
Developer's Guide
/ Directory Services 5.5

Latest update: 5.5.3

Mark Craig
Ludovic Poitou

ForgeRock AS
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2011-2017 ForgeRock AS.

Abstract

Guide to developing client applications, server extensions, and applications that embed
servers by using ForgeRock® Directory Services software.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, http://fontawesome.io.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
http://fontawesome.io
https://opensource.org/licenses/OFL-1.1

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. iii

Table of Contents
Preface .. v

1. Using This Guide ... v
2. Accessing Documentation Online .. vi
3. Using the ForgeRock.org Site ... vi

1. Understanding LDAP ... 1
1.1. How Directories and LDAP Evolved .. 1
1.2. About Data In LDAP Directories ... 2
1.3. About LDAP Client and Server Communication ... 5
1.4. About LDAP Controls and Extensions ... 6

2. Best Practices For Application Developers .. 7
2.1. Authenticate Correctly .. 7
2.2. Reuse Connections ... 7
2.3. Health Check Connections ... 7
2.4. Request Exactly What You Need All At Once .. 8
2.5. Use Specific LDAP Filters .. 8
2.6. Make Modifications Specific ... 8
2.7. Trust Result Codes ... 8
2.8. Handle Input Securely .. 9
2.9. Check Group Membership on the Account, Not the Group 9
2.10. Ask the Directory Server What It Supports ... 9
2.11. Store Large Attribute Values By Reference ... 9
2.12. Take Care With Persistent Search and Server-Side Sorting 10
2.13. Reuse Schemas Where Possible .. 10
2.14. Handle Referrals .. 11
2.15. Troubleshooting: Check Result Codes ... 11
2.16. Troubleshooting: Check Server Log Files .. 11
2.17. Troubleshooting: Inspect Network Traffic ... 12

3. Performing RESTful Operations ... 13
3.1. About ForgeRock Common REST .. 14
3.2. Selecting an API Version .. 31
3.3. Authenticating Over REST .. 31
3.4. Creating Resources .. 33
3.5. Reading a Resource .. 34
3.6. Updating Resources .. 35
3.7. Deleting Resources ... 37
3.8. Patching Resources .. 41
3.9. Using Actions ... 46
3.10. Querying Resource Collections ... 49
3.11. Working With Alternative Content Types .. 60
3.12. Working With REST API Documentation ... 63

4. Performing LDAP Operations .. 67
4.1. About Command-Line Tools .. 67
4.2. Searching the Directory ... 76
4.3. Comparing Attribute Values ... 90

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. iv

4.4. Updating the Directory ... 90
4.5. Changing Passwords ... 102
4.6. Configuring Default Settings .. 104
4.7. Authenticating To the Directory Server .. 104
4.8. Configuring Proxied Authorization .. 107
4.9. Authenticating Client Applications With a Certificate 110

5. Using LDAP Schema .. 120
5.1. Getting Schema Information ... 120
5.2. Respecting LDAP Schema ... 123
5.3. Abusing LDAP Schema ... 126
5.4. Standard Schema Included With OpenDJ Server ... 127

6. Working With Groups of Entries .. 130
6.1. Creating Static Groups ... 131
6.2. Creating Dynamic Groups ... 133
6.3. Creating Virtual Static Groups .. 134
6.4. Looking Up Group Membership .. 136
6.5. Nesting Groups Within Groups ... 136
6.6. Configuring Referential Integrity .. 138

7. Working With Virtual and Collective Attributes ... 140
7.1. Virtual Attributes .. 140
7.2. Collective Attributes ... 143

8. Working With Referrals ... 151
8.1. About Referrals .. 151
8.2. Managing Referrals .. 152

9. Writing a Server Plugin ... 154
9.1. About OpenDJ Server Plugins ... 154
9.2. Trying the Example Server Plugin .. 156
9.3. About the Example Plugin Project Files .. 158

10. Embedding the Server ... 163
10.1. Before Trying the Embedded Server Samples ... 163
10.2. Obtaining the Sample Code .. 163
10.3. Setting Up an Embedded Server ... 164
10.4. Starting and Stopping an Embedded Server ... 167
10.5. Configuring an Embedded Server ... 169

11. LDAP Result Codes .. 172
12. Release Levels and Interface Stability ... 178

12.1. ForgeRock Product Release Levels ... 178
12.2. ForgeRock Product Interface Stability .. 179

Glossary ... 180
Index ... 189

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. v

Preface
ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity
and Access Management solution. We help our customers deepen their relationships with their
customers, and improve the productivity and connectivity of their employees and partners. For more
information about ForgeRock and about the platform, see https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web
resources and collections of resources.

This guide shows you how to develop client applications, server extensions, and applications that
embed servers.

In reading and following the instructions in this guide, you will learn how to:

• Access directory services using REST APIs over HTTP

• Access directory services using the LDAP command-line tools

• Use LDAP schema

• Work with standard LDAP groups and Directory Services-specific groups

• Work with LDAP collective attributes and Directory Services virtual attributes

• Work with LDAP referrals in search results

• Develop custom directory service Java plugins

• Embed the server in a Java application

1. Using This Guide
This guide is intended for anyone developing applications that act as a client of directory services, or
that embed or extend Directory Services software.

This guide is written with the expectation that you already have basic familiarity with the following
topics:

• Installing Directory Services software

If you are not yet familiar with Directory Services software installation, read the Installation Guide
first.

https://www.forgerock.com

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. vi

• Using command-line tools

• LDAP and directory services

• Basic server configuration

Some examples in this guide require server configuration steps.

• HTTP, JavaScript Object Notation (JSON), and web applications

2. Accessing Documentation Online
ForgeRock publishes comprehensive documentation online:

• The ForgeRock Knowledge Base offers a large and increasing number of up-to-date, practical
articles that help you deploy and manage ForgeRock software.

While many articles are visible to community members, ForgeRock customers have access to much
more, including advanced information for customers using ForgeRock software in a mission-critical
capacity.

• ForgeRock product documentation, such as this document, aims to be technically accurate and
complete with respect to the software documented. It is visible to everyone and covers all product
features and examples of how to use them.

3. Using the ForgeRock.org Site
The ForgeRock.org site has links to source code for ForgeRock open source software, as well as links
to the ForgeRock forums and technical blogs.

If you are a ForgeRock customer, raise a support ticket instead of using the forums. ForgeRock
support professionals will get in touch to help you.

https://backstage.forgerock.com/knowledge/kb
https://forgerock.org

Understanding LDAP
How Directories and LDAP Evolved

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 1

Chapter 1

Understanding LDAP

This chapter introduces directory concepts and directory server features. In this chapter you will
learn:

• Why directory services exist and what they do well

• How data is arranged in directories that support Lightweight Directory Access Protocol (LDAP)

• How clients and servers communicate in LDAP

• What operations are standard according to LDAP and how standard extensions to the protocol work

A directory resembles a dictionary or a phone book. If you know a word, you can look it up its entry
in the dictionary to learn its definition or its pronunciation. If you know a name, you can look it up its
entry in the phone book to find the telephone number and street address associated with the name. If
you are bored, curious, or have lots of time, you can also read through the dictionary, phone book, or
directory, entry after entry.

Where a directory differs from a paper dictionary or phone book is in how entries are indexed.
Dictionaries typically have one index—words in alphabetical order. Phone books, too—names in
alphabetical order. Directories' entries on the other hand are often indexed for multiple attributes,
names, user identifiers, email addresses, and telephone numbers. This means you can look up a
directory entry by the name of the user the entry belongs to, but also by their user identifier, their
email address, or their telephone number, for example.

1.1. How Directories and LDAP Evolved
Phone companies have been managing directories for many decades. The Internet itself has relied on
distributed directory services like DNS since the mid 1980s.

It was not until the late 1980s, however, that experts from what is now the International
Telecommunications Union published the X.500 set of international standards, including Directory
Access Protocol. The X.500 standards specify Open Systems Interconnect (OSI) protocols and data
definitions for general purpose directory services. The X.500 standards were designed to meet the
needs of systems built according to the X.400 standards, covering electronic mail services.

Lightweight Directory Access Protocol (LDAP) has been around since the early 1990s. LDAP was
originally developed as an alternative protocol that would allow directory access over Internet
protocols rather than OSI protocols, and be lightweight enough for desktop implementations. By the
mid-1990s, LDAP directory servers became generally available and widely used.

Understanding LDAP
About Data In LDAP Directories

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 2

Until the late 1990s, LDAP directory servers were designed primarily with quick lookups and high
availability for lookups in mind. LDAP directory servers replicate data, so when an update is made,
that update is applied to other peer directory servers. Thus, if one directory server goes down,
lookups can continue on other servers. Furthermore, if a directory service needs to support more
lookups, the administrator can simply add another directory server to replicate with its peers.

As organizations rolled out larger and larger directories serving more and more applications, they
discovered that they needed high availability not only for lookups, but also for updates. Around the
year 2000, directories began to support multi-master replication; that is, replication with multiple
read-write servers. Soon thereafter the organizations with the very largest directories started to need
higher update performance as well as availability.

The OpenDJ code base began in the mid-2000s, when engineers solving the update performance issue
decided the cost of adapting the existing C-based directory technology for high-performance updates
would be higher than the cost of building a next generation, high performance directory using Java
technology.

1.2. About Data In LDAP Directories
LDAP directory data is organized into entries, similar to the entries for words in the dictionary, or for
subscriber names in the phone book. A sample entry follows:

dn: uid=bjensen,ou=People,dc=example,dc=com
uid: bjensen
cn: Babs Jensen
cn: Barbara Jensen
facsimileTelephoneNumber: +1 408 555 1992
gidNumber: 1000
givenName: Barbara
homeDirectory: /home/bjensen
l: San Francisco
mail: bjensen@example.com
objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: person
objectClass: posixAccount
objectClass: top
ou: People
ou: Product Development
roomNumber: 0209
sn: Jensen
telephoneNumber: +1 408 555 1862
uidNumber: 1076

Barbara Jensen's entry has a number of attributes, such as uid: bjensen, telephoneNumber: +1 408 555
 1862, and objectClass: posixAccount. (The objectClass attribute type indicates which types of attributes
are required and allowed for the entry. As the entries object classes can be updated online, and even
the definitions of object classes and attributes are expressed as entries that can be updated online,
directory data is extensible on the fly.) When you look up her entry in the directory, you specify one

Understanding LDAP
About Data In LDAP Directories

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 3

or more attributes and values to match. The directory server then returns entries with attribute
values that match what you specified.

The attributes you search for are indexed in the directory, so the directory server can retrieve them
more quickly. (Attribute values do not have to be strings. Some attribute values, like certificates and
photos, are binary.

The entry also has a unique identifier, shown at the top of the entry, dn: uid=bjensen,ou=People
,dc=example,dc=com. DN is an acronym for distinguished name. No two entries in the directory have the
same distinguished name. Yet, DNs are typically composed of case-insensitive attributes.

Sometimes distinguished names include characters that you must escape. The following example
shows an entry that includes escaped characters in the DN:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(uid=escape)"
dn: cn=DN Escape Characters \" # \+ \, \; \< = \> \\,dc=example,dc=com
objectClass: person
objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: top
givenName: DN Escape Characters
uid: escape
cn: DN Escape Characters " # + , ; < = > \
sn: " # + , ; < = > \
mail: escape@example.com

LDAP entries are arranged hierarchically in the directory. The hierarchical organization resembles a
file system on a PC or a web server, often imagined as an upside-down tree structure, or a pyramid.
The distinguished name consists of components separated by commas, uid=bjensen,ou=People,dc=example
,dc=com. The names are little-endian. The components reflect the hierarchy of directory entries.

"Directory Data" shows the hierarchy as seen in the control panel.

Understanding LDAP
About Data In LDAP Directories

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 4

Directory Data

Barbara Jensen's entry is located under an entry with DN ou=People,dc=example,dc=com, an organization
unit and parent entry for the people at Example.com. The ou=People entry is located under the entry
with DN dc=example,dc=com, the base entry for Example.com. DC is an acronym for domain component.
The directory has other base entries, such as cn=config, under which the configuration is accessible
through LDAP. A directory can serve multiple organizations, too. You might find dc=example,dc=com,
dc=mycompany,dc=com, and o=myOrganization in the same LDAP directory. Therefore, when you look up
entries, you specify the base DN to look under in the same way you need to know whether to look
in the New York, Paris, or Tokyo phone book to find a telephone number. (The root entry for the
directory, technically the entry with DN "" (the empty string), is called the root DSE. It contains
information about what the server supports, including the other base DNs it serves.

A directory server stores two kinds of attributes in a directory entry: user attributes and operational
attributes. User attributes hold the information for users of the directory. All of the attributes shown
in the entry at the outset of this section are user attributes. Operational attributes hold information
used by the directory itself. Examples of operational attributes include entryUUID, modifyTimestamp, and
subschemaSubentry. When an LDAP search operation finds an entry in the directory, the directory server
returns all the visible user attributes unless the search request restricts the list of attributes by
specifying those attributes explicitly. The directory server does not, however, return any operational
attributes unless the search request specifically asks for them. Generally speaking, applications
should change only user attributes, and leave updates of operational attributes to the server, relying
on public directory server interfaces to change server behavior. An exception is access control
instruction (aci) attributes, which are operational attributes used to control access to directory data.

Understanding LDAP
About LDAP Client and Server Communication

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 5

1.3. About LDAP Client and Server Communication
You may be used to web service client server communication, where each time the web client has
something to request of the web server, a connection is set up and then torn down. LDAP has a
different model. In LDAP the client application connects to the server and authenticates, then
requests any number of operations, perhaps processing results in between requests, and finally
disconnects when done.

The standard operations are as follows:

• Bind (authenticate). The first operation in an LDAP session usually involves the client binding to
the LDAP server with the server authenticating the client. Authentication identifies the client's
identity in LDAP terms, the identity which is later used by the server to authorize (or not) access to
directory data that the client wants to lookup or change.

If the client does not bind explicitly, the server treats the client as an anonymous client. An
anonymous client is allowed to do anything that can be done anonymously. What can be done
anonymously depends on access control and configuration settings. The client can also bind again
on the same connection.

• Search (lookup). After binding, the client can request that the server return entries based on an
LDAP filter, which is an expression that the server uses to find entries that match the request,
and a base DN under which to search. For example, to look up all entries for people with email
address bjensen@example.com in data for Example.com, you would specify a base DN such as ou=People
,dc=example,dc=com and the filter (mail=bjensen@example.com).

• Compare. After binding, the client can request that the server compare an attribute value the client
specifies with the value stored on an entry in the directory.

• Modify. After binding, the client can request that the server change one or more attribute values
stored on an entry. Often administrators do not allow clients to change directory data, so request
that your administrator set appropriate access rights for your client application if you want to
update data.

• Add. After binding, the client can request to add one or more new LDAP entries to the server.

• Delete. After binding, the client can request that the server delete one or more entries. To delete an
entry with other entries underneath, first delete the children, then the parent.

• Modify DN. After binding, the client can request that the server change the distinguished name
of the entry. In other words, this renames the entry or moves it to another location. For example,
if Barbara changes her unique identifier from bjensen to something else, her DN would have to
change. For another example, if you decide to consolidate ou=Customers and ou=Employees under
ou=People instead, all the entries underneath must change distinguished names.

Renaming entire branches of entries can be a major operation for the directory, so avoid moving
entire branches if you can.

• Unbind. When done making requests, the client can request an unbind operation to end the LDAP
session.

Understanding LDAP
About LDAP Controls and Extensions

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 6

• Abandon. When a request seems to be taking too long to complete, or when a search request
returns many more matches than desired, the client can send an abandon request to the server to
drop the operation in progress.

1.4. About LDAP Controls and Extensions
LDAP has standardized two mechanisms for extending the operations directory servers can perform
beyond the basic operations listed above. One mechanism involves using LDAP controls. The other
mechanism involves using LDAP extended operations.

LDAP controls are information added to an LDAP message to further specify how an LDAP operation
should be processed. For example, the server-side sort request control modifies a search to request
that the directory server return entries to the client in sorted order. The subtree delete request
control modifies a delete to request that the server also remove child entries of the entry targeted for
deletion.

The directory server can also send response controls in some cases to indicate that the response
contains special information. Examples include responses for entry change notification, password
policy, and paged results.

LDAP extended operations are additional LDAP operations not included in the original standard list.
For example, the cancel extended operation works like an abandon operation, but finishes with a
response from the server after the cancel is complete. The StartTLS extended operation allows a
client to connect to a server on an insecure port, but then start Transport Layer Security negotiations
to protect communications.

Both LDAP controls and extended operations are demonstrated later in this guide. OpenDJ servers
support many LDAP controls and a few LDAP extended operations, controls and extended operations
matching those demonstrated in this guide.

Best Practices For Application Developers
Authenticate Correctly

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 7

Chapter 2

Best Practices For Application Developers
Follow the advice in this chapter to write effective, maintainable, high-performance directory client
applications.

2.1. Authenticate Correctly
Unless your application performs only read operations, authenticate to the directory server. Some
directory services require authentication to read directory data.

Once you authenticate (bind), directory servers make authorization decisions based on your identity.
With servers that support proxied authorization, once authenticated, your application can request an
operation on behalf of another identity, for example, the identity of the end user.

Your application therefore should have an account used to authenticate such as cn=My App,ou=Apps
,dc=example,dc=com. The directory administrator can then authorize appropriate access for your
application, and monitor your application's requests to help you troubleshoot problems if they arise.

Your application can use simple, password-based authentication. When using password-based
authentication, also use secure connections to avoid sending the password as cleartext over the
network. If you prefer to manage certificates rather than passwords, directory servers can managed
certificate-based authentication as well.

2.2. Reuse Connections
LDAP is a stateful protocol. You authenticate (bind), you do stuff, you unbind. The server maintains
a context that lets it make authorization decisions concerning your requests. You should therefore
reuse connections when possible.

You can make multiple requests without having to set up a new connection and authenticate for every
request. You can issue a request and get results asynchronously, while you issue another request.
You can even share connections in a pool, avoiding the overhead of setting up and tearing down
connections if you use them often.

2.3. Health Check Connections

Best Practices For Application Developers
Request Exactly What You Need All At Once

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 8

In a network built for HTTP applications, your long-lived LDAP connections can get cut by network
equipment configured to treat idle and even just old connections as stale resources to reclaim.

When you maintain a particularly long-lived connection such as a connection for a persistent search,
periodically perform a health check to make sure nothing on the network quietly decided to drop your
connection without notification. A health check might involve reading an attribute on a well-known
entry in the directory.

2.4. Request Exactly What You Need All At Once
By the time your application makes it to production, you should know what attributes you want.
Request them explicitly and request all the attributes in the same search.

2.5. Use Specific LDAP Filters
The difference between a general filter (mail=*@example.com) and a good, specific filter like
(mail=user@example.com) can be huge numbers of entries and enormous amounts of processing time,
both for the directory server that has to return search results, and also for your application that has
to sort through the results. Many use cases can be handled with short, specific filters. As a rule,
prefer equality filters over substring filters.

Some directory servers like OpenDJ servers reject unindexed searches by default, because unindexed
searches are generally far more resource-intensive. If your application needs to use a filter that
results in an unindexed search, then work with your directory administrator to find a solution, such
as having the directory maintain the indexes required by your application.

Furthermore, always use & with ! to restrict the potential result set before returning all entries that
do not match part of the filter. For example, (&(location=Oslo)(!(mail=birthday.girl@example.com))).

2.6. Make Modifications Specific
When you modify attributes with multiple values, for example, when you modify a list of group
members, replace or delete specific values individually, rather than replacing the entire list of values.
Making modifications specific helps directory servers replicate your changes more effectively.

2.7. Trust Result Codes
Trust the LDAP result code that your application gets from the directory server. For example, if you
request a modify application and you get ResultCode.SUCCESS, then consider the operation a success
rather than immediately issuing a search to get the modified entry.

The LDAP replication model is loosely convergent. In other words, the directory server can, and
probably does, send you ResultCode.SUCCESS before replicating your change to every directory server

Best Practices For Application Developers
Handle Input Securely

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 9

instance across the network. If you issue a read immediately after a write, and a load balancer sends
your request to another directory server instance, you could get a result that differs from what you
expect.

The loosely convergent model means that the entry could have changed since you read it. If needed,
use LDAP assertions to set conditions for your LDAP operations.

2.8. Handle Input Securely
When taking input directly from a user or another program, handle the input securely by using
appropriate methods to sanitize the data.

Failure to sanitize the input data can leave your application vulnerable to injection attacks.

2.9. Check Group Membership on the Account, Not the Group
If you need to determine which groups an account belongs to, request isMemberOf, for example, with
OpenDJ when you read the account entry. Other directory servers use other names for this attribute
that identifies the groups to which an account belongs.

2.10. Ask the Directory Server What It Supports
Directory servers expose their capabilities, suffixes they support, and other information as attribute
values on the root DSE.

This allows your application to discover a variety of information at run time, rather than storing
configuration separately. Thus putting effort into querying the directory about its configuration and
the features it supports can make your application easier to deploy and to maintain.

For example, rather than hard-coding dc=example,dc=com as a suffix DN in your configuration, you can
search the root DSE on OpenDJ for namingContexts, and then search under the naming context DNs to
locate the entries you are looking for in order to initialize your configuration.

Directory servers also expose their schema over LDAP. The root DSE attribute subschemaSubentry shows
the DN of the entry holding LDAP schema definitions. Note that LDAP object class and attribute type
names are case-insensitive, so isMemberOf and ismemberof refer to the same attribute, for example.

2.11. Store Large Attribute Values By Reference
When you use large attribute values such as photos or audio messages, consider storing the objects
themselves elsewhere and keeping only a reference to external content on directory entries. In order

Best Practices For Application Developers
Take Care With Persistent Search and Server-Side Sorting

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 10

to serve results quickly with high availability, directory servers both cache content and also replicate
it everywhere.

Textual entries with a bunch of attributes and perhaps a certificate are often no larger than a few KB.
Your directory administrator might therefore be disappointed to learn that your popular application
stores users' photo and .mp3 collections as attributes of their accounts.

2.12. Take Care With Persistent Search and Server-Side
Sorting
A persistent search lets your application receive updates from the server as they happen by keeping
the connection open and forcing the server to check whether to return additional results any time
it performs a modification in the scope of your search. Directory administrators therefore might
hesitate to grant persistent search access to your application. Directory servers like OpenDJ servers
can let you discover updates with less overhead by searching the change log periodically. If you do
have to use a persistent search instead, try to narrow the scope of your search.

Directory servers also support a resource-intensive operation called server-side sorting. When
your application requests a server-side sort, the directory server retrieves all the entries matching
your search, and then returns the whole set of entries in sorted order. For result sets of any size
server-side sorting therefore ties up server resources that could be used elsewhere. Alternatives
include both sorting the results after your application receives them, and working with the directory
administrator to enable appropriate browsing (virtual list view) indexes on the directory server for
applications that must regularly page through long lists of search results.

2.13. Reuse Schemas Where Possible
Directory servers like OpenDJ servers come with schema definitions for a wide range of standard
object classes and attribute types. This is because directories are designed to be shared by many
applications. Directories use unique, typically IANA-registered object identifiers (OID) to avoid object
class and attribute type name clashes. The overall goal is Internet-wide interoperability.

You therefore should reuse schema definitions that already exist whenever you reasonably can. Reuse
them as is. Do not try to redefine existing schema definitions.

If you must add schema definitions for your application, extend existing object classes with
AUXILIARY classes of your own. Take care to name your definitions such that they do not clash with
other names.

When you have defined schema required for your application, work with the directory administrator
to add your definitions to the directory service. Directory servers like OpenDJ servers let directory
administrators update schema definitions over LDAP, so there is not generally a need to interrupt
the service to add your application. Directory administrators can, however, have other reasons why
they hesitate to add your schema definitions. Coming to the discussion prepared with good schema

http://www.iana.org/

Best Practices For Application Developers
Handle Referrals

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 11

definitions, explanations of why they should be added, and evident regard for interoperability makes
it easier for the directory administrator to grant your request.

2.14. Handle Referrals
When a directory server returns a search result, the result is not necessarily an entry. If the result
is a referral, then your application should follow up with an additional search based on the URIs
provided in the result.

2.15. Troubleshooting: Check Result Codes
LDAP result codes are standard and clearly defined, and listed in "LDAP Result Codes". When your
application receives a result, it must the result code value to determine what action to take. When the
result is not what you expect, read or at least log the additional message information.

2.16. Troubleshooting: Check Server Log Files
If you can read the directory server access log, then you can check what the server did with your
application's request. For example, the following access log excerpt shows a successful search by
cn=My App,ou=Apps,dc=example,dc=com. The lines are wrapped for readability, whereas in the log each
record starts with the timestamp:

Best Practices For Application Developers
Troubleshooting: Inspect Network Traffic

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 12

{"eventName":"DJ-LDAP","client":{"ip":"127.0.0.1","port":59891},"server":
{"ip":"127.0.0.1","port":1389},"request":
{"protocol":"LDAP","operation":"CONNECT","connId":0},"transactionId":"0","response":
{"status":"SUCCESSFUL","statusCode":"0","elapsedTime":0,"elapsedTimeUnits":"MILLISECONDS"},"timestamp":"2016-10-20T15:48:36.933Z","_id":"11d5fdaf-79ac-4677-
a640-805db1c35af0-3"}
{"eventName":"DJ-LDAP","client":{"ip":"127.0.0.1","port":59891},"server":
{"ip":"127.0.0.1","port":1389},"request":
{"protocol":"LDAP","operation":"EXTENDED","connId":0,"msgId":1,"name":"StartTLS","oid":"1.3.6.1.4.1.1466.20037"},"transactionId":"0","response":
{"status":"SUCCESSFUL","statusCode":"0","elapsedTime":3,"elapsedTimeUnits":"MILLISECONDS"},"timestamp":"2016-10-20T15:48:36.945Z","_id":"11d5fdaf-79ac-4677-
a640-805db1c35af0-5"}
{"eventName":"DJ-LDAP","client":{"ip":"127.0.0.1","port":59891},"server":
{"ip":"127.0.0.1","port":1389},"request":
{"protocol":"LDAP","operation":"BIND","connId":0,"msgId":2,"version":"3","authType":"Simple","dn":"cn=My
 App,ou=Apps,dc=example,dc=com"},"transactionId":"0","response":
{"status":"SUCCESSFUL","statusCode":"0","elapsedTime":6,"elapsedTimeUnits":"MILLISECONDS"},"userId":"cn=My
 App,ou=Apps,dc=example,dc=com","timestamp":"2016-10-20T15:48:38.462Z","_id":"11d5fdaf-79ac-4677-
a640-805db1c35af0-7"}
{"eventName":"DJ-LDAP","client":{"ip":"127.0.0.1","port":59891},"server":
{"ip":"127.0.0.1","port":1389},"request":
{"protocol":"LDAP","operation":"SEARCH","connId":0,"msgId":3,"dn":"dc=example,dc=com","scope":"sub","filter":"(uid=kvaughan)","attrs":
["isMemberOf"]},"transactionId":"0","response":
{"status":"SUCCESSFUL","statusCode":"0","elapsedTime":6,"elapsedTimeUnits":"MILLISECONDS","nentries":1},"timestamp":"2016-10-20T15:48:38.472Z","_id":"11d5fdaf-79ac-4677-
a640-805db1c35af0-9"}
{"eventName":"DJ-LDAP","client":{"ip":"127.0.0.1","port":59891},"server":
{"ip":"127.0.0.1","port":1389},"request":
{"protocol":"LDAP","operation":"UNBIND","connId":0,"msgId":4},"transactionId":"0","timestamp":"2016-10-20T15:48:38.480Z","_id":"11d5fdaf-79ac-4677-
a640-805db1c35af0-11"}
{"eventName":"DJ-LDAP","client":{"ip":"127.0.0.1","port":59891},"server":
{"ip":"127.0.0.1","port":1389},"request":
{"protocol":"LDAP","operation":"DISCONNECT","connId":0},"transactionId":"0","response":
{"status":"SUCCESSFUL","statusCode":"0","elapsedTime":0,"elapsedTimeUnits":"MILLISECONDS","reason":"Client
 Unbind"},"timestamp":"2016-10-20T15:48:38.481Z","_id":"11d5fdaf-79ac-4677-a640-805db1c35af0-13"}

Notice that each operation type is shown in upper case. The messages track the client information,
and the connection ID (connId) and message ID (msgID) numbers for filtering messages. The
elapsedTime indicates how many milliseconds the OpenDJ server worked on the request. Result code 0
corresponds to a successful result, as described in RFC 4511.

2.17. Troubleshooting: Inspect Network Traffic
If result codes and server logs are not enough, many network tools can interpret HTTP and LDAP
packets. Install the necessary keys to decrypt encrypted packet content.

http://tools.ietf.org/html/rfc4511#section-4.1.9

Performing RESTful Operations

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 13

Chapter 3

Performing RESTful Operations

OpenDJ lets you access directory data as JSON resources over HTTP. OpenDJ maps JSON resources
onto LDAP entries. As a result, REST clients perform many of the same operations as LDAP clients
with directory data.

This chapter demonstrates RESTful client operations by using the default configuration and sample
directory data imported into an OpenDJ directory server as described in "To Import LDIF Data" in the
Administration Guide, from the LDIF file Example.ldif.

In this chapter, you will learn how to use the OpenDJ REST API that provides access to directory data
over HTTP. In particular, you will learn how to:

• Create a resource that does not yet exist

• Read a single resource

• Update an existing resource

• Delete an existing resource

• Patch part of an existing resource

• Perform a predefined action

• Query a set of resources

• Work with other MIME types for resources like photos

Before trying the examples, enable HTTP access to the OpenDJ server as described in "To Set Up
REST Access to User Data" in the Administration Guide. The examples in this chapter use HTTP, but
the procedure also shows how to set up HTTPS access to the server.

Interface stability: Evolving (See "ForgeRock Product Interface Stability" in the Reference.)

The OpenDJ REST API is built on a common ForgeRock HTTP-based REST API for interacting with
JSON Resources. All APIs built on this common layer let you perform the following operations.

http://json.org

Performing RESTful Operations
About ForgeRock Common REST

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 14

3.1. About ForgeRock Common REST
ForgeRock® Common REST is a common REST API framework. It works across the ForgeRock
platform to provide common ways to access web resources and collections of resources. Adapt the
examples in this section to your resources and deployment.

3.1.1. Common REST Resources

Servers generally return JSON-format resources, though resource formats can depend on the
implementation.

Resources in collections can be found by their unique identifiers (IDs). IDs are exposed in the
resource URIs. For example, if a server has a user collection under /users, then you can access a user
at /users/user-id. The ID is also the value of the _id field of the resource.

Resources are versioned using revision numbers. A revision is specified in the resource's _rev field.
Revisions make it possible to figure out whether to apply changes without resource locking and
without distributed transactions.

3.1.2. Common REST Verbs

The Common REST APIs use the following verbs, sometimes referred to collectively as CRUDPAQ.
For details and HTTP-based examples of each, follow the links to the sections for each verb.

Create

Add a new resource.

This verb maps to HTTP PUT or HTTP POST.

For details, see "Create".

Read

Retrieve a single resource.

This verb maps to HTTP GET.

For details, see "Read".

Update

Replace an existing resource.

This verb maps to HTTP PUT.

For details, see "Update".

Performing RESTful Operations
Common REST Parameters

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 15

Delete

Remove an existing resource.

This verb maps to HTTP DELETE.

For details, see "Delete".

Patch

Modify part of an existing resource.

This verb maps to HTTP PATCH.

For details, see "Patch".

Action

Perform a predefined action.

This verb maps to HTTP POST.

For details, see "Action".

Query

Search a collection of resources.

This verb maps to HTTP GET.

For details, see "Query".

3.1.3. Common REST Parameters

Common REST reserved query string parameter names start with an underscore, _.

Reserved query string parameters include, but are not limited to, the following names:

_action
_api
_crestapi
_fields
_mimeType
_pageSize
_pagedResultsCookie
_pagedResultsOffset
_prettyPrint
_queryExpression

Performing RESTful Operations
Common REST Extension Points

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 16

_queryFilter
_queryId
_sortKeys
_totalPagedResultsPolicy

Note

Some parameter values are not safe for URLs, so URL-encode parameter values as necessary.

Continue reading for details about how to use each parameter.

3.1.4. Common REST Extension Points

The action verb is the main vehicle for extensions. For example, to create a new user with HTTP
POST rather than HTTP PUT, you might use /users?_action=create. A server can define additional
actions. For example, /tasks/1?_action=cancel.

A server can define stored queries to call by ID. For example, /groups?_queryId=hasDeletedMembers. Stored
queries can call for additional parameters. The parameters are also passed in the query string. Which
parameters are valid depends on the stored query.

3.1.5. Common REST API Documentation

Common REST APIs often depend at least in part on runtime configuration. Many Common REST
endpoints therefore serve API descriptors at runtime. An API descriptor documents the actual API as
it is configured.

Use the following query string parameters to retrieve API descriptors:

_api

Serves an API descriptor that complies with the OpenAPI specification.

This API descriptor represents the API accessible over HTTP. It is suitable for use with popular
tools such as Swagger UI.

_crestapi

Serves a native Common REST API descriptor.

This API descriptor provides a compact representation that is not dependent on the transport
protocol. It requires a client that understands Common REST, as it omits many Common REST
defaults.

Note

Consider limiting access to API descriptors in production environments in order to avoid unnecessary traffic.

https://github.com/OAI/OpenAPI-Specification
http://swagger.io/swagger-ui/

Performing RESTful Operations
Create

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 17

To provide documentation in production environments, see "To Publish OpenAPI Documentation" instead.

To Publish OpenAPI Documentation

In production systems, developers expect stable, well-documented APIs. Rather than retrieving API
descriptors at runtime through Common REST, prepare final versions, and publish them alongside
the software in production.

Use the OpenAPI-compliant descriptors to provide API reference documentation for your developers
as described in the following steps:

1. Configure the software to produce production-ready APIs.

In other words, the software should be configured as in production so that the APIs are identical
to what developers see in production.

2. Retrieve the OpenAPI-compliant descriptor.

The following command saves the descriptor to a file, myapi.json:

$ curl -o myapi.json endpoint?_api

3. (Optional) If necessary, edit the descriptor.

For example, you might want to add security definitions to describe how the API is protected.

If you make any changes, then also consider using a source control system to manage your
versions of the API descriptor.

4. Publish the descriptor using a tool such as Swagger UI.

You can customize Swagger UI for your organization as described in the documentation for the
tool.

3.1.6. Create

There are two ways to create a resource, either with an HTTP POST or with an HTTP PUT.

To create a resource using POST, perform an HTTP POST with the query string parameter
_action=create and the JSON resource as a payload. Accept a JSON response. The server creates the
identifier if not specified:

https://github.com/swagger-api/swagger-ui

Performing RESTful Operations
Read

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 18

POST /users?_action=create HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
{ JSON resource }

To create a resource using PUT, perform an HTTP PUT including the case-sensitive identifier for
the resource in the URL path, and the JSON resource as a payload. Use the If-None-Match: * header.
Accept a JSON response:

PUT /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-None-Match: *
{ JSON resource }

The _id and content of the resource depend on the server implementation. The server is not required
to use the _id that the client provides. The server response to the create request indicates the
resource location as the value of the Location header.

If you include the If-None-Match header, its value must be *. In this case, the request creates the object
if it does not exist, and fails if the object does exist. If you include the If-None-Match header with any
value other than *, the server returns an HTTP 400 Bad Request error. For example, creating an
object with If-None-Match: revision returns a bad request error. If you do not include If-None-Match: *,
the request creates the object if it does not exist, and updates the object if it does exist.

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

3.1.7. Read
To retrieve a single resource, perform an HTTP GET on the resource by its case-sensitive identifier
(_id) and accept a JSON response:

Performing RESTful Operations
Update

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 19

GET /users/some-id HTTP/1.1
Host: example.com
Accept: application/json

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

_mimeType=mime-type

Some resources have fields whose values are multi-media resources such as a profile photo for
example.

By specifying both a single field and also the mime-type for the response content, you can read a
single field value that is a multi-media resource.

In this case, the content type of the field value returned matches the mime-type that you specify,
and the body of the response is the multi-media resource.

The Accept header is not used in this case. For example, Accept: image/png does not work. Use the
_mimeType query string parameter instead.

3.1.8. Update
To update a resource, perform an HTTP PUT including the case-sensitive identifier (_id) as the final
element of the path to the resource, and the JSON resource as the payload. Use the If-Match: _rev
header to check that you are actually updating the version you modified. Use If-Match: * if the version
does not matter. Accept a JSON response:

PUT /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-Match: _rev
{ JSON resource }

Performing RESTful Operations
Delete

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 20

When updating a resource, include all the attributes to be retained. Omitting an attribute in the
resource amounts to deleting the attribute unless it is not under the control of your application.
Attributes not under the control of your application include private and read-only attributes. In
addition, virtual attributes and relationship references might not be under the control of your
application.

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

3.1.9. Delete
To delete a single resource, perform an HTTP DELETE by its case-sensitive identifier (_id) and accept
a JSON response:

DELETE /users/some-id HTTP/1.1
Host: example.com
Accept: application/json

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

3.1.10. Patch
To patch a resource, send an HTTP PATCH request with the following parameters:

Performing RESTful Operations
Patch

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 21

• operation

• field

• value

• from (optional with copy and move operations)

You can include these parameters in the payload for a PATCH request, or in a JSON PATCH file. If
successful, you'll see a JSON response similar to:

PATCH /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-Match: _rev
{ JSON array of patch operations }

PATCH operations apply to three types of targets:

• single-valued, such as an object, string, boolean, or number.

• list semantics array, where the elements are ordered, and duplicates are allowed.

• set semantics array, where the elements are not ordered, and duplicates are not allowed.

ForgeRock PATCH supports several different operations. The following sections show each of these
operations, along with options for the field and value:

3.1.10.1. Patch Operation: Add
The add operation ensures that the target field contains the value provided, creating parent fields as
necessary.

If the target field is single-valued, then the value you include in the PATCH replaces the value of the
target. Examples of a single-valued field include: object, string, boolean, or number.

An add operation has different results on two standard types of arrays:

• List semantic arrays: you can run any of these add operations on that type of array:

• If you add an array of values, the PATCH operation appends it to the existing list of values.

• If you add a single value, specify an ordinal element in the target array, or use the {-} special
index to add that value to the end of the list.

• Set semantic arrays: The list of values included in a patch are merged with the existing set of
values. Any duplicates within the array are removed.

As an example, start with the following list semantic array resource:

Performing RESTful Operations
Patch

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 22

{
 "fruits" : ["orange", "apple"]
}

The following add operation includes the pineapple to the end of the list of fruits, as indicated by the
- at the end of the fruits array.
{
 "operation" : "add",
 "field" : "/fruits/-",
 "value" : "pineapple"
}

The following is the resulting resource:
{
 "fruits" : ["orange", "apple", "pineapple"]
}

3.1.10.2. Patch Operation: Copy
The copy operation takes one or more existing values from the source field. It then adds those same
values on the target field. Once the values are known, it is equivalent to performing an add operation
on the target field.

The following copy operation takes the value from a field named mail, and then runs a replace operation
on the target field, another_mail.
[
 {
 "operation":"copy",
 "from":"mail",
 "field":"another_mail"
 }
]

If the source field value and the target field value are configured as arrays, the result depends on
whether the array has list semantics or set semantics, as described in "Patch Operation: Add".

3.1.10.3. Patch Operation: Increment
The increment operation changes the value or values of the target field by the amount you specify. The
value that you include must be one number, and may be positive or negative. The value of the target
field must accept numbers. The following increment operation adds 1000 to the target value of /user/
payment.
[
 {
 "operation" : "increment",
 "field" : "/user/payment",
 "value" : "1000"
 }
]

Performing RESTful Operations
Patch

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 23

Since the value of the increment is a single number, arrays do not apply.

3.1.10.4. Patch Operation: Move

The move operation removes existing values on the source field. It then adds those same values on
the target field. It is equivalent to performing a remove operation on the source, followed by an add
operation with the same values, on the target.

The following move operation is equivalent to a remove operation on the source field, surname, followed by
a replace operation on the target field value, lastName. If the target field does not exist, it is created.
[
 {
 "operation":"move",
 "from":"surname",
 "field":"lastName"
 }
]

To apply a move operation on an array, you need a compatible single-value, list semantic array, or set
semantic array on both the source and the target. For details, see the criteria described in "Patch
Operation: Add".

3.1.10.5. Patch Operation: Remove

The remove operation ensures that the target field no longer contains the value provided. If the remove
operation does not include a value, the operation removes the field. The following remove deletes the
value of the phoneNumber, along with the field.
[
 {
 "operation" : "remove",
 "field" : "phoneNumber"
 }
]

If the object has more than one phoneNumber, those values are stored as an array.

A remove operation has different results on two standard types of arrays:

• List semantic arrays: A remove operation deletes the specified element in the array. For example, the
following operation removes the first phone number, based on its array index (zero-based):
[
 {
 "operation" : "remove",
 "field" : "/phoneNumber/0"
 }
]

• Set semantic arrays: The list of values included in a patch are removed from the existing array.

Performing RESTful Operations
Patch

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 24

3.1.10.6. Patch Operation: Replace

The replace operation removes any existing value(s) of the targeted field, and replaces them with the
provided value(s). It is essentially equivalent to a remove followed by a add operation. If the arrays are
used, the criteria is based on "Patch Operation: Add". However, indexed updates are not allowed,
even when the target is an array.

The following replace operation removes the existing telephoneNumber value for the user, and then adds
the new value of +1 408 555 9999.
[
 {
 "operation" : "replace",
 "field" : "/telephoneNumber",
 "value" : "+1 408 555 9999"
 }
]

A PATCH replace operation on a list semantic array works in the same fashion as a PATCH remove
operation. The following example demonstrates how the effect of both operations. Start with the
following resource:
{
 "fruits" : ["apple", "orange", "kiwi", "lime"],
}

Apply the following operations on that resource:
[
 {
 "operation" : "remove",
 "field" : "/fruits/0",
 "value" : ""
 },
 {
 "operation" : "replace",
 "field" : "/fruits/1",
 "value" : "pineapple"
 }
]

The PATCH operations are applied sequentially. The remove operation removes the first member of
that resource, based on its array index, (fruits/0), with the following result:
[
 {
 "fruits" : ["orange", "kiwi", "lime"],
 }
]

The second PATCH operation, a replace, is applied on the second member (fruits/1) of the
intermediate resource, with the following result:

Performing RESTful Operations
Patch

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 25

[
 {
 "fruits" : ["orange", "pineapple", "lime"],
 }
]

3.1.10.7. Patch Operation: Transform

The transform operation changes the value of a field based on a script or some other data
transformation command. The following transform operation takes the value from the field named /
objects, and applies the something.js script as shown:
[
 {
 "operation" : "transform",
 "field" : "/objects",
 "value" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "something.js"
 }
 }
 }
]

3.1.10.8. Patch Operation Limitations

Some HTTP client libraries do not support the HTTP PATCH operation. Make sure that the library you
use supports HTTP PATCH before using this REST operation.

For example, the Java Development Kit HTTP client does not support PATCH as a valid HTTP method.
Instead, the method HttpURLConnection.setRequestMethod("PATCH") throws ProtocolException.

Parameters

You can use the following parameters. Other parameters might depend on the specific action
implementation:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

Performing RESTful Operations
Action

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 26

3.1.11. Action

Actions are a means of extending Common REST APIs and are defined by the resource provider, so
the actions you can use depend on the implementation.

The standard action indicated by _action=create is described in "Create".

Parameters

You can use the following parameters. Other parameters might depend on the specific action
implementation:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

3.1.12. Query

To query a resource collection (or resource container if you prefer to think of it that way), perform an
HTTP GET and accept a JSON response, including at least a _queryExpression, _queryFilter, or _queryId
parameter. These parameters cannot be used together:

GET /users?_queryFilter=true HTTP/1.1
Host: example.com
Accept: application/json

The server returns the result as a JSON object including a "results" array and other fields related to
the query string parameters that you specify.

Parameters

You can use the following parameters:

_queryFilter=filter-expression

Query filters request that the server return entries that match the filter expression. You must
URL-escape the filter expression.

The string representation is summarized as follows. Continue reading for additional explanation:

Performing RESTful Operations
Query

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 27

Expr = OrExpr
OrExpr = AndExpr ('or' AndExpr) *
AndExpr = NotExpr ('and' NotExpr) *
NotExpr = '!' PrimaryExpr | PrimaryExpr
PrimaryExpr = '(' Expr ')' | ComparisonExpr | PresenceExpr | LiteralExpr
ComparisonExpr = Pointer OpName JsonValue
PresenceExpr = Pointer 'pr'
LiteralExpr = 'true' | 'false'
Pointer = JSON pointer
OpName = 'eq' | # equal to
 'co' | # contains
 'sw' | # starts with
 'lt' | # less than
 'le' | # less than or equal to
 'gt' | # greater than
 'ge' | # greater than or equal to
 STRING # extended operator
JsonValue = NUMBER | BOOLEAN | '"' UTF8STRING '"'
STRING = ASCII string not containing white-space
UTF8STRING = UTF-8 string possibly containing white-space

JsonValue components of filter expressions follow RFC 7159: The JavaScript Object Notation
(JSON) Data Interchange Format. In particular, as described in section 7 of the RFC, the escape
character in strings is the backslash character. For example, to match the identifier test\, use _id
 eq 'test\\'. In the JSON resource, the \ is escaped the same way: "_id":"test\\".

When using a query filter in a URL, be aware that the filter expression is part of a query
string parameter. A query string parameter must be URL encoded as described in RFC 3986:
Uniform Resource Identifier (URI): Generic Syntax For example, white space, double quotes
("), parentheses, and exclamation characters need URL encoding in HTTP query strings. The
following rules apply to URL query components:

query = *(pchar / "/" / "?")
pchar = unreserved / pct-encoded / sub-delims / ":" / "@"
unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
pct-encoded = "%" HEXDIG HEXDIG
sub-delims = "!" / "$" / "&" / "'" / "(" / ")"
 / "*" / "+" / "," / ";" / "="

ALPHA, DIGIT, and HEXDIG are core rules of RFC 5234: Augmented BNF for Syntax Specifications:

ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
DIGIT = %x30-39 ; 0-9
HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"

As a result, a backslash escape character in a JsonValue component is percent-encoded in the
URL query string parameter as %5C. To encode the query filter expression _id eq 'test\\', use _id
+eq+'test%5C%5C', for example.

https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc5234

Performing RESTful Operations
Query

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 28

A simple filter expression can represent a comparison, presence, or a literal value.

For comparison expressions use json-pointer comparator json-value, where the comparator is one
of the following:

eq (equals)
co (contains)
sw (starts with)
lt (less than)
le (less than or equal to)
gt (greater than)
ge (greater than or equal to)

For presence, use json-pointer pr to match resources where the JSON pointer is present.

Literal values include true (match anything) and false (match nothing).

Complex expressions employ and, or, and ! (not), with parentheses, (expression), to group
expressions.

_queryId=identifier

Specify a query by its identifier.

Specific queries can take their own query string parameter arguments, which depend on the
implementation.

_pagedResultsCookie=string

The string is an opaque cookie used by the server to keep track of the position in the search
results. The server returns the cookie in the JSON response as the value of pagedResultsCookie.

In the request _pageSize must also be set and non-zero. You receive the cookie value from the
provider on the first request, and then supply the cookie value in subsequent requests until the
server returns a null cookie, meaning that the final page of results has been returned.

The _pagedResultsCookie parameter is supported when used with the _queryFilter parameter. The
_pagedResultsCookie parameter is not guaranteed to work when used with the _queryExpression and
_queryId parameters.

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually exclusive, and not to be
used together.

_pagedResultsOffset=integer

When _pageSize is non-zero, use this as an index in the result set indicating the first page to
return.

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually exclusive, and not to be
used together.

Performing RESTful Operations
HTTP Status Codes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 29

_pageSize=integer

Return query results in pages of this size. After the initial request, use _pagedResultsCookie or
_pageResultsOffset to page through the results.

_totalPagedResultsPolicy=string

When a _pageSize is specified, and non-zero, the server calculates the "totalPagedResults",
in accordance with the totalPagedResultsPolicy, and provides the value as part of the
response. The "totalPagedResults" is either an estimate of the total number of paged results
(_totalPagedResultsPolicy=ESTIMATE), or the exact total result count (_totalPagedResultsPolicy=EXACT).
If no count policy is specified in the query, or if _totalPagedResultsPolicy=NONE, result counting is
disabled, and the server returns value of -1 for "totalPagedResults".

_sortKeys=[+-]field[,[+-]field...]

Sort the resources returned based on the specified field(s), either in + (ascending, default) order,
or in - (descending) order.

Because ascending order is the default, including the + character in the query is unnecessary. If
you do include the +, it must be URL-encoded as %2B, for example:
http://localhost:8080/api/users?_prettyPrint=true&_queryFilter=true&_sortKeys=%2Bname/givenName

The _sortKeys parameter is not supported for predefined queries (_queryId).

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in each element of the "results" array in the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

3.1.13. HTTP Status Codes

When working with a Common REST API over HTTP, client applications should expect at least the
following HTTP status codes. Not all servers necessarily return all status codes identified here:

200 OK

The request was successful and a resource returned, depending on the request.

201 Created

The request succeeded and the resource was created.

Performing RESTful Operations
HTTP Status Codes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 30

204 No Content

The action request succeeded, and there was no content to return.

304 Not Modified

The read request included an If-None-Match header, and the value of the header matched the
revision value of the resource.

400 Bad Request

The request was malformed.

401 Unauthorized

The request requires user authentication.

403 Forbidden

Access was forbidden during an operation on a resource.

404 Not Found

The specified resource could not be found, perhaps because it does not exist.

405 Method Not Allowed

The HTTP method is not allowed for the requested resource.

406 Not Acceptable

The request contains parameters that are not acceptable, such as a resource or protocol version
that is not available.

409 Conflict

The request would have resulted in a conflict with the current state of the resource.

410 Gone

The requested resource is no longer available, and will not become available again. This can
happen when resources expire for example.

412 Precondition Failed

The resource's current version does not match the version provided.

415 Unsupported Media Type

The request is in a format not supported by the requested resource for the requested method.

Performing RESTful Operations
Selecting an API Version

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 31

428 Precondition Required

The resource requires a version, but no version was supplied in the request.

500 Internal Server Error

The server encountered an unexpected condition that prevented it from fulfilling the request.

501 Not Implemented

The resource does not support the functionality required to fulfill the request.

503 Service Unavailable

The requested resource was temporarily unavailable. The service may have been disabled, for
example.

3.2. Selecting an API Version
OpenDJ REST APIs can be versioned. If there is more than one version of the API, then you must
select the version by setting a version header that specifies which version of the resource is
requested:
Accept-API-Version: resource=version

Here, version is the value of the version field in the mapping configuration file for the API. For details,
see "Mapping Configuration File" in the Reference.

If you do not set a version header, then the latest version is returned.

The default example configuration includes only one API, whose version is 1.0. In this case, the
header can be omitted. If used in the examples below, the appropriate header would be Accept-API-
Version: resource=1.0.

3.3. Authenticating Over REST
When you first try to read a resource that can be read as an LDAP entry with an anonymous search,
you learn that you must authenticate as shown in the following example:

$ curl http://opendj.example.com:8080/api/users/bjensen
{"code":401,"reason":"Unauthorized","message":"Invalid Credentials"}

HTTP status code 401 indicates that the request requires user authentication.

To prevent an OpenDJ server from requiring authentication, set the Rest2ldap endpoint authorization-
mechanism to map anonymous HTTP requests to LDAP requests performed by an authorized user, as in
the following example that uses Kirsten Vaughan's identity:

Performing RESTful Operations
Authenticating Over REST

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 32

$ dsconfig \
 set-http-authorization-mechanism-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --mechanism-name "HTTP Anonymous" \
 --set enabled:true \
 --set user-dn:uid=kvaughan,ou=people,dc=example,dc=com \
 --trustAll \
 --no-prompt
$ dsconfig \
 set-http-endpoint-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --endpoint-name "/api" \
 --set authorization-mechanism:"HTTP Anonymous" \
 --trustAll \
 --no-prompt

By default, both the Rest2ldap endpoint and also the REST to LDAP gateway allow HTTP Basic
authentication and HTTP header-based authentication in the style of OpenIDM software. The
authentication mechanisms translate HTTP authentication to LDAP authentication to the directory
server.

When you install OpenDJ either with generated sample user entries or with data from Example.ldif,
the relative distinguished name (DN) attribute for sample user entries is the user ID (uid) attribute.
For example, the DN and user ID for Babs Jensen are:

dn: uid=bjensen,ou=People,dc=example,dc=com
uid: bjensen

Given this pattern in the user entries, the default REST to LDAP configuration translates the HTTP
user name to the LDAP user ID. User entries are found directly under ou=People,dc=example,dc=com.
(In general, REST to LDAP mappings require that LDAP entries mapped to JSON resources be
immediate subordinates of the mapping's baseDN.) In other words, Babs Jensen authenticates as
bjensen (password: hifalutin) over HTTP. The corresponding LDAP bind DN is uid=bjensen,ou=People
,dc=example,dc=com.

HTTP Basic authentication works as shown in the following example:

$ curl \
 --user bjensen:hifalutin \
 http://opendj.example.com:8080/api/users/bjensen?_fields=userName
{"_id":"bjensen","_rev":"<revision>","userName":"bjensen@example.com"}

Performing RESTful Operations
Creating Resources

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 33

The alternative HTTP Basic username:password@ form in the URL works as shown in the following
example:

$ curl \
 http://bjensen:hifalutin@opendj.example.com:8080/api/users/bjensen?_fields=userName
{"_id":"bjensen","_rev":"<revision>","userName":"bjensen@example.com"}

HTTP header based authentication works as shown in the following example:

$ curl \
--header "X-OpenIDM-Username: bjensen"
 \
--header "X-OpenIDM-Password: hifalutin" \
 http://opendj.example.com:8080/api/users/bjensen?_fields=userName
{"_id":"bjensen","_rev":"<revision>","userName":"bjensen@example.com"}

If the directory data is laid out differently or if the user names are email addresses rather than user
IDs, for example, then you must update the configuration in order for authentication to work.

The REST to LDAP gateway can also translate HTTP user name and password authentication to LDAP
PLAIN SASL authentication. Likewise, the gateway falls back to proxied authorization as necessary,
using a root DN authenticated connection to LDAP servers. See "REST to LDAP Configuration" in the
Reference for details on all configuration choices.

3.4. Creating Resources
There are two alternative ways to create resources:

• To create a resource using an ID that you specify, perform an HTTP PUT request with headers
Content-Type: application/json and If-None-Match: *, and the JSON content of your resource.

The following example shows you how to create a new user entry with ID newuser:

$ curl \
 --request PUT \
 --user kvaughan:bribery \
 --header "Content-Type: application/json" \
 --header "If-None-Match: *" \
 --data '{
 "_id": "newuser",
 "_schema":"frapi:opendj:rest2ldap:user:1.0",
 "contactInformation": {
 "telephoneNumber": "+1 408 555 1212",
 "emailAddress": "newuser@example.com"
 },
 "name": {
 "familyName": "New",

Performing RESTful Operations
Reading a Resource

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 34

 "givenName": "User"
 },
 "displayName": ["New User"],
 "manager": {
 "_id": "kvaughan",
 "displayName": "Kirsten Vaughan"
 }
 }' \
 http://opendj.example.com:8080/api/users/newuser?_prettyPrint=true
{
 "_id" : "newuser",
 "_rev" : "<revision>",
 "_schema" : "frapi:opendj:rest2ldap:user:1.0",
 "_meta" : {
 "created" : "<datestamp>"
 },
 "userName" : "newuser@example.com",
 "displayName" : ["New User"],
 "name" : {
 "givenName" : "User",
 "familyName" : "New"
 },
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 1212",
 "emailAddress" : "newuser@example.com"
 },
 "manager" : {
 "_id" : "kvaughan",
 "displayName" : "Kirsten Vaughan"
 }
}

• To create a resource and let the server choose the ID, perform an HTTP POST with _action=create as
described in "Using Actions".

3.5. Reading a Resource
To read a resource, perform an HTTP GET as shown in the following example:

Performing RESTful Operations
Updating Resources

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 35

$ curl \
 --request GET \
 --user kvaughan:bribery \
 http://opendj.example.com:8080/api/users/newuser?_prettyPrint=true
{
 "_id" : "newuser",
 "_rev" : "<revision>",
 "_schema" : "frapi:opendj:rest2ldap:user:1.0",
 "_meta" : {
 "created" : "<datestamp>"
 },
 "userName" : "newuser@example.com",
 "displayName" : ["New User"],
 "name" : {
 "givenName" : "User",
 "familyName" : "New"
 },
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 1212",
 "emailAddress" : "newuser@example.com"
 },
 "manager" : {
 "_id" : "kvaughan",
 "displayName" : "Kirsten Vaughan"
 }
}

3.6. Updating Resources
To update a resource, perform an HTTP PUT with the changes to the resource. Use an If-Match header
to ensure the resource already exists. For read-only fields, either include unmodified versions, or omit
them from your updated version.

To update a resource regardless of the revision, use an If-Match: * header. The following example
writes a new entry with an additional display name for Sam Carter:

$ curl \
 --request PUT \
 --user kvaughan:bribery \
 --header "Content-Type: application/json" \
 --header "If-Match: *" \
 --data '{
 "contactInformation": {
 "telephoneNumber": "+1 408 555 4798",
 "emailAddress": "scarter@example.com"
 },
 "name": {
 "familyName": "Carter",
 "givenName": "Sam"
 },
 "userName": "scarter@example.com",
 "displayName": ["Sam Carter", "Samantha Carter"],

Performing RESTful Operations
Updating Resources

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 36

 "groups": [
 {
 "_id": "Accounting Managers"
 }
],
 "manager": {
 "_id": "trigden",
 "displayName": "Torrey Rigden"
 },
 "uidNumber": 1002,
 "gidNumber": 1000,
 "homeDirectory": "/home/scarter"
 }' \
 http://opendj.example.com:8080/api/users/scarter?_prettyPrint=true
{
 "_id" : "scarter",
 "_rev" : "<revision>",
 "_schema" : "frapi:opendj:rest2ldap:posixUser:1.0",
 "_meta" : {
 "lastModified" : "<datestamp>"
 },
 "userName" : "scarter@example.com",
 "displayName" : ["Sam Carter", "Samantha Carter"],
 "name" : {
 "givenName" : "Sam",
 "familyName" : "Carter"
 },
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 4798",
 "emailAddress" : "scarter@example.com"
 },
 "uidNumber" : 1002,
 "gidNumber" : 1000,
 "homeDirectory" : "/home/scarter",
 "groups" : [{
 "_id" : "Accounting Managers"
 }],
 "manager" : {
 "_id" : "trigden",
 "displayName" : "Torrey Rigden"
 }
}

To update a resource only if the resource matches a particular version, use an If-Match: revision
header as shown in the following example:

$ export REVISION=$(cut -d \" -f 8 <(curl --silent \
 --user kvaughan:bribery \
 http://opendj.example.com:8080/api/users/scarter?_fields=_rev))
$ curl \
 --request PUT \
 --user kvaughan:bribery \
 --header "If-Match: $REVISION" \
 --header "Content-Type: application/json" \
 --data '{
 "_id" : "scarter",
 "_schema" : "frapi:opendj:rest2ldap:posixUser:1.0",

Performing RESTful Operations
Deleting Resources

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 37

 "contactInformation": {
 "telephoneNumber": "+1 408 555 4798",
 "emailAddress": "scarter@example.com"
 },
 "name": {
 "familyName": "Carter",
 "givenName": "Sam"
 },
 "userName": "scarter@example.com",
 "displayName": ["Sam Carter", "Samantha Carter"],
 "uidNumber": 1002,
 "gidNumber": 1000,
 "homeDirectory": "/home/scarter"
 }' \
 http://opendj.example.com:8080/api/users/scarter?_prettyPrint=true
{
 "_id" : "scarter",
 "_rev" : "<new-revision>",
 "_schema" : "frapi:opendj:rest2ldap:posixUser:1.0",
 "_meta" : {
 "lastModified" : "<datestamp>"
 },
 "userName" : "scarter@example.com",
 "displayName" : ["Sam Carter", "Samantha Carter"],
 "name" : {
 "givenName" : "Sam",
 "familyName" : "Carter"
 },
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 4798",
 "emailAddress" : "scarter@example.com"
 },
 "uidNumber" : 1002,
 "gidNumber" : 1000,
 "homeDirectory" : "/home/scarter",
 "groups" : [{
 "_id" : "Accounting Managers"
 }]
}

3.7. Deleting Resources
To delete a resource, perform an HTTP DELETE on the resource URL. The operation returns the
resource you deleted as shown in the following example:

Performing RESTful Operations
Deleting Resources

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 38

$ curl \
 --request DELETE \
 --user kvaughan:bribery \
 http://opendj.example.com:8080/api/users/newuser?_prettyPrint=true
{
 "_id" : "newuser",
 "_rev" : "<revision>",
 "_schema" : "frapi:opendj:rest2ldap:user:1.0",
 "_meta" : {
 "created" : "<datestamp>"
 },
 "userName" : "newuser@example.com",
 "displayName" : ["New User"],
 "name" : {
 "givenName" : "User",
 "familyName" : "New"
 },
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 1212",
 "emailAddress" : "newuser@example.com"
 },
 "manager" : {
 "_id" : "kvaughan",
 "displayName" : "Kirsten Vaughan"
 }
}

To delete a resource only if the resource matches a particular version, use an If-Match: revision
header as shown in the following example:

$ export REVISION=$(cut -d \" -f 8 <(curl --silent \
 --user kvaughan:bribery \
 http://opendj.example.com:8080/api/users/newuser?_fields=_rev))
$ curl \
 --request DELETE \
 --user kvaughan:bribery \
 --header "If-Match: $REVISION" \
 http://opendj.example.com:8080/api/users/newuser?_prettyPrint=true
{
 "_id" : "newuser",
 "_rev" : "<revision>",
 "_schema" : "frapi:opendj:rest2ldap:user:1.0",
 "_meta" : {
 "created" : "<datestamp>"
 },
 "userName" : "newuser@example.com",
 "displayName" : ["New User"],
 "name" : {
 "givenName" : "User",
 "familyName" : "New"
 },
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 1212",
 "emailAddress" : "newuser@example.com"
 },

Performing RESTful Operations
Deleting Resources

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 39

 "manager" : {
 "_id" : "kvaughan",
 "displayName" : "Kirsten Vaughan"
 }
}

To delete a resource and all of its children, you must change the configuration, get the REST to
LDAP gateway or Rest2ldap endpoint to reload its configuration, and perform the operation as a user
who has the access rights required. The following steps show one way to do this with the Rest2ldap
endpoint.

In this example, the LDAP view of the user to delete shows two child entries as seen in the following
example:

$ ldapsearch --port 1389 --baseDN uid=nbohr,ou=people,dc=example,dc=com "(&)" 1.1
dn: uid=nbohr,ou=People,dc=example,dc=com

dn: cn=quantum dot,uid=nbohr,ou=People,dc=example,dc=com

dn: cn=qubit generator,uid=nbohr,ou=People,dc=example,dc=com

1. If you are using the gateway, this requires the default setting of true for useSubtreeDelete in WEB-INF/
classes/rest2ldap/rest2ldap.json.

Note

Only users who have access to request a tree delete can delete resources with children.

2. Force the Rest2ldap to reread its configuration as shown in the following dsconfig commands:

Performing RESTful Operations
Deleting Resources

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 40

$ dsconfig \
 set-http-endpoint-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --endpoint-name "/api" \
 --set enabled:false \
 --trustAll \
 --no-prompt
$ dsconfig \
 set-http-endpoint-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --endpoint-name "/api" \
 --set enabled:true \
 --trustAll \
 --no-prompt

3. Allow the REST user to use the subtree delete control:

$ dsconfig \
 set-access-control-handler-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --add global-aci:"(targetcontrol=\"1.2.840.113556.1.4.805\")\
 (version 3.0; acl \"Allow Subtree Delete\"; allow(read) \
 userdn=\"ldap:///uid=kvaughan,ou=People,dc=example,dc=com\";)" \
 --trustAll \
 --no-prompt

4. Request the delete as a user who has rights to perform a subtree delete on the resource as shown
in the following example:

Performing RESTful Operations
Patching Resources

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 41

$ curl \
 --request DELETE \
 --user kvaughan:bribery \
 http://opendj.example.com:8080/api/users/nbohr?_prettyPrint=true
{
 "_id" : "nbohr",
 "_rev" : "<revision>",
 "_schema" : "frapi:opendj:rest2ldap:posixUser:1.0",
 "_meta" : { },
 "userName" : "nbohr@example.com",
 "displayName" : ["Niels Bohr"],
 "name" : {
 "givenName" : "Niels",
 "familyName" : "Bohr"
 },
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 1212",
 "emailAddress" : "nbohr@example.com"
 },
 "uidNumber" : 1111,
 "gidNumber" : 1000,
 "homeDirectory" : "/home/nbohr"
}

3.8. Patching Resources
OpenDJ lets you patch JSON resources, updating part of the resource rather than replacing it. For
example, you could change Babs Jensen's email address by issuing an HTTP PATCH request as in the
following example:

$ curl \
 --user kvaughan:bribery \
 --request PATCH \
 --header "Content-Type: application/json" \
 --data '[
 {
 "operation": "replace",
 "field": "/contactInformation/emailAddress",
 "value": "babs@example.com"
 }
]' \
 http://opendj.example.com:8080/api/users/bjensen?_prettyPrint=true
{
 "_id" : "bjensen",
 "_rev" : "<revision>",
 "_schema" : "frapi:opendj:rest2ldap:posixUser:1.0",
 "_meta" : {
 "lastModified" : "<datestamp>"
 },
 "userName" : "babs@example.com",
 "displayName" : ["Barbara Jensen", "Babs Jensen"],
 "name" : {

Performing RESTful Operations
Patching Resources

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 42

 "givenName" : "Barbara",
 "familyName" : "Jensen"
 },
 "description" : "Original description",
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 1862",
 "emailAddress" : "babs@example.com"
 },
 "uidNumber" : 1076,
 "gidNumber" : 1000,
 "homeDirectory" : "/home/bjensen",
 "manager" : {
 "_id" : "trigden",
 "displayName" : "Torrey Rigden"
 },
 "groups" : [{
 "_id" : "Carpoolers"
 }]
}

Notice in the example that the data sent specifies the type of patch operation, the field to change,
and a value that depends on the field you change and on the operation. A single-valued field takes an
object, boolean, string, or number depending on its type, whereas a multi-valued field takes an array
of values. Getting the type wrong results in an error. Also notice that the patch data is itself an array.
This makes it possible to patch more than one part of the resource by using a set of patch operations
in the same request.

OpenDJ supports four types of patch operations:

add

The add operation ensures that the target field contains the value provided, creating parent fields
as necessary.

If the target field is single-valued and a value already exists, then that value is replaced with the
value you provide. Note that you do not get an error when adding a value to a single-valued field
that already has a value. A single-valued field is one whose value is not an array (an object, string,
boolean, or number).

If the target field is multi-valued, then the array of values you provide is merged with the set of
values already in the resource. New values are added, and duplicate values are ignored. A multi-
valued field takes an array value.

remove

The remove operation ensures that the target field does not contain the value provided. If you do
not provide a value, the entire field is removed if it already exists.

If the target field is single-valued and a value is provided, then the provided value must match the
existing value to remove, otherwise the field is left unchanged.

If the target field is multi-valued, then values in the array you provide are removed from the
existing set of values.

Performing RESTful Operations
Patching Resources

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 43

replace

The replace operation removes existing values on the target field, and replaces them with the
values you provide. It is equivalent to performing a remove on the field, then an add with the
values you provide.

increment

The increment operation increments or decrements the value or values in the target field by the
amount you specify, which is positive to increment and negative to decrement. The target field
must take a number or a set of numbers. The value you provide must be a single number.

One key nuance in how a patch works with OpenDJ concerns multi-valued fields. Although JSON
resources represent multi-valued fields as arrays, OpenDJ treats those values as sets. In other words,
values in the field are unique, and the ordering of an array of values is not meaningful in the context
of patch operations. If you reference array values by index, OpenDJ returns an error. OpenDJ does,
however, allow use of a hyphen to add an element to a set. Include the hyphen as the last element of
the field JSON pointer path as in "/members/-" in this example patch: [{ "operation" : "add", "field" : "
/members/-", "value" : { "_id" : "bjensen" } }].

Perform patch operations as if arrays values were sets. The following example includes Barbara
Jensen in a group by adding her to the set of members:

$ curl \
 --user kvaughan:bribery \
 --request PATCH \
 --header "Content-Type: application/json" \
 --data '[{
 "operation": "add",
 "field": "/members",
 "value": [{"_id": "bjensen"}]
 }]' \
 http://opendj.example.com:8080/api/groups/Directory%20Administrators?_prettyPrint=true
{
 "_id" : "Directory Administrators",
 "_rev" : "<revision>",
 "_schema" : "frapi:opendj:rest2ldap:group:1.0",
 "_meta" : {
 "lastModified" : "<datestamp>"
 },
 "displayName" : "Directory Administrators",
 "members" : [{
 "_id" : "kvaughan",
 "displayName" : "Kirsten Vaughan"
 }, {
 "_id" : "rdaugherty",
 "displayName" : "Robert Daugherty"
 }, {
 "_id" : "hmiller",
 "displayName" : "Harry Miller"
 }, {
 "_id" : "bjensen",
 "displayName" : ["Barbara Jensen", "Babs Jensen"]
 }]
}

Performing RESTful Operations
Patching Resources

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 44

The following example removes Barbara Jensen from the group:

$ curl \
 --user kvaughan:bribery \
 --request PATCH \
 --header "Content-Type: application/json" \
 --data '[{
 "operation": "remove",
 "field": "/members",
 "value": [{"_id": "bjensen"}]
 }]' \
 http://opendj.example.com:8080/api/groups/Directory%20Administrators?_prettyPrint=true
{
 "_id" : "Directory Administrators",
 "_rev" : "<revision>",
 "_schema" : "frapi:opendj:rest2ldap:group:1.0",
 "_meta" : {
 "lastModified" : "<datestamp>"
 },
 "displayName" : "Directory Administrators",
 "members" : [{
 "_id" : "kvaughan",
 "displayName" : "Kirsten Vaughan"
 }, {
 "_id" : "rdaugherty",
 "displayName" : "Robert Daugherty"
 }, {
 "_id" : "hmiller",
 "displayName" : "Harry Miller"
 }]
}

To change the value of more than one attribute in a patch operation, include multiple operations in
the body of the JSON patch, as shown in the following example:

$ curl \
 --user kvaughan:bribery \
 --request PATCH \
 --header "Content-Type: application/json" \
 --data '[
 {
 "operation": "replace",
 "field": "/contactInformation/telephoneNumber",
 "value": "+1 408 555 9999"
 },
 {
 "operation": "add",
 "field": "/contactInformation/emailAddress",
 "value": "barbara.jensen@example.com"
 }
]' \
 http://opendj.example.com:8080/api/users/bjensen?_prettyPrint=true
{
 "_id" : "bjensen",

Performing RESTful Operations
Patching Resources

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 45

 "_rev" : "<revision>",
 "_schema" : "frapi:opendj:rest2ldap:posixUser:1.0",
 "_meta" : {
 "lastModified" : "<datestamp>"
 },
 "userName" : "barbara.jensen@example.com",
 "displayName" : ["Barbara Jensen", "Babs Jensen"],
 "name" : {
 "givenName" : "Barbara",
 "familyName" : "Jensen"
 },
 "description" : "Original description",
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 9999",
 "emailAddress" : "barbara.jensen@example.com"
 },
 "uidNumber" : 1076,
 "gidNumber" : 1000,
 "homeDirectory" : "/home/bjensen",
 "manager" : {
 "_id" : "trigden",
 "displayName" : "Torrey Rigden"
 },
 "groups" : [{
 "_id" : "Carpoolers"
 }]
}

Notice that for a multi-valued attribute, the value field takes an array, whereas the value field takes a
single value for a single-valued field. Also notice that for single-valued fields, an add operation has the
same effect as a replace operation.

You can use resource revision numbers in If-Match: revision headers to patch the resource only if the
resource matches a particular version, as shown in the following example:

$ export REVISION=$(cut -d \" -f 8 <(curl --silent \
 --user kvaughan:bribery \
 http://opendj.example.com:8080/api/users/bjensen?_fields=_rev))
$ curl \
 --user kvaughan:bribery \
 --request PATCH \
 --header "If-Match: $REVISION" \
 --header "Content-Type: application/json" \
 --data '[
 {
 "operation": "add",
 "field": "/contactInformation/emailAddress",
 "value": "babs@example.com"
 }
]' \
 http://opendj.example.com:8080/api/users/bjensen?_prettyPrint=true
{
 "_id" : "bjensen",
 "_rev" : "<new-revision>",
 "_schema" : "frapi:opendj:rest2ldap:posixUser:1.0",
 "_meta" : {

Performing RESTful Operations
Using Actions

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 46

 "lastModified" : "<datestamp>"
 },
 "userName" : "babs@example.com",
 "displayName" : ["Barbara Jensen", "Babs Jensen"],
 "name" : {
 "givenName" : "Barbara",
 "familyName" : "Jensen"
 },
 "description" : "Original description",
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 9999",
 "emailAddress" : "babs@example.com"
 },
 "uidNumber" : 1076,
 "gidNumber" : 1000,
 "homeDirectory" : "/home/bjensen",
 "groups" : [{
 "_id" : "Carpoolers"
 }],
 "manager" : {
 "_id" : "trigden",
 "displayName" : "Torrey Rigden"
 }
}

The resource revision changes when the patch is successful.

3.9. Using Actions
OpenDJ REST to LDAP implements the actions described in this section.

3.9.1. Using the Create Resource Action

OpenDJ implements an action that lets the server set the resource ID on creation. To use this action,
perform an HTTP POST with header Content-Type: application/json, and the JSON content of the
resource.

The _action=create in the query string is optional.

The following example creates a new user entry:

$ curl \
 --request POST \
 --user kvaughan:bribery \
 --header "Content-Type: application/json" \
 --data '{
 "_id": "newuser",
 "_schema": "frapi:opendj:rest2ldap:user:1.0",
 "contactInformation": {
 "telephoneNumber": "+1 408 555 1212",
 "emailAddress": "newuser@example.com"

Performing RESTful Operations
Using the Modify Password and Reset Password Actions

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 47

 },
 "name": {
 "familyName": "New",
 "givenName": "User"
 },
 "displayName": ["New User"],
 "manager": {"_id": "kvaughan", "displayName": "Kirsten Vaughan"}
 }' \
 http://opendj.example.com:8080/api/users?_prettyPrint=true
{
 "_id" : "newuser",
 "_rev" : "<revision>",
 "_schema" : "frapi:opendj:rest2ldap:user:1.0",
 "_meta" : {
 "created" : "<datestamp>"
 },
 "userName" : "newuser@example.com",
 "displayName" : ["New User"],
 "name" : {
 "givenName" : "User",
 "familyName" : "New"
 },
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 1212",
 "emailAddress" : "newuser@example.com"
 },
 "manager" : {
 "_id" : "kvaughan",
 "displayName" : "Kirsten Vaughan"
 }
}

3.9.2. Using the Modify Password and Reset Password Actions
OpenDJ implements actions for resetting and changing passwords.

These actions require HTTPS to avoid sending passwords over insecure connections. Before trying
the examples that follow, enable HTTPS on the HTTP connection handler as described in "RESTful
Client Access Over HTTP" in the Administration Guide. Notice that the following examples use the
exported server certificate, server-cert.pem, generated in that procedure. If the connection handler
uses a certificate signed by a well-known CA, then you can omit the --cacert option.

3.9.2.1. Changing Passwords
The modifyPassword action lets a user modify their password given the old password and a new
password.

To use this action, perform an HTTP POST over HTTPS with header Content-Type: application/json,
_action=modifyPassword in the query string, and the old and new passwords in JSON format as the POST
data.

The JSON must include the following fields:

Performing RESTful Operations
Using the Modify Password and Reset Password Actions

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 48

oldPassword

The value of this field is the current password as a UTF-8 string.

newPassword

The value of this field is the new password as a UTF-8 string.

The following example demonstrates a user changing their own password. On success, the HTTP
status code is 200 OK, and the response body is an empty JSON resource:

$ curl \
 --request POST \
 --cacert server-cert.pem \
 --user bjensen:hifalutin \
 --header "Content-Type: application/json" \
 --data '{"oldPassword": "hifalutin", "newPassword": "password"}' \
 https://opendj.example.com:8443/api/users/bjensen?_action=modifyPassword
{}

3.9.2.2. Resetting Passwords

The resetPassword action lets a user or password administrator reset a password to a generated
password value.

To use this action, perform an HTTP POST over HTTPS with header Content-Type: application/json,
_action=resetPassword in the query string, and an empty JSON document ({}) as the POST data.

The following example demonstrates an administrator changing a user's password. Before trying this
example, make sure the password administrator user has been given the password-reset privilege as
shown in "To Add Privileges for an Individual Administrator" in the Administration Guide. Otherwise,
the password administrator has insufficient access. On success, the HTTP status code is 200 OK, and
the response body is a JSON resource with a generatedPassword containing the new password:

$ curl \
 --request POST \
 --cacert server-cert.pem \
 --user kvaughan:bribery \
 --header "Content-Type: application/json" \
 --data '{}' \
 https://opendj.example.com:8443/api/users/bjensen?_action=resetPassword
{"generatedPassword":"<new-password>"}

The password administrator communicates the new, generated password to the user.

This feature could be used in combination with a password policy that forces the user to change their
password after a reset. For an example of such a policy, see "Require Password Change on Add or
Reset" in the Administration Guide.

Performing RESTful Operations
Querying Resource Collections

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 49

3.10. Querying Resource Collections
To query resource collections, perform an HTTP GET with a _queryFilter=expression parameter in the
query string. For details about the query filter expression, see "Query".

The _queryId, and _totalPagedResultsPolicy parameters described in "Query" are not used in OpenDJ
software at present.

"LDAP Search and REST Query Filters" shows some LDAP search filters with corresponding examples
of query filter expressions.

LDAP Search and REST Query Filters

LDAP Filter REST Filter
(&) _queryFilter=true
(uid=*) _queryFilter=_id+pr
(uid=bjensen) _queryFilter=_id+eq+'bjensen'
(uid=*jensen*) _queryFilter=_id+co+'jensen'
(uid=jensen*) _queryFilter=_id+sw+'jensen'
(&(uid=*jensen*)(cn=babs*)) _queryFilter=(_id+co+'jensen'+and+displayName

+sw+'babs')
(|(uid=*jensen*)(cn=sam*)) _queryFilter=(_id+co+'jensen'+or+displayName+sw

+'sam')
(!(uid=*jensen*)) _queryFilter=!(_id+co+'jensen')
(uid<=jensen) _queryFilter=_id+le+'jensen'
(uid>=jensen) _queryFilter=_id+ge+'jensen'

For query operations, the filter expression is constructed from the following building blocks. Make
sure you URL-encode the filter expressions, which are shown here without URL-encoding to make
them easier to read.

In filter expressions, the simplest json-pointer is a field of the JSON resource, such as userName or id. A
json-pointer can also point to nested elements as described in the JSON Pointer Internet-Draft:

Comparison expressions

Build filters using the following comparison expressions:

json-pointer eq json-value

Matches when the pointer equals the value, as in the following example:

$ curl \

http://tools.ietf.org/html/draft-ietf-appsawg-json-pointer

Performing RESTful Operations
Querying Resource Collections

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 50

 --user kvaughan:bribery \
 "http://opendj.example.com:8080/api/users?_queryFilter=userName+eq+'babs@example
.com'&_prettyPrint=true"
{
 "result" : [{
 "_id" : "bjensen",
 "_rev" : "<revision>",
 "_schema" : "frapi:opendj:rest2ldap:posixUser:1.0",
 "_meta" : {
 "lastModified" : "<datestamp>"
 },
 "userName" : "babs@example.com",
 "displayName" : ["Barbara Jensen", "Babs Jensen"],
 "name" : {
 "givenName" : "Barbara",
 "familyName" : "Jensen"
 },
 "description" : "Original description",
 "manager" : {
 "_id" : "trigden",
 "displayName" : "Torrey Rigden"
 },
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 9999",
 "emailAddress" : "babs@example.com"
 },
 "uidNumber" : 1076,
 "gidNumber" : 1000,
 "homeDirectory" : "/home/bjensen",
 "groups" : [{
 "_id" : "Carpoolers"
 }]
 }],
 "resultCount" : 1,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

json-pointer co json-value

Matches when the pointer contains the value, as in the following example:

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/api/users?_queryFilter=userName+co
+'jensen'&_fields=userName&_prettyPrint=true"
{
 "result" : [{
 "_id" : "ajensen",
 "_rev" : "<revision>",
 "userName" : "ajensen@example.com"
 }, {
 "_id" : "gjensen",
 "_rev" : "<revision>",

Performing RESTful Operations
Querying Resource Collections

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 51

 "userName" : "gjensen@example.com"
 }, {
 "_id" : "jjensen",
 "_rev" : "<revision>",
 "userName" : "jjensen@example.com"
 }, {
 "_id" : "kjensen",
 "_rev" : "<revision>",
 "userName" : "kjensen@example.com"
 }, {
 "_id" : "rjensen",
 "_rev" : "<revision>",
 "userName" : "rjensen@example.com"
 }, {
 "_id" : "tjensen",
 "_rev" : "<revision>",
 "userName" : "tjensen@example.com"
 }],
 "resultCount" : 6,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

json-pointer sw json-value

Matches when the pointer starts with the value, as in the following example:

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/api/users?_queryFilter=userName+sw
+'ab'&_fields=userName&_prettyPrint=true"
{
 "result" : [{
 "_id" : "abarnes",
 "_rev" : "<revision>",
 "userName" : "abarnes@example.com"
 }, {
 "_id" : "abergin",
 "_rev" : "<revision>",
 "userName" : "abergin@example.com"
 }],
 "resultCount" : 2,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

json-pointer lt json-value

Matches when the pointer is less than the value, as in the following example:

Performing RESTful Operations
Querying Resource Collections

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 52

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/api/users?_queryFilter=userName+lt
+'ac'&_fields=userName&_prettyPrint=true"
{
 "result" : [{
 "_id" : "abarnes",
 "_rev" : "<revision>",
 "userName" : "abarnes@example.com"
 }, {
 "_id" : "abergin",
 "_rev" : "<revision>",
 "userName" : "abergin@example.com"
 }],
 "resultCount" : 2,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

json-pointer le json-value

Matches when the pointer is less than or equal to the value, as in the following example:

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/api/users?_queryFilter=userName+le
+'ad'&_fields=userName&_prettyPrint=true"
{
 "result" : [{
 "_id" : "abarnes",
 "_rev" : "<revision>",
 "userName" : "abarnes@example.com"
 }, {
 "_id" : "abergin",
 "_rev" : "<revision>",
 "userName" : "abergin@example.com"
 }, {
 "_id" : "achassin",
 "_rev" : "<revision>",
 "userName" : "achassin@example.com"
 }],
 "resultCount" : 3,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

json-pointer gt json-value

Matches when the pointer is greater than the value, as in the following example:

Performing RESTful Operations
Querying Resource Collections

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 53

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/api/users?_queryFilter=userName+gt
+'tt'&_fields=userName&_prettyPrint=true"
{
 "result" : [{
 "_id" : "ttully",
 "_rev" : "<revision>",
 "userName" : "ttully@example.com"
 }, {
 "_id" : "tward",
 "_rev" : "<revision>",
 "userName" : "tward@example.com"
 }, {
 "_id" : "wlutz",
 "_rev" : "<revision>",
 "userName" : "wlutz@example.com"
 }],
 "resultCount" : 3,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

json-pointer ge json-value

Matches when the pointer is greater than or equal to the value, as in the following example:

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/api/users?_queryFilter=userName+ge
+'tw'&_fields=userName&_prettyPrint=true"
{
 "result" : [{
 "_id" : "tward",
 "_rev" : "<revision>",
 "userName" : "tward@example.com"
 }, {
 "_id" : "wlutz",
 "_rev" : "<revision>",
 "userName" : "wlutz@example.com"
 }],
 "resultCount" : 2,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

Performing RESTful Operations
Querying Resource Collections

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 54

Presence expression

json-pointer pr matches any resource on which the json-pointer is present, as in the following
example:

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/api/groups?_queryFilter=displayName
+pr&_fields=displayName&_prettyPrint=true"
{
 "result" : [{
 "_id" : "Accounting Managers",
 "_rev" : "<revision>",
 "displayName" : "Accounting Managers"
 }, {
 "_id" : "Directory Administrators",
 "_rev" : "<revision>",
 "displayName" : "Directory Administrators"
 }, {
 "_id" : "HR Managers",
 "_rev" : "<revision>",
 "displayName" : "HR Managers"
 }, {
 "_id" : "PD Managers",
 "_rev" : "<revision>",
 "displayName" : "PD Managers"
 }, {
 "_id" : "QA Managers",
 "_rev" : "<revision>",
 "displayName" : "QA Managers"
 }],
 "resultCount" : 5,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

Literal expressions

true matches any resource in the collection.

false matches no resource in the collection.

In other words, you can list all resources in a collection as in the following example:

Performing RESTful Operations
Querying Resource Collections

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 55

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/api/groups?_queryFilter=true&_fields=_id&_prettyPrint=true"
{
 "result" : [{
 "_id" : "Accounting Managers",
 "_rev" : "<revision>"
 }, {
 "_id" : "Directory Administrators",
 "_rev" : "<revision>"
 }, {
 "_id" : "HR Managers",
 "_rev" : "<revision>"
 }, {
 "_id" : "PD Managers",
 "_rev" : "<revision>"
 }, {
 "_id" : "QA Managers",
 "_rev" : "<revision>"
 }, {
 "_rev" : "<revision>"
 }],
 "resultCount" : 6,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

Complex expressions

Combine expressions using boolean operators and, or, and ! (not), and by using parentheses
(expression) with group expressions. The following example queries resources with last name
Jensen and manager name starting with Bar:

Performing RESTful Operations
Paged Results

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 56

$ curl \
 --user kvaughan:bribery \
 "http://opendj.example.com:8080/api/users?_queryFilter=\
(userName+co+'jensen'+and+manager/displayName+sw+'Sam')&_fields=displayName&_prettyPrint=true"
{
 "result" : [{
 "_id" : "jjensen",
 "_rev" : "<revision>",
 "displayName" : ["Jody Jensen"]
 }, {
 "_id" : "tjensen",
 "_rev" : "<revision>",
 "displayName" : ["Ted Jensen"]
 }],
 "resultCount" : 2,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

Notice that the filters use the JSON pointers name/familyName and manager/displayName to identify the
fields nested inside the name and manager objects.

3.10.1. Paged Results
You can page through search results using the following query string parameters that are further
described in "Query":

• _pagedResultsCookie=string

• _pagedResultsOffset=integer

• _pageSize=integer

The following example demonstrates how paged results are used:

Request five results per page, and retrieve the first page.
$ curl \
 --user bjensen:hifalutin \
 "http://opendj.example.com:8080/api/users?_queryFilter=true&_fields=userName&_pageSize=5&_prettyPrint=true"
{
 "result" : [{
 "_id" : "abarnes",
 "_rev" : "<revision>",
 "userName" : "abarnes@example.com"
 }, {
 "_id" : "abergin",
 "_rev" : "<revision>",
 "userName" : "abergin@example.com"
 }, {
 "_id" : "achassin",
 "_rev" : "<revision>",

Performing RESTful Operations
Paged Results

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 57

 "userName" : "achassin@example.com"
 }, {
 "_id" : "ahall",
 "_rev" : "<revision>",
 "userName" : "ahall@example.com"
 }, {
 "_id" : "ahel",
 "_rev" : "<revision>",
 "userName" : "ahel@example.com"
 }],
 "resultCount" : 5,
 "pagedResultsCookie" : "<cookie>",
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}
$ export COOKIE=$(cut -d \" -f 4 <(grep pagedResultsCookie \
 <(curl --silent --user bjensen:hifalutin \
 "http://opendj.example.com:8080/api/users?_queryFilter=true&_fields=userName&_pageSize=5&_prettyPrint=true")))

Provide the cookie to request the next five results.
$ curl \
 --user bjensen:hifalutin \
 "http://opendj.example.com:8080/api/users?_queryFilter=true&_fields=userName&_pageSize=5\
&_pagedResultsCookie=$COOKIE&_prettyPrint=true"
{
 "result" : [{
 "_id" : "ahunter",
 "_rev" : "<revision>",
 "userName" : "ahunter@example.com"
 }, {
 "_id" : "ajensen",
 "_rev" : "<revision>",
 "userName" : "ajensen@example.com"
 }, {
 "_id" : "aknutson",
 "_rev" : "<revision>",
 "userName" : "aknutson@example.com"
 }, {
 "_id" : "alangdon",
 "_rev" : "<revision>",
 "userName" : "alangdon@example.com"
 }, {
 "_id" : "alutz",
 "_rev" : "<revision>",
 "userName" : "alutz@example.com"
 }],
 "resultCount" : 5,
 "pagedResultsCookie" : "<new-cookie>",
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

Request the tenth page of five results.
$ curl \
 --user bjensen:hifalutin \
 "http://opendj.example.com:8080/api/users?_queryFilter=true&_fields=userName\
&_pageSize=5&_pagedResultsOffset=10&_prettyPrint=true"

Performing RESTful Operations
Server-Side Sort

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 58

{
 "result" : [{
 "_id" : "ewalker",
 "_rev" : "<revision>",
 "userName" : "ewalker@example.com"
 }, {
 "_id" : "eward",
 "_rev" : "<revision>",
 "userName" : "eward@example.com"
 }, {
 "_id" : "falbers",
 "_rev" : "<revision>",
 "userName" : "falbers@example.com"
 }, {
 "_id" : "gfarmer",
 "_rev" : "<revision>",
 "userName" : "gfarmer@example.com"
 }, {
 "_id" : "gjensen",
 "_rev" : "<revision>",
 "userName" : "gjensen@example.com"
 }],
 "resultCount" : 5,
 "pagedResultsCookie" : "<cookie>",
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

Notice the following features of the responses:

• "remainingPagedResults" : -1 means that the number of remaining results is unknown.

• "totalPagedResults" : -1 means that the total number of paged results is unknown.

• "totalPagedResultsPolicy" : "NONE" means that result counting is disabled.

3.10.2. Server-Side Sort
You can use the _sortKeys parameter, described in "Query", to request that the server sort the results
it returns.

The following example sorts results by given name:

$ curl \
 --user bjensen:hifalutin \
 "http://opendj.example.com:8080/api/users?_queryFilter=name/familyName+eq+'jensen'\
&_sortKeys=name/givenName&_fields=name&_prettyPrint=true"
{
 "result" : [{
 "_id" : "ajensen",
 "_rev" : "<revision>",
 "name" : {
 "givenName" : "Allison",

Performing RESTful Operations
Server-Side Sort

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 59

 "familyName" : "Jensen"
 }
 }, {
 "_id" : "bjensen",
 "_rev" : "<revision>",
 "name" : {
 "givenName" : "Barbara",
 "familyName" : "Jensen"
 }
 }, {
 "_id" : "bjense2",
 "_rev" : "<revision>",
 "name" : {
 "givenName" : "Bjorn",
 "familyName" : "Jensen"
 }
 }, {
 "_id" : "gjensen",
 "_rev" : "<revision>",
 "name" : {
 "givenName" : "Gern",
 "familyName" : "Jensen"
 }
 }, {
 "_id" : "jjensen",
 "_rev" : "<revision>",
 "name" : {
 "givenName" : "Jody",
 "familyName" : "Jensen"
 }
 }, {
 "_id" : "kjensen",
 "_rev" : "<revision>",
 "name" : {
 "givenName" : "Kurt",
 "familyName" : "Jensen"
 }
 }, {
 "_id" : "rjense2",
 "_rev" : "<revision>",
 "name" : {
 "givenName" : "Randy",
 "familyName" : "Jensen"
 }
 }, {
 "_id" : "rjensen",
 "_rev" : "<revision>",
 "name" : {
 "givenName" : "Richard",
 "familyName" : "Jensen"
 }
 }, {
 "_id" : "tjensen",
 "_rev" : "<revision>",
 "name" : {
 "givenName" : "Ted",
 "familyName" : "Jensen"
 }
 }],

Performing RESTful Operations
Working With Alternative Content Types

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 60

 "resultCount" : 9,
 "pagedResultsCookie" : null,
 "totalPagedResultsPolicy" : "NONE",
 "totalPagedResults" : -1,
 "remainingPagedResults" : -1
}

To sort in reverse order, use _sortKeys=-field.

To specify multiple sort keys, use a comma-separated list of fields.

The sort key fields that you specify must exist in the result entries. The fields must not be reference
mappings to other entries, as described in "Properties of Resource Type Properties Objects" in the
Reference. In other words, when you request a sort on a user's groups or manager field, the result is an
HTTP 400 Bad Request error.

As mentioned in "Take Care With Persistent Search and Server-Side Sorting", servers must store and
then sort the result set for your search. If you expect a large result set for your search, use paged
results, described in "Paged Results", to limit the impact on the server and get your results more
quickly.

3.11. Working With Alternative Content Types
OpenDJ generally maps JSON resources to LDAP entries. Some resources such as profile photos,
however, are best expressed with other MIME types. ForgeRock common REST lets your applications
make HTTP multipart requests, so you can work with other MIME types differently from regular
JSON resources. This is done using the _mimeType parameter described in "Read".

This section includes the following procedures:

• "To Map an Alternative Content Type"

• "To Update a Non-JSON Resource"

• "To Read a Non-JSON Resource"

Note

The default configuration described in "To Set Up REST Access to User Data" in the Administration Guide does
not include any mappings that require alternative content types. You must therefore add a mapping to use an
alternative content type and disable and then enable the Rest2ldap endpoint for the change to take effect.

To Map an Alternative Content Type

To add a mapping to the configuration, follow these steps:

1. Edit the attributes section for a resource in the configuration file /path/to/opendj/config/rest2ldap/
endpoints/api/example-v1.json to include a user property that maps to a MIME type.

Performing RESTful Operations
Working With Alternative Content Types

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 61

The following line adds a simple mapping from the photo property to the jpegPhoto LDAP attribute:
"photo" : { "type": "simple", "ldapAttribute" : "jpegPhoto" },

2. Force the Rest2ldap endpoint to reread the updated configuration file.

You can force the Rest2ldap endpoint to reread its configuration by disabling it and then enabling
it:

$ dsconfig \
 set-http-endpoint-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --endpoint-name "/api" \
 --set enabled:false \
 --trustAll \
 --no-prompt
$ dsconfig \
 set-http-endpoint-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --endpoint-name "/api" \
 --set enabled:true \
 --trustAll \
 --no-prompt

To Update a Non-JSON Resource

With a mapping configured as described in "To Map an Alternative Content Type", REST client
applications can update MIME resources with form-based content as described in the following steps:

1. Ensure that the application has a resource to upload.

For example, copy a JPEG photo picture.jpg to the current directory.

2. Upload the non-JSON resource with its metadata as a multipart form.

The following example patches Babs Jensen’s resource to add a profile photo:

$ curl \
 --request PATCH \
 --form 'json=[{"operation": "add", "field": "/photo",
 "value": {"$ref":"cid:picture#content"}}];type=application/json' \
 --form 'picture=@picture.jpg;type=image/jpeg' \
 "http://kvaugan:bribery@opendj.example.com:8080/api/users/bjensen?_prettyPrint=true"
{
 "_id" : "bjensen",
 "_rev" : "<revision>",

Performing RESTful Operations
Working With Alternative Content Types

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 62

 "_schema" : "frapi:opendj:rest2ldap:posixUser:1.0",
 "_meta" : {
 "lastModified" : "<datestamp>"
 },
 "userName" : "babs@example.com",
 "displayName" : ["Barbara Jensen", "Babs Jensen"],
 "name" : {
 "givenName" : "Barbara",
 "familyName" : "Jensen"
 },
 "description" : "Original description",
 "photo" : "<base64-photo>",
 "contactInformation" : {
 "telephoneNumber" : "+1 408 555 9999",
 "emailAddress" : "babs@example.com"
 },
 "uidNumber" : 1076,
 "gidNumber" : 1000,
 "homeDirectory" : "/home/bjensen",
 "manager" : {
 "_id" : "trigden",
 "displayName" : "Torrey Rigden"
 },
 "groups" : [{
 "_id" : "Carpoolers"
 }]
}

Notice the curl command form data. When you specify the reference to the content ID, the
reference takes the form:

{"$ref":"cid:identifier#(content|filename|mimetype)"}

If you want other attributes to hold the filename (picture.jpg) and MIME type (image
/jpeg) of the file you upload, you can reference those as well. In the example above,
{"$ref":"cid:picture#filename"} is picture.jpg and {"$ref":"cid:picture#mimetype"} is image/jpeg.

To Read a Non-JSON Resource

With a mapping configured as described in "To Map an Alternative Content Type", REST client
applications can read MIME resources as described in the following step:

• Read the non-JSON resource using a single value for each of the _fields and _mimeType parameters.

The following example reads Babs Jensen’s profile photo:

$ curl "http://kvaughan:bribery@opendj.example.com:8080/api/users/bjensen
\
?_fields=photo&_mimeType=image/jpeg"
... binary data ...

Performing RESTful Operations
Working With REST API Documentation

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 63

3.12. Working With REST API Documentation
As described in "Common REST API Documentation", API descriptors provide runtime documentation
for REST APIs. Although it is possible to serve the descriptors at runtime, do not use production
servers for this purpose. Instead, prepare the documentation by reading API descriptors from a
server with the same API as production servers, and publish the documentation separately.

This section includes the following procedures:

• "To Prepare Final API Documentation for Rest2ldap Endpoints"

• "To Protect Production Servers"

To Prepare Final API Documentation for Rest2ldap Endpoints

Preparing documentation for a Rest2ldap endpoint is an iterative process.

1. Configure the API as described in "Mapping Configuration File" in the Reference.

2. Run a local copy of a tool for viewing OpenAPI documentation, such as Swagger UI.

3. View the generated documentation through the tool by reading the OpenAPI format descriptor.

For example, read the descriptor for the /api endpoint with a URL such as http://
kvaughan:bribery@opendj.example.com:8080/api?_api.

"Generated API Documentation" shows the documentation as it appears using the Swagger UI
browser tool.

http://swagger.io/swagger-ui/

Performing RESTful Operations
Working With REST API Documentation

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 64

Generated API Documentation

If your browser does not display the generated documentation, turn off CORS settings in your
browser. See your browser's documentation or search the web for details.

4. Update the API configuration as necessary.

5. Force the Rest2ldap endpoint to reread the updated configuration file.

You can force the Rest2ldap endpoint to reread its configuration by disabling it and then enabling
it:

Performing RESTful Operations
Working With REST API Documentation

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 65

$ dsconfig \
 set-http-endpoint-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --endpoint-name /api \
 --set enabled:false \
 --no-prompt \
 --trustAll
$ dsconfig \
 set-http-endpoint-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --endpoint-name /api \
 --set enabled:true \
 --no-prompt \
 --trustAll

6. Edit the descriptor as suggested in "To Publish OpenAPI Documentation".

7. Publish the final descriptor alongside your production deployment.

To Protect Production Servers

Protect production servers from unwanted API descriptor requests:

• What you do depends on how you deploy REST to LDAP functionality.

• If you allow direct access through an HTTP connection handler, follow these steps:

a. Set api-descriptor-enabled to false:

$ dsconfig \
 set-connection-handler-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --handler-name "HTTP Connection Handler" \
 --set api-descriptor-enabled:false \
 --trustAll \
 --no-prompt

b. Restart the connection handler:

Performing RESTful Operations
Working With REST API Documentation

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 66

$ dsconfig \
 set-connection-handler-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --handler-name "HTTP Connection Handler" \
 --set enabled:false \
 --trustAll \
 --no-prompt
$ dsconfig \
 set-connection-handler-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --handler-name "HTTP Connection Handler" \
 --set enabled:true \
 --trustAll \
 --no-prompt

• If you use the REST to LDAP gateway, follow these steps:

a. Identify the REST to LDAP endpoints you expose.

b. In the configuration of the HTTP service where the gateway runs, prevent requests to the
API descriptors on those endpoints.

Requests for API descriptors are requests that use the reserved query string parameters,
_api and _crestapi.

If you expect the requests to come from client applications, you could have the HTTP
gateway respond immediately with HTTP status code 501 Not Implemented, or 404 Not Found,
and stop processing the request.

If you expect the requests to come from users, you could have the HTTP gateway respond
immediately with HTTP status code 301 Moved Permanently and a Location header to redirect
the user-agent to the URL of the documentation you publish, and stop processing the
request.

Performing LDAP Operations
About Command-Line Tools

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 67

Chapter 4

Performing LDAP Operations
In this chapter, you will learn how to use the command-line tools to perform LDAP operations.

4.1. About Command-Line Tools
Before you try the examples in this chatper, install command-line tools for performing LDAP
operations. If you install server software, see "Server Command-Line Tools".

4.1.1. Client Command-Line Tools

This section covers the client tools installed with server software.

Before you try the examples in this guide, add client commands to your PATH:

(UNIX)
$ export PATH=/path/to/opendj/bin:$PATH

(Windows)
C:\>set PATH=\\path\to\opendj\bat:%PATH%

All OpenDJ command-line tools take the --help option.

All commands call Java programs and therefore involve starting a JVM.

The following list uses the UNIX names for the commands:

addrate

Measure add and delete throughput and response time.

For details, see addrate(1) in the Reference.

authrate

Measure bind throughput and response time.

For details, see authrate(1) in the Reference.

Performing LDAP Operations
Client Command-Line Tools

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 68

base64

Encode and decode data in base64 format.

Base64-encoding represents binary data in ASCII, and can be used to encode character strings in
LDIF, for example.

For details, see base64(1) in the Reference.

ldapcompare

Compare the attribute values you specify with those stored on entries in the directory.

For details, see ldapcompare(1) in the Reference.

ldapdelete

Delete entries from the directory.

For details, see ldapdelete(1) in the Reference.

ldapmodify

Modify the specified attribute values for the specified entries.

For details, see ldapmodify(1) in the Reference.

ldappasswordmodify

Modify user passwords.

For details, see ldappasswordmodify(1) in the Reference.

ldapsearch

Search a branch of directory data for entries that match the LDAP filter you specify.

For details, see ldapsearch(1) in the Reference.

ldifdiff

Display differences between two LDIF files, with the resulting output having LDIF format.

For details, see ldifdiff(1) in the Reference.

ldifmodify

Similar to the ldapmodify command, modify specified attribute values for specified entries in an
LDIF file.

Performing LDAP Operations
Server Command-Line Tools

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 69

For details, see ldifmodify(1) in the Reference.

ldifsearch

Similar to the ldapsearch command, search a branch of data in LDIF for entries matching the
LDAP filter you specify.

For details, see ldifsearch(1) in the Reference.

makeldif

Generate directory data in LDIF based on templates that define how the data should appear.

The makeldif command is designed to help generate test data that mimics data expected in
production, but without compromising real, potentially private information.

For details, see makeldif(1) in the Reference, and makeldif.template(5) in the Reference.

modrate

Measure modification throughput and response time.

For details, see modrate(1) in the Reference.

searchrate

Measure search throughput and response time.

For details, see searchrate(1) in the Reference.

4.1.2. Server Command-Line Tools

This section covers the tools installed with server software.

Before you try the examples in this guide, set your PATH to include the OpenDJ server tools. The
location of the tools depends on the operating environment and on the packages used to install server
software. "Paths To Administration Tools" indicates where to find the tools.

Paths To Administration Tools

OpenDJ running on... OpenDJ installed from... Default path to tools...
Linux distributions .zip /path/to/opendj/bin

Linux distributions .deb, .rpm /opt/opendj/bin

Microsoft Windows .zip C:\path\to\opendj\bat

You find the installation and upgrade tools, setup, and upgrade, in the parent directory of the other
tools, as these tools are not used for everyday administration. For example, if the path to most tools

Performing LDAP Operations
Server Command-Line Tools

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 70

is /path/to/opendj/bin you can find these tools in /path/to/opendj. For instructions on how to use the
installation and upgrade tools, see the Installation Guide.

All OpenDJ command-line tools take the --help option.

All commands call Java programs and therefore involve starting a JVM.

"Tools and Server Constraints" indicates the constraints, if any, that apply when using a command-
line tool with a server.

Tools and Server Constraints

Commands Constraints
backendstat
create-rc-script
encode-password
setup
start-ds
upgrade
windows-service

These commands must be used with the local OpenDJ
server in the same installation as the tools.

These commands are not useful with non-OpenDJ
directory servers.

control-panel
dsconfig
export-ldif
import-ldif
manage-account
manage-tasks
rebuild-index
restore
status
stop-ds
verify-index

These commands must be used with an OpenDJ server
having the same version as the command.

These commands are not useful with non-OpenDJ
directory servers.

dsreplication With one exception, this command can be used with
current and previous OpenDJ server versions. The one
exception is the dsreplication reset-change-number
subcommand, which requires OpenDJ server version
3.0.0 or later.

This commands is not useful with other types of
directory servers.

makeldif This command depends on template files. The
template files can make use of configuration files
installed with an OpenDJ server under config/
MakeLDIF/.

The LDIF output can be used with any directory
server.

base64
ldapcompare
ldapdelete

These commands can be used independently of an
OpenDJ server, and so are not tied to a specific
version.

Performing LDAP Operations
Server Command-Line Tools

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 71

Commands Constraints
ldapmodify
ldappasswordmodify
ldapsearch
ldifdiff
ldifmodify
ldifsearch

The following list uses the UNIX names for the commands. On Windows all command-line tools have
the extension .bat:

addrate

Measure add and delete throughput and response time.

For details, see addrate(1) in the Reference.

authrate

Measure bind throughput and response time.

For details, see authrate(1) in the Reference.

backendstat

Debug databases for pluggable backends.

For details, see backendstat(1) in the Reference.

backup

Back up or schedule backup of directory data.

For details, see backup(1) in the Reference.

base64

Encode and decode data in base64 format.

Base64-encoding represents binary data in ASCII, and can be used to encode character strings in
LDIF, for example.

For details, see base64(1) in the Reference.

control-panel

Start the control panel from the command-line.

create-rc-script (UNIX)

Generate a script you can use to start, stop, and restart the server either directly or at system
boot and shutdown. Use create-rc-script -f script-file.

Performing LDAP Operations
Server Command-Line Tools

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 72

This allows you to register and manage an OpenDJ server as a service on UNIX and Linux
systems.

For details, see create-rc-script(1) in the Reference.

dsconfig

The dsconfig command is the primary command-line tool for viewing and editing an OpenDJ
configuration. When started without arguments, dsconfig prompts you for administration
connection information. Once connected it presents you with a menu-driven interface to the
server configuration.

Some advanced properties are not visible by default when you run the dsconfig command
interactively. Use the --advanced option to access advanced properties.

When you pass connection information, subcommands, and additional options to dsconfig, the
command runs in script mode and so is not interactive.

You can prepare dsconfig batch scripts by running the command with the --commandFilePath option
in interactive mode, then reading from the batch file with the --batchFilePath option in script
mode. Batch files can be useful when you have many dsconfig commands to run and want to avoid
starting the JVM for each command.

Alternatively, you can read commands from standard input by using the --batch option.

For details, see dsconfig(1) in the Reference.

dsreplication

Configure data replication between directory servers to keep their contents in sync.

For details, see dsreplication(1) in the Reference.

encode-password

Encode a cleartext password according to one of the available storage schemes.

For details, see encode-password(1) in the Reference.

export-ldif

Export directory data to LDIF, the standard, portable, text-based representation of directory
content.

For details, see export-ldif(1) in the Reference.

import-ldif

Load LDIF content into the directory, overwriting existing data. It cannot be used to append data
to the backend database.

Performing LDAP Operations
Server Command-Line Tools

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 73

For details, see import-ldif(1) in the Reference.

ldapcompare

Compare the attribute values you specify with those stored on entries in the directory.

For details, see ldapcompare(1) in the Reference.

ldapdelete

Delete one entry or an entire branch of subordinate entries in the directory.

For details, see ldapdelete(1) in the Reference.

ldapmodify

Modify the specified attribute values for the specified entries.

For details, see ldapmodify(1) in the Reference.

ldappasswordmodify

Modify user passwords.

For details, see ldappasswordmodify(1) in the Reference.

ldapsearch

Search a branch of directory data for entries that match the LDAP filter you specify.

For details, see ldapsearch(1) in the Reference.

ldifdiff

Display differences between two LDIF files, with the resulting output having LDIF format.

For details, see ldifdiff(1) in the Reference.

ldifmodify

Similar to the ldapmodify command, modify specified attribute values for specified entries in an
LDIF file.

For details, see ldifmodify(1) in the Reference.

ldifsearch

Similar to the ldapsearch command, search a branch of data in LDIF for entries matching the
LDAP filter you specify.

For details, see ldifsearch(1) in the Reference.

Performing LDAP Operations
Server Command-Line Tools

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 74

makeldif

Generate directory data in LDIF based on templates that define how the data should appear.

The makeldif command is designed to help generate test data that mimics data expected in
production, but without compromising real, potentially private information.

For details, see makeldif(1) in the Reference.

manage-account

Lock and unlock user accounts, and view and manipulate password policy state information.

For details, see manage-account(1) in the Reference.

manage-tasks

View information about tasks scheduled to run in the server, and cancel specified tasks.

For details, see manage-tasks(1) in the Reference.

modrate

Measure modification throughput and response time.

For details, see modrate(1) in the Reference.

rebuild-index

Rebuild an index stored in an indexed backend.

For details, see rebuild-index(1) in the Reference.

restore

Restore data from backup.

For details, see restore(1) in the Reference.

searchrate

Measure search throughput and response time.

For details, see searchrate(1) in the Reference.

start-ds

Start an OpenDJ server.

For details, see start-ds(1) in the Reference.

Performing LDAP Operations
How Command-Line Tools Trust Server Certificates

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 75

status

Display information about the server.

For details, see status(1) in the Reference.

stop-ds

Stop an OpenDJ server.

For details, see stop-ds(1) in the Reference.

verify-index

Verify that an index stored in an indexed backend is not corrupt.

For details, see verify-index(1) in the Reference.

windows-service (Windows)

Register and manage an OpenDJ server as a Windows Service.

For details, see windows-service(1) in the Reference.

4.1.3. How Command-Line Tools Trust Server Certificates
This section describes how OpenDJ command-line tools determine whether to trust server
certificates.

When an OpenDJ command-line tool connects securely to a server, the server presents its digital
certificate. The tool must then determine whether to trust the server certificate and continue
negotiating the secure connection, or not to trust the server certificate and drop the connection.

An important part of trusting a server certificate is trusting the signing certificate of the party who
signed the server certificate. The process is described in more detail in "About Certificates, Private
Keys, and Secret Keys" in the Security Guide.

Put simply, a tool can automatically trust the server certificate if the tool's truststore contains the
signing certificate. "Command-Line Tools and Truststores" indicates where to find the truststore. The
signing certificate could be a CA certificate, or the server certificate itself if the certificate was self-
signed.

When run in interactive mode, OpenDJ command-line tools can prompt you to decide whether
to trust a server certificate not found in the truststore. If you have not specified a truststore and
you choose to trust the certificate permanently, the tools store the certificate in a file. The file is
user.home/.opendj/keystore, where user.home is the Java system property. user.home is $HOME on Linux
and UNIX, and %USERPROFILE% on Windows. The keystore password is OpenDJ. Neither the file name nor
the password can be changed.

When run in non-interactive mode, the tools either rely on the specified truststore, or use this default
truststore if none is specified.

Performing LDAP Operations
Searching the Directory

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 76

Command-Line Tools and Truststores

Truststore Option Truststore Used
None The default truststore, $HOME/.opendj/keystore, where

$HOME is the home directory of the user running the
command-line tool.

When you choose interactively to permanently trust
a server certificate, the certificate is stored in this
truststore.

-P {trustStorePath}

--trustStorePath {trustStorePath}

Only the specified truststore is used.

In this case, the tool does not allow you to choose
interactively to permanently trust an unrecognized
server certificate.

4.2. Searching the Directory
Searching the directory is akin to searching for a phone number in a paper phone book. You can look
up a phone number because you know the last name of a subscriber's entry. In other words, you use
the value of one attribute of the entry to find entries that have another attribute you want.

Whereas a paper phone book has only one index (alphabetical order by name), the directory has
many indexes. When performing a search, you always specify which index to use, by specifying which
attribute(s) you are using to lookup entries.

Your paper phone book might be divided into white pages for residential subscribers and yellow
pages for businesses. If you are looking up an individual's phone number, you limit your search to the
white pages. Directory services divide entries in various ways, often to separate organizations, and
to separate groups from user entries from printers, for example, but potentially in other ways. When
searching you therefore also specify where in the directory to search.

The ldapsearch command, described in ldapsearch(1) in the Reference, thus takes at minimum a
search base DN option and an LDAP filter. The search base DN identifies where in the directory to
search for entries that match the filter. For example, if you are looking for printers, you might specify
the base DN as ou=Printers,dc=example,dc=com. Perhaps you are visiting the GNB00 office and are looking
for a printer as shown in the following example:

$ ldapsearch --baseDN ou=Printers,dc=example,dc=com "(printerLocation=GNB00)"

In the example, the LDAP filter indicates to the directory that you want to look up printer entries
where the printerLocation attribute is equal to GNB00.

You also specify the host and port to access directory services, and the type of protocol to use (for
example, LDAP/SSL, or StartTLS to protect communication). If the directory service does not allow

Performing LDAP Operations
Searching the Directory

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 77

anonymous access to the data you want to search, you also identify who is performing the search and
provide their credentials, such as a password or certificate. Finally, you can specify a list of attributes
to return. If you do not specify attributes, then the search returns all user attributes for the entry.

Review the following examples in this section to get a sense of how searches work:

• "Search: Using Simple Filters"

• "Search: Using Complex Filters"

• "Search: Return Operational Attributes"

• "Search: Returning Attributes for an Object Class"

• "Search: Finding an Approximate Match"

• "Search: Escaping Search Filter Characters"

• "Search: Listing Active Accounts"

• "Search: Performing a Persistent Search"

• "Search: Using Language Subtypes"

• "Search: Using JSON Query Filters"

For details about the operators that can be used in search filters, see "LDAP Filter Operators".

Search: Using Simple Filters

The following example searches for entries with user IDs (uid) containing jensen, returning only DNs
and user ID values:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(uid=*jensen*)" uid
dn: uid=ajensen,ou=People,dc=example,dc=com
uid: ajensen

dn: uid=bjensen,ou=People,dc=example,dc=com
uid: bjensen

dn: uid=gjensen,ou=People,dc=example,dc=com
uid: gjensen

dn: uid=jjensen,ou=People,dc=example,dc=com
uid: jjensen

dn: uid=kjensen,ou=People,dc=example,dc=com
uid: kjensen

dn: uid=rjensen,ou=People,dc=example,dc=com
uid: rjensen

dn: uid=tjensen,ou=People,dc=example,dc=com
uid: tjensen

Performing LDAP Operations
Searching the Directory

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 78

Search: Using Complex Filters

The following example returns entries with uid containing jensen for users located in San Francisco:

$ ldapsearch \
 --port 1389 \
 --baseDN ou=people,dc=example,dc=com \
 "(&(uid=*jensen*)(l=San Francisco))" \
 @person
dn: uid=bjensen,ou=People,dc=example,dc=com
sn: Jensen
cn: Barbara Jensen
cn: Babs Jensen
objectClass: top
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: organizationalPerson
objectClass: person
description: Original description
telephoneNumber: +1 408 555 1862

dn: uid=rjensen,ou=People,dc=example,dc=com
sn: Jensen
cn: Richard Jensen
objectClass: top
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: organizationalPerson
objectClass: person
telephoneNumber: +1 408 555 5957

The command returns the attributes associated with the person object class.

Complex filters can use both "and" syntax, (&(filtercomp)(filtercomp)), and "or" syntax, (|(filtercomp)
(filtercomp)).

Search: Return Operational Attributes

Use + in the attribute list after the filter to return all operational attributes, as in the following
example:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(uid=bjensen)" +
dn: uid=bjensen,ou=People,dc=example,dc=com
entryUUID: <uuid>
isMemberOf: cn=Carpoolers,ou=Self Service,ou=Groups,dc=example,dc=com
subschemaSubentry: cn=schema
hasSubordinates: false
numSubordinates: 0
etag: <etag>
structuralObjectClass: inetOrgPerson
entryDN: uid=bjensen,ou=People,dc=example,dc=com

Performing LDAP Operations
Searching the Directory

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 79

Alternatively, specify operational attributes by name.

Search: Returning Attributes for an Object Class

Use @objectClass in the attribute list after the filter to return the attributes associated with a
particular object class as in the following example:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(uid=bjensen)" @person
dn: uid=bjensen,ou=People,dc=example,dc=com
sn: Jensen
cn: Barbara Jensen
cn: Babs Jensen
objectClass: top
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: organizationalPerson
objectClass: person
description: Original description
telephoneNumber: +1 408 555 1862

Search: Finding an Approximate Match

OpenDJ servers support searches looking for an approximate match of the filter. Approximate
match searches use the ~= comparison operator, described in "LDAP Filter Operators". They rely
on approximate type indexes, which are configured as shown in "Add an Approximate Index" in the
Administration Guide.

The following example configures an approximate match index for the surname (sn) attribute, and
then rebuilds the index:

$ dsconfig \
 set-backend-index-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --backend-name userRoot \
 --index-name sn \
 --set index-type:approximate \
 --trustAll \
 --no-prompt
$ stop-ds --quiet
$ rebuild-index --offline --baseDN dc=example,dc=com --index sn
$ start-ds --quiet

Once the index is built, it is ready for use in searches. The following example shows a search using
the approximate comparison operator:

Performing LDAP Operations
Searching the Directory

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 80

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(sn~=jansen)" sn
dn: uid=ajensen,ou=People,dc=example,dc=com
sn: Jensen

dn: uid=bjense2,ou=People,dc=example,dc=com
sn: Jensen

dn: uid=bjensen,ou=People,dc=example,dc=com
sn: Jensen

dn: uid=ejohnson,ou=People,dc=example,dc=com
sn: Johnson

dn: uid=gjensen,ou=People,dc=example,dc=com
sn: Jensen

dn: uid=jjensen,ou=People,dc=example,dc=com
sn: Jensen

dn: uid=kjensen,ou=People,dc=example,dc=com
sn: Jensen

dn: uid=rjense2,ou=People,dc=example,dc=com
sn: Jensen

dn: uid=rjensen,ou=People,dc=example,dc=com
sn: Jensen

dn: uid=tjensen,ou=People,dc=example,dc=com
sn: Jensen

Notice that jansen matches Jensen and Johnson, for example.

Search: Escaping Search Filter Characters

RFC 4515, Lightweight Directory Access Protocol (LDAP): String Representation of Search Filters,
mentions a number of characters that require special handing in search filters.

For a filter like (attr=value), the following list indicates characters that you must replace with a
backslash (\) followed by two hexadecimal digits when using them as part of the value string:

• Replace * with \2a.

• Replace (with \28.

• Replace) with \29.

• Replace \ with \5c.

• Replace NUL (0x00) with \00.

The following example shows a filter with escaped characters matching an actual value:

http://tools.ietf.org/html/rfc4515

Performing LDAP Operations
Searching the Directory

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 81

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(description=\28*\5c*\2a\29)" description
dn: uid=bjensen,ou=People,dc=example,dc=com
description: (A \great\ description*)

Search: Listing Active Accounts

OpenDJ servers support extensible matching rules, meaning you can pass in filters specifying a
matching rule OID that extends your search beyond what you accomplish with standard LDAP.

OpenDJ servers support the generalized time-based matching rules described in "Configure an
Extensible Match Index" in the Administration Guide:

• A partial date and time matching rule

• A greater-than relative time matching rule

• A less-than relative time matching rule

You can use these matching rules to list, for example, all users who have authenticated recently.

First set up an attribute to store a last login timestamp.

The following example defines a lastLoginTime attribute. Notice that the attribute has the property
USAGE directoryOperation, meaning this is an operational attribute. When checking schema compliance,
the server skips operational attributes. Operational attributes can therefore be added to an entry
without changing the entry's object classes. Furthermore, as described in "About Data In LDAP
Directories", operational attributes hold information used by the directory itself. Operational
attributes are only returned when explicitly requested, and not intended for modification by external
applications. By defining the lastLoginTime attribute as operational, you limit its visibility and help
prevent client applications from changing its value unless specifically granted access to do so.

You can do this by adding a schema definition for the attribute as in the following example:

Performing LDAP Operations
Searching the Directory

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 82

$ cat lastLoginTime.ldif
dn: cn=schema
changetype: modify
add: attributeTypes
attributeTypes: (lastLoginTime-oid
 NAME 'lastLoginTime'
 DESC 'Last time the user logged in'
 EQUALITY generalizedTimeMatch
 ORDERING generalizedTimeOrderingMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.24
 SINGLE-VALUE
 NO-USER-MODIFICATION
 USAGE directoryOperation
 X-ORIGIN 'OpenDJ example documentation')

$ ldapmodify \
 --hostname opendj.example.com \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 lastLoginTime.ldif

Configure the applicable password policy to write the last login timestamp when a user authenticates.
The following command configures the default password policy to write the timestamp in generalized
time format to the lastLoginTime operational attribute on the user's entry:

$ dsconfig \
 set-password-policy-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --policy-name "Default Password Policy" \
 --set last-login-time-attribute:lastLoginTime \
 --set last-login-time-format:"yyyyMMddHH'Z'" \
 --trustAll \
 --no-prompt

Configure and build an extensible matching rule index for time-based searches on the lastLoginTime
attribute:

Performing LDAP Operations
Searching the Directory

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 83

$ dsconfig \
 create-backend-index \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --backend-name userRoot \
 --set index-type:extensible \
 --set index-extensible-matching-rule:1.3.6.1.4.1.26027.1.4.5 \
 --set index-extensible-matching-rule:1.3.6.1.4.1.26027.1.4.6 \
 --set index-extensible-matching-rule:1.3.6.1.4.1.26027.1.4.7 \
 --index-name lastLoginTime \
 --trustAll \
 --no-prompt
$ stop-ds --quiet
$ rebuild-index --offline --baseDN dc=example,dc=com --index lastLoginTime
$ start-ds --quiet

Make sure you have some users who have authenticated recently:

$ ldapsearch \
 --port 1389 \
 --bindDN uid=bjensen,ou=people,dc=example,dc=com \
 --bindPassword hifalutin \
 --baseDN dc=example,dc=com \
 "(uid=bjensen)" \
 1.1

$ ldapsearch \
 --port 1389 \
 --bindDN uid=kvaughan,ou=people,dc=example,dc=com \
 --bindPassword bribery \
 --baseDN dc=example,dc=com \
 "(uid=bjensen)" \
 1.1

The following search returns users who have authenticated in the last three months (13 weeks)
according to the last login timestamps:

$ ldapsearch \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --baseDN dc=example,dc=com \
 "(lastLoginTime:1.3.6.1.4.1.26027.1.4.6:=13w)" \
 1.1
dn: uid=bjensen,ou=People,dc=example,dc=com

dn: uid=kvaughan,ou=People,dc=example,dc=com

Performing LDAP Operations
Searching the Directory

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 84

The following search returns users who have authenticated in this year according to the last login
timestamps:

$ ldapsearch \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --baseDN dc=example,dc=com \
 "(lastLoginTime:1.3.6.1.4.1.26027.1.4.7:=$(date +%Y))" \
 1.1
dn: uid=bjensen,ou=People,dc=example,dc=com

dn: uid=kvaughan,ou=People,dc=example,dc=com

Search: Performing a Persistent Search

OpenDJ servers and other LDAP servers support the Internet-Draft for Persistent Search: A Simple
LDAP Change Notification Mechanism. A persistent search is like a search that never stops. Every
time there is a change to an entry matching the search criteria, the search returns an additional
response. Applications can also get change notifications by using a server's external change log as
described in "Change Notification For Your Applications" in the Administration Guide.

In order to use the persistent search control with an OpenDJ server, the user performing the search
must be given access to use the control. Persistent searches consume server resources, so directory
administrators often limit permission to perform persistent searches to specific applications. If
the user does not have access to use the control, the request to use the control causes the search
operation to fail with a message such as the following:

The LDAP search request failed: 12 (Unavailable Critical Extension)
Additional Information: The request control with Object Identifier (OID)
"2.16.840.1.113730.3.4.3" cannot be used due to insufficient access rights

An example of the ACI required is shown in "ACI Required For LDAP Operations" in the
Administration Guide. The following command adds the permission for My App to perform persistent
searches under dc=example,dc=com:

$ cat allow-psearch.ldif
dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetcontrol = "2.16.840.1.113730.3.4.3")
 (version 3.0;acl "Allow Persistent Search for My App";
 allow (read)(userdn = "ldap:///cn=My App,ou=Apps,dc=example,dc=com");)

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 allow-psearch.ldif

http://tools.ietf.org/html/draft-ietf-ldapext-psearch
http://tools.ietf.org/html/draft-ietf-ldapext-psearch

Performing LDAP Operations
Searching the Directory

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 85

To perform a persistent search, use the persistent search control, and optionally specify the type
of changes for which to receive notifications, whether the server should return existing entries as
well as changes, and whether to return additional entry change information with each notification.
The additional entry change information returned is that of the entry change notification response
control defined in the Internet-Draft. The response control indicates what type of change led to
the notification, what the previous DN was if the change was a modify DN operation, and the
change number if the LDAP server supports change numbers. For details about the options, see the
description for the --persistentSearch option in ldapsearch(1) in the Reference.

The following example initiates a persistent search, indicating that notifications should be sent for
all update operations, only notifications about changed entries should be returned, and no additional
information should be returned:

$ ldapsearch \
 --port 1389 \
 --bindDN "cn=My App,ou=Apps,dc=example,dc=com" \
 --bindPassword password \
 --baseDN dc=example,dc=com \
 --persistentSearch ps:all:true:false \
 "(&)" >> psearch.txt &
$ export PSEARCH_PID=$!

Notice the search filter, (&), which is always true, meaning that it matches all entries.

The following modify and delete operations:

$ cat bjensen-psearch-description.ldif
dn: uid=bjensen,ou=People,dc=example,dc=com
changetype: modify
replace: description
description: Hello, persistent search

$ ldapmodify \
 --port 1389 \
 --bindDN uid=kvaughan,ou=People,dc=example,dc=com \
 --bindPassword bribery \
 bjensen-psearch-description.ldif
$ ldapdelete \
 --port 1389 \
 --bindDN uid=kvaughan,ou=People,dc=example,dc=com \
 --bindPassword bribery \
 uid=tpierce,ou=People,dc=example,dc=com

Result in the following responses to the persistent search:

dn: uid=bjensen,ou=People,dc=example,dc=com
objectClass: posixAccount
objectClass: top
objectClass: organizationalPerson
objectClass: person
objectClass: inetOrgPerson

Performing LDAP Operations
Searching the Directory

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 86

mail: bjensen@example.com
roomNumber: 0209
preferredLanguage: en, ko;q=0.8
manager: uid=trigden, ou=People, dc=example,dc=com
ou: Product Development
ou: People
givenName: Barbara
telephoneNumber: +1 408 555 1862
sn: Jensen
cn: Barbara Jensen
cn: Babs Jensen
homeDirectory: /home/bjensen
facsimileTelephoneNumber: +1 408 555 1992
gidNumber: 1000
userPassword: {SSHA512}<hash>
uidNumber: 1076
description: Hello, persistent search
uid: bjensen
l: San Francisco

dn: uid=tpierce,ou=People,dc=example,dc=com
objectClass: top
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: organizationalPerson
objectClass: person
mail: tpierce@example.com
roomNumber: 1383
manager: uid=scarter, ou=People, dc=example,dc=com
ou: Accounting
ou: People
givenName: Tobias
telephoneNumber: +1 408 555 1531
sn: Pierce
cn: Tobias Pierce
homeDirectory: /home/tpierce
facsimileTelephoneNumber: +1 408 555 9332
gidNumber: 1000
userPassword: {SSHA512}<hash>
uidNumber: 1042
uid: tpierce
l: Bristol
departmentNumber: 1000
preferredLanguage: en-gb
street: Broad Quay House, Prince Street

If the server is replicated, the output also includes the entry dc=example,dc=com. This is because the
replication-related ds-sync-* operational attributes are updated, too. The entry therefore shows up in
the persistent search results.

To terminate the persistent search, interrupt the command with CTRL+C (SIGINT) or SIGTERM as in the
following command:

$ kill -15 $PSEARCH_PID

Performing LDAP Operations
Searching the Directory

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 87

Search: Using Language Subtypes

OpenDJ servers support many language subtypes. For a list, see "Localization" in the Reference.

When you perform a search you can request the language subtype by OID or by language subtype
string. For example, the following search gets the French version of a common name. The example
uses the OpenDJ base64 command to decode the attribute value:

$ ldapsearch \
 --port 1389 \
 --baseDN dc=example,dc=com \
 "(givenName:fr:=Fréderique)" cn\;lang-fr
dn: uid=fdupont,ou=People,dc=example,dc=com
cn;lang-fr:: RnJlZMOpcmlxdWUgRHVwb250
$ base64 decode --encodedData RnJlZMOpcmlxdWUgRHVwb250
Fredérique Dupont

At the end of the OID or language subtype, further specify the matching rule as follows:

• Add .1 for less than

• Add .2 for less than or equal to

• Add .3 for equal to (default)

• Add .4 for greater than or equal to

• Add .5 for greater than

• Add .6 for substring

The following table describes the operators you can use in LDAP search filters.

LDAP Filter Operators

Operator Definition Example
= Equality comparison, as in (sn=Jensen).

This can also be used with substring matches.
For example, to match last names starting
with Jen, use the filter (sn=Jen*). Substrings
are more expensive for the directory server to
index. Substring searches therefore might not
be permitted for many attributes.

"(cn=My App)" matches entries with common
name My App.

"(sn=Jen*)" matches entries with surname
starting with Jen.

<= Less than or equal to comparison, which
works alphanumerically.

"(cn<=App)" matches entries with commonName
up to those starting with App (case-
insensitive) in alphabetical order.

>= Greater than or equal to comparison, which
works alphanumerically.

"(uidNumber>=1151)" matches entries with
uidNumber greater than 1151.

Performing LDAP Operations
Searching the Directory

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 88

Operator Definition Example
=* Presence comparison. For example, to match

all entries having a userPassword, use the filter
(userPassword=*).

"(member=*)" matches entries with a member
attribute.

~= Approximate comparison, matching attribute
values similar to the value you specify.

"(sn~=jansen)" matches entries with a
surname that sounds similar to Jansen
(Johnson, Jensen, and other surnames).

[:dn][:oid]:= Extensible match comparison.

At the end of the OID or language subtype,
you further specify the matching rule as
follows:

• Add .1 for less than

• Add .2 for less than or equal to

• Add .3 for equal to (default)

• Add .4 for greater than or equal to

• Add .5 for greater than

• Add .6 for substring

(uid:dn:=bjensen) matches entries where uid
having the value bjensen is a component of the
entry DN.

(lastLoginTime: 1.3.6.1.4.1.26027.1.4.5:=
-13w) matches entries with a last login time
more recent than 13 weeks.

You also use extensible match filters with
localized values. Directory servers like
OpenDJ support a variety of internationalized
locales, each of which has an OID for collation
order, such as 1.3.6.1.4.1.42.2.27.9.4.76
.1 for French. OpenDJ also lets you use the
language subtype, such as fr, instead of the
OID.

"(cn:dn:=My App)" matches entries who have
My App as the common name and also as the
value of a DN component.

! NOT operator, to find entries that do not
match the specified filter component.

Take care to limit your search when using !
to avoid matching so many entries that the
server treats your search as unindexed.

'!(objectclass=person)' matches non-person
entries.

& AND operator, to find entries that match all
specified filter components.

'(&(l=San Francisco)(!(uid=bjensen)))'
matches entries for users in San Francisco
other than the user with ID bjensen.

| OR operator, to find entries that match one of
the specified filter components.

"|(sn=Jensen)(sn=Johnson)" matches entries
with surname Jensen or surname Johnson.

Search: Using JSON Query Filters

OpenDJ servers support attribute values that have JSON syntax. This makes it possible to index JSON
values and to search for them using Common REST query filters, as described in "Query".

Note

This example depends on the jsonObject object class, and the json attribute type defined but commented out in
the Example.ldif file imported as sample data.

Performing LDAP Operations
Searching the Directory

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 89

To try this example for yourself, add the attribute type and object class definitions in comments near the top
of the file, and then uncomment the objectClass: jsonObject and json: attribute lines in Example.ldif before
importing the data into an OpenDJ directory server:

• Add the schema for the auxiliary object class and the attribute:

$ cat json-schema.ldif
dn: cn=schema
changetype: modify
add: attributeTypes
attributeTypes: (json-attribute-oid NAME 'json'
 SYNTAX 1.3.6.1.4.1.36733.2.1.3.1 EQUALITY caseIgnoreJsonQueryMatch
 SINGLE-VALUE X-ORIGIN 'OpenDJ Documentation
 Examples')
-
add: objectClasses
objectClasses: (json-object-class-oid NAME 'jsonObject' SUP top
 AUXILIARY MAY (json) X-ORIGIN 'OpenDJ Documentation Examples')

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 json-schema.ldif

Notice that the attribute has Json syntax (OID: 1.3.6.1.4.1.36733.2.1.3.1).

• Import the edited Example.ldif file:

$ stop-ds --quiet
$ import-ldif --offline --backendID userRoot --ldifFile \
 <(sed "s/^#json/json/" Example.ldif \
 | sed "s/^#objectClass: jsonObject/objectClass: jsonObject/")
$ start-ds --quiet

The example schema shown above ignores case when matching, caseIgnoreJsonQueryMatch, for the JSON
attribute. You can require case-sensitive matching by using caseExactJsonQueryMatch instead.

After importing the edited Example.ldif file, search for entries with a json attribute:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(json=*)" json
dn: uid=bjensen,ou=People,dc=example,dc=com
json: {"access_token":"123","expires_in":59,"token_type":"Bearer","refresh_token":"456"}

dn: uid=scarter,ou=People,dc=example,dc=com
json: {"access_token":"789","expires_in":59,"token_type":"Bearer","refresh_token":"012"}

Notice that you can search with Common REST query filters. The following example finds the entry
with a JSON attribute whose access_token field has a value of 123:

Performing LDAP Operations
Comparing Attribute Values

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 90

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(json=access_token eq '123')" json
dn: uid=bjensen,ou=People,dc=example,dc=com
json: {"access_token":"123","expires_in":59,"token_type":"Bearer","refresh_token":"456"}

Be aware that you can combine Common REST query filter syntax filters with other LDAP search
filter to form complex filters as demonstrated in "Search: Using Complex Filters". For example,
(&(json=access_token eq '123')(mail=bjensen@example.com)).

For details on indexing JSON attributes, see "Configuring an Index for a JSON Attribute" in the
Administration Guide.

4.3. Comparing Attribute Values
The compare operation checks whether an attribute value you specify matches the attribute value
stored on one or more directory entries.

Compare: Checking authPassword

In this example, Kirsten Vaughan uses the ldapcompare command, described in ldapsearch(1) in the
Reference, to check whether the hashed password value matches the stored value on authPassword:

$ ldapcompare \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 'authPassword:MD5$dFHgpDxXUT8=$qlC4xMXvmVlusJLz9/WJ5Q==' \
 uid=kvaughan,ou=people,dc=example,dc=com
Comparing type authPassword with value MD5$dFHgpDxXUT8=$qlC4xMXvmVlusJLz9/WJ5Q== in entry uid=kvaughan
,ou=people,dc=example,dc=com
Compare operation returned true for entry uid=kvaughan,ou=people,dc=example,dc=com

4.4. Updating the Directory
Authorized users can change directory data using the LDAP add, modify, modify DN, and delete
operations. You can use the ldapmodify command to make changes. For details see ldapmodify(1) in
the Reference.

4.4.1. Adding Entries

With the ldapmodify command, authorized users can add entire entries from the same sort of LDIF
file used to import and export data.

Performing LDAP Operations
Modifying Entry Attributes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 91

Adding Two New Users

The following example adds two new users:

$ cat new-users.ldif
dn: cn=Arsene Lupin,ou=Special Users,dc=example,dc=com
objectClass: person
objectClass: top
cn: Arsene Lupin
telephoneNumber: +33 1 23 45 67 89
sn: Lupin

dn: cn=Horace Velmont,ou=Special Users,dc=example,dc=com
objectClass: person
objectClass: top
cn: Horace Velmont
telephoneNumber: +33 1 12 23 34 45
sn: Velmont

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 new-users.ldif

4.4.2. Modifying Entry Attributes

With the ldapmodify command, authorized users can change the values of attributes in the directory
using LDIF as specified in RFC 2849.

This section includes the following examples:

• "Modify: Adding Attributes"

• "Modify: Changing an Attribute Value"

• "Modify: Deleting an Attribute"

• "Modify: Deleting a Single Attribute Value"

• "Modify: Applying Changes From Standard Input"

• "Modify: Using Optimistic Concurrency"

• "Modify: Updating a JSON Syntax Attribute"

Modify: Adding Attributes

The following example shows you how to add a description and JPEG photo to Sam Carter's entry:

http://tools.ietf.org/html/rfc2849

Performing LDAP Operations
Modifying Entry Attributes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 92

$ cat scarter-mods.ldif
dn: uid=scarter,ou=people,dc=example,dc=com
changetype: modify
add: description
description: Accounting Manager
-
add: jpegphoto
jpegphoto:<file:///tmp/picture.jpg

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 scarter-mods.ldif

Modify: Changing an Attribute Value

The following example replaces the description on Sam Carter's entry:

$ cat scarter-newdesc.ldif
dn: uid=scarter,ou=people,dc=example,dc=com
changetype: modify
replace: description
description: New description

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 scarter-newdesc.ldif

Modify: Deleting an Attribute

The following example deletes the JPEG photo on Sam Carter's entry:

$ cat scarter-delphoto.ldif
dn: uid=scarter,ou=people,dc=example,dc=com
changetype: modify
delete: jpegphoto

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 scarter-delphoto.ldif

Modify: Deleting a Single Attribute Value

The following example deletes a single CN value on Barbara Jensen's entry:

Performing LDAP Operations
Modifying Entry Attributes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 93

$ cat delete-cn.ldif
dn: uid=bjensen,ou=People,dc=example,dc=com
changetype: modify
delete: cn
cn: Barbara Jensen

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 delete-cn.ldif

Modify: Applying Changes From Standard Input

A double dash, --, signifies the end of command options, after which only trailing arguments are
allowed. To indicate standard input as a trailing argument, use a bare dash, -, after the double dash.

Consider the following changes expressed in LDIF:

$ cat bjensen-stdin-description.ldif
dn: uid=bjensen,ou=People,dc=example,dc=com
changetype: modify
replace: description
description: New description from standard input

To send these changes to the ldapmodify command on standard input, use either of the following
equivalent constructions:

With dashes:
$ cat bjensen-stdin-description.ldif | ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 -- -
Without dashes:
$ cat bjensen-stdin-description.ldif | ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery

Modify: Using Optimistic Concurrency

Imagine you are writing an application that lets end users update user profiles through a browser.
You store user profiles as OpenDJ entries. Your end users can look up user profiles and modify them.
Your application assumes that the end users can tell the right information when they see it, and
updates profiles exactly as users see them on their screens.

Performing LDAP Operations
Modifying Entry Attributes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 94

Consider two users, Alice and Bob, both busy and often interrupted. Alice has Babs Jensen's new
phone and room numbers. Bob has Babs's new location and description. Both assume that they have
all the information that has changed. What can you do to make sure that your application applies the
right changes when Alice and Bob simulaneously update Babs Jensen's profile?

OpenDJ servers have two features to help you in this situation. One of the features is the LDAP
Assertion Control, described in Assertion request control in the Reference, used to tell the directory
server to perform the modification only if an assertion you make stays true. The other feature is
OpenDJ support for entity tag (ETag) attributes, making it easy to check whether the entry in the
directory is the same as the entry you read.

Alice and Bob both get Babs's entry. In LDIF, the relevant attributes from the entry look like this. The
ETag is a generated value that depends on the content of the entry:

$ ldapsearch \
 --port 1389 \
 --baseDN dc=example,dc=com \
 "(uid=bjensen)" \
 telephoneNumber roomNumber l ETag
dn: uid=bjensen,ou=People,dc=example,dc=com
telephoneNumber: +1 408 555 1862
roomNumber: 0209
l: San Francisco
ETag: ETAG

Bob prepares his changes in your application. Bob is almost ready to submit the new location and
description when Carol stops by to ask Bob a few questions.

Alice starts just after Bob, but manages to submit her changes without interruption. Now Babs's entry
has a new phone number, room number, and ETag:

$ ldapsearch \
 --port 1389 \
 --baseDN dc=example,dc=com \
 "(uid=bjensen)" \
 telephoneNumber roomNumber l ETag
dn: uid=bjensen,ou=People,dc=example,dc=com
telephoneNumber: +47 2108 1746
roomNumber: 1389
l: San Francisco
ETag: NEW_ETAG

In your application, you use the ETag value with the assertion control to prevent Bob's update from
succeeding although the entry has changed. Your application tries the equivalent of the following
commands with Bob's updates:

http://tools.ietf.org/html/rfc2616#section-3.11

Performing LDAP Operations
Modifying Entry Attributes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 95

$ cat bjensen-stdin-description.ldif
dn: uid=bjensen,ou=People,dc=example,dc=com
changetype: modify
replace: l
l: Grenoble
-
add: description
description: Employee of the Month

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 --assertionFilter "(ETag=${ETAG})" \
 alices.ldif
Processing MODIFY request for uid=bjensen,ou=People,dc=example,dc=com
The LDAP modify request failed: 122 (Assertion Failed)
Additional Information: Entry uid=bjensen,ou=People,dc=example,dc=com cannot be modified because the
 request contained an LDAP assertion control and the associated filter did not match the contents of the
 entry

Your application reloads Babs's entry with the new ETag value, and tries Bob's update again. This
time Bob's changes do not collide with other changes. Babs's entry is successfully updated:

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 --assertionFilter "(ETag=${NEW_ETAG})" \
 alices.ldif
Processing MODIFY request for uid=bjensen,ou=People,dc=example,dc=com
MODIFY operation successful for DN uid=bjensen,ou=People,dc=example,dc=com

Modify: Updating a JSON Syntax Attribute

OpenDJ servers support attribute values that have JSON syntax as demonstrated in "Search: Using
JSON Query Filters". Add the schema definitions and entries with json attributes described in that
example before trying the following example.

The following example replaces the existing JSON value with a new JSON value:

Performing LDAP Operations
Filtering Add and Modify Operations

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 96

$ cat json-mod.ldif
dn: uid=bjensen,ou=people,dc=example,dc=com
changetype: modify
replace: json
json: {"stuff":["things","devices","paraphernalia"]}

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 json-mod.ldif

Notice that the JSON object is replaced entirely.

When you update a Json syntax attribute, an OpenDJ server expects a valid JSON object. By
default, Json syntax attribute values must comply with The JavaScript Object Notation (JSON) Data
Interchange Format described in RFC 7159. You can use the advanced core schema configuration
option json-validation-policy to have the server be more lenient in what it accepts, or to disable JSON
syntax checking. The following example relaxes JSON syntax checking to allow comments, single
quotes, and unquoted control characters, such as newlines, in strings:

$ dsconfig \
 set-schema-provider-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --provider-name "Core Schema" \
 --set json-validation-policy:lenient \
 --trustAll \
 --no-prompt

4.4.3. Filtering Add and Modify Operations

Some client applications send updates including attributes with names that differ from the attribute
names defined in OpenDJ. Other client applications might try to update attributes they should
not update, such as the operational attributes creatorsName, createTimestamp, modifiersName, and
modifyTimestamp. Ideally, you would fix the client application behavior, but that is not always feasible.

You can configure the attribute cleanup plugin to filter add and modify requests, rename attributes in
requests using incorrect names, and remove attributes that applications should not change.

Renaming Incoming Attributes

The following example renames incoming email attributes to mail attributes. First, configure the
attribute cleanup plugin to rename the inbound attribute:

https://tools.ietf.org/html/rfc7159

Performing LDAP Operations
Filtering Add and Modify Operations

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 97

$ dsconfig \
 create-plugin \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --type attribute-cleanup \
 --plugin-name "Rename email to mail" \
 --set enabled:true \
 --set rename-inbound-attributes:email:mail \
 --trustAll \
 --no-prompt

Next, confirm that it worked as expected:

$ cat email.ldif
dn: uid=newuser,ou=People,dc=example,dc=com
uid: newuser
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: top
cn: New User
sn: User
ou: People
email: newuser@example.com
userPassword: changeme

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 email.ldif
$ ldapsearch --port 1389 --baseDN dc=example,dc=com uid=newuser mail
dn: uid=newuser,ou=People,dc=example,dc=com
mail: newuser@example.com

Removing Incoming Attributes

The following example prevents client applications from adding or modifying creatorsName,
createTimestamp, modifiersName, and modifyTimestamp attributes. First, set up the attribute cleanup plugin:

Performing LDAP Operations
Filtering Add and Modify Operations

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 98

$ dsconfig \
 create-plugin \
 --port 4444 \
 --hostname opendj.example.com \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --type attribute-cleanup \
 --plugin-name "Remove attrs" \
 --set enabled:true \
 --set remove-inbound-attributes:creatorsName \
 --set remove-inbound-attributes:createTimestamp \
 --set remove-inbound-attributes:modifiersName \
 --set remove-inbound-attributes:modifyTimestamp \
 --trustAll \
 --no-prompt

Next, confirm that it worked as expected:

$ cat badattrs.ldif
dn: uid=badattr,ou=People,dc=example,dc=com
uid: newuser
objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
objectClass: top
cn: Bad Attr
sn: Attr
ou: People
mail: badattr@example.com
userPassword: changeme
creatorsName: cn=Bad Attr
createTimestamp: Never in a million years.
modifiersName: cn=Directory Manager,cn=Root DNs,cn=config
modifyTimestamp: 20110930164937Z

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 badattrs.ldif
$ ldapsearch \
 --port 1389 \
 --baseDN dc=example,dc=com \
 "(uid=badattr)" \
 creatorsName createTimestamp modifiersTimestamp modifyTimestamp
dn: uid=badattr,ou=People,dc=example,dc=com
creatorsName: uid=kvaughan,ou=people,dc=example,dc=com
createTimestamp: <timestamp>

Performing LDAP Operations
Renaming Entries

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 99

4.4.4. Renaming Entries

The Relative Distinguished Name (RDN) refers to the part of an entry's DN that differentiates it from
all other DNs at the same level in the directory tree. For example, uid=bjensen is the RDN of the entry
with the DN uid=bjensen,ou=People,dc=example,dc=com.

With the ldapmodify command, authorized users can rename entries in the directory.

When you change the RDN of the entry, you are renaming the entry, modifying the value of the
naming attribute, and the entry's DN.

Rename: Modifying the DN

Sam Carter is changing her last name to Jensen, and changing her login from scarter to sjensen. The
following example shows you how to rename and change Sam Carter's entry. Notice the boolean
field, deleteoldrdn: 1, which indicates that the previous RDN, uid: scarter, should be removed. (Setting
deleteoldrdn: 0 instead would preserve uid: scarter on the entry.)

$ cat scarter-sjensen.ldif
dn: uid=scarter,ou=people,dc=example,dc=com
changetype: modrdn
newrdn: uid=sjensen
deleteoldrdn: 1

dn: uid=sjensen,ou=people,dc=example,dc=com
changetype: modify
replace: cn
cn: Sam Jensen
-
replace: sn
sn: Jensen
-
replace: homeDirectory
homeDirectory: /home/
sjensen
-
replace: mail
mail: sjensen@example.com

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 scarter-sjensen.ldif

4.4.5. Moving Entries

When you rename an entry with child entries, the directory has to move all the entries underneath it.

Performing LDAP Operations
Deleting Entries

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 100

Note

OpenDJ directory servers support the modify DN operation only for moving entries in the same backend, under
the same suffix. Depending on the number of entries you move, this can be a resource-intensive operation.

Moving an Entire Branch in the Same Backend

The following example moves all entries at and below ou=People,dc=example,dc=com under ou=Subscribers
,dc=example,dc=com. All the entries in this example are in the same backend. The line deleteoldrdn: 1
indicates that the old RDN, ou: People, should be removed:

$ cat move-ou-people.ldif
dn: ou=People,dc=example,dc=com
changetype: modrdn
newrdn: ou=Subscribers
deleteoldrdn: 1
newsuperior: dc=example,dc=com

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 move-ou-people.ldif

Be aware that the move does not modify ACIs and other values that depend on ou=People. You must
also edit any affected entries.

Moving One Entry at a Time

The following example moves an application entry that is under dc=example,dc=com under ou=Apps
,dc=example,dc=com instead. The line deleteoldrdn: 0 indicates that old RDN, cn, should be preserved:

$ cat move-app.ldif
dn: cn=New App,dc=example,dc=com
changetype: moddn
newrdn: cn=An App
deleteoldrdn: 0
newsuperior: ou=Apps,dc=example,dc=com

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 move-app.ldif

4.4.6. Deleting Entries

With the ldapdelete command, authorized users can delete entries from the directory.

Performing LDAP Operations
Deleting Entries

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 101

This section includes the following examples:

• "Delete: Removing a Subtree"

• "Delete: Applying a List From Standard Input"

Delete: Removing a Subtree

The following example shows you how to grant access to use the subtree delete control to an
administrator, and to use the subtree delete option to remove an entry and its child entries:

$ dsconfig \
 set-access-control-handler-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --add global-aci:"(targetcontrol=\"1.2.840.113556.1.4.805\")\
 (version 3.0; acl \"Allow Subtree Delete\"; allow(read) \
 userdn=\"ldap:///uid=kvaughan,ou=People,dc=example,dc=com\";)" \
 --trustAll \
 --no-prompt
$ ldapdelete \
--port 1389
 \
--bindDN "uid=kvaughan,ou=People,dc=example,dc=com"
 \
--bindPassword bribery
 \
--deleteSubtree "ou=Special Users,dc=example,dc=com"

Delete: Applying a List From Standard Input

A double dash, --, signifies the end of command options, after which only trailing arguments are
allowed. To indicate standard input as a trailing argument, use a bare dash, -, after the double dash.

Consider the following list of users to delete:

$ cat users-to-delete.txt
uid=sfarmer,ou=People,dc=example,dc=com
uid=skellehe,ou=People,dc=example,dc=com
uid=slee,ou=People,dc=example,dc=com
uid=smason,ou=People,dc=example,dc=com
uid=speterso,ou=People,dc=example,dc=com
uid=striplet,ou=People,dc=example,dc=com

To send this list to the ldapdelete command on standard input, use either of the following equivalent
constructions:

Performing LDAP Operations
Changing Passwords

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 102

With dashes:
$ cat users-to-delete.txt | ldapdelete \
 --port 1389 \
 --bindDN uid=kvaughan,ou=people,dc=example,dc=com \
 --bindPassword bribery \
 -- -
Without dashes:
$ cat users-to-delete.txt | ldapdelete \
 --port 1389 \
 --bindDN uid=kvaughan,ou=people,dc=example,dc=com \
 --bindPassword bribery

4.5. Changing Passwords
With the ldappasswordmodify command, described in ldappasswordmodify(1) in the Reference,
authorized users can change and reset user passwords.

Resetting Passwords

As a password administrator, Kirsten Vaughan has been given the password-reset privilege as shown
in "To Add Privileges for an Individual Administrator" in the Administration Guide. The following
example shows Kirsten resetting Andy Hall's password.

$ ldappasswordmodify \
 --useStartTLS \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 --authzID "dn:uid=ahall,ou=people,dc=example,dc=com" \
 --trustAll
The LDAP password modify operation was successful
Generated Password: <password>

Tip

The ldappasswordmodify command uses the LDAP Password Modify extended operation. If this extended
operation is performed on a connection that is already associated with a user (in other words, when a user
first does a bind on the connection, then requests the LDAP Password Modify extended operation), then the
operation is performed as the user associated with the connection. If the user associated with the connection is
not the same user whose password is being changed, then an OpenDJ server considers it a password reset.

Whenever one user changes another user's password, an OpenDJ server considers it a password reset. Often
password policies specify that users must change their passwords again after a password reset.

If you want your application to change a user's password, rather than reset a user's password, have your
application request the password change as the user whose password is changing.

Performing LDAP Operations
Changing Passwords

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 103

To change the password as the user, bind as the user whose password should be changed, and use the LDAP
Password Modify extended operation with an authorization ID but without performing a bind, or use proxied
authorization. For instructions on using proxied authorization, see "Configuring Proxied Authorization".

You can adjust the setting for password reset with the manage-account command, described in
manage-account(1) in the Reference, The set-password-is-reset option is a hidden option, supported
only for testing:

$ manage-account \
 set-password-is-reset \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --targetDN uid=ahall,ou=people,dc=example,dc=com \
 --operationValue true \
 --trustAll

Changing One's Own Password

Users can change their own passwords with the ldappasswordmodify command as long as they know
their current password:

$ ldappasswordmodify \
 --useStartTLS \
 --port 1389 \
 --authzID "dn:uid=ahunter,ou=people,dc=example,dc=com" \
 --currentPassword egregious \
 --newPassword secret12 \
 --trustAll

The same operation works for root DN users such as cn=Directory Manager:

$ ldappasswordmodify \
 --useStartTLS \
 --port 1389 \
 --authzID "dn:cn=Directory Manager" \
 --currentPassword password \
 --newPassword secret12 \
 --trustAll

Changing Passwords With Special Characters

OpenDJ server expects passwords to be UTF-8 encoded (base64-encoded when included in LDIF):

http://tools.ietf.org/html/rfc3062
http://tools.ietf.org/html/rfc3062

Performing LDAP Operations
Configuring Default Settings

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 104

$ export LANG=en_US.UTF-8
$ ldappasswordmodify \
 --useStartTLS \
 --port 1389 \
 --bindDN uid=wlutz,ou=People,dc=example,dc=com \
 --bindPassword bassinet \
 --currentPassword bassinet \
 --newPassword pàsswȏrd \
 --trustAll
$ ldapsearch \
 --port 1389 \
 --bindDN uid=wlutz,ou=People,dc=example,dc=com \
 --bindPassword pàsswȏrd \
 --baseDN dc=example,dc=com \
 "(uid=wlutz)" \
 1.1
dn: uid=wlutz,ou=People,dc=example,dc=com

4.6. Configuring Default Settings
You can use ~/.opendj/tools.properties to set the defaults for bind DN, host name, and port number as
in the following example:
hostname=directory.example.com
port=1389
bindDN=uid=kvaughan,ou=People,dc=example,dc=com

ldapcompare.port=1389
ldapdelete.port=1389
ldapmodify.port=1389
ldappasswordmodify.port=1389
ldapsearch.port=1389

The location on Windows is %UserProfile%/.opendj/tools.properties.

4.7. Authenticating To the Directory Server
Authentication is the act of confirming the identity of a principal. Authorization is the act of
determining whether to grant or to deny access to a principal. Authentication is performed to make
authorization decisions.

As explained in "Configuring Privileges and Access Control" in the Administration Guide, OpenDJ
servers implement fine-grained access control for authorization. Authorization for an operation
depends on who is requesting the operation. In LDAP, directory servers must therefore authenticate
a principal before they can authorize or deny access for particular operations. In LDAP, the bind
operation authenticates the principal. The first LDAP operation in every LDAP session is generally a
bind.

Performing LDAP Operations
Authenticating To the Directory Server

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 105

Clients bind by providing both a means to find their principal's entry in the directory and also by
providing some credentials that the directory server can check against their entry.

In the simplest bind operation, the client provides a zero-length name and a zero-length password.
This results in an anonymous bind, meaning the client is authenticated as an anonymous user of
the directory. In the simplest examples in "Searching the Directory", notice that no authentication
information is provided. The examples work because the client commands default to requesting
anonymous binds when no credentials are provided, and because access controls for the sample data
allow anonymous clients to read, search, and compare some directory data.

In a simple bind operation, the client provides an LDAP name, such as the DN identifying its entry,
and the corresponding password stored on the userPassword attribute of the entry. In "Updating the
Directory", notice that to change directory data, the client provides the bind DN and bind password of
a user who has permission to change directory data. The commands do not work with a bind DN and
bind password because access controls for the sample data only let authorized users change directory
data.

Users rarely provide client applications with DNs, however. Instead, users might provide a client
application with an identity string like a user ID or an email address. Depending on how the DNs are
constructed, the client application can either build the DN directly from the user's identity string,
or use a session where the bind has been performed with some other identity to search for the user
entry based on the user's identity string. Given the DN constructed or found, the client application
can then perform a simple bind.

For example, suppose Babs Jensen enters her email address, bjensen@example.com, and her password in
order to log in. The client application might search for the entry matching (mail=bjensen@example.com)
under base DN dc=example,dc=com. Alternatively, the client application might know to extract the user
ID bjensen from the address, then build the corresponding DN, uid=bjensen,ou=people,dc=example,dc=com in
order to bind.

When an identifier string provided by the user can be readily mapped to the user's entry DN, an
OpenDJ server can translate between the identifier string and the entry DN. This translation is the
job of a component called an identity mapper. Identity mappers are used to perform PLAIN SASL
authentication (with a user name and password), SASL GSSAPI authentication (Kerberos V5), SASL
CRAM MD5, and DIGEST MD5 authentication. They also handle authorization IDs during password
modify extended operations and proxied authorization.

One use of PLAIN SASL is to translate user names from HTTP Basic authentication to LDAP
authentication. The following example shows PLAIN SASL authentication using the default Exact
Match identity mapper. In this (contrived) example, Babs Jensen reads the hashed value of her
password. (According to the access controls in the example data, Babs must authenticate to read her
password.) Notice the authentication ID is her user ID, u:bjensen, rather than the DN of her entry:

Performing LDAP Operations
Authenticating To the Directory Server

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 106

$ ldapsearch \
 --port 1389 \
 --useStartTLS \
 --baseDN dc=example,dc=com \
 --saslOption mech=PLAIN \
 --saslOption authid=u:bjensen \
 --bindPassword hifalutin \
 --trustAll \
 "(cn=Babs Jensen)" \
 userPassword
dn: uid=bjensen,ou=People,dc=example,dc=com
userPassword: {SSHA512}<hash>

The Exact Match identity mapper searches for a match between the string provided (here, bjensen)
and the value of a specified attribute (by default the uid attribute). If you know users are entering
their email addresses, you could create an exact match identity mapper for email addresses, then use
that for PLAIN SASL authentication as in the following example:

$ dsconfig \
 create-identity-mapper \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --mapper-name "Email Mapper" \
 --type exact-match \
 --set match-attribute:mail \
 --set enabled:true \
 --trustAll \
 --no-prompt
$ dsconfig \
 set-sasl-mechanism-handler-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --handler-name PLAIN \
 --set identity-mapper:"Email Mapper" \
 --trustAll \
 --no-prompt
$ ldapsearch \
 --port 1389 \
 --useStartTLS \
 --baseDN dc=example,dc=com \
 --saslOption mech=PLAIN \
 --saslOption authid=u:bjensen@example.com \
 --bindPassword hifalutin \
 --trustAll \
 "(cn=Babs Jensen)" \
 userPassword
dn: uid=bjensen,ou=People,dc=example,dc=com
userPassword: {SSHA512}<hash>

Performing LDAP Operations
Configuring Proxied Authorization

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 107

An OpenDJ server's Regular Expression identity mapper uses a regular expression to extract a
substring from the string provided, then searches for a match between the substring and the value of
a specified attribute. In the case of example data where an email address is user ID + @ + domain,
you can use the default Regular Expression identity mapper in the same way as the email mapper
from the previous example. The default regular expression pattern is ^([^@]+)@.+$, and the part of the
identity string matching ([^@]+) is used to find the entry by user ID:

$ dsconfig \
 set-sasl-mechanism-handler-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --handler-name PLAIN \
 --set identity-mapper:"Regular Expression" \
 --trustAll \
 --no-prompt
$ ldapsearch \
 --port 1389 \
 --useStartTLS \
 --baseDN dc=example,dc=com \
 --saslOption mech=PLAIN \
 --saslOption authid=u:bjensen@example.com \
 --bindPassword hifalutin \
 --trustAll \
 "(cn=Babs Jensen)" \
 userPassword
dn: uid=bjensen,ou=People,dc=example,dc=com
userPassword: {SSHA512}<hash>

Try the dsconfig command interactively to experiment with match-pattern and replace-pattern settings
for the Regular Expression identity mapper. The match-pattern can be any regular expression
supported by javax.util.regex.Pattern.

4.8. Configuring Proxied Authorization
Proxied authorization provides a standard control as defined in RFC 4370 (and an earlier Internet-
Draft) for binding with the user credentials of a proxy, who carries out LDAP operations on behalf
of other users. You might use proxied authorization, for example, to bind your application with its
credentials, then carry out operations as the users who login to the application.

Proxied authorization is similar to the UNIX sudo command. The proxied operation is performed
as if it were requested not by the user who did the bind, but by the proxied user. "Whether Proxy
Authorization Allows an Operation on the Target" shows how this affects permissions.

Whether Proxy Authorization Allows an Operation on the Target

 Bind DN no access Bind DN has access
Proxy ID no access No No

http://tools.ietf.org/html/rfc4370

Performing LDAP Operations
Configuring Proxied Authorization

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 108

 Bind DN no access Bind DN has access
Proxy ID has access Yes Yes

Note

When you configure resource limits as described in "Setting Resource Limits" in the Administration Guide,
know that the resource limits do not change when the user proxies as another user. In other words, resource
limits depend on the bind DN, not the proxy authorization identity.

Suppose you have an administrative directory client application that has an entry in the directory
with DN cn=My App,ou=Apps,dc=example,dc=com. You can give that application the access rights and
privileges to use proxied authorization. The default access control for OpenDJ lets authenticated
users use the proxied authorization control.

Suppose also that when directory administrator, Kirsten Vaughan, logs in to your application
to change Babs Jensen's entry, your application looks up Kirsten's entry, and finds that she has
DN uid=kvaughan,ou=People,dc=example,dc=com. For the example commands in "To Configure Proxied
Authorization", My App uses proxied authorization to make a change to Babs's entry as Kirsten.

To Configure Proxied Authorization

In order to carry out LDAP operations on behalf of another user, the user binding to an OpenDJ
server needs:

• Permission to use the LDAP Proxy Authorization Control.

Permissions are granted using access control instructions (ACIs). This calls for an ACI with a
targetcontrol list that includes the Proxy Authorization Control OID 2.16.840.1.113730.3.4.18 that
grants allow(read) permission to the user binding to the directory.

• Permission to proxy as the given authorization user.

This calls for an ACI with a target scope that includes the entry of the authorization user that
grants allow(proxy) permission to the user binding to the directory.

• The privilege to use proxied authorization.

Privileges are granted using the ds-privilege-name attribute.

Follow these steps to configure proxied authorization for applications with DNs that match cn=*
,ou=Apps,dc=example,dc=com:

1. If the global ACIs or global access policies do not allow access to use the Proxy Authorization
Control, grant access to applications to use the Proxy Authorization control, and to use proxied
authorization on behalf of other applications.

The control has OID 2.16.840.1.113730.3.4.18.

Performing LDAP Operations
Configuring Proxied Authorization

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 109

$ cat allow-proxy-authz.ldif
dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetcontrol="2.16.840.1.113730.3.4.18")
 (version 3.0; acl "Apps can use the Proxy Authorization Control";
 allow(read) userdn="ldap:///cn=*,ou=Apps,dc=example,dc=com";)
aci: (target="ldap:///dc=example,dc=com") (targetattr ="*")
 (version 3.0; acl "Allow apps proxied auth";
 allow(proxy) (userdn = "ldap:///cn=*,ou=Apps,dc=example,dc=com");)

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 allow-proxy-authz.ldif

The latter ACI allows any user whose DN matches cn=*,ou=Apps,dc=example,dc=com to proxy as any
user under the ACI target of dc=example,dc=com.

For example, cn=My App,ou=Apps,dc=example,dc=com can proxy as any user defined in the Example.com
sample data, but cannot proxy as cn=Directory Manager. This is because all the users defined in the
Example.com sample data have their accounts under dc=example,dc=com, and the target of the ACI
includes dc=example,dc=com. cn=Directory Manager is defined in the configuration, however, under
cn=config. The target of the ACI does not include cn=config.

2. Grant the privilege to use proxied authorization to My App:

$ cat privilege-proxy-authz.ldif
dn: cn=My App,ou=Apps,dc=example,dc=com
changetype: modify
add: ds-privilege-name
ds-privilege-name: proxied-auth

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 privilege-proxy-authz.ldif

3. Test that My App can use proxied authorization:

Performing LDAP Operations
Authenticating Client Applications With a Certificate

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 110

$ cat bjensen-proxy-authz-description.ldif
dn: uid=bjensen,ou=People,dc=example,dc=com
changetype: modify
replace: description
description: Changed through proxied auth

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=My App,ou=Apps,dc=example,dc=com" \
 --bindPassword password \
 --proxyAs "dn:uid=kvaughan,ou=People,dc=example,dc=com" \
 bjensen-proxy-authz-description.ldif
Processing MODIFY request for uid=bjensen,ou=People,dc=example,dc=com
MODIFY operation successful for DN uid=bjensen,ou=People,dc=example,dc=com

If you need to map authorization identifiers with the u: form rather than dn:, you can set the identity
mapper with the global configuration setting, proxied-authorization-identity-mapper. For example,
if you get user ID values from the client, such as bjensen, you can configure an OpenDJ server to use
the exact match identity mapper and match those to DNs based on an attribute of the entry. Use the
dsconfig command interactively to determine the required settings.

4.9. Authenticating Client Applications With a Certificate
One alternative to simple binds with user name/password combinations consists of storing a digital
certificate on the user entry, and using the certificate as credentials during the bind. You can use this
mechanism, for example, to let applications bind without using passwords.

By setting up a secure connection with a certificate, the client is in effect authenticating to the
server. The server must close the connection if it cannot trust the client certificate. However, in
the process of establishing a secure connection, it does not identify the client to the OpenDJ server,
because the secure connection is established by the JVM at the transport layer, independently of the
LDAP protocol.

When binding with a certificate, the client must request the SASL External mechanism by which the
OpenDJ server maps the certificate to the client entry in the directory. When it finds a match, the
OpenDJ server sets the authorization identity for the connection to that of the client, and the bind is
successful.

For the whole process of authenticating with a certificate to work smoothly, the OpenDJ server and
the client must trust each others' certificates, the client certificate must be stored on the client entry
in the directory, and the OpenDJ server must be configured to map the certificate to the client entry.

This section includes the following procedures and examples:

• "To Add Certificate Information to an Entry"

• "To Configure Certificate Mappers"

Performing LDAP Operations
Authenticating Client Applications With a Certificate

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 111

• "Authenticating With Client Certificates"

To Add Certificate Information to an Entry

Before you try to bind to an OpenDJ server using a certificate, create a certificate, and add the
certificate attributes to the entry.

Example.ldif includes an entry for cn=My App,ou=Apps,dc=example,dc=com. Examples in this section use that
entry, and use the Java keytool command to manage the certificate:

1. Create a certificate using the DN of the client entry as the dname string:

$ keytool \
 -genkeypair \
 -alias myapp-cert \
 -dname "cn=My App,ou=Apps,dc=example,dc=com" \
 -keystore /path/to/my-keystore \
 -storepass changeit \
 -keypass changeit

2. Get the certificate signed.

If you cannot get the certificate signed by a CA, self-sign the certificate:

$ keytool \
 -selfcert \
 -alias myapp-cert \
 -validity 7300 \
 -keystore /path/to/my-keystore \
 -storepass changeit \
 -keypass changeit

3. Export the certificate to a file in binary format:

$ keytool \
 -export \
 -alias myapp-cert \
 -keystore /path/to/my-keystore \
 -storepass changeit \
 -keypass changeit \
 -file /path/to/myapp-cert.crt
Certificate stored in file </path/to/myapp-cert.crt>

4. Make note of the certificate MD5 fingerprint.

Later in this procedure you update the client application entry with the MD5 fingerprint, referred
to henceforth as MD5_FINGERPRINT:

Performing LDAP Operations
Authenticating Client Applications With a Certificate

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 112

$ keytool \
 -list \
 -v \
 -alias myapp-cert \
 -keystore /path/to/my-keystore \
 -storepass changeit | awk '/MD5/{print $2}'
MD5_FINGERPRINT

5. Modify the entry to add attributes related to the certificate.

By default, you need the userCertificate value.

If you want the server to map the certificate to its fingerprint, use the ds-certificate-fingerprint
attribute. This example uses the MD5 fingerprint, which corresponds to the default setting for the
fingerprint certificate mapper.

If you want to map the certificate subject DN to an attribute of the entry, use the ds-certificate-
subject-dn attribute:

$ cat addcert.ldif
dn: cn=My App,ou=Apps,dc=example,dc=com
changetype: modify
add: objectclass
objectclass: ds-certificate-
user
-
add: ds-certificate-fingerprint
ds-certificate-fingerprint:
 MD5_FINGERPRINT
-
add: ds-certificate-subject-dn
ds-certificate-subject-dn: CN=My App, OU=Apps, DC=example,
 DC=com
-
add: userCertificate;binary
userCertificate;binary:<file:///path/to/myapp-cert.crt

$ ldapmodify \
 --hostname opendj.example.com \
 --port 1389 \
 --bindDN uid=kvaughan,ou=People,dc=example,dc=com \
 --bindPassword bribery \
 addcert.ldif

6. Check your work:

Performing LDAP Operations
Authenticating Client Applications With a Certificate

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 113

$ ldapsearch \
 --hostname opendj.example.com \
 --port 1389 \
 --baseDN dc=example,dc=com \
 "(cn=My App)"
dn: cn=My App,ou=Apps,dc=example,dc=com
ds-certificate-fingerprint: MD5_FINGERPRINT
userCertificate;binary:: ENCODED_CERT
objectClass: person
objectClass: inetOrgPerson
objectClass: organizationalPerson
objectClass: ds-certificate-user
objectClass: top
ds-certificate-subject-dn: CN=My App, OU=Apps, DC=example, DC=com
cn: My App
sn: App

7. When using a self-signed certificate, import the client certificate into the server truststore.

When the client presents its certificate to an OpenDJ server, by default the server must trust the
client certificate before it can accept the connection. If the OpenDJ server cannot trust the client
certificate, it cannot establish a secure connection:

$ keytool \
 -import \
 -alias myapp-cert \
 -file /path/to/myapp-cert.crt \
 -keystore /path/to/opendj/config/keystore \
 -storetype PKCS12 \
 -storepass:file /path/to/opendj/config/keystore.pin \
 -noprompt
Certificate was added to keystore

8. When using a certificate signed by a CA whose certificate is not delivered with the Java runtime
environment, import the CA certificate into the Java runtime environment truststore, or into the
server truststore as shown in the following example:

$ keytool \
 -import \
 -alias ca-cert \
 -file ca.crt \
 -keystore /path/to/opendj/config/keystore \
 -storetype PKCS12 \
 -storepass:file /path/to/opendj/config/keystore.pin \
 -noprompt
Certificate was added to keystore

9. If you updated the truststore to add a certificate, restart the server to make sure that it reads the
updated truststore and recognizes the certificate:

Performing LDAP Operations
Authenticating Client Applications With a Certificate

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 114

$ stop-ds --restart --quiet

To Configure Certificate Mappers

An OpenDJ server uses certificate mappers during binds to establish a mapping between a client
certificate and the entry that corresponds to that certificate. The certificate mappers shipped with an
OpenDJ server include the following:

Fingerprint Certificate Mapper

Looks for the MD5 (default) or SHA-1 certificate fingerprint in an attribute of the entry (default:
ds-certificate-fingerprint).

Subject Attribute To User Attribute Mapper

Looks for a match between an attribute of the certificate subject and an attribute of the entry
(default: match cn in the certificate to cn on the entry, or match emailAddress in the certificate to
mail on the entry).

Subject DN to User Attribute Certificate Mapper

Looks for the certificate subject DN in an attribute of the entry (default: ds-certificate-subject-dn).

Subject Equals DN Certificate Mapper

Looks for an entry whose DN matches the certificate subject DN.

If the default configurations for the certificate mappers are acceptable, you do not need to change
them. They are enabled by default.

The following steps demonstrate how to change the Fingerprint Mapper default algorithm of MD5 to
SHA1:

1. List the certificate mappers to retrieve the correct name:

$ dsconfig \
 list-certificate-mappers \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --trustAll \
 --no-prompt
Certificate Mapper : Type : enabled
------------------------------------:-------------------------------------:--------
Fingerprint Mapper : fingerprint : true
Subject Attribute to User Attribute : subject-attribute-to-user-attribute : true
Subject DN to User Attribute : subject-dn-to-user-attribute : true
Subject Equals DN : subject-equals-dn : true

Performing LDAP Operations
Authenticating Client Applications With a Certificate

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 115

2. Examine the current configuration:

$ dsconfig \
 get-certificate-mapper-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --mapper-name "Fingerprint Mapper" \
 --trustAll \
 --no-prompt
Property : Value(s)
----------------------:---------------------------
enabled : true
fingerprint-algorithm : md5
fingerprint-attribute : ds-certificate-fingerprint
user-base-dn : -

3. Change the configuration as necessary:

$ dsconfig \
 set-certificate-mapper-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --mapper-name "Fingerprint Mapper" \
 --set fingerprint-algorithm:sha1 \
 --trustAll \
 --no-prompt

4. Set the External SASL Mechanism Handler to use the appropriate certificate mapper (default:
Subject Equals DN).

Client applications use the SASL External mechanism during the bind to have the OpenDJ server
set the authorization identifier based on the entry that matches the client certificate:

$ dsconfig \
 set-sasl-mechanism-handler-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --handler-name External \
 --set certificate-mapper:"Fingerprint Mapper" \
 --trustAll \
 --no-prompt

Performing LDAP Operations
Authenticating Client Applications With a Certificate

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 116

Authenticating With Client Certificates

Instead of providing a bind DN and password as for simple authentication, use the SASL EXTERNAL
authentication mechanism, and provide the certificate. As a test with example data, you can try an
anonymous search, then try with certificate-based authentication.

Before you try this example, make sure the OpenDJ server is set up to accept StartTLS from clients,
and that you have set up the client certificate as described above. Next, create a password PIN file
for your client key store:

$ touch /path/to/my-keystore.pin
$ chmod 600 /path/to/my-keystore.pin
Add the PIN (changeit) in cleartext on first and only line in the file:
$ vi /path/to/my-keystore.pin

Also, if an OpenDJ server uses a certificate for StartTLS that was not signed by a well-known CA,
import the appropriate certificate into the client keystore, which can then double as a truststore.
For example, if an OpenDJ server uses a self-signed certificate, import the server certificate into the
keystore:

$ keytool \
 -export \
 -alias server-cert \
 -file server-cert.crt \
 -keystore /path/to/opendj/config/keystore \
 -storepass:file /path/to/opendj/config/keystore.pin \
 -storetype PKCS12
$ keytool \
 -import \
 -trustcacerts \
 -alias server-cert \
 -file server-cert.crt \
 -keystore /path/to/my-keystore \
 -storepass:file /path/to/my-keystore.pin \
 -noprompt

If an OpenDJ server uses a CA-signed certificate, but the CA is not well-known, import the CA
certificate into your keystore:

$ keytool \
 -import \
 -trustcacerts \
 -alias ca-cert \
 -file ca-cert.crt \
 -keystore /path/to/my-keystore \
 -storepass:file /path/to/my-keystore.pin

Performing LDAP Operations
Authenticating Client Applications With a Certificate

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 117

Now that you can try the example, notice that an OpenDJ server does not return the userPassword value
for an anonymous search:

$ ldapsearch \
 --hostname opendj.example.com \
 --port 1389 \
 --baseDN dc=example,dc=com \
 --useStartTLS \
 --trustStorePath /path/to/my-keystore \
 --trustStorePasswordFile /path/to/my-keystore.pin \
 "(cn=My App)" \
 userPassword
dn: cn=My App,ou=Apps,dc=example,dc=com

An OpenDJ server does let users read the values of their own userPassword attributes after they bind
successfully:

$ ldapsearch \
 --hostname opendj.example.com \
 --port 1389 \
 --baseDN dc=example,dc=com \
 --useStartTLS \
 --saslOption mech="EXTERNAL" \
 --certNickName myapp-cert \
 --keyStorePath /path/to/my-keystore \
 --keyStorePasswordFile /path/to/my-keystore.pin \
 --trustStorePath /path/to/my-keystore \
 --trustStorePasswordFile /path/to/my-keystore.pin \
 "(cn=My App)" \
 userPassword
dn: cn=My App,ou=Apps,dc=example,dc=com
userPassword: {SSHA512}<hash>

You can also try the same test with other certificate mappers.

This example uses the fingerprint mapper:

Performing LDAP Operations
Authenticating Client Applications With a Certificate

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 118

$ dsconfig \
 set-sasl-mechanism-handler-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --handler-name External \
 --set certificate-mapper:"Fingerprint Mapper" \
 --trustAll \
 --no-prompt
$ ldapsearch \
 --hostname opendj.example.com \
 --port 1389 \
 --baseDN dc=example,dc=com \
 --useStartTLS \
 --saslOption mech="EXTERNAL" \
 --certNickName myapp-cert \
 --keyStorePath /path/to/my-keystore \
 --keyStorePasswordFile /path/to/my-keystore.pin \
 --trustStorePath /path/to/my-keystore \
 --trustStorePasswordFile /path/to/my-keystore.pin \
 "(cn=My App)" \
 userPassword
dn: cn=My App,ou=Apps,dc=example,dc=com
userPassword: {SSHA512}<hash>

This example uses the subject attribute to user attribute mapper:

$ dsconfig \
 set-sasl-mechanism-handler-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --handler-name External \
 --set certificate-mapper:"Subject Attribute to User Attribute" \
 --trustAll \
 --no-prompt
$ ldapsearch \
 --hostname opendj.example.com \
 --port 1389 \
 --baseDN dc=example,dc=com \
 --useStartTLS \
 --saslOption mech="EXTERNAL" \
 --certNickName myapp-cert \
 --keyStorePath /path/to/my-keystore \
 --keyStorePasswordFile /path/to/my-keystore.pin \
 --trustStorePath /path/to/my-keystore \
 --trustStorePasswordFile /path/to/my-keystore.pin \
 "(cn=My App)" \
 userPassword
dn: cn=My App,ou=Apps,dc=example,dc=com
userPassword: {SSHA512}<hash>

Performing LDAP Operations
Authenticating Client Applications With a Certificate

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 119

This example uses the subject DN to user attribute mapper:

$ dsconfig \
 set-sasl-mechanism-handler-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --handler-name External \
 --set certificate-mapper:"Subject DN to User Attribute" \
 --trustAll \
 --no-prompt
$ ldapsearch \
 --hostname opendj.example.com \
 --port 1389 \
 --baseDN dc=example,dc=com \
 --useStartTLS \
 --saslOption mech="EXTERNAL" \
 --certNickName myapp-cert \
 --keyStorePath /path/to/my-keystore \
 --keyStorePasswordFile /path/to/my-keystore.pin \
 --trustStorePath /path/to/my-keystore \
 --trustStorePasswordFile /path/to/my-keystore.pin \
 "(cn=My App)" \
 userPassword
dn: cn=My App,ou=Apps,dc=example,dc=com
userPassword: {SSHA512}<hash>

Using LDAP Schema
Getting Schema Information

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 120

Chapter 5

Using LDAP Schema

LDAP services are based on X.500 Directory Services, which are telecommunications standards. In
telecommunications, interoperability is paramount. Competitors must cooperate to the extent that
they use each others' systems. For directory services, the protocols for exchanging data and the
descriptions of the data are standardized. LDAP defines schema that describe both what attributes a
given LDAP entry must have and may optionally have, and also what attribute values can contain and
how they can be matched. Formal schema definitions protect interoperability when many applications
read and write to the same directory service. Directory data are much easier to share as long as you
understand how to use LDAP schema.

"Managing Schema" in the Administration Guide covers LDAP schema from the server administrator's
perspective. Administrators can update LDAP directory schema. OpenDJ servers support a large
number of standard schema definitions by default. Administrators can also adjust how strictly an
OpenDJ server applies schema definitions.

This chapter covers LDAP schema from the script developer's perspective. As a script developer,
you use the available schema and accept the server's application of schema when updating directory
entries.

In this chapter you will learn how to:

• Look up available schemas

• Understand what the schemas allow

• Understand and resolve errors that arise due to schema violations

5.1. Getting Schema Information
Directory servers publish information about services they provide as operational attributes of the
root DSE. The root DSE is the entry with an empty string DN, "". DSE is an acronym for DSA-Specific
Entry. DSA is an acronym for Directory System Agent. The DSE differs by server, but is generally
nearly identical for replicas.

OpenDJ servers publish the DN of the entry holding schema definitions as the value of the attribute
subschemaSubentry. This is shown in "Finding the Schema Entry".

Using LDAP Schema
Getting Schema Information

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 121

Finding the Schema Entry

Look up the schema DN:

$ ldapsearch --port 1389 --baseDN "" --searchScope base "(&)" subschemaSubentry
dn:
subschemaSubentry: cn=schema

By default, the DN for the schema entry is cn=schema.

The schema entry has the following attributes whose values are schema definitions:

attributeTypes

Attribute type definitions describe attributes of directory entries, such as givenName or mail.

objectClasses

Object class definitions identify the attribute types that an entry must have, and may have.
Examples of object classes include person and organizationalUnit. Object classes inherit from other
object classes. For example, inetOrgPerson inherits from person.

Object classes are specified as values of an entry's objectClass attribute.

An object class can be one of the following:

• Structural object classes define the core structure of the entry, generally representing a real-
world object.

By default, OpenDJ directory entries have a single structural object class or at least a single line
of structural object class inheritance.

The person object class is structural, for example.

• Auxiliary object classes define additional characteristics of entries.

The posixAccount object class is auxiliary, for example.

• Abstract object classes define base characteristics for other object classes to inherit, and
cannot themselves inherit from other object classes.

The top object class from which others inherit is abstract, for example.

ldapSyntaxes

An attribute syntax constrains what directory clients can store as attribute values.

matchingRules

A Matching rule determines how the directory server compares attribute values to assertion values
for LDAP search and LDAP compare operations.

Using LDAP Schema
Getting Schema Information

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 122

For example, in a search having the filter (uid=bjensen) the assertion value is bjensen.

nameForms

A name form specifies which attribute can be used as the relative DN (RDN) for a structural
object class.

dITStructureRules

A DIT structure rule defines a relationship between directory entries by identifying the name
form allowed for subordinate entries of a given superior entry.

Reading an Object Class Schema Definition

The schema entry in an OpenDJ server is large because it contains all of the schema definitions. Filter
the results when reading a specific schema definition.

The example below reads the definition for the person object class:

$ grep \'person\' <(ldapsearch \
 --port 1389 \
 --baseDN "cn=schema" \
 --searchScope base \
 "(&)" \
 objectClasses)
objectClasses: (2.5.6.6 NAME 'person' SUP top STRUCTURAL MUST (sn $ cn) MAY (userPassword $
 telephoneNumber $ seeAlso $ description) X-ORIGIN 'RFC 4519' X-SCHEMA-FILE '00-core.ldif')

Notice the use of the object class name in grep \'person\' to filter search results.

The object class defines which attributes an entry of that object class must have and which attributes
the entry may optionally have. A person entry must have a cn and an sn attribute. A person entry may
optionally have userPassword, telephoneNumber, seeAlso, and description attributes.

To determine definitions of those attributes, read the LDAP schema as demonstrated in "Reading
Schema Definitions for an Attribute".

Reading Schema Definitions for an Attribute

The following example shows you how to read the schema definition for the cn attribute:

$ grep \'cn\' <(ldapsearch \
 --port 1389 \
 --baseDN "cn=schema" \
 --searchScope base \
 "(&)" \
 attributeTypes)
attributeTypes: (2.5.4.3 NAME ('cn' 'commonName') SUP name X-ORIGIN 'RFC 4519' X-SCHEMA-FILE '00-core
.ldif')

Using LDAP Schema
Respecting LDAP Schema

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 123

The cn attribute inherits its definition from the name attribute. That attribute definition indicates
attribute syntax and matching rules as shown in the following example:

$ grep \'name\' <(ldapsearch \
 --port 1389 \
 --baseDN "cn=schema" \
 --searchScope base \
 "(&)" \
 attributeTypes)
attributeTypes: (2.5.4.41 NAME 'name' EQUALITY caseIgnoreMatch SUBSTR caseIgnoreSubstringsMatch SYNTAX 1
.3.6.1.4.1.1466.115.121.1.15 X-ORIGIN 'RFC 4519' X-SCHEMA-FILE '00-core.ldif')

This means that the server ignores case when matching a common name value. Use the OID to read
the syntax as shown in the following example:

$ grep 1.3.6.1.4.1.1466.115.121.1.15 <(ldapsearch \
 --port 1389 \
 --baseDN "cn=schema" \
 --searchScope base \
 "(&)" \
 ldapSyntaxes)
ldapSyntaxes: (1.3.6.1.4.1.1466.115.121.1.15 DESC 'Directory String' X-ORIGIN 'RFC 4517')

Taken together with the information for the name attribute, the common name attribute value
is a Directory String of at most 32,768 characters. For details about syntaxes, read RFC 4517,
Lightweight Directory Access Protocol (LDAP): Syntaxes and Matching Rules. That document
describes a Directory String as one or more UTF-8 characters.

5.2. Respecting LDAP Schema
For the sake of interoperability and to avoid polluting directory data, scripts and applications should
respect LDAP schema. In the simplest case, scripts and applications can use the schemas already
defined.

OpenDJ servers do accept updates to schema definitions over LDAP while the server is running. This
means that when a new application calls for attributes that are not yet defined by existing directory
schemas, the directory administrator can easily add them as described in "Updating Directory
Schema" in the Administration Guide as long as the new definitions do not conflict with existing
definitions.

General purpose applications handle many different types of data. Such applications must manage
schema compliance at run time. Software development kits provide mechanisms for reading schema
definitions at run time and checking whether entry data is valid according to the schema definitions.

Many scripts do not require run time schema checking. In such cases it is enough properly to handle
schema-related LDAP result codes when writing to the directory:

http://tools.ietf.org/html/rfc4517
http://tools.ietf.org/html/rfc4517

Using LDAP Schema
Respecting LDAP Schema

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 124

LDAP result code: 17 (Undefined attribute type)

The requested operation failed because it referenced an attribute that is not defined in the server
schema.

LDAP result code: 18 (Inappropriate matching)

The requested operation failed because it attempted to perform an inappropriate type of
matching against an attribute.

LDAP result code: 20 (Attribute or value exists)

The requested operation failed because it would have resulted in a conflict with an existing
attribute or attribute value in the target entry.

For example, the request tried to add a second value to a single-valued attribute.

LDAP result code: 21 (Invalid attribute syntax)

The requested operation failed because it violated the syntax for a specified attribute.

LDAP result code: 34 (Invalid DN syntax)

The requested operation failed because it would have resulted in an entry with an invalid or
malformed DN.

LDAP result code: 64 (Naming violation)

The requested operation failed because it would have violated the server's naming configuration.

For example, the request did not respect a name form definition.

LDAP result code: 65 (Object class violation)

The requested operation failed because it would have resulted in an entry that violated the server
schema.

For example, the request tried to remove a required attribute, or tried to add an attribute that is
not allowed.

LDAP result code: 69 (Object class mods prohibited)

The requested operation failed because it would have modified] the object classes associated with
an entry in an illegal manner.

When you encounter an error, take the time to read the additional information. The additional
information from an OpenDJ server often suffices to allow you to resolve the problem directly.

"Object Class Violations" and "Invalid Attribute Syntax" show some common problems that can result
from schema violations.

Using LDAP Schema
Respecting LDAP Schema

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 125

Object Class Violations

A number of schema violations show up as object class violations. The following request fails to add
an undefined attribute:

$ cat undefined.ldif
dn: uid=bjensen,ou=People,dc=example,dc=com
changetype: modify
add: undefined
undefined: This attribute is not defined.

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 undefined.ldif
Processing MODIFY request for uid=bjensen,ou=People,dc=example,dc=com
The LDAP modify request failed: 65 (Object Class Violation)
Additional Information: Entry uid=bjensen,ou=People,dc=example,dc=com cannot be modified because the
 resulting entry would have violated the server schema: Entry uid=bjensen,ou=People,dc=example,dc=com
 violates the Directory Server schema configuration because it includes attribute undefined which is not
 allowed by any of the objectclasses defined in that entry

The solution in this case is to make sure that the undefined attribute is defined and that it is allowed by
one of the object classes defined for the entry.

The following request fails to add a second structural object class:

$ cat second-structural.ldif
dn: uid=bjensen,ou=People,dc=example,dc=com
changetype: modify
add: objectClass
objectClass: organizationalUnit

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 second-structural.ldif
Processing MODIFY request for uid=bjensen,ou=People,dc=example,dc=com
The LDAP modify request failed: 65 (Object Class Violation)
Additional Information: Entry uid=bjensen,ou=People,dc=example,dc=com cannot be modified because the
 resulting entry would have violated the server schema: Entry uid=bjensen,ou=People,dc=example,dc=com
 violates the Directory Server schema configuration because it includes multiple conflicting structural
 objectclasses inetOrgPerson and organizationalUnit. Only a single structural objectclass is allowed in an
 entry

The solution in this case is to define only one structural object class for the entry. Either Babs Jensen
is a person or an organizational unit, but not both.

Using LDAP Schema
Abusing LDAP Schema

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 126

Invalid Attribute Syntax

The following request fails to add an empty string as a common name attribute value:

$ cat empty-cn.ldif
dn: uid=bjensen,ou=People,dc=example,dc=com
changetype: modify
add: cn
cn:

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 empty-cn.ldif
Processing MODIFY request for uid=bjensen,ou=People,dc=example,dc=com
The LDAP modify request failed: 21 (Invalid Attribute Syntax)
Additional Information: When attempting to modify entry uid=bjensen,ou=People,dc=example,dc=com to add
 one or more values for attribute cn, value "" was found to be invalid according to the associated syntax:
 The operation attempted to assign a zero-length value to an attribute with the directory string syntax

As mentioned in "Reading Schema Definitions for an Attribute", a Directory String has one or more
UTF-8 characters.

5.3. Abusing LDAP Schema
Follow the suggestions in "Respecting LDAP Schema" as much as possible. In particular follow these
rules of thumb:

• Test with a private OpenDJ server to resolve schema issues before going live.

• Adapt your scripts and applications to avoid violating schema definitions.

• When existing schemas are not sufficient, request schema updates to add definitions that do not
conflict with any already in use.

When it is not possible to respect the schema definitions, you can sometimes work around LDAP
schema constraints without changing the server configuration. The schema defines an extensibleObject
object class. The extensibleObject object class is auxiliary. It effectively allows entries to hold any user
attribute, even attributes that are not defined in the schema.

Working Around Restrictions With ExtensibleObject

The following example adds one attribute that is undefined and another that is not allowed:

Using LDAP Schema
Standard Schema Included With OpenDJ Server

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 127

$ cat extensible-object.ldif
dn: uid=bjensen,ou=People,dc=example,dc=com
changetype: modify
add: objectClass
objectClass: extensibleObject
-
add: undefined
undefined: This attribute is not defined in the LDAP schema
.
-
add: serialNumber
serialNumber: This attribute is not allowed according to the object classes.

$ ldapmodify \
 --port 1389 \
 --bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \
 --bindPassword bribery \
 extensible-object.ldif
Processing MODIFY request for uid=bjensen,ou=People,dc=example,dc=com
MODIFY operation successful for DN uid=bjensen,ou=People,dc=example,dc=com

Use of the extensibleObject object class opens the door to abuse and can prevent interoperability.
Restrict its use to cases where no better alternative is available.

5.4. Standard Schema Included With OpenDJ Server
OpenDJ servers provide many standard schema definitions. For documentation on the available
schema definitions, see LDAP Schema Reference. The LDAP schema elements are defined in these
LDIF files under /path/to/opendj/config/schema:

00-core.ldif

This file contains a core set of attribute type and object class definitions from the following
Internet-Drafts, RFCs, and standards:

draft-boreham-numsubordinates
draft-findlay-ldap-groupofentries
draft-good-ldap-changelog
draft-howard-namedobject
draft-ietf-ldup-subentry
draft-wahl-ldap-adminaddr
RFC 1274
RFC 2079
RFC 2256
RFC 2798
RFC 3045
RFC 3296
RFC 3671

https://tools.ietf.org/html/draft-boreham-numsubordinates
https://tools.ietf.org/html/draft-findlay-ldap-groupofentries
https://tools.ietf.org/html/draft-good-ldap-changelog
https://tools.ietf.org/html/draft-howard-namedobject
https://tools.ietf.org/html/draft-ietf-ldup-subentry
https://tools.ietf.org/html/draft-wahl-ldap-adminaddr
https://tools.ietf.org/html/rfc1274
https://tools.ietf.org/html/rfc2079
https://tools.ietf.org/html/rfc2256
https://tools.ietf.org/html/rfc2798
https://tools.ietf.org/html/rfc3045
https://tools.ietf.org/html/rfc3296
https://tools.ietf.org/html/rfc3671

Using LDAP Schema
Standard Schema Included With OpenDJ Server

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 128

RFC 3672
RFC 4512
RFC 4519
RFC 4523
RFC 4524
RFC 4530
RFC 5020
X.501

01-pwpolicy.ldif

This file contains schema definitions from draft-behera-ldap-password-policy (Draft 09), which
defines a mechanism for storing password policy information in an LDAP directory server.

02-config.ldif

This file contains the attribute type and objectclass definitions for use with the server
configuration.

03-changelog.ldif

This file contains schema definitions from draft-good-ldap-changelog, which defines a mechanism
for storing information about changes to directory server data.

03-rfc2713.ldif

This file contains schema definitions from RFC 2713, which defines a mechanism for storing
serialized Java objects in the directory server.

03-rfc2714.ldif

This file contains schema definitions from RFC 2714, which defines a mechanism for storing
CORBA objects in the directory server.

03-rfc2739.ldif

This file contains schema definitions from RFC 2739, which defines a mechanism for storing
calendar and vCard objects in the directory server. Note that the definition in RFC 2739 contains
a number of errors, and this schema file has been altered from the standard definition in order to
fix a number of those problems.

03-rfc2926.ldif

This file contains schema definitions from RFC 2926, which defines a mechanism for mapping
between Service Location Protocol (SLP) advertisements and LDAP.

03-rfc3112.ldif

This file contains schema definitions from RFC 3112, which defines the authentication password
schema.

https://tools.ietf.org/html/rfc3672
https://tools.ietf.org/html/rfc4512
https://tools.ietf.org/html/rfc4519
https://tools.ietf.org/html/rfc4523
https://tools.ietf.org/html/rfc4524
https://tools.ietf.org/html/rfc4530
https://tools.ietf.org/html/rfc5020
https://www.itu.int/rec/T-REC-X.501
https://tools.ietf.org/html/draft-behera-ldap-password-policy-09
https://tools.ietf.org/html/draft-good-ldap-changelog
https://tools.ietf.org/html/rfc2713
https://tools.ietf.org/html/rfc2714
https://tools.ietf.org/html/rfc2739
https://tools.ietf.org/html/rfc2926
https://tools.ietf.org/html/rfc3112

Using LDAP Schema
Standard Schema Included With OpenDJ Server

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 129

03-rfc3712.ldif

This file contains schema definitions from RFC 3712, which defines a mechanism for storing
printer information in the directory server.

03-uddiv3.ldif

This file contains schema definitions from RFC 4403, which defines a mechanism for storing
UDDIv3 information in the directory server.

04-rfc2307bis.ldif

This file contains schema definitions from draft-howard-rfc2307bis, which defines a mechanism
for storing naming service information in the directory server.

05-rfc4876.ldif

This file contains schema definitions from RFC 4876, which defines a schema for storing
Directory User Agent (DUA) profiles and preferences in the directory server.

05-samba.ldif

This file contains schema definitions required when storing Samba user accounts in the directory
server.

05-solaris.ldif

This file contains schema definitions required for Solaris and OpenSolaris LDAP naming services.

06-compat.ldif

This file contains the attribute type and objectclass definitions for use with the server
configuration.

https://tools.ietf.org/html/rfc3712
https://tools.ietf.org/html/rfc4403
https://tools.ietf.org/html/draft-howard-rfc2307bis
https://tools.ietf.org/html/rfc4876

Working With Groups of Entries

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 130

Chapter 6

Working With Groups of Entries
OpenDJ servers support several methods of grouping entries in the directory. Static groups list
their members, whereas dynamic groups look up their membership based on an LDAP filter.
OpenDJ servers supports virtual static groups, which use a dynamic group-style definition, but allow
applications to list group members as if the group were static.

When listing entries in static groups, you must also have a mechanism for removing entries from the
list when they are deleted or modified in ways that end their membership. OpenDJ servers make that
possible through their referential integrity capabilities.

In this chapter you will learn how to:

• Create static (enumerated) groups

• Create dynamic groups based on LDAP URLs

• Create virtual static groups that make dynamic groups look like static groups

• Look up group membership efficiently

• Work with nested groups

• Make sure that when an entry is deleted or modified, the server updates affected groups
appropriately

Tip

The examples in this chapter are written with the assumption that an ou=Groups,dc=example,dc=com entry
already exists. If you imported data from Example.ldif, then you already have the entry. If you generated data
during setup and did not create an organizational unit for groups yet, create the entry before you try the
examples:

Working With Groups of Entries
Creating Static Groups

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 131

$ cat groups.ldif
dn: ou=Groups,dc=example,dc=com
objectClass: organizationalunit
objectClass: top
ou: Groups

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 groups.ldif

6.1. Creating Static Groups
A static group is expressed as an entry that enumerates all the entries that belong to the group.
Static group entries grow as their membership increases.

Tip

Large static groups can be a performance bottleneck. The recommended way to avoid the issue is to use
dynamic groups instead as described in "Creating Dynamic Groups". If using dynamic groups is not an option
for a deployment with large static groups that are updated regularly, use an entry cache. For details, see
"Caching Large, Frequently Used Entries" in the Administration Guide.

Static group entries can take the standard object class groupOfNames where each member attribute value
is a distinguished name of an entry, or groupOfUniqueNames where each uniqueMember attribute value has
Name and Optional UID syntax. (Name and Optional UID syntax values are a DN optionally followed
by #BitString. The BitString, such as '0101111101'B, serves to distinguish the entry from another entry
having the same DN, which can occur when the original entry was deleted and a new entry created
with the same DN.) Like other LDAP attributes, member and uniqueMember attributes take sets of unique
values.

Static group entries can also have the object class groupOfEntries, which is like groupOfNames except that
it is designed to allow groups not to have members.

When creating a group entry, use groupOfNames or groupOfEntries where possible.

To create a static group, add a group entry such as the following to the directory:

Working With Groups of Entries
Creating Static Groups

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 132

$ cat static.ldif
dn: cn=My Static Group,ou=Groups,dc=example,dc=com
cn: My Static Group
objectClass: groupOfNames
objectClass: top
ou: Groups
member: uid=ahunter,ou=People,dc=example,dc=com
member: uid=bjensen,ou=People,dc=example,dc=com
member: uid=tmorris,ou=People,dc=example,dc=com

$ ldapmodify \
 --port 1389 \
 --bindDN uid=kvaughan,ou=People,dc=example,dc=com \
 --bindPassword bribery \
 static.ldif

To change group membership, modify the values of the membership attribute:

$ cat add2group.ldif
dn: cn=My Static Group,ou=Groups,dc=example,dc=com
changetype: modify
add: member
member: uid=scarter,ou=People,dc=example,dc=com

$ ldapmodify \
 --port 1389 \
 --bindDN uid=kvaughan,ou=People,dc=example,dc=com \
 --bindPassword bribery \
 add2group.ldif
$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(cn=My Static Group)"
dn: cn=My Static Group,ou=Groups,dc=example,dc=com
objectClass: top
objectClass: groupOfNames
cn: My Static Group
ou: Groups
member: uid=ahunter,ou=People,dc=example,dc=com
member: uid=bjensen,ou=People,dc=example,dc=com
member: uid=tmorris,ou=People,dc=example,dc=com
member: uid=scarter,ou=People,dc=example,dc=com

RFC 4519 says a groupOfNames entry must have at least one member. Although an OpenDJ server
allows you to create a groupOfNames without members, strictly speaking, that behavior is not standard.
Alternatively, you can use the groupOfEntries object class as shown in the following example:

Working With Groups of Entries
Creating Dynamic Groups

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 133

$ cat group-of-entries.ldif
dn: cn=Initially Empty Static Group,ou=Groups,dc=example,dc=com
cn: Initially Empty Static Group
objectClass: groupOfEntries
objectClass: top
ou: Groups

$ ldapmodify \
 --port 1389 \
 --bindDN uid=kvaughan,ou=People,dc=example,dc=com \
 --bindPassword bribery \
 group-of-entries.ldif
$ cat add-members.ldif
dn: cn=Initially Empty Static Group,ou=Groups,dc=example,dc=com
changetype: modify
add: member
member: uid=ahunter,ou=People,dc=example,dc=com
member: uid=bjensen,ou=People,dc=example,dc=com
member: uid=tmorris,ou=People,dc=example,dc=com
member: uid=scarter,ou=People,dc=example,dc=com

$ ldapmodify \
 --port 1389 \
 --bindDN uid=kvaughan,ou=People,dc=example,dc=com \
 --bindPassword bribery \
 add-members.ldif

6.2. Creating Dynamic Groups
A dynamic group specifies members using LDAP URLs. Dynamic groups entries can stay small even
as their membership increases.

Dynamic group entries take the groupOfURLs object class, with one or more memberURL values specifying
LDAP URLs to identify group members.

To create a dynamic group, add a group entry such as the following to the directory.

The following example builds a dynamic group of entries, effectively matching the filter "(l=San
 Francisco)" (users whose location is San Francisco). Change the filter if your data is different, and so
no entries have l: San Francisco:

Working With Groups of Entries
Creating Virtual Static Groups

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 134

$ cat dynamic.ldif
dn: cn=My Dynamic Group,ou=Groups,dc=example,dc=com
cn: My Dynamic Group
objectClass: top
objectClass: groupOfURLs
ou: Groups
memberURL: ldap:///ou=People,dc=example,dc=com??sub?l=San Francisco

$ ldapmodify \
 --port 1389 \
 --bindDN uid=kvaughan,ou=People,dc=example,dc=com \
 --bindPassword bribery \
 dynamic.ldif

Group membership changes dynamically as entries change to match the memberURL values:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com \
 "(&(uid=*jensen)(isMemberOf=cn=My Dynamic Group,ou=Groups,dc=example,dc=com))" 1.1
dn: uid=bjensen,ou=People,dc=example,dc=com

dn: uid=rjensen,ou=People,dc=example,dc=com
$ cat move-ajensen.ldif
dn: uid=ajensen,ou=People,dc=example,dc=com
changetype: modify
replace: l
l: San Francisco

$ ldapmodify \
 --port 1389 \
 --bindDN uid=kvaughan,ou=People,dc=example,dc=com \
 --bindPassword bribery \
 move-ajensen.ldif
$ ldapsearch --port 1389 --baseDN dc=example,dc=com \
 "(&(uid=*jensen)(isMemberOf=cn=My Dynamic Group,ou=Groups,dc=example,dc=com))" 1.1
dn: uid=ajensen,ou=People,dc=example,dc=com

dn: uid=bjensen,ou=People,dc=example,dc=com

dn: uid=rjensen,ou=People,dc=example,dc=com

6.3. Creating Virtual Static Groups
OpenDJ servers let you create virtual static groups Virtual static groups allow applications to see
dynamic groups as what appear to be static groups.

The virtual static group takes auxiliary object class ds-virtual-static-group. Virtual static groups
also take either the object class groupOfNames, or groupOfUniqueNames, but instead of having member or
uniqueMember attributes, have ds-target-group-dn attributes pointing to other groups.

Working With Groups of Entries
Creating Virtual Static Groups

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 135

Generating the list of members can be resource-intensive for large groups, so by default, you cannot
retrieve the list of members. You can change this with the dsconfig command by setting the Virtual
 Static member or Virtual Static uniqueMember property:

$ dsconfig \
 set-virtual-attribute-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --name "Virtual Static member" \
 --set allow-retrieving-membership:true \
 --trustAll \
 --no-prompt

The following example creates a virtual static group, and reads the group entry with all members:

$ cat virtual.ldif
dn: cn=Virtual Static,ou=Groups,dc=example,dc=com
cn: Virtual Static
objectclass: top
objectclass: groupOfNames
objectclass: ds-virtual-static-group
ds-target-group-dn: cn=My Dynamic Group,ou=Groups,dc=example,dc=com

$ ldapmodify \
 --port 1389 \
 --bindDN uid=kvaughan,ou=People,dc=example,dc=com \
 --bindPassword bribery \
 virtual.ldif
$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(cn=Virtual Static)"
dn: cn=Virtual Static,ou=Groups,dc=example,dc=com
objectClass: top
objectClass: groupOfNames
objectClass: ds-virtual-static-group
cn: Virtual Static
ds-target-group-dn: cn=My Dynamic Group,ou=Groups,dc=example,dc=com
member: uid=abergin,ou=People,dc=example,dc=com
member: uid=ajensen,ou=People,dc=example,dc=com
member: uid=aknutson,ou=People,dc=example,dc=com
member: uid=awalker,ou=People,dc=example,dc=com
member: uid=aworrell,ou=People,dc=example,dc=com
member: uid=bplante,ou=People,dc=example,dc=com
member: uid=btalbot,ou=People,dc=example,dc=com
member: uid=cwallace,ou=People,dc=example,dc=com
member: uid=dakers,ou=People,dc=example,dc=com
member: uid=dthorud,ou=People,dc=example,dc=com
member: uid=ewalker,ou=People,dc=example,dc=com
member: uid=gfarmer,ou=People,dc=example,dc=com
member: uid=jbourke,ou=People,dc=example,dc=com
member: uid=jcampaig,ou=People,dc=example,dc=com
member: uid=jmuffly,ou=People,dc=example,dc=com
member: uid=jreuter,ou=People,dc=example,dc=com
member: uid=jwalker,ou=People,dc=example,dc=com
member: uid=kcarter,ou=People,dc=example,dc=com
member: uid=kschmith,ou=People,dc=example,dc=com

Working With Groups of Entries
Looking Up Group Membership

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 136

member: uid=mjablons,ou=People,dc=example,dc=com
member: uid=mlangdon,ou=People,dc=example,dc=com
member: uid=mschneid,ou=People,dc=example,dc=com
member: uid=mtalbot,ou=People,dc=example,dc=com
member: uid=mtyler,ou=People,dc=example,dc=com
member: uid=mwhite,ou=People,dc=example,dc=com
member: uid=pshelton,ou=People,dc=example,dc=com
member: uid=rjensen,ou=People,dc=example,dc=com
member: uid=tlabonte,ou=People,dc=example,dc=com
member: uid=tschmith,ou=People,dc=example,dc=com

6.4. Looking Up Group Membership
OpenDJ servers let you look up which groups a user belongs to with the isMemberOf attribute:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(uid=bjensen)" isMemberOf
dn: uid=bjensen,ou=People,dc=example,dc=com
isMemberOf: cn=My Static Group,ou=Groups,dc=example,dc=com
isMemberOf: cn=Carpoolers,ou=Self Service,ou=Groups,dc=example,dc=com

You must request isMemberOf explicitly.

6.5. Nesting Groups Within Groups
OpenDJ servers let you nest groups. The following example shows a group of groups of managers and
administrators:

$ cat the-big-shots.ldif
dn: cn=The Big Shots,ou=Groups,dc=example,dc=com
cn: The Big Shots
objectClass: groupOfNames
objectClass: top
ou: Groups
member: cn=Accounting Managers,ou=groups,dc=example,dc=com
member: cn=Directory Administrators,ou=Groups,dc=example,dc=com
member: cn=HR Managers,ou=groups,dc=example,dc=com
member: cn=PD Managers,ou=groups,dc=example,dc=com
member: cn=QA Managers,ou=groups,dc=example,dc=com

$ ldapmodify \
 --port 1389 \
 --bindDN uid=kvaughan,ou=People,dc=example,dc=com \
 --bindPassword bribery \
 the-big-shots.ldif

Although not shown in the example above, an OpenDJ server lets you nest groups within nested
groups, too.

Working With Groups of Entries
Nesting Groups Within Groups

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 137

OpenDJ servers let you create dynamic groups of groups. The following example shows a group of
other groups. The members of this group are themselves groups, not users:

$ cat group-of-groups.ldif
dn: cn=Group of Groups,ou=Groups,dc=example,dc=com
cn: Group of Groups
objectClass: top
objectClass: groupOfURLs
ou: Groups
memberURL: ldap:///ou=Groups,dc=example,dc=com??sub?ou=Groups

$ ldapmodify \
 --port 1389 \
 --bindDN uid=kvaughan,ou=People,dc=example,dc=com \
 --bindPassword bribery \
 group-of-groups.ldif

Use the isMemberOf attribute to determine what groups a member belongs to, as described in "Looking
Up Group Membership". The following example requests groups that Kirsten Vaughan belongs to:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(uid=kvaughan)" isMemberOf
dn: uid=kvaughan,ou=People,dc=example,dc=com
isMemberOf: cn=Directory Administrators,ou=Groups,dc=example,dc=com
isMemberOf: cn=HR Managers,ou=groups,dc=example,dc=com
isMemberOf: cn=The Big Shots,ou=Groups,dc=example,dc=com

Notice that Kirsten is a member of the group of groups of managers and administrators.

Notice also that Kirsten does not belong to the group of groups. The members of that group are
groups, not users. The following example requests the groups that the directory administrators group
belongs to:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(cn=Directory Administrators)" isMemberOf
dn: cn=Directory Administrators,ou=Groups,dc=example,dc=com
isMemberOf: cn=Group of Groups,ou=Groups,dc=example,dc=com
isMemberOf: cn=The Big Shots,ou=Groups,dc=example,dc=com

The following example shows which groups each group belong to:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(ou=Groups)" isMemberOf
dn: ou=Groups,dc=example,dc=com

dn: cn=Accounting Managers,ou=groups,dc=example,dc=com
isMemberOf: cn=Group of Groups,ou=Groups,dc=example,dc=com
isMemberOf: cn=The Big Shots,ou=Groups,dc=example,dc=com

dn: cn=Directory Administrators,ou=Groups,dc=example,dc=com
isMemberOf: cn=Group of Groups,ou=Groups,dc=example,dc=com
isMemberOf: cn=The Big Shots,ou=Groups,dc=example,dc=com

Working With Groups of Entries
Configuring Referential Integrity

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 138

dn: cn=HR Managers,ou=groups,dc=example,dc=com
isMemberOf: cn=Group of Groups,ou=Groups,dc=example,dc=com
isMemberOf: cn=The Big Shots,ou=Groups,dc=example,dc=com

dn: cn=PD Managers,ou=groups,dc=example,dc=com
isMemberOf: cn=Group of Groups,ou=Groups,dc=example,dc=com
isMemberOf: cn=The Big Shots,ou=Groups,dc=example,dc=com

dn: cn=QA Managers,ou=groups,dc=example,dc=com
isMemberOf: cn=Group of Groups,ou=Groups,dc=example,dc=com
isMemberOf: cn=The Big Shots,ou=Groups,dc=example,dc=com

dn: cn=My Static Group,ou=Groups,dc=example,dc=com
isMemberOf: cn=Group of Groups,ou=Groups,dc=example,dc=com

dn: cn=My Dynamic Group,ou=Groups,dc=example,dc=com

dn: cn=The Big Shots,ou=Groups,dc=example,dc=com
isMemberOf: cn=Group of Groups,ou=Groups,dc=example,dc=com

dn: cn=Group of Groups,ou=Groups,dc=example,dc=com

Notice that the group of groups is not a member of itself.

6.6. Configuring Referential Integrity
When you delete or rename an entry that belongs to static groups, that entry's DN must be removed
or changed in each group it belongs to. You can configure the server to resolve membership on your
behalf after the change operation succeeds by enabling referential integrity.

Referential integrity functionality is implemented as a plugin. The referential integrity plugin is
disabled by default. To enable the plugin, use the dsconfig command:

$ dsconfig \
 set-plugin-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --plugin-name "Referential Integrity" \
 --set enabled:true \
 --trustAll \
 --no-prompt

With the plugin enabled, referential integrity resolves group membership automatically:

Working With Groups of Entries
Configuring Referential Integrity

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 139

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(cn=My Static Group)"
dn: cn=My Static Group,ou=Groups,dc=example,dc=com
objectClass: top
objectClass: groupOfNames
cn: My Static Group
ou: Groups
member: uid=ahunter,ou=People,dc=example,dc=com
member: uid=bjensen,ou=People,dc=example,dc=com
member: uid=tmorris,ou=People,dc=example,dc=com
member: uid=scarter,ou=People,dc=example,dc=com
$ ldapdelete \
 --port 1389 \
 --bindDN uid=kvaughan,ou=People,dc=example,dc=com \
 --bindPassword bribery \
 uid=scarter,ou=People,dc=example,dc=com
$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(cn=My Static Group)"
dn: cn=My Static Group,ou=Groups,dc=example,dc=com
ou: Groups
objectClass: groupOfNames
objectClass: top
cn: My Static Group
member: uid=ahunter,ou=People,dc=example,dc=com
member: uid=bjensen,ou=People,dc=example,dc=com
member: uid=tmorris,ou=People,dc=example,dc=com

By default, the referential integrity plugin is configured to manage member and uniqueMember attributes.
These attributes take values that are DNs, and are indexed for equality by default for the default
backend. Before you add an additional attribute to manage, make sure that it has DN syntax and that
it is indexed for equality. OpenDJ directory servers require that the attribute be indexed because
an unindexed search for integrity would potentially consume too many of the server's resources.
Attribute syntax is explained in "Managing Schema" in the Administration Guide. For instructions on
indexing attributes, see "Configuring and Rebuilding Indexes" in the Administration Guide.

You can also configure the referential integrity plugin to check that new entries added to groups
actually exist in the directory by setting the check-references property to true. You can specify
additional criteria once you have activated the check. To ensure that entries added must match a
filter, set the check-references-filter-criteria to identify the attribute and the filter. For example, you
can specify that group members must be person entries by setting check-references-filter-criteria to
member:(objectclass=person). To ensure that entries must be located in the same naming context, set
check-references-scope-criteria to naming-context.

Working With Virtual and Collective Attributes
Virtual Attributes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 140

Chapter 7

Working With Virtual and Collective Attributes
OpenDJ servers support virtual attributes with dynamically generated values. Some virtual attributes
are defined by default. You can also define your own. OpenDJ servers also support standard collective
attributes, described in RFC 3671, allowing entries to share common, read-only attribute values.

In this chapter you will learn how to define virtual and collective attributes.

7.1. Virtual Attributes
Virtual attributes augment directory entries with attribute values that the OpenDJ server computes or
obtains dynamically. Virtual attribute values do not exist in persistent storage. They help to limit the
amount of data that needs to be stored and are great for some uses, such as determining the groups a
users belongs to or adding an ETag to an entry.

Do not index virtual attributes. Virtual attribute values generated by the server when they are read.
They are not designed to be stored in a persistent index.

Since you do not index virtual attributes, searching on a virtual attribute can result in an unindexed
search. For an unindexed search, the OpenDJ directory server potentially has to go through all
entries to look for candidate matches. Looking through all entries is resource-intensive for large
directories. By default, an OpenDJ directory server allows only the Directory Manager superuser to
perform unindexed searches. Generally avoid searches that use a simple filter with a virtual attribute.
Instead, consider the alternatives. You can assign a password policy to a group as described in "To
Assign a Password Policy to a Group" in the Administration Guide. The procedure uses a virtual
attribute only in a subtree specification filter. If you must use a virtual attribute in a search filter,
use it in a complex search filter after narrowing the search by filtering on an indexed attribute. For
example, the following filter first narrows the search based on the user's ID before checking group
membership. Make sure that the user performing the search has access to read isMemberOf in the
results:

(&(uid=user-id)(isMemberOf=group-dn))

Two virtual attributes, entryDN and isMemberOf, can also be used in simple equality filters. The following
example shows how to add access to read isMemberOf and then run a search that returns the common
names for members of a group:

http://tools.ietf.org/html/rfc3671

Working With Virtual and Collective Attributes
Virtual Attributes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 141

$ cat admins-isMemberOf.ldif
dn: dc=example,dc=com
changetype: modify
add: aci
aci: (targetattr="isMemberOf")(version 3.0; acl "See isMemberOf"; allow (read,search,compare)
 groupdn= "ldap:///cn=Directory Administrators,ou=Groups,dc=example,dc=com";)

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 admins-isMemberOf.ldif
$ ldapsearch \
 --port 1389 \
 --bindDN uid=kvaughan,ou=People,dc=example,dc=com \
 --bindPassword bribery \
 --baseDN dc=example,dc=com \
 "(isMemberOf=cn=Directory Administrators,ou=Groups,dc=example,dc=com)" \
 cn
dn: uid=hmiller,ou=People,dc=example,dc=com
cn: Harry Miller

dn: uid=kvaughan,ou=People,dc=example,dc=com
cn: Kirsten Vaughan

dn: uid=rdaugherty,ou=People,dc=example,dc=com
cn: Robert Daugherty

An OpenDJ server defines the following virtual attributes by default:

entryDN

The value is the DN of the entry.

entryUUID

Provides a universally unique identifier for the entry.

etag

Entity tag as defined in RFC 2616, useful for checking whether an entry has changed since you
last read it from the directory.

hasSubordinates

Boolean. Indicates whether the entry has children.

numSubordinates

Provides the number of direct child entries.

isMemberOf

Identifies groups the entry belongs to.

http://tools.ietf.org/html/rfc2616#section-3.11

Working With Virtual and Collective Attributes
Virtual Attributes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 142

By default, the server generates isMemberOf on user entries (entries that have the object class
person), and on group entries (entries that have the object class groupOfNames, groupOfUniqueNames, or
groupOfEntries). You can change this by editing the filter property of the isMemberOf virtual attribute
configuration.

member

Generated for virtual static groups.

uniqueMember

Generated for virtual static groups.

pwdPolicySubentry

Identifies the password policy that applies to the entry.

By default, an OpenDJ directory server assigns root DN users the password policy with DN cn=Root
 Password Policy,cn=Password Policies,cn=config, and regular users the password policy with DN
cn=Default Password Policy,cn=Password Policies,cn=config. See "Configuring Password Policy" in the
Administration Guide for information on configuring and assigning password policies.

The default global access control instructions prevent this operational attribute from being visible
to normal users.

subschemaSubentry

References the schema definitions.

collectiveAttributeSubentries

References applicable collective attribute definitions.

governingStructureRule

References the rule on what type of subordinates the entry can have.

structuralObjectClass

References the structural object class for the entry.

These virtual attributes are typically operational, so you get them back from a search only when you
request them:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(dc=example)"
dn: dc=example,dc=com
dc: example
objectClass: domain
objectClass: top
$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(dc=example)" numSubordinates
dn: dc=example,dc=com
numSubordinates: 11

Working With Virtual and Collective Attributes
Collective Attributes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 143

You can use the existing virtual attribute types to create your own virtual attributes, and you can also
use the user-defined type to create your own virtual attribute types. The virtual attribute is defined by
the server configuration, which is not replicated:

$ dsconfig \
 create-virtual-attribute \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --name "Served By Description" \
 --type user-defined \
 --set enabled:true \
 --set attribute-type:description \
 --set base-dn:dc=example,dc=com \
 --set value:"Served by opendj.example.com" \
 --trustAll \
 --no-prompt
$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(uid=wlutz)" description
dn: uid=wlutz,ou=People,dc=example,dc=com
description: Served by opendj.example.com

Collective attributes cover many use cases better than virtual attributes.

7.2. Collective Attributes
Collective attributes provide a standard mechanism for defining attributes that appear on all the
entries in a subtree potentially filtered by object class. Standard collective attribute type names have
the prefix c-.

OpenDJ servers extend collective attributes to make them easier to use. You can define any OpenDJ
attribute as collective with the ;collective attribute option. You can use LDAP filters in your subtree
specification for fine-grained control over entries that have the collective attributes.

You can have entries inherit attributes from other entries through collective attributes. You establish
the relationship between entries either by indicating the attribute holding the DN of the entry from
which to inherit the attributes, or by specifying how to construct the RDN of the entry from which to
inherit the attributes.

"To Add Privileges for a Group of Administrators" in the Administration Guide demonstrates setting
administrative privileges with collective attributes. The following examples demonstrate additional
ways to use collective attributes:

• "Class of Service With Collective Attributes"

• "Inheriting an Attribute From the Manager's Entry"

• "Inheriting Attributes From the Locality"

Working With Virtual and Collective Attributes
Collective Attributes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 144

Class of Service With Collective Attributes

This example defines attributes that specify services available to a user depending on their service
level.

Note

The following example depends on the cos object class, and the classOfService attribute type defined but
commented out in the file imported as sample data. To try this example for yourself, add the attribute type and
object class definitions in comments near the top of the file, and then uncomment the objectClass: cos and
classOfService attribute lines in Example.ldif before importing the data.

This example positions collective attributes that depend on the classOfService attribute values:

• For entries with classOfService: bronze, mailQuota is set to 1 GB, and diskQuota is set to 10 GB.

• For entries with classOfService: silver, mailQuota is set to 5 GB, and diskQuota is set to 50 GB.

• For entries with classOfService: gold, mailQuota is set to 10 GB, and diskQuota is set to 100 GB.

You define collective attributes in the user data using a subentry. In other words, collective attributes
can be replicated. Collective attributes use attributes defined in the directory schema. First, add the
mailQuote and diskQuota attributes, and adjust the definition of the cos object class to allow the two
quota attributes:

$ cat quotas.ldif
dn: cn=schema
changetype: modify
add: attributeTypes
attributeTypes: (example-class-of-service-attribute-type
 NAME 'classOfService'
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 SINGLE-VALUE
 USAGE userApplications
 X-ORIGIN 'OpenDJ Documentation
 Examples')
-
add: attributeTypes
attributeTypes: (example-class-of-service-disk-quota
 NAME 'diskQuota'
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 USAGE userApplications
 X-ORIGIN 'OpenDJ Documentation
 Examples')
-
add: attributeTypes

Working With Virtual and Collective Attributes
Collective Attributes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 145

attributeTypes: (example-class-of-service-mail-quota
 NAME 'mailQuota'
 EQUALITY caseIgnoreMatch
 ORDERING caseIgnoreOrderingMatch
 SUBSTR caseIgnoreSubstringsMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15
 USAGE userApplications
 X-ORIGIN 'OpenDJ Documentation
 Examples')
-
add: objectClasses
objectClasses: (example-class-of-service-object-class
 NAME 'cos'
 SUP top
 AUXILIARY
 MAY (classOfService $ diskQuota $ mailQuota)
 X-ORIGIN 'OpenDJ Documentation Examples')

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 quotas.ldif

Use the following collective attribute definitions to set the quotas depending on class of service:

$ cat cos.ldif
dn: cn=Bronze Class of Service,dc=example,dc=com
objectClass: collectiveAttributeSubentry
objectClass: extensibleObject
objectClass: subentry
objectClass: top
cn: Bronze Class of Service
diskQuota;collective: 10 GB
mailQuota;collective: 1 GB
subtreeSpecification: { base "ou=People", specificationFilter "(classOfService=bronze)" }

dn: cn=Silver Class of Service,dc=example,dc=com
objectClass: collectiveAttributeSubentry
objectClass: extensibleObject
objectClass: subentry
objectClass: top
cn: Silver Class of Service
diskQuota;collective: 50 GB
mailQuota;collective: 5 GB
subtreeSpecification: { base "ou=People", specificationFilter "(classOfService=silver)" }

dn: cn=Gold Class of Service,dc=example,dc=com
objectClass: collectiveAttributeSubentry
objectClass: extensibleObject
objectClass: subentry
objectClass: top
cn: Gold Class of Service
diskQuota;collective: 100 GB
mailQuota;collective: 10 GB
subtreeSpecification: { base "ou=People", specificationFilter "(classOfService=gold)" }

Working With Virtual and Collective Attributes
Collective Attributes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 146

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 cos.ldif

Import data with the class of service attributes:

$ stop-ds --quiet
$ import-ldif --offline --backendID userRoot --ldifFile \
 <(sed "s/^#classOfService/classOfService/" Example.ldif \
 | sed "s/^#objectClass: cos/objectClass: cos/")
$ start-ds --quiet

With the collective attributes defined, you can see the results on user entries:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(uid=bjensen)" \
 classOfService mailQuota diskQuota
dn: uid=bjensen,ou=People,dc=example,dc=com
classOfService: bronze
mailQuota: 1 GB
diskQuota: 10 GB
$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(uid=kvaughan)" \
 classOfService mailQuota diskQuota
dn: uid=kvaughan,ou=People,dc=example,dc=com
classOfService: silver
mailQuota: 5 GB
diskQuota: 50 GB
$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(uid=scarter)" \
 classOfService mailQuota diskQuota
dn: uid=scarter,ou=People,dc=example,dc=com
classOfService: gold
mailQuota: 10 GB
diskQuota: 100 GB

For details on how subentries apply, see "Understanding Subentry Scope".

Inheriting an Attribute From the Manager's Entry

This example demonstrates how to instruct the server to set an employee's department number using
the manager's department number. To try the example, first import in order to load the appropriate
sample data.

For this example, the relationship between employee entries and manager entries is based on the
manager attributes on employee entries. Each manager attribute on an employee's entry specifies the
DN of the manager's entry. The server retrieves the department number from the manager's entry to
populate the attribute on the employee's entry.

The collective attribute subentry that specifies the relationship looks like this:

Working With Virtual and Collective Attributes
Collective Attributes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 147

dn: cn=Inherit Department Number From Manager,dc=example,dc=com
objectClass: top
objectClass: subentry
objectClass: inheritedCollectiveAttributeSubentry
objectClass: inheritedFromDNCollectiveAttributeSubentry
cn: Inherit Department Number From Manager
subtreeSpecification: { base "ou=People" }
inheritFromDNAttribute: manager
inheritAttribute: departmentNumber

This entry specifies that users inherit department number from their manager.

As seen in Example.ldif, Babs Jensen's manager is Torrey Rigden:

dn: uid=bjensen,ou=People,dc=example,dc=com
manager: uid=trigden, ou=People, dc=example,dc=com

Torrey's department number is 3001:

dn: uid=trigden,ou=People,dc=example,dc=com
departmentNumber: 3001

Babs inherits her department number from Torrey:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(uid=bjensen)" \
 departmentNumber
dn: uid=bjensen,ou=People,dc=example,dc=com
departmentNumber: 3001

For details on how subentries apply, see "Understanding Subentry Scope".

Inheriting Attributes From the Locality

This example demonstrates how to instruct an OpenDJ server to set a user's language preferences
and street address based on locality. To try the example, first import in order to load the appropriate
sample data.

For this example, the relationship between entries is based on locality. The collective attribute
subentry specifies how to construct the RDN of the object holding the attribute values to inherit:

Working With Virtual and Collective Attributes
Collective Attributes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 148

dn: cn=Inherit From Locality,dc=example,dc=com
objectClass: top
objectClass: subentry
objectClass: inheritedCollectiveAttributeSubentry
objectClass: inheritedFromRDNCollectiveAttributeSubentry
cn: Inherit From Locality
subtreeSpecification: { base "ou=People" }
inheritFromBaseRDN: ou=Locations
inheritFromRDNAttribute: l
inheritFromRDNType: l
inheritAttribute: preferredLanguage
inheritAttribute: street
collectiveConflictBehavior: real-overrides-virtual

This specifies that the RDN of the entry to inherit attributes from is like l=localityName,ou=Locations,
where localityName is the value of the l (localityName) attribute on the user's entry.

In other words, if the user's entry has l: Bristol, then the RDN of the entry from which to inherit
attributes starts with l=Bristol,ou=Locations. The actual entry looks like this:
dn: l=Bristol,ou=Locations,dc=example,dc=com
objectClass: top
objectClass: locality
objectClass: extensibleObject
l: Bristol
street: Broad Quay House, Prince Street
preferredLanguage: en-gb

The subentry also specifies two attributes to inherit for preferred language and street address.

The object class extensibleObject is added to allow the entry to take a preferred language. (The object
class extensibleObject means, "Let me add whatever attributes I want." It is usually better practice
to add your own auxiliary object class if you need to decorate an entry with more attributes. The
shortcut is taken here as the focus of this example is not schema extension, but instead how to use
collective attributes.)

Notice the last line of the collective attribute subentry:
collectiveConflictBehavior: real-overrides-virtual

This line indicates that if a collective attribute clashes with a real attribute, the real value takes
precedence over the virtual, collective value. You can also set collectiveConflictBehavior to virtual-
overrides-real for the opposite precedence, or to merge-real-and-virtual to keep both sets of values.

Here, users can set their own language preferences. When users set language preferences manually,
the collective attribute subentry is configured to give the user's settings precedence over the locality-
based setting, which is only a default guess.

Sam Carter is located in Bristol. Sam has specified no preferred languages:

dn: uid=scarter,ou=People,dc=example,dc=com
l: Bristol

Working With Virtual and Collective Attributes
Understanding Subentry Scope

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 149

Sam inherits both the street address and also preferred language from the Bristol locality:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(uid=scarter)" \
 preferredLanguage street
dn: uid=scarter,ou=People,dc=example,dc=com
preferredLanguage: en-gb
street: Broad Quay House, Prince Street

Babs's locality is San Francisco. Babs prefers English, but also knows Korean:

dn: uid=bjensen,ou=People,dc=example,dc=com
preferredLanguage: en, ko;q=0.8
l: San Francisco

Babs inherits the street address from the San Francisco locality, but keeps her language preferences:

$ ldapsearch --port 1389 --baseDN dc=example,dc=com "(uid=bjensen)" \
 preferredLanguage street
dn: uid=bjensen,ou=People,dc=example,dc=com
preferredLanguage: en, ko;q=0.8
street: 201 Mission Street Suite 2900

For details on how subentries apply, see "Understanding Subentry Scope".

7.2.1. Understanding Subentry Scope

LDAP subentries reside with the user data and so are replicated. Subentries hold operational data.
They are not visible in search results unless explicitly requested. This section describes how a
subentry's subtreeSpecification attribute defines the scope of the subtree that the subentry applies to.

An LDAP subentry's subtree specification identifies a subset of entries in a branch of the DIT. The
subentry scope is these entries. In other words, these are the entries that the subentry affects.

The attribute value for a subtreeSpecification optionally includes the following parameters:

base

Indicates the entry, relative to the subentry's parent, at the base of the subtree.

By default, the base is the subentry's parent.

specificationFilter

Indicates an LDAP filter. Entries matching the filter are in scope.

By default, all entries under the base entry are in scope.

http://tools.ietf.org/html/rfc3672

Working With Virtual and Collective Attributes
Understanding Subentry Scope

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 150

"Subtree Associated With a Subentry" illustrates these characteristics for an example collective
attribute subentry.

Subtree Associated With a Subentry

Notice that the base of ou=People on the subentry cn=Silver Class of Service,dc=example,dc=com indicates
that the base entry is ou=People,dc=example,dc=com.

The filter "(classOfService=silver)" means that Kirsten Vaughan and Sam Carter's entries are in scope.
Babs Jensen's entry, with classOfService: bronze does not match and is therefore not in scope. The
ou=People organizational unit entry does not have a classOfService attribute, and so is not in scope,
either.

Working With Referrals
About Referrals

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 151

Chapter 8

Working With Referrals

Referrals point directory clients to another directory container, which can be another directory server
running elsewhere, or another container on the same server. The client receiving a referral must use
the other container to complete the request.

Note

Some clients follow referrals on your behalf by default. The OpenDJ commands do not follow referrals.

Referrals are used, for example, when directory data is temporarily unavailable due to maintenance.
Referrals can also be used when a container holds only some of the directory data for a suffix and
points to other containers for branches whose data is not available locally.

In this chapter you will learn how to:

• Allow administrators to manage referrals

• Add referrals

• Remove referrals

In addition to the command line examples shown in this chapter, you can also use the Manage Entries
window of the control panel to handle referrals.

8.1. About Referrals
Referrals are implemented as entries with LDAP URL ref attribute values that point elsewhere.
The ref attribute type is required by the referral object class. The referral object class is structural,
however, and therefore cannot by default be added to an entry that already has a structural object
class defined. When adding a ref attribute to an entry that already has a structural object class, use
the extensibleObject auxiliary object class.

When a referral is set, an OpenDJ server returns the referral to requests that target the affected
entry or its child entries. Client applications must be capable of following the referral returned. When
the directory server responds with referrals to LDAP URLs, the client can construct new operations
and try them again.

The Manage DSAIT control makes it possible to access the referral entry, rather than get a referral
when accessing the entry. It has OID 2.16.840.1.113730.3.4.2. The control is described in RFC 3296.

http://tools.ietf.org/html/rfc4516
http://tools.ietf.org/html/rfc3296

Working With Referrals
Managing Referrals

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 152

8.2. Managing Referrals
Suppose the entries below ou=Subscribers,dc=example,dc=com are stored on a different directory server at
referral.example.com:1389. You can create a LDAP referral to reference the remote entries.

Before creating the LDAP referral, give directory administrators access to use the Manage DSAIT
control and to manage the ref attribute:

$ dsconfig \
 set-access-control-handler-prop \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --add global-aci:"(targetcontrol=\"2.16.840.1.113730.3.4.2\")\
 (version 3.0; acl \"Allow Manage DSAIT control\"; allow(read)\
 groupdn=\"ldap:///cn=Directory Administrators,ou=Groups,dc=example,dc=com\";)" \
 --trustAll \
 --no-prompt
$ cat allow-ref-access.ldif
dn: dc=example,dc=com
changetype: modify
add: aci
aci: (target="ldap:///dc=example,dc=com")(targetattr="ref")
 (version 3.0; acl "Admins can manage referrals"; allow(all)
 (groupdn = "ldap:///cn=Directory Administrators,ou=Groups,dc=example,dc=com");)

$ ldapmodify \
 --port 1389 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 allow-ref-access.ldif

To create an LDAP referral, either create a referral entry, or add the extensibleObject object class and
the ref attribute with an LDAP URL to an existing entry. The example above creates a referral entry
at ou=Subscribers,dc=example,dc=com:

$ cat referral.ldif
dn: ou=Subscribers,dc=example,dc=com
objectClass: top
objectClass: extensibleObject
objectClass: organizationalUnit
ou: Subscribers
ref: ldap://referral.example.com:1389/ou=Subscribers,dc=example,dc=com

$ ldapmodify \
 --port 1389 \
 --bindDN uid=kvaughan,ou=people,dc=example,dc=com \
 --bindPassword bribery \
 referral.ldif

OpenDJ server can now return a referral for operations under ou=Subscribers:

Working With Referrals
Managing Referrals

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 153

$ ldapsearch --port 1389 --baseDN ou=subscribers,dc=example,dc=com "(uid=*)"
The LDAP search request failed: 10 (Referral)
Additional Information: A referral entry ou=Subscribers,dc=example,dc=com indicates that the operation
 must be processed at a different server
Matched DN: ou=Subscribers,dc=example,dc=com

To access the entry instead of the referral, use the Manage DSAIT control as a user with access to
request the control:

$ ldapsearch \
 --control 2.16.840.1.113730.3.4.2:true \
 --port 1389 \
 --bindDN uid=kvaughan,ou=people,dc=example,dc=com \
 --bindPassword bribery \
 --baseDN ou=subscribers,dc=example,dc=com \
 "(&)" \
 ref
dn: ou=Subscribers,dc=example,dc=com
ref: ldap://referral.example.com:1389/ou=Subscribers,dc=example,dc=com

You can use the Manage DSAIT control to change the referral with the ldapmodify command:

$ cat change-referral.ldif
dn: ou=Subscribers,dc=example,dc=com
changetype: modify
replace: ref
ref: ldap://opendj.example.com:1389/ou=People,dc=example,dc=com

$ ldapmodify \
 --control 2.16.840.1.113730.3.4.2:true \
 --port 1389 \
 --bindDN uid=kvaughan,ou=people,dc=example,dc=com \
 --bindPassword bribery \
 change-referral.ldif

Writing a Server Plugin
About OpenDJ Server Plugins

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 154

Chapter 9

Writing a Server Plugin

OpenDJ servers have many features that are implemented as server plugins. A server plugin is a
library that can be plugged in to an installed server and immediately configured for use.

In this chapter you will learn:

• Enough about the OpenDJ plugin architecture to begin writing plugins

• How to build and use the example plugin delivered with the server

• How the parts of the example plugin project fit together

Important

ForgeRock supports customers using standard plugins delivered as part of OpenDJ server software.

If you deploy with custom plugins and need support in production, contact info@forgerock.com in advance to
determine how your deployment can be supported.

9.1. About OpenDJ Server Plugins
OpenDJ server plugins are Java libraries compiled against the OpenDJ server Java API. Plugins are
built to be configured as part of the server and to be invoked at specific points in the lifecycle of a
client request, or in the server process lifecycle.

Note

The OpenDJ server Java API has interface stability: Evolving, as described in "ForgeRock Product Interface
Stability" in the Reference.

This means that a server plugin built with one version of an OpenDJ server will not necessarily work or even
compile with a different version of the server.

9.1.1. Plugin Types

Plugin types correspond to the points where the server invokes the plugin.

mailto:info@forgerock.com
../javadoc/index.html

Writing a Server Plugin
Plugin Configuration

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 155

For the full list of plugin invocation points, see the Javadoc for PluginType. The following list
summarizes the plugin invocation points:

• At server startup and shutdown

• Before and after data export and import

• Immediately after a client connection is established or is closed

• Before processing begins on an LDAP operation (to change an incoming request before it is
decoded)

• Before core processing for LDAP operations (to change the way the server handles the operation)

• After core processing for LDAP operations (where the plugin can access all information about the
operation including the impact it has on the targeted entry)

• When a subordinate entry is deleted as part of a subtree delete or moved or renamed as part of a
modify DN operation

• Before sending intermediate and search responses

• After sending a result

A plugin's types are specified in its configuration, and can therefore be modified at runtime.

9.1.2. Plugin Configuration

Server plugin configuration is managed with the same configuration framework that is used for
OpenDJ server configuration.

The OpenDJ configuration framework has these characteristics:

• LDAP schemas govern what attributes can be used in plugin configuration entries.

For all configuration attributes that are specific to a plugin, the plugin should have its own object
class and attributes defined in the server LDAP schema. Having configuration entries governed by
schemas makes it possible for the server to identify and prevent configuration errors.

For plugins, having schema for configuration attributes means that an important part of plugin
installation is making the schema definitions available to an OpenDJ server.

• The plugin configuration is declared in XML files.

The XML specifies configuration properties and their documentation, and also inheritance
relationships.

The XML Schema Definition files (.xsd files) for the namespaces used in these documents are part
of the OpenDJ Maven Plugin. They are published as part of the source code of that module, not in
the locations corresponding to their namespace identifiers.

../javadoc/index.html?org/opends/server/api/plugin/PluginType.html

Writing a Server Plugin
Trying the Example Server Plugin

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 156

In other words, you can find admin.xsd, for example, in the OpenDJ source code. Its XML namespace
identifier (http://opendj.forgerock.org/admin) is not a URL that you can browse to.

For details, see also "Configuration".

• Compilation generates the server-side and client-side APIs to access the plugin configuration from
the XML.

To use the server-side APIs in a plugin project, first generate and compile them, and include the
classes on the project classpath. You can see how the opendj-maven-plugin is used to generate sources
from the XML in the example plugin project sources. The process is described in "Maven Project".

When a plugin is loaded in an OpenDJ server, the client-side APIs are available to configuration
tools like the dsconfig command. Directory administrators can configure a custom plugin in the
same way they configure other server components.

• The framework supports internationalization.

A complete plugin project, such as the example plugin, therefore includes LDAP schema definitions,
XML configuration definitions, Java plugin code, and Java resource bundles.

9.2. Trying the Example Server Plugin
The example plugin is bundled with an OpenDJ server as example-plugin.zip, which holds a Maven-
based project. The example plugin is a startup plugin that displays a "Hello World" message when the
directory server starts. For general information about OpenDJ server plugins, read "About OpenDJ
Server Plugins". For more specific information, read "About the Example Plugin Project Files".

To Try the Example Plugin

Follow these steps to try the example plugin:

1. Install an OpenDJ server as described in Installation Guide.

2. Install Apache Maven 3.0.5 or later.

When you finish, make sure mvn is on your PATH:

$ mvn -version
Apache Maven version
Maven home: /path/to/maven
Java version: ...

3. Unpack the example plugin project sources:

Writing a Server Plugin
Trying the Example Server Plugin

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 157

$ unzip /path/to/opendj/example-plugin.zip
Archive: /path/to/opendj/example-plugin.zip
 creating: opendj-server-example-plugin
/
...

4. Build the example plugin:

$ cd opendj-server-example-plugin/
$ mvn install
...
[INFO] --
[INFO] BUILD SUCCESS
[INFO] ---
-
...

5. Install the example plugin in the OpenDJ server:

$ cd /path/to/opendj

Stop the server before installing the example plugin:
$ bin/stop-ds

Unpack the plugin files into the proper locations of the server layout,
skipping the base directory.
The following example works with bsdtar,
which might require installing a bsdtar package.
$ bsdtar -xvf \
 /path/to/opendj-server-example-plugin/target/opendj-server-example-plugin-5.5.3.zip \
 -s'|[^/]*/||'
x README.example.plugin
x config/
x config/schema/
x config/example-plugin.ldif
x config/schema/99-example-plugin.ldif
x lib/
x lib/extensions/
x lib/extensions/opendj-server-example-plugin-5.5.3.jar
x lib/extensions/...

Start the server and create the plugin configuration:
$ bin/start-ds
$ bin/dsconfig \
 create-plugin \
 --hostname opendj.example.com \
 --port 4444 \
 --bindDN "cn=Directory Manager" \
 --bindPassword password \
 --plugin-name "Example Plugin" \
 --type example \
 --set enabled:true \
 --set plugin-type:startup \

Writing a Server Plugin
About the Example Plugin Project Files

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 158

 --trustAll \
 --no-prompt
...
INFO: Loaded extension from file
 '/path/to/opendj/lib/extensions/opendj-server-example-plugin-5.5.3.jar'
 (build <unknown>, revision <unknown>)

Notice the locations where the example plugin files are unpacked. The locations must follow the
server conventions in order for the OpenDJ server to recognize the plugin.

For the example plugin, you see that:

• Schema definitions are unpacked into config/schema/.

• Plugin .jar files and the .jar files they depend on are unpacked into lib/extensions/.

Also notice that after the plugin configuration is created the OpenDJ server has loaded the plugin
as an extension.

6. Restart the OpenDJ server to see the startup message from the plugin:

$ bin/stop-ds --restart
..
.
... msg=Example plugin message 'HELLO WORLD'
.
...

7. Now that you have seen the example plugin display its message, see "About the Example Plugin
Project Files" to understand the key parts of the example plugin project.

9.3. About the Example Plugin Project Files
The example plugin project builds a server plugin that displays a "Hello World" message when the
OpenDJ server starts, as shown in "Trying the Example Server Plugin". This section describes the
example plugin project. For general information about OpenDJ server plugins, read "About OpenDJ
Server Plugins" instead.

9.3.1. Maven Project
The OpenDJ example server plugin is an Apache Maven project.

As you can see in the pom.xml file for the project, the plugin depends on the OpenDJ server module.

The plugin project uses these ForgeRock Maven plugins:

• The i18n-maven-plugin generates message source files from properties files in the resource bundle.

Writing a Server Plugin
Configuration

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 159

This plugin must run in order to resolve static imports from com.example.opendj.ExamplePluginMessages.

• The opendj-maven-plugin generates source files, manifest files, and resource bundles from the
configuration declarations in the XML configuration files.

This plugin must run in order to resolve imports from com.example.opendj.server.ExamplePluginCfg.

9.3.2. Configuration

The example plugin has the following configuration files:

src/main/assembly/descriptor.xml

This defines how to bundle the different components of the plugin in a layout appropriate for
installation into an OpenDJ server.

src/main/assembly/config/example-plugin.ldif

This shows an example configuration entry for the plugin.

src/main/assembly/config/schema/99-example-plugin.ldif

This defines all object classes and attribute types that are specific to the example plugin
configuration. The XML file that defines the configuration also specifies how configuration
properties map to the object class and attribute type defined here for the LDAP representation of
the configuration, using the definitions from this addition to the LDAP schema.

If your plugin has no configuration attributes of its own, then there is no need to extend the LDAP
schema.

For more information on defining your own LDAP schemas, see "Managing Schema" in the
Administration Guide.

src/main/java/com/example/opendj/ExamplePluginConfiguration.xml

This defines the configuration interface to the example plugin, and an LDAP profile that maps the
plugin configuration to an LDAP entry.

Notice that the name ends in Configuration.xml, which is the expected suffix for configuration files.

The configuration definition has these characteristics:

• The attributes of the <managed-object> element define XML namespaces, a (singular) name and
plural name for the plugin, and the Java-related inheritance of the implementation to generate.
A managed object is a configurable component of an OpenDJ server.

A managed object definition covers the object's structure and inheritance, and is like a class in
Java. The actual managed object is like an instance of an object in Java. Its configuration maps
to a single LDAP entry in the configuration backend cn=config.

Writing a Server Plugin
Implementation Code

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 160

Notice that the <profile> element defines how the whole object maps to an LDAP entry in the
configuration. The <profile> element is mandatory, and should include an LDAP profile.

The name and plural-name properties are used to identify the managed object definition. They are
also used when generating Java class names. Names must be a lowercase sequence of words
separated by hyphens.

The package property specifies the Java package name for generated code.

The extends property identifies a parent definition that the current definition inherits.

• The mandatory <synopsis> element provides a brief description of the managed object.

If a longer description is required, add a <description>, which can include XHTML markup. The
<description> is used in addition to the synopsis, so there is no need to duplicate the synopsis in
the description.

• The <property> element defines a property specific to this example plugin, including its
purpose, its the default value, its type, and how the property maps to an LDAP attribute in the
configuration entry.

The name attribute is used to identify the property in the configuration.

• The <property-override> element sets the pre-defined property java-class to a specific value,
namely that of the fully qualified implementation class.

The XML-based configuration files are more powerful than this short explanation suggests.
See the documentation in the XML schema definitions for more details about the elements and
attributes.

When the example plugin project is built, generated Java properties files are written in target/
generated-resources/, and generated Java source files are written in target/generated-sources/.

src/main/java/com/example/opendj/Package.xml

This defines the package-level short description used in generated package-info.java source files.

9.3.3. Implementation Code

The plugin implementation is found in src/main/java/com/example/opendj/ExamplePlugin.java. It relies on
the OpenDJ server Java API.

Note

The OpenDJ server Java API has interface stability: Evolving, as described in "ForgeRock Product Interface
Stability" in the Reference.

Writing a Server Plugin
Implementation Code

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 161

This means that a server plugin built with one version of an OpenDJ server will not necessarily work or even
compile with a different version of the server.

ExamplePlugin statically imports everything from the generated message implementation sources.
Resolution of ExamplePluginMessages.* fails until the implementation is generated by the i18n-maven-
plugin.

ExamplePlugin extends DirectoryServerPlugin with its own type of configuration, ExamplePluginCfg. The
implementation for ExamplePluginCfg is generated from the configuration declared in XML. Therefore,
resolution of ExamplePluginCfg fails until the sources are generated by the opendj-maven-plugin.

ExamplePlugin implements ConfigurationChangeListener so the plugin can be notified of changes to its
configuration. The plugin can then potentially update its configuration without the need to restart the
plugin or the OpenDJ server.

The example plugin stores a reference to its configuration in the private config object. Your plugins
should follow this example.

When the server first configures the plugin, it does so by calling the initializePlugin method. This
method must do the following things:

• Perform checks that the configuration framework cannot do for the plugin, such as checking
dependencies between properties or checking system state (whether some file is writable, or if
there is sufficient disk space, for example).

The example plugin checks that its type is startup.

• Initialize the plugin, if necessary.

The example plugin has nothing to initialize.

• Register to receive configuration change notifications by using the addExampleChangeListener()
method.

• Cache the current state of the configuration.

The example plugin assigns the configuration to its private config object.

On subsequent configuration changes, the server calls the isConfigurationChangeAcceptable() method. If
the method returns true because the configuration is valid, the server calls applyConfigurationChange()
method.

Although the example plugin's isConfigurationChangeAcceptable() method always returns true, other
plugins might need to perform checks that the framework cannot, in the same way they perform
checks during initialization.

In the applyConfigurationChange() method the plugin must modify its configuration as necessary. The
example plugin can handle configuration changes without further intervention by the administrator.
Other plugins might require administrative intervention because changes can be made that can only
be taken into account at plugin initialization.

../javadoc/index.html?org/opends/server/api/plugin/DirectoryServerPlugin.html

Writing a Server Plugin
Internationalization

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 162

In the example plugin, the method that extends the server's behavior is the doStartup() method. Which
method is implemented depends on what class the plugin extends. For example, a password validator
extending PasswordValidator would implement a passwordIsAcceptable() method.

9.3.4. Internationalization

In the example plugin, localized messages are found in the resource bundle under src/main/resources/
com/example/opendj/.

The LocalizedLogger in the plugin implementation is capable of selecting the right messages from the
resource bundle based on the locale for the server.

If the server runs in a French locale, then the plugin can log messages in French when a translation
exists. Otherwise, it falls back to English messages, as those are the messages defined for the default
locale.

../javadoc/index.html?org/opends/server/api/PasswordValidator.html

Embedding the Server
Before Trying the Embedded Server Samples

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 163

Chapter 10

Embedding the Server

You can embed an OpenDJ server in your Java application, and manage it with the embedded server
APIs. The embedded server runs in the same JVM and memory space as your application, and can be
accessed directly through Java APIs.

In this chapter you will examine sample Java code to learn how to:

• Set up an embedded server using the default configuration

• Start and stop an embedded server

• Begin to configure an embedded server using APIs rather than files

Important

The server APIs used in this chapter are of Evolving interface stability, as described in "ForgeRock Product
Interface Stability" in the Reference.

Be prepared to accommodate incompatible changes in minor releases.

10.1. Before Trying the Embedded Server Samples
Before you try the embedded server examples, prepare your development environment:

• Install a development environment (IDE) with Java, Apache Maven, and Git support.

Common IDEs include Eclipse and IntelliJ IDEA.

• If necessary, register for access to the appropriate version of the OpenDJ project source code.

• If necessary, install Apache Maven 3.0.5 or later command-line tools.

• If necessary, install git command-line tools.

10.2. Obtaining the Sample Code
The embedded server sample code is part of the OpenDJ project code. After you have prepared your
development environment as described in "Before Trying the Embedded Server Samples", obtain the
project code that contains the samples.

Embedding the Server
Setting Up an Embedded Server

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 164

Get the OpenDJ project code for your version of the server. The following example uses the git
command to clone the latest public version of the project code:

$ git clone ssh://git@stash.forgerock.org:7999/opendj/opendj.git
Cloning into 'opendj'...

Build the OpenDJ project code to ensure that the necessary generated code for the configuration APIs
is available. The following example uses the mvn command to build the project code:

$ cd opendj
$ mvn install
...
[INFO] BUILD SUCCESS
...

You can find the sample code in the opendj-embedded-server-examples module.

10.3. Setting Up an Embedded Server
After completing the steps described in "Obtaining the Sample Code", try the server setup sample,
listed in "Set Up an Embedded Server".

To Set Up an Embedded Server

1. Configure the IDE to run the SetupServer.main() method.

There is no need to have the IDE rebuild the class or its dependencies, as you already built those
as described in "Obtaining the Sample Code".

Do provide at minimum the following required arguments:

1. The full path on your system to the server archive, found in opendj/opendj-server/target/
opendj-5.5.3.zip.

This is the sample openDJArchive argument.

2. The full path where the sample class should install the server, such as opendj/opendj-embedded-
server-examples/target/opendj.

This is the sample serverRootDir argument.

2. (Optional) Set breakpoints if you want to step through the code.

3. Run the sample.

The sample configures the server in the location you specified, using the default configuration:

Embedding the Server
Setting Up an Embedded Server

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 165

• It creates an embedded directory server object with the manageEmbeddedDirectoryServer() method.

This method creates an embedded server, taking as arguments configuration and connection
parameters, and the output streams where the server can display output and errors.

• The EmbeddedDirectoryServer.extractArchiveForSetup() method unpacks the server distribution that
you specified.

• The EmbeddedDirectoryServer.setup() method sets up the new server.

This method fails if the server is already set up.

• If successful, the sample displays the following output:

Configuring Directory Server Done.

To see basic server status and configuration, you can launch
/path/to/opendj/opendj-embedded-server-examples/target/opendj/bin/status

If you prefer to run the samples directly without an IDE, execute the file opendj-embedded-server-
examples/README.

Set Up an Embedded Server

/*
 * Copyright 2016-2017 ForgeRock AS. All Rights Reserved
 *
 * Use of this code requires a commercial software license with ForgeRock AS.
 * or with one of its affiliates. All use shall be exclusively subject
 * to such license between the licensee and ForgeRock AS.
 */

package org.forgerock.opendj.examples;

import static org.forgerock.opendj.server.embedded.ConfigParameters.configParams;
import static org.forgerock.opendj.server.embedded.ConnectionParameters.connectionParams;
import static org.forgerock.opendj.server.embedded.EmbeddedDirectoryServer.manageEmbeddedDirectoryServer;
import static org.forgerock.opendj.server.embedded.SetupParameters.setupParams;

import java.io.File;

import org.forgerock.opendj.server.embedded.EmbeddedDirectoryServer;
import org.forgerock.opendj.server.embedded.EmbeddedDirectoryServerException;

/**
 * Setup a server from a OpenDJ archive using the EmbeddedDirectoryServer class.
 */
public final class SetupServer {

 /**
 * Main method.
 * <p>

Embedding the Server
Setting Up an Embedded Server

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 166

 * The OpenDJ archive is the zip archive that is resulting from a maven build.
 *
 * The server root directory is the directory where OpenDJ will be installed. Because
 * the archive contains the "opendj" directory, it is mandatory to provide a server root
 * directory that is named "opendj" (the archive will be automatically extracted in the
 * parent directory of the provided server root directory).
 *
 * Other parameters are usual parameters to setup a server.
 *
 * @param args
 * The command line arguments: openDJArchive, serverRootDir
 * and optionally: baseDn, backendType, ldapPort, adminPort, jmxPort
 * @throws EmbeddedDirectoryServerException
 * If an error occurs
 */
 public static void main(final String[] args) throws EmbeddedDirectoryServerException {
 if (args.length != 2 && args.length != 4 && args.length != 7) {
 System.err.println("Usage: openDJArchive serverRootDir "
 + "[baseDn backendType [ldapPort adminPort jmxPort]]");
 System.exit(1);
 }

 int i = 0;
 final String openDJArchive = args[i++];
 final String serverRootDir = args[i++];
 final String baseDn = (args.length > i) ? args[i++] : "o=example";
 final String backendType = (args.length > i) ? args[i++] : "je";
 final int ldapPort = (args.length > i) ? Integer.parseInt(args[i++]) : 1500;
 final int adminPort = (args.length > i) ? Integer.parseInt(args[i++]) : 4500;

 performSetup(openDJArchive, serverRootDir, baseDn, backendType, ldapPort, adminPort);
 }

 /** Performs the setup with provided parameters. */
 static void performSetup(final String openDJArchive, final String serverRootDir, final String baseDn,
 final String backendType, final int ldapPort, final int adminPort)
 throws EmbeddedDirectoryServerException {
 EmbeddedDirectoryServer server =
 manageEmbeddedDirectoryServer(
 configParams()
 .serverRootDirectory(serverRootDir)
 .configurationFile(serverRootDir + File.separator + "config/config.ldif"),
 connectionParams()
 .hostName("localhost")
 .ldapPort(ldapPort)
 .bindDn("cn=Directory Manager")
 .bindPassword("password")
 .adminPort(adminPort),
 System.out,
 System.err);

 server.extractArchiveForSetup(new File(openDJArchive));
 server.setup(
 setupParams()
 .baseDn(baseDn)
 .backendType(backendType));
 }

 private SetupServer() {

Embedding the Server
Starting and Stopping an Embedded Server

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 167

 // Not used.
 }
}

10.4. Starting and Stopping an Embedded Server
After completing the steps described in "Setting Up an Embedded Server", try the server start and
stop sample, listed in "Start and Stop an Embedded Server":

To Start and Stop an Embedded Server

1. Configure the IDE to run the StartStopServer.main() method.

You must provide the full path where embedded server was installed, such as opendj/opendj-
embedded-server-examples/target/opendj.

This is the sample serverRootDir argument.

2. (Optional) Set breakpoints if you want to step through the code.

3. Run the sample.

The sample starts the server in the location you specified, and waits for you to enter Ctrl-C:

• It creates an embedded directory server object with the
manageEmbeddedDirectoryServerForRestrictedOps() method.

This method creates an embedded server object for performing operations that do not require
connection parameters. It takes as arguments configuration parameters, and the output
streams where the server can display output and errors.

• It starts the server with the EmbeddedDirectoryServer.start() method.

• If successful, the sample displays the following output, waiting for your input to stop the server:

Starting the server...
Type Ctrl-C to stop the server

• When you type Ctrl-C, it stops the server with the EmbeddedDirectoryServer.stop() method.

If you prefer to run the samples directly without an IDE, execute the file opendj-embedded-server-
examples/README.

Start and Stop an Embedded Server

/*
 * Copyright 2016-2017 ForgeRock AS. All Rights Reserved

Embedding the Server
Starting and Stopping an Embedded Server

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 168

 *
 * Use of this code requires a commercial software license with ForgeRock AS.
 * or with one of its affiliates. All use shall be exclusively subject
 * to such license between the licensee and ForgeRock AS.
 */

package org.forgerock.opendj.examples;

import static org.forgerock.opendj.server.embedded.ConfigParameters.configParams;
import static org.forgerock.opendj.server.embedded.EmbeddedDirectoryServer.*;

import java.nio.file.Paths;

import org.forgerock.i18n.LocalizableMessage;
import org.forgerock.opendj.server.embedded.EmbeddedDirectoryServer;
import org.forgerock.opendj.server.embedded.EmbeddedDirectoryServerException;

/**
 * Start and stop a server that is already installed.
 */
public final class StartStopServer {

 /**
 * Main method.
 * <p>
 * The server is started, and this program waits for a Control-C on the terminal to stop the server.
 *
 * @param args
 * The command line arguments: serverRootDir
 * @throws EmbeddedDirectoryServerException
 * If an error occurs
 */
 public static void main(final String[] args) throws EmbeddedDirectoryServerException {
 if (args.length != 1) {
 System.err.println("Usage: serverRootDir");
 System.exit(1);
 }
 final String serverRootDir = args[0];

 final EmbeddedDirectoryServer server =
 manageEmbeddedDirectoryServerForRestrictedOps(
 configParams()
 .serverRootDirectory(serverRootDir)

 .configurationFile(Paths.get(serverRootDir, "config", "config.ldif").toString()),
 System.out,
 System.err);

 Runtime.getRuntime().addShutdownHook(new Thread() {
 @Override
 public void run() {
 System.out.println("Shutting down ...");
 server.stop(StartStopServer.class.getName(),
 LocalizableMessage.raw("Stopped after receiving Control-C"));
 }
 });

 System.out.println("Starting the server...");
 server.start();

Embedding the Server
Configuring an Embedded Server

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 169

 System.out.println("Type Ctrl-C to stop the server");
 }

 private StartStopServer() {
 // Not used.
 }
}

10.5. Configuring an Embedded Server
After completing the steps described in "Setting Up an Embedded Server", try the server
configuration sample, listed in "Start and Stop Embedded Server":

To Configure an Embedded Server

1. Configure the IDE to run the ConfigureServer.main() method.

Provide at minimum the following required arguments:

1. The full path where the sample class should install the server, such as opendj/opendj-embedded-
server-examples/target/opendj.

This is the sample serverRootDir argument.

2. A new base DN to add to the userRoot backend, such as dc=example,dc=com.

This is the sample newBaseDn argument.

2. (Optional) Set breakpoints if you want to step through the code.

3. Run the sample.

The sample sets base DN you specify as the base DN of the userRoot backend:

• It creates an embedded directory server object with the manageEmbeddedDirectoryServer() method.

• It gets an object to access the server configuration with the EmbeddedDirectoryServer
.getConfiguration() method.

• It uses the configuration object to read the base DNs in the userRoot backend, and to set your
new base DN as the base DN for the backend.

Notice the commit() method that applies the configuration.

• If successful, the sample displays the following output:

The current base Dn(s) of the user backend are: [o=example]
The base Dn of the user backend has been set to: dc=example,dc=com

Embedding the Server
Configuring an Embedded Server

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 170

If you prefer to run the samples directly without an IDE, execute the file opendj-embedded-server-
examples/README.

Start and Stop Embedded Server

/*
 * Copyright 2016-2017 ForgeRock AS. All Rights Reserved
 *
 * Use of this code requires a commercial software license with ForgeRock AS.
 * or with one of its affiliates. All use shall be exclusively subject
 * to such license between the licensee and ForgeRock AS.
 */
package org.forgerock.opendj.examples;

import static org.forgerock.opendj.server.embedded.ConfigParameters.configParams;
import static org.forgerock.opendj.server.embedded.ConnectionParameters.connectionParams;
import static org.forgerock.opendj.server.embedded.EmbeddedDirectoryServer.manageEmbeddedDirectoryServer;
import static java.util.Arrays.asList;

import java.io.File;
import java.io.IOException;
import org.forgerock.opendj.config.AdminException;
import org.forgerock.opendj.config.client.ManagementContext;
import org.forgerock.opendj.ldap.Dn;
import org.forgerock.opendj.server.config.client.BackendCfgClient;
import org.forgerock.opendj.server.config.client.PluggableBackendCfgClient;
import org.forgerock.opendj.server.embedded.EmbeddedDirectoryServer;
import org.forgerock.opendj.server.embedded.EmbeddedDirectoryServerException;

/**
 * Provides an example of read and update of the configuration of a server that
 * is already installed.
 * <p>
 * The server may be running or not.
 */
public final class ConfigureServer {

 /**
 * Main method.
 * <p>
 * Read the current base Dn of user backend and then change it
 * to the one provided as argument.
 *
 * @param args
 * The command line arguments: serverRootDir newBaseDn [ldapPort]
 * @throws Exception
 * If an error occurs
 */
 public static void main(final String[] args) throws Exception {
 if (args.length != 2 && args.length != 3) {
 System.err.println("Usage: serverRootDir newBaseDn [ldapPort]");
 System.exit(1);
 }
 final String serverRootDir = args[0];
 final String newBaseDn = args[1];
 final int ldapPort = args.length > 2 ? Integer.parseInt(args[2]) : 1500;

Embedding the Server
Configuring an Embedded Server

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 171

 EmbeddedDirectoryServer server =
 manageEmbeddedDirectoryServer(
 configParams()
 .serverRootDirectory(serverRootDir)
 .configurationFile(serverRootDir + File.separator + "config/config.ldif"),
 connectionParams()
 .hostName("localhost")
 .ldapPort(ldapPort)
 .bindDn("cn=Directory Manager")
 .bindPassword("password"),
 System.out,
 System.err);

 // read the current base DN(s) of user backend and update it
 try (ManagementContext config = server.getConfiguration()) {
 final BackendCfgClient userRoot = config.getRootConfiguration().getBackend("userRoot");
 final PluggableBackendCfgClient cfg = (PluggableBackendCfgClient) userRoot;
 System.out.println("The current base Dn(s) of the user backend are: " + cfg.getBaseDn());
 cfg.setBaseDn(asList(Dn.valueOf(newBaseDn)));
 cfg.commit();
 System.out.println("The base Dn of the user backend has been set to: " + newBaseDn);
 } catch (AdminException | IOException | EmbeddedDirectoryServerException e) {
 System.err.println("A problem occured when reading/updating configuration: " + e.toString());
 }
 }

 private ConfigureServer() {
 // Not used.
 }
}

LDAP Result Codes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 172

Chapter 11

LDAP Result Codes
An operation result code as defined in RFC 4511 section 4.1.9 is used to indicate the final status of an
operation. If a server detects multiple errors for an operation, only one result code is returned. The
server should return the result code that best indicates the nature of the error encountered. Servers
may return substituted result codes to prevent unauthorized disclosures.

OpenDJ LDAP Result Codes

Result Code Name Description
-1 Undefined The result code that should only be used if the actual

result code has not yet been determined. Despite not
being a standard result code, it is an implementation of
the null object design pattern for this type.

0 Success The result code that indicates that the operation
completed successfully.

1 Operations Error The result code that indicates that the operation is not
properly sequenced with relation to other operations
(of same or different type). For example, this code is
returned if the client attempts to StartTLS [RFC4346]
while there are other uncompleted operations or if a
TLS layer was already installed.

2 Protocol Error The result code that indicates that the client sent a
malformed or illegal request to the server.

3 Time Limit Exceeded The result code that indicates that a time limit was
exceeded while attempting to process the request.

4 Size Limit Exceeded The result code that indicates that a size limit was
exceeded while attempting to process the request.

5 Compare False The result code that indicates that the attribute value
assertion included in a compare request did not match
the targeted entry.

6 Compare True The result code that indicates that the attribute value
assertion included in a compare request did match the
targeted entry.

7 Authentication Method Not
Supported

The result code that indicates that the requested
authentication attempt failed because it referenced an
invalid SASL mechanism.

LDAP Result Codes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 173

Result Code Name Description
8 Strong Authentication Required The result code that indicates that the requested

operation could not be processed because it requires
that the client has completed a strong form of
authentication.

10 Referral The result code that indicates that a referral was
encountered. Strictly speaking this result code should
not be exceptional since it is considered as a "success"
response. However, referrals should occur rarely
in practice and, when they do occur, should not be
ignored since the application may believe that a
request has succeeded when, in fact, nothing was
done.

11 Administrative Limit Exceeded The result code that indicates that processing on the
requested operation could not continue because an
administrative limit was exceeded.

12 Unavailable Critical Extension The result code that indicates that the requested
operation failed because it included a critical extension
that is unsupported or inappropriate for that request.

13 Confidentiality Required The result code that indicates that the requested
operation could not be processed because it requires
confidentiality for the communication between the
client and the server.

14 SASL Bind in Progress The result code that should be used for intermediate
responses in multi-stage SASL bind operations.

16 No Such Attribute The result code that indicates that the requested
operation failed because it targeted an attribute or
attribute value that did not exist in the specified entry.

17 Undefined Attribute Type The result code that indicates that the requested
operation failed because it referenced an attribute that
is not defined in the server schema.

18 Inappropriate Matching The result code that indicates that the requested
operation failed because it attempted to perform an
inappropriate type of matching against an attribute.

19 Constraint Violation The result code that indicates that the requested
operation failed because it would have violated some
constraint defined in the server.

20 Attribute or Value Exists The result code that indicates that the requested
operation failed because it would have resulted in a
conflict with an existing attribute or attribute value in
the target entry.

21 Invalid Attribute Syntax The result code that indicates that the requested
operation failed because it violated the syntax for a
specified attribute.

LDAP Result Codes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 174

Result Code Name Description
32 No Such Entry The result code that indicates that the requested

operation failed because it referenced an entry that
does not exist.

33 Alias Problem The result code that indicates that the requested
operation failed because it attempted to perform an
illegal operation on an alias.

34 Invalid DN Syntax The result code that indicates that the requested
operation failed because it would have resulted in an
entry with an invalid or malformed DN.

36 Alias Dereferencing Problem The result code that indicates that a problem was
encountered while attempting to dereference an alias
for a search operation.

48 Inappropriate Authentication The result code that indicates that an authentication
attempt failed because the requested type of
authentication was not appropriate for the targeted
entry.

49 Invalid Credentials The result code that indicates that an authentication
attempt failed because the user did not provide a valid
set of credentials.

50 Insufficient Access Rights The result code that indicates that the client does not
have sufficient permission to perform the requested
operation.

51 Busy The result code that indicates that the server is too
busy to process the requested operation.

52 Unavailable The result code that indicates that either the entire
server or one or more required resources were not
available for use in processing the request.

53 Unwilling to Perform The result code that indicates that the server is
unwilling to perform the requested operation.

54 Loop Detected The result code that indicates that a referral or
chaining loop was detected while processing the
request.

60 Sort Control Missing The result code that indicates that a search request
included a VLV request control without a server-side
sort control.

61 Offset Range Error The result code that indicates that a search request
included a VLV request control with an invalid offset.

64 Naming Violation The result code that indicates that the requested
operation failed because it would have violated the
server's naming configuration.

65 Object Class Violation The result code that indicates that the requested
operation failed because it would have resulted in an
entry that violated the server schema.

LDAP Result Codes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 175

Result Code Name Description
66 Not Allowed on Non-Leaf The result code that indicates that the requested

operation is not allowed for non-leaf entries.
67 Not Allowed on RDN The result code that indicates that the requested

operation is not allowed on an RDN attribute.
68 Entry Already Exists The result code that indicates that the requested

operation failed because it would have resulted in an
entry that conflicts with an entry that already exists.

69 Object Class Modifications
Prohibited

The result code that indicates that the operation could
not be processed because it would have modified the
objectclasses associated with an entry in an illegal
manner.

71 Affects Multiple DSAs The result code that indicates that the operation could
not be processed because it would impact multiple
DSAs or other repositories.

76 Virtual List View Error The result code that indicates that the operation could
not be processed because there was an error while
processing the virtual list view control.

80 Other The result code that should be used if no other result
code is appropriate.

81 Server Connection Closed The client-side result code that indicates that the
server is down. This is for client-side use only and
should never be transferred over protocol.

82 Local Error The client-side result code that indicates that a local
error occurred that had nothing to do with interaction
with the server. This is for client-side use only and
should never be transferred over protocol.

83 Encoding Error The client-side result code that indicates that an error
occurred while encoding a request to send to the
server. This is for client-side use only and should never
be transferred over protocol.

84 Decoding Error The client-side result code that indicates that an error
occurred while decoding a response from the server.
This is for client-side use only and should never be
transferred over protocol.

85 Client-Side Timeout The client-side result code that indicates that the
client did not receive an expected response in a timely
manner. This is for client-side use only and should
never be transferred over protocol.

86 Unknown Authentication
Mechanism

The client-side result code that indicates that the user
requested an unknown or unsupported authentication
mechanism. This is for client-side use only and should
never be transferred over protocol.

87 Filter Error The client-side result code that indicates that the filter
provided by the user was malformed and could not be

LDAP Result Codes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 176

Result Code Name Description
parsed. This is for client-side use only and should never
be transferred over protocol.

88 Cancelled by User The client-side result code that indicates that the user
cancelled an operation. This is for client-side use only
and should never be transferred over protocol.

89 Parameter Error The client-side result code that indicates that there was
a problem with one or more of the parameters provided
by the user. This is for client-side use only and should
never be transferred over protocol.

90 Out of Memory The client-side result code that indicates that the client
application was not able to allocate enough memory for
the requested operation. This is for client-side use only
and should never be transferred over protocol.

91 Connect Error The client-side result code that indicates that the client
was not able to establish a connection to the server.
This is for client-side use only and should never be
transferred over protocol.

92 Operation Not Supported The client-side result code that indicates that the user
requested an operation that is not supported. This is
for client-side use only and should never be transferred
over protocol.

93 Control Not Found The client-side result code that indicates that the client
expected a control to be present in the response from
the server but it was not included. This is for client-
side use only and should never be transferred over
protocol.

94 No Results Returned The client-side result code that indicates that the
requested single entry search operation or read
operation failed because the Directory Server did not
return any matching entries. This is for client-side use
only and should never be transferred over protocol.

95 Unexpected Results Returned The client-side result code that the requested single
entry search operation or read operation failed
because the Directory Server returned multiple
matching entries (or search references) when only a
single matching entry was expected. This is for client-
side use only and should never be transferred over
protocol.

96 Referral Loop Detected The client-side result code that indicates that the client
detected a referral loop caused by servers referencing
each other in a circular manner. This is for client-side
use only and should never be transferred over protocol.

97 Referral Hop Limit Exceeded The client-side result code that indicates that the client
reached the maximum number of hops allowed when
attempting to follow a referral (i.e., following one

LDAP Result Codes

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 177

Result Code Name Description
referral resulted in another referral which resulted in
another referral and so on). This is for client-side use
only and should never be transferred over protocol.

118 Canceled The result code that indicates that a cancel request
was successful, or that the specified operation was
canceled.

119 No Such Operation The result code that indicates that a cancel request
was unsuccessful because the targeted operation did
not exist or had already completed.

120 Too Late The result code that indicates that a cancel request
was unsuccessful because processing on the targeted
operation had already reached a point at which it could
not be canceled.

121 Cannot Cancel The result code that indicates that a cancel request
was unsuccessful because the targeted operation was
one that could not be canceled.

122 Assertion Failed The result code that indicates that the filter contained
in an assertion control failed to match the target entry.

123 Authorization Denied The result code that should be used if the server will
not allow the client to use the requested authorization.

16,654 No Operation The result code that should be used if the server did
not actually complete processing on the associated
operation because the request included the LDAP No-
Op control.

Release Levels and Interface Stability
ForgeRock Product Release Levels

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 178

Chapter 12

Release Levels and Interface Stability
This chapter includes ForgeRock definitions for product release levels and interface stability.

12.1. ForgeRock Product Release Levels
ForgeRock defines Major, Minor, Maintenance, and Patch product release levels. The release level
is reflected in the version number. The release level tells you what sort of compatibility changes to
expect.

Release Level Definitions

Release Label Version Numbers Characteristics
Major Version: x[.0.0]

(trailing 0s are
optional)

• Bring major new features, minor features, and bug fixes

• Can include changes even to Stable interfaces

• Can remove previously Deprecated functionality, and in rare
cases remove Evolving functionality that has not been explicitly
Deprecated

• Include changes present in previous Minor and Maintenance
releases

Minor Version: x.y[.0]
(trailing 0s are
optional)

• Bring minor features, and bug fixes

• Can include backwards-compatible changes to Stable interfaces
in the same Major release, and incompatible changes to
Evolving interfaces

• Can remove previously Deprecated functionality

• Include changes present in previous Minor and Maintenance
releases

Maintenance, Patch Version: x.y.z[.p]

The optional .p
reflects a Patch
version.

• Bring bug fixes

• Are intended to be fully compatible with previous versions from
the same Minor release

Release Levels and Interface Stability
ForgeRock Product Interface Stability

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 179

12.2. ForgeRock Product Interface Stability
ForgeRock products support many protocols, APIs, GUIs, and command-line interfaces. Some of these
interfaces are standard and very stable. Others offer new functionality that is continuing to evolve.

ForgeRock acknowledges that you invest in these interfaces, and therefore must know when and how
ForgeRock expects them to change. For that reason, ForgeRock defines interface stability labels and
uses these definitions in ForgeRock products.

Interface Stability Definitions

Stability Label Definition
Stable This documented interface is expected to undergo backwards-compatible changes

only for major releases. Changes may be announced at least one minor release
before they take effect.

Evolving This documented interface is continuing to evolve and so is expected to change,
potentially in backwards-incompatible ways even in a minor release. Changes are
documented at the time of product release.

While new protocols and APIs are still in the process of standardization, they are
Evolving. This applies for example to recent Internet-Draft implementations, and
also to newly developed functionality.

Deprecated This interface is deprecated and likely to be removed in a future release. For
previously stable interfaces, the change was likely announced in a previous
release. Deprecated interfaces will be removed from ForgeRock products.

Removed This interface was deprecated in a previous release and has now been removed
from the product.

Technology Preview Technology previews provide access to new features that are evolving new
technology that are not yet supported. Technology preview features may
be functionally incomplete and the function as implemented is subject to
change without notice. DO NOT DEPLOY A TECHNOLOGY PREVIEW INTO A
PRODUCTION ENVIRONMENT.

Customers are encouraged to test drive the technology preview features in a non-
production environment and are welcome to make comments and suggestions
about the features in the associated forums.

ForgeRock does not guarantee that a technology preview feature will be present
in future releases, the final complete version of the feature is liable to change
between preview and the final version. Once a technology preview moves into
the completed version, said feature will become part of the ForgeRock platform.
Technology previews are provided on an “AS-IS” basis for evaluation purposes
only and ForgeRock accepts no liability or obligations for the use thereof.

Internal/Undocumented Internal and undocumented interfaces can change without notice. If you
depend on one of these interfaces, contact ForgeRock support or email
info@forgerock.com to discuss your needs.

mailto:info@forgerock.com

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 180

Glossary

Abandon operation LDAP operation to stop processing of a request in progress, after
which the server drops the connection without a reply to the client
application.

Access control Control to grant or to deny access to a resource.

Access control instruction
(ACI)

Instruction added as a directory entry attribute for fine-grained
control over what a given user or group member is authorized to do in
terms of LDAP operations and access to user data.

ACIs are implemented independently from privileges, which apply to
administrative operations.
See also Privilege.

Access control list (ACL) An access control list connects a user or group of users to one or more
security entitlements. For example, users in group sales are granted
the entitlement read-only to some financial data.

access log Server log tracing the operations the server processes including
timestamps, connection information, and information about the
operation itself.

Account lockout The act of making an account temporarily or permanently inactive
after successive authentication failures.

Active user A user that has the ability to authenticate and use the services, having
valid credentials.

Add operation LDAP operation to add a new entry or entries to the directory.

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 181

Anonymous A user that does not need to authenticate, and is unknown to the
system.

Anonymous bind A bind operation using simple authentication with an empty DN and
an empty password, allowing anonymous access such as reading
public information.

Approximate index Index is used to match values that "sound like" those provided in the
filter.

Attribute Properties of a directory entry, stored as one or more key-value pairs.
Typical examples include the common name (cn) to store the user's
full name and variations of the name, user ID (uid) to store a unique
identifier for the entry, and mail to store email addresses.

audit log Type of access log that dumps changes in LDIF.

Authentication The process of verifying who is requesting access to a resource; the
act of confirming the identity of a principal.

Authorization The process of determining whether access should be granted to
an individual based on information about that individual; the act
of determining whether to grant or to deny a principal access to a
resource.

Backend Repository that stores directory data. Different implementations with
different capabilities exist.

Binary copy Binary backup archive of one directory server that can be restored on
another directory server.

Bind operation LDAP authentication operation to determine the client's identity in
LDAP terms, the identity which is later used by the server to authorize
(or not) access to directory data that the client wants to lookup or
change.

Branch The distinguished name (DN) of a non-leaf entry in the Directory
Information Tree (DIT), and also that entry and all its subordinates
taken together.

Some administrative operations allow you to include or exclude
branches by specifying the DN of the branch.

See also Suffix.

Collective attribute A standard mechanism for defining attributes that appear on all the
entries in a particular subtree.

Compare operation LDAP operation to compare a specified attribute value with the value
stored on an entry in the directory.

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 182

Control Information added to an LDAP message to further specify how an
LDAP operation should be processed. OpenDJ supports many LDAP
controls.

Database cache Memory space set aside to hold database content.

debug log Server log tracing details needed to troubleshoot a problem in the
server.

Delete operation LDAP operation to remove an existing entry or entries from the
directory.

Directory A directory is a network service which lists participants in the
network such as users, computers, printers, and groups. The directory
provides a convenient, centralized, and robust mechanism for
publishing and consuming information about network participants.

Directory hierarchy A directory can be organized into a hierarchy in order to make it
easier to browse or manage. Directory hierarchies normally represent
something in the physical world, such as organizational hierarchies
or physical locations. For example, the top level of a directory may
represent a company, the next level down divisions, the next level
down departments, and down the hierarchy. Alternately, the top level
may represent the world, the next level down countries, next states or
provinces, and next cities.

Directory Information Tree
(DIT)

A set of directory entries organized hierarchically in a tree structure,
where the vertices are the entries and the arcs between vertices
define relationships between entries

Directory manager Default Root DN who has privileges to do full administration of
the OpenDJ server, including bypassing access control evaluation,
changing access controls, and changing administrative privileges.
See also Root DN.

Directory object A directory object is an item in a directory. Example objects include
users, user groups, computers, and more. Objects may be organized
into a hierarchy and contain identifying attributes.
See also Entry.

Directory proxy server Server that forwards LDAP requests to remote directory servers. A
standalone directory proxy server does not store user data.
See also Directory server.

Directory server Server application for centralizing information about network
participants. A highly available directory service consists of multiple
directory servers configured to replicate directory data.
See also Directory, Replication.

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 183

Directory Services Markup
Language (DSML)

Standard language to access directory services using XML. DMSL v1
defined an XML mapping of LDAP objects, while DSMLv2 maps the
LDAP Protocol and data model to XML.

Distinguished name (DN) Fully qualified name for a directory entry, such as uid=bjensen,ou=People
,dc=example,dc=com, built by concatenating the entry RDN (uid=bjensen)
with the DN of the parent entry (ou=People,dc=example,dc=com).

Domain A replication domain consists of several directory servers sharing the
same synchronized set of data.

The base DN of a replication domain specifies the base DN of the
replicated data.

Dynamic group Group that specifies members using LDAP URLs.

Entry As generic and hierarchical data stores, directories always contain
different kinds of entries, either nodes (or containers) or leaf entries.
An entry is an object in the directory, defined by one of more object
classes and their related attributes. At startup, OpenDJ reports the
number of entries contained in each suffix.

Entry cache Memory space set aside to hold frequently accessed, large entries,
such as static groups.

Equality index Index used to match values that correspond exactly (though generally
without case sensitivity) to the value provided in the search filter.

errors log Server log tracing server events, error conditions, and warnings,
categorized and identified by severity.

Export Save directory data in an LDIF file.

Extended operation Additional LDAP operation not included in the original standards.
OpenDJ servers support several standard LDAP extended operations.

Extensible match index Index for a matching rule other than approximate, equality, ordering,
presence, substring or VLV, such as an index for generalized time.

External user An individual that accesses company resources or services but is not
working for the company. Typically a customer or partner.

Filter An LDAP search filter is an expression that the server uses to find
entries that match a search request, such as (mail=*@example.com) to
match all entries having an email address in the example.com domain.

Group Entry identifying a set of members whose entries are also in the
directory.

Idle time limit Defines how long OpenDJ allows idle connections to remain open.

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 184

Import Read in and index directory data from an LDIF file.

Inactive user An entry in the directory that once represented a user but which is
now no longer able to be authenticated.

Index Directory server backend feature to allow quick lookup of entries
based on their attribute values.
See also Approximate index, Equality index, Extensible match index,
Ordering index, Presence index, Substring index, Virtual list view
(VLV) index, Index entry limit.

Index entry limit When the number of entries that an index key points to exceeds the
index entry limit, OpenDJ stops maintaining the list of entries for that
index key.

Internal user An individual who works within the company either as an employee or
as a contractor.

LDAP Data Interchange
Format (LDIF)

Standard, portable, text-based representation of directory content.
See RFC 2849.

LDAP URL LDAP Uniform Resource Locator such as ldap://directory.example
.com:389/dc=example,dc=com??sub?(uid=bjensen). See RFC 2255.

LDAPS LDAP over SSL.

Lightweight Directory
Access Protocol (LDAP)

A simple and standardized network protocol used by applications to
connect to a directory, search for objects and add, edit or remove
objects. See RFC 4510.

Lookthrough limit Defines the maximum number of candidate entries OpenDJ considers
when processing a search.

Matching rule Defines rules for performing matching operations against assertion
values. Matching rules are frequently associated with an attribute
syntax and are used to compare values according to that syntax. For
example, the distinguishedNameEqualityMatch matching rule can be used
to determine whether two DNs are equal and can ignore unnecessary
spaces around commas and equal signs, differences in capitalization
in attribute names, and other discrepancies.

Modify DN operation LDAP modification operation to request that the server change the
distinguished name of an entry.

Modify operation LDAP modification operation to request that the server change one or
more attributes of an entry.

Naming context Base DN under which client applications can look for user data.

Object class Identifies entries that share certain characteristics. Most commonly,
an entry's object classes define the attributes that must and may be

http://tools.ietf.org/html/rfc2849
http://tools.ietf.org/html/rfc2255
http://tools.ietf.org/html/rfc4510

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 185

present on the entry. Object classes are stored on entries as values of
the objectClass attribute. Object classes are defined in the directory
schema, and can be abstract (defining characteristics for other object
classes to inherit), structural (defining the basic structure of an entry,
one structural inheritance per entry), or auxiliary (for decorating
entries already having a structural object class with other required
and optional attributes).

Object identifier (OID) String that uniquely identifies an object, such as 0.9.2342.19200300
.100.1.1 for the user ID attribute or 1.3.6.1.4.1.1466.115.121.1.15 for
DirectoryString syntax.

Operational attribute An attribute that has a special (operational) meaning for the server,
such as pwdPolicySubentry or modifyTimestamp.

Ordering index Index used to match values for a filter that specifies a range.

Password policy A set of rules regarding what sequence of characters constitutes
an acceptable password. Acceptable passwords are generally those
that would be too difficult for another user or an automated program
to guess and thereby defeat the password mechanism. Password
policies may require a minimum length, a mixture of different types
of characters (lowercase, uppercase, digits, punctuation marks, and
other characters), avoiding dictionary words or passwords based on
the user's name, and other attributes. Password policies may also
require that users not reuse old passwords and that users change
their passwords regularly.

Password reset Password change performed by a user other than the user who owns
the entry.

Password storage scheme Mechanism for encoding user passwords stored on directory entries.
OpenDJ implements a number of password storage schemes.

Password validator Mechanism for determining whether a proposed password is
acceptable for use. OpenDJ implements a number of password
validators.

Plugin Java library with accompanying configuration that implements a
feature through processing that is not essential to the core operation
of an OpenDJ server.

As the name indicates, plugins can be plugged in to an installed server
for immediate configuration and use without recompiling the server.

OpenDJ servers invoke plugins at specific points in the lifecycle of a
client request. The OpenDJ configuration framework lets directory
administrators manage plugins with the same tools used to manage
the server.

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 186

Presence index Index used to match the fact that an attribute is present on the entry,
regardless of the value.

Principal Entity that can be authenticated, such as a user, a device, or an
application.

Privilege Server configuration settings controlling access to administrative
operations such as exporting and importing data, restarting the
server, performing password reset, and changing the server
configuration.

Privileges are implemented independently from access control
instructions (ACI), which apply to LDAP operations and user data.
See also Access control instruction (ACI).

Referential integrity Ensuring that group membership remains consistent following
changes to member entries.

referint log Server log tracing referential integrity events, with entries similar to
the errors log.

Referral Reference to another directory location, which can be another
directory server running elsewhere or another container on the same
server, where the current operation can be processed.

Relative distinguished
name (RDN)

Initial portion of a DN that distinguishes the entry from all other
entries at the same level, such as uid=bjensen in uid=bjensen,ou=People
,dc=example,dc=com.

Replication Data synchronization that ensures all directory servers participating
eventually share a consistent set of directory data.

replication log Server log tracing replication events, with entries similar to the errors
log.

Replication server Server dedicated to transmitting replication messages. A standalone
replication server does not store user data.

Root DN A directory superuser, whose account is specific to a server under
cn=Root DNs,cn=config.

The default Root DN is Directory Manager. You can create additional
Root DN accounts, each with different administrative privileges.
See also Directory manager, Privilege.

Root DSE The directory entry with distinguished name "" (empty string), where
DSE is an acronym for DSA-Specific Entry. DSA is an acronym for
Directory Server Agent, a single directory server. The root DSE serves
to expose information over LDAP about what the directory server

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 187

supports in terms of LDAP controls, auth password schemes, SASL
mechanisms, LDAP protocol versions, naming contexts, features,
LDAP extended operations, and other information.

Schema LDAP schema defines the object classes, attributes types, attribute
value syntaxes, matching rules and other constrains on entries held by
the directory server.

Search filter See Filter.

Search operation LDAP lookup operation where a client requests that the server return
entries based on an LDAP filter and a base DN under which to search.

Simple authentication Bind operation performed with a user's entry DN and user's password.
Use simple authentication only if the network connection is secure.

Size limit Sets the maximum number of entries returned for a search.

Static group Group that enumerates member entries.

Subentry An entry, such as a password policy entry, that resides with the user
data but holds operational data, and is not visible in search results
unless explicitly requested.

Substring index Index used to match values specified with wildcards in the filter.

Suffix The distinguished name (DN) of a root entry in the Directory
Information Tree (DIT), and also that entry and all its subordinates
taken together as a single object of administrative tasks such as
export, import, indexing, and replication.

Task Mechanism to provide remote access to server administrative
functions. OpenDJ software supports tasks to back up and restore
backends, to import and export LDIF files, and to stop and restart the
server.

Time limit Defines the maximum processing time OpenDJ devotes to a search
operation.

Unbind operation LDAP operation to release resources at the end of a session.

Unindexed search Search operation for which no matching index is available. If no
indexes are applicable, then the directory server potentially has to
go through all entries to look for candidate matches. For this reason,
the unindexed-search privilege, which allows users to request searches
for which no applicable index exists, is reserved for the directory
manager by default.

User An entry that represents an individual that can be authenticated
through credentials contained or referenced by its attributes. A user

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 188

may represent an internal user or an external user, and may be an
active user or an inactive user.

User attribute An attribute for storing user data on a directory entry such as mail or
givenname.

Virtual attribute An attribute with dynamically generated values that appear in entries
but are not persistently stored in the backend.

Virtual directory An application that exposes a consolidated view of multiple physical
directories over an LDAP interface. Consumers of the directory
information connect to the virtual directory's LDAP service. Behind
the scenes, requests for information and updates to the directory
are sent to one or more physical directories where the actual
information resides. Virtual directories enable organizations to create
a consolidated view of information that for legal or technical reasons
cannot be consolidated into a single physical copy.

Virtual list view (VLV)
index

Browsing index designed to help the directory server respond to client
applications that need, for example, to browse through a long list of
results a page at a time in a GUI.

Virtual static group OpenDJ group that lets applications see dynamic groups as what
appear to be static groups.

X.500 A family of standardized protocols for accessing, browsing and
maintaining a directory. X.500 is functionally similar to LDAP, but is
generally considered to be more complex, and has consequently not
been widely adopted.

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 189

Index

A
Adds, 5
Assertions, 9
Attributes, 2, 9
Authenticating, 104
Authentications, 5, 7
Authorizations, 7

C
Certificates, 110
Changing passwords, 48, 103, 103
Collective attributes, 143
Commands, 67, 69
Comparing attribute values, 90
Comparisons, 5
Connections

Health check, 7
Pooling, 7

Controls
About, 6
Persistent search, 10

D
Deletes, 5

E
Embedding servers, 163
Errors

Result codes, 8, 11
Extended operations

About, 6
Extending server capabilities, 154

F
Filters, 8

G
Groups, 9

Dynamic, 133
Membership, 136
Nested, 136

Referential integrity, 138
Static, 131
Virtual static, 134

H
HTTP, 13

I
Identity mappers, 105

J
JSON, 13
JSON syntax, 88, 95

L
LDAP

About, 1
Checking supported features, 9
Connected protocol, 5
Data, 2
Result codes, 172
Schema, 10

LDIF
Examples, 90

M
Modifications, 5, 8

P
Passwords

Changing, 102
Plugins, 154
Ports

Settings for tools, 104
Proxied authorization, 107

R
Referrals, 11, 151
Renames, 5
Replication

Not for virtual attributes, 143
Resetting passwords, 48, 102
REST, 13

MIME types, 60

Developer's Guide Directory Services 5.5 (2020-11-05T20:23:16.534775)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 190

S
Schema, 120

Bundled definitions, 127
Reading definitions, 120
Respecting definitions, 123

Searches, 5
Handling results, 11
Sorting, 10

Searching data, 76
SSL, 110
StartTLS, 110

U
Updating data, 90

Filtering, 96

V
Virtual attributes, 140

	Developer's Guide
	Table of Contents
	Preface
	1. Using This Guide
	2. Accessing Documentation Online
	3. Using the ForgeRock.org Site

	Chapter 1. Understanding LDAP
	1.1. How Directories and LDAP Evolved
	1.2. About Data In LDAP Directories
	1.3. About LDAP Client and Server Communication
	1.4. About LDAP Controls and Extensions

	Chapter 2. Best Practices For Application Developers
	2.1. Authenticate Correctly
	2.2. Reuse Connections
	2.3. Health Check Connections
	2.4. Request Exactly What You Need All At Once
	2.5. Use Specific LDAP Filters
	2.6. Make Modifications Specific
	2.7. Trust Result Codes
	2.8. Handle Input Securely
	2.9. Check Group Membership on the Account, Not the Group
	2.10. Ask the Directory Server What It Supports
	2.11. Store Large Attribute Values By Reference
	2.12. Take Care With Persistent Search and Server-Side Sorting
	2.13. Reuse Schemas Where Possible
	2.14. Handle Referrals
	2.15. Troubleshooting: Check Result Codes
	2.16. Troubleshooting: Check Server Log Files
	2.17. Troubleshooting: Inspect Network Traffic

	Chapter 3. Performing RESTful Operations
	3.1. About ForgeRock Common REST
	3.1.1. Common REST Resources
	3.1.2. Common REST Verbs
	3.1.3. Common REST Parameters
	3.1.4. Common REST Extension Points
	3.1.5. Common REST API Documentation
	3.1.6. Create
	3.1.7. Read
	3.1.8. Update
	3.1.9. Delete
	3.1.10. Patch
	3.1.10.1. Patch Operation: Add
	3.1.10.2. Patch Operation: Copy
	3.1.10.3. Patch Operation: Increment
	3.1.10.4. Patch Operation: Move
	3.1.10.5. Patch Operation: Remove
	3.1.10.6. Patch Operation: Replace
	3.1.10.7. Patch Operation: Transform
	3.1.10.8. Patch Operation Limitations

	3.1.11. Action
	3.1.12. Query
	3.1.13. HTTP Status Codes

	3.2. Selecting an API Version
	3.3. Authenticating Over REST
	3.4. Creating Resources
	3.5. Reading a Resource
	3.6. Updating Resources
	3.7. Deleting Resources
	3.8. Patching Resources
	3.9. Using Actions
	3.9.1. Using the Create Resource Action
	3.9.2. Using the Modify Password and Reset Password Actions
	3.9.2.1. Changing Passwords
	3.9.2.2. Resetting Passwords

	3.10. Querying Resource Collections
	3.10.1. Paged Results
	3.10.2. Server-Side Sort

	3.11. Working With Alternative Content Types
	3.12. Working With REST API Documentation

	Chapter 4. Performing LDAP Operations
	4.1. About Command-Line Tools
	4.1.1. Client Command-Line Tools
	4.1.2. Server Command-Line Tools
	4.1.3. How Command-Line Tools Trust Server Certificates

	4.2. Searching the Directory
	4.3. Comparing Attribute Values
	4.4. Updating the Directory
	4.4.1. Adding Entries
	4.4.2. Modifying Entry Attributes
	4.4.3. Filtering Add and Modify Operations
	4.4.4. Renaming Entries
	4.4.5. Moving Entries
	4.4.6. Deleting Entries

	4.5. Changing Passwords
	4.6. Configuring Default Settings
	4.7. Authenticating To the Directory Server
	4.8. Configuring Proxied Authorization
	4.9. Authenticating Client Applications With a Certificate

	Chapter 5. Using LDAP Schema
	5.1. Getting Schema Information
	5.2. Respecting LDAP Schema
	5.3. Abusing LDAP Schema
	5.4. Standard Schema Included With OpenDJ Server

	Chapter 6. Working With Groups of Entries
	6.1. Creating Static Groups
	6.2. Creating Dynamic Groups
	6.3. Creating Virtual Static Groups
	6.4. Looking Up Group Membership
	6.5. Nesting Groups Within Groups
	6.6. Configuring Referential Integrity

	Chapter 7. Working With Virtual and Collective Attributes
	7.1. Virtual Attributes
	7.2. Collective Attributes
	7.2.1. Understanding Subentry Scope

	Chapter 8. Working With Referrals
	8.1. About Referrals
	8.2. Managing Referrals

	Chapter 9. Writing a Server Plugin
	9.1. About OpenDJ Server Plugins
	9.1.1. Plugin Types
	9.1.2. Plugin Configuration

	9.2. Trying the Example Server Plugin
	9.3. About the Example Plugin Project Files
	9.3.1. Maven Project
	9.3.2. Configuration
	9.3.3. Implementation Code
	9.3.4. Internationalization

	Chapter 10. Embedding the Server
	10.1. Before Trying the Embedded Server Samples
	10.2. Obtaining the Sample Code
	10.3. Setting Up an Embedded Server
	10.4. Starting and Stopping an Embedded Server
	10.5. Configuring an Embedded Server

	Chapter 11. LDAP Result Codes
	Chapter 12. Release Levels and Interface Stability
	12.1. ForgeRock Product Release Levels
	12.2. ForgeRock Product Interface Stability

	Glossary
	Index

