiceUrl - the managed object type on which this stage acts

2.15. Password Reset Stage
This stage updates the managed object directly, changing the value of the configured
identityPasswordField. To gather the initial requirements the stage reads the managed user object, and
checks that the email and userID of the object match what is in state. If they do not match, the stage
exits with a Bad request exception.

If they do match, the stage returns with its requirements (the new password value). When the
requirements are submitted, the stage advances, locates the userId again, the new password. If the
password is empty, the stage throws an exception. If the password is valid, the stage patches
the managed user object directly to update the password. If the patch fails, the stage returns the
requirements again, along with an error message (for example, a password policy requirement).

Example configuration

{
    "name" : "resetStage",
    "identityServiceUrl" : "managed/user",
    "identityPasswordField" : "password"
}    



Self-Service Stages
Self-Registration Stage

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 16

Dependencies

This stage cannot be the first stage in a process. It expects a previous stage to populate the userId
and mail attributes of the user in state.

Required Parameters

• identityServiceUrl - the managed object type on which this stage acts

• identityPasswordField - the managed object property that contains the user password.

2.16. Self-Registration Stage
This is currently the final stage in the default user registration process. The stage obtains all the user
details from state. When the stage advances, it checks state for any idpdata, combines that with the
user data, and creates the managed user object. This stage must occur in any registration process.

Note

If you are integrating IDM with AM, the OpenAM Auto-Login Stage can follow this stage.

Example configuration

{
    "name" : "selfRegistration",
    "identityServiceUrl" : "managed/user"
},   

Dependencies

This stage must come after a stage that has populated the user in state. If the user is absent, the
stage exits with an illegal argument exception.

Required Parameters

• identityServiceUrl - the managed object type that the stage creates.

2.17. Social User Claim Stage
This stage enables an existing managed user to claim a social identity. The stage obtains a
CLIENT_TOKEN from some social identity provider. That token includes the following data:

• OAuth token

• Identity provider name

• Renewal token



Self-Service Stages
Social User Claim Stage

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 17

• Expiration date

Using the CLIENT_TOKEN, the stage retrieves the user profile from the social identity provider and
normalizes the profile into a user object (using the regular normalization mapping for social identity
providers). For more information on this mapping, see "Many Social Identity Providers, One Schema"
in the Integrator's Guide.

If the stage is unable to retrieve the user profile, or unable to normalize it using the mapping, it exits
with an exception. It does not return any missing requirements.

When the user profile has been normalized, the stage attempts to identify any existing managed
users that match the profile. If there are no matches, it simply advances to the next stage in the
process. If it finds a match, it extracts the existing managed object and returns that as a new set of
requirements.

The new requirement is that the user must provide their password, either their managed/user
password, or the password to another social identity provider if they registered through a separate
identity provider.

The stage then does the following:

• Verifies the login

• Creates a managed/idp object for the user

• Establishes a relationship between the managed object and the idp object

• Puts OAUTH_LOGIN:true into state

• Puts a claimedProfile containing the URL of the managed object that was claimed into
successAdditions

Example configuration

{
    "name" : "socialUserClaim",
    "identityServiceUrl" : "managed/user",
    "claimQueryFilter" : "/mail eq \"{{mail}}\""
},
   

Dependencies

This stage has no dependencies on previous or subsequent stages and can occur anywhere in a
process.

Required Parameters

• identityServiceUrl - the managed object type against which the stage verifies the profile.

• claimQueryFilter - the query filter that is used to locate the managed object from the social
identity provider profile.



Self-Service Stages
Terms and Conditions Stage

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 18

Notice the double-brace notation in preceding example "claimQueryFilter" : "/mail eq
 \"{{mail}}\"". This notation indicates that the named property from the user object in state is
substituted for the double-braced value. In this example, {{mail}} would become the value of the
mail property of the user in state, such as bjensen@example.com if that was in the user in state. You
can use this notation with any user property.

2.18. Terms and Conditions Stage
This stage evaluates a boolean accepted (true or false).

Example configuration

This stage is configured in a selfservice.terms.json file in the project conf directory and includes
the following parameters:
{
    "versions" : [
        {
            "version" : "1",
            "termsTranslations" : {
                "en" : "Sample terms and conditions"
            },
            "createDate" : "2018-04-10T09:52:25.478Z"
        }
    ],
    "uiConfig" : {
        "displayName" : "We have updated our terms",
        "purpose" : "To proceed, accept these terms",
        "buttonText" : "Accept"
    },
    "active" : "1"
}    

The stage can stand on its own (as it does in the default registration configuration) or be called
from the Conditional User Stage with a configuration similar to the following:
{
    "name" : "conditionaluser",
    "identityServiceUrl" : "managed/user",
    "condition" : {
        "type" : "terms"
    },
    "evaluateConditionOnField" : "user",
    "onConditionTrue" : {
        "name" : "termsAndConditions"
    }
},

Dependencies

Configured as part of the Conditional User Stage. Must have the Patch Object Stage somewhere
downstream. This stage can occur anywhere in a process.



Self-Service Stages
User Query Stage

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 19

Requirements

Requires Terms and Conditions to be accepted before continuing to the next stage:

• If accept is absent, the stage returns the requirements again.

• If accept is present but false, the stage generates an exception. It is up to the client to handle
that exception.

• If accept is true, this stage puts all the outputs into state and advances to the next stage.

Outputs

TERMS_ACCEPTED, TERMS_DATE, and TERMS_VERSION

2.19. User Query Stage
This stage queries the managed user repository for a user, based on the supplied query fields. If the
stage identifies a user, it populates the mail, userId, userName, and accountStatus fields in state.

Example configuration

{
    "name" : "userQuery",
    "validQueryFields" : [
        "userName",
        "mail",
        "givenName",
        "sn"
    ],
    "identityIdField" : "_id",
    "identityEmailField" : "mail",
    "identityUsernameField" : "userName",
    "identityServiceUrl" : "managed/user",
    "identityAccountStatusField" : "accountStatus"
},    

Dependencies

This stage has no dependencies on preceding or following stages but cannot be the only stage in
a process.

Required Parameters

• validQueryFields - an array of fields on which the query can be based.

• identityIdField - the managed object property that contains the user ID to be provided to state.

• identityEmailField - the managed object property that contains the user mail to be provided to
state.



Self-Service Stages
User Query Stage

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 20

• identityUsernameField - the managed object property that contains the username to be provided
to state.

• identityAccountStatusField - the managed object property that contains the user account status to
be provided to state.

• identityServiceUrl - the managed object type on which this stage acts



Password Reset Process

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 21

Chapter 3

Password Reset Process
Password reset enables registered users to reset their own passwords. The following stages can be
included in a password reset process:

• Captcha Stage (optional)

• User Query Stage (mandatory)

• Email Validation Stage (optional)

• KBA Security Answer Verification Stage (optional)

• Password Reset Stage (mandatory)

If all of these stages are configured, the password reset configuration (in conf/selfservice-profile.json
looks similar to the following:
{
    "stageConfigs" : [
        {
            "name" : "captcha",
            "recaptchaSiteKey" : "...",
            "recaptchaSecretKey" : "...",
            "recaptchaUri" : "https://www.google.com/recaptcha/api/siteverify"
        },
        {
            "name" : "userQuery",
            "validQueryFields" : [
                "userName",
                "mail",
                "givenName",
                "sn"
            ],
            "identityIdField" : "_id",
            "identityEmailField" : "mail",
            "identityUsernameField" : "userName",
            "identityServiceUrl" : "managed/user"
        },
        {
            "name" : "emailValidation",
            "identityEmailField" : "mail",
            "emailServiceUrl" : "external/email",
            "emailServiceParameters" : {
                "waitForCompletion" : false
            },
            "from" : "info@example.com",



Password Reset Process
REST Requests in a Password Reset Process

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 22

            "subject" : "Reset password email",
            "mimeType" : "text/html",
            "subjectTranslations" : {
                "en" : "Reset your password",
                "fr" : "Réinitialisez votre mot de passe"
            },
            "messageTranslations" : {
                "en" : "...Click to reset your password...",
                "fr" : "...Cliquez pour réinitialiser votre mot de passe..."
            },
            "verificationLinkToken" : "%link%",
            "verificationLink" : "https://localhost:8443/#passwordReset/"
        },
        {
            "name" : "kbaSecurityAnswerVerificationStage",
            "kbaPropertyName" : "kbaInfo",
            "identityServiceUrl" : "managed/user",
            "kbaConfig" : null
        },
        {
            "name" : "resetStage",
            "identityServiceUrl" : "managed/user",
            "identityPasswordField" : "password"
        }
    ],
    "snapshotToken" : {
        "type" : "jwt",
        "jweAlgorithm" : "RSAES_PKCS1_V1_5",
        "encryptionMethod" : "A128CBC_HS256",
        "jwsAlgorithm" : "HS256",
        "tokenExpiry" : "300"
    },
    "storage" : "stateless"
}

3.1. REST Requests in a Password Reset Process
The following REST requests and responses demonstrate the flow through a simple password reset
process. To keep the process simple, this flow does not include the Google ReCAPTCHA stage, or the
Security Answer Verification stage:

1. Client initiates the password reset, server returns the initial tag:



Password Reset Process
REST Requests in a Password Reset Process

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 23

curl \
 --request GET \
 "https://localhost:8443/openidm/selfservice/reset"
{
 "type": "parameters",
 "tag": "initial",
 "requirements": {
  "$schema": "http://json-schema.org/draft-04/schema#",
  "description": "Parameters",
  "type": "object",
  "properties": {
   "returnParams": {
    "description": "Parameter named 'returnParams'",
    "type": "string"
   }
  }
 }
}

2. Initial requirements submission with an empty payload, server returns requirements for the
userQuery stage, and the JWT:
curl \
 --header "X-OpenIDM-Username: anonymous" \
 --header "X-OpenIDM-Password: anonymous" \
 --request POST \
 --data '{
     "input":{}
 }' \
 "https://localhost:8443/openidm/selfservice/reset?_action=submitRequirements"
{
  "type": "userQuery",
  "tag": "initial",
  "requirements": {
    "$schema": "http:\/\/json-schema.org\/draft-04\/schema#",
    "description": "Find your account",
    "type": "object",
    "required": [
      "queryFilter"
    ],
    "properties": {
      "queryFilter": {
        "description": "filter string to find account",
        "type": "string"
      }
    }
  },
  "token": "eyJ0eXAiOiJKV1QiLCJjdHkiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.ZXlKMGVY...W5ywOcr8"
}

3. The client provides the requirements for the userQuery stage, along with the JWT. The process
progresses to the emailValidation stage:



Password Reset Process
REST Requests in a Password Reset Process

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 24

curl \
 --header "X-OpenIDM-Username: anonymous" \
 --header "X-OpenIDM-Password: anonymous" \
 --request POST \
 --data {
  "token": "eyJ0eXAiOiJKV1QiLCJjdHkiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.ZXlKMGVY...W5ywOcr8",
  "input": {
    "queryFilter": "userName eq \"bjensen\""
  }
} \
 "https://localhost:8443/openidm/selfservice/reset?_action=submitRequirements"
{
  "type": "emailValidation",
  "tag": "validateCode",
  "requirements": {
    "$schema": "http:\/\/json-schema.org\/draft-04\/schema#",
    "description": "Verify emailed code",
    "type": "object",
    "required": [
      "code"
    ],
    "properties": {
      "code": {
        "description": "Enter code emailed",
        "type": "string"
      }
    }
  },
  "token": "eyJ0eXAiOiJKV1QiLCJjdHkiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.ZXlKMGVY...SD7J6dO4"
}

The server converts that requirement and token to a URL that is emailed.

4. Clicking the email link sends another POST request to the emailValidation stage, along with the
token. The process advances to the reset stage and returns its requirements.

5. After email validation, the client submits the new password. The process advances to the reset
stage, updates the managed object, and exits:



Password Reset Process
REST Requests in a Password Reset Process

Self-Service REST API Reference ForgeRock Identity Management 6.0 (2021-12-07T18:29:22.195493)
Copyright © 2018 ForgeRock AS. All rights reserved. 25

curl \
 --header "X-OpenIDM-Username: anonymous" \
 --header "X-OpenIDM-Password: anonymous" \
 --request POST \
 --data {
  "token": "eyJ0eXAiOiJKV1QiLCJjdHkiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.ZXlKMGVY...rufKZXTVc",
  "input": {
    "password": "Passw0rd"
  }
} \
 "https://localhost:8443/openidm/selfservice/reset?_action=submitRequirements"
{
  "type": "resetStage",
  "tag": "end",
  "status": {
    "success": true
  },
  "additions": {
  }
}
    


	Self-Service REST API Reference
	Table of Contents
	Preface
	1. Using This Guide
	2. Accessing Documentation Online
	3. Using the ForgeRock.org Site

	Chapter 1. Understanding Self-Service Processes
	1.1. The Self-Service Process Flow

	Chapter 2. Self-Service Stages
	2.1. All-In-One Registration
	2.2. OpenAM Auto-Login Stage
	2.3. Attribute Collection Stage
	2.4. Captcha Stage
	2.5. Conditional User Stage
	2.6. Consent Stage
	2.7. Email Validation Stage
	2.8. IDM User Details Stage
	2.9. KBA Security Answer Definition Stage
	2.10. KBA Security Answer Verification Stage
	2.11. KBA Update stage
	2.12. Local Auto-Login Stage
	2.13. Parameters Stage
	2.14. Patch Object Stage
	2.15. Password Reset Stage
	2.16. Self-Registration Stage
	2.17. Social User Claim Stage
	2.18. Terms and Conditions Stage
	2.19. User Query Stage

	Chapter 3. Password Reset Process
	3.1. REST Requests in a Password Reset Process


