
OpenID Connect 1.0 Guide
/ ForgeRock Access Management 6.5

Latest update: 6.5.5

ForgeRock AS.
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2011-2022 ForgeRock AS.

Abstract

Guide showing you how to use OpenID Connect 1.0 with ForgeRock® Access Management
(AM). ForgeRock Access Management provides intelligent authentication, authorization,
federation, and single sign-on functionality.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, https://fontawesome.com/.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://fontawesome.com/
https://opensource.org/licenses/OFL-1.1

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. iii

Table of Contents
Preface .. v
1. Introducing OpenID Connect 1.0 ... 1

OAuth 2.0 or OpenID Connect? ... 1
AM as the OpenID Provider .. 3
Security Considerations ... 4
About Token Storage Location .. 5

2. Configuring AM for OpenID Connect 1.0 ... 6
Configuring AM as an OpenID Connect Provider ... 6
Configuring AM for OpenID Connect Discovery ... 9
Configuring the Base URL Source Service ... 12
Registering OpenID Connect Relying Parties ... 13
Configuring for GSMA Mobile Connect .. 13
Encrypting OpenID Connect ID Tokens ... 18

3. OpenID Connect Scopes and Claims .. 20
Requesting Claims in ID Tokens .. 21
Scripting OpenID Connect 1.0 Claims ... 22

4. Implementing OpenID Connect Grant Flows .. 26
Authorization Code Grant .. 27
Authorization Code Grant with PKCE .. 35
Backchannel Request Grant ... 46
Implicit Grant .. 54
Hybrid Grant ... 61

5. Managing OpenID Connect User Sessions ... 70
6. Adding Authentication Requirements to ID Tokens .. 73

The Authentication Context Class Reference (acr) Claim 73
The Authentication Method Reference (amr) Claim ... 79

7. Additional Use Cases for ID Tokens .. 83
Using ID Tokens as Session Tokens .. 83
Using ID Tokens as Subjects in Policy Decision ... 84

8. OpenID Connect 1.0 Endpoints ... 85
/oauth2/userinfo ... 85
/oauth2/idtokeninfo .. 87
/oauth2/connect/checkSession .. 89
/oauth2/connect/endSession ... 89
/oauth2/connect/jwk_uri ... 91

9. Reference .. 98
OpenID Connect 1.0 Standards ... 98
AM As an Identity Provider to Another AM Example .. 99
OAuth2 Provider .. 101
OAuth 2.0 and OpenID Connect 1.0 Client Settings ... 126

A. About Scripting ... 139
The Scripting Environment .. 139
Global Scripting API Functionality ... 144
Managing Scripts .. 146

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. iv

Scripting .. 159
B. Getting Support .. 163
Glossary ... 164

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. v

Preface
This guide covers concepts, configuration, and usage procedures for working with OpenID Connect
1.0 and ForgeRock Access Management.

This guide is written for anyone using OpenID Connect 1.0 with Access Management to manage and
federate access to web applications and web-based resources.

About ForgeRock Identity Platform™ Software
ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity
and Access Management solution. We help our customers deepen their relationships with their
customers, and improve the productivity and connectivity of their employees and partners. For more
information about ForgeRock and about the platform, see https://www.forgerock.com.

https://www.forgerock.com

Introducing OpenID Connect 1.0
OAuth 2.0 or OpenID Connect?

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 1

Chapter 1

Introducing OpenID Connect 1.0
OpenID Connect 1.0 is an identity layer built on OAuth 2.0. It enables clients to verify the identity of
users based on the authentication performed by OAuth 2.0 authorization servers, as well as to obtain
profile information about the user using REST.

Tip

Before configuring OpenID Connect in your environment, ensure you are familiar with the OAuth 2.0 standards
and AM's implementation of OAuth 2.0.

For more information about AM and OAuth 2.0, see the OAuth 2.0 Guide.

OAuth 2.0 or OpenID Connect?
Both standards were created under the premise of users having the need to interact with a third
party service, but aim to solve different problems:

OAuth 2.0 and OpenID Connect Comparison

 OAuth 2.0 OpenID Connect
Purpose To provide users with a mechanism to

authorize a service to access and use a
subset of their data in their behalf, in a
secure way.

Users must agree to provide access under
the service's term and conditions (for
example, for how long the service has
access to their data, and the purpose that
data would be used for).

To provide users with a mechanism to
authenticate to a service by providing it
with a subset of their data in a secure way.

Since OpenID Connect builds on top of
OAuth 2.0, users authorize a relying party
to collect a subset of their data (usually
information stored in the end user's
profile) from a third party. The service
then uses this data to authenticate the
user and provide its services.

This way, the user can employ the relying
party's services even if they have never
created an account on it.

Use Cases Use-cases are generic and can be tailored
to many needs, but an example is a user
allowing a photo print service access to a
third-party server hosting their pictures,
so the photo print service can print them.

The most common scenario is using social
media credentials to log in to a third-party
service provider.

http://openid.net/connect/

Introducing OpenID Connect 1.0
OAuth 2.0 or OpenID Connect?

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 2

 OAuth 2.0 OpenID Connect
Tokens Access and refresh tokens ID tokens
Regarding Scopes Concept to limit the information to share

with service or the actions the service can
do with the data. For example, the print
scope may allow a photo print service to
access photos, but not to edit them.

Scopes are not data, nor are related to
user data in any way.

Concept that can be mapped to specific
user data. For example, AM maps the
profile scope to a series of user profile
attributes. Since different identity
managers may present the information in
different attributes, the profile attributes
are mapped to OpenID Connect claims.

Claims are returned as part of the ID
token. In some circumstances, additional
claims can be requested in a call to the
oauth2/userinfo endpoint.

For more information about how AM
maps user profile attributes to claims, see
"OpenID Connect Scopes and Claims".

Another difference between the standards is the name of the actors. The names of the actors in
OpenID Connect 1.0 relate to those used in OAuth 2.0 as follows:

OAuth 2.0 and OpenID Connect Actors Comparison

OIDC Actor OAuth 2.0 Actor Description
End User Resource Owner

(RO)
The owner of the information the application needs to access.

The end user wants to use an application through existing
identity provider account without signing up to and creating
credentials for yet another web service.

Relying Party (RP) Client The third-party that needs to know the identity of the end user
to provide their services. For example, a delivery company or a
shopping site.

OpenID Provider
(OP)

Authorization
Server (AS)

Resource Server
(RS)

A service that has the end user's consent to provide the RP with
access to some of its user information. As OpenID Connect 1.0
defines unique identification for an account (subject identifier
+ issuer identifier), the RP can use this as a key to its own user
profile.

In the case of an online mail application, this key could be used
to access the mailboxes and related account information. In the
case of an online shopping site, this key could be used to access
the offerings, account, shopping cart and so forth. The key makes
it possible to serve users as if they had local accounts.

AM can act as the OpenID Connect provider to authenticate end
users and provide RPs with information about the users in the
form of an OpenID Connect ID token.

Introducing OpenID Connect 1.0
AM as the OpenID Provider

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 3

The following sequence diagram demonstrates the basic OpenID Connect flow:

OpenID Connect 1.0 Protocol Flow

End User

End User

Relying Party

Relying Party

OpenID Provider
(AM)

OpenID Provider
(AM)

1 Authent icat ion request . Redirect ...

2 ... for authent icat ion

3 Authent icat ion and authorizat ion request

4 Authent icates, authorizes operat ion

5 Responds with ID token and usually, access token

Opt ional

6 Request with access token to the oauth2/userinfo endpoint to access user data

7 Responds with claim s about the end user

AM as the OpenID Provider
In its role as OpenID provider, AM returns ID tokens to relying parties while allowing them to
discover its capabilities and register.

Since OpenID Connects builds on top of OAuth 2.0, when AM is configured as an OpenID provider, it
can also return access and refresh tokens to the relying parties, if needed.

AM supports the following OpenID Connect grant types and standards:

Grant Types

• Authorization Code

• Authorization Code with PKCE

• Back Channel Request

• Implicit

• Hybrid

• Hybrid with PKCE

For more information, see "Implementing OpenID Connect Grant Flows".

Introducing OpenID Connect 1.0
Security Considerations

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 4

Standards

• Session Management

OpenID Connect lets the relying party track whether the end user is logged in at the provider,
and also initiate end user logout at the provider. The specification has the relying party monitor
session state using an invisible iframe and communicate status using the HTML 5 postMessage
API.

For more information, see "Managing OpenID Connect User Sessions".

• Discovery and Dynamic Client Registration

OpenID Connect defines how a relying party can discover the OpenID Provider and
corresponding OpenID Connect configuration for an end user. The discovery mechanism relies
on WebFinger to get the information based on the end user's identifier. The server returns the
information in JSON Resource Descriptor (JRD) format.

For more information, see "Configuring AM for OpenID Connect Discovery" and "Registering
OpenID Connect Relying Parties".

• Mobile Connect

Mobile Connect builds on top of OpenID Connect to facilitate the use of mobile phones as
authentication devices, offering a way for mobile network operators to act as identity providers.

For more information, see "Configuring for GSMA Mobile Connect".

Tip

For a detailed list of all the supported OpenID Connect standards, see "OpenID Connect 1.0 Standards".

For a detailed list of all the supported OAuth 2.0 standards, see "OAuth 2.0 Standards" in the OAuth 2.0 Guide.

Security Considerations
AM provides security mechanisms to ensure that OpenID Connect 1.0 ID tokens are properly
protected against malicious attackers: TLS, digital signatures, and token encryption.

While designing a security mechanism, you can also take into account the points developed in the
section on Security Considerations in the OpenID Connect Core 1.0 incorporating errata set 1
specification.

OpenID Connect 1.0 requires the protection of network messages with Transport Layer Security
(TLS). For information about protecting traffic to and from the web container in which AM runs, see
"Configuring Secrets, Certificates, and Keys" in the Setup and Maintenance Guide.

For additional security considerations related to the use of OAuth 2.0, see "Security Considerations"
in the OAuth 2.0 Guide.

http://openid.net/specs/openid-connect-core-1_0.html#Security

Introducing OpenID Connect 1.0
About Token Storage Location

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 5

About Token Storage Location
AM OpenID Connect and OAuth 2.0-related services are stateless unless otherwise indicated; they do
not hold any token information local to the AM instances.

Access and refresh tokens can be stored in the CTS token store or presented to the clients as JWTs.
However, OpenID Connect tokens and session information are managed in the following way:

• ID tokens are always presented as JWTs.

• OpenID Connect sessions are always stored in the CTS token store.

For more information about how to configure access and refresh token storage, see "About Token
Storage Location" in the OAuth 2.0 Guide.

Configuring AM for OpenID Connect 1.0
Configuring AM as an OpenID Connect Provider

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 6

Chapter 2

Configuring AM for OpenID Connect 1.0
This chapter covers implementing and configuring AM support for OpenID Connect 1.0.

Configuring AM as an OpenID Connect Provider
You can configure AM's OAuth 2.0 provider service to double as an OpenID Connect provider service.

The following procedure shows how to configure an OAuth 2.0 provider with support for the OpenID
Connect specification:

To Set Up the OAuth 2.0 Provider Service for OpenID Connect

Perform the steps in this procedure to set up the OAuth2 provider service with OpenID Connect
defaults by using the Configure OAuth Provider wizard:

1. In the AM console, navigate to Realms > Realm Name > Dashboard > Configure OAuth Provider
> Configure OpenID Connect.

2. On the Configure OAuth2/OpenID Connect Service page, select the Realm for the provider
service.

3. (Optional) If necessary, adjust the lifetimes for authorization codes (a lifetime of 10 minutes or
less is recommended in RFC 6749), access tokens, and refresh tokens.

4. (Optional) Select Issue Refresh Tokens if you want the provider to supply a refresh token when
returning an access token.

5. (Optional) Select Issue Refresh Tokens on Refreshing Access Tokens if you want the provider to
supply a new refresh token when refreshing an access token.

6. (Optional) Keep the default scope implementation, whereby scopes are taken to be resource
owner profile attribute names, unless you have a custom scope validator implementation.

If you have a custom scope validator implementation, copy it to the AM classpath, for example /
path/to/tomcat/webapps/openam/WEB-INF/lib/, and specify the class name in the Scope Implementation
Class field. For an example, see "Customizing OAuth 2.0 Scope Handling" in the OAuth 2.0 Guide.

7. Select Create to save your changes. If an OAuth2 provider service already exists, it will be
overwritten with the new OpenID Connect parameter values.

https://www.rfc-editor.org/rfc/rfc6749.html#section-4.1.2

Configuring AM for OpenID Connect 1.0
Configuring AM as an OpenID Connect Provider

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 7

AM creates an OAuth2 provider service, with OpenID Connect default parameter values.

OpenID Connect Provider Additional Configuration

This section only covers OpenID Connect-specific configuration. For more information about general
OAuth 2.0 configuration, see "OAuth 2.0 Provider Server Additional Configuration" in the OAuth 2.0
Guide.

The OpenID Connect provider is highly configurable:

• To access the OAuth 2.0 provider configuration in the AM console, navigate to Realms > Realm
Name > Services, and then select OAuth2 Provider.

• To adjust global defaults, in the AM console navigate to Configure > Global Services, and then click
OAuth2 Provider.

Consider the following configuration options:

• To configure the public keys for the provider, see "/oauth2/connect/jwk_uri".

OpenID providers sign ID tokens so that clients can ensure their authenticity. AM exposes the URI
where clients can check the signing public keys to verify the ID token signatures.

By default, AM exposes an internal endpoint with keys, but you can configure the URI of your
secrets API instead.

• To enable the OpenID Connect discovery endpoint, see "Configuring AM for OpenID Connect
Discovery".

• To configure response type plugins, add or remove lines from the Response Type Plugins field.
Response type plugins let the provider issue access tokens, ID tokens, authorization codes, device
codes, and others.

The following is a list of the plugins included in AM:

code|org.forgerock.oauth2.core.AuthorizationCodeResponseTypeHandler
id_token|org.forgerock.openidconnect.IdTokenResponseTypeHandler
device_code|org.forgerock.oauth2.core.TokenResponseTypeHandler
token|org.forgerock.oauth2.core.TokenResponseTypeHandler
none|org.forgerock.oauth2.core.NoneResponseTypeHandler

• The id_token response type is required in OpenID Connect flows. AM uses it to issue ID tokens.

• The none response type is required in OpenID Connect flows using the id_token_hint parameter.

• The code response type is required in the Authorization Code grant flow.

• The device_code response type is required in the Device grant flow.

Configuring AM for OpenID Connect 1.0
Configuring AM as an OpenID Connect Provider

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 8

• The token response type is required in all flows. AM uses it to issue access and refresh tokens.

• To configure pairwise subject types as described in the OpenID Connect core specification section
concerning Subject Identifier Types, configure the Subject Types supported map.

• To configure whether AM must return claims in the ID token and how AM maps scopes to claims,
see "OpenID Connect Scopes and Claims".

• To configure the provider for OpenID Connect discovery, see "Configuring AM for OpenID Connect
Discovery".

• To configure the provider to require end users to satisfy different rules when authenticating, see
"Adding Authentication Requirements to ID Tokens".

• To configure the provider as part of a GSMA Mobile Connect deployment, see "Configuring as an
OP for Mobile Connect".

• To register clients or configure dynamic client registration, see "Registering OAuth 2.0 Clients With
the OAuth 2.0 Provider Service" in the OAuth 2.0 Guide.

• To configure the provider to encrypt ID tokens, see "Encrypting OpenID Connect ID Tokens".

• To modify the methods and algorithms available for handling signed or encrypted JWTs in
authorization request parameters, configure the request parameter signing and encryption fields.

Note that the alias mapped to the encryption algorithms are defined in the secret stores, as shown
in the table below:

Secret ID Mappings for Decrypting OpenID Connect Request Parameters

Secret ID Default Alias Algorithms a

am.services.oauth2.oidc.decryption.RSA1.5 test RSA with PKCS#1 v1.5
padding

am.services.oauth2.oidc.decryption.RSA.OAEP test RSA with OAEP with
SHA-1 and MGF-1

am.services.oauth2.oidc.decryption.RSA.OAEP.256 test RSA with OAEP with
SHA-256 and MGF-1

a The following applies to confidential clients only:

If you select an AES algorithm (A128KW, A192KW, or A256KW) or the direct encryption algorithm (dir), the value of the Client
Secret field in the OAuth 2.0 Client is used as the secret instead of an entry from the secret stores.

The following signing and encryption algorithms use the Client Secret field to store the secret:

• Signing ID tokens with an HMAC algorithm

• Encrypting ID tokens with AES or direct encryption

• Encrypting parameters with AES or direct encryption

http://openid.net/specs/openid-connect-core-1_0.html#SubjectIDTypes

Configuring AM for OpenID Connect 1.0
Configuring AM for OpenID Connect Discovery

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 9

Store only one secret in the Client Secret field; AM will use different mechanisms to sign and encrypt depending on the
algorithm, as explained in the OpenID Connect Core 1.0 errata set 1 specification.

By default, secret IDs are mapped to demo keys contained in the default keystore provided with
AM and mapped to the default-keystore keystore secret store. Use these keys for demo and test
purposes only. For production environments, replace the secrets as required and create mappings
for them in a secret store configured in AM.

For more information about managing secret stores and mapping secret IDs to aliases, see
"Configuring Secrets, Certificates, and Keys" in the Setup and Maintenance Guide.

For more information about request parameters, see Passing Request Parameters as JWTs in the
OpenID Connect Core 1.0 incorporating errata set 1 specification.

Configuring AM for OpenID Connect Discovery
In order to allow relying parties to discover the OpenID Connect Provider for an end user, AM
supports OpenID Connect Discovery 1.0. In addition to discovering the OpenID Provider for an end
user, the relying party can also request the OpenID Provider configuration.

AM exposes REST endpoints for discovering information about the provider configuration, and about
the provider for a given end user.

The following REST endpoints are available:

• /oauth2/.well-known/openid-configuration allows clients to retrieve OpenID Provider configuration by
HTTP GET as specified by OpenID Connect Discovery 1.0.

When the OpenID Connect provider is configured in a subrealm, relying parties can get the
configuration by passing in the full path to the realm in the URL. For example, if the OpenID
Connect provider is configured in a subrealm named subrealm1, which is a child of the top-level
realm, the URL would resemble the following: https://openam.example.com:8443/openam/oauth2/realms/
root/realms/subrealm1/.well-known/openid-configuration.

• /.well-known/webfinger lets clients determine the provider URL for an end user, as described in the
OpenID Connect Discovery 1.0 incorporating errata set 1 specification.

The endpoint is disabled by default. To enable it, perform the following steps:

1. Go to Realms > Realm Name > Services > OAuth2 Provider > OpenID Connect.

2. Enable OIDC Provider Discovery.

3. Save your changes.

The discovery endpoint only allows searches for users within the realm where it is enabled.
Repeat this procedure in as many realms as necessary.

https://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-core-1_0.html#JWTRequests
https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-discovery-1_0.html

Configuring AM for OpenID Connect 1.0
Configuring AM for OpenID Connect Discovery

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 10

Note

AM supports a provider service that allows the realm to have a configured option for obtaining the base URL
(including protocol) for components that need to return a URL to the client. This service is used to provide the
URL base that is used in the .well-known endpoints used in OpenID Connect 1.0 and UMA.

For more information, see "Configuring the Base URL Source Service".

A relying party needs to be able to discover the OpenID Connect provider for an end user. In this case
you should consider redirecting requests to URIs at the server root, such as http://www.example.com/
.well-known/webfinger and http://www.example.com/.well-known/openid-configuration, to these Well-Known
URIs in AM's space.

Discovery relies on WebFinger, a protocol to discover information about people and other entities
using standard HTTP methods. WebFinger uses Well-Known URIs, which defines the path prefix /.
well-known/ for the URLs defined by OpenID Connect Discovery.

Unless you deploy AM in the root context of a container listening on port 80 on the primary host for
your domain, relying parties need to find the right host:port/deployment-uri combination to locate the
well-known endpoints. Therefore you must manage the redirection to AM. If you are using WebFinger
for something else than OpenID Connect Discovery, then you probably also need proxy logic to route
the requests.

OpenID Connect Discovery requires an OAuth 2.0 provider service to be configured within AM.
The service must have openid as a supported scope in order to use the /oauth2/.well-known/openid-
configuration endpoint. For information on configuring an OAuth 2.0 provider service for OpenID
Connect in AM, see "Configuring AM as an OpenID Connect Provider".

To retrieve the OpenID Connect provider for an end user, the relying party needs the following:

realm

Specifies the AM realm that must be queried for user information. Unlike other AM endpoints, the
discovery endpoint does not support specifying the realm in the path, because it is always located
after the deployment URI. For example, https://openam.example.com:8443/openam/.well-known/webfinger.

Required: No.

resource

Identifies the URL-encoded subject of the request. This parameter can take the following formats,
as defined in the specification:

• acct:user_email. For example, acct%3Ademo%40example.com.

• acct:user_email@host. For example, acct%3Ademo%2540example.com%40server.example.com

• http_or_https://host/username. For example, http%3A%2F%2Fserver.example.com%2Fdemo.

https://datatracker.ietf.org/doc/html/draft-ietf-appsawg-webfinger
https://www.rfc-editor.org/info/rfc5785

Configuring AM for OpenID Connect 1.0
Configuring AM for OpenID Connect Discovery

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 11

• http_or_https://host:port. For example, http%3A%2F%2Fserver.example.com%3A8080.

The value of host is related to the discovery URL exposed to the clients. In the examples, the
exposed discovery endpoint would be something similar to http://server.example.com/.well-known/
webfinger. For more information about exposing the endpoint through a proxy or load balancer,
see "Configuring AM for OpenID Connect Discovery".

Wildcard (*) characters are not supported.

Required: Yes.

rel

Specifies the URL-encoded URI identifying the type of service whose location is requested. The
only valid value is http://openid.net/specs/connect/1.0/issuer.

Required: Yes.

The following command requests information for the demo user in the example.com domain to the OAuth
2.0 provider service in the Engineering realm:
$ curl \
--request GET \
"https://openam.example.com:8443/openam/.well-known/webfinger\
?resource=acct%3Ademo%40example.com\
&realm=Engineering\
&rel=http%3A%2F%2Fopenid.net%2Fspecs%2Fconnect%2F1.0%2Fissuer"
{
 "subject": "acct:demo@example.com",
 "links": [
 {
 "rel": "http://openid.net/specs/connect/1.0/issuer",
 "href": "https://openam.example.com:8443/openam/oauth2"
 }
]

}

This example shows that the OpenID Connect provider for the AM demo user is indeed the AM
server.

The relying party can also discover the OpenID Connect provider configuration. If you have not set up
the redirection to the root of the domain yet, you can test this with the following curl command:

Configuring AM for OpenID Connect 1.0
Configuring the Base URL Source Service

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 12

$ curl "https://openam.example.com:8443/openam/oauth2/.well-known/openid-configuration"
{
 "request_parameter_supported":true,
 "claims_parameter_supported":false,
 "introspection_endpoint":"https://openam.example.com:8443/openam/oauth2/introspect",
 "check_session_iframe":"https://openam.example.com:8443/openam/oauth2/connect/checkSession",
 "scopes_supported":[
 "address",
 "phone",
 "openid",
 "profile",
 "email"
],
 "userinfo_endpoint":"https://openam.example.com:8443/openam/oauth2/userinfo",
 "jwks_uri":"https://openam.example.com:8443/openam/oauth2/connect/jwk_uri",
 "registration_endpoint":"https://openam.example.com:8443/openam/oauth2/register",

}

When the OpenID Connect provider is configured in a subrealm, then relying parties can get the
configuration by passing in the realm in the URL.

When making a REST API call, specify the realm in the path component of the endpoint. You must
specify the entire hierarchy of the realm, starting at the top-level realm. Prefix each realm in the
hierarchy with the realms/ keyword. For example /realms/root/realms/customers/realms/europe.

For example, if the OpenID Connect provider is configured in a subrealm named subrealm1 which is
a child of the top-level realm, the URL would resemble the following: https://openam.example.com:8443/
openam/oauth2/realms/root/realms/subrealm1/.well-known/openid-configuration.

Configuring the Base URL Source Service
In many deployments, AM determines the base URL of a provider using the incoming HTTP request.
However, there are often cases when the base URL of a provider cannot be determined from the
incoming request alone, especially if the provider is behind some proxying application. For example,
if an AM instance is part of a site where the external connection is over SSL but the request to the
AM instance is over plain HTTP, then AM would have difficulty in reconstructing the base URL of the
provider.

In these cases, AM supports a provider service that allows a realm to have a configured option for
obtaining the base URL including protocol for components that need to return a URL to the client.

To Configure the Base URL Source Service

1. Log in to the AM console as an administrative user, such as amAdmin, and then navigate to Realms
> Realm Name > Services.

2. Click Add a Service, select Base URL Source, and then click Create, leaving the fields empty.

3. For Base URL Source, select one of the following options:

Configuring AM for OpenID Connect 1.0
Registering OpenID Connect Relying Parties

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 13

Base URL Source Options

Option Description
Extension class Click the Extension class to return a base URL from a provided

HttpServletRequest object. In the Extension class name field,
enter org.forgerock.openam.services.baseurl.BaseURLProvider.

Fixed value Click Fixed value to enter a specific base URL value. In the
Fixed value base URL field, enter the base URL.

Forwarded header Click Forwarded header to retrieve the base URL from the
Forwarded header field in the HTTP request. The Forwarded
HTTP header field is standardized and specified in RFC 7239.

Host/protocol from incoming request
(default)

Click Host/protocol from incoming request to get the
hostname, server name, and port from the HTTP request.

X-Forwarded-* headers Click X-Forwarded-* headers to use non-standard header
fields, such as X-Forwarded-For, X-Forwarded-By, and X-
Forwarded-Proto.

4. In the Context path, enter the context path for the base URL. If provided, the base URL includes
the deployment context path appended to the calculated URL. For example, /openam.

5. Click Finish to save your configuration.

Registering OpenID Connect Relying Parties
OpenID Connect relying parties can register with AM both statically through an OAuth 2.0 client
profile created with the AM console, and also dynamically using OpenID Connect 1.0 Dynamic
Registration.

For information about registering clients with AM and dynamic client registration, see "Registering
OAuth 2.0 Clients With the OAuth 2.0 Provider Service" in the OAuth 2.0 Guide.

Tip

For an example OpenID Connect client written in JavaScript, see the OpenID Connect examples.

Configuring for GSMA Mobile Connect
GSMA Mobile Connect is an application of OpenID Connect (OIDC). Mobile Connect builds on OIDC
to facilitate use of mobile phones as authentication devices independently of the service provided
and independently of the device used to consume the service. Mobile Connect thus offers a standard
way for Mobile Network Operators to act as general-purpose identity providers, providing a range of
levels of assurance and profile data to Mobile Connect-compliant Service Providers.

https://www.rfc-editor.org/info/rfc7239
https://stash.forgerock.org/projects/COM/repos/openid/browse
http://www.gsma.com/personaldata/mobile-connect

Configuring AM for OpenID Connect 1.0
Configuring for GSMA Mobile Connect

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 14

This section includes an overview, as well as the following:

• "Authorization Request Parameters"

• "ID Token Properties"

• "Configuring as an OP for Mobile Connect"

In a Mobile Connect deployment, AM can play the OpenID Provider role, implementing the Mobile
Connect Profile as part of the Service Provider - Identity Gateway interface.

AM can also play the Authenticator role as part of the Identity Gateway - Authenticators interface.
In this role, AM serves to authenticate users at the appropriate Level of Assurance (LoA). In Mobile
Connect, LoAs represent the authentication level achieved. A Service Provider can request LoAs
without regard to the implementation, and the Identity Gateway includes a claim in the ID Token that
indicates the LoA achieved.

In AM, Mobile Connect LoAs map to an authentication mechanism. Service Providers acting as
OpenID Relying Parties (RP) request an LoA by using the acr_values field in an OIDC authentication
request. In OIDC, acr_values specifies Authentication Context Class Reference values. The RP sets
acr_values as part of the OIDC Authentication Request. AM returns the corresponding acr claim in the
Authentication Response as the value of the ID Token acr field.

AM as OP supports LoAs 1 (low - little or no confidence), 2 (medium - some confidence, as in single-
factor authentication), and 3 (high - high confidence, as in multi-factor authentication), though out of
the box it does not include support for 4, which involves digital signatures.

As Mobile Connect OP, AM supports mandatory request parameters, and a number of optional
request parameters:

Authorization Request Parameters

Request Parameter Support Description
response_type Supported OAuth 2.0 grant type to use. Set this to code for the

authorization grant.
client_id Supported Set this to the client identifier.
scope Supported Space delimited OAuth 2.0 scope values.

Required: openid

Optional: profile, email, address, phone, offline_access
redirect_uri Supported OAuth 2.0 URI where the authorization request

callback should go. Must match the redirect_uri in the
client profile that you registered with AM.

state Supported Value to maintain state between the request and the
callback. Required for Mobile Connect.

Configuring AM for OpenID Connect 1.0
Configuring for GSMA Mobile Connect

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 15

Request Parameter Support Description
nonce Supported String value to associate the client session with the

ID Token. Optional in OIDC, but required for Mobile
Connect.

display Supported String value to specify the user interface display.
login_hint Supported String value that can be set to the ID the user uses

to log in. For example, Bob or bob@example.com,
depending on how the authentication node or module
is configured to search for users.

When provided as part of the OIDC Authentication
Request, the login_hint is set as the value of a cookie
named oidcLoginHint, which is an HttpOnly cookie
(only sent over HTTPS).

acr_values Supported Authentication Context Class Reference values used to
communicate acceptable LoAs that users must satisfy
when authenticating to the OpenID provider.

For more information, see "The Authentication Context
Class Reference (acr) Claim".

dtbs Not supported Data To Be Signed

At present AM does not support LoA 4.

As Mobile Connect OP, AM responds to a successful authorization request with a response containing
all the required fields, and also the optional expires_in field. AM supports the mandatory ID Token
properties, though the relying party is expected to use the expires_in value, rather than specifying max_
age as a request parameter:

ID Token Properties

Request Parameter Support Description
iss Supported Issuer identifier
sub Supported Subject identifier

By default AM returns the identifier from the user
profile.

aud Supported Audience, an array including the token endpoint URL.
exp Supported Expiration time in seconds since the epoch.
iat Supported Issued at time in seconds since the epoch.
nonce Supported The nonce supplied in the request.
at_hash Supported. Base64url-encoding of the SHA-256 hash of the

"access_token" value.
acr Supported Authentication Context Class Reference for the LoA

achieved.

Configuring AM for OpenID Connect 1.0
Configuring for GSMA Mobile Connect

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 16

Request Parameter Support Description
For more information, see "The Authentication Context
Class Reference (acr) Claim".

amr Supported Authentication Methods Reference to indicate the
authentication method.

AM maps these to authentication modules.

Suggested values include the following: OK, DEV_PIN,
 SIM_PIN, UID_PWD, BIOM, HDR, OTP.

For more information, see "The Authentication Method
Reference (amr) Claim".

azp Supported Authorized party identifier, which is the client_id.

In addition to the standard OIDC user information returned with userinfo, AM as OP for Mobile
Connect returns the updated_at property, representing the time last updated as seconds since the
epoch.

Configuring as an OP for Mobile Connect

You configure AM as an OpenID Connect provider for Mobile Connect by changing the OAuth2
Provider configuration.

Follow the steps in this procedure to set up the OAuth2 provider service with Mobile Connect
defaults by using the Configure OAuth Provider wizard.

When you create the OAuth2 provider service with the Configure OAuth Provider wizard, the wizard
also creates a standard policy in the Top Level Realm (/) to protect the authorization endpoint. In
this configuration, AM serves the resources to protect, and no separate application is involved. AM
therefore acts both as the policy decision point and policy enforcement point that protects the OAuth
2.0 authorization endpoint used by OpenID Connect.

There is no requirement to use the wizard or to create the policy in the Top Level Realm. However,
if you create the OAuth 2.0 provider service without the wizard, then you must set up the policy
independently as well. The policy must appear in a policy set of type iPlanetAMWebAgentService. When
configuring the policy, allow all authenticated users to perform HTTP GET and POST requests
on the authorization endpoint. The authorization endpoint is described in "OAuth 2.0 Endpoints"
in the OAuth 2.0 Guide. For details on creating policies, see "Implementing Authorization" in the
Authorization Guide.

1. In the AM console, select Realms > Realm Name > Dashboard > Configure OAuth Provider >
Configure Mobile Connect.

2. On the Configure Mobile Connect page, select the Realm for the provider service.

3. (Optional) If necessary, adjust the lifetimes for authorization codes, access tokens, and refresh
tokens.

Configuring AM for OpenID Connect 1.0
Configuring for GSMA Mobile Connect

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 17

4. (Optional) Select Issue Refresh Tokens unless you do not want the authorization service to supply
a refresh token when returning an access token.

5. (Optional) Select Issue Refresh Tokens on Refreshing Access Tokens if you want the authorization
service to supply a refresh token when refreshing an access token.

6. (Optional) If you have a custom scope validator implementation, put it on the AM classpath,
for example /path/to/tomcat/webapps/openam/WEB-INF/lib/, and specify the class name in the Scope
Implementation Class field. For an example, see "Customizing OAuth 2.0 Scope Handling" in the
OAuth 2.0 Guide.

7. Click Create to save your changes.

AM creates an OAuth2 provider service with Mobile Connect default parameter values, as well as
a policy to protect the OAuth2 authorization endpoints.

Warning

If an OAuth2 provider service already exists, it will be overwritten with the new Mobile Connect parameter
values.

8. To access the provider service configuration in the AM console, browse to Realms > Realm Name
> Services > OAuth2 Provider.

For Mobile Connect providers you may want to configure the following settings:

a. Configure the following OpenID Connect authentication context settings for AM to return acr
and amr claims in the ID tokens:

• OpenID Connect acr_values to Auth Chain Mapping

• Default ACR values

• OpenID Connect id_token amr Values to Auth Module Mappings

For more information, see "Adding Authentication Requirements to ID Tokens".

b. Configure the identity Data Store attributes used to return updated_at values in the ID Token.

For Mobile Connect clients, the user info endpoint returns updated_at values in the ID Token. If
the user profile has never been updated updated_at reflects creation time.

The updated_at values are read from the profile attributes you specify. When using DS as an
identity data store, the value is read from the modifyTimestamp attribute, or the createTimestamp
attribute for a profile that has never been modified.

In addition, you must also add these attributes to the list of LDAP User Attributes for the
identity store. Otherwise, the attributes are not returned when AM reads the user profile. To

Configuring AM for OpenID Connect 1.0
Encrypting OpenID Connect ID Tokens

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 18

edit the list in the AM console, browse to Realms > Realm Name > Identity Stores > Identity
Store Name > User Configuration > LDAP User Attributes.

9. Click Save to complete the process.

A simple, non-secure GSMA Mobile Connect relying party example is available online.

Encrypting OpenID Connect ID Tokens
AM supports encrypting OpenID Connect ID tokens to protect them against tampering attacks, which
is outlined in the JSON Web Encryption specification (RFC 7516).

To Configure OpenID Connect ID Token Encryption

Perform the following steps to enable and configure ID token encryption:

1. Navigate to Realms > Realm Name > Applications > OAuth 2.0 > Client Name.

2. On the Signing and Encryption tab, select Enable ID Token Encryption.

3. In the Id Token Encryption Algorithm field, enter the algorithm AM will use to encrypt ID tokens.

AM supports the following encryption algorithms:

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• RSA1_5 - RSA with PKCS#1 v1.5 padding (not recommended).

• dir - Direct encryption with AES using the hashed client secret.

• ECDH-ES - Elliptic Curve Diffie-Hellman

• ECDH-ES+A128KW - Elliptic Curve Diffie-Hellman + AES Key Wrapping with 128-bit key.

• ECDH-ES+A192KW - Elliptic Curve Diffie-Hellman + AES Key Wrapping with 192-bit key.

• ECDH-ES+A256KW - Elliptic Curve Diffie-Hellman + AES Key Wrapping with 256-bit key.

Only the P-256, P-384, and P-521 curves are supported.

4. In the ID Token Encryption Method field, enter the method AM will use to encrypt ID tokens.

https://stash.forgerock.org/projects/COM/repos/openid/browse
https://www.rfc-editor.org/info/rfc7516

Configuring AM for OpenID Connect 1.0
Encrypting OpenID Connect ID Tokens

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 19

AM supports the following encryption methods:

• A128CBC-HS256 - AES 128-bit in CBC mode using HMAC-SHA-256-128 hash (HS256 truncated to
128 bits)

• A192CBC-HS384 - AES 192-bit in CBC mode using HMAC-SHA-384-192 hash (HS384 truncated to
192 bits)

• A256CBC-HS512 - AES 256-bit in CBC mode using HMAC-SHA-512-256 hash (HS512 truncated to
256 bits)

• A128GCM - AES 128-bit in GCM mode

• A192GCM - AES 192-bit in GCM mode

• A256GCM - AES 256-bit in GCM mode

5. (Optional) If you selected an RSA encryption algorithm, perform one of the following actions:

• Enter the public key in the Client ID Token Public Encryption Key field.

• Enter a JWK set in the Json Web Key field.

• Enter a URI containing the public key in the Json Web Key URI field.

6. (Optional) If you selected an ECDH-ES encryption algorithm, perform one of the following
actions:

• Enter a JWK set in the Json Web Key field.

• Enter a URI containing the public key in the Json Web Key URI field.

7. (Optional) If you selected an algorithm different from RSA or ECDH-ES, navigate to the Core tab
and store the private key/secret in the Client Secret field.

Caution

Several features of OAuth 2.0 use the string stored in the Client Secret field to sign/encrypt tokens
or parameters when you configure specific algorithms. For example, signing ID tokens with HMAC
algorithms, encrypting ID tokens with AES or direct algorithms, or encrypting OpenID Connect parameters
with AES or direct algorithms.

In this case, these features must share the key/secret stored in the Client Secret field and you must ensure
that they are configured with the same algorithm.

OpenID Connect Scopes and Claims

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 20

Chapter 3

OpenID Connect Scopes and Claims
When AM is configured as an OAuth 2.0 provider, a scope is a concept. For example, Facebook has
an OAuth 2.0 scope named read_stream. AM returns allowed scopes in the access token, but it does not
associate any data with them.

When AM is configured as an OpenID Connect provider, scopes can relate to data in a user profile
by making use of one or more claims. Each claim maps directly to an attribute in the user profile. As
each claim represents a piece of information from the user profile, AM displays the actual data the
relying party will receive if the end user consents to sharing it:

OpenID Connect Consent Page

For more information about how AM maps scopes to claims and profile data, see "Scripting OpenID
Connect 1.0 Claims".

For more information about how to request claims inside the ID tokens, see "Requesting Claims in ID
Tokens".

OpenID Connect Scopes and Claims
Requesting Claims in ID Tokens

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 21

For more information about scopes and how to configure their appearance in the OAuth 2.0 consent
pages, see "AM and OAuth 2.0 Scopes" in the OAuth 2.0 Guide.

Tip

To change how claims appear in the OAuth 2.0 consent pages, configure the Supported Claims field (Realms >
Realm Name > Services > OAuth2 Provider > OpenID Connect).

Claims may be entered as simple strings or pipe-separated strings representing the internal claim name, locale,
and localized description. For example: name|en|Your full name.

If the description is omitted, the claim is not displayed in the consent page. This may be useful when the client
requires claims that are not meaningful for the end user.

Requesting Claims in ID Tokens
The key-value pairs contained within an ID token are called claims. Section 2 of the OpenID Connect
specification lists the required and optional claims used by all OpenID Connect flows.

Alongside those claims, ID tokens can contain claims that are mapped to scopes, as seen in "OpenID
Connect Scopes and Claims". By default, AM does not return scope-derived claims in the ID token and
clients must retrieve them from the /oauth2/userinfo endpoint.

However, sometimes you may need the provider to return some of those claims in the ID token. For
example, claims related to authentication conditions or rules the end user needs to satisfy before
being redirected to particular resources.

You can configure AM to either return all scope-derived claims in the ID token, or just the ones
specified in the request:

• To configure the provider to always return scope-derived claims in the ID token, enable Always
Return Claims in ID Tokens (Realms > Realm Name > Services > OAuth2 Provider > Advanced
OpenID Connect).

This option is disabled by default because of the security concerns of returning claims that may
contain sensitive user information.

• To request that the provider only includes certain scope-derived claims in the ID token, enable
"claims_parameter_supported" (Realms > Realm Name > Services > OAuth2 Provider > Advanced
OpenID Connect) and request said claims in the claims parameter.

Clients can still retrieve additional claims from the /oauth2/userinfo endpoint.

Claims specified using the claims parameter can be voluntary or essential:

• Essential. The relying party specifies a number of claims that are necessary to ensure a good
experience to the end user.

http://openid.net/specs/openid-connect-core-1_0.html#IDToken

OpenID Connect Scopes and Claims
Scripting OpenID Connect 1.0 Claims

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 22

For example, to provide personalized services, the relying party may require the end user's phone
number to send them an SMS.

• Voluntary. The relying party specifies a number of claims that are useful but not required to
provide services to the end user.

For more information, see section 5.5 of the OpenID Connect specification.

For an example on requesting voluntary and essential claims, see "Requesting acr Claims Example".

Note

In section 5.6 of the specification, AM supports Normal Claims. The optional Aggregated Claims and
Distributed Claims representations are not supported by AM.

Scripting OpenID Connect 1.0 Claims
You can configure how AM maps scopes to claims and data by using a script configured in the OAuth
2.0 provider. AM provides a default script that maps the following claims to the profile scope:

OpenID Connect Scope Default Claim Mappings

Claim User profile attribute
given_name givenname

zoneinfo preferredtimezone

family_name sn

locale preferredlocale

name cn

Tip

See the script in action by trying any of the OpenID Connect grant flows explained in "Implementing OpenID
Connect Grant Flows".

The script is configured in the OAuth 2.0 provider. To configure a different script of the type OIDC
 Claims, navigate to Realms > Realm Name > Services > OAuth 2.0 Provider > OpenID Connect, and
then select it in the OIDC Claims Script drop-down menu.

To examine the contents of the default OIDC claims script, navigate to Realms > Realm Name >
Scripts, and then select the OIDC Claims Script.

For general information about scripting in AM, see "About Scripting".

http://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter

OpenID Connect Scopes and Claims
OpenID Connect 1.0 Claims API Functionality

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 23

For information about APIs available for use when scripting OpenID Connect 1.0 claims, see the
following:

• "Global Scripting API Functionality"

• "OpenID Connect 1.0 Claims API Functionality"

OpenID Connect 1.0 Claims API Functionality
This section covers functionality available when scripting OIDC claim handling using the OIDC claims
script context type.

Server-side scripts can access the OpenID Connect request through the following objects:

claims

Contains a map of the claims the server provides by default. For example:
{
 "sub": "248289761001",
 "updated_at": "1450368765"
 }

clientProperties

A map of properties configured in the relevant client profile. Only present if the client was
correctly identified.

The keys in the map are as follows:

clientId

The URI of the client.

allowedGrantTypes

The list of the allowed grant types (org.forgerock.oauth2.core.GrantType) for the client.

allowedResponseTypes

The list of the allowed response types for the client.

allowedScopes

The list of the allowed scopes for the client.

customProperties

A map of any custom properties added to the client.

Lists or maps are included as sub-maps. For example, a custom property of
customMap[Key1]=Value1 is returned as customMap > Key1 > Value1.

OpenID Connect Scopes and Claims
OpenID Connect 1.0 Claims API Functionality

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 24

To add custom properties to a client, go to OAuth 2.0 > Clients > Client ID > Advanced, and
then update the Custom Properties field.

identity

Contains a representation of the identity of the resource owner.

For more details, see the com.sun.identity.idm.AMIdentity class in the ForgeRock Access
Management Javadoc.

requestedClaims

Contains requested claims if the claims query parameter is used in the request, and Enable
"claims_parameter_supported" is checked in the OAuth 2.0 provider service configuration;
otherwise, this property is empty.

For more information see "Requesting Claims using the "claims" Request Parameter" in the
OpenID Connect Core 1.0 specification.

Example:
{
 "given_name": {
 "essential": true,
 "values": [
 "Demo User",
 "D User"
]
 },
 "nickname": null,
 "email": {
 "essential": true
 }
 }

requestProperties

A map of the properties present in the request. Always present.

The keys in the map are as follows:

requestUri

The URI of the request.

realm

The realm to which the request was made.

requestParams

The request parameters, and/or posted data. Each value in this map is a list of one, or more,
properties.

../apidocscom/sun/identity/idm/AMIdentity.html
../apidocscom/sun/identity/idm/AMIdentity.html
https://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter

OpenID Connect Scopes and Claims
OpenID Connect 1.0 Claims API Functionality

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 25

Important

To mitigate the risk of reflection type attacks, use OWASP best practices when handling these
properties. For example, see Unsafe use of Reflection.

scopes

Contains a set of the requested scopes. For example:
[
 "profile",
 "openid"
]

scriptName

The display name of the script. Always present.

session

Contains a representation of the user's session object if the request contained a session cookie.

For more details, see the com.iplanet.sso.SSOToken class in the ForgeRock Access Management
Javadoc.

https://owasp.org/www-community/vulnerabilities/Unsafe_use_of_Reflection
../apidocscom/iplanet/sso/SSOToken.html
../apidocscom/iplanet/sso/SSOToken.html

Implementing OpenID Connect Grant Flows

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 26

Chapter 4

Implementing OpenID Connect Grant Flows
This chapter describes the OpenID Connect flows that AM supports as per OpenID Connect Core
1.0 incorporating errata set 1, and also provides the information required to implement them. All the
examples assume the realm is configured for CTS-based tokens, but the examples also apply to client-
based tokens.

You should decide which flow is best for your environment based on the application that would be the
relying party. The following table provides an overview of the flows AM supports when they should be
used:

Deciding Which Flow to Use Depending on the Relying Party

Relying Party Which Grant to
use?

Description

The relying party is a web
application running on a server.
For example, a .war application.

Authorization
Code

The OpenID Connect provider uses the user-agent,
for example, the end user's browser, to transport a
code that is later exchanged for an ID token (and/or an
access token).

For security purposes, you should use the
Authorization Code grant with PKCE when possible.

The relying party is a native
application or a single-page
application (SPA). For example, a
desktop, a mobile application, or a
JavaScript application.

Authorization
Code with
PKCE

Since the relying party does not communicate securely
with the OpenID Connect provider, the code may be
intercepted by malicious users. The implementation
of the Proof Key for Code Exchange (PKCE) standard
mitigates against those attacks.

The relying party knows the user's
identifier, and wishes to gain
consent for an operation from
the user by means of a separate
authentication device.

Backchannel
Request Grant

The relying party does not require that the user
interacts directly with it; instead it can initiate a
backchannel request to the user's authentication
device, such as a mobile phone with an authenticator
app installed, to authenticate the user and consent to
the operation.

For example, a smart speaker wants to authenticate
and gain consent from its registered user after
receiving a voice request to transfer money to a third-
party.

The relying party is an SPA. For
example, a JavaScript application.

Implicit The OpenID Connect provider uses the user-agent, for
example, the end user's browser, to transport an ID
token (and maybe an access token) to the relying party.

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

Implementing OpenID Connect Grant Flows
Authorization Code Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 27

Relying Party Which Grant to
use?

Description

Therefore, the tokens might be exposed to the end user
and other applications.

For security purposes, you should use the
Authorization Code grant with PKCE when possible.

The relying party is an application
that can use the ID token
immediately, and then request
an access token and/or a refresh
token.

Hybrid AM uses the user-agent, for example, the end user's
browser, to transport any combination of ID token,
access token, and authorization code to the relying
party.

The relying party uses the ID token immediately. Later
on, it can use either the access token to request a
refresh token, or the authorization code to request an
access token.

For security purposes, you should implement the
PKCE specification when using the Hybrid flow when
possible.

Authorization Code Grant
Endpoints

• /oauth2/authorize in the OAuth 2.0 Guide

• /oauth2/access_token in the OAuth 2.0 Guide

• "/oauth2/userinfo"

The Authorization Code grant is a two-step interactive process used when the client, for example, a
Java application running on a server, requires access to protected resources.

The Authorization Code grant is the most secure of all the OAuth 2.0/OpenID Connect grants for the
following reasons:

• It is a two-step process. The user must authenticate and authorize the client to see the resources
and the OpenID provider must validate the code again before issuing the access/ID tokens.

• The OpenID provider delivers the tokens directly to the client, usually over HTTPS. The client
secret is never exposed publicly, which protects confidential clients.

The following diagram demonstrates the Authorization Code grant flow:

Implementing OpenID Connect Grant Flows
Authorization Code Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 28

OpenID Connect Authorization Code Grant Flow

OpenID Provider
(AM)

End User
User-Agent

End User
User-Agent

Relying Party

Relying Party

Authorizat ion
Server

Authorizat ion
Server

UserInfo
Endpoint

UserInfo
Endpoint

1 Prepare authent icat ion request

2 Redirect

3 ...for authent icat ion

4 Authent icate end user and confirm resource access

5 If credent ials are valid, redirect ...

6 ...with authorizat ion code to
redirect_uri

7 Authent icate, request tokens with authorizat ion code

8 If authorizat ion code is valid,
return access and ID tokens

9 Validate ID token and get user subject ID

Opt ional

1 0 Request addit ional claim s with access token

1 1 Return addit ional claim s

The steps in the diagram are described below:

1. The end user wants to use the services provided by the relying party. The relying party, usually a
web-based service, requires an account to provide those services.

The end user issues a request to the relying party to access their information, which is stored in
an OpenID provider.

2. To access the end user's information in the provider, the relying party requires authorization from
the end user. Therefore, the relying party redirects the end user's user-agent...

3. ... to the OpenID provider.

4. The OpenID provider authenticates the end user, confirms resource access, and gathers consent if
not previously saved.

Implementing OpenID Connect Grant Flows
Authorization Code Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 29

5. The OpenID provider redirects the end user's user agent to the relying party.

6. During the redirection process, the OpenID provider appends an authorization code.

7. The relying party receives the authorization code and authenticates to the OpenID provider to
exchange the code for an access token and an ID token (and a refresh token, if applicable).

Note that this example assumes a confidential client. Public clients are not required to
authenticate.

8. If the authorization code is valid, the OpenID provider returns an access token and an ID token
(and a refresh token, if applicable) to the relying party.

9. The relying party validates the ID token and its claims.

Now, the relying party can use the ID token subject ID claim as the end user's identity.

10. The relying party may require more claims than those included in the ID token. In this case, it
makes a request to the OpenID provider's oauth2/userinfo endpoint with the access token.

11. If the access token is valid, the oauth2/userinfo endpoint returns additional claims, if any.

Now, the relying party can use the subject ID and the additional retrieved claims as the end user's
identity.

Perform the steps in the following procedures to obtain an authorization code and exchange it for an
ID token and an access token:

• "To Obtain an Authorization Code Using a Browser in the Authorization Code Grant Flow"

• "To Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant Flow"

• "To Exchange an Authorization Code for an ID/Access Token in the Authorization Code Grant Flow"

To Obtain an Authorization Code Using a Browser in the Authorization Code Grant Flow

This example shows how to obtain an ID token and an access token. It adds notes on how to obtain an
ID token only, as well.

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0/OpenID provider in the top-level realm.

• The code Response Type Plugins is configured.

• The Authorization Code Supported Grant Type is configured.

• A confidential client called myClient is registered in AM with the following configuration:

• Client secret: forgerock

Implementing OpenID Connect Grant Flows
Authorization Code Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 30

• Scopes: openid profile

• Response Types: code

• Grant Types: Authorization Code

• Token Endpoint Authentication Method: client_secret_post

Confidential OpenID Connect clients can use several methods to authenticate. For more
information, see "Authenticating Clients when Using OpenID Connect 1.0" in the OAuth 2.0
Guide.

For more information, see "Registering OpenID Connect Relying Parties".

Perform the steps in this procedure to obtain an authorization code using a browser:

1. The client redirects the end user's user-agent to the authorization server's authorization endpoint
specifying, at least, the following form parameters:

• client_id=your_client_id

• response_type=code

• redirect_uri=your_redirect_uri

• scope=openid profile

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize" in the OAuth 2.0 Guide.

If the OAuth 2.0/OpenID provider is configured for a subrealm rather than the top-level realm,
you must specify it in the endpoint. For example, if the OAuth 2.0/OpenID provider is configured
for the /customers realm, then use /oauth2/realms/root/realms/customers/authorize.

For example:
https://openam.example.com:8443/openam/oauth2/realms/root/authorize \
?client_id=myClient \
&response_type=code \
&scope=openid%20profile \
&state=abc123 \
&nonce=123abc \
&redirect_uri=https://www.example.com:443/callback

Note that the URL is split and spaces have been added for readability purposes. The state and
nonce parameters have been included to protect against CSRF and replay attacks.

2. The end user authenticates to AM, for example, using the credentials of the demo user. In this case,
they log in using the default chain or tree configured for the realm.

After logging in, AM presents its consent screen:

Implementing OpenID Connect Grant Flows
Authorization Code Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 31

OpenID Connect Consent Screen

Note that requesting the profile scope translates into requesting access to several claims. For
more information about the special profile scope, see "OpenID Connect Scopes and Claims".

3. The end user selects the Allow button to grant consent for the profile scope.

AM redirects the end user to the URL specified in the redirect_uri parameter.

4. Inspect the URL in the browser. It contains a code parameter with the authorization code AM has
issued. For example:
https://www.example.com:443/callback?code=g5B3qZ8rWzKIU2xodV_kkSIk0F4&iss=https://
openam.example.com:8443/openam/oauth2&state=abc123&client_id=myClient

5. The client performs the steps in "To Exchange an Authorization Code for an ID/Access Token in
the Authorization Code Grant Flow" to exchange the authorization code for an access token and
an ID token.

To Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant
Flow

This example shows how to obtain an ID token and an access token. It adds notes on how to obtain an
ID token only, as well.

This procedure assumes the following configuration:

Implementing OpenID Connect Grant Flows
Authorization Code Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 32

• AM is configured as an OAuth 2.0/OpenID provider. Ensure that:

• The code Response Type Plugins is configured.

• The Authorization Code Supported Grant Type is configured.

• A confidential client called myClient is registered in AM with the following configuration:

• Client secret: forgerock

• Scopes: openid profile

• Response Types: code

• Grant Types: Authorization Code

• Token Endpoint Authentication Method: client_secret_post

Confidential OpenID Connect clients can use several methods to authenticate. For more
information, see "Authenticating Clients when Using OpenID Connect 1.0" in the OAuth 2.0
Guide.

For more information, see "Registering OpenID Connect Relying Parties".

Perform the steps in this procedure to obtain an authorization code without using a browser:

1. The end user logs in to AM, for example, using the credentials of the demo user. For example:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: changeit" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'
{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console",
 "realm":"/"
}

2. The client makes a POST call to AM's authorization endpoint, specifying the SSO token of the demo
in a cookie and, at least, the following parameters:

• client_id=your_client_id

• response_type=code

• redirect_uri=your_redirect_uri

• scope=openid profile

Implementing OpenID Connect Grant Flows
Authorization Code Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 33

You can configure the openid scope as a default scope in the client profile or the OAuth 2.0/
OpenID provider to avoid including the scope parameter in your calls, if required.

However, since the openid scope is required in OpenID Connect flows, the example specifies it.

• decision=allow

• csrf=demo_user_SSO_token

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize" in the OAuth 2.0 Guide.

If the OAuth 2.0/OpenID provider is configured for a subrealm rather than the top-level realm,
you must specify it in the endpoint. For example, if the OAuth 2.0/OpenID provider is configured
for the /customers realm, then use /oauth2/realms/root/realms/customers/authorize.

For example:
$ curl --dump-header - \
--request POST \
--Cookie "iPlanetDirectoryPro=AQIC5wM...TU3OQ*" \
--data "scope=openid profile" \
--data "response_type=code" \
--data "client_id=myClient" \
--data "csrf=AQIC5wM...TU3OQ*" \
--data "redirect_uri=https://www.example.com:443/callback" \
--data "state=abc123" \
--data "nonce=123abc" \
--data "decision=allow" \
"https://openam.example.com:8443/openam/oauth2/realms/root/authorize"

Note that the state and nonce parameters have been included to protect against CSRF and replay
attacks.

If AM is able to authenticate the user and the client, it returns an HTTP 302 response with the
authorization code appended to the redirection URL:
HTTP/1.1 302 Found
Server: Apache-Coyote/1.1
X-Frame-Options: SAMEORIGIN
Pragma: no-cache
Cache-Control: no-store
Date: Mon, 30 Jul 2018 11:42:37 GMT
Accept-Ranges: bytes
Location: https://www.example.com:443/callback?code=g5B3qZ8rWzKIU2xodV_kkSIk0F4&iss=https%3A%2F
%2Fopenam.example.com%3A8443%2Fopenam%2Foauth2&state=abc123&client_id=myClient
Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept
Content-Length: 0

3. Perform the steps in "To Exchange an Authorization Code for an ID/Access Token in the
Authorization Code Grant Flow" to exchange the authorization code for an ID/access token.

Implementing OpenID Connect Grant Flows
Authorization Code Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 34

To Exchange an Authorization Code for an ID/Access Token in the Authorization Code Grant
Flow

Perform the steps in the following procedure to exchange an authorization code for an ID/access
token:

1. Ensure the relying party has obtained an authorization code by performing the steps in either
"To Obtain an Authorization Code Using a Browser in the Authorization Code Grant Flow" or "To
Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant Flow".

2. The relying party makes an HTTP POST request to the token endpoint in the OpenID provider
specifying, at least, the following parameters:

• grant_type=authorization_code

• code=your_authorization_code

• redirect_uri=your_redirect_uri

For information about the parameters supported by the /oauth2/access_token endpoint, see "/
oauth2/access_token" in the OAuth 2.0 Guide.

Confidential clients can authenticate to the OAuth 2.0 endpoints in several ways. This example
uses the following form parameters:

• client_id=your_client_id

• client_secret=your_client_secret

For more information, see "Authenticating OAuth 2.0 Clients" in the OAuth 2.0 Guide.

If the OAuth 2.0/OpenID provider is configured for a subrealm rather than the top-level realm,
you must specify it in the endpoint. For example, if the OAuth 2.0/OpenID provider is configured
for the /customers realm, then use /oauth2/realms/root/realms/customers/access_token.

For example:
$ curl --request POST \
--data "grant_type=authorization_code" \
--data "code=g5B3qZ8rWzKIU2xodV_kkSIk0F4" \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
--data "redirect_uri=https://www.example.com:443/callback" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

The client_id and the redirection_uri parameters specified in this call must match those used as
part of the authorization code request, or AM will not validate the code.

AM returns an ID and an access token. For example:

Implementing OpenID Connect Grant Flows
Authorization Code Grant with PKCE

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 35

{
 "access_token":"cnM3nSpF5ckCFZOaDem2vANUdqQ",
 "scope":"openid profile",
 "id_token":"eyJ0eXAiOiJKV1QiLCJra...7r8soMCk8A7QdQpg",
 "token_type":"Bearer",
 "expires_in":3599
}

If the client does not require the access token, revoke it in the OAuth 2.0 Guide.

Tip

AM can also issue refresh tokens at the same time the access tokens are issued. For more information, see
"Managing OAuth 2.0 Refresh Tokens" in the OAuth 2.0 Guide.

3. (Optional) The relying party can request additional claims about the end user from AM.

For more information, see "/oauth2/userinfo".

Tip

A sample JavaScript-based relying party to test the Authorization Code grant flow is available online.

Clone the example project to deploy it in the same web container as AM. Edit the configuration at the outset
of the .js files in the project, register a corresponding profile for the example relying party as described in
"Registering OpenID Connect Relying Parties", and browse the deployment URL to see the initial page.

The example relying party uses an authorization code to request an access token and an ID token. It shows
the response to that request. It also validates the ID token signature using the default (HS256) algorithm,
and decodes the ID token to validate its content and show it in the output. Finally, it uses the access token to
request information about the end user who authenticated, and displays the result.

Authorization Code Grant with PKCE
Endpoints

• /oauth2/authorize in the OAuth 2.0 Guide

• /oauth2/access_token in the OAuth 2.0 Guide

• "/oauth2/userinfo"

The Authorization Code grant, when combined with the PKCE standard (RFC 7636), is used when the
client, usually a mobile or a JavaScript application, requires access to protected resources.

The flow is similar to the regular Authorization Code grant type, but the client must generate a
code that will be part of the communication between the client and the OpenID provider. This code
mitigates against interception attacks performed by malicious users.

https://stash.forgerock.org/projects/COM/repos/openid/browse
https://www.rfc-editor.org/info/rfc7636

Implementing OpenID Connect Grant Flows
Authorization Code Grant with PKCE

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 36

Since communication between the client and the OpenID provider is not secure, clients are usually
public so their secrets do not get compromised. Also, browser-based clients making OAuth 2.0
requests to different domains must implement Cross-Origin Resource Sharing (CORS) calls to access
OAuth 2.0 resources in different domains.

The PKCE flow adds three parameters on top of those used for the Authorization code grant:

• code_verifier (form parameter). Contains a random string that correlates the authorization request
to the token request.

• code_challenge (query parameter). Contains a string derived from the code verifier that is sent in
the authorization request and that needs to be verified later with the code verifier.

• code_challenge_method (query parameter). Contains the method used to derive the code challenge.

The following diagram demonstrates the Authorization Code grant with PKCE flow:

Implementing OpenID Connect Grant Flows
Authorization Code Grant with PKCE

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 37

OpenID Connect Authorization Code Grant with PKCE Flow
OpenID Provider

(AM)

End User
User-Agent

End User
User-Agent

Relying Party

Relying Party

Authorizat ion
Server

Authorizat ion
Server

UserInfo
Endpoint

UserInfo
Endpoint

1 Prepare authent icat ion request

2 Create code challenge and code verfier

3 Redirect

4 ...for authent icat ion

5 Authent icate end user and confirm resource access

6
If credent ials are valid
store code_challenge

and code_challenge_m ethod

7 Redirect ...

8 ...with authorizat ion code to
redirect_uri

9 Request tokens with authorizat ion code and code_verifier

1 0 Verify code_challenge
and authorizat ion_code

1 1 Return access and ID tokens

1 2 Validate ID token and get user subject ID

Opt ional

1 3 Request addit ional claim s with access token

1 4 Return addit ional claim s

The steps in the diagram are described below:

1. The end user wants to use the services provided by the relying party. The relying party, usually a
web-based service, requires an account to provide those services.

The end user issues a request to the relying party to access their information which is stored in an
OpenID provider.

2. To access the end user's information in the provider, the relying party requires authorization from
the end user. When using the PKCE standard, the relying party must generate a unique code and
a way to verify it, and append the code to the request for the authorization code.

Implementing OpenID Connect Grant Flows
Authorization Code Grant with PKCE

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 38

3. The relying party redirects the end user's user-agent with code_challenge and code_challenge_method...

4. ... to the OpenID provider.

5. The OpenID provider authenticates the end user, confirms resource access, and gathers consent if
not previously saved.

6. If the end user's credentials are valid and they consent to provide their data to the relying party,
the OpenID provider stores the code challenge and its method.

7. The OpenID provider redirects the end user's user agent to the redirection URI (usually the
relying party).

8. During the redirection process, the OpenID provider appends an authorization code.

9. The relying party receives the authorization code and authenticates to the OpenID provider
to exchange the code for an access token and an ID token (and a refresh token, if applicable),
appending the verification code to the request.

10. The OpenID provider verifies the code challenge stored in memory using the validation code. It
also verifies the authorization code.

11. If both codes are valid, the OpenID provider returns an access and an ID token (and arefresh
token, if applicable) to the relying party.

12. The relying party validates the ID token and its claims.

Now, the relying party can use the ID token subject ID claim as the end user's identity.

13. The relying party may require more claims than those included in the ID token. In this case, it
makes a request to AM's oauth2/userinfo endpoint with the access token.

14. If the access token is valid, the oauth2/userinfo endpoint returns additional claims, if any.

Now, the relying party can use the subject ID and the additional retrieved claims as the end user's
identity.

Perform the steps in the following procedures to obtain an authorization code and exchange it for an
access token:

• "To Generate a Code Verifier and a Code Challenge"

• "To Obtain an Authorization Code Using a Browser in the Authorization Code Grant with PKCE
Flow"

• "To Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant with
PKCE Flow"

• "To Exchange an Authorization Code for an ID/Access Token in the Authorization Code Grant with
PKCE Flow"

Implementing OpenID Connect Grant Flows
Authorization Code Grant with PKCE

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 39

To Generate a Code Verifier and a Code Challenge

The relying party (the client) must be able to generate a code verifier and a code challenge. For
details, see the PKCE standard (RFC 7636). The information contained in this procedure is for
example purposes only:

1. The client generates the code challenge and the code verifier. Creating the challenge using a
SHA-256 algorithm is mandatory if the client supports it, as per the RFC 7636 standard.

The following is an example of a code verifier and code challenge written in JavaScript:
function base64URLEncode(words) {
 return CryptoJS.enc.Base64.stringify(words)
 .replace(/\+/g, '-')
 .replace(/\//g, '_')
 .replace(/=/g, '');
}
var verifier = base64URLEncode(CryptoJS.lib.WordArray.random(50));
var challenge = base64URLEncode(CryptoJS.SHA256(verifier));

This example generates values such as ZpJiIM_G0SE9WlxzS69Cq0mQh8uyFaeEbILlW8tHs62SmEE6n7Nke0XJGx_
F4OduTI4 for the code verifier and j3wKnK2Fa_mc2tgdqa6GtUfCYjdWSA5S23JKTTtPF8Y for the code challenge.
These values will be used in subsequent procedures.

The relying party is now ready to request an authorization code.

2. The relying party performs the steps in one of the following procedures to request an
authorization code:

• "To Obtain an Authorization Code Using a Browser in the Authorization Code Grant with PKCE
Flow"

• "To Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant
with PKCE Flow"

To Obtain an Authorization Code Using a Browser in the Authorization Code Grant with PKCE
Flow

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0/OpenID provider. Ensure that:

• The code Response Type Plugins is configured.

• The Authorization Code Supported Grant Type is configured.

The Code Verifier Parameter Required drop-down menu (Realms > Realm Name > Services >
OAuth2 Provider > Advanced) specifies whether AM requires clients to include a code verifier in
their calls.

https://www.rfc-editor.org/info/rfc7636

Implementing OpenID Connect Grant Flows
Authorization Code Grant with PKCE

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 40

However, if a client makes a call to AM with the code_challenge parameter, AM will honor the code
exchange regardless of the configuration of the Code Verifier Parameter Required drop-down
menu.

• A public client called myClient is registered in AM with the following configuration:

• Scopes: openid profile

• Response Types: code

• Grant Types: Authorization Code

• Token Endpoint Authentication Method: none

If you were using a confidential OpenID Connect client, you must specify a method to
authenticate. For more information, see "Authenticating Clients when Using OpenID Connect 1.0"
in the OAuth 2.0 Guide.

For more information, see "Registering OpenID Connect Relying Parties".

Perform the steps in this procedure to obtain an authorization code using a browser:

1. The relying party redirects the end user's user-agent to the AM's authorization endpoint
specifying, at least, the following query parameters:

• client_id=your_client_id

• response_type=code

• redirect_uri=your_redirect_uri

• code_challenge=your_code_challenge

• code_challenge_method=S256

• scope=openid profile

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize" in the OAuth 2.0 Guide.

If the OAuth 2.0/OpenID provider is configured for a subrealm rather than the top-level realm,
you must specify it in the endpoint. For example, if the OAuth 2.0/OpenID provider is configured
for the /customers realm, then use /oauth2/realms/root/realms/customers/authorize.

For example:

Implementing OpenID Connect Grant Flows
Authorization Code Grant with PKCE

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 41

https://openam.example.com:8443/openam/oauth2/realms/root/authorize \
?client_id=myClient \
&response_type=code \
&scope=openid%20profile \
&redirect_uri=https://www.example.com:443/callback \
&code_challenge=j3wKnK2Fa_mc2tgdqa6GtUfCYjdWSA5S23JKTTtPF8Y \
&code_challenge_method=S256 \
&nonce=123abc \
&state=abc123

Note that the URL is split and spaces have been added for readability purposes. The state and
nonce parameters have been included to protect against CSRF and replay attacks.

2. The end user authenticates to AM, for example, using the credentials of the demo user. In this case,
they log in using the default chain or tree configured for the realm.

After logging in, AM presents its consent screen:

OpenID Connect Consent Screen

Note that requesting the profile scope translates into requesting access to several claims. For
more information about the special profile scope, see "OpenID Connect Scopes and Claims".

3. The end user selects the Allow button to grant consent for the profile scope.

AM redirects the end user to the URL specified in the redirect_uri parameter.

Implementing OpenID Connect Grant Flows
Authorization Code Grant with PKCE

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 42

4. Inspect the URL in the browser. It contains a code parameter with the authorization code AM has
issued. For example:
https://www.example.com:443/callback?code=g5B3qZ8rWzKIU2xodV_kkSIk0F4&iss=https://
openam.example.com:8443/openam/oauth2&state=abc123&client_id=myClient

5. The client performs the steps in "To Exchange an Authorization Code for an ID/Access Token in
the Authorization Code Grant with PKCE Flow" to exchange the authorization code for an ID/
access token.

To Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant
with PKCE Flow

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0/OpenID provider. Ensure that:

• The code Response Type Plugins is configured.

• The Authorization Code Supported Grant Type is configured.

The Code Verifier Parameter Required drop-down menu (Realms > Realm Name > Services >
OAuth2 Provider > Advanced) specifies whether AM require clients to include a code verifier in
their calls.

However, if a client makes a call to AM with the code_challenge parameter, AM will honor the code
exchange regardless of the configuration of the Code Verifier Parameter Required drop-down
menu.

• A public client called myClient is registered in AM with the following configuration:

• Scopes: openid profile

• Response Types: code

• Grant Types: Authorization Code

• Redirection URIs: https://www.example.com:443/callback

• Token Endpoint Authentication Method: none

Confidential OpenID Connect clients can use several methods to authenticate. For more
information, see "Authenticating Clients when Using OpenID Connect 1.0" in the OAuth 2.0
Guide.

For more information, see "Registering OpenID Connect Relying Parties".

Perform the steps in this procedure to obtain an authorization code:

1. The end user logs in to AM, for example, using the credentials of the demo user. For example:

Implementing OpenID Connect Grant Flows
Authorization Code Grant with PKCE

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 43

$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: changeit" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'
{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console",
 "realm":"/"
}

2. The client makes an HTTP POST request to AM's authorization endpoint, specifying in a cookie
the SSO token of the demo and, at least, the following parameters:

• client_id=your_client_id

• response_type=code

• redirect_uri=your_redirect_uri

• decision=allow

• csrf=demo_user_SSO_token

• code_challenge=your_code_challenge

• code_challenge_method=S256

• scope=openid profile

You can configure the openid scope as a default scope in the client profile or the OAuth 2.0/
OpenID provider to avoid including the scope parameter in your calls, if required.

However, since the openid scope is required in OpenID Connect flows, the example specifies it.

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize" in the OAuth 2.0 Guide.

If the OAuth 2.0/OpenID provider is configured for a subrealm rather than the top-level realm,
you must specify it in the endpoint. For example, if the OAuth 2.0/OpenID provider is configured
for the /customers realm, then use /oauth2/realms/root/realms/customers/authorize.

For example:

Implementing OpenID Connect Grant Flows
Authorization Code Grant with PKCE

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 44

$ curl --dump-header - \
--request POST \
--Cookie "iPlanetDirectoryPro=AQIC5wM...TU3OQ*" \
--data "redirect_uri=https://www.example.com:443/callback" \
--data "scope=openid profile" \
--data "response_type=code" \
--data "client_id=myClient" \
--data "csrf=AQIC5wM...TU3OQ*" \
--data "state=abc123" \
--data "nonce=123abc" \
--data "decision=allow" \
--data "code_challenge=j3wKnK2Fa_mc2tgdqa6GtUfCYjdWSA5S23JKTTtPF8Y" \
--data "code_challenge_method=S256" \
"https://openam.example.com:8443/openam/oauth2/realms/root/authorize"

Note that the state and nonce parameters have been included to protect against CSRF and replay
attacks.

If AM is able to authenticate the user and the client, it returns an HTTP 302 response with the
authorization code appended to the redirection URL:
HTTP/1.1 302 Found
Server: Apache-Coyote/1.1
X-Frame-Options: SAMEORIGIN
Pragma: no-cache
Cache-Control: no-store
Date: Mon, 30 Jul 2018 11:42:37 GMT
Accept-Ranges: bytes
Location: https://www.example.com:443/callback?code=g5B3qZ8rWzKIU2xodV_kkSIk0F4&iss=https%3A%2F
%2Fopenam.example.com%3A8443%2Fopenam%2Foauth2&state=abc123&client_id=myClient
Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept
Content-Length: 0

3. Perform the steps in "To Exchange an Authorization Code for an ID/Access Token in the
Authorization Code Grant with PKCE Flow" to exchange the authorization code for an ID/access
token.

To Exchange an Authorization Code for an ID/Access Token in the Authorization Code Grant
with PKCE Flow

Perform the steps in the following procedure to exchange an authorization code for an ID/access
token:

1. Ensure the client has obtained an authorization code by performing the steps in either "To Obtain
an Authorization Code Using a Browser in the Authorization Code Grant with PKCE Flow" or "To
Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant with
PKCE Flow".

2. The client creates a POST request to the token endpoint in the authorization server specifying, at
least, the following parameters:

• grant_type=authorization_code

Implementing OpenID Connect Grant Flows
Authorization Code Grant with PKCE

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 45

• code=your_authorization_code

• client_id=your_client_id

• redirect_uri=your_redirect_uri

• code_verifier=your_code_verifier

For information about the parameters supported by the /oauth2/access_token endpoint, see "/
oauth2/access_token" in the OAuth 2.0 Guide.

For example:
$ curl --request POST \
--data "grant_type=authorization_code" \
--data "code=g5B3qZ8rWzKIU2xodV_kkSIk0F4" \
--data "client_id=myClient" \
--data "redirect_uri=https://www.example.com:443/callback" \
--data "code_verifier=ZpJiIM_G0SE9WlxzS69Cq0mQh8uyFaeEbILlW8tHs62SmEE6n7Nke0XJGx_F4OduTI4" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

The client_id and the redirection_uri parameters specified in this call must match those used as
part of the authorization code request, or AM will not validate the code.

AM returns an ID and an access token. For example:
{
 "access_token":"cnM3nSpF5ckCFZOaDem2vANUdqQ",
 "scope":"openid profile",
 "id_token":"eyJ0eXAiOiJKV1QiLCJra...7r8soMCk8A7QdQpg",
 "token_type":"Bearer",
 "expires_in":3599
}

If the client does not require the access token, revoke it in the OAuth 2.0 Guide.

Tip

AM can also issue refresh tokens at the same time the access tokens are issued. For more information, see
"Managing OAuth 2.0 Refresh Tokens" in the OAuth 2.0 Guide.

3. (Optional) The relying party can request additional claims about the end user from AM.

For more information, see "/oauth2/userinfo".

Implementing OpenID Connect Grant Flows
Backchannel Request Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 46

Backchannel Request Grant
Endpoints

• /oauth2/bc-authorize in the OAuth 2.0 Guide

• /oauth2/access_token in the OAuth 2.0 Guide

• "/oauth2/userinfo"

The Backchannel Request grant is used when performing Client Initiated Backchannel Authentication
(CIBA).

CIBA allows a client application, known as the consumption device, to obtain authentication and
consent from a user, without requiring the user to interact with the client directly.

Instead, the user authenticates and consents to the operation using a separate, "decoupled" device,
known as the authentication device. For example, an authenticator application, or a mobile banking
application on their mobile phone.

Note

AM applies the guidelines suggested by the OpenID Financial-grade API (FAPI) Working Group to the
implementation of CIBA.

For more information, see OpenID Connect 1.0.

The following diagram demonstrates the Backchannel Request grant flow:

https://openid.net/wg/fapi/

Implementing OpenID Connect Grant Flows
Backchannel Request Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 47

OpenID Connect Backchannel Request Grant Flow

OpenID Provider
(AM)

End User
(Auth Device)

End User
(Auth Device)

Client
(Consum pt ion

Device)

Client
(Consum pt ion

Device)

Authorizat ion
Server

Authorizat ion
Server

UserInfo
Endpoint

UserInfo
Endpoint

1 Prepare signed JWT

2 Request Authent icat ion Request ID with signed JWT

3 If JWT is verified, return auth_req_id

loop [Respect ing specif ied int ervals. . .]

4 Poll for authorizat ion result using auth_req_id

In t he Background.. .

5 Request authorizat ion, with Binding Message

6 Authorizat ion approved

7 Return access and/or ID token

Opt ional

8 Request addit ional claim s with access token

9 Return addit ional claim s

The steps in the diagram are described below:

1. The client has a need to authenticate a user. It has a user identifier, and creates a signed JWT.

2. The client creates a POST request containing the signed JWT, and sends it to AM.

Implementing OpenID Connect Grant Flows
Backchannel Request Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 48

3. AM validates the signature using the public key, performs validation checks on the JWT contents,
and if verified, returns an auth_req_id, as well as a polling interval.

4. The client begins polling AM using the auth_req_id to check if the user has authorized the
operation. The client must respect the interval returned each time, otherwise an error message is
returned.

5. AM sends the user a push notification message, including the contents of the binding_message,
requesting authorization.

6. The user authorizes the request by performing the required authorization gesture on their
authentication device, usually a mobile phone. For example, it may be swiping a slider, or
authenticating using facial recognition or a fingerprint sensor.

7. If the authorization is valid, the OpenID provider returns an access token token (and an ID/refresh
token, if applicable) to the client.

Now, the client can use the ID token subject ID claim as the end user's identity.

8. The client may require more claims than those included in the ID token. In this case, it makes a
request to the OpenID provider's oauth2/userinfo endpoint with the access token.

9. If the access token is valid, the oauth2/userinfo endpoint returns additional claims, if any.

Now, the client can use the subject ID and the additional retrieved claims as the end user's
identity.

Perform the steps in the following procedures to obtain an authorization request ID and exchange it
for an ID token and an access token:

• "To Configure AM to use the Backchannel Request Grant Flow"

• "To Obtain an Authentication Request ID Using the Backchannel Request Grant Flow"

• "To Exchange an Authorization Request ID for an ID/Access Token in the Backchannel Request
Grant Flow"

To Configure AM to use the Backchannel Request Grant Flow

Perform the following steps to prepare AM for the backchannel request grant flow:

1. In AM, configure an OAuth 2.0/OpenID provider in the top-level realm.

2. Associate an authentication tree that performs push authentication with the acr_values property
contained in the signed JWT.

The authentication tree must start with a "Username Collector Node", and contain a "Push
Sender Node" and "Push Result Verifier Node", and a "Polling Wait Node".

The following is an example of a suitable authentication tree:

Implementing OpenID Connect Grant Flows
Backchannel Request Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 49

For more information on creating authentication trees for push authentication, see "Creating
Authentication Trees for Push Authentication" in the Authentication and Single Sign-On Guide.

To associate a push authentication tree with incoming acr_values, perform the following steps:

a. In the AM console, navigate to Realms > Realm Name > Services > OAuth2 Provider >
Advanced OpenID Connect.

b. In the OpenID Connect acr_values to Auth Chain Mapping box, enter the value of the acr_
values property in the Key field, and the name of the push authentication tree to use in the
Value field, for example CIBA, and then click Add.

c. Save your changes.

For more information, see "The Authentication Context Class Reference (acr) Claim".

For more information, see "Configuring AM as an OpenID Connect Provider".

3. In AM, create a confidential OAuth 2.0 client with a client ID of myCIBAClient. The client ID must
match the value of the iss claim in the signed JWT prepared above.

The client profile should have the following configuration:

• Client secret: forgerock

• Scopes: openid profile

• Response Types: id_token token

• Grant Types: Back Channel Request

Implementing OpenID Connect Grant Flows
Backchannel Request Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 50

• Token Endpoint Authentication Method: client_secret_basic

Confidential OpenID Connect clients can use several methods to authenticate. For more
information, see "Authenticating Clients when Using OpenID Connect 1.0" in the OAuth 2.0
Guide.

• The client must be provided with the public key of the keypair that will be used to sign the JWT.

On the Signing and Encryption tab, you must configure either the JWKs URI or the JWK Set
fields, as follows:

• JWKs URI: specifies a URI that exposes the public keys AM will use to validate the JWT
signature.

For example, http://www.example.com/issuer/jwk_uri.

Note

If you configure this field, ensure the following properties are configured with values suitable for your
environment:

• JWKs URI content cache timeout in ms

• JWKs URI content cache miss cache time

• JWK set: Specifies a JWK set containing the public keys used to validate JWT signatures.

The following is an example of a public elliptic curve JWK set:
{
 "keys": [
 {
 "kty": "EC",
 "use": "sig",
 "crv": "P-256",
 "kid": "myCIBAKey",
 "x": "m0CkpWpZyGu-FLRLjCGBVGC7Fwm5vGt8Lm3HhYU4ylg",
 "y": "U8NMtO-C2c3yhu2I_ApAELttmaittfPNPQaIJxvTCHk",
 "alg": "ES256"
 }
]
}

For more information about the contents of the JWK set, see the JSON Web Key (JWK)
specification.

You can store more than one key in the JWK set. However, it is easier to implement key rotation
exposing the validation keys on the URI instead.

For more information, see "Registering OpenID Connect Relying Parties".

https://www.rfc-editor.org/info/rfc7517

Implementing OpenID Connect Grant Flows
Backchannel Request Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 51

To Obtain an Authentication Request ID Using the Backchannel Request Grant Flow

Perform the steps in this procedure to obtain an authentication request ID, using CIBA:

1. On the client, prepare a signed JWT. The JWT must contain, at least, the following claims in the
payload:

aud

Specifies a string or an array of strings that is the intended audience of the JWT. Must be set
to the authorization server's OAuth 2.0 endpoint, for example:
"aud": "http://openam.example.com:8080/openam/oauth2"

exp

Specifies the expiration time of the JWT in Unix time.

Providing a JWT with an expiry time greater than 30 minutes causes AM to return a JWT
 expiration time is unreasonable error message.

iss

Specifies the unique identifier of the JWT issuer.

The identifier must match the client ID of the OAuth 2.0 client in AM, for example
myCIBAClient.

login_hint

Specifies the principal who is the subject of the JWT. It should be a string that identifies the
resource owner.

Tip

You can provide a previously obtained ID token in a property named id_token_hint as the hint for
determining the resource owner, rather than a string.

scope

Specifies a space-separated list of the requested scopes. Must include the openid scope.

acr_values

Specifies an identifier that maps to the authentication mechanism AM uses to obtain
authorization from the end user.

Implementing OpenID Connect Grant Flows
Backchannel Request Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 52

binding_message

Specifies a message delivered to the user when obtaining authorization.

Should be a short (100 characters or fewer), description of the operation the end user is
authorizing, and should include an identifier to match the authorization request to the client
that initiated the request.

Note

If the binding message is sent using push notifications, the following additional limitations apply to the
value:

1. Must begin with a letter, number, or punctuation mark.

2. Must not include line breaks or control characters.

For example:

Allow ExampleBank to transfer £50 from your 'Main' account to your 'Savings' account? (EB-0246326)

The following is an example of the payload of a basic JWT:
{
 "login_hint": "demo",
 "scope": "openid profile",
 "acr_values": "push",
 "iss": "myCIBAClient",
 "aud": "http://openam.example.com:8080/openam/oauth2",
 "exp": 1559311511,
 "binding_message": "Allow ExampleBank to transfer £50 from your 'Main' account to your 'Savings'
 account? (EB-0246326)"
}

For more information about JWTs, see the RFC 7523 standard.

2. The client makes a POST request to the authorization server's backchannel authorization
endpoint, including the signed JWT, and the client credentials in the authorization header.

For example:
$ curl --request POST \
--header "authorization: Basic bXlDSUJBQ2xpZW50OmZvcmdlcm9jaw==" \
--data "request=eyJhbGci...kfPjAfnBg " \
"https://openam.example.com:8443/openam/oauth2/bc-authorize"

The basic authorization header is the base64-encoded value of your client ID, a colon
character (:), and the client secret. For example myCIBAClient:forgerock.

For more information about authenticating clients, see "Authenticating OAuth 2.0 Clients" in
the OAuth 2.0 Guide.

https://www.rfc-editor.org/info/rfc7523

Implementing OpenID Connect Grant Flows
Backchannel Request Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 53

The "request" field should contain the entire signed JWT.

The value in this example has been truncated for display purposes.

AM returns JSON containing the auth_req_id value:
{
 "auth_req_id": "35Evy3bJXJEnhll2ebacgROYfbU",
 "expires_in": 600,
 "interval": 2
}

AM will also send the user a push notification message, containing the contents of the binding_
message, to request authorization for the operation.

For more information on interacting with push notifications, see "To Perform Authentication
using Push Notifications" in the Authentication and Single Sign-On Guide.

3. The client performs the steps in "To Exchange an Authorization Request ID for an ID/Access
Token in the Backchannel Request Grant Flow" to exchange the authentication request ID for an
ID token (and an access/refresh token).

To Exchange an Authorization Request ID for an ID/Access Token in the Backchannel Request
Grant Flow

Perform the steps in the following procedure to exchange an authorization request ID for an ID/
access token:

1. The client starts to poll the token endpoint in the OpenID provider with HTTP POST requests,
with the client credentials in the authorization header, and specifies the following parameters:

• grant_type=urn:openid:params:grant-type:ciba

• auth_req_id=your_authorization_request_id

If the OAuth 2.0/OpenID provider is configured for a subrealm rather than the top-level realm,
you must specify it in the endpoint. For example, if the OAuth 2.0/OpenID provider is configured
for the /customers realm, then use /oauth2/realms/root/realms/customers/access_token.

For example:
$ curl --request POST \
--header "authorization: Basic bXlDSUJBQ2xpZW50OmZvcmdlcm9jaw==" \
--data "grant_type=urn:openid:params:grant-type:ciba" \
--data "auth_req_id=35Evy3bJXJEnhll2ebacgROYfbU" \
"https://openam.example.com:8443/openam/oauth2/access_token"

The basic authorization header is the base64-encoded value of your client ID, a colon
character (:), and the client secret. For example myCIBAClient:forgerock.

Implementing OpenID Connect Grant Flows
Implicit Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 54

For more information about authenticating clients, see "Authenticating OAuth 2.0 Clients" in
the OAuth 2.0 Guide.

• If the user has authenticated and authorized the operation, AM returns an ID token and an
access token. For example:
{
 "access_token": "z4mWG0cxqwPwgjj7srJ2Jdxe9ag",
 "id_token": "eyJ0eXAiOi...YA9Hoqwew",
 "token_type": "Bearer",
 "expires_in": 3599
}

Tip

AM can also issue refresh tokens at the same time the access tokens are issued. For more information,
see "Managing OAuth 2.0 Refresh Tokens" in the OAuth 2.0 Guide.

• If the user has not yet authenticated and authorized the operation, AM returns an HTTP 400
response, as follows:
{
 "error_description": "End user has not yet been authenticated",
 "error": "authorization_pending"
}

The client should wait the number of seconds specified by the interval value that was returned
when requesting the auth_req_id, and then resend the POST request. The default value for
interval is two seconds.

• If the client does not wait for the interval before resending the request, AM returns an HTTP
400 response, as follows:
{
 "error_description": "The polling interval has not elapsed since the last request",
 "error": "slow_down"
}

2. (Optional) The relying party can request additional claims about the end user from AM.

For more information, see "/oauth2/userinfo".

Implicit Grant
Endpoints

• "/oauth2/authorize" in the OAuth 2.0 Guide

• "/oauth2/userinfo"

Implementing OpenID Connect Grant Flows
Implicit Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 55

The OpenID Connect implicit grant is designed for public clients that run inside the end user's user-
agent. For example, JavaScript applications.

This flow allows the relying party to interact directly with the OpenID provider, AM, and receive
tokens directly from the authorization endpoint instead of from the token endpoint.

Since applications running in the user-agent are considered less trusted than applications running in
servers, the authorization server will never issue refresh tokens in this flow. Also, you must consider
the security impact of cross-site scripting (XSS) attacks that could leak the ID and access tokens to
other systems, and implement Cross-Origin Resource Sharing (CORS) to make OAuth 2.0/OpenID
Connect requests to different domains.

Due to the security implications of this flow, it is recommended to use the Authorization Code grant
with PKCE flow whenever possible.

The following diagram demonstrates the Implicit grant flow:

OpenID Connect Implicit Flow
OpenID Provider

(AM)
End User

User-Agent

End User
User-Agent

Relying Party

Relying Party

Authorizat ion Server

Authorizat ion Server

UserInfo Endpoint

UserInfo Endpoint

1 Redirect ...

2 ... for authent icat ion

3 Authent icate end user and
confirm resource access

4 Redirect with redirect_uri, access and/or ID token in URI fragm ent ...

5 ... to request_uri without the fragm ent

6 Return web page with em bedded script to ext ract
access and/or ID token

7 Extract the access and/or ID token

8 Return access and/or ID token

9 Validate ID Token and get user subject ID

Opt ional

1 0 Request addit ional claim s with access token

1 1 Return addit ional claim s

The steps in the diagram are described below:

Implementing OpenID Connect Grant Flows
Implicit Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 56

1. The relying party, usually a single-page application (SPA), receives a request to access user
information stored in an OpenID provider. To access this information, the client requires
authorization from the end user.

2. The relying party redirects the end user's user-agent or opens a new frame to the AM OpenID
provider.

As part of the OpenID Connect flow, the request contains the openid scope and the nonce
parameter.

3. The OpenID provider authenticates the end user, confirms resource access, and gathers consent if
not previously saved.

4. If the end user's credentials are valid, the authorization server returns an ID token (and
optionally, an access token) to the user-agent as part of the redirection URI.

5. The user-agent must extract the token(s) from the URI. In this example, the user-agent follows the
redirection to the relying party without the token(s)...

6. ... And the relying party returns a web page with an embedded script to extract the token(s) from
the URI.

In another possible scenario, the redirection URI is a dummy URI in the application running in the
user-agent which already has the logic in itself to extract the tokens.

7. The user-agent executes the script and retrieves the tokens.

8. The user-agent returns the tokens to the relying party.

9. The relying party validates the ID token and its claims.

Now, the relying party can use the ID token subject ID claim as the end user's identity.

10. The relying party may require more claims than those included in the ID token. In this case, it
makes a request to the OpenID provider's oauth2/userinfo endpoint with the access token.

11. If the access token is valid, the oauth2/userinfo endpoint returns additional claims, if any.

Now, the relying party can use the subject ID and the additional retrieved claims as the end user's
identity.

Perform the steps in the following procedures to obtain an ID token and an access token:

• "To Obtain an ID/Access Token Using a Browser in the Implicit Grant"

• "To Obtain an ID/Access Token Without Using a Browser in the Implicit Grant"

To Obtain an ID/Access Token Using a Browser in the Implicit Grant

This example shows how to obtain an ID token and an access token. It adds notes on how to obtain
the ID token only, as well.

Implementing OpenID Connect Grant Flows
Implicit Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 57

The procedure assumes the following configuration:

• AM is configured as an OAuth 2.0/OpenID provider in the top-level realm, and it accepts the openid
and profile scopes.

For more information, see "Configuring AM as an OpenID Connect Provider".

• A public client called myClient is registered in AM with the following configuration:

• Scopes: openid profile

• Response Types: token id_token

Configure id_token to receive an ID token only.

• Grant Types: Implicit

• Authentication Method: none

• Token Endpoint Authentication Method: none

If you were using a confidential OpenID Connect client, you must specify a method to
authenticate. For more information, see "Authenticating Clients when Using OpenID Connect 1.0"
in the OAuth 2.0 Guide.

For more information, see "Registering OpenID Connect Relying Parties".

Perform the steps in this procedure to obtain an ID token and an access token using the Implicit
grant:

1. The client makes a GET call to AM's authorization endpoint specifying, at least, the following
parameters:

• client_id=your_client_id

• response_type=token id_token

To obtain only an ID token, use response_type=id_token instead.

• redirect_uri=your_redirect_uri

• nonce=your_nonce

• scope=openid profile

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize" in the OAuth 2.0 Guide.

If the OAuth 2.0/OpenID provider is configured for a subrealm rather than the top-level realm,
you must specify it in the endpoint. For example, if the OAuth 2.0/OpenID provider is configured
for the /customers realm, then use /oauth2/realms/root/realms/customers/authorize.

Implementing OpenID Connect Grant Flows
Implicit Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 58

For example:
https://openam.example.com:8443/openam/oauth2/realms/root/authorize \
?client_id=myClient \
&response_type=token%20id_token \
&scope=openid%20profile \
&redirect_uri=https://www.example.com:443/callback \
&state=abc123 \
&nonce=123abc

Note that the URL is split for readability purposes and that the state parameter has been included
to protect against CSRF attacks.

2. The end user logs in to AM, for example, using the credentials of the demo user. In this case, they
log in using the default chain or tree configured for the realm.

After logging in, AM presents the AM user interface consent screen:

Consent Screen

Note that requesting the profile scope translates into requesting access to several claims. For
more information about the special profile scope, see "OpenID Connect Scopes and Claims".

3. The end user selects the Allow button to grant consent for the profile scope.

AM redirects the resource owner to the URL specified in the redirect_uri parameter.

Implementing OpenID Connect Grant Flows
Implicit Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 59

4. Inspect the URL in the browser. It contains an access_token and an id_token parameter with the
tokens AM has issued. For example:
https://www.example.com:443/callback/
#access_token=pRbNamsGPv1T7NfAf5Dbx4AHM2c&id_token=eyJ0eXAiOiJKV1QiLCJra...7r8soMCk8A7QdQpg&state=123&token_type=Bearer&expires_in=3599

If you only request an ID token, the response would not include the access_token parameter.

5. (Optional) The relying party can request additional claims about the end user from AM.

For more information, see "/oauth2/userinfo".

To Obtain an ID/Access Token Without Using a Browser in the Implicit Grant

This example shows how to obtain an ID token and an access token. It adds notes on how to obtain
the ID token only, as well.

The procedure assumes the following configuration:

• AM is configured as an OAuth 2.0/OpenID provider in the top-level realm.

For more information, see "Configuring AM as an OpenID Connect Provider".

• A public client called myClient is registered in AM with the following configuration:

• Scopes: openid profile

• Response Types: token id_token

• Grant Types: Implicit

• Authentication Method: none

Confidential OpenID Connect clients can use several methods to authenticate. For more
information, see "Authenticating Clients when Using OpenID Connect 1.0" in the OAuth 2.0
Guide.

For more information, see "Registering OpenID Connect Relying Parties".

Perform the steps in this procedure to obtain an ID token and an access token using the Implicit
grant:

1. The end user authenticates to AM, for example, using the credentials of the demo user. For
example:

Implementing OpenID Connect Grant Flows
Implicit Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 60

$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: changeit" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'
{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console",
 "realm":"/"
}

2. The client makes a POST call to the AM's authorization endpoint, specifying the SSO token of the
demo in a cookie and, at least, the following parameters:

• client_id=your_client_id

• response_type=token id_token

To obtain only an ID token, use response_type=id_token instead.

• redirect_uri=your_redirect_uri

• nonce=your_nonce

• scope=openid profile

• decision=allow

• csrf=demo_user_SSO_token

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize" in the OAuth 2.0 Guide.

If the OAuth 2.0/OpenID provider is configured for a subrealm rather than the top-level realm,
you must specify it in the endpoint. For example, if the OAuth 2.0/OpenID provider is configured
for the /customers realm, then use /oauth2/realms/root/realms/customers/authorize.

For example:
curl --dump-header - \
--Cookie "iPlanetDirectoryPro=AQIC5wM...TU3OQ*" \
--request POST \
--data "client_id=myClient" \
--data "response_type=token id_token" \
--data "scope=openid profile" \
--data "state=123abc" \
--data "nonce=abc123" \
--data "decision=allow" \
--data "csrf=AQIC5wM...TU3OQ*" \
--data "redirect_uri=https://www.example.com:443/callback" \
"https://openam.example.com:8443/openam/oauth2/realms/root/authorize"

Implementing OpenID Connect Grant Flows
Hybrid Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 61

Note that the state parameter has been included to protect against CSRF attacks.

If the authorization server is able to authenticate the user, it returns an HTTP 302 response with
the access and ID tokens appended to the redirection URI:
HTTP/1.1 302 Found
Server: Apache-Coyote/1.1
X-Frame-Options: SAMEORIGIN
Pragma: no-cache
Cache-Control: no-store
Date: Mon, 04 Mar 2019 16:56:46 GMT
Accept-Ranges: bytes
Location: https://www.example.com:443/callback#access_token=az91IvnIQ-
uP3Eqw5QqaXXY_DCo&id_token=eyJ0eXAiOiJKV1QiLCJra...7r8soMCk8A7QdQpg&state=123abc&token_type=Bearer&expires_in=3599
Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept
Content-Length: 0

If you only request an ID token, the response would not include the access_token parameter.

3. (Optional) The relying party can request additional claims about the end user from AM.

For more information, see "/oauth2/userinfo".

Tip

A sample JavaScript-based relying party to test the Implicit grant flow is available online.

Clone the example project to deploy it in the same web container as AM. Edit the configuration at the outset
of the .js files in the project, register a corresponding profile for the example relying party as described in
"Registering OpenID Connect Relying Parties", and browse the deployment URL to see the initial page.

The example relying party validates the ID token signature using the default (HS256) algorithm, decodes de
ID token to validate its contents and shows it in the output. Finally, the relying party uses the access token to
request information about the end user who authenticated, and displays the result.

Hybrid Grant
Endpoints

• /oauth2/authorize in the OAuth 2.0 Guide

• "/oauth2/userinfo"

The OpenID Connect Hybrid grant is designed for clients that require flexibility when requesting ID,
access, and refresh tokens.

Similar to the Authorization Code grant flow, the Hybrid grant flow is a two-step process:

1. The relying party makes a first request for tokens or codes. For example, a request for an ID
token and an access code. AM returns them in the redirection fragment, as it does during the
Implicit grant flow.

https://stash.forgerock.org/projects/COM/repos/openid/browse

Implementing OpenID Connect Grant Flows
Hybrid Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 62

The client relying party usually starts using these tokens immediately.

2. Some time after the first request has happened, the relying party makes a second request for
additional tokens. For example, a request for an access token using the access code, or a request
for a refresh token.

Important

Consider the following security tips when implementing this flow:

• Requesting an access token during the first step exposes the token in the redirection fragment, just like
during the Implicit grant flow.

Also, you must consider the security impact of cross-site scripting (XSS) attacks that could leak the ID and
access tokens to other systems, and implement Cross-Origin Resource Sharing (CORS) to make OAuth 2.0/
OpenID Connect requests to different domains.

Due to the security implications, ForgeRock recommends not to request access tokens during the first step of
this flow.

• If the relying party is a public client, you can use the PKCE specification to mitigate against interception
attacks performed by malicious users.

A common use case is the relying party requesting an ID token which can be used to, for example,
pre-register the end user so they can start shopping. Only later and, if required, the relying party
requests an access token to inquire the OpenID provider about additional claims. For example, during
the check out, the relying party requests from AM the end user's address details.

The following diagram demonstrates this use case of the Hybrid grant flow:

Implementing OpenID Connect Grant Flows
Hybrid Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 63

OpenID Connect Hybrid Flow
OpenID Provider

(AM)

End User
User-Agent

End User
User-Agent

Relying Party

Relying Party

Authorizat ion
Server

Authorizat ion
Server

UserInfo
Endpoint

UserInfo
Endpoint

1 Prepare authent icat ion request

2 Redirect ...

3 ...for authent icat ion

4 Authent icate end user and confirm resource access

5 If credent ials are valid, redirect ...

6 ...with authorizat ion code and ID token to redirect_uri

7 Store authorizat ion code. Validate ID token and get subject ID

8 Provide services

W hen required (before aut hz code expires)

9 Authent icate, request access token with authorizat ion code

1 0 If authorizat ion code is valid, return access token

1 1 Request addit ional claim s with access token

1 2 Return addit ional claim s

1 3 Provide addit ional services

The steps in the diagram are described below:

1. The end user wants to use the services provided by the relying party. The relying party, usually a
web-based service, requires an account to provide those services.

The end user issues a request to the relying party to access their information, which is stored in
an OpenID provider.

2. To access the end user's information in the provider, the relying party requires authorization from
the end user. Therefore, the relaying party redirects the end user's user agent...

3. ... to the OpenID provider.

4. The OpenID provider authenticates the end user, confirms resource access, and gathers consent if
not previously saved.

5. If the end user's credentials are valid, the OpenID provider redirects the end user to the relying
party.

Implementing OpenID Connect Grant Flows
Hybrid Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 64

6. During the redirection process, the OpenID provider appends an authorization code and an ID
token to the URL.

Note that AM can return any combination of access token, ID token, and authorization code
depending on the request. In this example, the access token is not requested at this time due to
security concerns.

7. The relying party stores the authorization code for future use. It also validates the ID token and
gets the subject ID.

8. With the ID token, the relying party starts providing services to the end user.

9. Later, but always before the authorization code has expired, the relying party requests an access
token from the OpenID provider so it can access more information about the end user.

A use case would be the end user requiring services from the relying party that requires
additional (usually more sensitive) information. For example, the end user requests the relying
party to compare their electricity usage and supplier information against offers in the market.

If required, the relying party could also request a refresh token.

10. If the relying party credentials and the authorization code are valid, AM returns an access token.

11. The relying party makes a request to AM's /oauth2/userinfo endpoint with the access token to
access the end user's additional claims.

12. If the access token is valid, the /oauth2/userinfo endpoint returns additional claims, if any.

13. The relying party can now use the subject ID in the ID token and the additional claims as the end
user's identity to provide them with more services.

Perform the steps in the following procedure to obtain an authorization code and an ID token, and
later an access token:

To Obtain an Authorization Code and an ID Token Using a Browser in the Hybrid Flow

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0/OpenID provider in the top-level realm.

For more information, see "Configuring AM as an OpenID Connect Provider".

• A confidential client called myClient is registered in AM with the following configuration:

• Client secret: forgerock

• Scopes: openid profile

• Response Types: code id_token token

• Grant Types: Authorization Code

Implementing OpenID Connect Grant Flows
Hybrid Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 65

• Token Endpoint Authentication Method: client_secret_post

Confidential OpenID Connect clients can use several methods to authenticate. For more
information, see "Authenticating Clients when Using OpenID Connect 1.0" in the OAuth 2.0
Guide.

For more information, see "Registering OpenID Connect Relying Parties".

Perform the steps in the following procedure to obtain an ID token and an authorization code that will
later be exchanged for an access token:

1. The client redirects the end user's user-agent to the authorization server's authorization endpoint
specifying, at least, the following form parameters:

• client_id=your_client_id

• response_type=code id_token

As per the specification, you can request the following response types:

• code id_token

• code token

• code id_token token

Since AM returns the tokens in the redirection URL, requesting access tokens in this way poses
a security risk.

• redirect_uri=your_redirect_uri

• scope=openid profile

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize" in the OAuth 2.0 Guide.

If the OAuth 2.0/OpenID provider is configured for a subrealm rather than the top-level realm,
you must specify it in the endpoint. For example, if the OAuth 2.0/OpenID provider is configured
for the /customers realm, then use /oauth2/realms/root/realms/customers/authorize.

For example:
https://openam.example.com:8443/openam/oauth2/realms/root/authorize \
?client_id=myClient \
&response_type=code%20id_token \
&scope=openid%20profile \
&state=abc123 \
&nonce=123abc \
&redirect_uri=https://www.example.com:443/callback

Implementing OpenID Connect Grant Flows
Hybrid Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 66

Note that the URL is split and spaces have been added for readability purposes. The state and
nonce parameters have been included to protect against CSRF and replay attacks.

Tip

Implement the PKCE specification to mitigate against interception attacks performed by malicious users.

For more information about the required additional parameters and an example, see "Authorization Code
Grant with PKCE".

2. The end user authenticates to AM, for example, using the credentials of the demo user. In this case,
they log in using the default chain or tree configured for the realm.

After logging in, AM presents its consent screen:

OpenID Connect Consent Screen

Note that requesting the profile scope translates into requesting access to several claims. For
more information about the special profile scope, see "OpenID Connect Scopes and Claims".

3. The end user selects the Allow button to grant consent for the profile scope.

AM redirects the end user to the URL specified in the redirect_uri parameter.

Implementing OpenID Connect Grant Flows
Hybrid Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 67

4. Inspect the URL in the browser. It contains a code parameter with the authorization code and a id_
token parameter with the ID token AM has issued. For example:
https://www.example.com:443/callback?
code=bOrAijEerd_YdNCUC1piL5VfNO4&id_token=eyJ0eXAiOiJKV1QiLCJra...7r8soMCk8A7QdQpg&token_type=Bearer&expires_in=3599

The client relying party can now use the ID token as the end user's identity and store the access
code for later use.

5. (Optional) The client exchanges the authorization code for an access token (and maybe, an
refresh token). Perform the steps in one of the following procedures:

• "To Exchange an Authorization Code for an ID/Access Token in the Authorization Code Grant
Flow"

• "To Exchange an Authorization Code for an ID/Access Token in the Authorization Code Grant
with PKCE Flow"

To Obtain an Authorization Code and an ID Token Without Using a Browser in the Hybrid Flow

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0/OpenID provider in the top-level realm.

For more information, see "Configuring AM as an OpenID Connect Provider".

• A confidential client called myClient is registered in AM with the following configuration:

• Client secret: forgerock

• Scopes: openid profile

• Response Types: code id_token token

• Grant Types: Authorization Code

• Token Endpoint Authentication Method: client_secret_post

Confidential OpenID Connect clients can use several methods to authenticate. For more
information, see "Authenticating Clients when Using OpenID Connect 1.0" in the OAuth 2.0
Guide.

For more information, see "Registering OpenID Connect Relying Parties".

Perform the steps in the following procedure to obtain an ID token and an authorization code that will
later be exchanged for an access token:

1. The end user logs in to AM, for example, using the credentials of the demo user. For example:

Implementing OpenID Connect Grant Flows
Hybrid Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 68

$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: changeit" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'
{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console",
 "realm":"/"
}

2. The client makes a POST call to AM's authorization endpoint, specifying the SSO token of the demo
in a cookie and, at least, the following parameters:

• client_id=your_client_id

• response_type=code id_token

As per the specification, you can request the following response types:

• code id_token

• code token

• code id_token token

Since AM returns the tokens in the redirection URL, requesting access tokens in this way poses
a security risk.

• redirect_uri=your_redirect_uri

• scope=openid profile

• decision=allow

• csrf=demo_user_SSO_token

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize" in the OAuth 2.0 Guide.

If the OAuth 2.0/OpenID provider is configured for a subrealm rather than the top-level realm,
you must specify it in the endpoint. For example, if the OAuth 2.0/OpenID provider is configured
for the /customers realm, then use /oauth2/realms/root/realms/customers/authorize.

For example:

Implementing OpenID Connect Grant Flows
Hybrid Grant

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 69

$ curl --dump-header - \
--request POST \
--Cookie "iPlanetDirectoryPro=AQIC5wM...TU3OQ*" \
--data "scope=openid profile" \
--data "response_type=code id_token" \
--data "client_id=myClient" \
--data "csrf=AQIC5wM...TU3OQ*" \
--data "redirect_uri=https://www.example.com:443/callback" \
--data "state=abc123" \
--data "nonce=123abc" \
--data "decision=allow" \
"https://openam.example.com:8443/openam/oauth2/realms/root/authorize"

Note that the state and nonce parameters have been included to protect against CSRF and replay
attacks.

Tip

Implement the PKCE specification to mitigate against interception attacks performed by malicious users.

For more information about the required additional parameters and an example, see "Authorization Code
Grant with PKCE".

If AM is able to authenticate the user and the client, it returns an HTTP 302 response with the
authorization code appended to the redirection URL:
HTTP/1.1 302 Found
Server: Apache-Coyote/1.1
X-Frame-Options: SAMEORIGIN
Pragma: no-cache
Cache-Control: no-store
Date: Mon, 30 Jul 2018 11:42:37 GMT
Accept-Ranges: bytes
Location: https://www.example.com:443/callback?
code=bOrAijEerd_YdNCUC1piL5VfNO4&id_token=eyJ0eXAiOiJKV1QiLCJra...7r8soMCk8A7QdQpg&token_type=Bearer&expires_in=3599
Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept
Content-Length: 0

The client relying party can now use the ID token as the end user's identity and store the access
code for later use.

3. (Optional) The client exchanges the authorization code for an access token (and maybe, a refresh
token). Perform the steps in one of the following procedures:

• "To Exchange an Authorization Code for an ID/Access Token in the Authorization Code Grant
Flow"

• "To Exchange an Authorization Code for an ID/Access Token in the Authorization Code Grant
with PKCE Flow"

Managing OpenID Connect User Sessions

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 70

Chapter 5

Managing OpenID Connect User Sessions
Logging in to the OpenID provider and obtaining tokens are well-stabilised processes in the
OpenID spec. However, keeping the client relying party informed of the session's validity is not as
straightforward. The end user's session in AM is unavailable to the relying party, and therefore the
only information the client has is the expiration time of the ID token, which may be undesirable.

OpenID Connect Session Management 1.0 - draft -10 defines a mechanism for relying parties to:

• Request AM to confirm if a specific OpenID Connect session is still valid or not.

• Terminate end user sessions in AM.

When Session Management is enabled, AM links ID tokens to sessions. This ensures relying parties
can track end users' sessions and request that end users log again if their sessions have expired.

To keep the process transparent to the end user, client relying parties use hidden iframes to pass
messages between AM and themselves. By embedding iframes in the client relying party, you allow
them to periodically request session status from AM.

Session Management is enabled by default, and sessions are always stored in the CTS token store.
To disable Session Management, navigate to Realms > Realm Name > Services > OAuth2 Provider >
Advanced OpenID Connect, and disable the Store Ops Tokens switch.

Draft 05 of the of the Session Management spec defined two endpoints for managing OpenID
sessions. These endpoints have been removed from version 10 of the draft, but AM still supports
them:

• /oauth2/connect/checkSession. It allows clients to retrieve session state. This endpoint serves the check_
session_iframe URL that allows the relying party to interact with the endpoint.

When checking session state with the check session endpoint, you must configure the Client
Session URI field in the client profile as the iframe URL in the relying party.

For an alternative method of checking session state compliant with version 10 of the session
management draft, see "Retrieving Session State without the Check Session Endpoint".

• /oauth2/connect/endSession. It allows clients to terminate end user sessions and redirect end users to
a particular page after logout.

For more information about the endpoints, see "OpenID Connect 1.0 Endpoints".

https://openid.net/specs/openid-connect-session-1_0-10.html

Managing OpenID Connect User Sessions

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 71

Retrieving Session State without the Check Session Endpoint

You can retrieve session state by sending a request to the authorization endpoint that contains the
following parameters:

• prompt=none. Specifies that the request is a repeated authentication request for a specific end user.
AM will not display any user interaction pages to the end user.

• id_token_hint=your_ID_token. Specifies the ID token associated to an end user. AM validates the ID
token against the user's session.

• response_type=none. Specifies that AM should not issue any token as response.

The simplest strategy to check session state using the authorization endpoint is to create an iframe
whose src attribute is AM's /oauth2/authorize endpoint with the required parameters. Note that you
must also include any other parameter required in your environment, such as client authentication
methods.

For AM to validate an end user session against an ID token, the user-agent must provide the SSO
token of the end user's session as the iplanetDirectoryPro cookie. Therefore, the flow would resemble
the following:

• The relying party obtains an ID token related to an end user. This may have happened at any point
in time. For example, when the end user registered with the relying party to use its services.

• The end user requests additional services from the relying party.

• The relying party, still holding the end user's ID token, requests that AM checks if the user has a
valid session.

• AM returns session state.

• The relying party makes a decision based on AM's response; either provide the services, or request
the end user to log in again.

The following is an example of a public client requesting session state:
https://openam.example.com:8443/openam/oauth2/realms/root/authorize \
?client_id=myClient \
&response_type=none \
&id_token_hint=eyJ0eXAiOiJKV1QiLCJra...7r8soMCk8A7QdQpg \
&redirect_uri=https://www.example.com:443/callback \
&prompt=none

Note that the URL is split for readability purposes and the end user's SSO token must be set in a
cookie in order to validate the session.

If the session is valid and the request contains a redirection URI, AM redirects to the specified URI
with no content. If the request does not contain a redirection URI, AM returns an HTTP 204 no
content message.

Managing OpenID Connect User Sessions

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 72

If the session is invalid and the request contains a redirection URI, AM redirects to the specified URI
with no content and appends an error_description parameter to the URL. For example:
https://www.example.com:443/callback?error_description=The%20request%20requires
%20login.&error=login_required

If the request does not contain a redirection URI, AM returns an HTTP 400 error message and
redirects to an AM console page showing a message, such as login required. The request requires login.

Your iframe, or the redirection page, should be able to retrieve the error messages and act in
consequence. For example, redirecting the end user to a login page.

Tip

To retrieve session state using this mechanism, the OAuth 2.0/OpenID provider must be configured for Session
Management and the client relying party must have the none value configured as a valid response type.

Adding Authentication Requirements to ID Tokens
The Authentication Context Class Reference (acr) Claim

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 73

Chapter 6

Adding Authentication Requirements to ID
Tokens
Relying parties may require end users to satisfy different rules or conditions when authenticating to
the provider. Consider the case of a financial services provider. While authenticating with username
and password may be acceptable to create an account, accessing the end user's bank account details
may require multi-factor authentication.

By specifying an authentication context reference (acr) or an authentication module reference (amr)
claim in the request, relying parties can require that AM authenticate users using specific chains,
modules, or trees.

The following sections show how AM implements both claims, and how to configure AM to honor
them:

• "The Authentication Context Class Reference (acr) Claim"

• "The Authentication Method Reference (amr) Claim"

The Authentication Context Class Reference (acr) Claim
In the OpenID Connect specification, the acr claim identifies a set of rules the user must satisfy when
authenticating to the OpenID provider. For example, a chain or tree configured in AM.

To avoid exposing the name of authentication trees or chains, AM implements a map that consists of a
key (the value that is included in the acr claim) and the name of the authentication tree or chain.

The specification indicates that the acr claim is a list of authentication contexts; AM honors the first
value in the list for which it has a valid mapping. For example, if the relying party requests a list of
acr values such as acr-1 acr-2 acr-3 and only acr-2 and acr-3 are mapped, AM will always choose acr-2
to authenticate the end user.

The acr claim is optional and therefore is not added to ID tokens by default, but you can request AM
to include it by specifying it as a voluntary or essential claim:

Voluntary Claim

Request voluntary acr claims when the fact that the user has authenticated to a specific chain or
tree would improve the user experience in the OpenID Connect flow, but it is not a requisite.

You can request voluntary acr claims in the following ways:

Adding Authentication Requirements to ID Tokens
The Authentication Context Class Reference (acr) Claim

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 74

• Specifying the authentication chains or trees in the acr_values parameter when requesting an ID
token to the /oauth2/authorize endpoint.

• Specifying the authentication chains or trees in JSON format in the claims parameter when
requesting an ID token to the /oauth2/authorize endpoint.

If the end user is already authenticated to the first value on the list for which AM has a mapping,
AM does not force the user to reauthenticate. If they are not already authenticated, or if they are
authenticated to any other tree or chain on the list, AM uses the first value for which it has a valid
mapping to authenticate them.

Consider an example where the relying party requests a list of acr values, such as acr-1 acr-2 acr-
3, and AM only has acr-2 and acr-3 mapped:

• AM will not force the end user to reauthenticate if they are already authenticated to acr-2
(which is the first value in the list for which AM has a mapping).

• AM will force the end user to reauthenticate to acr-2 in the following cases:

• If the end user has authenticated to acr-3.

• If the end user has authenticated to any other tree or chain.

• If the end user has not yet authenticated.

If the user reauthenticates to a tree, AM destroys the original session and provides them with a
new one that reflects the new authentication journey.

If the user reauthenticates to a chain, AM updates the original session to reflect the new
authentication journey.

If the relying party requests authentication chains or trees that are not mapped in AM as valid
acr values, AM continues the grant flow. The resulting ID token will contain an acr claim with the
following values:

• 0 (zero), if the client authenticated to AM using a chain or tree that is not mapped to an acr
value.

• acr_key_string, if the client authenticated to AM using a chain or tree that is mapped to an acr
value.

If the end user authenticated to more than one chain or tree, AM will use the last chain or tree,
provided it is mapped to an acr value.

Essential Claim

Request essential acr claims when the user must authenticate to a specific chain or tree to
complete an OpenID Connect flow.

To request essential acr claims, specify the required authentication chains or trees in JSON
format in the claims parameter when requesting an ID token to the /oauth2/authorize endpoint.

Adding Authentication Requirements to ID Tokens
The Authentication Context Class Reference (acr) Claim

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 75

AM will always force the end user to authenticate to the first value in the list for which AM has a
mapping, even if the end user already authenticated using the same chain or tree.

Consider an example where the relying party requests a list of acr values, such as acr-1 acr-2 acr-
3, and AM only has acr-2 and acr-3 mapped:

AM will force the end user to authenticate to acr-2 in the following cases:

• If the end user has authenticated to either acr-2 or acr-3.

• If the end user has authenticated to any other chain or tree.

• If the end user is not authenticated.

If the user reauthenticates to a tree, AM destroys the original session and provides them with a
new one that reflects the new authentication journey.

If the user reauthenticates to a chain, AM updates the original session to reflect the new
authentication journey.

This mechanism can be used to perform step-up authentication, but AM does not consider if, for
example, the authentication level of the current session is higher than the one achievable with the
requested tree or chain.

If the relying party requests authentication chains or trees that are not mapped in AM as valid acr
values, AM returns an error and redirects to the redirect_uri value, if available.

Perform the steps in the following procedure to configure AM to honor acr claims:

To Configure AM for the acr Claim

1. In the AM console, navigate to Realms > Realm Name > Services > OAuth2 Provider > Advanced
OpenID Connect.

2. (Optional) To request acr claims using the claims parameter, enable
"claims_parameter_supported".

3. In the OpenID Connect acr_values to Auth Chain Mapping box, map an identifier (the key in the
map) to an authentication chain or tree. For example:

The identifier is the string that AM will add in the acr claim.

4. Save your changes.

Adding Authentication Requirements to ID Tokens
The Authentication Context Class Reference (acr) Claim

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 76

5. (Optional) In the Default ACR values field, specify the identifiers of the authentication trees or
chains AM should use to authenticate end users when acr values are not specified in the request.
AM treats acr values specified in this field as voluntary claims.

Acr values specified in the request will override the default values.

If a request does not specify acr values and the Default ACR values field is empty, AM
authenticates the end user with the default authentication chain or tree defined for the realm
where the OAuth 2.0 provider is configured.

Tip

Query the /oauth2/.well-known/openid-configuration endpoint to determine the acr values supported by
the OpenID provider. Mapped acr values are returned in the acr_values_supported object.

6. Save your changes.

7. (Optional) Review the "Requesting acr Claims Example".

Requesting acr Claims Example

This example assumes the following configuration:

• An authentication tree called Example is configured in AM. For more information, see "Configuring
Authentication Trees" in the Authentication and Single Sign-On Guide.

• The Example tree is mapped to the example_tree identifier in the acr_value map of the OAuth 2.0
provider. For more information, see "To Configure AM for the acr Claim".

• A public client called myClient is registered in AM with the following configuration:

• Scopes: openid profile

• Response Types: token id_token

• Grant Types: Implicit

• AM is configured as an OAuth 2.0/OpenID Provider in the top-level realm.

Perform the following steps to request acr claims:

1. Log in to the AM console, for example, as the demo user. Ensure you are not using the Example tree
to log in, and note the value of the iplanetDirectoryPro cookie.

2. In a new tab of the same browser, request an ID token using, for example, the "Implicit Grant"
flow. Perform one of the following steps:

a. Request voluntary claims with the acr_values parameter. For example:

Adding Authentication Requirements to ID Tokens
The Authentication Context Class Reference (acr) Claim

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 77

https://openam.example.com:8443/openam/oauth2/realms/root/authorize? \
client_id=myClient \
&response_type=id_token \
&scope=openid%20profile \
&redirect_uri=https://www.example.com/callback \
&acr_values=example_chain%20example_tree \
&nonce=abc123 \
&prompt=login \
&state=123abc

Note that the URL is split for readability purposes and that the prompt=login parameter has
been added. In most cases, this parameter is not required with the current implementation
of acr claims, but it is recommended to add it for compliance with the specification when you
need to force the user to re-authenticate.

For information, see the prompt parameter in the OAuth 2.0 Guide.

b. Request voluntary claims with the claims parameter.

The claims parameter expects a JSON object, such as:
{"id_token":{"acr":{"values":["example_chain","example_tree"]}}}

For example:
https://openam.example.com:8443/openam/oauth2/realms/root/authorize? \
client_id=myClient \
&response_type=id_token \
&scope=openid%20profile \
&redirect_uri=https://www.example.com/callback \
&nonce=abc123 \
&state=123abc \
&prompt=login \
&claims=%7B%22id_token%22%3A%7B%22acr%22%3A%7B%22values%22%3A%5B%22example_chain%22%2C
%22example_tree%22%5D%7D%7D%7D

Note that the URL is split for readability purposes, and that the JSON value of the claims
parameter is URL encoded.

c. Request essential claims with the claims parameter.

The claims parameter expects a JSON object, such as:
{"id_token":{"acr":{"essential":true,"values":["example_chain","example_tree"]}}}

If "essential":true is not included in the JSON, AM assumes the acr request is voluntary.

For example:

Adding Authentication Requirements to ID Tokens
The Authentication Context Class Reference (acr) Claim

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 78

https://openam.example.com:8443/openam/oauth2/realms/root/authorize? \
client_id=myClient \
&response_type=id_token \
&scope=openid%20profile \
&redirect_uri=https://www.example.com/callback \
&nonce=abc123 \
&state=123abc \
&prompt=login \
&claims=%7B%22id_token%22%3A%7B%22acr%22%3A%7B%22essential%22%3Atrue%2C%22values%22%3A%5B
%22example_chain%22%2C%22example_tree%22%5D%7D%7D%7D

Note that the URL is split for readability purposes, and that the JSON value of the claims
parameter is URL encoded.

AM redirects to the Example tree. Note that the new URL contains the following parameters:

• authIndexValue, the value of which is the Example tree.

• goto, the value of which is the URL the XUI will use to return to the authorization endpoint once
the authentication flow has finished.

• acr_sig, the value of which is a unique string that identifies this particular acr request.

3. Log in again as the demo user. Note that the value of the iplanetDirectoryPro cookie changes to
reflect the new session.

AM redirects back to the authorization endpoint, and shows you the OAuth 2.0 consent page.
Grant consent by selecting Allow. AM redirects you now to the URI specified by the redirect_uri
parameter with an ID token in the fragment.

4. Decode the ID token. It contains the acr claim with the value of example_tree, which the identifier
mapped to the Example tree in the acr_value map of the OAuth 2.0 provider:
{
 "at_hash": "3WHa52upb5ihwWVDC8a-Tw",
 "sub": "demo",
 "auditTrackingId": "fe330f16-2115-45fe-ae04-f68a9fc2ef92-65191",
 "iss": "https://openam.example.com:8443/openam/oauth2",
 "tokenName": "id_token",
 "nonce": "abc123",
 "aud": "myClient",
 "acr": "example_tree",
 "org.forgerock.openidconnect.ops": "7r1RiXbjWp1QBjJ8Uys4Ob8cwxY",
 "azp": "myClient",
 "auth_time": 1554724614,
 "realm": "/",
 "exp": 1554728218,
 "tokenType": "JWTToken",
 "iat": 1554724618
}

Adding Authentication Requirements to ID Tokens
The Authentication Method Reference (amr) Claim

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 79

The Authentication Method Reference (amr) Claim
In the OpenID Connect specification, the amr claim identifies a family of authentication methods, such
as a one-time password or multi-factor authentication.

In AM, you can map authentication modules to specific values that the relaying party understands.
For example, you could map an amr value called PWD to the LDAP module.

Unlike acr claims, relying parties do not request amr claims. As long as authentication modules are
mapped to amr values, and provided that end users log in using one of the mapped modules, AM will
return the amr claim in the ID token.

Since authentication nodes are not used on their own but as part of a tree context, you cannot map
amr values to specific authentication nodes. However, you can map an AuthType session property to an
amr value using the "Set Session Properties Node" in the Authentication and Single Sign-On Guide.
AM will add the configured amr claim to the ID token, provided the user's journey on the tree goes
through the node.

The following is an example of a decoded ID token that contains both acr and amr claims:
{
 "at_hash": "kP7U-po4xla0OYqJ60p72Q",
 "sub": "demo",
 "auditTrackingId": "ac8ecadc-140f-48a0-b3ec-ccd02d6f9c3d-183361",
 "amr": [
 "PWD"
],
 "iss": "https://openam.example.com:8443/openam/oauth2",
 "tokenName": "id_token",
 "nonce": "abc123",
 "aud": "myClient",
 "acr": "0",
 "org.forgerock.openidconnect.ops": "hM7F00xw0kzb7os_S9KdmDphosY",
 "azp": "myClient",
 "auth_time": 1554889732,
 "realm": "/",
 "exp": 1554893403,
 "tokenType": "JWTToken",
 "iat": 1554889803
}

In this example, the end user logged in with an authentication chain or tree that is not mapped to
an acr value. Therefore, AM returned "acr": "0". However, the relying party at least knows the user
logged in with an authentication method of the family PWD. The relying party can use this knowledge
to take additional actions, such as request the end user to reauthenticate using a particular chain or
tree.

See the following procedures to map amr values:

• "To Use a Set Session Properties Node to Map an amr Value"

• "To Map an Authentication Module to an amr Value"

Adding Authentication Requirements to ID Tokens
The Authentication Method Reference (amr) Claim

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 80

To Use a Set Session Properties Node to Map an amr Value

1. In the AM console, navigate to Realms > Realm Name > Services > OAuth2 Provider > Advanced
OpenID Connect.

2. In the OpenID Connect id_token amr Values to Auth Module Mappings box, map an identifier
(the key in the map) to any authentication module. The authentication module you use is not
important; AM will only use its name to map the amr, and it will not show in the ID token.

+ Example: Mapping Authentication Modules to amr Identifiers

3. Save your changes.

4. Create an authentication tree containing the "Set Session Properties Node" in the Authentication
and Single Sign-On Guide.

5. On the Set Session Properties node, configure a key called AuthType. As its value, set the name of
the authentication module you configured with the amr mapping. For example, LDAP.

+ Example: Configuring the AuthType Session Property

Adding Authentication Requirements to ID Tokens
The Authentication Method Reference (amr) Claim

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 81

Tip

To reference multiple authentication modules, separate amr values with |. For example, if both the LDAP
and the DataStore modules are mapped to amr values, set the AuthType key to the value LDAP|DataStore.

6. Go to Realms > Realm Name > Services, and add a Session Property Whitelist service if one is
not already available.

7. On the Whitelisted Session Property Names field, add the AuthType key. This will ensure that the
property can be read, edited, or deleted, from a session.

Save your changes.

To Map an Authentication Module to an amr Value

1. In the AM console, go to Realms > Realm Name > Services > OAuth2 Provider > Advanced
OpenID Connect.

2. In the OpenID Connect id_token amr Values to Auth Module Mappings box, map an identifier (the
key in the map) to an authentication module.

+ Example: Mapping Authentication Modules to amr Identifiers

Adding Authentication Requirements to ID Tokens
The Authentication Method Reference (amr) Claim

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 82

3. Save your changes.

Additional Use Cases for ID Tokens
Using ID Tokens as Session Tokens

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 83

Chapter 7

Additional Use Cases for ID Tokens
In addition to using the ID tokens in OpenID Connect flows, AM supports using ID tokens in place of
session tokens when calling REST endpoints and using ID tokens in policy evaluation.

Using ID Tokens as Session Tokens
You can authorize trusted clients to use ID tokens as the value of the iPlanetDirectoryPro cookie. This
is useful when clients need to make calls to AM endpoints, such as the authorization endpoints,
without requesting the end user to log in again.

The ID token must be issued using the Authorization Code Grant flow.

To Configure the OAuth 2.0 Service for Authorized Clients

Perform the following steps to allow clients to use ID tokens in the place of session tokens:

1. Navigate to Realms > Realm Name > Services > OAuth2 Provider > Advanced OpenID Connect.

2. Add the names to the clients that will be able to use ID tokens in place of session tokens in the
Authorized OIDC SSO Clients field.

Since these clients will act with the full authority of the end user, grant this permission to trusted
clients only.

3. Ensure that Save Ops Token is enabled.

4. Save your changes.

The following is an example of a call to the policies endpoint using an ID token instead of a session
token:

Additional Use Cases for ID Tokens
Using ID Tokens as Subjects in Policy Decision

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 84

$ curl \
--request POST
--header "Content-Type: application/json" \
--header "Accept-API-Version: protocol=1.0,resource=2.0" \
--header "iPlanetDirectoryPro: ID_TOKEN_VALUE" \
--data '{
 "resources":[
 https://www.france-site.com:8443/index.html"
],
 "subject":{
 "ssoToken": "ID_TOKEN_VALUE"
 },
 "application":"iPlanetAMWebAgentService"
}' \
"https://openam.example.com:8443/openam/json/realms/root/policies?_action=evaluate"

Using ID Tokens as Subjects in Policy Decision
You can use the ID token as a subject condition during policy evaluation to validate claims within an
ID token.

For example, you can validate that the aud claim has a value of myApplication, which identifies a
particular application or group of applications within your environment.

Note that policy evaluation does not validate the ID token, but the claims within. Your applications
should validate the ID token before requesting policy evaluation from AM.

For more information about configuring policy evaluation using the OpenID Connect/Jwt Claim type,
see "To Configure a Policy Using the AM Console" in the Authorization Guide.

OpenID Connect 1.0 Endpoints
/oauth2/userinfo

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 85

Chapter 8

OpenID Connect 1.0 Endpoints
When acting as an OpenID Connect provider, AM exposes the following endpoints:

OpenID Connect 1.0 Endpoints

Endpoint Description
/oauth2/userinfo Retrieve information about an authenticated user. It requires a valid

token issued with, at least, the openid scope (OpenID Connect userinfo
endpoint).

/oauth2/idtokeninfo Validates unencrypted ID tokens (AM-specific endpoint).
/oauth2/connect/checkSession Retrieves OpenID Connect session information (OpenID Connect Session

Management endpoint).
/oauth2/connect/endSession Invalidates OpenID Connect sessions (OpenID Connect Session

Management endpoint).
/oauth2/connect/jwk_uri Expose the public keys that clients can use to verify the signature of

client-based tokens and to encrypt OpenID Connect requests sent as a
JWT.

Tip

When AM acts as an OpenID Connect provider, the OAuth 2.0 endpoints support OpenID Connect specific
parameters, such as prompt and ui_locales.

For a complete list of the endpoints and parameters AM supports as an OAuth 2.0/OpenID Connect provider,
see "OAuth 2.0 Endpoints" and "OAuth 2.0 Administration and Supporting REST Endpoints" in the OAuth 2.0
Guide.

/oauth2/userinfo
Endpoint that returns claims about the authenticated end user, as defined in OpenID Connect Core
1.0 incorporating errata set 1.

When requesting claims, provide an access token granted in an OpenID Connect flow as an
authorization bearer header. The endpoint will return the claims associated with the scopes granted
when the access token was requested.

https://openid.net/specs/openid-connect-core-1_0.html#UserInfo
https://openid.net/specs/openid-connect-core-1_0.html#UserInfo

OpenID Connect 1.0 Endpoints
/oauth2/userinfo

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 86

You must compose the path to the user information endpoint addressing the specific realm where
AM logged in the user. For example, https://openam.example.com:8443/openam/oauth2/realms/root/realms/
subrealm1/userinfo.

The following example shows AM returning claims about a user:
$ curl \
--request GET \
--header "Authorization: Bearer U-Wjlv-w1jtpuBVWUGFV6PwI_nE" \
"https://openam.example.com:8443/openam/oauth2/realms/root/userinfo"
{
 "given_name":"Demo First Name",
 "family_name":"Demo Last Name",
 "name":"demo",
 "sub":"demo"
}

If the access token validates successfully, the endpoint returns the claims as JSON.

The user information endpoint can return claims as JSON (the default) or as a signed, encrypted, or
signed and encrypted JWT. To configure the response type, perform the following steps:

1. Navigate to Realms > Realm Name > Applications > OAuth 2.0 > Clients > Client Name >
Signing and Encryption.

2. In the User info response format drop-down menu, select the type of response required by the
client.

3. Configure the signing and/or encryption algorithms AM should use when returning claims to this
particular client in the following properties:

• User info signed response algorithm

• User info encrypted response algorithm

• User info encrypted response encryption algorithm

For more information about these properties, see "Signing and Encryption".

Note that you can configure the algorithms the OAuth 2.0/OpenID Connect provider service
supports by navigating to > Realm Name > Services > OAuth2 Provider > Advanced OpenID
Connect.

For more information about the secret IDs mapped to the OAuth 2.0/OpenID Connect provider
signing and encrypting algorithms, see "Secret ID Mapping Defaults" in the Setup and
Maintenance Guide.

Signed, and signed and encrypted JWT responses will include the iss and the aud objects.

OpenID Connect 1.0 Endpoints
/oauth2/idtokeninfo

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 87

/oauth2/idtokeninfo
AM-specific endpoint that allows OpenID Connect client relying parties to validate unencrypted ID
tokens and to retrieve claims within the token.

AM validates the tokens based on rules 1-10 in section 3.1.3.7 of the OpenID Connect Core. During
token validation, AM performs the following steps:

1. Extracts the first aud (audience) claim from the ID token. The client_id, which is passed in as an
authentication of the request, will be used as the client and validated against the aud claim.

2. Extracts the realm claim, if present, defaults to the root realm if the token was not issued by AM.

3. Looks up the client in the given realm, producing an error if it does not exist.

4. Verifies the signature of the ID token, according to the ID Token Signing Algorithm and Public key
selector settings in the client profile.

5. Verifies the issuer, audience, expiry, not-before, and issued-at claims as per the specification.

Tip

By default, the ID token information endpoint requires client authentication. You can configure it by navigating
to Realms > Realm Name Services > OAuth2 Provider > Advanced OpenID Connect and disabling the
Idtokeninfo Endpoint Requires Client Authentication switch.

The ID token information endpoint supports the following parameters:

id_token

Specifies the ID token to validate.

Required: Yes.

client_id

Specifies the client ID unique to the application making the request.

Required: Yes, when client authentication is enabled.

client_assertion

Specifies the signed JWT that the client uses as a credential when using the JWT bearer client
authentication method.

Required: A form of password or credentials is required for confidential clients when client
authentication is enabled. However, the use of the client_assertion parameter depends on the
client authentication method used. For more information, see "Authenticating OAuth 2.0 Clients"
in the OAuth 2.0 Guide

http://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation

OpenID Connect 1.0 Endpoints
/oauth2/idtokeninfo

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 88

client_assertion_type

Specifies the type of assertion when the client is authenticating to the authorization server using
JWT bearer client authentication.

Set it to urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer.

Required: A form of password or credentials is required for confidential clients when client
authentication is enabled. However, the use of the client_assertion_type parameter depends on the
client authentication method used. For more information, see "Authenticating OAuth 2.0 Clients"
in the OAuth 2.0 Guide

client_secret

Specifies the secret of the client making the request.

Required: A form of password or credentials is required for confidential clients when client
authentication is enabled. However, the use of the client_secret parameter depends on the client
authentication method used. For more information, see "Authenticating OAuth 2.0 Clients" in the
OAuth 2.0 Guide

claims

Comma-separated list of claims to return from the ID token.

Required: No.

The endpoint is always accessed from the root realm. For example, https://openam.example.com:8443/
openam/oauth2/idtokeninfo.

The following example shows AM returning ID token information:
$ curl \
--request POST \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
--data "id_token=eyJ0eXAiOiJKV1QiLCJra...7r8soMCk8A7QdQpg" \
"https://openam.example.com:8443/openam/oauth2/idtokeninfo"
 {
 "at_hash":"AvJ0dXLQgFxHn-qnqP9xmQ",
 "sub":"demo",
 "auditTrackingId":"b3f48c69-de7f-4afc-ab78-582733e5f025-156621",
 "iss":"https://openam.example.com:8443/openam/oauth2",
 "tokenName":"id_token",
 "nonce":"123abc",
 "aud":"myClient",
 "c_hash":"jMXGi-FCjUad2VQukJRcLQ",
 "acr":"0",
 "s_hash":"bKE9UspwyIPg8LsQHkJaiQ",
 "azp":"myClient",
 "auth_time":1553077105,
 "realm":"/myRealm",
 "exp":1553080707,
 "tokenType":"JWTToken",
 "iat":1553077107
}

OpenID Connect 1.0 Endpoints
/oauth2/connect/checkSession

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 89

If the ID token validates successfully, the endpoint unpacks the claims from the ID token and returns
them as JSON. You can also use an optional claims parameter in the request to return specific claims.

For example, you can run the following command to retrieve specific claims:
$ curl \
--request POST \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
--data "id_token=eyJ0eXAiOiJKV1QiLCJra...7r8soMCk8A7QdQpg" \
--data "claims=sub,exp,realm" \
"https://openam.example.com:8443/openam/oauth2/idtokeninfo"
 {
 "sub":"demo",
 "exp":1553080707,
 "realm":"/myRealm"
}

If a requested claim does not exist, no error occurs; AM will simply not present it in the response.

Note

The ID token information endpoint does not check if a token has been revoked using the /oauth2/endSession
endpoint.

/oauth2/connect/checkSession
Endpoint to check session state as per OpenID Connect Session Management 1.0 - draft 5.

The relying party client creates an invisible iframe that embeds the URL to the endpoint (by setting it
as the src attribute of the iframe tag).

The endpoint accepts postMessage API requests from the iframe, and it postMessages back with the
login status of the user in AM.

The endpoint is always accessed from the root realm. For example, https://openam.example.com:8443/
openam/oauth2/connect/checkSession.

Tip

Note that this endpoint has been removed in later versions of the OpenID Connect Session Management draft.
For an alternative method of checking session state, see "Retrieving Session State without the Check Session
Endpoint".

/oauth2/connect/endSession
Endpoint to terminate authenticated end-user sessions, as per OpenID Connect Session Management
1.0 - draft 5.

https://openid.net/specs/openid-connect-session-1_0-10.html
https://openid.net/specs/openid-connect-session-1_0-10.html
https://openid.net/specs/openid-connect-session-1_0-10.html

OpenID Connect 1.0 Endpoints
/oauth2/connect/endSession

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 90

Query the well-known configuration endpoint for the realm to determine the URL of the end session
endpoint. For example, https://openam.example.com:8443/openam/oauth2/realms/root/realms/subrealm1/.well-
known/openid-configuration.

The endpoint supports the following query parameters:

id_token_hint

The ID token corresponding to the identity of the end user the relying party is requesting to be
logged out by AM.

Required: Yes

client_id

To support ending sessions when ID tokens are encrypted, AM requires that the request to the
end session endpoint includes the client ID to which AM issued the ID token.

Failure to include the client ID will result in error; AM needs the information in the client profile
to decrypt the token.

This parameter is not compliant with the specification.

Required: Yes, if the ID token is encrypted.

post_logout_redirect_uri

The URL AM will redirect after logout.

For security reasons, the value of this parameter must match one of the values configured in the
Post Logout Redirect URIs field of the client profile.

If a logout redirection URL is specified, AM redirects the end user to it after they have been
logged out.

If a logout redirection URL is not specified, AM returns an HTTP 204 message to indicate the
user has been logged out, and does not perform more actions.

Required: No

To log out an end user from AM, perform a call to the end session endpoint and provide the access
token granted in an OpenID Connect flow as an authorization bearer header.

The following example shows AM deleting a session when an encrypted ID token is provided:
$ curl --dump-header - \
--request GET \
--header "Authorization: Bearer U-Wjlv-w1jtpuBVWUGFV6PwI_nE" \
"https://openam.example.com:8443/openam/oauth2/connect/endSession?
id_token_hint=eyJ0eXAiOiJKV1QiLCJra...&post_logout_redirect_uri=https://www.example.com:443/
logout_callback&client_id=myClient"
HTTP/1.1 204 No Content
Server: Apache-Coyote/1.1
X-Frame-Options: SAMEORIGIN
Date: Wed, 20 Mar 2019 15:47:13 GMT

OpenID Connect 1.0 Endpoints
/oauth2/connect/jwk_uri

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 91

/oauth2/connect/jwk_uri
Each realm configured for OAuth 2.0 exposes a JSON web key (JWK) URI endpoint that contains
public keys that clients can use to:

• Verify the signature of client-based access tokens and OpenID Connect ID tokens.

• Encrypt OpenID Connect ID requests to AM sent as a JWT.

By default, the endpoint exposes an internal URI relative to the AM deployment. For example, openam/
oauth2/realms/root/connect/jwk_uri.

The keys in that URI are configured in the AM secret stores. These secrets are configured by default;
delete the ones you are not planning to use so that they are not exposed on the endpoint.

In environments where secrets are centralized, you may want AM to share the URI of your secrets
API instead of the local AM endpoint. To configure it, go to Realms > Realm name > Services >
OAuth2 Provider, and add the new URI to the Remote JSON Web Key URL field.

Note

Web and Java agents use an internal OAuth 2.0 provider to connect to AM. This provider exposes the JWK
endpoint so that agents can access the key configured for the am.global.services.oauth2.oidc.agent.idtoken.
signing secret ID.

Tip

Configure the base URL source service to change the URL used in the .well-known endpoints used in OpenID
Connect 1.0 and UMA.

The following table summarizes the high-level tasks you need to complete to manage the JWK URI
endpoint in your environment:

Task Resources
Learn where to find and how to query the JWK URI endpoint.

Clients need to find the endpoint to, for example, validate tokens
signed by AM.

Note that HMAC-based algorithms, direct encryption, and AES
key wrapping encryption algorithms use the client secret instead
of a public key. Therefore, clients do not need to check the JWK
URI endpoint for those algorithms.

"To Access the Keys Exposed by the JWK
URI Endpoint"

Control which keys are displayed.

The JWK URI endpoint returns keys based on the secret
mappings configured for the relevant OAuth 2.0/OpenID
connect functionality. Therefore, to control which keys are
displayed, ensure that you only map the secrets required in your
environment.

"Configuring Digital Signatures"

OpenID Connect 1.0 Endpoints
/oauth2/connect/jwk_uri

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 92

Task Resources
Learn how to deprecate algorithms and how to rotate public
keys.

You may need to perform these tasks to replace algorithms with
more secure ones.

"Deprecating Algorithms and Rotating
Public Keys"

Customize the key ID (kid) of the exposed keys.

By default, AM generates a kid for each public key exposed in
the jwk_uri endpoint when AM is configured as an OAuth 2.0
authorization server.

You need to customize AM if any exposed keys in your
environment need a specific kid.

"Customizing Public Key IDs".

Decide if the JWK URI endpoint should display duplicated key IDs

By default, each kid exposed by the jwk_uri endpoint matches a
unique secret, as required by the RFC7517 specification.

If you have several algorithms and key types associated with one
kid, configure AM to display them individually.

"Displaying Every Algorithm and Key Type
Associated to a Key ID".

To Access the Keys Exposed by the JWK URI Endpoint

Perform the following steps to access the public keys:

1. To find the JWK URI that AM exposes, perform an HTTP GET at /oauth2/realms/root/.well-known/
openid-configuration. For example:
$ curl https://openam.example.com:8443/openam/oauth2/realms/root/.well-known/openid-configuration
{
 "request_parameter_supported": true,
 "claims_parameter_supported": false,
 "introspection_endpoint": "https://openam.example.com:8443/openam/oauth2/introspect",
 "check_session_iframe": "https://openam.example.com:8443/openam/oauth2/connect/checkSession",
 "scopes_supported": [],
 "issuer": "https://openam.example.com:8443/openam/oauth2",
 "id_token_encryption_enc_values_supported": [
 "A256GCM",
 "A192GCM",
 "A128GCM",
 "A128CBC-HS256",
 "A192CBC-HS384",
 "A256CBC-HS512"
],
...
 "jwks_uri": "https://openam.example.com:8443/openam/oauth2/connect/jwk_uri",
 "subject_types_supported": [
 "public"
],
...
}

https://www.rfc-editor.org/rfc/rfc7517.html#section-4.5

OpenID Connect 1.0 Endpoints
Configuring Digital Signatures

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 93

By default, AM exposes the JWK URI as an endpoint relative to the deployment URI. For example,
https://openam.example.com:8443/openam/oauth2/realms/root/connect/jwk_uri.

In environments where secrets are centralized, you may want AM to share the URI of your
secrets API instead of the local AM endpoint.

To configure it, navigate to Realms > Realm name > Services > OAuth2 Provider, and add the
new URI to the Remote JSON Web Key URL field.

2. Perform an HTTP GET at the JWK URI to get the relevant public keys. For example:
$ curl https://openam.example.com:8443/openam/oauth2/realms/root/connect/jwk_uri
{
"keys":[
 {
 "kty":"EC",
 "kid":"I4x/IijvdDsUZMghwNq2gC/7pYQ=",
 "use":"sig",
 "x5t":"GxQ9K-sxpsH487eSkJ7lE_SQodk",
 "x5c":[
 "MIIB/zCCAYYCCQDS7UWmBdQtETAJ0mN0TZL7/MaY..."
],
 "x":"k5wSvW_6JhOuCj-9PdDWdEA4oH90RSmC2GTliiUHAhXj6rmTdE2S-_zGmMFxufuV",
 "y":"XfbR-tRoVcZMCoUrkKtuZUIyfCgAy8b0FWnPZqevwpdoTzGQBOXSNi6uItN_o4tH",
 "crv":"P-384"
 },
 ...
]
}

Configuring Digital Signatures

AM supports digital signature algorithms that secure the integrity of its JSON payload, which is
outlined in the JSON Web Algorithm specification (RFC 7518).

AM supports the signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm) Header
Parameter Values for JWS.

Tip

For an example on how to generate an ECDSA public and private key pair, see the first step in "Configuring
Elliptic Curve Digital Signature Algorithms" in the Authentication and Single Sign-On Guide.

To Configure Digital Signatures for OpenID Connect Tokens

Perform the steps in this procedure to configure the signing algorithm AM should use to sign OpenID
Connect tokens:

1. Navigate to Realms > Realm Name > Services > OAuth2 Provider.

https://www.rfc-editor.org/info/rfc7518
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms#section-3.1
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms#section-3.1

OpenID Connect 1.0 Endpoints
Configuring Digital Signatures

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 94

2. In the OpenID Connect tab, ensure that the ID Token Signing Algorithms supported list has the
signing algorithms your environment requires.

Note that the alias mapped to the algorithms are defined in the secret stores, as shown in the
table below:

Secret ID Mappings for Signing OpenID Connect Tokens

Secret ID Default Alias Algorithms a

am.services.oauth2.oidc.signing.ES256 es256test ES256
am.services.oauth2.oidc.signing.ES384 es384test ES384
am.services.oauth2.oidc.signing.ES512 es512test ES512
am.services.oauth2.oidc.signing.RSA rsajwtsigningkey PS256

PS384
PS512
RS256
RS384
RS512

a The following applies to confidential clients only:

If you select an HMAC algorithm for signing ID tokens (HS256, HS384, or HS512), the Client Secret property value in the
OAuth 2.0 Client is used as the HMAC secret instead of an entry from the secret stores.

Since the HMAC secret is shared between AM and the client, a malicious user compromising the client could potentially
create tokens that AM would trust. Therefore, to protect against misuse, AM also signs the token using a non-shared
signing key configured in the am.services.oauth2.jwt.authenticity.signing secret ID.

By default, secret IDs are mapped to demo keys contained in the default keystore provided
with AM and mapped to the default-keystore keystore secret store. Use these keys for demo and
test purposes only. For production environments, replace the secrets as required and create
mappings for them in a secret store configured in AM.

For more information about managing secret stores and mapping secret IDs to aliases, see
"Configuring Secrets, Certificates, and Keys" in the Setup and Maintenance Guide.

3. (Optional) If the client is configured in AM, navigate to Realms > Realm Name > Applications >
OAuth 2.0 > Client Name.

4. In the ID Token Signing Algorithm field, enter the signing algorithm that AM will use to sign the
ID token for this client.

Note that the OAuth 2.0 provider must support signing with the chosen algorithm.

5. Save your changes.

AM is ready to sign ID tokens with the algorithm you configured.

OpenID Connect 1.0 Endpoints
Deprecating Algorithms and Rotating Public Keys

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 95

Tip

If you chose a non-HMAC-based algorithm, the client will need to make a request to AM's JWK URI
endpoint for the realm to recover the signing public key they can use to validate the ID tokens.

For more information, see "/oauth2/connect/jwk_uri".

Deprecating Algorithms and Rotating Public Keys

With signing and encryption methods changing so rapidly, during the lifecycle of your OAuth 2.0
environment you will need to deprecate older, less secure signing and/or encrypting algorithms in
favor of new ones.

In the same way, you will rotate the keys AM uses for signing and encryption if you suspect they may
have been leaked or just due to security policies, such as deprecating algorithms or because they
have reached the end of their lifetime.

The keys you expose in the JWK URI endpoint should reflect the algorithms currently supported by
AM as well as the deprecated ones. Otherwise, clients still using tokens signed with deprecated keys
would not be able to validate them.

This is why deprecating supported algorithms in the OAuth 2.0/OpenID Connect provider is a two-
step process:

1. Remove the old algorithm from the OAuth 2.0 provider supported algorithm list. This stops new
clients from registering with that algorithm.

2. After a grace period, remove the secret mapping associated to that algorithm. This removes the
associated public keys from the JWK URI endpoint.

To Deprecate Supported Algorithms and their Keys

Perform the steps in this procedure to deprecate an algorithm and its related keys. If you only want
to deprecate keys or rotate them as part of your environment's security policies, see "Mapping
Secrets" in the Setup and Maintenance Guide instead.

1. (Optional) Configure the new algorithm, if required.

a. Navigate to Realms > Realm Name > Services > OAuth2 Provider > OpenID Connect.

b. (Optional) In the ID Token Signing Algorithm supported field, add the new signing algorithm,
if not already present.

c. (Optional) In the ID Token Encryption Algorithms supported field, add the new encryption
algorithm, if not already present.

OpenID Connect 1.0 Endpoints
Customizing Public Key IDs

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 96

d. Save your changes.

2. (Optional) Configure secret ID mappings for the keys using the new algorithm, if required.

For more information, see "Configuring Secret Stores" in the Setup and Maintenance Guide.

3. Remove the algorithm to be deprecated from the relevant OAuth 2.0 provider algorithm list:

a. Navigate to Realms > Realm Name > Services > OAuth2 Provider > OpenID Connect.

b. (Optional) In the ID Token Signing Algorithm supported field, remove the deprecated signing
algorithm.

c. (Optional) In the ID Token Encryption Algorithms supported field, remove the deprecated
encryption algorithm.

d. Save your changes.

4. Decide on a grace period. For example, a month. During this period both the deprecated and the
new algorithms/keys are supported.

New clients cannot register with the deprecated algorithms and are forced to use a supported
algorithm. However, since the deprecated keys are still mapped to secret IDs, existing clients still
can use them to validate active tokens and encrypt requests.

Existing clients must change their configuration during the grace period to use one of the
supported algorithms.

5. After the grace period, remove the secret ID mappings relevant to the deprecated algorithm.

For more information about secret mappings, see "Mapping Secrets" in the Setup and
Maintenance Guide.

Customizing Public Key IDs
By default, AM generates a key ID (kid) for each public key exposed in the jwk_uri URI when AM is
configured as an OAuth 2.0 authorization server.

For keys stored in a keystore or HSM secret store, you can customize how key ID values are
determined by writing an implementation of the KeyStoreKeyIdProvider interface and configuring it in
AM:

To Customize Public Key IDs

Perform the following steps:

1. Write your own implementation of the KeyStoreKeyIdProvider interface that provides a specific key
ID for a provided public key. For more information, see the KeyStoreKeyIdProvider interface in the
AM 6.5.5 Java API Specification.

../apidocs?org/forgerock/openam/secrets/KeyStoreKeyIdProvider.html

OpenID Connect 1.0 Endpoints
Displaying Every Algorithm and Key Type Associated to a Key ID

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 97

2. Log in to the AM console on the service provider as a top-level administrative user, such as
amAdmin.

3. Configure AM as an OAuth 2.0/OpenID Connect Provider, if not done already. For more
information, see "Configuring AM for OAuth 2.0" in the OAuth 2.0 Guide.

4. Navigate to Configure > Server Defaults > Advanced.

5. Add an advanced server property called org.forgerock.openam.secrets.keystore.keyid.provider, whose
value is the fully qualified name of the class you wrote in previous steps. For example:
org.forgerock.openam.secrets.keystore.keyid.provider =
 com.mycompany.am.secrets.CustomKeyStoreKeyIdProvider

6. Restart the AM instance or the container in which it runs.

7. Verify that the customized key IDs are displayed by navigating to the OAuth 2.0 authorization
server's jwk_uri URI. For example, https://openam.example.com:8443/openam/oauth2/connect/jwk_uri.

Displaying Every Algorithm and Key Type Associated to a Key ID

By default, each key ID (kid) exposed by the jwk_uri endpoint matches a unique secret, as
recommended by the RFC7517 specification. This means that each kid is of a particular key type, and
uses a particular algorithm.

If you have several algorithms and key types associated with one kid, configure the JWK URI endpoint
to display them as different keys in the JWK. Note that when including all combinations associated
with a kid, that kid does not uniquely identify a particular secret.

To Display Every Algorithm and Key Type Associated to a Key ID

1. Go to Realms > Realm Name > Services > OAuth2 Provider > Advanced OpenID Connect.

2. Enable Include all kty and alg combinations in jwk_uri.

3. Save your changes.

4. Verify that you can now see duplicate kid entries for different combinations of algorithms and key
types.

For more information, see "To Access the Keys Exposed by the JWK URI Endpoint".

https://www.rfc-editor.org/rfc/rfc7517.html#section-4.5

Reference
OpenID Connect 1.0 Standards

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 98

Chapter 9

Reference
This reference section covers settings and other information relating to OpenID Connect 1.0 support
in AM.

OpenID Connect 1.0 Standards
AM implements the following RFCs, Internet-Drafts, and standards relating to OpenID Connect 1.0:

OpenID Connect 1.0

AM can be configured to play the role of OpenID provider. The OpenID Connect specifications
depend on OAuth 2.0, JSON Web Token, Simple Web Discovery and related specifications. The
following specifications make up OpenID Connect 1.0.

• OpenID Connect Core 1.0 defines core OpenID Connect 1.0 features.

Note

In section 5.6 of the specification, AM supports Normal Claims. The optional Aggregated Claims and
Distributed Claims representations are not supported by AM.

• OpenID Connect Client Initiated Backchannel Authentication Flow - Core 1.0 draft-02 defines
how clients can initiate authentication and gather consent on a decoupled device from the
authentication consumer device.

AM applies the guidelines suggested by the OpenID Financial-grade API (FAPI) Working Group
to the implementation of CIBA.

As such, the following implementation decisions apply to CIBA support in AM:

• AM only supports the CIBA "poll" mode, not the "push" or "ping" modes.

• AM requires use of confidential clients for CIBA.

• AM requires use of signed JSON-web tokens (JWT) to pass parameters, using one of the
following algorithms:

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

http://openid.net/connect/
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://openid.net/wg/fapi/

Reference
AM As an Identity Provider to Another AM Example

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 99

• PS256 - RSASSA-PSS using SHA-256.

Plain JSON or form parameters for CIBA-related data is not supported.

• OpenID Connect Discovery 1.0 defines how clients can dynamically recover information about
OpenID providers.

• OpenID Connect Dynamic Client Registration 1.0 defines how clients can dynamically register
with OpenID providers.

• OpenID Connect Session Management 1.0- Draft 05 describes how to manage OpenID Connect
sessions, including logout.

• OpenID Connect Session Management 1.0- Draft 10 describes how to manage OpenID Connect
sessions, including logout.

• OAuth 2.0 Multiple Response Type Encoding Practices defines additional OAuth 2.0 response
types used in OpenID Connect.

• OAuth 2.0 Form Post Response Mode defines how OpenID providers return OAuth 2.0
Authorization Response parameters in auto-submitting forms.

OpenID Connect 1.0 also provides implementer's guides for client developers.

• OpenID Connect Basic Client Implementer's Guide 1.0

• OpenID Connect Implicit Client Implementer's Guide 1.0

AM As an Identity Provider to Another AM Example
The following example shows how to set up an AM instance to act as an OAuth2/OpenID Connect
provider to another AM instance.

Prerequisites

• Two AM instances configured in different cookie domains. For example, https://server.example.
com:8443/openam and https://client.example.net:8443/openam.

• An identity, for example, test, must exist in https://server.example.com:8443/openam.

Perform the steps in the following procedure to configure the AM instances:

To Set Up an OpenID Connect Flow Between AM Instances

1. On https://server.example.com:8443/openam, navigate to Realms > Realm Name.

2. On the Common Tasks Dashboard, select Configure OAuth Provider. Then, select Configure
OpenID Connect.

https://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html
https://openid.net/specs/openid-connect-session-1_0-05.html
https://openid.net/specs/openid-connect-session-1_0-10.html
https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
https://openid.net/specs/openid-connect-basic-1_0.html
https://openid.net/specs/openid-connect-implicit-1_0.html

Reference
AM As an Identity Provider to Another AM Example

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 100

3. On the configuration wizard, keep the default values and select Create.

4. Navigate to Realms > Realm Name > Applications > OAuth 2.0 and select Add Client.

5. Configure the client with the following settings:

• Client ID: myClient

• Client secret: forgerock

• Scope(s): openid profile email

6. On https://client.example.net:8443/openam, navigate to Realms > Realm Name.

7. On the Common Tasks dashboard, select Configure Social Authentication. Then, select Configure
Other Authentication.

8. Configure the social authentication provider with the following settings:

• OpenID Discovery URL: https://server.example.com:8443/openam/oauth2/.well-known/openid-
configuration

• Provider Name: amServer

• Image URL/Path: http://tinyurl.com/openam-logo

• Client ID: myClient

• Client Secret and Confirm Client Secret: forgerock

Keep the default value of the Redirect URL field, for example, https://client.example.net:8443/
openam/oauth2c/OAuthProxy.jsp, and copy it to the clipboard.

9. On https://server.example.com:8443/openam, navigate to Realms > Realm Name > Authentication >
Modules and select amServerSocialAuthentication.

10. On the Account Provisioning tab, enable Create account if it does not exist.

11. Navigate to Realms > Realm Name > Applications > OAuth 2.0 > myClient.

12. Configure the following settings on the client:

• Redirect URIs: Paste the value of the Redirect URL field from the client. For example, https://
client.example.net:8443/openam/oauth2c/OAuthProxy.jsp.

• Client Name: AM2

• Display Name: AM2

• Display Description: AM2 Instance Client

13. Logout from https://client.example.net:8443/openam and return to the login page.

Reference
OAuth2 Provider

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 101

You should be able to log in to https://client.example.net:8443/openam with the test user by using the
AM logo to start the OpenID Connect flow.

OAuth2 Provider
amster service name: OAuth2Provider

Global Attributes
The following settings appear on the Global Attributes tab:

Token Blacklist Cache Size

Number of blacklisted tokens to cache in memory to speed up blacklist checks and reduce load on
the CTS.

Default value: 10000

amster attribute: blacklistCacheSize

Blacklist Poll Interval (seconds)

How frequently to poll for token blacklist changes from other servers, in seconds.

How often each server will poll the CTS for token blacklist changes from other servers. This
is used to maintain a highly compressed view of the overall current token blacklist improving
performance. A lower number will reduce the delay for blacklisted tokens to propagate to all
servers at the cost of increased CTS load. Set to 0 to disable this feature completely.

Default value: 60

amster attribute: blacklistPollInterval

Blacklist Purge Delay (minutes)

Length of time to blacklist tokens beyond their expiry time.

Allows additional time to account for clock skew to ensure that a token has expired before it is
removed from the blacklist.

Default value: 1

amster attribute: blacklistPurgeDelay

Client-Based Grant Token Upgrade Compatibility Mode

Enable AM to consume and create client-based OAuth 2.0 tokens in two different formats
simultaneously.

https://backstage.forgerock.com/docs/amster/6.5/entity-reference/#sec-amster-entity-oauth2provider

Reference
Global Attributes

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 102

Enable this option when upgrading AM to allow the new instance to create and consume client-
based OAuth 2.0 tokens in both the previous format, and the new format. Disable this option once
all AM instances in the cluster have been upgraded.

Default value: false

amster attribute: statelessGrantTokenUpgradeCompatibilityMode

CTS Storage Scheme

Storage scheme to be used when storing OAuth2 tokens to CTS.

In order to support rolling upgrades, this should be set to the latest storage scheme supported by
all AM instances within your cluster. Select the latest storage scheme once all AM instances in
the cluster have been upgraded.

One-to-One Storage Scheme

Under this storage scheme, each OAuth2 token maps to an individual CTS entry.

This storage scheme is deprecated.

Grant-Set Storage Scheme

Under this storage scheme, multiple authorization code, access token and refresh token for a
given OAuth2 client and resource owner can be stored within a single CTS entry.

The Grant-Set storage scheme is more efficient than the One-to-One storage scheme so should be
used once all servers have been upgraded to a version which supports this storage scheme

The possible values for this property are:

• CTS_ONE_TO_ONE_MODEL. One-to-One Storage Scheme

• CTS_GRANT_SET_MODEL. Grant-Set Storage Scheme

Default value: CTS_ONE_TO_ONE_MODEL

amster attribute: storageScheme

Enforce JWT Unreasonable Lifetime

Enable the enforcement of JWT token unreasonable lifetime during validation.

The JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants
specification (https://www.rfc-editor.org/rfc/rfc7523.html#section-3) states that an authorization
server may reject JWTs with an "exp" claim value that is unreasonably far in the future and an
"iat" claim value that is unreasonably far in the past. This enforcement may be disabled, but
should only be done if the security implications have been evaluated.

Default value: true

Reference
Core

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 103

amster attribute: jwtTokenLifetimeValidationEnabled

JWT Unreasonable Lifetime (seconds)

Specify the lifetime (in seconds) of a JWT which should be considered unreasonable and rejected
by validation.

The JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants
specification (https://www.rfc-editor.org/rfc/rfc7523.html#section-3) states that an authorization
server may reject JWTs with an "exp" claim value that is unreasonably far in the future and an
"iat" claim value that is unreasonably far in the past. During token validation AM enforces that
the token must expire within the specified duration and if the "iat" claim value is present, the
token must not be older than the specified duration.

Default value: 86400

amster attribute: jwtTokenUnreasonableLifetime

Core
The following settings appear on the Core tab:

Use Client-Based Access & Refresh Tokens

When enabled, AM issues access and refresh tokens that can be inspected by resource servers.

Default value: false

amster attribute: statelessTokensEnabled

Authorization Code Lifetime (seconds)

The time an authorization code is valid for, in seconds.

Default value: 120

amster attribute: codeLifetime

Refresh Token Lifetime (seconds)

The time in seconds a refresh token is valid for. If this field is set to -1, the refresh token will
never expire.

Default value: 604800

amster attribute: refreshTokenLifetime

Access Token Lifetime (seconds)

The time an access token is valid for, in seconds. Note that if you set the value to 0, the access
token will not be valid. A maximum lifetime of 600 seconds is recommended.

Reference
Core

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 104

Default value: 3600

amster attribute: accessTokenLifetime

Issue Refresh Tokens

Whether to issue a refresh token when returning an access token.

Default value: true

amster attribute: issueRefreshToken

Issue Refresh Tokens on Refreshing Access Tokens

Whether to issue a refresh token when refreshing an access token.

Default value: true

amster attribute: issueRefreshTokenOnRefreshedToken

Use Policy Engine for Scope decisions

With this setting enabled, the policy engine is consulted for each scope value that is requested.

If a policy returns an action of GRANT=true, the scope is consented automatically, and the
user is not consulted in a user-interaction flow. If a policy returns an action of GRANT=false,
the scope is not added to any resulting token, and the user will not see it in a user-interaction
flow. If no policy returns a value for the GRANT action, then if the grant type is user-facing (i.e.
authorization or device code flows), the user is asked for consent (or saved consent is used), and
if the grant type is not user-facing (password or client credentials), the scope is not added to any
resulting token.

Default value: false

amster attribute: usePolicyEngineForScope

OAuth2 Access Token Modification Script

The script that is executed when issuing an access token. The script can change the access
token's internal data structure to include or exclude particular fields.

The possible values for this property are:

• d22f9a0c-426a-4466-b95e-d0f125b0d5fa. OAuth2 Access Token Modification Script

• [Empty]. --- Select a script ---

Default value: d22f9a0c-426a-4466-b95e-d0f125b0d5fa

amster attribute: accessTokenModificationScript

Reference
Advanced

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 105

Advanced

The following settings appear on the Advanced tab:

Custom Login URL Template

Custom URL for handling login, to override the default AM login page.

Supports Freemarker syntax, with the following variables:

Variable Description
gotoUrl The URL to redirect to after login.
acrValues The Authentication Context Class Reference (acr)

values for the authorization request.
realm The AM realm the authorization request was made

on.
module The name of the AM authentication module

requested to perform resource owner
authentication.

service The name of the AM authentication chain requested
to perform resource owner authentication.

locale A space-separated list of locales, ordered by
preference.

The following example template redirects users to a non-AM front end to handle login, which will
then redirect back to the /oauth2/authorize endpoint with any required parameters:

http://mylogin.com/login?goto=${goto}<#if acrValues??>&acr_values=${acrValues}</#if><#if realm??
>&realm=${realm}</#if><#if module??>&module=${module}</#if><#if service??>&service=${service}</#if><#if
 locale??>&locale=${locale}</#if>

NOTE: Default AM login page is constructed using "Base URL Source" service.

amster attribute: customLoginUrlTemplate

Scope Implementation Class

The class that contains the required scope implementation, must implement the org.forgerock.
oauth2.core.ScopeValidator interface.

Default value: org.forgerock.openam.oauth2.OpenAMScopeValidator

amster attribute: scopeImplementationClass

Response Type Plugins

List of plugins that handle the valid response_type values.

Reference
Advanced

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 106

OAuth 2.0 clients pass response types as parameters to the OAuth 2.0 Authorization endpoint (/
oauth2/authorize) to indicate which grant type is requested from the provider. For example, the
client passes code when requesting an authorization code, and token when requesting an access
token.

Values in this list take the form response-type|plugin-class-name.

Default value:

code|org.forgerock.oauth2.core.AuthorizationCodeResponseTypeHandler
device_code|org.forgerock.oauth2.core.TokenResponseTypeHandler
token|org.forgerock.oauth2.core.TokenResponseTypeHandler

amster attribute: responseTypeClasses

User Profile Attribute(s) the Resource Owner is Authenticated On

Names of profile attributes that resource owners use to log in. You can add others to the default,
for example mail.

Default value: uid

amster attribute: authenticationAttributes

User Display Name attribute

The profile attribute that contains the name to be displayed for the user on the consent page.

Default value: cn

amster attribute: displayNameAttribute

Supported Scopes

The set of supported scopes, with translations.

Scopes may be entered as simple strings or pipe-separated strings representing the internal
scope name, locale, and localized description.

For example: read|en|Permission to view email messages in your account

Locale strings are in the format: language_country_variant, for example en, en_GB, or en_US_WIN.

If the locale and pipe is omitted, the description is displayed to all users that have undefined
locales.

If the description is also omitted, nothing is displayed on the consent page for the scope. For
example specifying read| would allow the scope read to be used by the client, but would not
display it to the user on the consent page when requested.

Reference
Advanced

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 107

amster attribute: supportedScopes

Subject Types supported

List of subject types supported. Valid values are:

• public - Each client receives the same subject (sub) value.

• pairwise - Each client receives a different subject (sub) value, to prevent correlation between
clients.

Default value: public

amster attribute: supportedSubjectTypes

Default Client Scopes

List of scopes a client will be granted if they request registration without specifying which scopes
they want. Default scopes are NOT auto-granted to clients created through the AM console.

amster attribute: defaultScopes

OAuth2 Token Signing Algorithm

Algorithm used to sign client-based OAuth 2.0 tokens in order to detect tampering.

AM supports signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm) Header
Parameter Values for JWS:

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

The possible values for this property are:

• HS256

• HS384

• HS512

• RS256

https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1
https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1

Reference
Advanced

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 108

• RS384

• RS512

• ES256

• ES384

• ES512

• PS256

• PS384

• PS512

Default value: HS256

amster attribute: tokenSigningAlgorithm

Client-Based Token Compression

Whether client-based access and refresh tokens should be compressed.

amster attribute: tokenCompressionEnabled

Encrypt Client-Based Tokens

Whether client-based access and refresh tokens should be encrypted.

Enabling token encryption will disable token signing as encryption is performed using direct
symmetric encryption.

Default value: false

amster attribute: tokenEncryptionEnabled

Subject Identifier Hash Salt

If pairwise subject types are supported, it is STRONGLY RECOMMENDED to change this value.
It is used in the salting of hashes for returning specific sub claims to individuals using the same
request_uri or sector_identifier_uri.

For example, you might set this property to: changeme

amster attribute: hashSalt

Code Verifier Parameter Required

If enabled, requests using the authorization code grant require a code_challenge attribute.

For more information, read the specification for this feature.

https://www.rfc-editor.org/info/rfc7636

Reference
Advanced

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 109

The possible values for this property are:

• true. All requests

• public. Requests from all public clients

• passwordless. Requests from all passwordless public clients

• false. No requests

Default value: false

amster attribute: codeVerifierEnforced

Modified Timestamp Attribute Name

The identity Data Store attribute used to return modified timestamp values.

This attribute is paired together with the Created Timestamp Attribute Name attribute
(createdTimestampAttribute). You can leave both attributes unset (default) or set them both. If you
set only one attribute and leave the other blank, the access token fails with a 500 error.

For example, when you configure AM as an OpenID Connect Provider in a Mobile Connect
application and use DS as an identity data store, the client accesses the userinfo endpoint to
obtain the updated_at claim value in the ID token. The updated_at claim obtains its value from the
modifiedTimestampAttribute attribute in the user profile. If the profile has never been modified the
updated_at claim uses the createdTimestampAttribute attribute.

amster attribute: modifiedTimestampAttribute

Created Timestamp Attribute Name

The identity Data Store attribute used to return created timestamp values.

amster attribute: createdTimestampAttribute

Password Grant Authentication Service

The authentication service (chain or tree) that will be used to authenticate the username and
password for the resource owner password credentials grant type.

The possible values for this property are:

• [Empty]

• ldapService

• amsterService

• Example

• Agent

Reference
Advanced

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 110

• RetryLimit

• PersistentCookie

• HmacOneTimePassword

• Facebook-ProvisionIDMAccount

• Google-AnonymousUser

• Google-DynamicAccountCreation

amster attribute: passwordGrantAuthService

Enable Auth Module Messages for Password Credentials Grant

If enabled, authentication module failure messages are used to create Resource Owner Password
Credentials Grant failure messages. If disabled, a standard authentication failed message is used.

The Password Grant Type requires the grant_type=password parameter.

Default value: false

amster attribute: moduleMessageEnabledInPasswordGrant

Grant Types

The set of Grant Types (OAuth2 Flows) that are permitted to be used by this client.

If no Grant Types (OAuth2 Flows) are configured nothing will be permitted.

Default value:

implicit
urn:ietf:params:oauth:grant-type:saml2-bearer
refresh_token
password
client_credentials
urn:ietf:params:oauth:grant-type:device_code
authorization_code
urn:openid:params:grant-type:ciba
urn:ietf:params:oauth:grant-type:uma-ticket
urn:ietf:params:oauth:grant-type:jwt-bearer

amster attribute: grantTypes

Trusted TLS Client Certificate Header

HTTP Header to receive TLS client certificates when TLS is terminated at a proxy.

Leave blank if not terminating TLS at a proxy. Ensure that the proxy is configured to strip this
headerfrom incoming requests. Best practice is to use a random string.

Reference
Client Dynamic Registration

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 111

amster attribute: tlsClientCertificateTrustedHeader

Support TLS Certificate-Bound Access Tokens

Whether to bind access tokens to the client certificate when using TLS client certificate
authentication.

Default value: true

amster attribute: tlsCertificateBoundAccessTokensEnabled

Client Dynamic Registration

The following settings appear on the Client Dynamic Registration tab:

Require Software Statement for Dynamic Client Registration

When enabled, a software statement JWT containing at least the iss (issuer) claim must be
provided when registering an OAuth 2.0 client dynamically.

Default value: false

amster attribute: dynamicClientRegistrationSoftwareStatementRequired

Required Software Statement Attested Attributes

The client attributes that are required to be present in the software statement JWT when
registering an OAuth 2.0 client dynamically. Only applies if Require Software Statements for
Dynamic Client Registration is enabled.

Leave blank to allow any attributes to be present.

Default value: redirect_uris

amster attribute: requiredSoftwareStatementAttestedAttributes

Allow Open Dynamic Client Registration

Allow clients to register without an access token. If enabled, you should consider adding some
form of rate limiting. For more information, see Client Registration in the OpenID Connect
specification.

Default value: false

amster attribute: allowDynamicRegistration

Generate Registration Access Tokens

Whether to generate Registration Access Tokens for clients that register by using open dynamic
client registration. Such tokens allow the client to access the Client Configuration Endpoint as

http://openid.net/specs/openid-connect-registration-1_0.html#ClientRegistration
http://openid.net/specs/openid-connect-registration-1_0.html#ClientConfigurationEndpoint

Reference
OpenID Connect

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 112

per the OpenID Connect specification. This setting has no effect if Allow Open Dynamic Client
Registration is disabled.

Default value: true

amster attribute: generateRegistrationAccessTokens

Scope to give access to dynamic client registration

Mandatory scope required when registering a new OAuth2 client.

Default value: dynamic_client_registration

amster attribute: dynamicClientRegistrationScope

OpenID Connect
The following settings appear on the OpenID Connect tab:

OIDC Claims Script

The script that is run when issuing an ID token or making a request to the userinfo endpoint
during OpenID requests.

The script gathers the scopes and populates claims, and has access to the access token, the user's
identity and, if available, the user's session.

The possible values for this property are:

• OIDC Claims Script

Default value: OIDC Claims Script

amster attribute: oidcClaimsScript

ID Token Signing Algorithms supported

Algorithms supported to sign OpenID Connect id_tokens.

AM supports signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm) Header
Parameter Values for JWS:

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1
https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1

Reference
OpenID Connect

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 113

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

• RS384 - RSASSA-PKCS-v1_5 using SHA-384.

• RS512 - RSASSA-PKCS-v1_5 using SHA-512.

• PS256 - RSASSA-PSS using SHA-256.

• PS384 - RSASSA-PSS using SHA-384.

• PS512 - RSASSA-PSS using SHA-512.

Default value:

PS384
ES384
RS384
HS256
HS512
ES256
RS256
HS384
ES512
PS256
PS512
RS512

amster attribute: supportedIDTokenSigningAlgorithms

ID Token Encryption Algorithms supported

Encryption algorithms supported to encrypt OpenID Connect ID tokens in order to hide its
contents.

AM supports the following ID token encryption algorithms:

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• RSA1_5 - RSA with PKCS#1 v1.5 padding.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• dir - Direct encryption with AES using the hashed client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

Default value:

Reference
OpenID Connect

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 114

RSA-OAEP
RSA-OAEP-256
A128KW
A256KW
RSA1_5
dir
A192KW

amster attribute: supportedIDTokenEncryptionAlgorithms

ID Token Encryption Methods supported

Encryption methods supported to encrypt OpenID Connect ID tokens in order to hide its contents.

AM supports the following ID token encryption algorithms:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default value:

A256GCM
A192GCM
A128GCM
A128CBC-HS256
A192CBC-HS384
A256CBC-HS512

amster attribute: supportedIDTokenEncryptionMethods

Supported Claims

Set of claims supported by the OpenID Connect /oauth2/userinfo endpoint, with translations.

Claims may be entered as simple strings or pipe separated strings representing the internal claim
name, locale, and localized description.

For example: name|en|Your full name..

Locale strings are in the format: language + "_" + country + "_" + variant, for example en, en_GB,
or en_US_WIN. If the locale and pipe is omitted, the description is displayed to all users that have
undefined locales.

If the description is also omitted, nothing is displayed on the consent page for the claim. For
example specifying family_name| would allow the claim family_name to be used by the client, but
would not display it to the user on the consent page when requested.

amster attribute: supportedClaims

Reference
Advanced OpenID Connect

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 115

OpenID Connect JWT Token Lifetime (seconds)

The amount of time the JWT will be valid for, in seconds.

Default value: 3600

amster attribute: jwtTokenLifetime

Advanced OpenID Connect

The following settings appear on the Advanced OpenID Connect tab:

Remote JSON Web Key URL

The Remote URL where the providers JSON Web Key can be retrieved.

If this setting is not configured, then AM provides a local URL to access the public key of the
private key used to sign ID tokens.

amster attribute: jkwsURI

Idtokeninfo Endpoint Requires Client Authentication

When enabled, the /oauth2/idtokeninfo endpoint requires client authentication if the signing
algorithm is set to HS256, HS384, or HS512.

Default value: true

amster attribute: idTokenInfoClientAuthenticationEnabled

Enable "claims_parameter_supported"

If enabled, clients will be able to request individual claims using the claims request parameter, as
per section 5.5 of the OpenID Connect specification.

Default value: false

amster attribute: claimsParameterSupported

OpenID Connect acr_values to Auth Chain Mapping

Maps OpenID Connect ACR values to authentication chains. For more details, see the acr_values
parameter in the OpenID Connect authentication request specification.

amster attribute: loaMapping

Default ACR values

Default requested Authentication Context Class Reference values.

http://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter
http://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
http://openid.net/specs/openid-connect-core-1_0.html#AuthRequest

Reference
Advanced OpenID Connect

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 116

List of strings that specifies the default acr values that the OP is being requested to use for
processing requests from this Client, with the values appearing in order of preference. The
Authentication Context Class satisfied by the authentication performed is returned as the
acr Claim Value in the issued ID Token. The acr Claim is requested as a Voluntary Claim by
this parameter. The acr_values_supported discovery element contains a list of the acr values
supported by this server. Values specified in the acr_values request parameter or an individual
acr Claim request override these default values.

amster attribute: defaultACR

OpenID Connect id_token amr Values to Auth Module Mappings

Specify amr values to be returned in the OpenID Connect id_token. Once authentication has
completed, the authentication modules that were used from the authentication service will be
mapped to the amr values. If you do not require amr values, or are not providing OpenID Connect
tokens, leave this field blank.

amster attribute: amrMappings

Always Return Claims in ID Tokens

If enabled, include scope-derived claims in the id_token, even if an access token is also returned
that could provide access to get the claims from the userinfo endpoint.

If not enabled, if an access token is requested the client must use it to access the userinfo
endpoint for scope-derived claims, as they will not be included in the ID token.

Default value: false

amster attribute: alwaysAddClaimsToToken

Store Ops Tokens

Whether AM will store the ops tokens corresponding to OpenID Connect sessions in the CTS
store. Note that session management related endpoints will not work when this setting is
disabled.

Default value: true

amster attribute: storeOpsTokens

Request Parameter Signing Algorithms Supported

Algorithms supported to verify signature of Request parameterAM supports signing algorithms
listed in JSON Web Algorithms (JWA): "alg" (Algorithm) Header Parameter Values for JWS:

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1

Reference
Advanced OpenID Connect

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 117

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

Default value:

PS384
ES384
RS384
HS256
HS512
ES256
RS256
HS384
ES512
PS256
PS512
RS512

amster attribute: supportedRequestParameterSigningAlgorithms

Request Parameter Encryption Algorithms Supported

Encryption algorithms supported to decrypt Request parameter.

AM supports the following ID token encryption algorithms:

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• RSA1_5 - RSA with PKCS#1 v1.5 padding.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• dir - Direct encryption with AES using the hashed client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

Default value:

RSA-OAEP
RSA-OAEP-256
A128KW
A256KW
RSA1_5
dir
A192KW

Reference
Advanced OpenID Connect

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 118

amster attribute: supportedRequestParameterEncryptionAlgorithms

Request Parameter Encryption Methods Supported

Encryption methods supported to decrypt Request parameter.

AM supports the following Request parameter encryption algorithms:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default value:

A256GCM
A192GCM
A128GCM
A128CBC-HS256
A192CBC-HS384
A256CBC-HS512

amster attribute: supportedRequestParameterEncryptionEnc

Supported Token Endpoint JWS Signing Algorithms.

Supported JWS Signing Algorithms for 'private_key_jwt' JWT based authentication method.

Default value:

PS384
ES384
RS384
HS256
HS512
ES256
RS256
HS384
ES512
PS256
PS512
RS512

amster attribute: supportedTokenEndpointAuthenticationSigningAlgorithms

Authorized OIDC SSO Clients

Clients authorized to use OpenID Connect ID tokens as SSO Tokens.

Allows clients to act with the full authority of the user. Grant this permission only to trusted
clients.

Reference
Advanced OpenID Connect

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 119

amster attribute: authorisedOpenIdConnectSSOClients

UserInfo Signing Algorithms Supported

Algorithms supported to verify signature of the UserInfo endpoint. AM supports signing
algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm) Header Parameter Values for
JWS:

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

Default value:

ES384
HS256
HS512
ES256
RS256
HS384
ES512

amster attribute: supportedUserInfoSigningAlgorithms

UserInfo Encryption Algorithms Supported

Encryption algorithms supported by the UserInfo endpoint.

AM supports the following UserInfo endpoint encryption algorithms:

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• RSA1_5 - RSA with PKCS#1 v1.5 padding.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• dir - Direct encryption with AES using the hashed client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1
https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1

Reference
Device Flow

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 120

Default value:

RSA-OAEP
RSA-OAEP-256
A128KW
A256KW
RSA1_5
dir
A192KW

amster attribute: supportedUserInfoEncryptionAlgorithms

UserInfo Encryption Methods Supported

Encryption methods supported by the UserInfo endpoint.

AM supports the following UserInfo endpoint encryption methods:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default value:

A256GCM
A192GCM
A128GCM
A128CBC-HS256
A192CBC-HS384
A256CBC-HS512

amster attribute: supportedUserInfoEncryptionEnc

Use Force Authentication for prompt=login

This setting is applied only when you've implemented modules or chains, and you've specified the
prompt=login parameter. The default value is false.

When set to false, AM forces the end user to authenticate even if they already have a valid
session. After re-authentication, AM creates a new session.

When set to true, AM forces the end user to authenticate even if they already have a valid session.
But, after re-authentication, AM returns the same session ID. Setting this to false, to create new a
session, is recommended to increase the level of security.

Device Flow

The following settings appear on the Device Flow tab:

Reference
Consent

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 121

Verification URL

The URL that the user will be instructed to visit to complete their OAuth 2.0 login and consent
when using the device code flow.

amster attribute: verificationUrl

Device Completion URL

The URL that the user will be sent to on completion of their OAuth 2.0 login and consent when
using the device code flow.

amster attribute: completionUrl

Device Code Lifetime (seconds)

The lifetime of the device code, in seconds.

Default value: 300

amster attribute: deviceCodeLifetime

Device Polling Interval

The polling frequency for devices waiting for tokens when using the device code flow.

Default value: 5

amster attribute: devicePollInterval

Consent
The following settings appear on the Consent tab:

Saved Consent Attribute Name

Name of a multi-valued attribute on resource owner profiles where AM can save authorization
consent decisions.

When the resource owner chooses to save the decision to authorize access for a client
application, then AM updates the resource owner's profile to avoid having to prompt the resource
owner to grant authorization when the client issues subsequent authorization requests.

amster attribute: savedConsentAttribute

Allow Clients to Skip Consent

If enabled, clients may be configured so that the resource owner will not be asked for consent
during authorization flows.

Default value: false

Reference
Consent

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 122

amster attribute: clientsCanSkipConsent

Enable Remote Consent

Default value: false

amster attribute: enableRemoteConsent

Remote Consent Service ID

The ID of an existing remote consent service agent.

The possible values for this property are:

• [Empty]

amster attribute: remoteConsentServiceId

Remote Consent Service Request Signing Algorithms Supported

Algorithms supported to sign consent_request JWTs for Remote Consent Services.

AM supports signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm) Header
Parameter Values for JWS:

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

Default value:

PS384
ES384
RS384
HS256
HS512
ES256
RS256
HS384
ES512
PS256
PS512
RS512

https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1
https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1

Reference
Consent

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 123

amster attribute: supportedRcsRequestSigningAlgorithms

Remote Consent Service Request Encryption Algorithms Supported

Encryption algorithms supported to encrypt Remote Consent Service requests.

AM supports the following encryption algorithms:

• RSA1_5 - RSA with PKCS#1 v1.5 padding.

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• dir - Direct encryption with AES using the hashed client secret.

Default value:

RSA-OAEP
RSA-OAEP-256
A128KW
RSA1_5
A256KW
dir
A192KW

amster attribute: supportedRcsRequestEncryptionAlgorithms

Remote Consent Service Request Encryption Methods Supported

Encryption methods supported to encrypt Remote Consent Service requests.

AM supports the following encryption methods:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default value:

A256GCM
A192GCM
A128GCM
A128CBC-HS256
A192CBC-HS384
A256CBC-HS512

Reference
Consent

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 124

amster attribute: supportedRcsRequestEncryptionMethods

Remote Consent Service Response Signing Algorithms Supported

Algorithms supported to verify signed consent_response JWT from Remote Consent Services.

AM supports signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm) Header
Parameter Values for JWS:

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

Default value:

PS384
ES384
RS384
HS256
HS512
ES256
RS256
HS384
ES512
PS256
PS512
RS512

amster attribute: supportedRcsResponseSigningAlgorithms

Remote Consent Service Response Encryption Algorithms Supported

Encryption algorithms supported to decrypt Remote Consent Service responses.

AM supports the following encryption algorithms:

• RSA1_5 - RSA with PKCS#1 v1.5 padding.

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1
https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1

Reference
CIBA

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 125

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• dir - Direct encryption with AES using the hashed client secret.

Default value:

RSA-OAEP
RSA-OAEP-256
A128KW
A256KW
RSA1_5
dir
A192KW

amster attribute: supportedRcsResponseEncryptionAlgorithms

Remote Consent Service Response Encryption Methods Supported

Encryption methods supported to decrypt Remote Consent Service responses.

AM supports the following encryption methods:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default value:

A256GCM
A192GCM
A128GCM
A128CBC-HS256
A192CBC-HS384
A256CBC-HS512

amster attribute: supportedRcsResponseEncryptionMethods

CIBA
The following settings appear on the CIBA tab:

Back Channel Authentication ID Lifetime (seconds)

The time back channel authentication request id is valid for, in seconds.

Default value: 600

amster attribute: cibaAuthReqIdLifetime

Reference
OAuth 2.0 and OpenID Connect 1.0 Client Settings

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 126

Polling Wait Interval (seconds)

The minimum amount of time in seconds that the Client should wait between polling requests to
the token endpoint

Default value: 2

amster attribute: cibaMinimumPollingInterval

Signing Algorithms Supported

Algorithms supported to sign the CIBA request parameter.

AM supports signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm) Header
Parameter Values for JWS:

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• PS256 - RSASSA-PSS using SHA-256.

Default value:

ES256
PS256

amster attribute: supportedCibaSigningAlgorithms

OAuth 2.0 and OpenID Connect 1.0 Client Settings
To register an OAuth 2.0 client with AM as the OAuth 2.0 authorization server, or register an OpenID
Connect 1.0 client through the AM console, then create an OAuth 2.0 client profile. After creating the
client profile, you can further configure the properties in the AM console by navigating to Realms >
Realm Name > Applications > OAuth 2.0 > Client Name.

Core
The following properties appear on the Core tab:

Group

Set this field if you have configured an OAuth 2.0 client group.

Status

Specify whether the client profile is active for use or inactive.

Client secret

Specify the client secret as described by RFC 6749 in the section, Client Password.

https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1
https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1
https://www.rfc-editor.org/rfc/rfc6749.html#section-2.3.1

Reference
Core

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 127

For OAuth 2.0/OpenID Connect 1.0 clients, AM uses the client password as the client shared
secret key when signing the contents of the request parameter with HMAC-based algorithms, such
as HS256.

Client type

Specify the client type.

Confidential clients can maintain the confidentiality of their credentials, such as a web
application running on a server where its credentials are protected. Public clients run the risk
of exposing their passwords to a host or user agent, such as a JavaScript client running in a
browser.

Redirection URIs

Specify client redirection endpoint URIs as described by RFC 6749 in the section, Redirection
Endpoint. AM's OAuth 2.0 authorization service redirects the resource owner's user-agent back
to this endpoint during the authorization code grant process. If your client has more than one
redirection URI, then it must specify the redirection URI to use in the authorization request. The
redirection URI must NOT contain a fragment (#).

OpenID Connect clients require redirection URIs.

Scope(s)

Specify scopes that are to be presented to the resource owner when the resource owner is asked
to authorize client access to protected resources.

The openid scope is required. It indicates that the client is making an OpenID Connect request to
the authorization server.

Scopes can be entered as simple strings, such as openid, read, email, profile, or as a pipe-separated
string in the format: scope|locale|localized description. For example, read|en|Permission to view email
 messages.

Locale strings have the format: language_country_variant. For example, en, en_GB, or en_US_WIN. If
the locale and pipe is omitted, the localized description is displayed to all users having undefined
locales. If the localized description is omitted, nothing is displayed to all users. For example, a
scope of read| would allow the client to use the read scope but would not display it to the user
when requested.

AM reserves a special scope, am-introspect-all-tokens. As administrator, add this scope to the
OAuth 2.0 client profile to allow the client to introspect access tokens issued to other clients in
the same realm. This scope cannot be added during dynamic client registration.

Default Scope(s)

Specify scopes in scope or scope|locale|localized description format. These scopes are set
automatically when tokens are issued.

https://www.rfc-editor.org/rfc/rfc6749.html#section-3.1.2
https://www.rfc-editor.org/rfc/rfc6749.html#section-3.1.2

Reference
Advanced

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 128

The openid scope is required. It indicates that the client is making an OpenID Connect request to
the authorization server.

Scopes can be entered as simple strings, such as openid, read, email, profile, or as a pipe-separated
string in the format: scope|locale|localized description. For example, read|en|Permission to view email
 messages.

Locale strings have the format:language_ country_variant. For example, en, en_GB, or en_US_WIN. If
the locale and pipe is omitted, thelocalized description is displayed to all users having undefined
locales. If the localized description is omitted, nothing is displayed to all users. For example, a
scope of read| would allow the client to use the read scope but would not display it to the user
when requested.

Client Name

Specify a human-readable name for the client.

Authorization Code Lifetime (seconds)

Specify the time in seconds for an authorization code to be valid. If this field is set to zero, the
authorization code lifetime of the OAuth2 provider is used.

Default: 0

Refresh Token Lifetime (seconds)

Specify the time in seconds for a refresh token to be valid. If this field is set to zero, the refresh
token lifetime of the OAuth2 provider is used. If the field is set to -1, the token will never expire.

Default: 0

Access Token Lifetime (seconds)

Specify the time in seconds for an access token to be valid. If this field is set to zero, the access
token lifetime of the OAuth2 provider is used.

Default: 0

Advanced

The following properties appear on the Advanced tab:

Display name

Specify a client name to display to the resource owner when the resource owner is asked to
authorize client access to protected resources. Valid formats include name or locale|localized name .

The Display name can be entered as a single string or as a pipe-separated string for locale and
localized name, for example, en|My Example Company.

Reference
Advanced

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 129

Locale strings have the format:language_ country_ variant. For example, en, en_GB, or en_US_WIN. If
the locale is omitted, the name is displayed to all users having undefined locales.

Display description

Specify a client description to display to the resource owner when the resource owner is asked to
authorize client access to protected resources. Valid formats include description or locale|localized
 description .

The Display description can be entered as a single string or as a pipe-separated string for
locale and localized name, for example, en|The company intranet is requesting the following access
 permission.

Locale strings have the format:language_ country_ variant. For example, en, en_GB, or en_US_WIN. If
the locale is omitted, the name is displayed to all users having undefined locales.

Request uris

Specify request_uri values that a dynamic client would pre-register.

URIs must be pre-registered in this field before the client can request them in the request_uri
parameter.

Grant Types

Specify the set of OAuth 2.0 grant flows allowed for this client. The following flows are available:

• Authorization Code

• Back Channel Request

• Implicit

• Resource Owner Password Credentials

• Client Credentials

• Refresh Token

• UMA

• Device Code

• SAML2

When registering clients dynamically, if no grant types are specified in the registration request,
then the default Authorization Code grant type is assumed, and configured in the client.

Any grant types selected in a client must also be enabled in the OAuth 2.0 provider service. See
"OAuth2 Provider" in the OAuth 2.0 Guide.

Default: Authorization Code

Reference
Advanced

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 130

Response Types

Specify the response types that the client uses. The response type value specifies the flow that
determine how the ID token and access token are returned to the client. For more information,
see OAuth 2.0 Multiple Response Type Encoding Practices.

By default, the following response types are available:

• code. Specifies that the client application requests an authorization code grant.

• token. Specifies that the client application requests an implicit grant type and requests a token
from the API.

• id_token. Specifies that the client application requests an ID token.

• code token. Specifies that the client application requests an access token, access token type, and
an authorization code.

• token id_token. Specifies that the client application requests an access token, access token type,
and an ID token.

• code id_token. Specifies that the client application requests an authorization code and an ID
token.

• code token id_token. Specifies that the client application requests an authorization code, access
token, access token type, and an ID token.

Contacts

Specify the email addresses of users who administer the client.

Token Endpoint Authentication Method

Specify the authentication method with which a client authenticates to AM (as an authorization
server) at the token endpoint. The authentication method applies to OIDC requests with scope
openid.

• client_secret_basic. Clients authenticate with AM (as an authorization server) using the HTTP
Basic authentication scheme after receiving a client_secret value.

• client_secret_post. Clients authenticate with AM (as an authorization server) by including the
client credentials in the request body after receiving a client_secret value.

• private_key_jwt. Clients sign a JSON web token (JWT) with a registered public key.

• tls_client_auth. Clients use a CA-signed certificate for mutual TLS authentication.

• self_signed_tls_client_auth. Clients use a self-signed certificate for mutual TLS authentication.

For more information, see "Authenticating OAuth 2.0 Clients" in the OAuth 2.0 Guide, and Client
Authentication in the OpenID Connect Core 1.0 incorporating errata set 1 specification.

https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication
https://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication

Reference
Advanced

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 131

Sector Identifier URI

Specify the host component of this URI, which is used in the computation of pairwise subject
identifiers.

Subject Type

Specify the subject identifier type, which is a locally unique identifier that will be consumed by
the client. Select one of two options:

• public. Provides the same sub (subject) value to all clients.

• pairwise. Provides a different sub (subject) value to each client.

Access Token

Specify the registration_access_token value that you provide when registering the client, and then
subsequently when reading or updating the client profile.

Client URI

Specify the URI containing further information about this client. The URI is displayed as a link in
user-facing pages, such as consent pages.

The URI can be made locale-specific by specifying a pipe-separated string in the format:
URI|locale. For example, https://www.example.es:8443/aplicacion/informacion.html|es

Logo URI

Specify the URI of a logo for the client. The logo is displayed in user-facing pages, such as
consent pages.

The logo can be made locale-specific by specifying a pipe-separated string in the format:
URI|locale. For example, https://www.example.es:8443/aplicacion/imagen.png|es

Privacy Policy URI

Specify the URI containing the client's privacy policy documentation. The URI is displayed as a
link in user-facing pages, such as consent pages.

The URI can be made locale-specific by specifying a pipe-separated string in the format:
URI|locale. For example, https://www.example.es:8443/aplicacion/legal.html|es

Implied Consent

Enable the implied consent feature. When enabled, the resource owner will not be asked for
consent during authorization flows. The OAuth2 Provider must also be configured to allow clients
to skip consent.

OAuth 2.0 Mix-Up Mitigation enabled

Enable OAuth 2.0 mix-up mitigation on the authorization server side.

Reference
OpenID Connect

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 132

Enable this setting only if this OAuth 2.0 client supports the OAuth 2.0 Mix-Up Mitigation draft,
otherwise AM will fail to validate access token requests received from this client.

OpenID Connect

The following properties appear on the OpenID Connect tab:

Claim(s)

Specify one or more claim name translations that will override those specified for the
authentication session. Claims are values that are presented to the user to inform them what data
is being made available to the client.

Claims can be in entered as simple strings, such as name, email, profile, or sub, or as a pipe-
separated string in the format: scope|locale|localized description. For example, name|en|Full name of
 user.

Locale strings have the format:language_ country_ variant. For example, en, en_GB, or en_US_WIN. If
the locale and pipe is omitted, thelocalized description is displayed to all users having undefined
locales. If the localized description is omitted, nothing is displayed to all users. For example,
a claim of name| would allow the client to use the name claim but would not display it to the user
when requested.

If a value is not given, the value is computed from the OAuth2 provider.

Post Logout Redirect URIs

Specify one or more allowable URIs to which the user-agent can be redirected to after the client
logout process.

Client Session URI

Specify the relying party (client) URI to which the OpenID Connect Provider sends session
changed notification messages using the HTML 5 postMessage API.

Default Max Age

Specify the maximum time in seconds that a user can be authenticated. If the user last
authenticated earlier than this value, then the user must be authenticated again. If specified, the
request parameter max_age overrides this setting.

Minimum value: 1.

Default: 600

Default Max Age Enabled

Enable the default max age feature.

https://tools.ietf.org/html/draft-ietf-oauth-mix-up-mitigation-01

Reference
Signing and Encryption

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 133

Default ACR values

Default Authentication Context Class Reference values.

Specify strings that will be requested as Voluntary Claims by default in all incoming requests.

Values specified in the acr_values request parameter or an individual acr claim request override
these default values.

OpenID Connect JWT Token Lifetime (seconds)

Specify the time in seconds for a JWT to be valid. If this field is set to zero, the JWT token lifetime
of the OAuth2 provider is used.

Default: 0

Signing and Encryption

Note

AM returns an error if the administrator tries to save a client profile configuration containing an unsupported
signing or encryption algorithm on a client.

For example, upon saving the configuration, AM will return an error if there is a typo on an algorithm, or a
symmetric signing or encryption algorithm is configured on a public client: these algorithms are derived from
the client's secret, which public clients do not have.

Clients registering dynamically must also send supported algorithms as part of their configuration, or AM will
reject the registration request.

Different features support different algorithms. Refer to the documentation or the UI for more information.

The following properties appear on the Signing and Encryption tab:

Json Web Key URI

Specify the URI that contains the client's public keys in JSON web key format.

JWKs URI content cache timeout in ms

Specify the amount of time, in milliseconds, that the content of the JWKs' URI is cached for before
being refreshed. Caching the content avoids fetching it for every token encryption or validation.

Default: 3600000

JWKs URI content cache miss cache time

Specify the amount of time, in milliseconds, that AM waits before fetching the URI's content
again when a key ID (kid) is not in the JWKs that are already cached.

Reference
Signing and Encryption

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 134

For example, if a request comes in with a kid that is not in the cached JWKs, AM checks the value
of JWKs' URI content cache miss cache time. If the amount of time specified in this property has
already passed since the last time AM fetched the JWKs, AM fetches them again. Otherwise, the
request is rejected.

Use this property as a rate limit to prevent denial-of-service attacks against the URI.

Default: 60000

Token Endpoint Authentication Signing Algorithm

Specify the JWS algorithm that must be used for signing JWTs used to authenticate the client at
the Token Endpoint.

JWTs that are not signed with the selected algorithm in token requests from the client using the
private_key_jwt authentication method will be rejected.

Default: RS256

Json Web Key

Raw JSON web key value containing the client's public keys.

ID Token Signing Algorithm

Specify the signing algorithm that the ID token must be signed with.

Enable ID Token Encryption

Enable ID token encryption using the specified ID token encryption algorithm.

ID Token Encryption Algorithm

Specify the algorithm that the ID token must be encrypted with.

Default value: RSA1_5 (RSAES-PKCS1-V1_5).

ID Token Encryption Method

Specify the method that the ID token must be encrypted with.

Default value: A128CBC-HS256.

Client ID Token Public Encryption Key

Specify the Base64-encoded public key for encrypting ID tokens.

Client JWT Bearer Public Key Certificate

Specify the base64-encoded X509 certificate in PEM format. The certificate is never used during
the signing process, but is used to obtain the client's JWT bearer public key. The client uses the

Reference
Signing and Encryption

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 135

private key to sign client authentication and access token request JWTs, while AM uses the public
key for verification.

The following is an example of the certificate:

-----BEGIN CERTIFICATE-----
MIIDETCCAfmgAwIBA...
-----END CERTIFICATE-----

You can generate a new key pair alias by using the Java keytool command. Follow the steps in "To
Create Key Aliases in an Existing Keystore" in the Setup and Maintenance Guide.

To export the certificate from the new key pair in PEM format, run a command similar to the
following:
$ keytool \
 -list \
 -alias myAlias \
 -rfc \
 -storetype JCEKS \
 -keystore myKeystore.jceks \
 -keypass myKeypass \
 -storepass myStorepass

Alias name: myAlias
Creation date: Oct 27, 2014
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
-----BEGIN CERTIFICATE-----
 MIIDETCCAfmgAwIBA...
-----END CERTIFICATE-----

For more information, see "Authenticating Clients Using JWT Profiles" in the OAuth 2.0 Guide.

mTLS Self-Signed Certificate

Specify the base64-encoded X.509 certificate in PEM format that clients can use to authenticate
to the access_token endpoint during mutual TLS authentication.

Only applies when clients use self-signed certificates to authenticate.

For more information, see "Mutual TLS Using Self-Signed X.509 Certificates" in the OAuth 2.0
Guide

mTLS Subject DN

Specify the distinguished name that must exactly match the subject field in the client certificate
used for mutual TLS authentication, for example CN=myOauth2Client.

Only applies when clients use CA-signed certificates to authenticate.

For more information, see "Mutual TLS Using Public Key Infrastructure" in the OAuth 2.0 Guide

Reference
Signing and Encryption

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 136

Use Certificate-Bound Access Tokens

Specify that access tokens issued to this client should be bound to the X.509 certificate it uses to
authenticate to the access_token endpoint.

If enabled, AM adds a confirmation key labelled x5t#S256 to all access tokens. The confirmation
key contains the SHA-256 hash of the client's certificate.

For more information, see "Certificate-Bound Proof-of-Possession" in the OAuth 2.0 Guide

Public key selector

Select the format of the public keys for JWT profile client authentication in the OAuth 2.0 Guide,
ID token encryption, and mTLS self-signed certificate authentication in the OAuth 2.0 Guide.
Valid formats are:

• JWKs_URI

Configure a URI that exposes the client public keys in the Json Web Key URI field, and ensure
the following related properties have sensible values for your environment:

• JWKs URI content cache timeout in ms

• JWKs URI content cache miss cache time

• JWKs

Enter a JWK Set containing one or more keys in the Json Web Key field. For example:
{
 "keys": [
 {
 "kty": "RSA",
 "n": ...
 },
 ...
]
}

• X509

Enter a key object or a single certificate in one of the following fields, depending on the feature
you are configuring:

• (ID token encryption) Client ID Token Public Encryption Key. Requires an RSA public key
object in X.509 PEM format. For example:
-----BEGIN PUBLIC KEY-----
......
-----END PUBLIC KEY-----

• (JWT client authentication) Client JWT Bearer Public Key. Requires a X.509 certificate in PEM
format. For example:

Reference
Signing and Encryption

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 137

-----BEGIN CERTIFICATE-----
.....
-----END CERTIFICATE-----

• (mTLS client authentication) mTLS Self-Signed Certificate. Requires a X.509 certificate in
PEM format. For example:
-----BEGIN CERTIFICATE-----
.....
-----END CERTIFICATE-----

Default: JWKs_URI

User info response format.

Specify the output format from the UserInfo endpoint.

The supported output formats are as follows:

• User info JSON response format.

• User info encrypted JWT response format.

• User info signed JWT response format.

• User info signed then encrypted response format.

For more information on the output format of the UserInfo Response, see Successful UserInfo
Response in the OpenID Connect Core 1.0 incorporating errata set 1 specification.

Default: User info JSON response format.

User info signed response algorithm

Specify the JSON Web Signature (JWS) algorithm for signing UserInfo Responses. If specified, the
response will be JSON Web Token (JWT) serialized, and signed using JWS.

The default, if omitted, is for the UserInfo Response to return the claims as a UTF-8-encoded
JSON object using the application/json content type.

User info encrypted response algorithm

Specify the JSON Web Encryption (JWE) algorithm for encrypting UserInfo Responses.

If both signing and encryption are requested, the response will be signed then encrypted, with
the result being a nested JWT.

The default, if omitted, is that no encryption is performed.

User info encrypted response encryption algorithm

Specify the JWE encryption method for encrypting UserInfo Responses. If specified, you must also
specify an encryption algorithm in the User info encrypted response algorithm property.

https://openid.net/specs/openid-connect-core-1_0.html#UserInfoResponse
https://openid.net/specs/openid-connect-core-1_0.html#UserInfoResponse

Reference
UMA

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 138

AM supports the following encryption methods:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default: A128CBC-HS256

Request parameter signing algorithm

Specify the JWS algorithm for signing the request parameter.

Must match one of the values configured in the Request parameter Signing Algorithms supported
property of the OAuth2 Provider service. See "Advanced OpenID Connect".

Request parameter encryption algorithm

Specify the algorithm for encrypting the request parameter.

Must match one of the values configured in the Request parameter Encryption Algorithms
supported property of the OAuth2 Provider service. See "Advanced OpenID Connect".

Request parameter encryption method

Specify the method for encrypting the request parameter.

Must match one of the values configured in the Request parameter Encryption Methods
supported property of the OAuth2 Provider service. See "Advanced OpenID Connect".

Default: A128CBC-HS256

UMA

The following properties appear on the UMA tab:

Client Redirection URIs

Note

This property is for future use, and not currently active.

Specify one or more allowable URIs to which the client can be redirected after the UMA claims
collection process. The URIs must not contain a fragment (#).

If multiple URIs are registered, the client MUST specify the redirection URI to be redirected to
following approval.

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 139

Appendix A. About Scripting

You can use scripts for client-side and server-side authentication, policy conditions, and handling
OpenID Connect claims.

The Scripting Environment
AM supports scripts written in either JavaScript, or Groovy 1, and the same variables and bindings
are delivered to scripts of either language.

+ How to determine the JavaScript Engine Version?

You can use a script to check the version of the JavaScript engine AM is using. You could
temporarily add the following script to a Scripted Decision node, for example, to output the
engine version to the debug log:
var rhino = JavaImporter(
 org.mozilla.javascript.Context
)

var currentContext = rhino.Context.getCurrentContext()
var rhinoVersion = currentContext.getImplementationVersion()

logger.error("JS Script Engine: " + rhinoVersion)

outcome = "true"

1Scripts used for client-side authentication must be in written in JavaScript.

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 140

Note

Ensure the following are listed in the Java class whitelist property of the scripting engine.

• org.mozilla.javascript.Context

• org.forgerock.openam.scripting.timeouts.*

To view the Java class whitelist, go to Configure > Global Services > Scripting > Secondary Configurations.
Select the script type, and on the Secondary Configurations tab, click engineConfiguration.

For information on the capabilities of the JavaScript engine AM uses, see Mozilla Rhino.

+ How to determine the Groovy Engine Version?

You can use a script to check the version of the Groovy scripting engine AM is using. You could
temporarily add the following script to a Scripted Decision node, for example, to output the
engine version to the debug log:
logger.error("Groovy Script Engine: " + GroovySystem.version)

outcome = "true"

Note

Ensure the following are listed in the Java class whitelist property of the scripting engine.

• groovy.lang.GroovySystem

To view the Java class whitelist, go to Configure > Global Services > Scripting > Secondary Configurations.
Select the script type, and on the Secondary Configurations tab, click engineConfiguration.

For information on the capabilities of the Groovy engine AM uses, see Apache Groovy.

To access the functionality AM provides, import the required Java class or package, as follows:

JavaScript

var fr = JavaImporter(
 org.forgerock.openam.auth.node.api,
 javax.security.auth.callback.NameCallback
);
with (fr) {
 ...
}

Groovy

import org.forgerock.openam.auth.node.api.*;
import javax.security.auth.callback.NameCallback;

https://github.com/mozilla/rhino/blob/master/README.md
https://groovy-lang.org/index.html

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 141

You may need to whitelist the classes you use in scripts. See "Security".

You can use scripts to modify default AM behavior in the following situations, also known as contexts:

Client-side Authentication

Scripts that are executed on the client during authentication. Client-side scripts must be in
JavaScript.

Server-side Authentication

Scripts are included in an authentication module within a chain and are executed on the server
during authentication.

Authentication Trees

Scripts are included in an authentication node within a tree and are executed on the server
during authentication.

Policy Condition

Scripts used as conditions within policies.

OIDC Claims

Scripts that gather and populate the claims in a request when issuing an ID token or making a
request to the userinfo endpoint.

For information on the global API, available to all script types, see "Global Scripting API
Functionality".

AM implements a configurable scripting engine for each of the context types that are executed on the
server.

The scripting engines in AM have two main components: security settings, and the thread pool.

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 142

Security
AM scripting engines provide security features for ensuring that malicious Java classes are not
directly called. The engines validate scripts by checking all directly-called Java classes against
a configurable blacklist and whitelist, and, optionally, against the JVM SecurityManager, if it is
configured.

Whitelists and blacklists contain class names that are allowed or denied execution respectively.
Specify classes in whitelists and blacklists by name or by using regular expressions.

Classes called by the script are checked against the whitelist first, and must match at least one
pattern in the list. The blacklist is applied after the whitelist, and classes matching any pattern are
disallowed.

You can also configure the scripting engine to make an additional call to the JVM security manager
for each class that is accessed. The security manager throws an exception if a class being called is
not allowed to execute.

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 143

For more information on configuring script engine security, see "Scripting".

Important Points About Script Engine Security

The following points should be considered when configuring the security settings within each script
engine:

The scripting engine only validates directly accessible classes.

The security settings only apply to classes that the script directly accesses. If the script calls Foo.
a() and then that method calls Bar.b(), the scripting engine will be unable to prevent it. You must
consider the whole chain of accessible classes.

Note

Access includes actions such as:

• Importing or loading a class.

• Accessing any instance of that class. For example, passed as a parameter to the script.

• Calling a static method on that class.

• Calling a method on an instance of that class.

• Accessing a method or field that returns an instance of that class.

Potentially dangerous Java classes are blacklisted by default.

All Java reflection classes (java.lang.Class, java.lang.reflect.*) are blacklisted by default to avoid
bypassing the security settings.

The java.security.AccessController class is also blacklisted by default to prevent access to the
doPrivileged() methods.

Caution

You should not remove potentially dangerous Java classes from the blacklist.

The whitelists and blacklists match class or package names only.

The whitelist and blacklist patterns apply only to the exact class or package names involved. The
script engine does not know anything about inheritance, so it is best to whitelist known, specific
classes.

Thread Pools
Each script is executed in an individual thread. Each scripting engine starts with an initial number of
threads available for executing scripts. If no threads are available for execution, AM creates a new
thread to execute the script, until the configured maximum number of threads is reached.

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 144

If the maximum number of threads is reached, pending script executions are queued in a number
of buffer threads, until a thread becomes available for execution. If a created thread has completed
script execution and has remained idle for a configured amount of time, AM terminates the thread,
shrinking the pool.

For more information on configuring script engine thread pools, see "Scripting".

Global Scripting API Functionality
This section covers functionality available to each of the server-side script types.

Global API functionality includes:

• Accessing HTTP Services

• Debug Logging

Accessing HTTP Services

AM passes an HTTP client object, httpClient, to server-side scripts. Server-side scripts can call HTTP
services with the httpClient.send method. The method returns an HttpClientResponse object.

Configure the parameters for the HTTP client object by using the org.forgerock.http.protocol package.
This package contains the Request class, which has methods for setting the URI and type of request.

The following example, taken from the default server-side Scripted authentication module script, uses
these methods to call an online API to determine the longitude and latitude of a user based on their
postal address:
function getLongitudeLatitudeFromUserPostalAddress() {

 var request = new org.forgerock.http.protocol.Request();

 request.setUri("http://maps.googleapis.com/maps/api/geocode/json?address=" +
 encodeURIComponent(userPostalAddress));
 request.setMethod("GET");

 var response = httpClient.send(request).get();
 logResponse(response);

 var geocode = JSON.parse(response.getEntity());
 var i;

 for (i = 0; i < geocode.results.length; i++) {
 var result = geocode.results[i];
 latitude = result.geometry.location.lat;
 longitude = result.geometry.location.lng;

 logger.message("latitude:" + latitude + " longitude:" + longitude);
 }
}

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 145

HTTP client requests are synchronous and blocking until they return. You can, however, set a global
timeout for server-side scripts. For details, see "Scripted Authentication Module Properties" in the
Authentication and Single Sign-On Guide.

Server-side scripts can access response data by using the methods listed in the table below.

HTTP Client Response Methods

Method Parameters Return Type Description
HttpClientResponse.getCookies Void Map<String, String> Get the cookies for the

returned response, if
any exist.

HttpClientResponse.getEntity Void String Get the entity of the
returned response.

HttpClientResponse.getHeaders Void Map<String, String> Get the headers for the
returned response, if
any exist.

HttpClientResponse.
getReasonPhrase

Void String Get the reason phrase
of the returned
response.

HttpClientResponse.getStatusCode Void Integer Get the status code of
the returned response.

HttpClientResponse.hasCookies Void Boolean Indicate whether the
returned response had
any cookies.

HttpClientResponse.hasHeaders Void Boolean Indicate whether the
returned response had
any headers.

Debug Logging

Server-side scripts can write messages to AM debug logs by using the logger object.

AM does not log debug messages from scripts by default. You can configure AM to log such messages
by setting the debug log level for the amScript service. For details, see "Debug Logging By Service" in
the Setup and Maintenance Guide.

The following table lists the logger methods.

Logger Methods

Method Parameters Return Type Description
logger.error Error Message (type:

String)
Void Write Error Message to AM debug

logs if ERROR level logging is
enabled.

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 146

Method Parameters Return Type Description
logger.errorEnabled Void Boolean Return true when ERROR level

debug messages are enabled.
logger.message Message (type: String) Void Write Message to AM debug logs if

MESSAGE level logging is enabled.
logger.messageEnabled Void Boolean Return true when MESSAGE level

debug messages are enabled.
logger.warning Warning Message (type:

String)
Void Write Warning Message to AM

debug logs if WARNING level
logging is enabled.

logger.warningEnabled Void Boolean Return true when WARNING level
debug messages are enabled.

Managing Scripts
This section shows you how to manage scripts used for client-side and server-side scripted
authentication, custom policy conditions, and handling OpenID Connect claims using the AM console,
the ssoadm command, and the REST API.

Managing Scripts With the AM Console

The following procedures describe how to create, modify, and delete scripts using the AM console:

• "To Create Scripts by Using the AM Console"

• "To Modify Scripts by Using the AM Console"

• "To Delete Scripts by Using the AM Console"

To Create Scripts by Using the AM Console

1. Log in to the AM console as an AM administrator, for example, amadmin.

2. Navigate to Realms > Realm Name > Scripts.

3. Click New Script.

The New Script page appears:

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 147

4. Specify a name for the script.

5. Select the type of script from the Script Type drop-down list.

6. Click Create.

The Script Name page appears:

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 148

7. Enter values on the Script Name page as follows:

a. Enter a description of the script.

b. Choose the script language, either JavaScript or Groovy. Note that not every script type
supports both languages.

c. Enter the source code in the Script field.

On supported browsers, you can click Upload, navigate to the script file, and then click Open
to upload the contents to the Script field.

d. Click Validate to check for compilation errors in the script.

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 149

Correct any compilation errors, and revalidate the script until all errors have been fixed.

e. Save your changes.

To Modify Scripts by Using the AM Console

1. Log in to the AM console as an AM administrator, for example, amadmin.

2. Navigate to Realms > Realm Name > Scripts.

3. Select the script you want to modify from the list of scripts.

The Script Name page appears.

4. Modify values on the Script Name page as needed. Note that if you change the Script Type,
existing code in the script is replaced.

5. If you modified the code in the script, click Validate to check for compilation errors.

Correct any compilation errors, and revalidate the script until all errors have been fixed.

6. Save your changes.

To Delete Scripts by Using the AM Console

1. Log in to the AM console as an AM administrator, for example, amadmin.

2. Navigate to Realms > Realm Name > Scripts.

3. Choose one or more scripts to delete by activating the checkboxes in the relevant rows. Note that
you can only delete user-created scripts—you cannot delete the global sample scripts provided
with AM.

4. Click Delete.

Managing Scripts With the REST API

This section shows you how to manage scripts used for client-side and server-side scripted
authentication, custom policy conditions, and handling OpenID Connect claims by using the REST
API.

AM provides the scripts REST endpoint for the following:

• "Querying Scripts"

• "Reading a Script"

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 150

• "Validating a Script"

• "Creating a Script"

• "Updating a Script"

• "Deleting a Script"

User-created scripts are realm-specific, hence the URI for the scripts' API can contain a realm
component, such as /json{/realm}/scripts. If the realm is not specified in the URI, the top level realm is
used.

Tip

AM includes some global example scripts that can be used in any realm.

Scripts are represented in JSON and take the following form. Scripts are built from standard JSON
objects and values (strings, numbers, objects, sets, arrays, true, false, and null). Each script has a
system-generated universally unique identifier (UUID), which must be used when modifying existing
scripts. Renaming a script will not affect the UUID:
{
 "_id": "7e3d7067-d50f-4674-8c76-a3e13a810c33",
 "name": "Scripted Module - Server Side",
 "description": "Default global script for server side Scripted Authentication Module",
 "script": "dmFyIFNUQVJUX1RJ...",
 "language": "JAVASCRIPT",
 "context": "AUTHENTICATION_SERVER_SIDE",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
}

The values for the fields shown in the example above are explained below:

_id

The UUID that AM generates for the script.

name

The name provided for the script.

description

An optional text string to help identify the script.

script

The source code of the script. The source code is in UTF-8 format and encoded into Base64.

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 151

For example, a script such as the following:
var a = 123;
var b = 456;

When encoded into Base64 becomes:
dmFyIGEgPSAxMjM7IA0KdmFyIGIgPSA0NTY7

language

The language the script is written in - JAVASCRIPT or GROOVY.

Language Support per Context

Script Context Supported Languages
POLICY_CONDITION JAVASCRIPT, GROOVY
AUTHENTICATION_SERVER_SIDE JAVASCRIPT, GROOVY
AUTHENTICATION_CLIENT_SIDE JAVASCRIPT

OIDC_CLAIMS JAVASCRIPT, GROOVY
AUTHENTICATION_TREE_DECISION_NODE JAVASCRIPT, GROOVY

context

The context type of the script.

Supported values are:

POLICY_CONDITION

Policy Condition

AUTHENTICATION_SERVER_SIDE

Server-side Authentication

AUTHENTICATION_CLIENT_SIDE

Client-side Authentication

Note

Client-side scripts must be written in JavaScript.

OIDC_CLAIMS

OIDC Claims

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 152

AUTHENTICATION_TREE_DECISION_NODE

Authentication scripts used by Scripted Tree Decision authentication nodes.

createdBy

A string containing the universal identifier DN of the subject that created the script.

creationDate

An integer containing the creation date and time, in ISO 8601 format.

lastModifiedBy

A string containing the universal identifier DN of the subject that most recently updated the
resource type.

If the script has not been modified since it was created, this property will have the same value as
createdBy.

lastModifiedDate

A string containing the last modified date and time, in ISO 8601 format.

If the script has not been modified since it was created, this property will have the same value as
creationDate.

Querying Scripts

To list all the scripts in a realm, as well as any global scripts, perform an HTTP GET to the /json{/
realm}/scripts endpoint with a _queryFilter parameter set to true.

Note

If the realm is not specified in the URL, AM returns scripts in the top level realm, as well as any global scripts.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
--header "iPlanetDirectoryPro: AQIC5..." \
--header "Accept-API-Version: resource=1.1" \
https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts?_queryFilter=true
{
 "result": [
 {
 "_id": "9de3eb62-f131-4fac-a294-7bd170fd4acb",
 "name": "Scripted Policy Condition",
 "description": "Default global script for Scripted Policy Conditions",

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 153

 "script": "LyoqCiAqIFRoaXMg...",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
 },
 {
 "_id": "7e3d7067-d50f-4674-8c76-a3e13a810c33",
 "name": "Scripted Module - Server Side",
 "description": "Default global script for server side Scripted Authentication Module",
 "script": "dmFyIFNUQVJUX1RJ...",
 "language": "JAVASCRIPT",
 "context": "AUTHENTICATION_SERVER_SIDE",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

Supported _queryFilter Fields and Operators

Field Supported Operators
_id Equals (eq), Contains (co), Starts with (sw)
name Equals (eq), Contains (co), Starts with (sw)
description Equals (eq), Contains (co), Starts with (sw)
script Equals (eq), Contains (co), Starts with (sw)
language Equals (eq), Contains (co), Starts with (sw)
context Equals (eq), Contains (co), Starts with (sw)

Reading a Script

To read an individual script in a realm, perform an HTTP GET using the /json{/realm}/scripts
endpoint, specifying the UUID in the URL.

Tip

To read a script in the top-level realm, or to read a built-in global script, do not specify a realm in the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 154

$ curl \
--header "iPlanetDirectoryPro: AQIC5..." \
--header "Accept-API-Version: resource=1.1" \
https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/9de3eb62-f131-4fac-
a294-7bd170fd4acb
{
 "_id": "9de3eb62-f131-4fac-a294-7bd170fd4acb",
 "name": "Scripted Policy Condition",
 "description": "Default global script for Scripted Policy Conditions",
 "script": "LyoqCiAqIFRoaXMg...",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
}

Validating a Script

To validate a script, perform an HTTP POST using the /json{/realm}/scripts endpoint, with an _action
parameter set to validate. Include a JSON representation of the script and the script language,
JAVASCRIPT or GROOVY, in the POST data.

The value for script must be in UTF-8 format and then encoded into Base64.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "iPlanetDirectoryPro: AQIC5..." \
--header "Accept-API-Version: resource=1.1" \
--data '{
 "script": "dmFyIGEgPSAxMjM7dmFyIGIgPSA0NTY7Cg==",
 "language": "JAVASCRIPT"
}' \
https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/?_action=validate
{
 "success": true
}

If the script is valid the JSON response contains a success key with a value of true.

If the script is invalid the JSON response contains a success key with a value of false, and an indication
of the problem and where it occurs, as shown below:

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 155

$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "iPlanetDirectoryPro: AQIC5..." \
--header "Accept-API-Version: resource=1.1" \
--data '{
 "script": "dmFyIGEgPSAxMjM7dmFyIGIgPSA0NTY7ID1WQUxJREFUSU9OIFNIT1VMRCBGQUlMPQo=",
 "language": "JAVASCRIPT"
}' \
https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/?_action=validate
{
 "success": false,
 "errors": [
 {
 "line": 1,
 "column": 27,
 "message": "syntax error"
 }
]
}

Creating a Script

To create a script in a realm, perform an HTTP POST using the /json{/realm}/scripts endpoint, with an
_action parameter set to create. Include a JSON representation of the script in the POST data.

The value for script must be in UTF-8 format and then encoded into Base64.

Note

If the realm is not specified in the URL, AM creates the script in the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 156

$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "iPlanetDirectoryPro: AQIC5..." \
--header "Accept-API-Version: resource=1.1" \
--data '{
 "name": "MyJavaScript",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "description": "An example script"
}' \
https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/?_action=create
{
 "_id": "0168d494-015a-420f-ae5a-6a2a5c1126af",
 "name": "MyJavaScript",
 "description": "An example script",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1436807766258,
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1436807766258
}

Updating a Script

To update an individual script in a realm, perform an HTTP PUT using the /json{/realm}/scripts
endpoint, specifying the UUID in both the URL and the PUT body. Include a JSON representation of
the updated script in the PUT data, alongside the UUID.

Note

If the realm is not specified in the URL, AM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 157

$ curl \
--header "iPlanetDirectoryPro: AQIC5..." \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=1.1" \
--request PUT \
--data '{
 "name": "MyUpdatedJavaScript",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "description": "An updated example script configuration"
}' \
https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/0168d494-015a-420f-
ae5a-6a2a5c1126af
{
 "_id": "0168d494-015a-420f-ae5a-6a2a5c1126af",
 "name": "MyUpdatedJavaScript",
 "description": "An updated example script configuration",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1436807766258,
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1436808364681
}

Deleting a Script
To delete an individual script in a realm, perform an HTTP DELETE using the /json{/realm}/scripts
endpoint, specifying the UUID in the URL.

Note

If the realm is not specified in the URL, AM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
--request DELETE \
--header "iPlanetDirectoryPro: AQIC5..." \
--header "Accept-API-Version: resource=1.1" \
https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/0168d494-015a-420f-
ae5a-6a2a5c1126af
{}

Managing Scripts With the ssoadm Command
Use the ssoadm command's create-sub-cfg, get-sub-cfg, and delete-sub-cfg subcommands to manage
AM scripts.

Create an AM script as follows:

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 158

1. Create a script configuration file, for example /path/to/myScriptConfigurationFile.txt, containing the
following:
script-file=/path/to/myScriptFile.js
language=JAVASCRIPT
name=My New Script
context=AUTHENTICATION_SERVER_SIDE

Possible values for the language property are:

• JAVASCRIPT

• GROOVY
Possible values for the context property are:

• POLICY_CONDITION

• AUTHENTICATION_SERVER_SIDE

• AUTHENTICATION_CLIENT_SIDE

• OIDC_CLAIMS

• AUTHENTICATION_TREE_DECISION_NODE

2. Run the ssoadm create-sub-cfg command. The --datafile argument references the script
configuration file you created in the previous step:
$ ssoadm \
 create-sub-cfg \
 --realm /myRealm \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename ScriptingService \
 --subconfigname scriptConfigurations/scriptConfiguration \
 --subconfigid myScriptID \
 --datafile /path/to/myScriptConfigurationFile.txt
Sub Configuration scriptConfigurations/scriptConfiguration was added to realm /myRealm

To list the properties of a script, run the ssoadm get-sub-cfg command:

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 159

$ ssoadm \
 get-sub-cfg \
 --realm /myRealm \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename ScriptingService \
 --subconfigname scriptConfigurations/myScriptID
createdBy=
lastModifiedDate=
lastModifiedBy=
name=My New Script
context=AUTHENTICATION_SERVER_SIDE
description=
language=JAVASCRIPT
creationDate=
script=...Script output follows...

To delete a script, run the ssoadm delete-sub-cfg command:
$ ssoadm \
 delete-sub-cfg \
 --realm /myRealm \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename ScriptingService \
 --subconfigname scriptConfigurations/myScriptID
Sub Configuration scriptConfigurations/myScriptID was deleted from realm /myRealm

Scripting
amster service name: Scripting

Configuration

The following settings appear on the Configuration tab:

Default Script Type

The default script context type when creating a new script.

The possible values for this property are:

• POLICY_CONDITION. Policy Condition

• AUTHENTICATION_SERVER_SIDE. Server-side Authentication

• AUTHENTICATION_CLIENT_SIDE. Client-side Authentication

• OIDC_CLAIMS. OIDC Claims

• AUTHENTICATION_TREE_DECISION_NODE. Decision node script for authentication trees

https://backstage.forgerock.com/docs/amster/6.5/entity-reference/#sec-amster-entity-scripting

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 160

• OAUTH2_ACCESS_TOKEN_MODIFICATION. OAuth2 Access Token Modification

Default value: POLICY_CONDITION

amster attribute: defaultContext

Secondary Configurations

This service has the following Secondary Configurations.

Engine Configuration

The following properties are available for Scripting Service secondary configuration instances:

Engine Configuration

Configure script engine parameters for running a particular script type in AM.

ssoadm attribute: engineConfiguration

To access a secondary configuration instance using the ssoadm command, use: --subconfigname
 [primary configuration]/[secondary configuration] For example:
$ ssoadm set-sub-cfg \
 --adminid amAdmin \
 --password-file admin_pwd_file \
 --servicename ScriptingService \
 --subconfigname OIDC_CLAIMS/engineConfiguration \
 --operation set \
 --attributevalues maxThreads=300 queueSize=-1

Note

Supports server-side scripts only. AM cannot configure engine settings for client-side scripts.

The configurable engine settings are as follows:

Server-side Script Timeout

The maximum execution time any individual script should take on the server (in seconds). AM
terminates scripts which take longer to run than this value.

ssoadm attribute: serverTimeout

Core thread pool size

The initial number of threads in the thread pool from which scripts operate. AM will ensure
the pool contains at least this many threads.

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 161

ssoadm attribute: coreThreads

Maximum thread pool size

The maximum number of threads in the thread pool from which scripts operate. If no free
thread is available in the pool, AM creates new threads in the pool for script execution up to
the configured maximum. It is recommended to set the maximum number of threads to 300.

ssoadm attribute: maxThreads

Thread pool queue size

Specifies the number of threads to use for buffering script execution requests when the
maximum thread pool size is reached.

For short, CPU-bound scripts, consider a small pool size and larger queue length. For I/O-
bound scripts, for example, REST calls, consider a larger maximum pool size and a smaller
queue.

Not hot-swappable: restart server for changes to take effect.

ssoadm attribute: queueSize

Thread idle timeout (seconds)

Length of time (in seconds) for a thread to be idle before AM terminates created threads. If
the current pool size contains the number of threads set in Core thread pool size idle threads
will not be terminated, to maintain the initial pool size.

ssoadm attribute: idleTimeout

Java class whitelist

Specifies the list of class-name patterns allowed to be invoked by the script. Every class
accessed by the script must match at least one of these patterns.

You can specify the class name as-is or use a regular expression.

ssoadm attribute: whiteList

Java class blacklist

Specifies the list of class-name patterns that are NOT allowed to be invoked by the script. The
blacklist is applied AFTER the whitelist to exclude those classes - access to a class specified
in both the whitelist and the blacklist will be denied.

You can specify the class name to exclude as-is or use a regular expression.

ssoadm attribute: blackList

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 162

Use system SecurityManager

If enabled, AM will make a call to System.getSecurityManager().checkPackageAccess(...) for each
class that is accessed. The method throws SecurityException if the calling thread is not allowed
to access the package.

Note

This feature only takes effect if the security manager is enabled for the JVM.

ssoadm attribute: useSecurityManager

Scripting languages

Select the languages available for scripts on the chosen type. Either GROOVY or JAVASCRIPT.

ssoadm attribute: languages

Default Script

The source code that is presented as the default when creating a new script of this type.

ssoadm attribute: defaultScript

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 163

Appendix B. Getting Support

ForgeRock provides support services, professional services, training through ForgeRock University,
and partner services to assist you in setting up and maintaining your deployments. For a general
overview of these services, see https://www.forgerock.com.

ForgeRock has staff members around the globe who support our international customers and
partners. For details on ForgeRock's support offering, including support plans and service level
agreements (SLAs), visit https://www.forgerock.com/support.

ForgeRock publishes comprehensive documentation online:

• The ForgeRock Knowledge Base offers a large and increasing number of up-to-date, practical
articles that help you deploy and manage ForgeRock software.

While many articles are visible to community members, ForgeRock customers have access to much
more, including advanced information for customers using ForgeRock software in a mission-critical
capacity.

• ForgeRock product documentation, such as this document, aims to be technically accurate and
complete with respect to the software documented. It is visible to everyone and covers all product
features and examples of how to use them.

https://www.forgerock.com
https://www.forgerock.com/support
https://backstage.forgerock.com/knowledge/kb

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 164

Glossary

Access control Control to grant or to deny access to a resource.

Account lockout The act of making an account temporarily or permanently inactive
after successive authentication failures.

Actions Defined as part of policies, these verbs indicate what authorized
identities can do to resources.

Advice In the context of a policy decision denying access, a hint to the policy
enforcement point about remedial action to take that could result in a
decision allowing access.

Agent administrator User having privileges only to read and write agent profile
configuration information, typically created to delegate agent profile
creation to the user installing a web or Java agent.

Agent authenticator Entity with read-only access to multiple agent profiles defined in the
same realm; allows an agent to read web service profiles.

Application In general terms, a service exposing protected resources.

In the context of AM policies, the application is a template that
constrains the policies that govern access to protected resources. An
application can have zero or more policies.

Application type Application types act as templates for creating policy applications.

Application types define a preset list of actions and functional logic,
such as policy lookup and resource comparator logic.

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 165

Application types also define the internal normalization, indexing
logic, and comparator logic for applications.

Attribute-based access
control (ABAC)

Access control that is based on attributes of a user, such as how old a
user is or whether the user is a paying customer.

Authentication The act of confirming the identity of a principal.

Authentication chaining A series of authentication modules configured together which a
principal must negotiate as configured in order to authenticate
successfully.

Authentication level Positive integer associated with an authentication module, usually
used to require success with more stringent authentication measures
when requesting resources requiring special protection.

Authentication module AM authentication unit that handles one way of obtaining and
verifying credentials.

Authorization The act of determining whether to grant or to deny a principal access
to a resource.

Authorization Server In OAuth 2.0, issues access tokens to the client after authenticating a
resource owner and confirming that the owner authorizes the client to
access the protected resource. AM can play this role in the OAuth 2.0
authorization framework.

Auto-federation Arrangement to federate a principal's identity automatically based
on a common attribute value shared across the principal's profiles at
different providers.

Bulk federation Batch job permanently federating user profiles between a service
provider and an identity provider based on a list of matched user
identifiers that exist on both providers.

Circle of trust Group of providers, including at least one identity provider, who have
agreed to trust each other to participate in a SAML v2.0 provider
federation.

Client In OAuth 2.0, requests protected web resources on behalf of the
resource owner given the owner's authorization. AM can play this role
in the OAuth 2.0 authorization framework.

Client-based OAuth 2.0
tokens

After a successful OAuth 2.0 grant flow, AM returns a token to the
client. This differs from CTS-based OAuth 2.0 tokens, where AM
returns a reference to token to the client.

Client-based sessions AM sessions for which AM returns session state to the client after
each request, and require it to be passed in with the subsequent

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 166

request. For browser-based clients, AM sets a cookie in the browser
that contains the session information.

For browser-based clients, AM sets a cookie in the browser that
contains the session state. When the browser transmits the cookie
back to AM, AM decodes the session state from the cookie.

Conditions Defined as part of policies, these determine the circumstances under
which which a policy applies.

Environmental conditions reflect circumstances like the client
IP address, time of day, how the subject authenticated, or the
authentication level achieved.

Subject conditions reflect characteristics of the subject like whether
the subject authenticated, the identity of the subject, or claims in the
subject's JWT.

Configuration datastore LDAP directory service holding AM configuration data.

Cross-domain single sign-
on (CDSSO)

AM capability allowing single sign-on across different DNS domains.

CTS-based OAuth 2.0
tokens

After a successful OAuth 2.0 grant flow, AM returns a reference to
the token to the client, rather than the token itself. This differs from
client-based OAuth 2.0 tokens, where AM returns the entire token to
the client.

CTS-based sessions AM sessions that reside in the Core Token Service's token store. CTS-
based sessions might also be cached in memory on one or more AM
servers. AM tracks these sessions in order to handle events like logout
and timeout, to permit session constraints, and to notify applications
involved in SSO when a session ends.

Delegation Granting users administrative privileges with AM.

Entitlement Decision that defines which resource names can and cannot be
accessed for a given identity in the context of a particular application,
which actions are allowed and which are denied, and any related
advice and attributes.

Extended metadata Federation configuration information specific to AM.

Extensible Access Control
Markup Language
(XACML)

Standard, XML-based access control policy language, including
a processing model for making authorization decisions based on
policies.

Federation Standardized means for aggregating identities, sharing authentication
and authorization data information between trusted providers, and

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 167

allowing principals to access services across different providers
without authenticating repeatedly.

Fedlet Service provider application capable of participating in a circle of
trust and allowing federation without installing all of AM on the
service provider side; AM lets you create Java Fedlets.

Hot swappable Refers to configuration properties for which changes can take effect
without restarting the container where AM runs.

Identity Set of data that uniquely describes a person or a thing such as a
device or an application.

Identity federation Linking of a principal's identity across multiple providers.

Identity provider (IdP) Entity that produces assertions about a principal (such as how and
when a principal authenticated, or that the principal's profile has a
specified attribute value).

Identity repository Data store holding user profiles and group information; different
identity repositories can be defined for different realms.

Java agent Java web application installed in a web container that acts as a policy
enforcement point, filtering requests to other applications in the
container with policies based on application resource URLs.

Metadata Federation configuration information for a provider.

Policy Set of rules that define who is granted access to a protected resource
when, how, and under what conditions.

Policy agent Java, web, or custom agent that intercepts requests for resources,
directs principals to AM for authentication, and enforces policy
decisions from AM.

Policy Administration Point
(PAP)

Entity that manages and stores policy definitions.

Policy Decision Point (PDP) Entity that evaluates access rights and then issues authorization
decisions.

Policy Enforcement Point
(PEP)

Entity that intercepts a request for a resource and then enforces
policy decisions from a PDP.

Policy Information Point
(PIP)

Entity that provides extra information, such as user profile attributes
that a PDP needs in order to make a decision.

Principal Represents an entity that has been authenticated (such as a user,
a device, or an application), and thus is distinguished from other
entities.

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 168

When a Subject successfully authenticates, AM associates the Subject
with the Principal.

Privilege In the context of delegated administration, a set of administrative
tasks that can be performed by specified identities in a given realm.

Provider federation Agreement among providers to participate in a circle of trust.

Realm AM unit for organizing configuration and identity information.

Realms can be used for example when different parts of an
organization have different applications and identity stores, and when
different organizations use the same AM deployment.

Administrators can delegate realm administration. The administrator
assigns administrative privileges to users, allowing them to perform
administrative tasks within the realm.

Resource Something a user can access over the network such as a web page.

Defined as part of policies, these can include wildcards in order to
match multiple actual resources.

Resource owner In OAuth 2.0, entity who can authorize access to protected web
resources, such as an end user.

Resource server In OAuth 2.0, server hosting protected web resources, capable of
handling access tokens to respond to requests for such resources.

Response attributes Defined as part of policies, these allow AM to return additional
information in the form of "attributes" with the response to a policy
decision.

Role based access control
(RBAC)

Access control that is based on whether a user has been granted a set
of permissions (a role).

Security Assertion Markup
Language (SAML)

Standard, XML-based language for exchanging authentication and
authorization data between identity providers and service providers.

Service provider (SP) Entity that consumes assertions about a principal (and provides a
service that the principal is trying to access).

Authentication Session The interval while the user or entity is authenticating to AM.

Session The interval that starts after the user has authenticated and ends
when the user logs out, or when their session is terminated. For
browser-based clients, AM manages user sessions across one or more
applications by setting a session cookie. See also CTS-based sessions
and Client-based sessions.

OpenID Connect 1.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 169

Session high availability Capability that lets any AM server in a clustered deployment access
shared, persistent information about users' sessions from the CTS
token store. The user does not need to log in again unless the entire
deployment goes down.

Session token Unique identifier issued by AM after successful authentication. For
a CTS-based sessions, the session token is used to track a principal's
session.

Single log out (SLO) Capability allowing a principal to end a session once, thereby ending
her session across multiple applications.

Single sign-on (SSO) Capability allowing a principal to authenticate once and gain access to
multiple applications without authenticating again.

Site Group of AM servers configured the same way, accessed through a
load balancer layer. The load balancer handles failover to provide
service-level availability.

The load balancer can also be used to protect AM services.

Standard metadata Standard federation configuration information that you can share with
other access management software.

Stateless Service Stateless services do not store any data locally to the service. When
the service requires data to perform any action, it requests it from
a data store. For example, a stateless authentication service stores
session state for logged-in users in a database. This way, any server in
the deployment can recover the session from the database and service
requests for any user.

All AM services are stateless unless otherwise specified. See also
Client-based sessions and CTS-based sessions.

Subject Entity that requests access to a resource

When an identity successfully authenticates, AM associates the
identity with the Principal that distinguishes it from other identities.
An identity can be associated with multiple principals.

Identity store Data storage service holding principals' profiles; underlying storage
can be an LDAP directory service or a custom IdRepo implementation.

Web Agent Native library installed in a web server that acts as a policy
enforcement point with policies based on web page URLs.

	OpenID Connect 1.0 Guide
	Table of Contents
	Preface
	Chapter 1. Introducing OpenID Connect 1.0
	OAuth 2.0 or OpenID Connect?
	AM as the OpenID Provider
	Security Considerations
	About Token Storage Location

	Chapter 2. Configuring AM for OpenID Connect 1.0
	Configuring AM as an OpenID Connect Provider
	Configuring AM for OpenID Connect Discovery
	Configuring the Base URL Source Service
	Registering OpenID Connect Relying Parties
	Configuring for GSMA Mobile Connect
	Encrypting OpenID Connect ID Tokens

	Chapter 3. OpenID Connect Scopes and Claims
	Requesting Claims in ID Tokens
	Scripting OpenID Connect 1.0 Claims
	OpenID Connect 1.0 Claims API Functionality

	Chapter 4. Implementing OpenID Connect Grant Flows
	Authorization Code Grant
	Authorization Code Grant with PKCE
	Backchannel Request Grant
	Implicit Grant
	Hybrid Grant

	Chapter 5. Managing OpenID Connect User Sessions
	Chapter 6. Adding Authentication Requirements to ID Tokens
	The Authentication Context Class Reference (acr) Claim
	The Authentication Method Reference (amr) Claim

	Chapter 7. Additional Use Cases for ID Tokens
	Using ID Tokens as Session Tokens
	Using ID Tokens as Subjects in Policy Decision

	Chapter 8. OpenID Connect 1.0 Endpoints
	/oauth2/userinfo
	/oauth2/idtokeninfo
	/oauth2/connect/checkSession
	/oauth2/connect/endSession
	/oauth2/connect/jwk_uri
	Configuring Digital Signatures
	Deprecating Algorithms and Rotating Public Keys
	Customizing Public Key IDs
	Displaying Every Algorithm and Key Type Associated to a Key ID

	Chapter 9. Reference
	OpenID Connect 1.0 Standards
	AM As an Identity Provider to Another AM Example
	OAuth2 Provider
	Global Attributes
	Core
	Advanced
	Client Dynamic Registration
	OpenID Connect
	Advanced OpenID Connect
	Device Flow
	Consent
	CIBA

	OAuth 2.0 and OpenID Connect 1.0 Client Settings
	Core
	Advanced
	OpenID Connect
	Signing and Encryption
	UMA

	Appendix A. About Scripting
	The Scripting Environment
	Security
	Thread Pools

	Global Scripting API Functionality
	Accessing HTTP Services
	Debug Logging

	Managing Scripts
	Managing Scripts With the AM Console
	Managing Scripts With the REST API
	Querying Scripts
	Reading a Script
	Validating a Script
	Creating a Script
	Updating a Script
	Deleting a Script

	Managing Scripts With the ssoadm Command

	Scripting
	Configuration
	Secondary Configurations
	Engine Configuration

	Appendix B. Getting Support
	Glossary

