
OAuth 2.0 Guide
/ ForgeRock Access Management 6.5

Latest update: 6.5.5

ForgeRock AS.
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2011-2022 ForgeRock AS.

Abstract

Guide showing you how to use OAuth 2.0 with ForgeRock® Access Management (AM).
ForgeRock Access Management provides intelligent authentication, authorization,
federation, and single sign-on functionality.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, https://fontawesome.com/.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://fontawesome.com/
https://opensource.org/licenses/OFL-1.1

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. iii

Table of Contents
Preface .. v
1. Introducing OAuth 2.0 .. 1

AM as the OAuth 2.0 Authorization Server .. 2
AM and OAuth 2.0 Scopes .. 4
AM as an OAuth 2.0 Client and Resource Server ... 5
Using Your Own Client and Resource Server .. 6
Security Considerations ... 7
About Token Storage Location .. 7

2. Configuring AM for OAuth 2.0 .. 11
Configuring the OAuth 2.0 Provider Service .. 11
Registering OAuth 2.0 Clients With the OAuth 2.0 Provider Service 15
Configuring AM as an Authorization Server and Client .. 33
Configuring AM for Client-Based OAuth 2.0 Tokens ... 39

3. Authenticating OAuth 2.0 Clients .. 44
Authenticating Clients Using Form Parameters ... 44
Authenticating Clients Using Authorization Headers .. 45
Authenticating Clients Using JWT Profiles ... 45
Authenticating Clients Using Mutual TLS .. 49
Authenticating Clients when Using OpenID Connect 1.0 53

4. Implementing OAuth 2.0 Grant Flows ... 55
Authorization Code Grant .. 56
Authorization Code Grant with PKCE .. 63
Implicit Grant .. 72
Resource Owner Password Credentials Grant .. 78
Client Credentials Grant .. 82
Device Flow ... 84
SAML v2.0 Profile for Authorization Grant .. 93
JWT Profile for OAuth 2.0 Authorization Grant .. 96

5. Managing OAuth 2.0 Refresh Tokens .. 102
6. Implementing OAuth 2.0 Proof-of-Possession ... 105

JWK-Based Proof-of-Possession .. 105
Certificate-Bound Proof-of-Possession .. 110

7. Managing OAuth 2.0 Consent .. 120
Allowing Clients To Skip Consent .. 120
Allowing the OAuth 2.0 Provider to Save Consent ... 121
Allowing Users to Revoke Consent .. 122
OAuth 2.0 Remote Consent Service ... 122

8. OAuth 2.0 Endpoints ... 133
/oauth2/authorize ... 133
/oauth2/bc-authorize .. 139
/oauth2/access_token ... 142
/oauth2/device/code ... 145
/oauth2/device/user .. 147
/oauth2/token/revoke ... 149

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. iv

/oauth2/introspect .. 150
Legacy OAuth 2.0 endpoints .. 153

9. OAuth 2.0 Administration and Supporting REST Endpoints 162
/oauth2/register ... 162
/json/realm-config/agents/OAuth2Client ... 163
/users/user/oauth2/resources/sets .. 165
/users/user/oauth2/applications .. 167

10. Customizing OAuth 2.0 .. 169
Customizing OAuth 2.0 Scope Handling .. 169
Modifying the Content of Access Tokens ... 174

11. Reference .. 182
OAuth 2.0 Standards ... 182
OAuth 2.0 Sample Mobile Applications .. 183
OAuth2 Provider .. 183
Remote Consent Service .. 209
OAuth 2.0 and OpenID Connect 1.0 Client Settings ... 210
OAuth 2.0 Remote Consent Agent Settings .. 223

A. About the REST API .. 230
Introducing REST .. 230
About ForgeRock Common REST .. 230
Cross-Site Request Forgery (CSRF) Protection .. 248
REST API Versioning ... 249
Specifying Realms in REST API Calls .. 252
Authentication and Logout using REST ... 253
Using the Session Token After Authentication ... 272
Server Information .. 273
Token Encoding ... 274
Logging ... 274
Reference .. 276

B. About Scripting ... 279
The Scripting Environment .. 279
Global Scripting API Functionality ... 284
Managing Scripts .. 286
Scripting .. 299

C. Getting Support .. 303
Glossary ... 304

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. v

Preface
This guide covers concepts, configuration, and usage procedures for working with OAuth 2.0 and
ForgeRock Access Management.

This guide is written for anyone using OAuth 2.0 with Access Management to manage and federate
access to web applications and web-based resources.

About ForgeRock Identity Platform™ Software
ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity
and Access Management solution. We help our customers deepen their relationships with their
customers, and improve the productivity and connectivity of their employees and partners. For more
information about ForgeRock and about the platform, see https://www.forgerock.com.

https://www.forgerock.com

Introducing OAuth 2.0

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 1

Chapter 1

Introducing OAuth 2.0
This chapter covers AM support for the OAuth 2.0 authorization framework.

RFC 6749, The OAuth 2.0 Authorization Framework allows a third-party application to obtain
limited access to a resource (usually user data), either on behalf of the resource owner, or in the
application's own behalf.

The main actors in the OAuth 2.0 authorization framework are the following:

OAuth 2.0 Framework Actors

Actor Description
Resource Owner (RO) The owner of the resources. For example, a user that has several photos stored in

a photo-sharing service.

The resource owner uses a user-agent, usually a web-browser, to communicate
with the client.

Client The third-party application that wants to obtain access to the resources. The client
makes requests on behalf of the resource owner and with their authorization. For
example, a printing service that needs to access the resource owner's photos to
print them.

AM can act as a client.
Authorization Server (AS) The authorization service that authenticates the resource owner and/or the client,

issues access tokens to the client, and tracks their validity. Access tokens prove
that the resource owner authorizes the client to act on their behalf over specific
resources during a limited amount of time.

AM can act as the authorization server.
Resource Server (RS) The service hosting the protected resources. For example, a photo-sharing

service. The resource server must be able to validate the tokens issued by the
authorization server.

A website protected by a web or a Java agent can act as the resource server.

The following sequence diagram demonstrates the basic OAuth 2.0 flow:

https://www.rfc-editor.org/info/rfc6749

Introducing OAuth 2.0
AM as the OAuth 2.0 Authorization Server

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 2

OAuth 2.0 Protocol Flow

Resource Owner

Resource Owner

Client

Client

Authorizat ion Server

Authorizat ion Server

Resource Server

Resource Server

1 Authorizat ion request

2 Authorizat ion grant

3 Authorizat ion grant

4 Access token

5 Access token

6 Protected resource

Before configuring OAuth 2.0 in your environment, ensure you are familiar with the OAuth 2.0
authorization framework and the RFCs, Internet-Drafts, and standards that AM supports relating to
OAuth 2.0.

AM as the OAuth 2.0 Authorization Server
In the role of the authorization server, AM authenticates resource owners and obtains their
authorization in order to return access tokens to clients.

When using AM as the authorization server, you can register confidential or public clients in the
AM console, or clients can register themselves with AM dynamically. For more information, see
"Registering OAuth 2.0 Clients With the OAuth 2.0 Provider Service".

AM supports the following OAuth 2.0 standards and grant types:

Grant Types

• Authorization Code

• Implicit

• Resource Owner Password Credentials

• Client Credentials

https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749

Introducing OAuth 2.0
AM as the OAuth 2.0 Authorization Server

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 3

• Device Flow

• SAML v2.0 Profile for Authorization Grant

• JWT Profile for OAuth 2.0 Authorization Grants

For more information, see "Implementing OAuth 2.0 Grant Flows".

Client Authentication Standards

• JWT Profile for OAuth 2.0 Client Authentication

• Mutual TLS

For more information, see "Authenticating OAuth 2.0 Clients".

Other OAuth 2.0 Standards

• JWT Proof-of-Possession

For more information, see "Implementing OAuth 2.0 Proof-of-Possession".

• User Managed Access (UMA) 2.0

For more information, see the ForgeRock Access Management UMA 2.0 Guide.

• OpenID Connect

For more information, see the ForgeRock Access Management OpenID Connect 1.0 Guide.

Tip

For a complete list of all the supported OAuth 2.0 standards, see "OAuth 2.0 Standards".

Moreover, AM as an authorization server supports the following capabilities:

• Remote consent services, which allows the consent-gathering part of an OAuth 2.0 flow to be
handed off to a separate service.

For more information, see "OAuth 2.0 Remote Consent Service".

• Dynamic Scopes, which allows customization of how scopes are granted to the client regardless of
the grant flow used. You can configure AM to grant scopes statically or dynamically:

• Statically (Default). You configure several OAuth 2.0 clients with different subsets of scopes and
resource owners are redirected to a specific client depending on the scopes required. As long
as the resource owner can authenticate and the client can deliver the same or a subset of the
requested scopes, AM issues the token with the scopes requested. Therefore, two different users
requesting scopes A and B to the same client will always receive scopes A and B.

Introducing OAuth 2.0
AM and OAuth 2.0 Scopes

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 4

• Dynamically. You configure an OAuth 2.0 client with a comprehensive list of scopes and resource
owners authenticate against it. When AM receives a request for scopes, AM's Authorization
Service grants or denies access scopes dynamically by evaluating authorization policies at
runtime. Therefore, two different users requesting scopes A and B to the same client can receive
different scopes based on policy conditions.

For more information about granting scopes dynamically, see "Introducing Authorization" and
"Implementing Authorization" in the Authorization Guide.

AM and OAuth 2.0 Scopes
Scopes are a mean to restrict client access to the resource owner's resources, as defined in the
OAuth 2.0 Authorization Framework.

A client can request one or more scopes, which AM can display in the consent screen. If the resource
owner agrees to share access to their resources, scopes are included in the access token.

Scopes are not associated with data and, in practice, they are just concepts specified as strings that
the resource server must interpret in order to provide the required access or resources to the client.
The OAuth 2.0 framework does not define any particular value for scopes since they are dependent
on the architecture of your environment.

For example, a client may request the write scope, which the resource server may interpret as that
the client wants to save some new information in the user's account, such as images or documents.

Every OAuth 2.0 flow requires scopes to limit the client's access to the resource owner's resources.
For security reasons, AM only accepts scopes preconfigured in the Scope(s) or in the Default Scope(s)
fields (Realms > Realm Name > Applications > OAuth 2.0 > Clients > Client Name > Core).

If a client does not request any scopes, AM uses the scopes configured in the Default Scope(s) field
of the client's profile. If none are configured, AM returns the No scope requested error. If the client
requests a scope that is not preconfigured, AM returns an error, such as Unknown/invalid scope(s).

AM does not use the default scopes in any other circumstance.

Since scopes are arbitrary, in some cases they would not be descriptive enough for the resource
owner to understand their purpose. In other cases, you may not want the resource owner to see a
particular scope because it is for internal uses only. You can configure the AM consent screen to
show, for each scope, one of the following options:

https://www.rfc-editor.org/info/rfc6749

Introducing OAuth 2.0
AM as an OAuth 2.0 Client and Resource Server

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 5

The Scope Itself A Localized Description Neither the Scope nor a Description

You can configure how scopes appear in the consent screen by client or by realm, in the OAuth 2.0
provider service. For more information, see the Supported Scopes field in the provider's "Advanced"
reference section or the Scope(s) field in "OAuth 2.0 and OpenID Connect 1.0 Client Settings".

Client level configuration overrides that at provider level.

For examples of requesting scopes from the authorization server, see any of the grant flows in
"Implementing OAuth 2.0 Grant Flows".

Tip

You can configure AM to grant scopes dynamically by evaluating authorization policies at runtime. For more
information, see "Introducing Authorization" and "Implementing Authorization" in the Authorization Guide.

AM as an OAuth 2.0 Client and Resource Server
AM can function as an OAuth 2.0 client for installations where the resources are protected by AM. To
configure AM as an OAuth 2.0 client, you set up an OAuth 2.0 social authentication module instance,
and then integrate the authentication module into your authentication chains as necessary.

When AM functions as an OAuth 2.0 client, AM provides an AM SSO session after successfully
authenticating the resource owner and obtaining authorization. This means the client can then
access resources protected by agents. In this respect the AM OAuth 2.0 client is just like any other
authentication module, one that relies on an OAuth 2.0 authorization server to authenticate the
resource owner and obtain authorization. The following sequence diagram shows how the client gains
access to protected resources in the scenario where AM functions as both authorization server and
client for example.

Introducing OAuth 2.0
Using Your Own Client and Resource Server

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 6

OAuth 2.0 Client and Authorization Server

Resource Owner
User-Agent

Resource Owner
User-Agent

Client
AM OAuth 2.0 Auth Module

Client
AM OAuth 2.0 Auth Module

Authorizat ion Server

Authorizat ion Server

Resource Server
Protected with AM Agent

Resource Server
Protected with AM Agent

1 Redirect ...

2 ...to AM OAuth 2.0 authorizat ion server

3 Authent icate, and confirm authorizat ion grant

4 Redirect ...

5 ...with authorizat ion code to redirect_uri

6 Authent icate, request access token with
authorizat ion code, redirect_uri

7 If authorizat ion code is valid, return access token

8 Request user profile inform at ion with access token

9 If configured, m ap user to local ident ity

1 0 Redirect ...

1 1 ...with SSO token to protected resource

1 2 If authorized by AM (not shown), return protected resource

As the OAuth 2.0 client functionality is implemented as an AM authentication module, you do not
need to deploy your own resource server implementation when using AM as an OAuth 2.0 client.
Instead, use web or Java agents or IG to protect resources.

To configure AM as an OAuth 2.0 client, see the section "Social Authentication Modules" in the
Authentication and Single Sign-On Guide.

Using Your Own Client and Resource Server
AM returns bearer tokens as described in RFC 6750, The OAuth 2.0 Authorization Framework:
Bearer Token Usage. Notice in the following example JSON response to an access token request that
AM returns a refresh token with the access token. The client can use the refresh token to get a new
access token as described in RFC 6749:
{
 "expires_in": 599,
 "token_type": "Bearer",
 "refresh_token": "f6dcf133-f00b-4943-a8d4-ee939fc1bf29",
 "access_token": "f9063e26-3a29-41ec-86de-1d0d68aa85e9"
}

https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc6750

Introducing OAuth 2.0
Security Considerations

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 7

In addition to implementing your client, the resource server must also implement the logic for
handling access tokens. The resource server can use the /oauth2/introspect endpoint to determine
whether the access token is still valid, and to retrieve the scopes associated with the access token.
For an example of the values returned by the endpoint, see "/oauth2/introspect".

AM is designed to allow you to plug in your own scopes implementation if the default implementation
does not do what your deployment requires. See "Customizing OAuth 2.0 Scope Handling" for an
example.

Security Considerations
OAuth 2.0 messages involve credentials and access tokens that allow the bearer to retrieve protected
resources. Therefore, do not let an attacker capture requests or responses. Protect the messages
going across the network.

RFC 6749 includes a number of Security Considerations, and also requires Transport Layer
Security (TLS) to protect sensitive messages. Make sure you read the section covering Security
Considerations, and that you can implement them in your deployment.

Also, especially when deploying a mix of other clients and resource servers, take into account the
points covered in the Internet-Draft, OAuth 2.0 Threat Model and Security Considerations, before
putting your service into production.

About Token Storage Location
AM OAuth 2.0-related services are stateless unless otherwise indicated; they do not hold any token
information local to the AM instances. Instead, they either store the OAuth 2.0/OpenID Connect
tokens in the CTS token store or present them to the client. This architecture allows you to scale your
AM infrastructure horizontally, since any server in the deployment can satisfy any token request.

OAuth 2.0 token storage location is a property of the OAuth 2.0 service, which is configured by realm.
You can configure each realm to store tokens in the CTS token store, or to hand the tokens to the
clients as required.

Both CTS-based and client-based token configurations support all OAuth 2.0 features present in
AM. Before you decide to keep CTS-based tokens or to configure client-based tokens, consider the
information in the following list:

CTS-Based OAuth 2.0 tokens (previously referred to as stateful tokens)

• The CTS token store is the authoritative source for the tokens. AM returns to the client a
reference to the token, but that reference does not contain any of the token information. In the
following example, the reference is stored in the access_token property:

https://www.rfc-editor.org/rfc/rfc6749.html#section-10
https://datatracker.ietf.org/doc/html/draft-ietf-oauth-v2-threatmodel

Introducing OAuth 2.0
About Token Storage Location

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 8

{
 "access_token": "sbQZuveFumUDV5R1vVBl6QAGNB8",
 "scope": "write",
 "token_type": "Bearer",
 "expires_in": 3599
}

• CTS-based tokens are configured by default for all realms.

• Clients cannot access the tokens other than to introspect them, making tokens less vulnerable
to tampering attacks.

• AM does not cache CTS-based tokens in memory. Therefore, every time a client presents a
token ID in a request, AM checks if the token exists in the CTS token store (in case it has been
revoked) and, if available, retrieve its information,

Reading from and writing to the CTS token store incurs overhead for the CTS DS instances.

• If you need to add an additional layer of security for the stored tokens, consider one of the
following alternatives:

• Configure AM to encrypt the tokens before storing them in the CTS token store.

• Configure DS to encrypt the CTS token store data.

For more information about both options, see "Managing CTS Tokens" in the Installation Guide.

• Tokens can only be introspected using a call to the authorization server.

Client-Based OAuth 2.0 tokens (previously referred to as stateless tokens)

• AM returns the token to the client after successfully completing one of the grant flows. In the
following example, the token is stored in the access_token property:
{
 "access_token":"eyJ0eXAiOiJKV1QiLOT05FIiwiYWxnQY1lIjoxNTM5MDEzMzYyLsbSI6Ii8iLCj....",
 "scope":"write",
 "token_type":"Bearer",
 "expires_in":3599
}

A decoded access token produces JSON structures similar to the following:

Introducing OAuth 2.0
About Token Storage Location

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 9

{
 typ: "JWT",
 zip: "NONE",
 alg: "HS256"
}
{
 sub: "myClient",
 cts: "OAUTH2_STATELESS_GRANT",
 auditTrackingId: "f20f4099-5248-4399-a7f0-2d54d4020099-108676",
 iss: "https://openam.example.com:8443/openam/oauth2",
 tokenName: "access_token",
 token_type: "Bearer",
 authGrantId: "1LUgI8zcDWqcfEnnLdZDnNqA2wc",
 aud: "myClient",
 nbf: 1539075967,
 grant_type: "client_credentials",
 scope: [
 "write"
],
 auth_time: 1539075967,
 realm: "/",
 exp: 1539079567,
 iat: 1539075967,
 expires_in: 3600,
 jti: "FTQT6eZkDhm6PHEaSthORoTLB80"
}
[signature]

• Token size may be a concern if tokens need to be sent in a header, since they are larger than
the token reference returned for CTS-based tokens.

The size of the client-based tokens also increases when you customize AM to store additional
attributes in the tokens. You are responsible for ensuring that the size of the token does not
exceed the maximum header size allowed by your end users' browsers.

• Can be configured by realm.

• Tokens are presented to the client after successfully completing an OAuth 2.0 grant flow.
Therefore, tokens are vulnerable to tampering attacks and you should configure AM to sign and
encrypt them.

• AM does not store the decrypt sequence of the token in memory, so decrypting and verifying
tokens incurs overhead for the AM instances.

• Token blacklisting is a feature that maintains a list of revoked tokens and authorization codes
stored in the CTS token store. This feature protects against replay attacks, and it is always
enabled for client-based tokens.

Every time a client presents a client-based token in a request, AM checks in the CTS token
store if the token has been blacklisted (revoked). If it has not, then AM decrypts it to retrieve its
information.

Introducing OAuth 2.0
About Token Storage Location

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 10

Note

Client-based refresh tokens have corresponding entries in a CTS whitelist, rather than a blacklist.
When presenting a client-based refresh token AM will check that a matching entry is found in the CTS
whitelist, and prevent reissue if the record does not exist.

Adding a client-based OAuth 2.0 token to the blacklist will also remove associated refresh tokens from
the whitelist.

• Clients can introspect the tokens without calling the authorization server. This can be
advantageous in global deployments where keeping the CTS token store replication in sync fast
enough to serve clients at any time by any server proves difficult.

For more information about configuring client-based OAuth 2.0, see "Configuring AM for Client-
Based OAuth 2.0 Tokens".

Configuring AM for OAuth 2.0
Configuring the OAuth 2.0 Provider Service

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 11

Chapter 2

Configuring AM for OAuth 2.0
This chapter covers configuring AM support for OAuth 2.0.

Configuring the OAuth 2.0 Provider Service
When you configure an OAuth 2.0 provider in a realm, AM creates an OAuth2 Provider Service in the
realm and exposes the endpoints specified in "OAuth 2.0 Endpoints" and "OAuth 2.0 Administration
and Supporting REST Endpoints".

The following procedure shows how to configure an OAuth 2.0 provider using the wizard, which
populates several configuration options by default.

Note that an OAuth 2.0 provider created with this wizard will fail to provide ID tokens. If you need
to support OpenID connect, see "Configuring AM as an OpenID Connect Provider" in the OpenID
Connect 1.0 Guide instead.

To Set Up the OAuth 2.0 Provider Service

Perform the steps in this procedure to set up the service with the Configure OAuth Provider wizard:

1. In the AM console, navigate to Realms > Realm Name > Dashboard > Configure OAuth Provider
> Configure OAuth 2.0.

2. On the Configure OAuth2 page, select the Realm for the provider service.

3. (Optional) If necessary, adjust the lifetimes for authorization codes (a lifetime of 10 minutes or
less is recommended in RFC 6749), access tokens, and refresh tokens.

4. (Optional) Select Issue Refresh Tokens if you want the provider to supply a refresh token when
returning an access token.

5. (Optional) Select Issue Refresh Tokens on Refreshing Access Tokens if you want the provider to
supply a new refresh token when refreshing an access token.

6. (Optional) Keep the default scope implementation, whereby scopes are taken to be resource
owner profile attribute names, unless you have a custom scope validator implementation.

If you have a custom scope validator implementation, copy it to the AM classpath, for example /
path/to/tomcat/webapps/openam/WEB-INF/lib/, and specify the class name in the Scope Implementation
Class field. For an example, see "Customizing OAuth 2.0 Scope Handling".

https://www.rfc-editor.org/rfc/rfc6749.html#section-4.1.2

Configuring AM for OAuth 2.0
Configuring the OAuth 2.0 Provider Service

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 12

7. Select Create to save your changes. If an OAuth2 provider service already exists, it will be
overwritten.

AM creates an OAuth2 provider service.

OAuth 2.0 Provider Server Additional Configuration

The OAuth 2.0 provider is highly configurable:

• To access the OAuth 2.0 provider configuration in the AM console, navigate to Realms > Realm
Name > Services, and then select OAuth2 Provider.

• To adjust global defaults, in the AM console navigate to Configure > Global Services, and then click
OAuth2 Provider.

Consider the following configuration options:

• To configure the OAuth 2.0 service to interact with AM's Authorization service to dynamically
provide scopes, enable Use Policy Engine for Scope decisions.

Ensure you configure OAuth2 Scope resource type policies in the Default OAuth2 Scopes Policy Set.
For more information, see "Resource Types, Policy Sets, and Policies" and "Configuring Policies" in
the Authorization Guide.

• To configure response type plugins, add or remove lines from the Response Type Plugins field.
Response type plugins let the provider issue access tokens, ID tokens, authorization codes, device
codes, and others.

The following is a list of the plugins included in AM:

code|org.forgerock.oauth2.core.AuthorizationCodeResponseTypeHandler
id_token|org.forgerock.openidconnect.IdTokenResponseTypeHandler
device_code|org.forgerock.oauth2.core.TokenResponseTypeHandler
token|org.forgerock.oauth2.core.TokenResponseTypeHandler
none|org.forgerock.oauth2.core.NoneResponseTypeHandler

• The id_token response type is required in OpenID Connect flows. AM uses it to issue ID tokens.

• The none response type is required in OpenID Connect flows using the id_token_hint parameter.

• The code response type is required in the Authorization Code grant flow.

• The device_code response type is required in the Device grant flow.

• The token response type is required in all flows. AM uses it to issue access and refresh tokens.

• To change how scopes appear in the OAuth 2.0 consent pages, configure the Supported Scopes
field on the Advanced tab.

Configuring AM for OAuth 2.0
Configuring the OAuth 2.0 Provider Service

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 13

Scopes may be entered as simple strings or pipe-separated strings representing the internal scope
name, locale, and localized description. For example: read|en|Permission to view email messages in your
 account.

For more information, see "AM and OAuth 2.0 Scopes".

• To change the OAuth 2.0 flows the provider allows, configure them in the Grant Types field on the
Advanced tab.

• To allow users to save consent so the OAuth 2.0 provider remembers their consented scopes, see
"Allowing the OAuth 2.0 Provider to Save Consent".

• To allow clients to skip consent so no consent page is displayed to the resource owners, see "To
Allow Clients To Skip Consent".

• To change the attribute used to retrieve the user profile, for example, in cases where the resource
owner should log in with their email address instead of with a username, see "To Change the
Attribute Used to Retrieve the User Profile".

• To configure different types of client authentication, including JWT profiles and mutual TLS, see
"Authenticating OAuth 2.0 Clients".

• To configure client-based tokens, such that clients can directly introspect the tokens without
making a call to AM, see "Configuring AM for Client-Based OAuth 2.0 Tokens".

• To configure proof-of-possession, see "Implementing OAuth 2.0 Proof-of-Possession".

• To register clients or configure dynamic client registration, see "Dynamic Client Registration".

Tip

For more information about OpenID Connect configurations, see "OpenID Connect Provider Additional
Configuration" in the OpenID Connect 1.0 Guide.

To Change the Attribute Used to Retrieve the User Profile

If you use an external identity repository where resource owners log in not with their user ID, but
instead with their mail address or some other profile attribute, you must configure AM authentication
to allow it.

For example, to configure AM so OAuth 2.0 resource owners can log in using their email address,
stored on the LDAP profile attribute, mail, perform the following steps:

1. In the OAuth2 provider Advanced tab, add the LDAP profile attribute to the User Profile
Attribute(s) the Resource Owner is Authenticated On list, and save your changes.

2. Navigate to Realms > Realm Name > Identity Stores > Identity Store Name > Authentication
Configuration.

Configuring AM for OAuth 2.0
Configuring the OAuth 2.0 Provider Service

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 14

3. Set the value of the Authentication Naming Attribute field to the LDAP attribute required. For
example, mail.

4. Create an LDAP authentication module or an LDAP decision node to use with the identity
repository.

In both cases, configure the following fields:

a. In the Attribute Used to Retrieve User Profile field, set the attribute to mail.

b. In the Attributes Used to Search for a User to be Authenticated list, add the mail attribute.

c. Save your changes.

5. Ensure the resource owners use the authentication tree or chain where you configured the LDAP
module or node.

Specify the chain or tree by using one or more of the methods below. AM checks for the
configured value in the following order, using the first value found:

1. For a specific access token REST request.

Set the auth_chain parameter.

2. Individually for a realm, overriding the realm-level setting below.

Navigate to Realms > Realm Name > Services > OAuth2 Provider > Advanced, and set the
Password Grant Authentication Service property.

3. Individually for a realm.

Navigate to Realms > Realm Name > Authentication > Settings > Core, and set the
Organization Authentication Configuration property.

4. Globally, for all realms.

Navigate to Configure > Authentication > Core Attributes > Core, and set the Organization
Authentication Configuration property.

For more information, see "Configuring the Default Authentication Tree or Chain" in the
Authentication and Single Sign-On Guide.

For more information about authentication trees and chains, see "Implementing Authentication"
in the Authentication and Single Sign-On Guide.

Configuring AM for OAuth 2.0
Registering OAuth 2.0 Clients With the OAuth 2.0 Provider Service

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 15

Registering OAuth 2.0 Clients With the OAuth 2.0 Provider
Service
You can register an OAuth 2.0 client with the AM OAuth 2.0 authorization service by creating and
configuring an OAuth 2.0 Client profile. When creating a client profile, you must provide at least the
client identifier and client secret.

Alternatively, you can register a client dynamically. AM supports open registration, registration
with an access token, and registration including a secure software statement issued by a software
publisher.

You can also create an OAuth 2.0 client profile group. OAuth 2.0 clients within a group can specify
one or more properties that inherit their values from the group, allowing configuration of multiple
OAuth 2.0 clients simultaneously. For more information, see "To Configure an OAuth 2.0 Client
Profile Group".

To Create an OAuth 2.0 Client Profile

Use the following procedure to create an OAuth 2.0 client profile:

• In the AM console, navigate to Realms > Realm Name > Applications > OAuth 2.0. Click Add
Client, and then provide the Client ID, client secret, redirection URIs, scope(s), and default
scope(s). Finally, click Create to create the profile.

To configure the client, see "To Configure an OAuth 2.0 Client Profile".

To Configure an OAuth 2.0 Client Profile

1. In the AM console, navigate to Realms > Realm Name > Applications > OAuth 2.0 > Client Name
to open the OAuth 2.0 Client page.

2. Adjust the configuration as needed using the inline help for hints, and also the documentation
section "OAuth 2.0 and OpenID Connect 1.0 Client Settings".

Examine the client type option. An important decision to make at this point is whether your
client is a confidential client or a public client. This depends on whether your client can keep its
credentials confidential, or whether its credentials can be exposed to the resource owner or other
parties. If your client is a web-based application running on a server, such as the AM OAuth 2.0
client, then you can keep its credentials confidential. If your client is a user-agent based client,
such as a JavaScript client running in a browser, or a native application installed on a device
used by the resource owner, then the credentials can be exposed to the resource owner or other
parties.

3. When finished, save your work.

Configuring AM for OAuth 2.0
Registering OAuth 2.0 Clients With the OAuth 2.0 Provider Service

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 16

To Configure an OAuth 2.0 Client Profile Group

1. In the AM console, navigate to Realms > Realm Name > Applications > OAuth 2.0.

• To create a new OAuth 2.0 client profile group:

On the Groups tab, select Add Group, and then provide the Group ID. Finally, select Create.

• To configure a OAuth 2.0 client profile group:

On the Groups tab, select the group to configure.

2. Adjust the configuration as needed using the inline help for hints, and also the documentation
section "OAuth 2.0 and OpenID Connect 1.0 Client Settings".

3. When finished, save your work.

If the group is assigned to one or more OAuth 2.0 client profiles, changes to inherited properties
in the group are also applied to the client profile.

To assign a group to an OAuth 2.0 client profile, see "To Assign a Group to an OAuth 2.0 Client
Profile and Inherit Properties".

To Assign a Group to an OAuth 2.0 Client Profile and Inherit Properties

1. In the AM console, navigate to Realms > Realm Name > Applications > OAuth 2.0. On the
Clients tab, select the client ID to which a group is to be assigned.

2. On the Core tab, select the group to assign to the client from the Group drop-down.

Warning

Adding or changing an assigned group will refresh the settings page. Unsaved property values will be lost.

The inheritance (padlock) icons appear next to properties that support inheriting their value
from the assigned group. Not all properties can inherit their value, for example, the Client secret
property.

Configuring AM for OAuth 2.0
Registering OAuth 2.0 Clients With the OAuth 2.0 Provider Service

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 17

OAuth 2.0 Client Profile Group Inheritance

3. Inherit a property value from the group by selecting the inheritance button (the open padlock
icon) next to the property.

The value will be inherited from the group and the field will be locked.

Note

If you change the group, properties with inheritance enabled will inherit the value from the new group.

Configuring AM for OAuth 2.0
Dynamic Client Registration

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 18

If you remove the group, inherited property values are written to the OAuth 2.0 client profile, and become
editable.

4. When finished, save your work.

Dynamic Client Registration

AM supports dynamic registration as defined by RFC 7591, the OAuth 2.0 Dynamic Client
Registration Protocol, and as defined by the the OpenID Connect Dynamic Client Registration 1.0
specification. The protocols describe how authorization servers can allow OAuth 2.0 clients to
register:

• Openly, without an access token, providing only their client metadata as a JSON resource.

AM generates client_id and client_secret values. AM ignores any values provided in the client
metadata for these properties.

• Providing either a self-signed or a CA-signed X.509 certificate as authentication (OAuth 2.0 Mutual
TLS Client Authentication and Certificate Bound Access Tokens internet-draft) and its client
metadata as JSON.

• By gaining authorization using an OAuth 2.0 access token, and with their client metadata.

The specification does not describe how the client obtains the access token. In AM, you can
manually register an initial OAuth 2.0 client that obtains the access token on behalf of the client
requesting registration.

You can use this method to provide a client with a specific client ID, and then allow the client to
modify its metadata.

Note

The logo_uri, client_uri, and policy_uri parameters are only accepted during dynamic client registration if
the access token contains the dynamic_client_registration special scope.

• With client metadata that includes a software statement.

A software statement is a JWT that holds registration claims about the client, such as the issuer and
the redirection URIs that it will register.

A software statement is issued by a software publisher. The software publisher encrypts and signs
the claims in the software statement.

In AM, you store software publisher details as an agent profile. The software publisher profile
identifies the issuer included in software statements, and holds information required to decrypt

https://www.rfc-editor.org/info/rfc7591
https://www.rfc-editor.org/info/rfc7591
https://openid.net/specs/openid-connect-registration-1_0.html
https://tools.ietf.org/html/draft-ietf-oauth-mtls-12
https://tools.ietf.org/html/draft-ietf-oauth-mtls-12

Configuring AM for OAuth 2.0
Dynamic Client Registration

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 19

software statement JWTs and to verify their signatures. When the client presents a software
statement as part of the dynamic registration data, AM uses the software publisher profile to
determine whether it can trust the software statement.

The protocol specification does not describe how the client obtains the software statement JWT. AM
expects the software publisher to construct the JWT according to the settings in its agent profile.

To Configure AM for Dynamic Client Registration

Perform the following steps to configure AM for dynamic client registration:

1. Configure an authorization service.

For details, see "To Set Up the OAuth 2.0 Provider Service".

2. In AM console under Realm > Services > OAuth2 Provider > Client Dynamic Registration, edit
the relevant settings:

• To allow clients to register without an access token, enable Allow Open Dynamic Client
Registration.

If you enable this option, consider some form of rate limiting. Also consider requiring a
software statement.

• To require that clients present a software statement upon registration, enable Require Software
Statement for Dynamic Client Registration, and edit the Required Software Statement Attested
Attributes list to include the claims that must be present in a valid software statement. In
addition to the elements listed, the issuer (iss) must be specified in the software statement's
claims, and the issuer value must match the Software publisher issuer value for a registered
software publisher agent.

As indicated in the protocol specification, AM rejects registration with an invalid software
statement.

If the issuer is compressing the JWT, note that by default, AM rejects JWTs that expand to a size
larger than 32 KiB (32768 bytes). For more information, see "Controlling the Maximum Size of
Compressed JWTs" in the Installation Guide.

For additional details, see "Client Dynamic Registration".

3. (Optional) If the clients will authenticate using mTLS with CA-signed (PKI) certificates, configure
AM to hold the certificates belonging to the certificate authorities you want the instance of AM to
trust. For more information, see "Mutual TLS Using Public Key Infrastructure".

4. (Optional) If you enabled Require Software Statement for Dynamic Client Registration, then you
must register a software publisher:

a. In the AM console under Realm > Applications > Agents > Software Publisher, add a new
software publisher agent.

Configuring AM for OAuth 2.0
Dynamic Client Registration

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 20

If the publisher uses HMAC (symmetric) encryption for the software statement JWT, then the
software publisher's password is also the symmetric key. This is called the Software publisher
secret in the profile.

b. In the software publisher profile, configure the appropriate security settings.

Important

• The Software publisher issuer value must match the iss value in claims of software statements
issued by this publisher.

• If the publisher uses symmetric encryption, including HS256, HS384, and HS512, then the Software
publisher secret must match the k value in the JWK.

• If you provide the JWK by URI rather than by value, AM must be able to access the JWK when
processing registration requests.

5. (Optional) Review the following dynamic client registration examples:

• "Open Dynamic Client Registration Example"

• "Dynamic Client Registration Example with Mutual TLS Authentication"

• "Dynamic Client Registration Example With Access Token"

• "Dynamic Client Registration Example With Software Statement"

Note

AM returns an error when a client tries to register with an unsupported signing or encryption algorithm as
part of its configuration.

For example, it will return an error if there is a typo in an algorithm, or if a public client tries to send a
symmetric signing or encryption algorithm as part of its configuration: these algorithms are derived from
the client's secret, which public clients do not have.

Open Dynamic Client Registration Example

The following example shows dynamic registration with the Allow Open Dynamic Client Registration
option enabled (Realms > Realm Name > Services > OAuth2 Provider > Client Dynamic
Registration).

The client registers with its metadata as the JSON body of an HTTP POST to the registration
endpoint. When specifying client metadata, be sure to include a client_name property that holds the
human-readable name presented to the resource owner during consent:
$ curl \

Configuring AM for OAuth 2.0
Dynamic Client Registration

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 21

 --request POST \
 --header "Content-Type: application/json" \
 --data '{
 "redirect_uris": ["https://client.example.com:8443/callback"],
 "client_name#en": "My Client",
 "client_name#ja-Jpan-JP": "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "client_uri": "https://client.example.com/"
 }' \
 "https://openam.example.com:8443/openam/oauth2/register"
{
 "request_object_encryption_alg": "",
 "default_max_age": 1,
 "application_type": "web",
 "client_name#en": "My Client",
 "registration_client_uri": "https://openam.example.com:8443/openam/oauth2/register?
client_id=2aeff083-83d7-4ba1-ab16-444ced02b535",
 "client_type": "Confidential",
 "userinfo_encrypted_response_alg": "",
 "registration_access_token": "4637ee46-51df-4901-af39-fec5c3a1054c",
 "client_id": "2aeff083-83d7-4ba1-ab16-444ced02b535",
 "token_endpoint_auth_method": "client_secret_basic",
 "userinfo_signed_response_alg": "",
 "public_key_selector": "x509",
 "authorization_code_lifetime": 0,
 "client_secret": "6efb5636-6537-4573-b05c-6031cc54af27",
 "user_info_response_format_selector": "JSON",
 "id_token_signed_response_alg": "HS256",
 "default_max_age_enabled": false,
 "subject_type": "public",
 "jwt_token_lifetime": 0,
 "id_token_encryption_enabled": false,
 "redirect_uris": ["https://client.example.com:8443/callback"],
 "client_name#ja-jpan-jp": "#######",
 "id_token_encrypted_response_alg": "RSA1_5",
 "id_token_encrypted_response_enc": "A128CBC_HS256",
 "client_secret_expires_at": 0,
 "access_token_lifetime": 0,
 "refresh_token_lifetime": 0,
 "request_object_signing_alg": "",
 "response_types": ["code"]
 }

Tip

OpenID Connect clients must ensure that the following information is present in the JSON:

• The openid scope. For example, "scopes": ["profile", "openid"].

• The id_token response type. For example, "response_types": ["code", "id_token code"].

Dynamic Client Registration Example with Mutual TLS Authentication

The following example shows the different properties required for clients using mTLS for
authentication depending on the type of certificate presented:

Configuring AM for OAuth 2.0
Dynamic Client Registration

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 22

Clients using CA-signed X.509 certificates (PKI)

To use CA-signed certificates (PKI), you must configure AM to hold the certificates belonging
to the certificate authorities you want the instance of AM to trust. For more information, see
"Mutual TLS Using Public Key Infrastructure".

Include the following properties as part of the client metadata:

• token_endpoint_auth_method, which must be set to tls_client_auth.

• tls_client_auth_subject_dn, which must be set to the distinguished name as it appears in the
subject field of the certificate. For example, CN=myOauth2Client.

Clients using self-signed X.509 certificates

Clients authenticating using self-signed certificates can provide their certificates for validation in
one of the following ways:

• As a JWKS.

In this scenario, the client provides as part of its metadata the JWKS containing its
certificate(s).

Include the following properties as part of the client metadata:

• token_endpoint_auth_method, which must be set to self_signed_tls_client_auth.

• A JWKS, configured as per RFC 7517, which includes certificate information.

• As a JWKS URI, which AM will check periodically to retrieve the certificates from.

In this scenario, the client provides as part of its metadata the URI from where AM will retrieve
the certificate(s) for validation.

Include the following properties as part of the client metadata:

• token_endpoint_auth_method, which must be set to self_signed_tls_client_auth.

• jwks_uri, which must be set to the URI from where AM will retrieve the certificates. For
example, https://www.example.com/mysecureapps/certs.

• As an X.509 certificate.

In this scenario, the client provides as part of its metadata a single X.509 certificate in PEM
format.

Include the following properties as part of the client metadata:

• token_endpoint_auth_method, which must be set to self_signed_tls_client_auth.

• tls_client_auth_x509_cert, which must be set to an X.509 certificate in PEM format. You can
choose to include or exclude the -----BEGIN CERTIFICATE----- and -----END CERTIFICATE----- labels.

https://www.rfc-editor.org/info/rfc7517

Configuring AM for OAuth 2.0
Dynamic Client Registration

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 23

The following example shows dynamic registration of a client that will provide their self-signed
ECDSA P-256 certificate in a JWKS:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --data '{
 "jwks": {
 "keys": [{
 "kty": "EC",
 "crv": "P-256",
 "x": "9BmRru-6AYQ8U_9tUFhMGVG-BvC4vRthzLJTntfSdBA",
 "y": "MqPzVSeVNzzgcR-zZeLGog3GJ4d-doRE9eiGkCKrB48",
 "kid": "a4:68:90:1c:f6:c1:43:c0",
 "x5c": [
 "MIIBZTCCAQugAwIB.....xgASSpAQC83FVBawjmbv6k4CN95G8zHsA=="
]
 }]
 },
 "client_type": "Confidential",
 "grant_types": ["authorization_code", "client_credentials"],
 "response_types": ["code", "token"],
 "redirect_uris": ["https://client.example.com:8443/callback"],
 "token_endpoint_auth_method": "self_signed_tls_client_auth",
 "tls_client_auth_subject_dn": "CN=myOauth2Client",
 "tls_client_certificate_bound_access_tokens": true
}' \
 "https://openam.example.com:8443/openam/oauth2/register"
{
 "request_object_encryption_alg": "",
 "default_max_age": 1,
 "jwks": {
 "keys": [
 {
 "kty": "EC",
 "crv": "P-256",
 "x": "9BmRru-6AYQ8U_9tUFhMGVG-BvC4vRthzLJTntfSdBA",
 "y": "MqPzVSeVNzzgcR-zZeLGog3GJ4d-doRE9eiGkCKrB48",
 "kid": "a4:68:90:1c:f6:c1:43:c0",
 "x5c": [
 "MIIBZTCCAQugAwIB.....xgASSpAQC83FVBawjmbv6k4CN95G8zHsA=="
]
 }
]
 },
 "application_type": "web",
 "tls_client_auth_subject_dn": "CN=myOauth2Client",
 "registration_client_uri": "https://openam.example.com:8443/openam/oauth2/register?
client_id=83635999-2794-4fcd-b6b3-67e2d86c1952",
 "client_type": "Confidential",
 "userinfo_encrypted_response_alg": "",
 "registration_access_token": "tu4KR0jO3iGn0ubOOY0YCSfyPmk",
 "client_id": "83635999-2794-4fcd-b6b3-67e2d86c1952",
 "token_endpoint_auth_method": "self_signed_tls_client_auth",
 "userinfo_signed_response_alg": "",
 "public_key_selector": "jwks",
...
}

Configuring AM for OAuth 2.0
Dynamic Client Registration

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 24

Note that the example sets tls_client_certificate_bound_access_tokens to true to allow the client to
obtain certificate-bound access tokens. For more information, see "Certificate-Bound Proof-of-
Possession".

Tip

OpenID Connect clients must ensure that the following information is present in the JSON:

• The openid scope. For example, "scopes": ["profile", "openid"].

• The id_token response type. For example, "response_types": ["code", "id_token code"].

Dynamic Client Registration Example With Access Token

The following example shows dynamic registration with default OAuth 2.0 provider service settings,
providing an access token issued to a statically registered client.

In this example the statically registered client has the following profile settings:

Client ID

masterClient

Client secret

password

Scope(s)

dynamic_client_registration

Prior to registration, obtain an access token:
$ curl \
--request POST \
--user "masterClient:password" \
--data "grant_type=password&username=amadmin&password=password&scope=dynamic_client_registration" \
https://openam.example.com:8443/openam/oauth2/realms/root/access_token
{
 "access_token":"5e7d1019-b752-43f1-af97-0d6fe2753105",
 "scope":"dynamic_client_registration",
 "token_type":"Bearer",
 "expires_in":3599
}

The client registers with its metadata, providing the access token. When specifying client metadata,
be sure to include a client_name property that holds the human-readable name presented to the
resource owner during consent:
$ curl \

Configuring AM for OAuth 2.0
Dynamic Client Registration

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 25

--request POST \
--header "Content-Type: application/json" \
--header "Authorization: Bearer 5e7d1019-b752-43f1-af97-0d6fe2753105" \
--data '{
 "redirect_uris": ["https://client.example.com/callback"],
 "client_name#en": "My Client",
 "client_name#ja-Jpan-JP": "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "client_uri": "https://client.example.com/"
}' \
"https://openam.example.com:8443/openam/oauth2/register"
{
 "request_object_encryption_alg": "",
 "default_max_age": 1,
 "application_type": "web",
 "client_name#en": "My Client",
 "registration_client_uri": "https://openam.example.com:8443/openam/oauth2/register?
client_id=d58ba00b-da55-4fa3-9d2a-afe197207be5",
 "client_type": "Confidential",
 "userinfo_encrypted_response_alg": "",
 "registration_access_token": "5e7d1019-b752-43f1-af97-0d6fe2753105",
 "client_id": "d58ba00b-da55-4fa3-9d2a-afe197207be5",
 "token_endpoint_auth_method": "client_secret_basic",
 "userinfo_signed_response_alg": "",
 "public_key_selector": "x509",
 "authorization_code_lifetime": 0,
 "client_secret": "4da529de-3a18-4fb7-a0a9-07e05a394aa4",
 "user_info_response_format_selector": "JSON",
 "id_token_signed_response_alg": "HS256",
 "default_max_age_enabled": false,
 "subject_type": "public",
 "jwt_token_lifetime": 0,
 "id_token_encryption_enabled": false,
 "redirect_uris": ["https://client.example.com:8443/callback"],
 "client_name#ja-jpan-jp": "#######",
 "id_token_encrypted_response_alg": "RSA1_5",
 "id_token_encrypted_response_enc": "A128CBC_HS256",
 "client_secret_expires_at": 0,
 "access_token_lifetime": 0,
 "refresh_token_lifetime": 0,
 "request_object_signing_alg": "",
 "response_types": ["code"]
 }

Tip

OpenID Connect clients must ensure that the following information is present in the JSON:

• The openid scope. For example, "scopes": ["profile", "openid"].

• The id_token response type. For example, "response_types": ["code", "id_token code"].

Dynamic Client Registration Example With Software Statement

The following example extends "Dynamic Client Registration Example With Access Token" to
demonstrate dynamic registration with a software statement.

Configuring AM for OAuth 2.0
Dynamic Client Registration

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 26

In this example the software publisher has the following profile settings:

Name

My Software Publisher

Software publisher secret

secret

Software publisher issuer

https://client.example.com

Software statement signing Algorithm

HS256

Public key selector

JWKs

Json Web Key

{"keys": [{"kty": "oct", "k": "secret", "alg":"HS256"}]}

Notice that the value is a key set rather than a single key.

In this example, the software statement JWT is as shown in the following listing, with lines folded for
legibility:
eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.
eyJpc3MiOiJodHRwczovL2NsaWVudC5leGFtcGxlLmNvbSIsImlhdCI6MTUwNjY3MTg1MSwiZX
hwIjoxNTM4MjA3ODUxLCJhdWQiOiJvcGVuYW0uZXhhbXBsZS5jb20iLCJzdWIiOiI0TlJCMS0w
WFpBQlpJOUU2LTVTTTNSIiwicmVkaXJlY3RfdXJpcyI6WyJodHRwczovL2NsaWVudC5leGFtcG
xlLmNvbS9jYWxsYmFjayJdfQ.
IOxZaWTOzSPkEkrXC9nj8RDrpulzzMuZ-4R7_Ol_jhw

This corresponds to the HS256 encrypted and signed JWT with the following claims payload.:
{
 "iss": "https://client.example.com",
 "iat": 1506671851,
 "exp": 1538207851,
 "aud": "openam.example.com",
 "sub": "4NRB1-0XZABZI9E6-5SM3R",
 "redirect_uris": [
 "https://client.example.com/callback"
]
}

Prior to registration, obtain an access token:

Configuring AM for OAuth 2.0
Dynamic Client Registration

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 27

$ curl --request POST \
--data "grant_type=password" \
--data "username=demo" \
--data "password=changeit" \
--data "scope=dynamic_client_registration" \
--data "client_id=masterClient" \
--data "client_secret=password" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"
{
 "access_token":"06bfc193-1f7b-49a1-9926-ffe19e2f5f70",
 "scope":"dynamic_client_registration",
 "token_type":"Bearer",
 "expires_in":3599
}

The client registers with its metadata that includes the software statement, providing the access
token. When specifying client metadata, be sure to include a client_name property that holds the
human-readable name presented to the resource owner during consent:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "Authorization: Bearer 06bfc193-1f7b-49a1-9926-ffe19e2f5f70" \
 --data '{
 "redirect_uris": ["https://client.example.com:8443/callback"],
 "client_name#en": "My Client",
 "client_name#ja-Jpan-JP": "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "client_uri": "https://client.example.com/",
 "software_statement": "eyJ0eXAiOiJKV1QiLCJ6W....9nj8RDrpulzzMuZ-4R7_Ol_jhw"
 }' \
 "https://openam.example.com:8443/openam/oauth2/register"
{
 "request_object_encryption_alg": "",
 "default_max_age": 1,
 "application_type": "web",
 "client_name#en": "My Client",
 "registration_client_uri": "https://openam.example.com:8443/openam/oauth2/register?
client_id=086658c1-0517-4667-bc2d-6786224eb126",
 "client_type": "Confidential",
 "userinfo_encrypted_response_alg": "",
 "registration_access_token": "06bfc193-1f7b-49a1-9926-ffe19e2f5f70",
 "client_id": "086658c1-0517-4667-bc2d-6786224eb126",
 "token_endpoint_auth_method": "client_secret_basic",
 "userinfo_signed_response_alg": "",
 "software_statement": "eyJ0eXAiOiJKV1QiLCJ6W....9nj8RDrpulzzMuZ-4R7_Ol_jhw",
 "public_key_selector": "x509",
 "authorization_code_lifetime": 0,
 "client_secret": "272e26a4-b4ea-4033-bfd3-8b1be2c9aa22",
 "user_info_response_format_selector": "JSON",
 "id_token_signed_response_alg": "HS256",
 "default_max_age_enabled": false,
 "subject_type": "public",
 "jwt_token_lifetime": 0,
 "id_token_encryption_enabled": false,
 "redirect_uris": ["https://client.example.com:8443/callback"],
 "client_name#ja-jpan-jp": "#######",
 "id_token_encrypted_response_alg": "RSA1_5",
 "id_token_encrypted_response_enc": "A128CBC_HS256",

Configuring AM for OAuth 2.0
Dynamic Client Registration

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 28

 "client_secret_expires_at": 0,
 "access_token_lifetime": 0,
 "refresh_token_lifetime": 0,
 "request_object_signing_alg": "",
 "response_types": ["code"]
}

Tip

OpenID Connect clients must ensure that the following information is present in the JSON:

• The openid scope. For example, "scopes": ["profile", "openid"].

• The id_token response type. For example, "response_types": ["code", "id_token code"].

Dynamic Client Registration Management

AM allows clients to manage their information dynamically, as per RFC 7592 OAuth 2.0 Dynamic
Client Registration Management Protocol and OpenID Connect Dynamic Client Registration 1.0
incorporating errata set 1. This RFC is an extension of the Dynamic Client Registration Protocol (RFC
7591)

Note that, during dynamic client registration, AM supplies clients with the following information:

• registration_client_uri. The FQDN of the client configuration endpoint the client can use to update
their data. This endpoint always contains the client ID as a query parameter.

• registration_access_token. The token clients must use to authenticate to the client configuration
endpoint.

Clients must store this information, since it is mandatory to read, update, and modify their profile
information.

To Configure Client Dynamic Registration Management

1. Configure AM for dynamic client registration.

For more information, see "To Configure AM for Dynamic Client Registration".

2. Log in to the AM console as an administrative user, such as amAdmin.

3. Navigate to Realms > Realm Name > Services > OAuth2 Provider > Client Dynamic Registration,
and ensure that Generate Registration Access Tokens is enabled.

4. Save your changes, if required.

5. (Optional) Review the following examples:

https://www.rfc-editor.org/info/rfc7592
https://openid.net/specs/openid-connect-registration-1_0.html
https://openid.net/specs/openid-connect-registration-1_0.html

Configuring AM for OAuth 2.0
Dynamic Client Registration

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 29

• "Client Read Request Example"

• "Client Update Request Example"

• "Client Deletion Request Example"

Client Read Request Example

Clients can use the read request to retrieve their current configuration from AM.

In this example, a client dynamically registered using the following command:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --data '{
 "redirect_uris": ["https://client.example.com:8443/callback"],
 "client_name#en": "My Client",
 "client_name#ja-Jpan-JP": "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "client_uri": "https://client.example.com/"
 }' \
 "https://openam.example.com:8443/openam/oauth2/register"

Among the returned information, the OAuth 2.0/OpenID Connect provider supplied the client with the
following data:
...
"registration_client_uri":"https://openam.example.com:8443/openam/oauth2/register?
client_id=77f296b3-5293-4219-981d-128322c1e173",
"registration_access_token":"o5IlBXOxC7RGPTIe8is_zzz6Yqg",
...

To request the information stored in its client profile, clients perform an HTTP GET request to the
client registration endpoint. Use the registration token to authenticate to the endpoint by sending the
token as an authorization bearer header. For example:
$ curl \
--request GET \
--header "Authorization: Bearer o5IlBXOxC7RGPTIe8is_zzz6Yqg" \
"https://openam.example.com:8443/openam/oauth2/register?client_id=77f296b3-5293-4219-981d-128322c1e173"
{
 "request_object_encryption_alg":"",
 "default_max_age":1,
 "application_type":"web",
 "client_name#en":"My Client",
 "userinfo_encrypted_response_enc":"A128CBC_HS256",
 "client_type":"Confidential",
 "userinfo_encrypted_response_alg":"",
 "token_endpoint_auth_method":"client_secret_basic",
 "userinfo_signed_response_alg":"",
 "client_id":"77f296b3-5293-4219-981d-128322c1e173",
 "public_key_selector":"x509",
 "client_secret":"vXxY3HJ7_...84qfRQHYW3QbZfDSXieAgIVa2tg",

}

Configuring AM for OAuth 2.0
Dynamic Client Registration

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 30

If the OAuth 2.0/OpenID Connect provider is configured for a subrealm rather than the top-level
realm, you must specify it in the endpoint. For example, if the provider is configured for the /customers
realm, then use /oauth2/realms/root/realms/customers/register.

The server does not return the registration_client_uri nor the registration_access_token attributes.

Client Update Request Example

Clients can use the update request to modify their client profile while retaining their client ID.

In this example, a client dynamically registered using the following command:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --data '{
 "redirect_uris": ["https://client.example.com:8443/callback"],
 "client_name#en": "My Client",
 "client_name#ja-Jpan-JP": "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "client_uri": "https://client.example.com/"
 }' \
 "https://openam.example.com:8443/openam/oauth2/register"

Among the returned information, the OAuth 2.0/OpenID Connect provider supplied the client with the
following data:
...
"registration_client_uri":"https://openam.example.com:8443/openam/oauth2/register?
client_id=77f296b3-5293-4219-981d-128322c1e173",
"registration_access_token":"o5IlBXOxC7RGPTIe8is_zzz6Yqg",
"grant_types":["authorization_code"],
...

The client performs a read request to the OAuth 2.0/OpenID Connect provider to retrieve its current
configuration.

When updating the client's metadata, AM:

• Resets to the default value any client setting not sent with the update request.

• Returns a new registration access token to the client.

• Rejects requests where the client secret does not match with the one already registered.

• Rejects requests containing the following metadata (as per RFC 7592):

• registration_access_token

• registration_client_uri

• client_secret_expires_at

Configuring AM for OAuth 2.0
Dynamic Client Registration

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 31

• client_id_issued_at

To update the metadata, clients make an HTTP PUT request to the registration endpoint. The request
contains all the metadata returned from the read request minus the information that, as specified by
the spec, should not be sent. Use the registration token to authenticate to the endpoint by sending
the token as an authorization bearer header.

In the following example, the OAuth 2.0 client sends the required metadata to AM, updating its grant
types to "authorization code","implicit":
$ curl \
--request PUT \
--header "Authorization: Bearer o5IlBXOxC7RGPTIe8is_zzz6Yqg" \
--data '{
 "request_object_encryption_alg":"",
 "default_max_age":1,
 "application_type":"web",
 "client_name#en":"My Client",
 "userinfo_encrypted_response_enc":"",
 "client_type":"Confidential",
 "userinfo_encrypted_response_alg":"",
 "token_endpoint_auth_method":"client_secret_basic",
 "userinfo_signed_response_alg":"",
 "client_id":"77f296b3-5293-4219-981d-128322c1e173",
 "public_key_selector":"x509",
 "scope":"write",
 "authorization_code_lifetime":0,
 "client_secret":"vXxY3HJ7_...84qfRQHYW3QbZfDSXieAgIVa2tg",
 "user_info_response_format_selector":"JSON",
 "tls_client_certificate_bound_access_tokens":false,
 "id_token_signed_response_alg":"RS256",
 "default_max_age_enabled":false,
 "subject_type":"public",
 "grant_types":["authorization_code","implicit"],
 "jwt_token_lifetime":0,
 "id_token_encryption_enabled":false,
 "redirect_uris":["https://client.example.com:8443/callback"],
 "client_name#ja-jpan-jp":"#######",
 "id_token_encrypted_response_alg":"RSA-OAEP-256",
 "id_token_encrypted_response_enc":"A128CBC-HS256",
 "access_token_lifetime":0,
 "refresh_token_lifetime":0,
 "scopes":["write"],
 "request_object_signing_alg":"",
 "response_types":["code"]
}' \
"https://openam.example.com:8443/openam/realms/root/oauth2/register?
client_id=77f296b3-5293-4219-981d-128322c1e173"
{
 "request_object_encryption_alg":"",
 "default_max_age":1,
 "application_type":"web",
 "client_name#en":"My Client",
 "userinfo_encrypted_response_enc":"",
 "client_type":"Confidential",
 "userinfo_encrypted_response_alg":"",
 "registration_access_token":"NrvX2bqydMgr...EGI32YuvyrkxDpD_xJVHtHo6fXQ",

Configuring AM for OAuth 2.0
Dynamic Client Registration

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 32

 "client_id":"77f296b3-5293-4219-981d-128322c1e173",
 ...
}

If the OAuth 2.0/OpenID Connect provider is configured for a subrealm rather than the top-level
realm, you must specify it in the endpoint. For example, if the provider is configured for the /customers
realm, then use /oauth2/realms/root/realms/customers/register.

When successful, AM returns an HTTP 200 message and the profile data with the changes. Note that
the registration access token has changed; the client must store the new token securely.

Client Deletion Request Example

Clients can use the delete request to deprovision themselves from AM.

In this example, a client dynamically registered using the following command:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --data '{
 "redirect_uris": ["https://client.example.com:8443/callback"],
 "client_name#en": "My Client",
 "client_name#ja-Jpan-JP": "\u30AF\u30E9\u30A4\u30A2\u30F3\u30C8\u540D",
 "client_uri": "https://client.example.com/"
 }' \
 "https://openam.example.com:8443/openam/oauth2/register"

Among the returned information, the OAuth 2.0/OpenID Connect provider supplied the client with the
following data:
...
"registration_client_uri":"https://openam.example.com:8443/openam/oauth2/register?
client_id=77f296b3-5293-4219-981d-128322c1e173",
"registration_access_token":"o5IlBXOxC7RGPTIe8is_zzz6Yqg",
...

To deprovision themselves, clients send an HTTP DELETE request to the client registration endpoint.
Use the registration token to authenticate to the endpoint by sending the token as an authorization
bearer header. For example:
$ curl \
--request DELETE \
--header "Authorization: Bearer o5IlBXOxC7RGPTIe8is_zzz6Yqg" \
"https://openam.example.com:8443/openam/oauth2/register?client_id=77f296b3-5293-4219-981d-128322c1e173"

If the OAuth 2.0/OpenID Connect provider is configured for a subrealm rather than the top-level
realm, you must specify it in the endpoint. For example, if the provider is configured for the /customers
realm, then use /oauth2/realms/root/realms/customers/register.

If the deprovision is successful, AM returns an HTTP 204 No Content message. AM does not
invalidate the authorization grants or active tokens associated with the client, which will expire in
time. However, new requests to OAuth 2.0 endpoints will fail since the client no longer exists.

Configuring AM for OAuth 2.0
Configuring AM as an Authorization Server and Client

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 33

Configuring AM as an Authorization Server and Client
This section takes a high-level look at how to set up AM both as an OAuth 2.0 authorization server
and also as an OAuth 2.0 client in order to protect resources on a resource server by using an AM
web agent.

Authorization Server, Client, and Resource Server

The example in this section uses three servers, http://authz.example.com:8080/openam as the OAuth 2.0
authorization server, http://client.example.com:8080/openam as the OAuth 2.0 client, which also handles
policy, http://www.example.com:8080/ as the OAuth 2.0 resource server protected with an AM web agent
where the resources to protect are deployed in Apache Tomcat. The two AM servers communicate
using OAuth 2.0. The web agent on the resource server communicates with AM as agents normally
do, using AM specific requests. The resource server in this example does not need to support OAuth
2.0.

The high-level configuration steps are as follows:

1. On the AM server that you will configure to act as an OAuth 2.0 client, configure an agent profile,
and the policy used to protect the resources.

On the web server or application container that will act as an OAuth 2.0 resource server, install
and configure an AM web agent.

Make sure that you can access the resources when you log in through an authentication module
that you know to be working, such as the default DataStore authentication module.

Configuring AM for OAuth 2.0
Web Site Protected With OAuth 2.0

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 34

In this example, you would try to access http://www.example.com:8080/examples/. The web agent
should redirect you to the AM login page. After you log in successfully as a user with access rights
to the resource, AM should redirect you back to http://www.example.com:8080/examples/, and the web
agent should allow access.

Fix any problems you have in accessing the resources before you try to set up access through an
OAuth 2.0 or OpenID Connect authentication module.

2. Configure one AM server as an OAuth 2.0 authorization service, which is described in
"Configuring the OAuth 2.0 Provider Service".

3. Configure the other AM server, the one with the agent profile and policy, as an OAuth 2.0 client,
by setting up an OAuth 2.0 or OpenID Connect authentication module according to "Social
Authentication Modules" in the Authentication and Single Sign-On Guide.

4. On the authorization server, register the OAuth 2.0 or OpenID Connect authentication module
as an OAuth 2.0 client, which is described in "Registering OAuth 2.0 Clients With the OAuth 2.0
Provider Service".

5. Log out and access the protected resources to see the process in action.

Web Site Protected With OAuth 2.0

This example pulls everything together (except security considerations), using AM servers both as the
OAuth 2.0 authorization server, and also as the OAuth 2.0 client, with an AM web or Java agent on
the resource server requesting policy decisions from AM as OAuth 2.0 client. In this way, any server
protected by an agent that is connected to an AM OAuth 2.0 client can act as an OAuth 2.0 resource
server:

1. On the AM server that will be configured as an OAuth 2.0 client, set up an AM web or Java agent
and policy in the Top Level Realm, /, to protect resources.

See the Web Policy Agents documentation or the Java Policy Agents documentation for
instructions on installing an agent. This example relies on the Tomcat Java agent, configured to
protect resources in Apache Tomcat (Tomcat) at http://www.example.com:8080/.

The policies for this example protect the Tomcat examples under http://www.example.com:8080/
examples/, allowing GET and POST operations by all authenticated users. For more information,
see "Implementing Authorization" in the Authorization Guide.

After setting up the web or Java agent and the policy, you can make sure everything is working by
attempting to access a protected resource, in this case, http://www.example.com:8080/examples/. The
agent should redirect you to AM to authenticate with the default authentication module, where
you can login as user demo password changeit. After successful authentication, AM redirects your
browser back to the protected resource and the Java agent lets you get the protected resource, in
this case, the Tomcat examples top page.

https://backstage.forgerock.com/docs/openam-web-policy-agents/5.10/user-guide
https://backstage.forgerock.com/docs/openam-jee-policy-agents/5.10/user-guide/

Configuring AM for OAuth 2.0
Web Site Protected With OAuth 2.0

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 35

Accessing the Apache Tomcat Examples

2. On the AM server to be configured as an OAuth 2.0 authorization server, configure AM's OAuth
2.0 authorization service as described in "Configuring the OAuth 2.0 Provider Service".

The authorization endpoint to protect in this example is at http://authz.example.com:8080/openam/
oauth2/realms/root/authorize.

3. On the AM server to be configured as an OAuth 2.0 client, configure an AM OAuth 2.0 or OpenID
Connect social authentication module instance for the Top Level Realm:

Under Realms > Top Level Realm > Authentication > Modules, click Add Module. Name
the module OAuth2, and select the Social Auth OAuth2 type, then click Create. The module
configuration page appears. This page offers numerous options. The key settings for this example
are the following:

Client Id

This is the client identifier used to register your client with AM's authorization server, and
then used when your client must authenticate to AM.

Set this to myClientID for this example.

Client Secret

This is the client password used to register your client with AM's authorization server, and
then used when your client must authenticate to AM.

Set this to password for this example. Make sure you use strong passwords when you actually
deploy OAuth 2.0.

Authentication Endpoint URL

In this example, http://authz.example.com:8080/openam/oauth2/realms/root/authorize.

This AM endpoint can take additional parameters. In particular, you must specify the realm if
the AM OAuth 2.0 provider is configured for a subrealm rather than for the Top Level Realm.

When making a REST API call, specify the realm in the path component of the endpoint. You
must specify the entire hierarchy of the realm, starting at the top-level realm. Prefix each
realm in the hierarchy with the realms/ keyword. For example /realms/root/realms/customers/
realms/europe.

Configuring AM for OAuth 2.0
Web Site Protected With OAuth 2.0

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 36

For example, if the OAuth 2.0 provider is configured for the realm customers within the top-
level realm, then use the following URL: http://authz.example.com:8080/openam/oauth2/realms/root/
realms/customers/authorize.

The /oauth2/authorize endpoint can also take module and service parameters. Use either as
described in " Authenticating From a Browser" in the Authentication and Single Sign-On
Guide, where module specifies the authentication module instance to use or service specifies the
authentication chain to use when authenticating the resource owner.

Access Token Endpoint URL

In this example, http://authz.example.com:8080/openam/oauth2/realms/root/access_token.

This AM endpoint can take additional parameters. In particular, you must specify the realm if
the AM OAuth 2.0 provider is configured for a subrealm rather than the Top Level Realm (/).

When making a REST API call, specify the realm in the path component of the endpoint. You
must specify the entire hierarchy of the realm, starting at the top-level realm. Prefix each
realm in the hierarchy with the realms/ keyword. For example /realms/root/realms/customers/
realms/europe.

For example, if the OAuth 2.0 provider is configured for the realm /customers, then use the
following URL: http://authz.example.com:8080/openam/oauth2/realms/root/realms/customers/access_
token.

User Profile Service URL

In this example, http://authz.example.com:8080/openam/oauth2/realms/root/tokeninfo.

Scope

In this example, cn.

The demo user has common name demo by default, so by setting this to cn|Read your user name,
AM can get the value of the attribute without the need to create additional identities, or to
update existing identities. The description, Read your user name, is shown to the resource owner
in the consent page.

Subject Property

In this example, cn.

Proxy URL

The client redirect URL, which in this example is http://client.example.com:8080/openam/oauth2c/
OAuthProxy.jsp.

Configuring AM for OAuth 2.0
Web Site Protected With OAuth 2.0

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 37

Account Mapper

In this example, org.forgerock.openam.authentication.modules.common.mapping.JsonAttributeMapper.

Account Mapper Configuration

In this example, cn=cn.

Attribute Mapper

In this example, org.forgerock.openam.authentication.modules.common.mapping.JsonAttributeMapper.

Attribute Mapper Configuration

In this example, cn=cn.

Create account if it does not exist

In this example, disable this functionality.

AM can create local accounts based on the account information returned by the authorization
server.

4. On the AM server configured to act as an OAuth 2.0 authorization server, register the Social
Auth OAuth2 authentication module as an OAuth 2.0 confidential client, which is described in
"Registering OAuth 2.0 Clients With the OAuth 2.0 Provider Service".

Under Realms > Top Level Realm > Applications > OAuth 2.0 > myClientID, adjust the following
settings:

Client type

In this example, confidential. AM protects its credentials as an OAuth 2.0 client.

Redirection URIs

In this example, http://client.example.com:8080/openam/oauth2c/OAuthProxy.jsp.

If any Redirection URI scheme, host, or port differs from that of AM, add it to the global
validation service to ensure that it is pre-approved, as described in "Configuring Success and
Failure Redirection URLs" in the Authentication and Single Sign-On Guide. Otherwise, AM
rejects the redirection URI, even if it matches the client profile, and redirection fails.

Scopes

In this example, cn.

5. Before you try it out, on the AM server configured to act as an OAuth 2.0 client, you must make
the following additional change to the configuration.

Configuring AM for OAuth 2.0
Web Site Protected With OAuth 2.0

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 38

Your AM OAuth 2.0 client authentication module is not part of the default chain, and therefore AM
does not call it unless you specifically request the OAuth 2.0 client authentication module.

To cause the Java agent to request your OAuth 2.0 client authentication module explicitly,
navigate to your agent profile configuration, in this case Realms > Top Level Realm >
Applications > Agents > Java > Agent Name > AM Services > AM Login URL, and add http://
client.example.com:8080/openam/XUI/?realm=/&module=OAuth2, moving it to the top of the list.

Save your work.

This ensures that the Java agent directs the resource owner to AM with the instruction to
authenticate using the OAuth2 authentication module.

6. Try it out.

First make sure you are logged out of AM, for example by browsing to the logout URL, in this case
http://client.example.com:8080/openam/XUI/?realm=/#logout.

Next attempt to access the protected resource, in this case http://www.example.com:8080/examples/.

If everything is set up properly, the Java agent redirects your browser to the login page of AM
with module=OAuth2 among other query string parameters. After you authenticate, for example as
user demo, password changeit, AM presents you with an authorization decision page.

Presenting Authorization Decision Page to Resource Owner

When you click Allow, the authorization service creates an SSO session, and redirects the client
back to the resource, thus allowing the client to access the protected resource. If you configured
an attribute on which to store the saved consent decision, and you choose to save the consent
decision for this authorization, then AM can use that saved decision to avoid prompting you
for authorization next time the client accesses the resource, but only ensure that you have
authenticated and have a valid session.

Configuring AM for OAuth 2.0
Configuring AM for Client-Based OAuth 2.0 Tokens

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 39

Successfully Accessing the Apache Tomcat Examples

Configuring AM for Client-Based OAuth 2.0 Tokens
When configured for client-based tokens, AM returns a token (instead of the token reference it
returns when configured for CTS-based tokens) to the client after successfully completing one of
the grant flows. For more information about client-based and CTS-based tokens, see "About Token
Storage Location".

To configure client-based tokens, perform the following tasks:

• Enable client-based tokens

• Configure client-based token blacklisting

• Configure AM to encrypt client-based tokens

• Configure AM to sign client-based tokens

Enabling Client-Based OAuth 2.0 Tokens
Perform the steps in the following procedure to configure AM to issue client-based access and refresh
tokens:

To Enable Client-Based OAuth 2.0 Tokens

1. Log in to the AM console as an administrative user, for example, amAdmin.

2. Navigate to Realms > Realm Name > Services > OAuth2 Provider.

3. In the Core tab, enable Use Client-Based Access & Refresh Tokens.

4. (Optional) Enable Issue Refresh Tokens and/or Issue Refresh Tokens on Refreshing Access
Tokens.

5. Save your changes.

6. Configure client-based token blacklisting. For more information, see "Configuring Client-Based
OAuth 2.0 Token Blacklisting".

7. Configure either client-based token signature or client-based token encryption.

Configuring AM for OAuth 2.0
Configuring Client-Based OAuth 2.0 Token Blacklisting

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 40

Token signature is enabled by default when client-based tokens are enabled. By default, token
signature is configured using a demo key that you must change in production environments.
Enabling token encryption disables token signing as encryption is performed using direct
symmetric encryption.

For more information, see "Configuring Client-Based OAuth 2.0 Token Encryption" and
"Configuring Client-Based OAuth 2.0 Token Digital Signatures".

Client-based access and refresh tokens are ready for use.

Configuring Client-Based OAuth 2.0 Token Blacklisting
AM provides a blacklisting feature that prevents client-based tokens from being reused if the
authorization code has been replayed or tokens have been revoked by either the client or resource
owner.

Note

Client-based refresh tokens have corresponding entries in a CTS whitelist, rather than a blacklist. When
presenting a client-based refresh token AM will check that a matching entry is found in the CTS whitelist, and
prevent reissue if the record does not exist.

Adding a client-based OAuth 2.0 token to the blacklist will also remove associated refresh tokens from the
whitelist.

To Configure Client-Based OAuth 2.0 Token Blacklisting

Perform the following steps to configure client-based token blacklisting:

1. Log in to the AM console as an administrative user, for example, amAdmin.

2. Navigate to Configure > Global Services > Global > OAuth2 Provider.

3. Under Global Attributes, enter the number of blacklisted tokens in the Token Blacklisting Cache
Size field.

Token Blacklisting Cache Size determines the number of blacklisted tokens to cache in memory
to speed up blacklist checks. You can enter a number based on the estimated number of
token revocations that a client will issue (for example, when the user gives up access or an
administrator revokes a client's access).

Default: 10000

4. In the Blacklist Poll Interval field, enter the interval in seconds for AM to check for token blacklist
changes from the CTS data store.

The longer the polling interval, the more time a malicious user has to connect to other AM
servers in a cluster and make use of a stolen OAuth v2.0 access token. Shortening the polling

Configuring AM for OAuth 2.0
Configuring Client-Based OAuth 2.0 Token Encryption

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 41

interval improves the security for revoked tokens but might incur a minimal decrease in overall
AM performance due to increased network activity.

Default: 60 seconds

5. In the Blacklist Purge Delay field, enter the length of time in minutes that blacklist tokens can
exist before being purged beyond their expiration time.

When client-based token blacklisting is enabled, AM tracks OAuth v2.0 access tokens over the
configured lifetime of those tokens plus the blacklist purge delay. For example, if the access
token lifetime is set to 6000 seconds and the blacklist purge delay is one minute, then AM tracks
the access token for 101 minutes. You can increase the blacklist purge delay if you expect system
clock skews in an AM server cluster to be greater than one minute. There is no need to increase
the blacklist purge delay for servers running a clock synchronization protocol, such as Network
Time Protocol.

Default: 1 minute

6. Click Save to apply your changes.

Configuring Client-Based OAuth 2.0 Token Encryption

To protect OAuth 2.0 client-based access and refresh tokens, AM supports encrypting their JWTs
using AES authenticated encryption. Since this encryption also protects the integrity of the JWT, you
only need to configure AM to sign OAuth 2.0 client-based tokens if token encryption is disabled.

To Enable Client-Based OAuth 2.0 Token Encryption

1. Navigate to Realms > Realm Name > Services > OAuth2 Provider.

2. On the Core tab, enable Use Client-Based Access & Refresh Tokens.

3. On the Advanced tab, enable Client-Based Token Encryption.

Note that the alias mapped to the algorithm is defined in the secret stores, as shown in the table
below:

Secret ID Mappings for Encrypting Client-Based OAuth 2.0 Tokens

Secret ID Default Alias Algorithms
am.services.oauth2.stateless.token.encryption directentest A128CBC-HS256

By default, secret IDs are mapped to demo keys contained in the default keystore provided
with AM and mapped to the default-keystore keystore secret store. Use these keys for demo and
test purposes only. For production environments, replace the secrets as required and create
mappings for them in a secret store configured in AM.

Configuring AM for OAuth 2.0
Configuring Client-Based OAuth 2.0 Token Digital Signatures

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 42

For more information about managing secret stores and mapping secret IDs to aliases, see
"Configuring Secrets, Certificates, and Keys" in the Setup and Maintenance Guide.

4. Save your changes.

Client-based OAuth 2.0 access and refresh tokens will now be encrypted.

Configuring Client-Based OAuth 2.0 Token Digital Signatures

AM supports digital signature algorithms that secure the integrity of its JSON payload, which is
outlined in the JSON Web Algorithm specification (RFC 7518).

Important

Client-based tokens must be signed and/or encrypted for security reasons. If your environment does not support
encrypting OAuth 2.0 tokens, you must configure signing to protect them against tampering.

To Configure the OAuth 2.0 Provider to Sign Client-Based Tokens

Perform the steps in this procedure to configure the OAuth 2.0 provider to sign client-based tokens:

1. Navigate to Realms > Realm Name > Services, and then click OAuth2 Provider.

2. On the Advanced tab, in the OAuth2 Token Signing Algorithm drop-down list, select the signing
algorithm to use for signing client-based tokens.

Note that the alias mapped to the algorithm is defined in the secret stores, as shown in the table
below:

Secret ID Mappings for Signing Client-Based OAuth 2.0 Tokens

Secret ID Default Alias Algorithms
am.services.oauth2.stateless.signing.ES256 es256test ES256
am.services.oauth2.stateless.signing.ES384 es384test ES384
am.services.oauth2.stateless.signing.ES512 es512test ES512
am.services.oauth2.stateless.signing.HMAC hmacsigningtest HS256

HS384
HS512

am.services.oauth2.stateless.signing.RSA rsajwtsigningkey PS256
PS384
PS512
RS256
RS384
RS512

https://www.rfc-editor.org/info/rfc7518

Configuring AM for OAuth 2.0
Configuring Client-Based OAuth 2.0 Token Digital Signatures

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 43

By default, secret IDs are mapped to demo keys contained in the default keystore provided
with AM and mapped to the default-keystore keystore secret store. Use these keys for demo and
test purposes only. For production environments, replace the secrets as required and create
mappings for them in a secret store configured in AM.

For more information about managing secret stores and mapping secret IDs to aliases, see
"Configuring Secrets, Certificates, and Keys" in the Setup and Maintenance Guide.

3. Save your changes.

Client-based OAuth 2.0 access and refresh tokens will now be signed.

Authenticating OAuth 2.0 Clients
Authenticating Clients Using Form Parameters

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 44

Chapter 3

Authenticating OAuth 2.0 Clients
AM can authenticate clients by using the following methods:

• "Authenticating Clients Using Form Parameters"

• "Authenticating Clients Using Authorization Headers"

• "Authenticating Clients Using JWT Profiles"

• "Authenticating Clients Using Mutual TLS"

Confidential clients holding a secret or a JWT bearer token assertion can authenticate with the
authorization server using any of the above methods.

While confidential clients must always authenticate in one of the ways described in this section,
public clients are not required to authenticate, because their information is intended to be public or
they are used over insecure channels, so their secret could be easily snooped.

For information about the different authentication methods for those clients with a secret or a JWT,
see the following sections.

Authenticating Clients Using Form Parameters
Clients that have a client secret can send the client ID in the client_id form parameter and the secret
in the client_secret form parameter in the body of the request. For example:
$ curl \
--request POST \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
...

This is the simplest way to authenticate to any of the OAuth 2.0 endpoints, and the most insecure,
since the client credentials are exposed. Ensure that communication with the authorization server
happens over a secure protocol to protect the secret, and use this method in production only if the
other methods are not available for your client.

Authenticating OAuth 2.0 Clients
Authenticating Clients Using Authorization Headers

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 45

Authenticating Clients Using Authorization Headers
Clients that have a client secret can send the client ID and the secret in a basic authorization header
with the base64-encoded value of client_id:client_secret. For example:
$ curl \
--header "Authorization: Basic bXlDbGllbnQ6Zm9yZ2Vyb2Nr" \
--request POST \
...

Note

If the client ID or client secret contains characters that have special meaning in URL-encoded strings, such as
percent (%) or plus (+) characters, you must first URL-encode the string before combining them with the colon
character and base64-encoding the result. URL-encoding characters that do not have special meaning in URL-
encoded strings will still work, but is unnecessary.

For example, for a client named example.com with a client secret of s=cr%t:

1. URL-encode the client secret value and combine with the colon character. For example: example.com:s%3Dcr
%25t.

Note that you should not URL-encode the separating colon character.

2. Base64-encode the entire string to obtain the basic authorization header. For example
ZXhhbXBsZS5jb206cyUzRGNyJTI1dA==

Ensure that communication with the authorization server happens over a secure protocol to help
protect the credentials.

Authenticating Clients Using JWT Profiles
Clients can send a signed JWT to the authorization server as credentials instead of the client ID
and/or secret, as per (RFC 7523) JWT Profile for OAuth 2.0 Client Authentication and Authorization
Grants. The authorization server must be able to validate the JWT to authenticate the client.

The following diagram demonstrates the JWT Bearer client authentication flow:

https://www.rfc-editor.org/info/rfc7523
https://www.rfc-editor.org/info/rfc7523

Authenticating OAuth 2.0 Clients
Authenticating Clients Using JWT Profiles

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 46

JWT Bearer Client Authentication

Client can be Issuer

Client

Client

Issuer

Issuer

AM
Authorizat ion Server

AM
Authorizat ion Server

1 Request JWT

2 JWT (signed)

3 POST with client_assert ion and client_assert ion_type

4 Validate JWT

5 Response (for exam ple with an access token)

The steps in the diagram are described below:

1. The client requests a JWT from the issuer. The client itself can be the issuer, in which case it will
create a JWT for itself before starting the OAuth 2.0 flow.

2. The issuer returns a signed JWT to the client. The JWT must contain, at least, the following claims
in the payload:

• iss. Specifies the unique identifier of the JWT issuer. This could also be the client, or a third
party.

• sub. Specifies the principal who is the subject of the JWT. Must be set to the client ID.

• aud. Specifies the authorization server that is the intended audience of the JWT. Must be set to
the authorization server's token endpoint, for example, https://openam.example.com:8443/openam/
oauth2/realms/root/access_token.

• exp. Specifies the expiration time.

Authenticating OAuth 2.0 Clients
Authenticating Clients Using JWT Profiles

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 47

Providing a JWT with an expiry time greater than 30 minutes causes AM to return a JWT
 expiration time is unreasonable error message.

For more information about the JWT, see the RFC 7523 standard.

The JWT issuer must digitally sign the JWT or have a Message Authentication Code (MAC) applied
by the issuer. When the issuer is also the client, the client can sign the JWT by using a private key.

Regardless of who issues the JWT, you must configure the public key or HMAC secret in the client
profile so AM can validate it:

Configuring Certificates Represented as PEM Files

a. Go to Realms > Realm Name > Applications > OAuth 2.0 > Client Name > Signing and
Encryption.

b. In the Client JWT Bearer Public Key field, enter the public certificate. For example:
-----BEGIN CERTIFICATE-----
MIIDETCCAfmgAwIBAgIEU8SXLjAN...
-----END CERTIFICATE-----

You can only enter one certificate.

c. In the Public key selector drop-down list, select X509.

Configuring Public Keys in JWK Format

You can either enter the JWK Set in the client profile, or store the JWK Set in a URI that
exposes it to AM:

• To store the JWK Set in the client profile:

a. Go to Realms > Realm Name > Applications > OAuth 2.0 > Client Name > Signing and
Encryption.

b. In the Json Web Key field, enter the JWK Set. For example:
{
 "keys": [
 {
 "alg": "RSA-OAEP-256",
 "kty": "RSA",
 "use": "sig",
 "kid": "RemA6Gw0...LzsJ5zG3E=",
 "n": "AL4kjz74rDo3VQ3Wx...nhch4qJRGt2QnCF7M0",
 "e": "AQAB"
 }
]
}

Enter a JWK Set with multiple JWKs if you plan to rotate certificates.

https://www.rfc-editor.org/info/rfc7523

Authenticating OAuth 2.0 Clients
Authenticating Clients Using JWT Profiles

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 48

c. In the Public key selector drop-down list, select JWKs.

• To store the JWK Set in a URI:

a. Go to Realms > Realm Name > Applications > OAuth 2.0 > Client Name > Signing and
Encryption.

b. In the Json Web Key URI field, configure the URI that exposes the JWK Set. Ensure that
the following related properties have sensible values for your environment:

• JWKs URI content cache timeout in ms

• JWKs URI content cache miss cache time

Store a JWK Set with multiple JWKs if you plan to rotate certificates.

c. In the Public key selector drop-down list, select JWKs_URI.

Configuring HMAC Secrets

a. Go to Realms > Realm Name > Applications > OAuth 2.0 > Client Name > Core.

b. In the Client secret field, enter the HMAC secret. For more information about the lenght of
the secret, see the Symmetric Key Entropy section of the OpenID Connect specification.

You can only enter one HMAC secret.

Tip

OpenID Connect clients must also specify the authentication method they are using in their client profiles.
See "Authenticating Clients when Using OpenID Connect 1.0".

Note

AM does not support non-string JWT header parameters, such as jku and jwe:

• AM 6.5.2 and later parse the JWT but ignores the non-string header parameters.

• AM versions earlier than 6.5.2 do not parse the JWT, and will return an HTTP 500 error message.

Configure the public keys/certificates in AM instead of adding the headers, as explained in the relevant
sections of the documentation.

3. The client includes the JWT and a client assertion type in the call to the OAuth 2.0 endpoint in the
following parameters:

• client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer

https://openid.net/specs/openid-connect-core-1_0.html#SymmetricKeyEntropy

Authenticating OAuth 2.0 Clients
Authenticating Clients Using Mutual TLS

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 49

• client_assertion=my_JWT

For example:
$ curl \
--request POST \
--data "client_id=myClient" \
--data "client_assertion_type=urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer"
--data "client_assertion=eyAiYWxnIjogIlJTMjU2IiB9.eyAic3ViIjogImp3..."
...

4. The authorization server validates the JWT with the public key stored in the client profile.

5. The authorization server issues a response to the client. This response may include, for example,
an access token.

A sample Java-based client to test the JWT token bearer flow is provided.

For information on downloading and building AM sample source code, see How do I access and build
the sample code provided for OpenAM 12.x, 13.x and AM (All versions)? in the Knowledge Base.

Authenticating Clients Using Mutual TLS
Clients can authenticate to AM by using mutual TLS (or mTLS) and X.509 certificates that are either
self-signed, or that use public key infrastructure (PKI), as per version 12 of the draft OAuth 2.0
Mutual TLS Client Authentication and Certificate Bound Access Tokens specification.

Tip

AM also supports the Certificate Bound Access Tokens part of the specification. For more information, see
"Certificate-Bound Proof-of-Possession".

Mutual TLS Using Public Key Infrastructure

This method of authenticating OAuth 2.0 clients requires that the certificate presented by the client
contains a subject distinguished name that matches exactly a value specified in the client profile in
AM.

The Certificate Authority specified in the chain must also be trusted by AM. You can configure secret
mappings with secret ID am.services.oauth2.tls.client.cert.authentication to specify which certificate
authorities AM trusts.

To Configure AM for Mutual TLS Using Public Key Infrastructure

Follow the steps in this procedure to configure AM to support mutual TLS using PKI.

https://backstage.forgerock.com/knowledge/kb/article/a47487197
https://backstage.forgerock.com/knowledge/kb/article/a47487197
https://tools.ietf.org/html/draft-ietf-oauth-mtls-12
https://tools.ietf.org/html/draft-ietf-oauth-mtls-12

Authenticating OAuth 2.0 Clients
Mutual TLS Using Public Key Infrastructure

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 50

1. If you have not already done so, create an OAuth 2.0 client profile in AM.

For more information, see "Registering OAuth 2.0 Clients With the OAuth 2.0 Provider Service".

2. Setup a secret store in the same realm as the OAuth 2.0 client. AM maintains the details of
trusted certificate authorities in this secret store.

You can use an existing secret store, or create a new store, as follows:

a. In the administration console, navigate to Realms > Realm Name > Secret Stores, and then
click Add Secret Store.

b. Enter an ID for the secret store, for example TrustStore, select the store type, complete the
required fields, and then click Create.

Note

You may need to configure the credentials for accessing the new store in one of the other configured
secret stores.

For more information on configuring secret stores, see "Configuring Secrets, Certificates, and Keys" in
the Setup and Maintenance Guide.

3. Import the certificates belonging to the certificate authorities you want the instance of AM to
trust.

4. Map the aliases of the imported certificates to the am.services.oauth2.tls.client.cert.authentication
secret ID:

a. In the administration console, navigate to Realms > Realm Name > Secret Stores > Store
Name > Mappings, and then click Add Mapping.

b. In the Secret ID field, select am.services.oauth2.tls.client.cert.authentication.

c. In the Aliases field, enter the aliases of the imported CA certificate to trust, and then click the
Add Alias () button.

d. Repeat the previous step to add the aliases of all the CA certificates to trust, and then click
Create.

5. Add the subject distinguished name that must appear in the client certificate to be able to
authenticate:

a. In the administration console, navigate to Realms > Realm Name > Applications > OAuth 2.0
> Agent Name > Signing and Encryption.

b. In the mTLS Subject DN field, enter the distinguished name that must exactly match the
subject field in the client certificate, for example CN=myOauth2Client.

Authenticating OAuth 2.0 Clients
Mutual TLS Using Self-Signed X.509 Certificates

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 51

Note

If this field is left empty, the default value that must be found in a CA-signed client certificate is
CN=Client ID, for example CN=myMTLSClient.

c. Save your changes.

AM is now configured to accept CA-signed client certificate for authentication. For information on
how to present the certificates when authenticating, see "Providing Client Certificates to AM".

Mutual TLS Using Self-Signed X.509 Certificates
This method of authenticating OAuth 2.0 clients requires that the self-signed X.509 certificate
presented by the client matches exactly a certificate specified in the client profile in AM.

You can specify the expected self-signed X.509 certificate in the client profile using one of the
following methods:

1. JSON Web Key Set (JWKS)

Specify the X.509 certificates in the X.509 Certificate Chain (x5c) attribute of the one or more
JSON Web Keys specified in the set.

2. JSON Web Key Set URI (JWKS_uri)

AM periodically retrieves the JWKS from the specified URI, and uses the certificates provided in
the X.509 Certificate Chain (x5c) attribute to verify the client certificate.

3. X.509

Add content of the X.509 certificate as-is into the client profile.

Unlike the other methods, only a single certificate can be specified using this method.

To Configure AM for Mutual TLS Using Self-Signed X.509 Certificates

Follow the steps in this procedure to configure AM to support mutual TLS using self-signed
certificates.

1. If you have not already done so, create an OAuth 2.0 client profile in AM.

For more information, see "Registering OAuth 2.0 Clients With the OAuth 2.0 Provider Service".

2. To provide the X.509 certificates the client will use to authenticate, navigate to Applications >
OAuth 2.0 > Agent Name > Signing and Encryption, and then perform one of the following steps:

• To use a JSON Web Key Set (JWKS) to specify the certificates:

Authenticating OAuth 2.0 Clients
Providing Client Certificates to AM

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 52

a. Set the Public key selector property to JWKs.

b. Enter the contents of the JWKS in the Json Web Key property.

• To use a JSON Web Key Set URI (JWKS_uri) to specify the certificates:

a. Set the Public key selector property to JWKs_uri.

b. Enter the JWKS URI in the Json Web Key URI property.

• To use the contents of an X.509 certificate:

a. Set the Public key selector property to X509.

b. In the mTLS Self-Signed Certificate field, enter the content of the X.509 certificate, which
must be in PEM format.

Tip

You can choose to include or exclude the -----BEGIN CERTIFICATE----- and -----END CERTIFICATE--
--- labels.

3. Save your changes.

AM is now configured to accept self-signed client certificate for authentication. For information on
how to present the certificates when authenticating, see"Providing Client Certificates to AM".

Providing Client Certificates to AM

The client can provide its certificate to AM by using either of methods below.

Important

You must configure the web container in which AM runs to use TLS connections, and to request and accept
client certificates.

Consult the documentation for your web container to determine the appropriate actions to take.

1. Standard TLS Client Certificate Authentication

The client provides its certificates in the standard servlet client certificate attribute.

This is the preferred method, as the web container will verify that the client authenticated the
TLS session with the private key associated with the certificate.

After configuring AM to accept client certificates, the client can authenticate to the OAuth 2.0
access_token endpoint using one of the X.509 certificates registered in the client.

Authenticating OAuth 2.0 Clients
Authenticating Clients when Using OpenID Connect 1.0

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 53

Any of the OAuth 2.0 grant flows that makes a call to the access_token endpoint can authenticate
clients using X.509 certificates. The following example uses grant_type=client_credentials, and
attaches the client certificates to the request:
$ curl --request POST \
--data "client_id=myClient" \
--data "grant_type=client_credentials" \
--data "scope=write" \
--data "response_type=token" \
--cert myClientCertificate.pem \
--key myClientCertificate.key.pem \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"
{
 "access_token": "sbQZuveFumUDV5R1vVBl6QAGNB8",
 "scope": "write",
 "token_type": "Bearer",
 "expires_in": 3599
}

2. Trusted Headers

AM receives the certificates in a configured, trusted HTTP header.

This method is intended for cases where TLS is being terminated at a reverse proxy or load
balancer, and therefore the container in which AM runs is not directly able to authenticate the
client.

You must configure the proxy or load balancer to:

a. Forward the PEM-encoded certificate to AM in the trusted header.

b. Strip the trusted header from any incoming requests. This is because AM has no way of
authenticating the contents of this header, and so would trust whatever is present.

To specify the name of the trusted header, in the administration console, navigate to Realms
> Realm Name > Services > OAuth2 Provider > Advanced, and enter the header name in the
Trusted TLS Client Certificate Header property.

Tip

It is recommended to specify a strong, random name for the trusted header. A misconfigured proxy or load-
balancer could allow an attacker to attempt to send malicious header values. A trusted header name that is
difficult to guess makes this type of attack more difficult.

Authenticating Clients when Using OpenID Connect 1.0
When using OpenID Connect, you must specify in the client profile the type of authentication the
client is using. To configure the authentication method, navigate to Realms > Realm Name >

Authenticating OAuth 2.0 Clients
Authenticating Clients when Using OpenID Connect 1.0

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 54

Applications > OAuth 2.0 > Advanced, and select one of the following options in the Token Endpoint
Authentication Method drop down:

• client_secret_post, if the client sends its credentials as form parameters.

• client_secret_basic, if the client sends its credentials in a basic authorization header.

• private_key_jwt, if the client sends its credentials as a JWT.

• tls_client_auth, if the client uses a CA-signed certificate for mutual TLS authentication.

• self_signed_tls_client_auth, if the client uses a self-signed certificate for mutual TLS authentication.

• none, if the client is public.

AM will not require a public client to authenticate even if the authentication method is set to a
value different from none.

Implementing OAuth 2.0 Grant Flows

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 55

Chapter 4

Implementing OAuth 2.0 Grant Flows
This chapter describes the OAuth 2.0 flows that AM supports, and also provides the information
required to implement them. All the examples assume the realm is configured for CTS-based tokens,
however, the examples also apply to client-based tokens.

You should decide which flow is best for your environment based on the application that will be the
OAuth 2.0 client. The following table provides an overview of the flows AM supports and when they
should be used:

Deciding Which Flow to Use Depending on the OAuth 2.0 Client

Client Type Which Grant to
use?

Description

The client is a web application
running on a server. For example,
a .war application.

Authorization
Code

(RFC 6749) The authorization server uses the user-
agent, for example, the resource owner's browser, to
transport a code that is later exchanged for an access
token.

The client is a native application
or a single-page application
(SPA). For example, a desktop, a
mobile application, or a JavaScript
application.

Authorization
Code with
PKCE

Authorization Code with PKCE

(RFC 6749, RFC 7636) The authorization server uses
the user-agent, for example, the resource owner's
browser, to transport a code that is later exchanged for
an access token.

Since the client does not communicate securely with
the authorization server, the code may be intercepted
by malicious users. The implementation of the Proof
Key for Code Exchange (PKCE) standard mitigates
against those attacks.

The client is a SPA. For example, a
JavaScript application.

Implicit (RFC 6749) The authorization server gives the access
token to the user-agent so it can forward the token
to the client. Therefore, the access token might be
exposed to the user and other applications.

For security purposes, you should use the
Authorization Code grant with PKCE when possible.

The client is trusted with the
resource owner credentials. For
example, the resource owner's
operating system.

Resource
Owner
Password
Credentials

(RFC 6749) The resource owner provides their
credentials to the client, which uses them to obtain an
access token from the authorization server.

https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc7636
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6749

Implementing OAuth 2.0 Grant Flows
Authorization Code Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 56

Client Type Which Grant to
use?

Description

This flow should only be used if other flows are not
available.

The client is the resource owner,
or the client does not act on behalf
of the resource owner.

Client
Credentials

(RFC 6749) Similar to the Resource Owner Password
Credentials grant type, but the resource owner is not
part of the flow and the client accesses information
relevant to itself.

The client is an input-constrained
device. For example, a TV set.

Device Flow (OAuth 2.0 Device Flow for Browserless and Input
Constrained Devices) The resource owner authorizes
the client to access protected resources on their behalf
by using a different user-agent and entering a code
displayed on the client device.

The client has a SAML v2.0 trust
relationship with the client. For
example, an application in an
environment where a SAML v2.0
ecosystem coexists with an OAuth
2.0 one.

SAML v2.0
Profile

(RFC 7522) The client uses the resource owner's
SAML 2.0 assertion to obtain an access token from
the authorization server without interacting with the
resource owner again.

The client has a trust relationship
with the client that is specified as
a JWT. For example, an application
in an environment where a non-
SAML v2.0 identity ecosystem
coexists with an OAuth 2.0 one.

JWT Bearer
Profile

(RFC 7523) The client uses a signed JWT to obtain an
access token from the authorization server without
interacting with the resource owner.

Tip

AM supports associating a confirmation key or a certificate with an access token to support proof-of-possession
interactions.

For more information, see "Implementing OAuth 2.0 Proof-of-Possession"

Authorization Code Grant
Endpoints

• /oauth2/authorize

• /oauth2/access_token

The Authorization Code grant is a two-step interactive process used when the client, for example, a
Java application running on a server, requires access to protected resources.

The Authorization Code grant is the most secure of all the OAuth 2.0 grants for the following reasons:

https://www.rfc-editor.org/info/rfc6749
https://datatracker.ietf.org/doc/draft-ietf-oauth-device-flow/
https://datatracker.ietf.org/doc/draft-ietf-oauth-device-flow/
https://www.rfc-editor.org/info/rfc7522
https://www.rfc-editor.org/info/rfc7523

Implementing OAuth 2.0 Grant Flows
Authorization Code Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 57

• It is a two-step process. The user must authenticate and authorize the client to see the resources
and the authorization server must validate the code again before issuing the access token.

• The authorization server delivers the access token directly to the client, usually over HTTPS. The
client secret is never exposed publicly, which protects confidential clients.

The following diagram demonstrates the Authorization Code grant flow:

OAuth 2.0 Authorization Code Grant Flow

Resource Owner
User-Agent

Resource Owner
User-Agent

Client

Client

AM
Authorizat ion Server

AM
Authorizat ion Server

Resource Server

Resource Server

1 Redirect ...

2 ...for authent icat ion

3 Authent icate resource owner and confirm resource access

4 If credent ials are valid, redirect ...

5 ...with authorizat ion code to
redirect_uri

6 Authent icate, request access token
with authorizat ion code.

7 If authorizat ion code is valid,
return access token

8 Request resource with access token

9 Request token validat ion and inform at ion

1 0 If access token is valid, respond with inform at ion

1 1 If access token is valid, return protected resource

The steps in the diagram are described below:

1. The client, usually a web-based service, receives a request to access a protected resource. To
access the resources, the client requires authorization from the resource owner.

2. The client redirects the resource owner's user-agent to the authorization server.

3. The authorization server authenticates the resource owner, confirms resource access, and gathers
consent if not previously saved.

4. The authorization server redirects the resource owner's user agent to the client.

5. During the redirection process, the authorization server appends an authorization code.

6. The client receives the authorization code and authenticates to the authorization server to
exchange the code for an access token.

Implementing OAuth 2.0 Grant Flows
Authorization Code Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 58

Note that this example assumes a confidential client. Public clients are not required to
authenticate.

7. If the authorization code is valid, the authorization server returns an access token (and a refresh
token, if configured) to the client.

8. The client requests access to the protected resources from the resource server.

9. The resource server contacts the authorization server to validate the access token.

10. The authorization server validates the token and responds to the resource server.

11. If the token is valid, the resource server allows the client access to the protected resources.

Perform the steps in the following procedures to obtain an authorization code and exchange it for an
access token:

• "To Obtain an Authorization Code Using a Browser in the Authorization Code Grant Flow"

• "To Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant Flow"

• "To Exchange an Authorization Code for an Access Token"

To Obtain an Authorization Code Using a Browser in the Authorization Code Grant Flow

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0 authorization server in the top-level realm. Ensure that:

• The code Response Type Plugins is configured.

• The Authorization Code Supported Grant Type is configured.

For more information, see "Configuring the OAuth 2.0 Provider Service".

• A confidential client called myClient is registered in AM with the following configuration:

• Client secret: forgerock

• Scopes: write

• Response Types: code

• Grant Types: Authorization Code

For more information, see "Registering OAuth 2.0 Clients With the OAuth 2.0 Provider Service".

Perform the steps in this procedure to obtain an authorization code using a browser:

Implementing OAuth 2.0 Grant Flows
Authorization Code Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 59

1. The client redirects the resource owner's user-agent to the authorization server's authorization
endpoint specifying, at least, the following form parameters:

• client_id=your_client_id

• response_type=code

• redirect_uri=your_redirect_uri

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize".

If the OAuth 2.0 provider is configured for a subrealm rather than the top-level realm, you must
specify it in the endpoint. For example, if the OAuth 2.0 provider is configured for the /customers
realm, then use /oauth2/realms/root/realms/customers/authorize.

For example:
https://openam.example.com:8443/openam/oauth2/realms/root/authorize \
?client_id=myClient \
&response_type=code \
&scope=write \
&state=abc123 \
&redirect_uri=https://www.example.com:443/callback

Note that the URL is split and spaces have been added for readability purposes and that the scope
and state parameters have been included. Scopes are not required, since they can be configured
by default in the authorization server and the client, and have been added only as an example.
The state parameter is added to protect against CSRF attacks.

2. The resource owner authenticates to the authorization server, for example, using the credentials
of the demo user. In this case, they log in using the default chain or tree configured for the realm.

After logging in, the authorization server presents the AM consent screen:

Implementing OAuth 2.0 Grant Flows
Authorization Code Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 60

OAuth 2.0 Consent Screen

3. The resource owner selects the Allow button to grant consent for the write scope.

The authorization server redirects the resource owner to the URL specified in the redirect_uri
parameter.

4. Inspect the URL in the browser. It contains a code parameter with the authorization code the
authorization server has issued. For example:
http://www.example.com/?code=g5B3qZ8rWzKIU2xodV_kkSIk0F4&scope=write&iss=https%3A%2F
%2Fopenam.example.com%3A8443%2Fopenam%2Foauth2&state=abc123&client_id=myClient

5. The client performs the steps in "To Exchange an Authorization Code for an Access Token" to
exchange the authorization code for an access token.

To Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant
Flow

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0 authorization server in the top-level realm.

• The code Response Type Plugins is configured.

• The Authorization Code Supported Grant Type is configured.

Implementing OAuth 2.0 Grant Flows
Authorization Code Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 61

For more information, see "Configuring the OAuth 2.0 Provider Service".

• A confidential client called myClient is registered in AM with the following configuration:

• Client secret: forgerock

• Scopes: write

• Response Types: code

• Grant Types: Authorization Code

For more information, see "Registering OAuth 2.0 Clients With the OAuth 2.0 Provider Service".

Perform the steps in this procedure to obtain an authorization code without using a browser:

1. The resource owner logs in to the authorization server, for example, using the credentials of the
demo user. For example:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: changeit" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'
{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console",
 "realm":"/"
}

2. The client makes a POST call to the authorization server's authorization endpoint, specifying the
SSO token of the demo in a cookie and, at least, the following parameters:

• client_id=your_client_id

• response_type=code

• redirect_uri=your_redirect_uri

• decision=allow

• csrf=demo_user_SSO_token

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize".

If the OAuth 2.0 provider is configured for a subrealm rather than the top-level realm, you must
specify it in the endpoint. For example, if the OAuth 2.0 provider is configured for the /customers
realm, then use /oauth2/realms/root/realms/customers/authorize.

Implementing OAuth 2.0 Grant Flows
Authorization Code Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 62

For example:
$ curl --dump-header - \
--request POST \
--Cookie "iPlanetDirectoryPro=AQIC5wM...TU3OQ*" \
--data "scope=write" \
--data "response_type=code" \
--data "client_id=myClient" \
--data "csrf=AQIC5wM...TU3OQ*" \
--data "redirect_uri=https://www.example.com:443/callback" \
--data "state=abc123" \
--data "decision=allow" \
"https://openam.example.com:8443/openam/oauth2/realms/root/authorize"

Note that the scope and the state parameters have been included. Scopes are not required, since
they can be configured by default in the authorization server and the client, and have been added
only as an example. The state parameter is added to protect against CSRF attacks.

If the authorization server is able to authenticate the user and the client, it returns an HTTP 302
response with the authorization code appended to the redirection URL:
HTTP/1.1 302 Found
Server: Apache-Coyote/1.1
X-Frame-Options: SAMEORIGIN
Pragma: no-cache
Cache-Control: no-store
Date: Mon, 30 Jul 2018 11:42:37 GMT
Accept-Ranges: bytes
Location: https://www.example.com:443/callback?code=g5B3qZ8rWzKIU2xodV_kkSIk0F4&scope=write&iss=https
%3A%2F%2Fopenam.example.com%3A8443%2Fopenam%2Foauth2&state=abc123&client_id=myClient
Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept
Content-Length: 0

3. Perform the steps in "To Exchange an Authorization Code for an Access Token" to exchange the
authorization code for an access token.

To Exchange an Authorization Code for an Access Token

Perform the steps in the following procedure to exchange an authorization code for an access token:

1. Ensure the client has obtained an authorization code by performing the steps in either "To Obtain
an Authorization Code Using a Browser in the Authorization Code Grant Flow" or "To Obtain an
Authorization Code Without Using a Browser in the Authorization Code Grant Flow".

2. The client creates a POST request to the token endpoint in the authorization server specifying, at
least, the following parameters:

• grant_type=authorization_code

• code=your_authorization_code

• redirect_uri=your_redirect_uri

Implementing OAuth 2.0 Grant Flows
Authorization Code Grant with PKCE

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 63

For information about the parameters supported by the /oauth2/access_token endpoint, see "/
oauth2/access_token".

Confidential clients can authenticate to the OAuth 2.0 endpoints in several ways. This example
uses the following form parameters:

• client_id=your_client_id

• client_secret=your_client_secret

For more information, see "Authenticating OAuth 2.0 Clients".

If the OAuth 2.0 provider is configured for a subrealm rather than the top-level realm, you must
specify it in the endpoint. For example, if the OAuth 2.0 provider is configured for the /customers
realm, then use /oauth2/realms/root/realms/customers/access_token.

For example:
$ curl --request POST \
--data "grant_type=authorization_code" \
--data "code=g5B3qZ8rWzKIU2xodV_kkSIk0F4" \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
--data "redirect_uri=https://www.example.com:443/callback" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

The client_id and the redirection_uri parameters specified in this call must match those used as
part of the authorization code request, or the authorization server will not validate the code.

The authorization server returns an access token in the access_token property. For example:
{
 "access_token": "sbQZuveFumUDV5R1vVBl6QAGNB8",
 "scope": "write",
 "token_type": "Bearer",
 "expires_in": 3599
}

Tip

The authorization server can also issue refresh tokens at the same time the access tokens are issued. For
more information, see "Managing OAuth 2.0 Refresh Tokens".

Authorization Code Grant with PKCE
Endpoints

• /oauth2/authorize

Implementing OAuth 2.0 Grant Flows
Authorization Code Grant with PKCE

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 64

• /oauth2/access_token

The Authorization Code grant, when combined with the PKCE standard (RFC 7636), is used when the
client, usually a mobile or a JavaScript application, requires access to protected resources.

The flow is similar to the regular Authorization Code grant type, but the client must generate a code
that will be part of the communication between the client and the authorization server. This code
mitigates against interception attacks performed by malicious users.

Since communication between the client and the authorization server is not secure, clients are
usually public so their secrets do not get compromised. Also, browser-based clients making OAuth 2.0
requests to different domains must implement Cross-Origin Resource Sharing (CORS) calls to access
OAuth 2.0 resources in different domains.

The PKCE flow adds three parameters on top of those used for the Authorization code grant:

• code_verifier (form parameter). Contains a random string that correlates the authorization request
to the token request.

• code_challenge (query parameter). Contains a string derived from the code verifier that is sent in
the authorization request and that needs to be verified later with the code verifier.

• code_challenge_method (query parameter). Contains the method used to derive the code challenge.

The following diagram demonstrates the Authorization Code grant with PKCE flow:

https://www.rfc-editor.org/info/rfc7636

Implementing OAuth 2.0 Grant Flows
Authorization Code Grant with PKCE

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 65

OAuth 2.0 Authorization Code Grant with PKCE Flow

Resource Owner
User-Agent

Resource Owner
User-Agent

Client

Client

AM
Authorizat ion Server

AM
Authorizat ion Server

Resource Server

Resource Server

1 Create code challenge and code verifier.
Then, redirect ...

2 ...for authent icat ion.

3 Authent icate resource owner and
confirm resource access

4 If credent ials are valid, store code_challenge
and code_challenge_m ethod and redirect ...

5 ...with authorizat ion code to redirect_uri.

6 Request access token with authorizat ion code,
redirect_uri, code_verifier

7 If code_challenge and authorizat ion code are valid,
return access token

8 Request resource with access token

9 Request token validat ion and inform at ion

1 0 If access token is valid,
respond with inform at ion

1 1 If access token is valid,
return protected resource

The steps in the diagram are described below:

1. The client receives a request to access a protected resource. To access the resources, the client
requires authorization from the resource owner. When using the PKCE standard, the client
must generate a unique code and a way to verify it, and append the code to the request for the
authorization code.

2. The client redirects the resource owner's user-agent to the authorization server.

3. The authorization server authenticates the resource owner, confirms resource access, and gathers
consent if not previously saved.

4. If the resource owner's credentials are valid, the authorization server stores the code challenge
and redirects the resource owner's user agent to the redirection URI.

5. During the redirection process, the authorization server appends an authorization code to the
request to the client.

6. The client receives the authorization code and calls the authorization server's token endpoint
to exchange the authorization code for an access token appending the verification code to the
request.

Implementing OAuth 2.0 Grant Flows
Authorization Code Grant with PKCE

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 66

7. The authorization server verifies the code stored in memory using the validation code. It also
verifies the authorization code. If both codes are valid, the authorization server returns an access
token (and a refresh token, if configured) to the client.

8. The client requests access to the protected resources from the resource server.

9. The resource server contacts the authorization server to validate the access token.

10. The authorization server validates the token and responds to the resource server.

11. If the token is valid, the resource server allows the client access to the protected resources.

Perform the steps in the following procedures to obtain an authorization code and exchange it for an
access token:

• "To Generate a Code Verifier and a Code Challenge"

• "To Obtain an Authorization Code Using a Browser in the Authorization Code Grant with PKCE
Flow"

• "To Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant with
PKCE Flow"

• "To Exchange an Authorization Code for an Access Token in the Authorization Code Grant Flow
with PKCE Flow"

To Generate a Code Verifier and a Code Challenge

The client application must be able to generate a code verifier and a code challenge. For details, see
the PKCE standard (RFC 7636). The information contained in this procedure is for example purposes
only:

1. The client generates the code challenge and the code verifier. Creating the challenge using a
SHA-256 algorithm is mandatory if the client supports it, as per the RFC 7636 standard.

The following is an example of a code verifier and code challenge written in JavaScript:
function base64URLEncode(words) {
 return CryptoJS.enc.Base64.stringify(words)
 .replace(/\+/g, '-')
 .replace(/\//g, '_')
 .replace(/=/g, '');
}
var verifier = base64URLEncode(CryptoJS.lib.WordArray.random(50));
var challenge = base64URLEncode(CryptoJS.SHA256(verifier));

This example generates values such as ZpJiIM_G0SE9WlxzS69Cq0mQh8uyFaeEbILlW8tHs62SmEE6n7Nke0XJGx_
F4OduTI4 for the code verifier and j3wKnK2Fa_mc2tgdqa6GtUfCYjdWSA5S23JKTTtPF8Y for the code challenge.
These values will be used in subsequent procedures.

The client is now ready to request an authorization code.

https://www.rfc-editor.org/info/rfc7636

Implementing OAuth 2.0 Grant Flows
Authorization Code Grant with PKCE

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 67

2. The client performs the steps in one of the following procedures to request an authorization code:

• "To Obtain an Authorization Code Using a Browser in the Authorization Code Grant with PKCE
Flow"

• "To Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant
with PKCE Flow"

To Obtain an Authorization Code Using a Browser in the Authorization Code Grant with PKCE
Flow

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0 authorization server with the following configuration:

• Supported Scopes: write

The Code Verifier Parameter Required drop-down (Realms > Realm Name > Services > OAuth2
Provider > Advanced) specifies whether AM require clients to include a code verifier in their calls.

However, if a client makes a call to AM with the code_challenge parameter, AM will honor the code
exchange regardless of the configuration of the Code Verifier Parameter Required drop-down.

• A public client called myClient is registered in AM with the following configuration:

• Scopes: write

• Response Types: code token

• Grant Types: Authorization Code

For more information, see "Registering OAuth 2.0 Clients With the OAuth 2.0 Provider Service".

Perform the steps in this procedure to obtain an authorization code using a browser:

1. The client redirects the resource owner's user-agent to the authorization server's authorization
endpoint specifying, at least, the following query parameters:

• client_id=your_client_id

• response_type=code

• redirect_uri=your_redirect_uri

• code_challenge=your_code_challenge

• code_challenge_method=S256

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize".

Implementing OAuth 2.0 Grant Flows
Authorization Code Grant with PKCE

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 68

If the OAuth 2.0 provider is configured for a subrealm rather than the top-level realm, you must
specify it in the endpoint. For example, if the OAuth 2.0 provider is configured for the /customers
realm, then use /oauth2/realms/root/realms/customers/authorize.

For example:
https://openam.example.com:8443/openam/oauth2/realms/root/authorize \
?client_id=myClient \
&response_type=code \
&scope=write \
&redirect_uri=https://www.example.com:443/callback \
&code_challenge=j3wKnK2Fa_mc2tgdqa6GtUfCYjdWSA5S23JKTTtPF8Y \
&code_challenge_method=S256 \
&state=abc123

Note that the URL is split and spaces have been added for readability purposes and that the scope
and state parameters have been included. Scopes are not required, since they can be configured
by default in the authorization server and the client, and have been added only as an example.
The state parameter is added to protect against CSRF attacks.

2. The resource owner authenticates to the authorization server, for example, using the credentials
of the demo user. In this case, they log in using the default chain or tree configured for the realm.

After logging in, the authorization server presents the AM consent screen:

OAuth 2.0 Consent Screen

Implementing OAuth 2.0 Grant Flows
Authorization Code Grant with PKCE

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 69

3. The resource owner selects the Allow button to grant consent for the write scope.

The authorization server redirects the resource owner to the URL specified in the redirect_uri
parameter.

4. Inspect the URL in the browser. It contains a code parameter with the authorization code the
authorization server has issued. For example:
http://www.example.com/?code=ZNSDo8LrsI2w-6NOCYKQgvDPqtg&scope=write&iss=https%3A%2F
%2Fopenam.example.com%3A8443%2Fopenam%2Foauth2&state=abc123&client_id=myClient

5. The client performs the steps in "To Exchange an Authorization Code for an Access Token" to
exchange the authorization code for an access token.

To Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant
with PKCE Flow

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0 authorization server with the following configuration:

• Supported Scopes: write

The Code Verifier Parameter Required drop-down (Realms > Realm Name > Services > OAuth2
Provider > Advanced) specifies whether AM require clients to include a code verifier in their calls.

However, if a client makes a call to AM with the code_challenge parameter, AM will honor the code
exchange regardless of the configuration of the Code Verifier Parameter Required drop-down.

• A public client called myClient is registered in AM with the following configuration:

• Scopes: write

• Response Types: code token

• Grant Types: Authorization Code

For more information, see "Registering OAuth 2.0 Clients With the OAuth 2.0 Provider Service".

Perform the steps in this procedure to obtain an authorization code:

1. The resource owner logs in to the authorization server, for example, using the credentials of the
demo user. For example:

Implementing OAuth 2.0 Grant Flows
Authorization Code Grant with PKCE

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 70

$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: changeit" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'
{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console",
 "realm":"/"
}

2. The client makes a POST call to the authorization server's authorization endpoint specifying in a
cookie SSO token of the demo and, at least, the following parameters:

• client_id=your_client_id

• response_type=code

• redirect_uri=your_redirect_uri

• decision=allow

• csrf=demo_user_SSO_token

• code_challenge=your_code_challenge

• code_challenge_method=S256

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize".

If the OAuth 2.0 provider is configured for a subrealm rather than the top-level realm, you must
specify it in the endpoint. For example, if the OAuth 2.0 provider is configured for the /customers
realm, then use /oauth2/realms/root/realms/customers/authorize.

For example:
$ curl --dump-header - \
--request POST \
--Cookie "iPlanetDirectoryPro=AQIC5wM...TU3OQ*" \
--data "redirect_uri=https://www.example.com:443/callback" \
--data "scope=write" \
--data "response_type=code" \
--data "client_id=myClient" \
--data "csrf=AQIC5wM...TU3OQ*" \
--data "state=abc123" \
--data "decision=allow" \
--data "code_challenge=j3wKnK2Fa_mc2tgdqa6GtUfCYjdWSA5S23JKTTtPF8Y" \
--data "code_challenge_method=S256" \
"https://openam.example.com:8443/openam/oauth2/realms/root/authorize"

Implementing OAuth 2.0 Grant Flows
Authorization Code Grant with PKCE

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 71

Note that the scope and the state parameters have been included. Scopes are not required, since
they can be configured by default in the authorization server and the client, and have been added
only as an example. The state parameter is added to protect against CSRF attacks.

If the authorization server is able to authenticate the user and the client, it returns an HTTP 302
response with the authorization code appended to the redirection URL:
HTTP/1.1 302 Found
Server: Apache-Coyote/1.1
X-Frame-Options: SAMEORIGIN
Pragma: no-cache
Cache-Control: no-store
Date: Mon, 30 Jul 2018 11:42:37 GMT
Accept-Ranges: bytes
Location: http://www.example.com?code=g5B3qZ8rWzKIU2xodV_kkSIk0F4&scope=write&iss=https%3A%2F
%2Fopenam.example.com%3A8443%2Fopenam%2Foauth2&state=abc123&client_id=myClient
Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept
Content-Length: 0

3. Perform the steps in "To Exchange an Authorization Code for an Access Token in the
Authorization Code Grant Flow with PKCE Flow" to exchange the authorization code for an
access token.

To Exchange an Authorization Code for an Access Token in the Authorization Code Grant Flow
with PKCE Flow

Perform the steps in the following procedure to exchange an authorization code for an access token:

1. Ensure the client has obtained an authorization code by performing the steps in either "To Obtain
an Authorization Code Using a Browser in the Authorization Code Grant with PKCE Flow" or "To
Obtain an Authorization Code Without Using a Browser in the Authorization Code Grant with
PKCE Flow".

2. The client creates a POST request to the token endpoint in the authorization server specifying, at
least, the following parameters:

• grant_type=authorization_code

• code=your_authorization_code

• client_id=your_client_id

• redirect_uri=your_redirect_uri

• code_verifier=your_code_verifier

For information about the parameters supported by the /oauth2/access_token endpoint, see
"/oauth2/access_token". For information about private client authentication methods, see
"Authenticating OAuth 2.0 Clients".

For example:

Implementing OAuth 2.0 Grant Flows
Implicit Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 72

$ curl --request POST \
--data "grant_type=authorization_code" \
--data "code=g5B3qZ8rWzKIU2xodV_kkSIk0F4" \
--data "client_id=myClient" \
--data "redirect_uri=https://www.example.com:443/callback" \
--data "code_verifier=ZpJiIM_G0SE9WlxzS69Cq0mQh8uyFaeEbILlW8tHs62SmEE6n7Nke0XJGx_F4OduTI4" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

The client_id and the redirection_uri parameters specified in this call must match those used as
part of the authorization code request, or the authorization server will not validate the code.

The authorization server returns an access token in the access_token property. For example:
{
 "access_token": "sbQZuveFumUDV5R1vVBl6QAGNB8",
 "scope": "write",
 "token_type": "Bearer",
 "expires_in": 3599
}

Tip

The authorization server can also issue refresh tokens at the same time the access tokens are issued. For
more information, see "Managing OAuth 2.0 Refresh Tokens".

Implicit Grant
Endpoints

• /oauth2/authorize

The Implicit grant is designed for public clients that run inside the resource owner's user-agent, for
example, JavaScript applications.

Since applications running in the user-agent are considered less trusted than applications running in
servers, the authorization server will never issue refresh tokens in this flow. Also, you must consider
the security impact of cross-site scripting (XSS) attacks that could leak the access token to other
systems, and implement Cross-Origin Resource Sharing (CORS) to make OAuth 2.0 requests to
different domains.

Due to the security implications of this flow, it is recommended to use the Authorization Code grant
with PKCE flow whenever possible.

The following diagram demonstrates the Implicit grant flow:

Implementing OAuth 2.0 Grant Flows
Implicit Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 73

OAuth 2.0 Implicit Grant Flow

Resource Owner
User-Agent

Resource Owner
User-Agent

Client

Client

AM
Authorizat ion Server

AM
Authorizat ion Server

Web-Hosted Client Resource

Web-Hosted Client Resource

Resource Server

Resource Server

1 Redirect ...

2 ...with client_id, scope, state, redirect_uri

3 Authent icate resource owner and
confirm resource access

4 Redirect with redirect_uri, access token in URI fragm ent ...

5 ...to request redirect_uri without the fragm ent

6 Return web page with em bedded script to ext ract access token

7 Execute script to ret rieve access token

8 Return access token

9 Request resource with access token

1 0 Request access token validat ion and inform at ion

1 1 If access token is valid, respond with inform at ion

1 2 If access token is valid, return protected resource

The steps in the diagram are described below:

1. The client, usually a single-page application (SPA), receives a request to access a protected
resource. To access the resources, the client requires authorization from the resource owner.

2. The client redirects the resource owner's user-agent or opens a new frame to the AM
authorization service.

3. The authorization server authenticates the resource owner, confirms resource access, and gathers
consent if not previously saved.

4. If the resource owner's credentials are valid, the authorization server returns the access token to
the user-agent as part of the redirection URI.

5. Now, the client must extract the access token from the URI. In this example, the user-agent
follows the redirection to the web-hosted server that contains the protected resources without the
access token....

6. ...And the web-hosted server returns a web page with an embedded script to extract the access
token from the URI.

Implementing OAuth 2.0 Grant Flows
Implicit Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 74

In another possible scenario, the redirection URI is a dummy URI in the client, and the client
already has the logic in itself to extract the access token.

7. The user-agent executes the script and retrieves the access token.

8. The user-agent returns the access token to the client.

9. The client requests access to the protected resources presenting the access token to the resource
server.

10. The resource server contacts the authorization server to validate the access token.

11. The authorization server validates the token and responds to the resource server.

12. If the token is valid, the resource server allows the client access to the protected resources.

Perform the steps in the following procedures to obtain an access token:

• "To Obtain an Access Token Using a Browser in the Implicit Grant"

• "To Obtain an Access Token Without Using a Browser in the Implicit Grant"

To Obtain an Access Token Using a Browser in the Implicit Grant

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0 authorization server in the top-level realm.

For more information, see "Configuring the OAuth 2.0 Provider Service".

• A public client called myClient is registered in AM with the following configuration:

• Scopes: write

• Response Types: token

• Grant Types: Implicit

For more information, see "Registering OAuth 2.0 Clients With the OAuth 2.0 Provider Service".

Perform the steps in this procedure to obtain an access token using the Implicit grant:

1. The client makes a GET call to the authorization server's authorization endpoint specifying, at
least, the following parameters:

• client_id=your_client_id

• response_type=token

Implementing OAuth 2.0 Grant Flows
Implicit Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 75

• redirect_uri=your_redirect_uri

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize".

If the OAuth 2.0 provider is configured for a subrealm rather than the top-level realm, you must
specify it in the endpoint. For example, if the OAuth 2.0 provider is configured for the /customers
realm, then use /oauth2/realms/root/realms/customers/authorize.

For example:
https://openam.example.com:8443/openam/oauth2/realms/root/authorize \
?client_id=myClient \
&response_type=token \
&scope=write \
&redirect_uri=https://www.example.com:443/callback \
&state=abc123

Note that the URL is split for readability purposes and that the scope and state parameters
have been included. Scopes are not required, since they can be configured by default in the
authorization server and the client, and have been added only as an example. The state parameter
is added to protect against CSRF attacks. Also, the redirection URI was not specified, and the URI
defined in the client profile is used by default.

2. The resource owner logs in to the authorization server, for example, using the credentials of the
demo user. In this case, they log in using the default chain or tree configured for the realm.

After logging in, the authorization server presents the AM user interface consent screen:

Implementing OAuth 2.0 Grant Flows
Implicit Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 76

OAuth 2.0 Consent Screen

3. The resource owner selects the Allow button to grant consent for the write scope.

The authorization server redirects the resource owner to the URL specified in the redirect_uri
parameter.

4. Inspect the URL in the browser. It contains an access_token parameter with the access token the
authorization server has issued. For example:
https://www.example.com:443/callback#access_token=1i5IfaebiLnpyxFM4mcTSZSegb4&scope=write&redirect_uri
%3Dhttps%3A%2F%2Fwww.example.com%3A8443%2Fcallback&iss=https%3A%2F%2Fopenam.example.com
%3A8443%2Fopenam%2Foauth2&state=abc123&client_id=myClient

To Obtain an Access Token Without Using a Browser in the Implicit Grant

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0 authorization server in the top-level realm, and it accepts the
write scope.

For more information, see "Configuring the OAuth 2.0 Provider Service".

• A public client called myClient is registered in AM with the following configuration:

• Scopes: write

Implementing OAuth 2.0 Grant Flows
Implicit Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 77

• Response Types: token

• Grant Types: Implicit

For more information, see "Registering OAuth 2.0 Clients With the OAuth 2.0 Provider Service".

Perform the steps in this procedure to obtain an access token using the Implicit grant:

1. The resource owner authenticates to the authorization server, for example, using the credentials
of the demo user. For example:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: changeit" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'
{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console",
 "realm":"/"
}

2. The client makes a POST call to the authorization server's authorization endpoint, specifying the
SSO token of the demo in a cookie and, at least, the following parameters:

• client_id=your_client_id

• response_type=token

• decision=allow

• csrf=demo_user_SSO_token

• redirect_uri=your_redirect_uri

For information about the parameters supported by the /oauth2/authorize endpoint, see "/oauth2/
authorize".

If the OAuth 2.0 provider is configured for a subrealm rather than the top-level realm, you must
specify it in the endpoint. For example, if the OAuth 2.0 provider is configured for the /customers
realm, then use /oauth2/realms/root/realms/customers/authorize.

For example:

Implementing OAuth 2.0 Grant Flows
Resource Owner Password Credentials Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 78

curl --dump-header - \
--Cookie "iPlanetDirectoryPro=AQIC5wM...TU3OQ*" \
--request POST \
--data "client_id=myClient" \
--data "response_type=token" \
--data "scope=write" \
--data "state=123abc" \
--data "decision=allow" \
--data "csrf=AQIC5wM...TU3OQ*" \
--data "redirect_uri=https://www.example.com:443/callback" \
"https://openam.example.com:8443/openam/oauth2/realms/root/authorize"

Note that the scope and state parameters have been included. Scopes are not required, since they
can be configured by default in the authorization server and the client, and have been added only
as an example. The state parameter is added to protect against CSRF attacks.

If the authorization server is able to authenticate the user, it returns an HTTP 302 response with
the access token appended to the redirection URI:
1.1 302 Found
Server: Apache-Coyote/1.1
X-Frame-Options: SAMEORIGIN
Pragma: no-cache
Cache-Control: no-store
Date: Wed, 22 Aug 2018 11:19:54 GMT
Accept-Ranges: bytes
Location: https://www.example.com:443/
callback#access_token=PAsODWCvnb5W8uuBT12H62Rvmro&scope=write&redirect_uri%3Dhttps%3A%2F
%2Fwww.example.com%3A8443%2Fcallback&iss=https%3A%2F%2Fopenam.example.com%3A8443%2Fopenam
%2Foauth2&state=123abc&token_type=Bearer&expires_in=3599&client_id=myClient
Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept
Content-Length: 0

In this case, the redirection URI was not specified in the command, and the URI defined in the
client profile is used by default.

Resource Owner Password Credentials Grant
Endpoints

• /oauth2/access_token

The Resource Owner Password Credentials (ROPC) grant flow allows the client to use the resource
owner's user name and password to get an access token.

Since the resource owner shares their credentials with the client, this flow is deemed the most
insecure of the OAuth 2.0 flows. The resource owner's credentials can potentially be leaked or abused
by the client application, and the resource owner has no control over the authorization process.

You should implement the ROPC grant flow only if the resource owner has a trust relationship with
the client (such as the device operating system, or a highly privileged application).

Implementing OAuth 2.0 Grant Flows
Resource Owner Password Credentials Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 79

The following diagram demonstrates the ROPC grant flow:

OAuth 2.0 Resource Owner Password Credentials Grant Flow

Resource Owner

Resource Owner

Client

Client

AM
Authorizat ion Server

AM
Authorizat ion Server

Resource Server

Resource Server

1 Provide user nam e, password

2 Authent icate

3 If credent ials are valid, return access token

4 Request resource with access token

5 Request access token validat ion and inform at ion

6 If access token is valid, respond with inform at ion

7 If access token is valid, return protected resource

The steps in the diagram are described below:

1. The resource owner provides the client with their username and password.

2. The client sends the resource owner's and its own credentials to the authorization server, which
authenticates the credentials and authorizes the resource owner's request.

3. If the credentials are valid, the authorization server returns an access token to the client.

4. The client requests access to the protected resources presenting the access token to the resource
server.

5. The resource server contacts the authorization server to validate the access token.

6. The authorization server validates the token and responds to the resource server.

7. If the token is valid, the resource server allows the client access to the protected resources.

Perform the following procedure to obtain an access token:

To Obtain an Access Token Using the ROPC Grant Flow

This procedure assumes the following configuration:

• An authentication service - a chain or tree - that is able to authenticate a username and password
combination, without requiring any UI-based interaction from the resource owner, is available.

For example, the ldapService chain (the default), or the Example tree.

Specify the chain or tree by using one or more of the methods below. AM checks for the configured
value in the following order, using the first value found:

Implementing OAuth 2.0 Grant Flows
Resource Owner Password Credentials Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 80

1. For a specific access token REST request.

Set the auth_chain parameter.

2. Individually for a realm, overriding the realm-level setting below.

Navigate to Realms > Realm Name > Services > OAuth2 Provider > Advanced, and set the
Password Grant Authentication Service property.

3. Individually for a realm.

Navigate to Realms > Realm Name > Authentication > Settings > Core, and set the
Organization Authentication Configuration property.

4. Globally, for all realms.

Navigate to Configure > Authentication > Core Attributes > Core, and set the Organization
Authentication Configuration property.

For more information, see "Configuring the Default Authentication Tree or Chain" in the
Authentication and Single Sign-On Guide.

• AM is configured as an OAuth 2.0 authorization server in the top-level realm.

For more information, see"Configuring the OAuth 2.0 Provider Service".

• A confidential client called myClient is registered in AM with the following configuration:

• Client secret: forgerock

• Scopes: write

• Response Types: token

• Grant Types: Resource Owner Password Credentials

For more information, see"Registering OAuth 2.0 Clients With the OAuth 2.0 Provider Service".

Perform the following steps to obtain an access token using the ROPC grant flow:

1. The resource owner provides their credentials to the client. This is done outside the scope of this
procedure.

2. The client creates a POST request to the authorization server's token endpoint specifying, at
least, the following parameters:

• username= your_resource_owner_username

• password= your_resource_owner_password

• grant_type=password

Implementing OAuth 2.0 Grant Flows
Resource Owner Password Credentials Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 81

For information about the parameters supported by the /oauth2/access_token endpoint, see "/
oauth2/access_token".

Private clients can authenticate to the OAuth 2.0 endpoints in several ways. This example uses
the following form parameters:

• client_id= your_client_id

• client_secret= your_client_secret

For more information, see"Authenticating OAuth 2.0 Clients".

If the OAuth 2.0 provider is configured for a subrealm rather than the top-level realm, you must
specify it in the endpoint. For example, if the OAuth 2.0 provider is configured for the /customers
realm, then use /oauth2/realms/root/realms/customers/access_token.

For example:
$ curl --request POST \
--data "grant_type=password" \
--data "username=demo" \
--data "password=changeit" \
--data "scope=write" \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

Note that the scope parameter has been included. Scopes are not required, since they can be
configured by default in the authorization server and the client, and have been added only as an
example.

The authorization server returns an access token in the access_token property. For example:
{
 "access_token": "sbQZuveFumUDV5R1vVBl6QAGNB8",
 "scope": "write",
 "token_type": "Bearer",
 "expires_in": 3599
}

Implementing OAuth 2.0 Grant Flows
Client Credentials Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 82

Tip

The authorization server can also issue refresh tokens at the same time the access tokens are issued. For
more information, see"Managing OAuth 2.0 Refresh Tokens".

Client Credentials Grant
Endpoints

• /oauth2/access_token

The Client Credentials grant is used when the client is also the resource owner and it is accessing
its own data instead of acting in behalf of a user. For example, an application that needs access to a
protected resource to retrieve its own data to perform a task, or update its configuration, would use
the Client Credentials grant to acquire an access token.

The Client Credentials Grant flow supports confidential clients only.

The following diagram demonstrates the Client Credentials grant flow:

OAuth 2.0 Client Credentials Grant Flow

Client

Client

AM
Authorizat ion Server

AM
Authorizat ion Server

Resource Server

Resource Server

1 Authent icate, request access token from token endpoint

2 If credent ials are valid, return access token

3 Request resource with access token

4 Request access token validat ion and inform at ion

5 If access token is valid, respond with inform at ion

6 If access token is valid, return protected resource

The steps in the diagram are described below:

1. The client sends its credentials to the authorization server to get authenticated, and requests an
access token.

2. If the client credentials are valid, the authorization server returns an access token to the client.

Implementing OAuth 2.0 Grant Flows
Client Credentials Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 83

3. The client requests access to the protected resources from the resource server.

4. The resource server contacts the authorization server to validate the access token.

5. The authorization server validates the token and responds to the resource server.

6. If the token is valid, the resource server allows the client access to the protected resources.

Perform the steps in the following procedure to obtain an access token:

To Obtain an Access Token Using the Client Credentials Grant

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0 authorization server in the top-level realm.

For more information, see "Configuring the OAuth 2.0 Provider Service".

• A confidential client called myClient is registered in AM with the following configuration:

• Client secret: forgerock

• Scopes: write

• Response Types: token

• Grant Types: Client Credentials

For more information, see "Registering OAuth 2.0 Clients With the OAuth 2.0 Provider Service".

Perform the steps in this procedure to obtain an access token using the Client Credentials grant:

• The client makes a POST call to the authorization server's token endpoint specifying, at least, the
following parameters:

• grant_type=client_credentials

For information about the parameters supported by the /oauth2/access_token endpoint, see "/
oauth2/access_token".

Private clients can authenticate to the OAuth 2.0 endpoints in several ways. This example uses
the following form parameters:

• client_id=your_client_id

• client_secret=your_client_secret

For more information, see "Authenticating OAuth 2.0 Clients".

If the OAuth 2.0 provider is configured for a subrealm rather than the top-level realm, you must
specify it in the endpoint. For example, if the OAuth 2.0 provider is configured for the /customers
realm, use /oauth2/realms/root/realms/customers/access_token.

Implementing OAuth 2.0 Grant Flows
Device Flow

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 84

For example:
$ curl --request POST \
--data "grant_type=client_credentials" \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
--data "scope=write" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

Note that the scope parameter has been included. Scopes are not required, since they can be
configured by default in the authorization server and the client, and have been added only as an
example.

The authorization server returns an access token in the access_token property. For example:
{
 "access_token": "sbQZuveFumUDV5R1vVBl6QAGNB8",
 "scope": "write",
 "token_type": "Bearer",
 "expires_in": 3599
}

Device Flow
Endpoints

• /oauth2/device/code

• /oauth2/device/user

• /oauth2/access_token

The Device Flow is designed for client devices that have limited user interfaces, such as a set-top box,
streaming radio, or a server process running on a headless operating system.

Rather than logging in by using the client device itself, you can authorize the client to access
protected resources on your behalf by logging in with a different user agent, such as an Internet
browser or smartphone, and entering a code displayed on the client device.

The following diagram demonstrates the Device Flow:

Implementing OAuth 2.0 Grant Flows
Device Flow

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 85

OAuth 2.0 Device Flow

User

Client
Device

AM
Authorizat ion Server

1 . Request device code

2 . Return device code, user code, URL,
and interval

3 . Provide user code to user

User

loop [Each Int erval]

4 . Poll for authorizat ion with device code

5 . Return [403] authorizat ion_pending

6 . Enter user code

7 . Authent icate

8 . Confirm user code

9 . Approve client access

1 0 . Return [200] access_token

The steps in the diagram are described below:

1. The client device requests a device code from AM.

Implementing OAuth 2.0 Grant Flows
Device Flow

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 86

2. AM returns a device code, a user code, a URL for entering the user code, and an interval, in
seconds.

3. The client device provides instructions to the user to enter the user code. The client may choose
an appropriate method to convey the instructions, for example, text instructions on screen, or a
QR code.

4. The client device begins to continuously poll AM to see if authorization has been completed.

5. If the user has not yet completed the authorization, AM returns an HTTP 403 status code, with an
authorization_pending message.

6. The user follows the instructions from the client device to enter the user code by using a separate
device.

7. If the user code is valid, AM redirects the resource owner for authentication.

8. Upon authentication, the user is prompted to confirm the user code. The page is pre-populated
with the one entered before.

9. The user can authorize the client device. The AM consent page also displays the requested scopes,
and their values.

Note

AM does not display the confirmation nor the consent pages if the user has a valid session when they
entered the code, and the client is allowed to skip consent.

This is also true if you perform the call using REST and pass the decision=allow parameter.

10. Upon authorization, AM responds to the client device's polling with an HTTP 200 status, and an
access token, giving the client device access to the requested resources.

The following procedures show how to use the OAuth 2.0 device flow endpoints:

• "To Obtain a User Code For the Device".

• "To Grant Consent with a User Code Without Using a Browser in the Device Flow".

• "To Grant Consent with a User Code Using a Browser in the Device Flow".

• "To Poll for Authorization in the OAuth 2.0 Device Flow".

To Obtain a User Code For the Device

Devices can display a user code and instructions for a user, which can be used on a separate client to
provide consent, allowing the device to access resources.

As user codes may be displayed on lower resolution devices, the list of possible characters used
has been optimized to reduce ambiguity. User codes consist of a random selection of eight of the
following characters:

Implementing OAuth 2.0 Grant Flows
Device Flow

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 87

234567ABCDEFGHIJKLMNOPQRSTVWXYZabcdefghijkmnopqrstvwxyz

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0 authorization server in the top-level realm. scope.

For more information, see "Configuring the OAuth 2.0 Provider Service".

• A public client called myClient is registered in AM with the following configuration:

• Scopes: write

• Response Types: device_code token

• Grant Types: Device Code

For more information, see "Registering OAuth 2.0 Clients With the OAuth 2.0 Provider Service".

Perform the following steps to request a user code in the OAuth 2.0 device flow:

1. The client creates a POST request to the /oauth2/device/code endpoint specifying, at least, the
following parameters:

• response_type=device_code

• client_id=your_client_ID

For information about the parameters supported by the /oauth2/device/code endpoint, see "/oauth2/
device/code". For information about private client authentication methods, see "Authenticating
OAuth 2.0 Clients".

For example:
$ curl \
--request POST \
--data "response_type=device_code" \
--data "client_id=myClient" \
--data "scope=write" \
"https://openam.example.com:8443/openam/oauth2/realms/root/device/code"
{
 "interval": 5,
 "device_code": "7a95a0a4-6f13-42e3-ac3e-d3d159c94c55...",
 "verification_uri": "https://openam.example.com:8443/openam/oauth2/device/user",
 "verification_url": "https://openam.example.com:8443/openam/oauth2/device/user",
 "user_code": "VAL12e0v",
 "expires_in": 300
}

On success, AM returns a verification URI (the verification_url output is included to support
earlier versions of the draft), and a user code to enter at that URL. AM also returns an interval, in
seconds, that the client device must wait for in between requests for an access token.

Implementing OAuth 2.0 Grant Flows
Device Flow

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 88

Tip

You can configure the returned values by navigating to Realms > Realm Name > Services > OAuth2
Provider > Device Flow.

2. The client device should now provide instructions to the user to enter the user code and grant
access to the OAuth 2.0 device. The client may choose an appropriate method to convey the
instructions, for example, text instructions on screen, or a QR code. Perform the steps in one of
the following procedures:

• To grant access to the client using a browser, see "To Grant Consent with a User Code Without
Using a Browser in the Device Flow".

• To grant access to the client without using a browser, see "To Grant Consent with a User Code
Using a Browser in the Device Flow".

3. The client device should also begin polling the authorization server for the access token using the
interval and device code information obtained in the previous step. For more information, see "To
Poll for Authorization in the OAuth 2.0 Device Flow".

To Grant Consent with a User Code Without Using a Browser in the Device Flow

OAuth 2.0 Device Flow requires that the user grants consent to allow the client device to access the
resources. The authorization server would then provide the client with an access token.

To grant consent with a user code without using a browser, perform the following steps:

1. The resource owner logs in to the authorization server, for example, using the credentials of the
demo user. For example:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: changeit" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'
{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console",
 "realm":"/"
}

2. The client makes a POST call to the authorization server's authorization device user endpoint
specifying in a cookie SSO token of the demo and, at least, the following parameters:

• user_code=resource_owner_user_code

• decision=allow

Implementing OAuth 2.0 Grant Flows
Device Flow

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 89

• csrf=demo_user_SSO_token

For information about the parameters supported by the /oauth2/device/user endpoint, see "/oauth2/
device/user".

The iPlanetDirectoryPro cookie is required and should contain the SSO token of the user granting
access to the client. For example:
$ curl \
--request POST \
--header "Cookie: iPlanetDirectoryPro=AQIC5wM...TU3OQ*" \
--data "user_code=VAL12e0v" \
--data "decision=allow" \
--data "csrf=AQIC5wM...TU3OQ*" \
"https://openam.example.com:8443/openam/oauth2/realms/root/device/user"

The scope and the client_id parameters have not been included because the user code already
contains that information.

AM returns HTML containing a JavaScript fragment named pageData, with details of the result.

Successfully allowing or denying access returns:
pageData = {
 locale: "en_US",
 baseUrl : "https://openam.example.com:8443/openam/XUI/",
 realm : "/\",
 done: true
}

done: true means that the flow can now continue.

If the supplied user code has already been used, or is incorrect, AM returns the following:
pageData = {
 locale: "en_US",
 errorCode: "not_found",
 realm : "/\",
 baseUrl : "https://openam.example.com:8443/openam/XUI/"
 oauth2Data: {
 csrf: "ErFIk8pMraJ1rvKbloTgpp6b7GZ57kyk9HaIiKMVK3g=",
 userCode: "VAL12e0v",
 }
}

Important

As per Section 4.1.1 of the OAuth 2.0 authorization framework, it is required that the authorization server
legitimately obtains an authorization decision from the resource owner.

https://www.rfc-editor.org/rfc/rfc6749.html#section-4.1.1

Implementing OAuth 2.0 Grant Flows
Device Flow

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 90

Any client using the endpoints to register consent is responsible for ensuring this requirement, AM cannot
assert that consent was given in these cases.

To Grant Consent with a User Code Using a Browser in the Device Flow

OAuth 2.0 Device Flow requires that the user grants consent to allow the client device to access the
resources. The authorization server would then provide the client with an access token.

To grant consent with a user code using a browser, perform the following steps:

1. The resource owner navigates to the verification URL acquired with the user code, for example,
https://openam.example.com:8443/openam/oauth2/device/user.

2. The resource owner logs in to the authorization server using, for example, the demo user
credentials.

3. The resource owner enters their user code:

OAuth 2.0 User Code

Note

If the user is not logged in to AM when they provide the code, AM redirects them to the login page.

After authenticating successfully, the user is prompted to enter the code again. The user code is pre-
populated with the code they entered before.

4. The resource owner authorizes the device flow client by allowing the requested scopes:

Implementing OAuth 2.0 Grant Flows
Device Flow

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 91

OAuth 2.0 Consent Page

Note

If the client is allowed to skip consent, the user will not see this screen.

5. AM adds the OAuth 2.0 client to the user's profile page in the Authorized Apps section and
displays that the user is done with the flow:

Implementing OAuth 2.0 Grant Flows
Device Flow

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 92

OAuth 2.0 Done Page

The device now can request an access token from AM.

To Poll for Authorization in the OAuth 2.0 Device Flow

The client device must poll the authorization server for an access token, since it cannot know whether
the resource owner has already given consent or not.

Perform the following steps to poll for an access token:

• On the client device, create a POST request to poll the /oauth2/access_token endpoint to request an
access token specifying, at least, the following parameters:

• client_id=your_client_id

• grant_type=urn:ietf:params:oauth:grant-type:device_code

• device_code=your_device_code

For information about the parameters supported by the /oauth2/access_token endpoint, see "/
oauth2/access_token".

The client device must wait for the number of seconds previously provided as the value of interval
between polling AM for an access token. For example:
$ curl \
--request POST \
--data "client_id=myClient" \
--data "grant_type=urn:ietf:params:oauth:grant-type:device_code" \
--data "device_code=7a95a0a4-6f13-42e3-ac3e-d3d159c94c55..." \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

Implementing OAuth 2.0 Grant Flows
SAML v2.0 Profile for Authorization Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 93

If the user has authorized the client device, an HTTP 200 status code is returned, with an access
token that can be used to request resources:
{
 "expires_in": 3599,
 "token_type": "Bearer",
 "access_token": "c1e9c8a4-6a6c-45b2-919c-335f2cec5a40"
}

If the user has not yet authorized the client device, an HTTP 403 status code is returned, with the
following error message:
{
 "error": "authorization_pending",
 "error_description": "The user has not yet completed authorization"
}

If the client device is polling faster than the specified interval, an HTTP 400 status code is
returned, with the following error message:
{
 "error": "slow_down",
 "error_description": "The polling interval has not elapsed since the last request"
}

Tip

The authorization server can also issue refresh tokens at the same time the access tokens are issued. For
more information, see "Managing OAuth 2.0 Refresh Tokens".

SAML v2.0 Profile for Authorization Grant
Endpoints

• /oauth2/access_token

The SAML v2.0 Profile for Authorization Grant is designed for environments that want to leverage the
REST-based services provided by AM's OAuth 2.0 support, while keeping their existing SAML v2.0
federation implementation.

Note

The RFC 7522 describes the means to use SAML v2.0 bearer assertions to request access tokens and to
authenticate OAuth 2.0 clients.

At present, AM implements the profile to request access tokens.

Consider the following requirements before implementing this flow:

https://www.rfc-editor.org/info/rfc7522

Implementing OAuth 2.0 Grant Flows
SAML v2.0 Profile for Authorization Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 94

• The client (the application the resource owner uses to start the flow) must inform the resource
owner that, by authenticating to the SAML v2.0 identity provider, the resource owner grants the
client access to the protected resources. AM does not present the resource owner with consent
pages.

This client must be able to consume the access token and handle errors as required.

• The OAuth 2.0 authorization service and SAML v2.0 service provider must be configured in the
same AM instance.

• The service provider must require that assertions are signed.

• The SAML v2.0 identity provider must issue signed assertions.

The assertion must contain the SAML v2.0 entity names, as follows:

• The issuer must be set to the identity provider's name. For example, https://idp.example.com:8443/
idp.

• The audience must be set to the service provider's name. For example, https://openam.example.
com:8443/openam.

• The identity provider and the service provider must belong to the same circle of trust.

• AM must be able to determine the resource owner from the name ID contained in the assertion.
Failure to determine the resource owner results in an error similar to:
{"error_description":"AM identity should not be null","error":"server_error"}

AM may fail to determine the resource owner if the assertion contains an opaque name ID during
transient federation. Because the opaque reference is never stored during a transient flow, the
OAuth 2.0 provider cannot determine the resource owner it relates to.

To work around this, configure an identity in the Transient User field of the SAML v2.0 service
provider. This will map all transient ID references to that identity.

• The OAuth 2.0 client is registered, at least, with the following configuration:

• Response Types: token

• Grant Types: SAML2

The following diagram demonstrates the SAML v2.0 Profile for Authorization Grants:

Implementing OAuth 2.0 Grant Flows
SAML v2.0 Profile for Authorization Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 95

SAML v2.0 Profile for Authorization Grant Flow

Resource Owner
User-Agent

Resource Owner
User-Agent

Client

Client

SAML v2.0
Ident ity Provider

SAML v2.0
Ident ity Provider

AM OAuth 2.0 Authorizat ion Server
and

SAML v2.0 Service Provider

AM OAuth 2.0 Authorizat ion Server
and

SAML v2.0 Service Provider

OAuth 2.0
Resource Server

OAuth 2.0
Resource Server

1 Redirect

2 ...for authent icat ion.

3 If credent ials are valid, redirect ...

4 ...with signed SAML v2.0 assert ion to
Client

5 Authent icate, request access token
with assert ion

6 If assert ion is valid, return access token

7 Request resource with access token

8 Request token validat ion and inform at ion

9 If access token is valid, respond with inform at ion

1 0 Return protected resource

The steps in the diagram are described below:

1. The client requests the SAML v2.0 identity provider the SAML v2.0 assertion related to the
resource owner. Usually, this means the client redirects the resource owner to the identity
provider for authentication.

2. The SAML v2.0 identity provider returns the signed assertion to the client.

3. The client includes the assertion and a special grant type in the call to the OAuth 2.0 token
endpoint in the following parameters:

• grant_type=urn:ietf:params:oauth:grant-type:saml2-bearer

• assertion=my_assertion

Note that the assertion must be first base64-encoded, and then URL encoded.

For example:

Implementing OAuth 2.0 Grant Flows
JWT Profile for OAuth 2.0 Authorization Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 96

$ curl \
--request POST \
--data "client_id=myClient" \
--data "client_password=forgerock" \
--data-urlencode "assertion=PHNhbWxwOl...ZT4" \
--data "grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Asaml2-bearer" \
--data "redirect_uri=https://www.example.com:443/callback" \
--data "scope=write" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

4. The AM authorization server validates the assertion. If the assertion is valid, the authorization
server returns an access token to the client.

5. The client request access to the protected resources from the resource server.

6. The resource server contacts the authorization server to validate the access token.

7. The authorization server validates the token and responds to the resource server.

8. If the token is valid, the resource server allows the client access to the protected resources.

JWT Profile for OAuth 2.0 Authorization Grant
Endpoints

• /oauth2/access_token

The JWT Profile for OAuth 2.0 Authorization Grant is designed for environments that want to leverage
the REST-based services provided by AM's OAuth 2.0 framework while keeping their existing
authentication services, as long as the trust relationship can be expressed with a JWT bearer token.

Since the trust relationship is already established, this flow does not require the end user's
interaction.

Note

The RFC 7523 defines the use of JWT bearer tokens for both requesting access tokens as well as for client
authentication.

Read this section for information about requesting access tokens. To use JWTs for client authentication, see
"Authenticating Clients Using JWT Profiles".

As the authorization server, AM must validate the bearer JWT to issue the access token to the client.
To ensure that malicious clients cannot self-sign their own JWTs to acquire tokens, AM requires the
token issuer to be pre-registered in AM as an special type of agent.

The following diagram demonstrates the JWT Bearer Profile for Authorization Grant flow:

https://www.rfc-editor.org/info/rfc7523

Implementing OAuth 2.0 Grant Flows
JWT Profile for OAuth 2.0 Authorization Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 97

JWT Bearer Profile for Authorization Grant
Client can be Issuer

Resource Owner
User-Agent

Resource Owner
User-Agent

Client

Client

Issuer

Issuer

Authorizat ion Server

Authorizat ion Server

Resource Server

Resource Server

1 Redirect

2 ...for authent icat ion.

3 If credent ials are valid, redirect ...

4 ...with signed bearer JWT to
Client

5 Request access token
with JWT

6 Validate JWT

7 Response with access token

8 Request resource with access token

9 Request token validat ion and inform at ion

1 0 If access token is valid, respond with inform at ion

1 1 If access token is valid, return protected resource

1. The client requests a JWT from the issuer. The client itself can be the issuer, in which case it will
create a JWT for itself before starting the OAuth 2.0 flow.

Regardless of who signs the JWT, the issuer must be pre-registered in AM as a trusted JWT issuer.
For more information, see "To Configure a Trusted JWT Issuer Agent".

2. The issuer returns a signed JWT to the client; JWTs with message authentication codes (MACs)
applied to them are not supported.

The JWT must contain, at least, the following claims in the payload:

• aud. Specifies a string or an array of strings that is the intended audience of the JWT. Must be
set to, or contain, the authorization server's token endpoint.

• exp. Specifies the expiration time of the JWT in Unix time.

Providing a JWT with an expiry time greater than 30 minutes causes AM to return a JWT
 expiration time is unreasonable error message.

• iss. Specifies the unique identifier of the JWT issuer. This could be the client or a third party.

Implementing OAuth 2.0 Grant Flows
JWT Profile for OAuth 2.0 Authorization Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 98

The identifier must match the issuer field configured in the trusted JWT issuer agent.

• sub. Specifies the principal who is the subject of the JWT. It must be a string that identifies the
resource owner.

Tip

You can configure the trusted JWT issuer agent to check a different claim for the principal. For example,
the preferred_userame from an ID token.

In this case, the JWT would contain both the sub and the preferred_username claims.

For more information, see "To Configure a Trusted JWT Issuer Agent".

The following is an example of the payload of a basic JWT:
{
 "aud": [
 "https://openam.example.com:8443/openam/oauth2/realms/root/access_token
],
 "iss": "https://www.example.com/issuer",
 "exp": 1555530663,
 "sub": "demo"
}

For an example of a JWT containing different claims as supported by the trusted JWT issuer agent,
see "To Configure a Trusted JWT Issuer Agent".

For more information about JWTs, see the RFC 7523 standard.

3. The client includes the JWT and a client assertion type in the call to the OAuth 2.0 endpoint in the
following parameters:

• grant_type=urn:ietf:params:oauth:grant-type:jwt-bearer

• assertion=my_JWT

For example:
$ curl \
--request POST \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
--data "grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-bearer" \
--data "assertion=eyAiYWxnIjogIlJTMjU2IiB9.eyAic3ViIjogImp3..."
--data "redirect_uri=http://www.example.com" \
--data "scope=write" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

For information about the parameters supported by the /oauth2/access_token endpoint, see "/
oauth2/access_token".

https://www.rfc-editor.org/info/rfc7523

Implementing OAuth 2.0 Grant Flows
JWT Profile for OAuth 2.0 Authorization Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 99

For more information about client authentication methods, see "Authenticating OAuth 2.0
Clients".

4. AM validates the JWT following the guidance specified in section 3 of the RFC7523 and also
performs the following additional checks:

a. Decodes the payload and compares the value of the iss claim with the value of the JWT Issuer
field in the list of trusted JWT issuer agents.

b. Validates the JWT signature either with the keys exposed on the trusted issue agent's JWK
URI, or with the keys configured in the JWK Set field of the agent.

If AM cannot validate the JWT it will return an error, such as JWT signature is invalid.

5. The authorization server issues an access token to the client.

6. The client requests access to the protected resources from the resource server.

7. The resource server contacts the authorization server to validate the access token.

8. The authorization server validates the token and responds to the resource server.

9. If the token is valid, the resource server allows the client access to the protected resources.

The following procedure demonstrates how to configure a trusted JWT issuer agent:

To Configure a Trusted JWT Issuer Agent

Perform the steps in this procedure to configure a trusted JWT issuer agent:

1. Log in to the AM console as an administrative user, for example, amAdmin.

2. Navigate to Realms > Realm Name > Applications > Agents > Trusted JWT Issuer.

3. Add a new trusted JWT issuer agent.

4. Complete the following fields to create the agent:

a. In the Agent ID field, give the trusted JWT issuer agent a name. For example, myJWTAgent.

b. In the JWT Issuer field, provide the URI of the JWT issuer. This URI must match the value of
the issuer (the iss claim) in the JWTs.

c. Select Create.

You are presented with a screen with additional information regarding the agent.

5. Review the trusted JWT issuer agent information. You must, configure either the JWKs URI or the
JWK Set fields, as follows:

Implementing OAuth 2.0 Grant Flows
JWT Profile for OAuth 2.0 Authorization Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 100

• JWKs URI: specifies a URI in the JWT issuer that exposes the verification keys AM will use to
validate the JWT signature. For example, http://www.example.com/issuer/jwk_uri.

If you configure this field, ensure the following properties are configured with sensible values
for your environment:

• JWKs URI content cache timeout in ms

• JWKs URI content cache miss cache time

• JWK set: Specifies a JWK set containing the verification keys to validate the JWT signature. The
following is an example of an elliptic curve JWK set:
{
 "keys": [{
 "kty": "EC",
 "crv": "P-256",
 "x": "i-rdOmi5lC3pn3y5sTgYiLLFVFY7XxDLinWneHEaAXA",
 "y": "mxmqqauiq44INgyyPP2vATt3IkDL_6W5CAcfAMSZl8k",
 "kid": "signing_key",
 "x5c": [
 "MIIBSjCB76ADAgEC.....955PByPrflZkQOC/g=="]
 }]
}

For more information about the contents of the JWK set, see the JSON Web Key (JWK)
specification.

You can store more than one key in the JWK set. However, it is easier to implement key rotation
exposing the validation keys on the URI instead.

6. (Optional) Configure the following values to suit your environment:

• Consented Scopes Claim. The name of a JWT claim that indicates which scopes the resource
owner consented to. The claim in the JWT can contain either a JSON array or a space-separated
whitelist of scopes that the resource owner has consented to.

For example, if you configure the scp claim name in this field and the JWT contains the claim
"scp":"read", but you request both the read and write scopes, AM will only grant the read scope.

Leave this field blank to allow any scope.

The following are example JWTs containing a claim that specifies scopes:

https://www.rfc-editor.org/info/rfc7517

Implementing OAuth 2.0 Grant Flows
JWT Profile for OAuth 2.0 Authorization Grant

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 101

{
 "aud": [
 "https://openam.example.com:8443/openam/oauth2/realms/root/access_token
],
 "iss": "https://www.example.com/issuer",
 "exp": 1555530663,
 "sub": "demo",
 "scope": ["read", "write"]
}

In this case, the scope claim is a JSON array of scopes.
{
 "aud": [
 "https://openam.example.com:8443/openam/oauth2/realms/root/access_token
],
 "iss": "https://www.example.com/issuer",
 "exp": 1555530663,
 "sub": "demo",
 "scp": "read write"
}

In this case, the scp claim is a space-separated list of scopes.

• Resource Owner Identity Claim. Claim in the JWT that identifies the resource owner in AM. By
default, the sub claim.

Note that even if you configure the trusted JWT issuer agent to verify a different claim, such as
the preferred_username claim, the sub claim must still exist in the JWT.

• Allowed Subjects. List of subjects this JWT issuer is allowed to provide consent for.

For example, if you configure the demo user in this field but the JWT subject value is demo2, AM
will not grant the access token.

Leave it blank to provide consent to any user.

7. Save your changes.

The trusted JWT issuer agent is ready for use.

Managing OAuth 2.0 Refresh Tokens

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 102

Chapter 5

Managing OAuth 2.0 Refresh Tokens
Refresh tokens (RFC 6749) are a type of token that can be used to obtain a new access token that
may have identical or narrower scopes than the original. AM can issue refresh tokens during every
OAuth 2.0/OpenID Connect grant flow except for the Implicit and the Client Credentials grant flows.

Access tokens are short-lived because, if leaked, they grant potentially malicious users access to
the resource owner resources. However, clients may need to access the protected data for periods
of time that exceed the access token lifetime or when the resource owner is not available. In some
cases, it is unreasonable to ask for the resource owner's consent several times during the same
operation.

Refresh tokens solve this problem by allowing the clients to ask for a new access token without
further interaction from the resource owner. While a potentially malicious user compromising an
access token has access to the resource owner resources, one that holds a refresh token also needs
to compromise the client ID and the client secret to be able to get an access token, since the client
needs to authenticate to the token endpoint to obtain an access token using the refresh token.

Refresh tokens are long-lived by default, and AM allows you to configure the lifetime of the tokens
in the OAuth 2.0 Provider settings, or in each client. By default, the configuration of the OAuth 2.0
Provider is used. For more information, see "OAuth2 Provider" and "OAuth 2.0 and OpenID Connect
1.0 Client Settings".

Refresh tokens can be revoked. For more information, see "/oauth2/token/revoke").

This section contains the followings procedures:

• "To Configure AM to Issue Refresh Tokens"

• "To Refresh an Access Token"

To Configure AM to Issue Refresh Tokens

AM can issue refresh tokens during the following actions:

• When issuing an access token to the client after a successful OAuth 2.0 grant flow.

• When the client successfully uses a refresh token to obtain a new access token. Note that, when a
new refresh token is issued, the old refresh token is deactivated.

1. To enable AM to issue refresh tokens at the same time the access token is issued, navigate to
Realms > Realm Name > Services > OAuth2 Provider > Core, and enable Issue Refresh Tokens.

https://www.rfc-editor.org/info/rfc6749

Managing OAuth 2.0 Refresh Tokens

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 103

Note that you configure refresh tokens at realm level. Consider carefully the types of clients
registered to the realm before configuring AM to issue refresh tokens.

2. (Optional) To enable AM to also issue refresh tokens when refreshing access tokens, navigate to
Realms > Realm Name > Services > OAuth2 Provider > Core, and enable Issue Refresh Tokens
on Refreshing Access Tokens.

3. Save your changes.

4. To configure a client to use the Refresh Token grant flow perform the following steps:

a. Navigate to Realms > Realm Name > Applications > OAuth 2.0 > Client Name > Advanced.

b. On the Grant Types field, add the Refresh Token grant type.

c. Save your changes.

To Refresh an Access Token

This procedure assumes the following configuration:

• AM is configured as an OAuth 2.0 authorization server in the top-level realm with the following
configuration:

• Issue Refresh Tokens is enabled.

• Issue Refresh Tokens on Refreshing Access Tokens is enabled.

For more information, see "Configuring the OAuth 2.0 Provider Service".

• A confidential client called myClient is registered in AM with the following configuration:

• Client secret: forgerock

• Scopes: write read

• Response Types: token

• Grant Types: Authorization Code Refresh Token

Perform the steps in the procedure to refresh an access token:

1. The client obtains an access token and a refresh token using the Authorization Code Grant flow.
For more information, see "Authorization Code Grant".

The example assumes the refresh token is qz1qx-9AYOkRp3AWcCZULvPitpM.

2. The client makes a POST call to the authorization's server token endpoint, specifying, at least, the
following parameters:

Managing OAuth 2.0 Refresh Tokens

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 104

• grant_type=refresh_token

• refresh_token=your_refresh_token

For more information about the parameters supported by the /oauth2/access_token endpoint, see "/
oauth2/access_token".

Private clients can authenticate to the OAuth 2.0 endpoints in several ways. This example uses
the following form parameters:

• client_id=your_client_id

• client_secret=your_client_secret

For more information, see "Authenticating OAuth 2.0 Clients".

If the OAuth 2.0 provider is configured for a subrealm rather than the top-level realm, you must
specify it in the endpoint. For example, if the OAuth 2.0 provider is configured for the /customers
realm, then use /oauth2/realms/root/realms/customers/access_token.

For example:
$ curl --request POST \
--data "grant_type=refresh_token" \
--data "refresh_token=qz1qx-9AYOkRp3AWcCZULvPitpM" \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
--data "scope=read" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"
{
 "access_token":"y-C_A1RKJIg-BUlKhp--kv5Iywk",
 "refresh_token":"qdqVnFJK8FjiQAjYMaBuUY6z_HU",
 "scope":"read",
 "token_type":"Bearer",
 "expires_in":3599
}

Note that the scope parameter is not required. By default, AM will issue an access token with the
same scopes of the original. This example is restricting the new access token to the read scope.

Also note that AM has issued a new refresh token; the original refresh token is now inactive.

Implementing OAuth 2.0 Proof-of-Possession
JWK-Based Proof-of-Possession

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 105

Chapter 6

Implementing OAuth 2.0 Proof-of-Possession
AM supports associating a JSON Web Key (JWK) key or an X.509 certificate with an access token to
support proof-of-possession interactions. This allows the presenter of a bearer token to prove that it
was originally issued the access token.

AM supports "JWK-Based Proof-of-Possession" and "Certificate-Bound Proof-of-Possession".

JWK-Based Proof-of-Possession
To implement JWK-based proof-of-possession, the client includes a JWK when making a request to
the authorization server for an access token as per Proof-of-Possession Key Semantics for JSON Web
Tokens (JWTs) spec. The JWK consists of the public key of a key pair generated by the client.

When the client presents the access token to a resource server, the resource server can
cryptographically confirm proof-of-possession of the token by using the associated JWK to form a
challenge-response interaction with the client.

The following diagram demonstrates the JWK-based proof-of-possession flow:

https://www.rfc-editor.org/info/rfc7800
https://www.rfc-editor.org/info/rfc7800

Implementing OAuth 2.0 Proof-of-Possession
JWK-Based Proof-of-Possession

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 106

OAuth 2.0 JWK-Based Proof-of-Possession Flow

Resource Server

Client

Client Resource Server

AM
Authorizat ion Server

AM
Authorizat ion Server

Obt ain Access Token

1 Request access token and include a JWK

2 Return JWT with em bedded JWK (client -based) or access token ID (CTS-based)

Access a Resource

3 Present JWT / access token ID Resource Server

I f CTS-based.. .

4 Int rospect access
token ID to acquire JWK

Challenge-Response

5 Create a challenge
using the JWK

6 Issue challenge

7 Solve the challenge using the private key

8 Issue response

Validate response and
allow or deny access
to the resource.

The steps in the diagram are described below:

Implementing OAuth 2.0 Proof-of-Possession
JWK-Based Proof-of-Possession

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 107

1. The client requests an access token using any of the OAuth 2.0 grant flows, and includes a JWK in
the request.

This JWK consists of the public key of a key pair generated by the client.

2. The authorization server returns the access token to the client:

• If the authorization server is configured for CTS-based OAuth 2.0, the authorization server
stores the JWK with the access token in the CTS token store and provides the client with the
access token ID.

• If the authorization server is configured for client-based OAuth 2.0, the access token is a JWT
that contains the JWK embedded in it.

3. The client requests access to the protected resources from the resource server.

4. The resource server recovers the JWK associated with the access token:

• If the resource server receives an access token ID (CTS-based OAuth 2.0), it introspects the
access token ID to recover the JWK from the authorization's server CTS token store.

• If the resource server receives an access token JWT (client-based OAuth 2.0), it already has
access to the JWK, which is embedded.

5. The resource server creates a challenge using the JWK. Usually, these challenges are messages or
nonces that have been encrypted with the JWK.

6. The resource server sends the challenge to the client.

7. The client solves the challenge using the private key of its key pair.

8. The client sends the response to the challenge to the resource server.

9. The resource server validates the response and allows access to the resource.

To use JWK-based proof-of-possession by associating a JWK with an OAuth 2.0 access token, perform
the following steps:

To Obtain an Access Token Using JWK-Based Proof-of-Possession

Perform the steps in this procedure to obtain an access token using OAuth 2.0 proof-of-possession:

1. Generate a JSON web key pair for the OAuth 2.0 client.

AM supports both RSA and elliptic curve (EC) key types. For testing purposes, you can use an
online JSON web key generator, such as https://mkjwk.org/, to generate a key pair in JWK format.
Be sure to store the full key pair, including the private key, in a secure location that is accessible
by your OAuth 2.0 client.

Your OAuth 2.0 client should never reveal the private key.

2. Represent the public key of the key pair in JWK format. For example:

https://mkjwk.org/

Implementing OAuth 2.0 Proof-of-Possession
JWK-Based Proof-of-Possession

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 108

{
 "jwk":{
 "alg":"RS256",
 "e":"AQAB",
 "n":"xea7Tb7rbQ4ZrHNKrg...QFXtJ-didSTtXWCWU1Qrcj0hnDjvkuUFWoSQ_7Q",
 "kty":"RSA",
 "use":"enc",
 "kid":"myPublicJSONWebKey"
 }
}

Note

The jwe and jku formats are not supported, the public key must be represented in jwk format.

3. Base64-encode the JWK. For example:

ew0KICAgICJKV0siOiB7DQogICAgICAgICJhbGciOiAiUlMyNTYiLA0KICAgICAgICAiZSI6IC
JBUUFCIiwNDQogICAgICAgICJraWQiOiAibXlQdWJsaWNKU09OV2ViS2V5Ig0KICAgIH0NCn0=

4. The client includes the base64-encoded JWK as the value of the cnf_key parameter in the request
to the authorization server for an access token.

For example, in the Client Credentials grant, the client makes a POST call to the authorization
server's token endpoint specifying, at least, the following parameters:

• grant_type=client_credentials

• cnf_key=your_base64-encoded-JWK

Private clients can authenticate to the OAuth 2.0 endpoints in several ways. This example uses
the following form parameters:

• client_id=your_client_id

• client_secret=your_client_secret

For more information, see "Authenticating OAuth 2.0 Clients".

For example:
$ curl \
--request POST \
--data "grant_type=client_credentials"\
--data "client_id=myClient" \
--data "client_secret=forgerock" \
--data "cnf_key=ew0KICAgICJKV0siOiB7DQogICAgICAgICJhb
 GciOiAiUlMyNTYiLA0KICAgICAgICAiZSI6IC
 JBUUFCIiwNDQogICAgICAgICJraWQiOiAibXl
 QdWJsaWNKU09OV2ViS2V5Ig0KICAgIH0NCn0=" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

Implementing OAuth 2.0 Proof-of-Possession
JWK-Based Proof-of-Possession

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 109

For more information about how to use the different OAuth 2.0 grant flows, see "Implementing
OAuth 2.0 Grant Flows".

The authorization server returns the access token:

• If the authorization server is configured to use CTS-based OAuth 2.0 tokens, the response will
include an access token ID in the access_token property, which identifies the access token data
stored on the server. For example:
{
 "access_token":"f08f1fcf-3ecb-4120-820d-fb71e3f51c04",
 "scope":"profile",
 "token_type":"Bearer",
 "expires_in":3599
}

• If the authorization server is configured to use client-based OAuth 2.0 tokens, the response will
be a JSON web token in the access_token, which has the JWK embedded within. The following
example has shortened the access token for display purposes:
{
 "access_token": "eyJ0eXAiOiJKV1QiLCHi51zbE3t...zc2NjI3NDgsInNjb3zUOCVKCX0Se0",
 "scope": "profile",
 "token_type": "Bearer",
 "expires_in": 3599
}

5. The client now requests access to the protected resources from the resource server.

If CTS-based OAuth 2.0 tokens are enabled, the resource server can make a POST request to
the /oauth2/introspect endpoint to acquire the public key. The public key from the original JWK is
returned in the cnf element:

Implementing OAuth 2.0 Proof-of-Possession
Certificate-Bound Proof-of-Possession

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 110

$ curl \
--request POST \
--header "Authorization: Basic bXlDbGllbnQ6Zm9yZ2Vyb2Nr" \
--data "token=f08f1fcf-3ecb-4120-820d-fb71e3f51c04" \
"https://openam.example.com:8443/openam/oauth2/realms/root/introspect"
{
 "active": true,
 "scope": "profile",
 "client_id": "myClient",
 "user_id": "myClient",
 "username": "myClient",
 "token_type": "access_token",
 "exp": 1477666348,
 "sub": "myClient",
 "iss": "https://openam.example.com:8443/openam/oauth2/realms/root",
 "cnf": {
 "jwk": {
 "alg": "RS256",
 "e": "AQAB",
 "n": "xea7Tb7rbQ4ZrHNKrg...QFXtJ-didSTtXWCWU1Qrcj0hnDjvkuUFWoSQ_7Q",
 "kty": "RSA",
 "use": "enc",
 "kid": "myPublicJSONWebKey"
 },
 "auth_level": 0
 }
}

6. The resource server should now use the public key to cryptographically confirm proof-of-
possession of the token by the presenter; for example with a challenge-response interaction.

Successful completion of the challenge-response means that the client must possess the private
key that matches the public key presented in the original request, and access to resources can be
granted.

Certificate-Bound Proof-of-Possession
AM supports associating an X.509 certificate with an access token to support proof-of-possession
interactions, as per version 12 of the OAuth 2.0 Mutual TLS Client Authentication and Certificate
Bound Access Tokens internet-draft.

This ensures that only the client in possession of the private key corresponding to the certificate can
use the bearer token to access protected resources.

Since the resource server validates the hash contained in the access token as proof-of-possession
against the client's certificate, clients must use the certificate used to request the bearer token when
accessing the protected resources. Moreover, this implies that access tokens are invalidated when
clients update their certificates.

The following diagram demonstrates the certificate-bound proof-of-possession flow:

https://tools.ietf.org/html/draft-ietf-oauth-mtls-12
https://tools.ietf.org/html/draft-ietf-oauth-mtls-12

Implementing OAuth 2.0 Proof-of-Possession
Certificate-Bound Proof-of-Possession

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 111

OAuth 2.0 Certificate-Bound Proof-of-Possession Flow

Resource Server

Client

Client Resource Server

AM
Authorizat ion Server

AM
Authorizat ion Server

Obt ain Access Token

1 Request access token over m TLS

2 Em bed client cert ificate hash
into access token

3 Return access token as JWT (client -based)
or access token ID (CTS-based)

Access a Resource

4 Present JWT / access token ID with
em bedded cert ificate hash over TLS

Resource Server

I f CTS-based.. .

5
Int rospect access
token ID to validate x5t# S256 hash
against client 's TLS cert ificate

I f Client -based.. .

6 Read x5t# S256 hash from the access token
to validate it against client 's TLS cert ificate

7 Allow access to protected resource

The steps in the diagram are described below:

1. The client, communicating over TLS, requests an access token using an OAuth 2.0 grant flow.

Note

The Implicit Grant flow does not support certificate-bound proof-of-possession. For more information, see
the OAuth 2.0 Mutual TLS Client Authentication and Certificate Bound Access Tokens internet-draft.

2. The authorization server returns the access token to the client with the client's certificate hash
embedded:

https://tools.ietf.org/html/draft-ietf-oauth-mtls-12

Implementing OAuth 2.0 Proof-of-Possession
Obtaining Certificate-Bound Tokens When Mutual TLS Authentication is Configured

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 112

• If the authorization server is configured for CTS-based OAuth 2.0, the authorization server
stores the certificate hash with the access token in the CTS token store and provides the client
with the access token ID.

• If the authorization server is configured for client-based OAuth 2.0, the access token is a JWT
that contains the certificate hash embedded in it.

The hash of the client's certificate is stored in the cnf confirmation key of the type x5t#S256, which
contains the base64URL-encoded SHA-256 hash of the DER-encoding of the full X.509 certificate.

3. The client, communicating over mTLS, requests access to the protected resources from the
resource server.

4. The resource server validates the client's certificate with the certificate hash contained in the
access token:

• If the authorization server is configured for CTS-based OAuth 2.0, the resource server calls the
OAuth 2.0 introspect endpoint with the access token to recover the cnf claim that contains the
certificate's hash.

• If the authorization server is configured for client-based OAuth 2.0, the resource server
recovers the cnf claim that contains the certificate's hash from the access token JWT.

5. The resource server allows access to the protected resources.

To configure your environment for certificate-bound tokens, see the following sections:

• "Obtaining Certificate-Bound Tokens When Mutual TLS Authentication is Configured"

• "Obtaining Certificate-Bound Tokens Without Configuring Mutual TLS Authentication"

Obtaining Certificate-Bound Tokens When Mutual TLS Authentication is Configured

Clients can authenticate to the OAuth 2.0 endpoints by presenting X.509 self-signed or CA-signed
certificates as per version 12 of the OAuth 2.0 Mutual TLS Client Authentication and Certificate
Bound Access Tokens internet-draft.

Depending on the type of client, AM performs the following actions:

• Confidential clients. When clients present a certificate as the authentication method while making
a call to the token endpoint, AM authenticates the client and AM binds the certificate to the access
token.

• Public clients. When clients present a certificate while making a call to the token endpoint, AM
ignores the certificate for authentication purposes and binds the certificate to the access token.

https://tools.ietf.org/html/draft-ietf-oauth-mtls-12
https://tools.ietf.org/html/draft-ietf-oauth-mtls-12

Implementing OAuth 2.0 Proof-of-Possession
Obtaining Certificate-Bound Tokens When Mutual TLS Authentication is Configured

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 113

To Obtain Certificate-Bound Tokens When Authenticating with Mutual TLS

Perform the steps in the following procedure to obtain a certificate-bound access token when a client
authenticates using mutual TLS:

1. Ensure your environment enforces TLS between the authorization server and the clients,
and between the resource server and the clients. Self-signed and CA-signed certificates are
supported.

You must configure the container where AM runs to request and accept client certificates.

2. Configure AM as an OAuth 2.0 authorization server using the following information:

• The server must accept the scopes that are relevant for your environment. The write scope will
be used in the examples of this procedure.

• You must enable the Support TLS Certificate-Bound Access Tokens switch (Realms > Realm
Name > Services > OAuth2 Provider > Advanced).

This property specifies whether AM should bind certificates to access tokens when clients
authenticate using TLS client certificates.

• If TLS is being terminated at a reverse proxy or load balancer, you must configure the Trusted
TLS Client Certificate Header property (Realms > Realm Name > Services > OAuth2 Provider
> Advanced) to hold the name of the HTTP header that will provide AM with the client
certificate.

For more information, see "Providing Client Certificates to AM".

3. Register an OAuth 2.0 client in AM. The following configuration will be used in the examples of
this procedure:

• Client ID: myClient

• Scopes: write

• Response Types: token

• Grant Types: Client Credentials

• You must enable the Use Certificate-Bound Access Tokens switch (Realms > Realm Name >
Applications > OAuth 2.0 > Client Name > Signing and Encryption).

This switch specifies whether AM should bind certificates to access tokens for this client when
the client authenticates to the token endpoint using a TLS client certificate. When disabled, AM
does not bind certificates to access tokens issued to the client even if the client presents a TLS
client certificate.

Implementing OAuth 2.0 Proof-of-Possession
Obtaining Certificate-Bound Tokens When Mutual TLS Authentication is Configured

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 114

4. Configure the client for mutual TLS authentication. For more information, see "Authenticating
Clients Using Mutual TLS".

5. The client makes a call to the token endpoint to request an access token, and includes its client
certificate in the call:
$ curl --request POST \
--cacert AMServer.cer \
--data "client_id=myClient" \
--data "grant_type=client_credentials" \
--data "scope=write" \
--data "response_type=token" \
--cert myClientCertificate.pem \
--cert myClientCertificate.pem \
--key myClientCertificate.key.pem \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

The authorization server returns the access token:

• If CTS-based OAuth 2.0 tokens are enabled, the response will include an access token ID in the
access_token property, which identifies the access token data stored on the server. For example:
{
 "access_token":"f08f1fcf-3ecb-4120-820d-fb71e3f51c04",
 "scope":"profile",
 "token_type":"Bearer",
 "expires_in":3599
}

• If client-based OAuth 2.0 tokens are enabled, the response will be a JWT in the access_token,
which has the JWK embedded within. The following example has shortened the access token for
display purposes:
{
 "access_token": "eyJ0eXAiOiJKV1QiLCHi51zbE3t...zc2NjI3NDgsInNjb3zUOCVKCX0Se0",
 "scope": "profile",
 "token_type": "Bearer",
 "expires_in": 3599
}

6. The client requests access to the protected resources. The resource server validates the hash
contained in the access token against the certificate the client presents as part of the TLS
handshake.

The hash contained in the access token is stored in the cnf confirmation key of the type x5t#S256,
which contains the base64URL-encoded SHA-256 hash of the DER-encoding of the full X.509
certificate.

If CTS-based OAuth 2.0 tokens are enabled, the resource server can make a POST request to the
introspect endpoint to acquire the certificate's hash:

Implementing OAuth 2.0 Proof-of-Possession
Obtaining Certificate-Bound Tokens Without Configuring Mutual TLS Authentication

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 115

$ curl \
--request POST \
--header "Authorization: Basic bXlDbGllbnQ6Zm9yZ2Vyb2Nr" \
--data "token=f08f1fcf-3ecb-4120-820d-fb71e3f51c04" \
"https://openam.example.com:8443/openam/oauth2/realms/root/introspect"
{
 "active":true,
 "scope":"write",
 "client_id":"myClient",
 "user_id":"myClient",
 "username":"myClient",
 "token_type":"Bearer",
 "exp":1547079953,
 "sub":"myClient",
 "iss":"https://openam.example.com:8443/openam/oauth2",
 "cnf":{
 "x5t#S256":"m8UcWBSPNtaKN19TdR8zUHvWWOSCSX9nsa5vU6fscd0"
 }
}

If client-based OAuth 2.0 tokens are enabled, the resource server can decode the JWT to access
the cnf key in the JWT's payload. For example:
{
 "sub": "myClient",
 "cts": "OAUTH2_STATELESS_GRANT",

 "cnf": {
 "x5t#S256": "m8UcWBSPNtaKN19TdR8zUHvWWOSCSX9nsa5vU6fscd0"
 },
 "exp": 1547083590,
 "iat": 1547079990,
 "expires_in": 3600,
 "jti": "sLzkRiayAQKsrXN0Gu_vwFog3Rs"
}

Obtaining Certificate-Bound Tokens Without Configuring Mutual TLS Authentication

Clients can obtain a certificate-bound access token when making a call to the OAuth 2.0 endpoints as
long as they provide an X.509 client certificate in one of the following ways:

• Presenting a self-signed or CA-signed certificate as part of the TLS handshake with AM.

AM authenticates the clients using the specified credentials (for example, client ID and secret) and
binds the certificate to the access token.

Your environment must enforce TLS between the authorization server and the clients, and between
the resource server and the clients.

You must also configure the container where AM runs to request and accept client certificates.

• Providing a hash of the self-signed or CA-signed certificate in the cnf_key parameter as part of the
call to the OAuth 2.0 endpoint.

Implementing OAuth 2.0 Proof-of-Possession
Obtaining Certificate-Bound Tokens Without Configuring Mutual TLS Authentication

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 116

This method uses capabilities already implemented in AM that are not part of the OAuth 2.0 Mutual
TLS Client Authentication and Certificate Bound Access Tokens internet-draft.

Use this option only if the client cannot authenticate its TLS connection to AM.

To Obtain Certificate-Bound Tokens Without Using Mutual TLS for Authentication

Perform the steps in the following procedure to obtain a certificate-bound access token when clients
are not authenticating with mutual TLS:

1. Configure AM as an OAuth 2.0 authorization server using the following information:

• The server must accept the scopes that are relevant for your environment. The write scope will
be used in the examples of this procedure.

• You must enable the Support TLS Certificate-Bound Access Tokens switch (Realms > Realm
Name > Services > OAuth2 Provider > Advanced).

This property specifies whether AM should bind certificates to access tokens when clients
authenticate using TLS client certificates.

• If not using the cnf_key and when TLS is being terminated at a reverse proxy or load balancer,
you must configure the Trusted TLS Client Certificate Header property (Realms > Realm Name
> Services > OAuth2 Provider > Advanced) to hold the name of the HTTP header that will
provide AM with the client certificate.

For more information, see "Providing Client Certificates to AM".

2. Register a client in AM. The following configuration will be used in the examples of this
procedure:

• Client ID: myClient

• Scopes: write

• Response Types: token

• Grant Types: Client Credentials

• For confidential clients, configure a secret, for example:

• Client Secret: forgerock

• You must enable the Use Certificate-Bound Access Tokens switch (Realms > Realm Name >
Applications > OAuth 2.0 > Client Name > Signing and Encryption).

This switch specifies whether AM should bind certificates to access tokens for this client when
the client authenticates to the token endpoint using a TLS client certificate. When disabled, AM

https://tools.ietf.org/html/draft-ietf-oauth-mtls-12
https://tools.ietf.org/html/draft-ietf-oauth-mtls-12

Implementing OAuth 2.0 Proof-of-Possession
Obtaining Certificate-Bound Tokens Without Configuring Mutual TLS Authentication

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 117

does not bind certificates to access tokens issued to the client even if the client presents a TLS
client certificate.

3. The client makes a call to the token endpoint to request an access token, and includes its client
certificate in the call:
$ curl --request POST \
--cacert AMServer.cer \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
--data "grant_type=client_credentials" \
--data "scope=write" \
--data "response_type=token" \
--cert myClientCertificate.pem \
--key myClientCertificate.key.pem \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

Tip

To use the cnf_key parameter, the client must perform the following additional steps:

• Calculate the SHA-256 hash of the DER-encoding of the full X.509 client certificate and base64URL-
encode it. For example:

m8UcWBSPNtaKN19TdR8zUHvWWOSCSX9nsa5vU6fscd0

• Store the certificate's hash in JSON format, as follows:

{"x5t#S256":"m8UcWBSPNtaKN19TdR8zUHvWWOSCSX9nsa5vU6fscd0"}

• Base64-encode the JSON. For example:

eyJ4NXQjUzI1NiI6Im04VWNXQlNQTnRhS04xOVRkUjh6VUh2V1dPU0NTWDluc2E1dlU2ZnNjZDAifQ==

• Make a call to the token endpoint to request an access token, including the cnf_key parameter with the
certificate hash. Note that the client certificate is not included in any other way:

$ curl \
--request POST \
--data "grant_type=client_credentials"\
--data "client_id=myClient" \
--data "client_secret=forgerock" \
--data "cnf_key=eyJ4NXQjUzI1NiI6Im04
 VWNXQlNQTnRhS04xOVRk
 Ujh6VUh2V1dPU0NTWDlu
 c2E1dlU2ZnNjZDAifQ==" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"

The authorization server returns the access token:

• If CTS-based OAuth 2.0 tokens are enabled, the response will include an access token ID in the
access_token property, which identifies the access token data stored on the server. For example:

Implementing OAuth 2.0 Proof-of-Possession
Obtaining Certificate-Bound Tokens Without Configuring Mutual TLS Authentication

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 118

{
 "access_token":"f08f1fcf-3ecb-4120-820d-fb71e3f51c04",
 "scope":"profile",
 "token_type":"Bearer",
 "expires_in":3599
}

• If client-based OAuth 2.0 tokens are enabled, the response will be a JSON web token in the
access_token, which has the certificate hash embedded within. The following example has
shortened the access token for display purposes:
{
 "access_token": "eyJ0eXAiOiJKV1QiLCHi51zbE3t...zc2NjI3NDgsInNjb3zUOCVKCX0Se0",
 "scope": "profile",
 "token_type": "Bearer",
 "expires_in": 3599
}

4. The client requests access to the protected resources from the resource server and the resource
server validates the hash contained in the access token against the certificate the client presents
as part of the TLS handshake.

The hash contained in the access token is stored in the cnf confirmation key of the type x5t#S256,
which contains the base64URL-encoded SHA-256 hash of the DER-encoding of the full X.509
certificate.

If CTS-based OAuth 2.0 tokens are enabled, the resource server can make a POST request to the
introspect endpoint to acquire the certificate's hash:
$ curl \
--request POST \
--header "Authorization: Basic bXlDbGllbnQ6Zm9yZ2Vyb2Nr" \
--data "token=f08f1fcf-3ecb-4120-820d-fb71e3f51c04" \
"https://openam.example.com:8443/openam/oauth2/realms/root/introspect"
{
 "active":true,
 "scope":"write",
 "client_id":"myClient",
 "user_id":"myClient",
 "username":"myClient",
 "token_type":"Bearer",
 "exp":1547079953,
 "sub":"myClient",
 "iss":"https://openam.example.com:8443/openam/oauth2",
 "cnf":{
 "x5t#S256":"m8UcWBSPNtaKN19TdR8zUHvWWOSCSX9nsa5vU6fscd0"
 }
}

If client-based OAuth 2.0 tokens are enabled, the resource server can decode the JWT to access
the cnf key in the JWT's payload. For example:

Implementing OAuth 2.0 Proof-of-Possession
Obtaining Certificate-Bound Tokens Without Configuring Mutual TLS Authentication

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 119

{
 "sub": "myClient",
 "cts": "OAUTH2_STATELESS_GRANT",

 "cnf": {
 "x5t#S256": "m8UcWBSPNtaKN19TdR8zUHvWWOSCSX9nsa5vU6fscd0"
 },
 "exp": 1547083590,
 "iat": 1547079990,
 "expires_in": 3600,
 "jti": "sLzkRiayAQKsrXN0Gu_vwFog3Rs"
}

Managing OAuth 2.0 Consent
Allowing Clients To Skip Consent

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 120

Chapter 7

Managing OAuth 2.0 Consent
Most of the OAuth 2.0/OpenID Connect flows require the user to explicitly agree to provide the client
with access to their resources. This act of trust is one of the pillars of OAuth 2.0 and OpenID Connect.

Users grant consent based on scopes. In OAuth 2.0, scopes are a concept that limits the information
to share with the client or the actions the client can do with the user's data. In OpenID Connect,
scopes can be mapped to specific user data, too. For example, AM maps the profile scope to a
number of user profile attributes.

AM has built-in consent pages in its UI, but you can hand off the consent-gathering part of the flow to
a separate service by configuring the "OAuth 2.0 Remote Consent Service".

AM allows clients to store the scopes to which the user has given consent to improve user experience.
This is useful, for example, to minimize customer interaction. In the same way, AM allows users to
revoke consent at any point in time.

In some circumstances, however, clients may need a mechanism to skip consent altogether; for
example, for trusted application-to-application or service-to-service interaction.

This chapter includes the following sections:

• "Allowing Clients To Skip Consent"

• "Allowing the OAuth 2.0 Provider to Save Consent"

• "Allowing Users to Revoke Consent"

• "OAuth 2.0 Remote Consent Service"

Allowing Clients To Skip Consent
Companies that have internal applications that use OAuth 2.0 or OpenID Connect can allows clients
to skip consent and make consent confirmation optional so as not to disrupt their online experience.

To Allow Clients To Skip Consent

Perform the following steps to configure the OAuth 2.0 service and an OAuth 2.0 client to skip
consent:

1. Log in to the AM console with an administrative user. For example, amAdmin.

Managing OAuth 2.0 Consent
Allowing the OAuth 2.0 Provider to Save Consent

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 121

2. Configure the OAuth 2.0 provider to allow clients to skip consent:

a. Navigate to Realms > Realm Name > Services > OAuth 2.0 provider > Consent.

b. Enable Allow Clients to Skip Consent.

c. Click Save Changes.

3. Configure the OAuth 2.0 client to skip consent:

a. Navigate to Realms > Realm Name > Applications > OAuth 2.0 > Client Name > Advanced.

b. Enable Implied consent.

c. Save your changes.

AM will now treat the requests from this client as if the resource owner/end user has already
consented, and will not display consent pages during the flow.

Allowing the OAuth 2.0 Provider to Save Consent
Requesting resource owners/end users consent to sharing their data is extremely important.
However, that does not mean that your company needs to be asking for consent every time the user
wants to use your services.

To provide a better user experience, AM can store the scopes for which they have given consent in
their user profile.

When the client requests a scope combination, AM checks if the user has already consented each
scope within the combination. If AM can find the scopes across multiple saved consent entries, AM
will not require the user to consent. If part of the requested scope combination is not found in any
entry, AM will require the user to consent.

Consider an example where the user grants consent to the read scope on a first request and to the
email and profile scopes on a second request. AM will not require consent for a request for the read
and profile scopes.

Tip

To request the user to provide consent even if it is already saved, add the prompt=consent parameter to the
request.

Resource owners/end users can also revoke consent provided on requests for access tokens at any
given time. For more information, see "Allowing Users to Revoke Consent".

To Configure AM to Save Consent

Perform the following steps to configure AM to save consent:

Managing OAuth 2.0 Consent
Allowing Users to Revoke Consent

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 122

1. Create a multi-valued string syntax attribute in your identity store to save consent entries. For
example, oauth2Consent.

To create the attribute and configure it in AM, see "To Update the Identity Repository for the
New Attribute" in the Setup and Maintenance Guide.

2. Log in to the AM console with an administrative user. For example, amAdmin.

3. Navigate to Realms > Realm Name > Services > OAuth 2.0 provider > Consent.

4. In the Saved Consent Attribute field, add the name of the attribute you created in the identity
store.

5. Save your changes.

AM will now save the consented scopes in the identity repository and will only request consent
when it cannot find the requested scopes.

Allowing Users to Revoke Consent
Users of OAuth 2.0 clients can manage their authorized applications on their user page in the AM
console. For example, the user logs in to the AM console as demo, and then clicks the Dashboard link
on the Profile page. In the Authorized Apps section, the users can view the client application and
the scopes they saved consent during requests for access tokens. Clicking the x button will remove
consent for those scopes.

OAuth 2.0 Self-Service

For information about the dashboard service, see "Implementing the Dashboard Service" in the Setup
and Maintenance Guide.

OAuth 2.0 Remote Consent Service
AM supports OAuth 2.0 remote consent services (RCS), which allow the consent-gathering part of an
OAuth 2.0 flow to be handed off to a separate service.

Managing OAuth 2.0 Consent
OAuth 2.0 Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 123

A remote consent service renders a consent page, gathers the result, signs and encrypts the result,
and returns it to the authorization server.

During an OAuth 2.0 flow that requires user consent, AM can create a consent request JSON Web
Token (JWT) that contains the necessary information to render a consent gathering page.

The consent request JWT contains the following properties:

iat

Specifies the creation time of the JWT.

iss

Specifies the name of the issuer - configured in the OAuth 2.0 Provider Service in AM.

aud

Specifies the name of the expected recipient of the JWT, in this case, the remote consent service.

exp

Specifies the expiration time of the JWT.

Use short expiration times, for example 180 seconds, as the JWT is intended for use in machine-
to-machine interactions.

csrf

Specifies a unique string that must be returned in the response to help prevent cross-site request
forgery (CSRF) attacks.

AM generates this string from a hash of the user's session ID.

client_id

Specifies the ID of the OAuth 2.0 client making the request.

client_name

Specifies the display name of the OAuth 2.0 client making the request.

client_description

Specifies a description of the OAuth 2.0 client making the request.

username

Specifies the username of the logged-in user.

Managing OAuth 2.0 Consent
OAuth 2.0 Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 124

Tip

Ensure you encrypt the JWT if the username could be considered personally identifiable information.

scopes

Specifies the requested scopes.

claims

Specifies the claims the request is making.

Use the claims field for additional information to display on the remote consent page that helps
the user to determine if consent should be granted. For example, Open Banking OAuth 2.0 flows
may include identifiers for a money transaction.

save_consent_enabled

Specifies whether to provide the user the option to save their consent decision.

If set to false, the value of the save_consent property in the consent response from the RCS must
also be false.

consentApprovalRedirectUri

Specifies the URI to return the resource owner to after they have provided consent.

The following is an example of the consent JWT:
{
 "clientId": "myClient",
 "iss": "https://openam.example.com:8443/openam/oauth2",
 "csrf": "gjeH2C43nFJwW+Ir1zL3hl8kux9oatSZRso7aCzI0vk=",
 "client_description": "",
 "aud": "rcs",
 "save_consent_enabled": true,
 "claims": {},
 "scopes": {
 "write": null
 },
 "exp": 1536229486,
 "iat": 1536229306,
 "client_name": "My Client",
 "consentApprovalRedirectUri": "https://openam.example.com:8443/openam/oauth2/authorize?
client_id=MyClient&response_type=code&redirect_uri=https://application.example.com:8443/
callback&scope=write&state=1234zy",
 "username": "demo"
}

Acting as the authorization server, AM signs and encrypts the JWT.

A remote consent service decrypts the JWT, verifies the signature and other details, such as the
validity of the aud, iss and exp properties, and renders the consent page to the resource owner.

Managing OAuth 2.0 Consent
OAuth 2.0 Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 125

Note

AM sends only the information required to create a consent gathering page to the remote consent service. It
does not send the actual values of the requested scopes.

After the remote consent service gathers the user's consent, it creates a consent response JSON Web
Token, encrypts and signs the response, and returns it to AM for processing.

The consent response JWT contains the following properties:

iat

Specifies the creation time of the JWT.

iss

Specifies the name of the remote consent service.

Must match the value of the aud property received from AM.

aud

Specifies the name of the expected recipient of the JWT, in this case, AM acting as the AS.

Must match the value of the iss property received from AM.

exp

Specifies the expiration time of the JWT.

Use short expiration times, for example 180 seconds, as the JWT is intended for use in machine-
to-machine interactions.

decision

Specifies true if consent was provided, or false if consent was withheld.

client_id

Specifies the ID of the OAuth 2.0 client making the request, matching the value provided in the
request.

client_name

Specifies the display name of the OAuth 2.0 client making the request.

client_description

Specifies a description of the OAuth 2.0 client making the request.

Managing OAuth 2.0 Consent
OAuth 2.0 Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 126

scopes

Specifies an array of allowed scopes.

Must be equal to, or a subset of the array of scopes in the request.

save_consent

Specifies true if the user chose to save their consent decision, or false if they did not.

If save_consent_enabled was set to false in the request, save_consent must also be false.

consentApprovalRedirectUri

Specifies the URI to return the resource owner to after they have provided consent. The response
JWT must be sent as a consent_response form parameter in a POST operation to this URI.

The following is an example of the consent response JWT:
{
"consent_response" : {
 "clientId": "myClient",
 "iss": "rcs",
 "csrf": "gjeH2C43nFJwW+Ir1zL3hl8kux9oatSZRso7aCzI0vk=",
 "client_description": "",
 "aud": "https://openam.example.com:8443/openam/oauth2",
 "save_consent": true,
 "claims": {},
 "scopes": "[write]",
 "exp": 1536229430,
 "iat": 1536229250,
 "client_name": "My Client",
 "consentApprovalRedirectUri": "https://openam.example.com:8443/openam/oauth2/authorize?
client_id=MyClient&response_type=code&redirect_uri=https://application.example.com:8443/
callback&scope=write&state=1234zy",
 "username": "demo",
 "decision": true
 },
}

AM decrypts and verifies the signature of the consent response and other details, such as the validity
of the aud, iss and exp properties, and processes the response. For example, it may save the consent
decision if configured to do so.

Note

If the remote consent service compresses the consent response JWT, note that by default, AM rejects JWTs that
expand to a size larger than 32 KiB (32768 bytes). For more information, see "Controlling the Maximum Size of
Compressed JWTs" in the Installation Guide.

{am_abbr} and the remote consent service make their required public keys available from two jwk_
uris, to enable signing and encryption between the two servers.

Managing OAuth 2.0 Consent
Configuring Remote Consent Services

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 127

The OAuth 2.0 flow continues as if AM had gathered the consent itself.

Configuring Remote Consent Services

This section describes how to configure AM to use a Remote Consent Service (RCS). It also
demonstrates use of the built-in sample remote consent service.

Configuring a remote consent service requires completion of these high-level tasks:

1. Add the details of the remote consent service as an agent profile in AM.

You can configure a single remote consent service in a realm, by adding the details to a Remote
Consent Agent profile.

The profile defines properties for signing and encrypting the consent request and consent
response, redirect URI, and the jwk_uri URI details of the remote consent service.

For details, see "To Configure AM to use a Remote Consent Service".

2. Enable remote consent and specify the agent profile in AM's OAuth 2.0 provider service.

For details, see "To Configure the OAuth 2.0 Provider to Use a Remote Consent Agent Profile".

3. Configure the remote consent service with AM's jwk_uri URI details, so that it can obtain signature
and decryption keys.

AM includes an example remote consent service. For details, see "To Configure the AM Example
Remote Consent Service".

To Configure AM to use a Remote Consent Service

To add the details of the remote consent service as an agent profile:

1. In the AM console, select Realms, and then select the realm that you are working with.

2. Navigate to Applications > Remote Consent and select Add Remote Consent Agent.

3. Enter an Agent ID, for example myRCSAgent, and then select Create.

4. (Optional) If you will be using an HMAC algorithm for signing the JWTs, enter the shared
symmetric key in the Remote Consent Service secret field.

This step is not required when using other algorithms.

5. Select the Remote Consent Agent, and then configure the properties as required.

For information on the available properties, see "OAuth 2.0 Remote Consent Agent Settings".

6. Save your changes.

Managing OAuth 2.0 Consent
Configuring Remote Consent Services

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 128

The Remote Consent Agent profile is now available for selection in the OAuth 2.0 provider. See
"To Configure the OAuth 2.0 Provider to Use a Remote Consent Agent Profile".

To Configure the OAuth 2.0 Provider to Use a Remote Consent Agent Profile

To add the details of the Remote Consent Agent profile to an OAuth 2.0 provider service:

1. In the AM console, select Realms, and then select the realm that you are working with.

2. Navigate to Services, and then select OAuth2 Provider.

Tip

If you have not yet configured an OAuth 2.0 provider, follow the steps in "To Set Up the OAuth 2.0 Provider
Service".

3. On the Consent tab:

a. Select Enable Remote Consent.

b. In the Remote Consent Service ID drop-down list, select the Agent ID of the Remote Consent
Agent, for example myRCSAgent.

4. (Optional) If required, modify the supported signing and encryption methods and algorithms
used for the consent request and consent response JSON web tokens.

For more information on the available properties, see "Consent".

The result may resemble the following:

Managing OAuth 2.0 Consent
Configuring Remote Consent Services

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 129

Configuring RCS in an OAuth 2.0 Provider

5. Save your changes.

OAuth 2.0 flows by any client in the realm will now use the remote consent service. OAuth 2.0
clients in other realms are unaffected.

To Configure the AM Example Remote Consent Service

AM includes an example Remote Consent Service to demonstrate and test AM's remote consent
feature.

Managing OAuth 2.0 Consent
Configuring Remote Consent Services

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 130

Note

The Remote Consent Service in AM is not intended for use in production environments, for example the
encryption and signing algorithms are not configurable. It serves as an example of configuring AM to use a
custom remote consent service.

The following example uses two instances of AM:

• One instance that acts as the authorization server, for example https://openam.example.com:8443/openam.

• One instance that acts as the example remote consent service, for example https://rcs.exampe.
com:8443/openam.

Perform the following steps to configure your environment:

1. Log in to the instance that acts as the example remote consent service with an administrative
user, for example, amAdmin.

2. Navigate to Realms > Realm Name > Services, and then select Add a Service.

3. From the Choose a service type drop-down list, select Remote Consent Service.

4. Perform the following steps to configure the Remote Consent Service:

a. In Client Name, enter the Agent ID given to the Remote Consent Agent profile in AM.

In this example, enter myRCSAgent.

b. In Signing Key Alias, enter the alias of key that will sign the consent response. Ensure the
selected key matches the supported signing methods and algorithms configured for the
remote consent service in the OAuth 2.0 provider in AM.

For this example, enter rsajwtsigningkey. This test key alias will work with the default signing
settings, and is provided by default in AM's default key store.

c. In Encryption Key Alias, enter the alias of key that will encrypt the consent response. Ensure
the selected key matches the supported encryption methods and algorithms configured for
the remote consent service in the OAuth 2.0 provider in AM.

For this example, enter test. This test key alias will work with the default encryption settings,
and is provided by default in AM's default key store.

d. In Authorization Server jwk_uri, enter the URI where the remote consent service will obtain
the keys that the authorization service uses to sign and encrypt the consent request. These
keys include:

• The public signing key, used to sign the consent request that is sent to the remote consent
server, so that it can be validated on the remote consent server.

• The public encryption key for the consent response, so that the response can be encrypted
(if encryption is enabled).

Managing OAuth 2.0 Consent
Configuring Remote Consent Services

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 131

The default JWKs URI for remote consent clients is /oauth2/consent_agents/jwk_uri.

For example, https://openam.example.com:8443/openam/oauth2/realms/root/realms/alpha/consent_
agents/jwk_uri.

e. Select Create.

f. Verify the configuration. For more information about the available properties, see "Remote
Consent Service".

5. Log in to the instance acting as the authorization server as an administrative user, for example,
amAdmin.

6. Configure a remote consent service agent by performing the steps in "To Configure AM to use a
Remote Consent Service".

Note

The example remote consent service provides an /oauth2/consent/jwk_uri path to provide its public keys to
the authorization server. In this example, configure https://rcs.example.com:8443/openam/oauth2/consent/
jwk_uri in the Json Web Key URI field.

7. Configure the authorization server to use the remote consent service agent by performing the
steps in "To Configure the OAuth 2.0 Provider to Use a Remote Consent Agent Profile".

8. Test your configuration.

Performing an OAuth 2.0 flow on the AM instance that is acting as the authorization server will
redirect the user to the second instance when user consent is required:

Managing OAuth 2.0 Consent
Configuring Remote Consent Services

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 132

Example Remote Consent Service

Note that the fr-dark-theme has been applied to the AM instance acting as the the remote consent
service for the purpose of this demonstration.

For more information on customizing the user interface, see "Customizing the User Interface" in
the UI Customization Guide.

OAuth 2.0 Endpoints
/oauth2/authorize

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 133

Chapter 8

OAuth 2.0 Endpoints
When acting as an OAuth 2.0 authorization server, AM exposes the following endpoints:

OAuth 2.0 Endpoints

Endpoint Description
/oauth2/authorize Obtain consent and an authorization grant (RFC 6749 authorization

endpoint)
/oauth2/bc-authorize Initiate backchannel authorization (Backchannel flow endpoint)
/oauth2/access_token Obtain an access token (RFC 6749 token endpoint)
/oauth2/device/code Obtain a device code (Device flow endpoint)
/oauth2/device/user Obtain consent and authorization grant (Device flow endpoint)
/oauth2/token/revoke Revoke both access and refresh tokens (RFC 7009 endpoint)
/oauth2/introspect Retrieve metadata about a token, such as approved scopes and the

context in which the token was issued (RFC 7662 endpoint)

Tip

As an OAuth 2.0/OpenID Connect provider, AM also exposes the following:

• OAuth 2.0 endpoints to perform administrative tasks, such as creating clients. For more information, see
"OAuth 2.0 Administration and Supporting REST Endpoints".

• OpenID Connect-specific endpoints. For more information, see "OpenID Connect 1.0 Endpoints" in the
OpenID Connect 1.0 Guide.

/oauth2/authorize
The /oauth2/authorize endpoint is the OAuth 2.0 authorization endpoint as defined in RFC 6749. Use
this endpoint to gather consent and authorization from the resource owner when using the following
flows:

• Authorization Code Grant (OAuth 2.0) | OpenID Connect)

• Authorization Code Grant with PKCE (OAuth 2.0) | OpenID Connect)

https://www.rfc-editor.org/info/rfc6749

OAuth 2.0 Endpoints
/oauth2/authorize

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 134

• Implicit Grant (OAuth 2.0) | OpenID Connect)

You must compose the path to the authorize endpoint addressing the specific realm where the access
code will be issued. For example, https://openam.example.com:8443/openam/oauth2/realms/root/realms/
subrealm1/authorize.

The authorization endpoint supports the following parameters:

client_id

Specifies the client ID unique to the application making the request.

Required: Yes.

response_type

Specifies the type of response expected from the authorization server. Set this parameter to one
of the following values:

• code, to request an authorization code.

• token, to request an access token.

• id_token, to request an ID token.

• code token, to request an authorization code and an access token.

• token id_token, to request an access token and an ID token.

• code id_token, to request an authorization code and an ID token.

• code token id_token, to request an authorization code, an access token, and an ID token.

• none, to request AM not to issue any token or code in the request. Use this response type in
conjunction with the id_token_hint parameter only.

Required: Yes.

csrf

When interacting with the OAuth 2.0 consent page, this parameter helps prevent against Cross-
Site Request Forgery (CSRF) attacks.

The parameter duplicates the contents of the iPlanetDirectoryPro cookie, which contains the SSO
token of the resource owner giving consent.

When using the AM consent pages, this parameter is set in the consent page once the resource
owner has authenticated, and it is sent to AM along with the consent.

OAuth 2.0 Endpoints
/oauth2/authorize

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 135

When replacing AM consent pages with your own consent pages or when trying the flows without
a browser, you must set this parameter manually. For an example of a curl command, see the
Authorization Code Grant.

Required: Yes, unless you use the Remote Consent Service to gather consent.

code_challenge

Specifies a string derived from the code verifier that is sent in the authorization request during
the Authorization Code with PKCE grant flow.

Required: Yes, when requesting an authorization code during the Authorization Code with PKCE
grant flow.

code_challenge_method

Contains the method used to derive the code challenge. Possible values are plain and S256. When
unset, it defaults to plain.

Required: Yes, when requesting an authorization code during the Authorization Code with PKCE
grant flow and the code challenge was created using an SHA256 algorithm.

decision

Specifies whether the resource owner consents to the requested access. Set to allow to grant
consent. Any other value denies consent.

Required: Yes, unless consent is already saved for the scope.

redirect_uri

The URI to return the resource owner to after authorization is complete. If not set, the redirection
URI defaults to that configured in the client profile registered with AM.

Required: No.

response_mode

Set to form_post to return a self-submitting form that contains the code instead of redirecting to
the redirect URL with the code as a string parameter. For more information, see the OAuth 2.0
Form Post Response Mode spec.

Required: No.

scope

Specify the scopes linked to the permissions requested by the client from the resource owner. If
not specified, the default scopes specified in the client or the authorization server are requested.

Required: No.

https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
https://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html

OAuth 2.0 Endpoints
/oauth2/authorize

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 136

save_consent

Updates the resource owner's profile to avoid having to prompt the resource owner to grant
authorization when the client issues subsequent authorization requests.

Set this parameter to on to save the consent.

To save the consent, you must have configured the Saved Consent Attribute Name property with
a profile attribute in which to store the resource owner's consent decision.

For more information on setting this property in the OAuth2 Provider service, see "OAuth2
Provider".

Required: No.

service/module

Use either as described in "Authentication Parameters" in the Authentication and Single Sign-On
Guide, where module specifies the authentication module instance to use, or service specifies the
authentication tree or chain to use when authenticating the resource owner.

If not specified, the resource owner authenticates using the default chain or tree configured for
the realm.

Required: No.

state

Value to maintain state between the request and the callback. During authentication, the client
sends this parameter to the authorization server. The authorization server must send it back
unchanged in the response.

The application should use this value to ensure the response belongs to the user that initiated the
requests, which mitigates CSRF attacks.

The value of state is typically a base64-encoded string that contains user state and that is unique
to a user and their request.

Required: No, but it is strongly recommended.

acr_values

Authentication Context Class Reference values used to communicate acceptable LoAs that users
must satisfy when authenticating to the OpenID provider.

For more information, see "Adding Authentication Requirements to ID Tokens" in the OpenID
Connect 1.0 Guide.

Required: No. OIDC flows only.

https://openid.net/specs/openid-connect-core-1_0.html

OAuth 2.0 Endpoints
/oauth2/authorize

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 137

claims

Specifies a JSON object containing specific attributes about users to be returned in the ID Token.

Required: No. OIDC flows only.

id_token_hint

ID token previously issued by AM that is passed as a hint about the end user's session with the
client. Using this parameter requires the response_type and prompt parameters to be set to none.

For more information about using the id_token_hint parameter, see "Retrieving Session State
without the Check Session Endpoint" in the OpenID Connect 1.0 Guide.

Required: No. OIDC flows only.

login_hint

String value that can be set to the ID the user uses to log in. For example, Bob or bob@example.com,
depending on how the authentication node or module is configured to search for users.

When provided as part of the OIDC Authentication Request, the login_hint is set as the value of a
cookie named oidcLoginHint, which is an HttpOnly cookie (only sent over HTTPS).

For more information, see "Configuring for GSMA Mobile Connect" in the OpenID Connect 1.0
Guide.

Required: No. OIDC flows only.

nonce

String value that associates the client session with the ID token that also mitigates against replay
attacks. For more information, see the OpenID Connect 1.0 Guide.

Required: No. OIDC flows only.

prompt

A space-separated, case sensitive list of ASCII values that specifies whether AM should prompt
the end user for authentication and consent. Possible values are:

• none. AM does not display authentication or consent pages. Use with the id_token_hint and the
response_type=none parameters only.

• login. AM prompts the end user to authenticate to the default service of their realm, or to the
service provided in the service parameter.

If the user reauthenticates to a tree, AM destroys the original session and provides them with a
new one that reflects the new authentication journey.

If the user reauthenticates to a chain, AM updates the original session to reflect the new
authentication journey.

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

OAuth 2.0 Endpoints
/oauth2/authorize

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 138

Note

It is strongly recommended that users are required to authenticate using trees, not chains, when
prompt=login leads to reauthentication at the same level. This recreates the session and mitigates the
threat of session fixation attacks.

• consent. AM prompts the end user to grant consent, even if a consent response was previously
saved.

Required: No. OIDC flows only.

ui_locales

Specifies a space-separated list of the end-user preferred languages for the user interface,
ordered by preference. For example, en fr-CA fr.

Required: No. OIDC flows only.

request

As per the OpenID Connect specification, this parameter specifies a base64url-encoded JWT
whose claims are the query parameters required for the OpenID Connect flow. This JWT is called
the request object.

You may send query string parameters and a request object in the same request to AM. This
is useful to keep sensitive information protected in the request object, and to ensure that
parameters whose value changes frequently, such as nonce and state, remain visible and mutable
across calls.

The value of the claims included in the request object supersede the value passed as query string
parameters, but some claims/parameters must be configured and sent in a certain manner for the
request to be valid. You must:

• Include the value of response_type and client_id as query string parameters, regardless of
whether they are included in the request object or not.

If they are included in the request object, their values must match those passed as query string
parameters.

• Include the openid scope as a query string parameter, regardless of whether it is included in the
request object or not.

The value of the scope claim may differ from that passed as a query parameter. This is useful
to protect application-related scopes inside the request object, yet allows AM to process the
request as part of an OpenID Connect flow.

You must follow these rules as well if you're passing the request object as a reference using the
request_uri parameter.

https://owasp.org/www-community/attacks/Session_fixation
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

OAuth 2.0 Endpoints
/oauth2/bc-authorize

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 139

The following is an example of a request object. Note that it includes the iss and aud JWT claims in
addition to the OpenID Connect claims:
{
 "iss": "myClient",
 "client_id": "myClient",
 "aud": "https://openam.example.com:8443/openam/oauth2/realms/root/realms/myRealm",
 "redirect_uri": "https://www.example.com:8443",
 "scope" : ["openid", "profile"],
 "claims":
 {
 id_token":
 {
 "acr":
 {
 "essential": true,
 "values": ["example_tree1","example_tree2"]
 }
 }
 }
}

The JWT can be signed and/or encrypted, in which case you should always include the iss and aud
parameters in the JWT as shown in the example.

Note

AM does not support non-string JWT header parameters, such as jku and jwe:

• AM 6.5.2 and later parse the JWT but ignores the non-string header parameters.

• AM versions earlier than 6.5.2 do not parse the JWT, and will return an HTTP 500 error message.

Configure the public keys/certificates in AM instead of adding the headers, as explained in the relevant
sections of the documentation.

If you are compressing the JWT, note that by default, AM rejects JWTs that expand to a size
larger than 32 KiB (32768 bytes). For more information, see "Controlling the Maximum Size of
Compressed JWTs" in the Installation Guide.

To retrieve a list of public keys clients can use to encrypt this JWT, make a request to the realm's
JWK URI endpoint in the OpenID Connect 1.0 Guide.

Required: No. OIDC flows only.

/oauth2/bc-authorize
The /oauth2/bc-authorize endpoint is the backchannel authorization endpoint as used by OpenID
Connect Client Initiated Backchannel Authentication Flow - Core 1.0 draft-02. Use this endpoint to
initiate backchannel authorization with the resource owner when using the following flow:

• Backchannel Request Grant (OpenID Connect)

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html
https://openid.net/specs/openid-client-initiated-backchannel-authentication-core-1_0.html

OAuth 2.0 Endpoints
/oauth2/bc-authorize

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 140

You must compose the path to the backchannel authorization endpoint addressing the specific realm
where the authorization request ID will be issued. For example, https://openam.example.com:8443/openam/
oauth2/realms/root/realms/subrealm1/bc-authorize.

The backchannel authorization endpoint requires a signed JWT that contains the following
parameters:

aud

Specifies a string or an array of strings that is the intended audience of the JWT. Must be set to
the authorization server's OAuth 2.0 endpoint, for example:
"aud": "http://openam.example.com:8080/openam/oauth2"

exp

Specifies the expiration time of the JWT in Unix time.

Providing a JWT with an expiry time greater than 30 minutes causes AM to return a JWT expiration
 time is unreasonable error message.

iss

Specifies the unique identifier of the JWT issuer.

The identifier must match the client ID of the OAuth 2.0 client in AM, for example myCIBAClient.

login_hint

Specifies the principal who is the subject of the JWT. It should be a string that identifies the
resource owner.

Tip

You can provide a previously obtained ID token in a property named id_token_hint as the hint for
determining the resource owner, rather than a string.

scope

Specifies a space-separated list of the requested scopes. Must include the openid scope.

acr_values

Specifies an identifier that maps to the authentication mechanism AM uses to obtain
authorization from the end user.

binding_message

Specifies a message delivered to the user when obtaining authorization.

OAuth 2.0 Endpoints
/oauth2/bc-authorize

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 141

Should be a short (100 characters or fewer), description of the operation the end user is
authorizing, and should include an identifier to match the authorization request to the client that
initiated the request.

Note

If the binding message is sent using push notifications, the following additional limitations apply to the
value:

1. Must begin with a letter, number, or punctuation mark.

2. Must not include line breaks or control characters.

For example:

Allow ExampleBank to transfer £50 from your 'Main' account to your 'Savings' account? (EB-0246326)

The endpoint also supports a number of form parameters for client authentication, as follows:

client_id

Specifies the client ID unique to the application making the request.

Required: Yes.

client_secret

Specifies the password of the private client making the request. Do not use in conjunction with
the cnf_key parameter.

Required: A form of password or credentials is required for confidential clients. However, the
use of the client_secret parameter depends on the client authentication method used. For more
information, see "Authenticating OAuth 2.0 Clients".

client_assertion

Specifies the signed JWT that the client uses as a credential when using the JWT bearer client
authentication method.

For more information, see "Authenticating OAuth 2.0 Clients".

Required: Yes, when using the JWT bearer client authentication method.

client_assertion_type

Specifies the type of assertion when the client is authenticating to the authorization server using
JWT bearer client authentication. Do not use with other client authentication methods.

Set it to urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer.

For more information, see "Authenticating OAuth 2.0 Clients".

OAuth 2.0 Endpoints
/oauth2/access_token

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 142

Required: Yes, when using the JWT bearer client authentication method.

/oauth2/access_token
The /oauth2/access_token endpoint is the OAuth 2.0 token endpoint as defined in RFC 6749. Use this
endpoint to acquire an access or refresh token when using the following flows:

• Authorization Code Grant (OAuth 2.0) | OpenID Connect)

• Authorization Code Grant with PKCE (OAuth 2.0) | OpenID Connect)

• Client Credentials Grant (OAuth 2.0)

• Resource Owner Password Credentials Grant (OAuth 2.0)

• Device Flow (OAuth 2.0)

• SAML v2.0 Profile for Authorization Grant (OAuth 2.0)

You must compose the path to the token endpoint addressing the specific realm where the token will
be issued. For example, https://openam.example.com:8443/openam/oauth2/realms/root/realms/subrealm1/token.

The token endpoint supports the following parameters:

grant_type

Specifies the type of grant to send to the authorization server to acquire an access token.

The following types are supported:

• password, for the Resource Owner Credentials grant flow.

• authorization_code, for the Authorization Code Grant (OAuth 2.0) | OpenID Connect) and
Authorization Code Grant with PKCE (OAuth 2.0) | OpenID Connect) grant flows.

• client_credentials, for the Client Credentials grant flow.

• urn:ietf:params:oauth:grant-type:device_code, for the Device Flow. An earlier specification, http://
oauth.net/grant_type/device/1.0, is also supported.

• urn:openid:params:grant-type:ciba, for the Client Initiated Backchannel Authentication (CIBA)
flow. For more information, see "Backchannel Request Grant" in the OpenID Connect 1.0 Guide.

• urn:ietf:params:oauth:grant-type:uma-ticket, for the UMA grant flow. For more information, see
"Test the UMA Grant Flow" in the User-Managed Access (UMA) 2.0 Guide.

• refresh_token, to refresh an access token. For more information, see "Managing OAuth 2.0
Refresh Tokens".

https://www.rfc-editor.org/info/rfc6749

OAuth 2.0 Endpoints
/oauth2/access_token

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 143

• urn:ietf:params:oauth:grant-type:saml2-bearer, for the SAML v2.0 Profile for Authorization grant.
For more information, see "SAML v2.0 Profile for Authorization Grant"

• urn:ietf:params:oauth:grant-type:jwt-bearer, for the JWT Profile for OAuth 2.0 Authorization grant.
For more information, see "JWT Profile for OAuth 2.0 Authorization Grant"

Required: Yes

client_id

Specifies the client ID unique to the application making the request.

Required: Yes.

client_secret

Specifies the secret of the client making the request. Do not use in conjunction with the cnf_key
parameter.

Required: A form of password or credentials is required for confidential clients. However, the
use of the client_secret parameter depends on the client authentication method used. For more
information, see "Authenticating OAuth 2.0 Clients".

cnf_key

Specifies either a base64-encoded JWK used to support "JWK-Based Proof-of-Possession" or
a base64-encoded SHA-256 hash of the DER-encoding of a full X.509 certificate to support
"Certificate-Bound Proof-of-Possession".

Do not use in conjunction with the client_secret parameter.

Required: Yes, when using JWK proof-of-possession.

username

Specifies the username of the resource owner during the Resource Owner Credentials grant flow.

Required: Yes, when grant_type is set to password.

password

Specifies the password of the resource owner during the Resource Owner Credentials grant flow.

Required: Yes, when grant_type is set to password.

code

Specifies the authorization code obtained during the Authorization Code grant and Authorization
Code with PKCE grant flows.

OAuth 2.0 Endpoints
/oauth2/access_token

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 144

Required: Yes, when grant_type is set to authorization_code.

device_code

Specifies the device code obtained when requesting a user code during the Device flow.

Required: Yes, when grant_type is set to urn:ietf:params:oauth:grant-type:device_code.

client_assertion

Specifies the signed JWT that the client uses as a credential when using the JWT bearer client
authentication method.

For more information, see "Authenticating OAuth 2.0 Clients".

Required: Yes, when using the JWT bearer client authentication method.

client_assertion_type

Specifies the type of assertion when the client is authenticating to the authorization server using
JWT bearer client authentication. Do not use with other client authentication methods.

Set it to urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer.

For more information, see "Authenticating OAuth 2.0 Clients".

Required: Yes, when using the JWT bearer client authentication method.

assertion

Specifies a SAML v2.0 assertion. The assertion must be first base64-encoded, and then URL
encoded. For more information, see "SAML v2.0 Profile for Authorization Grant".

Required: Yes, when using the SAML v2.0 Profile for Authorization grant.

redirect_uri

The URI to return the resource owner to after authorization is complete. Must match the redirect_
uri configured in the client profile registered with AM, and the redirect_uri set when requesting
authorization.

The URI must be an absolute URI, and must not contain a fragment component. For example,
https://www.example.com:443/callback/.

Required: Yes, when grant_type is set to authorization_code and it was included in the authorization
code grant, and during the Implicit grant.

code_verifier

Specifies a random string that correlates the authorization request to the token request in the
Authorization Code with PKCE grant flow.

OAuth 2.0 Endpoints
/oauth2/device/code

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 145

Required: Yes, when requesting an access code in the Authorization Grant with PKCE flow.

scope

Specify the scopes linked to the permissions requested by the client from the resource owner. If
not specified, the default scopes specified in the client or the authorization server are requested.

Note that some grant flows, such as the Authorization Code grant, do not call the token endpoint
with the scope. The scope is already defined in the authorization code. For details, see the
specific grant flow documentation in "Implementing OAuth 2.0 Grant Flows".

Required: No.

auth_chain

Overrides the authentication tree or chain configured for the realm, and also the tree or
chain configured in the OAuth 2.0 service in the realm, when supporting the Resource Owner
Credentials grant flow.

By default, the Resource Owner Password Credentials grant flow uses the default authentication
tree or chain in the relevant realm.

The selected tree or chain must be configured for requiring username and password only, without
UI-based interaction from the resource owner, for example, the ldapService chain or Example tree. If
this is not the case, the server returns an HTTP 500 error message.

Required: No.

refresh_token

Specifies the refresh token that will be used to refresh an access token.

For more information, see "Managing OAuth 2.0 Refresh Tokens".

Required: No, only when refreshing access tokens.

/oauth2/device/code
Device Flow endpoint as defined by the Internet-Draft OAuth 2.0 Device Flow. Client devices use this
endpoint to present a user code to the resource owner that can be exchanged for an access token in
the Device Flow (OAuth 2.0).

You must compose the path to the device code endpoint addressing the specific realm where the
user code will be issued. For example, https://openam.example.com:8443/openam/oauth2/realms/root/realms/
subrealm1/device/code.

The device code endpoint supports the following parameters:

https://tools.ietf.org/html/draft-ietf-oauth-device-flow-03

OAuth 2.0 Endpoints
/oauth2/device/code

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 146

response_type

Specifies the response expected from the authorization server. Set to device_code to obtain a user
code.

Required: Yes.

client_id

Specifies the client ID unique to the application making the request.

Required: Yes.

state

Value to maintain state between the request and the callback. During authentication, the client
sends this parameter to the authorization server. The authorization server must send it back
unchanged in the response.

The application should use this value to ensure the response belongs to the user that initiated the
requests, which mitigates CSRF attacks.

The value of state is typically a base64-encoded string that contains user state and that is unique
to a user and their request.

Required: No, but it is strongly recommended.

code_challenge

Specifies a string derived from the code verifier that is sent in the authorization request during
the Device with PKCE flow.

Required: Yes, when obtaining a user code in the Device with PKCE Flow.

code_challenge_method

Contains the method used to derive the code challenge. Possible values are plain and S256. When
unset, it defaults to plain.

Required: Yes, when obtaining a user code in the Device with PKCE Flow.

nonce

String value that associates the client session with the ID Token that also mitigates against replay
attacks.

Required: No. OpenID Connect flows only.

acr_values

Authentication Context Class Reference values used to communicate acceptable authentication
chains or trees.

https://openid.net/specs/openid-connect-core-1_0.html

OAuth 2.0 Endpoints
/oauth2/device/user

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 147

For more information, see "Adding Authentication Requirements to ID Tokens" in the OpenID
Connect 1.0 Guide.

Required: No. OpenID Connect flows only.

prompt

A space-separated, case sensitive list of ASCII values that specifies whether AM should prompt
the end user for authentication and consent. Possible values are:

• none. AM does not display authentication or consent pages.

• login. AM prompts the end user to authenticate.

• consent. AM prompts the end user to grant consent.

Required: No. OpenID Connect flows only.

ui_locales

Specifies a space-separated list of end-user preferred languages for the user interface, ordered by
preference. For example, en fr-CA fr.

Required: No. OpenID Connect flows only.

login_hint

String value indicating the ID to use for login.

When provided as part of the OpenID Connect Authentication Request, the login_hint is set as
the value of a cookie named oidcLoginHint, which is an HttpOnly cookie (only sent over HTTPS).
Authentication modules can then retrieve the cookie's value.

For more information, see "Configuring for GSMA Mobile Connect" in the OpenID Connect 1.0
Guide.

Required: No. OpenID Connect flows only.

claims

Specifies a JSON object containing specific attributes about users to be returned in the ID Token.

Required: No. OpenID Connect flows only.

/oauth2/device/user
Device Flow AM-specific endpoint for user interaction. Client devices use this endpoint to exchange
a user code with consent from the resource owner to access the resources in the Device Flow (OAuth
2.0).

https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html

OAuth 2.0 Endpoints
/oauth2/device/user

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 148

You must compose the path to the device user endpoint addressing the specific realm where consent
will be granted. For example, https://openam.example.com:8443/openam/oauth2/realms/root/realms/subrealm1/
device/user.

The device user endpoint supports the following parameters:

user_code

Specify the scopes linked to the permissions requested by the client to the resource owner. If not
specified, the default scopes specified in the client or the authorization server are requested.

Required: Yes.

csrf

When interacting with the OAuth 2.0 consent page, this parameter helps prevent against Cross-
Site Request Forgery (CSRF) attacks.

The parameter duplicates the contents of the iPlanetDirectoryPro cookie, which contains the SSO
token of the resource owner giving consent.

When using the AM consent pages, this parameter is set in the consent page once the resource
owner has authenticated, and it is sent to AM along with the consent.

When replacing AM consent pages with your own consent pages or when trying the flows without
a browser, you must set this parameter manually. For an example of a curl command, see the
Authorization Code Grant.

Required: Yes, for calls that are submitting consent response, unless you use the Remote Consent
Service to gather consent.

scope

Specify the scopes linked to the permissions requested by the client to the resource owner. If not
specified, the default scopes specified in the client or the authorization server are requested.

Required: No.

decision

Specifies whether the resource owner consents to the requested access. Set to allow to grant
consent. Any other value denies consent.

Required: Yes, to submit consent on non-interactive calls, unless consent is already saved for the
scope.

save_consent

Updates the resource owner's profile to avoid having to prompt the resource owner to grant
authorization when the client issues subsequent authorization requests.

OAuth 2.0 Endpoints
/oauth2/token/revoke

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 149

Set this parameter to on to save the consent.

To save the consent, you must have configured the Saved Consent Attribute Name property with
a profile attribute in which to store the resource owner's consent decision.

For more information on setting this property in the OAuth2 Provider service, see "OAuth2
Provider".

Required: No.

/oauth2/token/revoke
Endpoint defined in RFC7009 - Token Revocation, used to revoke both access and refresh tokens.

Revoking a refresh token also revokes any other associated tokens that were issued with the same
authorization grant. If a client has multiple access tokens for a single user that were obtained using
different authorization grants, the client would need to make multiple calls to the revoke token
endpoint to invalidate each token.

The revoke token endpoint supports the following parameters:

token

Specifies the token ID that will be revoked.

Required: Yes.

client_id

Specifies the client ID unique to the application making the request.

Required: Yes.

client_secret

Specifies the password of the private client making the request. Do not use in conjunction with
the cnf_key parameter.

Required: A form of password or credentials is required for confidential clients. However, the
use of the client_secret parameter depends on the client authentication method used. For more
information, see "Authenticating OAuth 2.0 Clients".

client_assertion

Specifies the signed JWT that the client uses as a credential when using the JWT bearer client
authentication method.

For more information, see "Authenticating OAuth 2.0 Clients".

Required: Yes, when using the JWT bearer client authentication method.

https://www.rfc-editor.org/info/rfc7009

OAuth 2.0 Endpoints
/oauth2/introspect

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 150

client_assertion_type

Specifies the type of assertion when the client is authenticating to the authorization server using
JWT bearer client authentication. Do not use with other client authentication methods.

Set it to urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer.

For more information, see "Authenticating OAuth 2.0 Clients".

Required: Yes, when using the JWT bearer client authentication method.

You must compose the path to the revoke token endpoint addressing the specific realm where the
user code was issued. For example, https://openam.example.com:8443/openam/oauth2/realms/root/realms/
subrealm1/revoke.

The following is an example of how to revoke a given token:
$ curl --request POST \
--data "token=xS3UjtuXMu77iNzl2XibpeMlw1g" \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
"https://openam.example.com:8443/openam/oauth2/realms/root/token/revoke"
 {}

/oauth2/introspect
Endpoint defined in RFC7662 - OAuth 2.0 Token Introspection, used to retrieve metadata about a
token, such as, approved scopes, the user that authorized the token, the expiry time, the UMA RPT,
or the proof-of-possession JWK.

As opposed to the /oauth2/tokeninfo endpoint, the /oauth2/introspect endpoint requires the client to
authenticate to the authorization server.

+ Introspecting macaroon and UMA RPT tokens

• To introspect macaroon access tokens containing third-party caveats, use the X-Discharge-
Macaroon header to pass the discharge macaroon.

• To introspect UMA RPT tokens, use the PAT of the resource owner in an authorization: Bearer
header to authenticate to the endpoint.

Important

From AM 6.5.5 onwards, HTTP GET requests are disallowed on the /oauth2/introspect endpoint by default.
Using token as a query parameter on this endpoint is also disallowed. To change this behavior to suit existing
clients, use the org.forgerock.openam.introspect.token.query.param.allowed advanced server property.

The token introspection endpoint supports the following parameters:

https://www.rfc-editor.org/info/rfc7662

OAuth 2.0 Endpoints
/oauth2/introspect

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 151

token

Specifies the token ID.

Required: Yes.

client_id

Specifies the client ID unique to the application making the request.

Required: A form of credentials is required for confidential clients. However, the use of the
client_id parameter depends on the client authentication method used. For more information, see
"Authenticating OAuth 2.0 Clients".

client_secret

Specifies the secret of the client making the request.

Required: A form of password or credentials is required for confidential clients. However, the
use of the client_secret parameter depends on the client authentication method used. For more
information, see "Authenticating OAuth 2.0 Clients".

client_assertion

Specifies the signed JWT that the client uses as a credential when using the JWT bearer client
authentication method.

For more information, see "Authenticating OAuth 2.0 Clients".

Required: Yes, when using the JWT bearer client authentication method.

client_assertion_type

Specifies the type of assertion when the client is authenticating to the authorization server using
JWT bearer client authentication. Do not use with other client authentication methods.

Set it to urn%3Aietf%3Aparams%3Aoauth%3Aclient-assertion-type%3Ajwt-bearer.

For more information, see "Authenticating OAuth 2.0 Clients".

Required: Yes, when using the JWT bearer client authentication method.

You must compose the path to the introspect endpoint addressing the specific realm where the token
was issued. For example, https://openam.example.com:8443/openam/oauth2/realms/root/realms/subrealm1/
introspect.

Tip

To allow a client to introspect access tokens issued to other clients in the same realm, set the special scope, am-
introspect-all-tokens, in the client profile.

The following example shows AM returning token information:

OAuth 2.0 Endpoints
/oauth2/introspect

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 152

$ curl \
--request POST \
--header "Authorization: Basic ZGVtbzpjaGFuZ2VpdA==" \
--data "token=f9063e26-3a29-41ec-86de-1d0d68aa85e9"
"https://openam.example.com:8443/openam/oauth2/introspect"
{
 "active": true,
 "scope": "write",
 "client_id": "myClient",
 "user_id": "demo",
 "username": "demo",
 "token_type": "Bearer",
 "exp": 1419356238,
 "sub": "demo",
 "iss": "https://openam.example.com:8443/openam/oauth2"
 "cnf": {
 "jwk": {
 "alg": "RS512",
 "e": "AQAB",
 "n": "k7qLlj...G2oucQ",
 "kty": "RSA",
 "use": "sig",
 "kid": "myJWK"
 },
 "auth_level": 0
 }
}

AM returns a JSON object with different properties depending on the type of token. The most
common objects are:

active

Specifies whether the token is active (true) or not (false).

scope

Specifies a space-separated list of the scopes associated with the token.

client_id

Specifies the client that requested the token.

user_id

(Deprecated, defined in a previous draft of the spec) Specifies the user that authorized the token.

username

Specifies the user that authorized the token.

token_type

Specifies the type of token.

OAuth 2.0 Endpoints
Legacy OAuth 2.0 endpoints

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 153

exp

Specifies the token expiration time in seconds since January 1 1970 UTC.

expires_in

Specifies the time, in seconds, that the token is valid for. This value is set at token creation time,
and it depends on the configuration of the OAuth2 Provider Service.

(Introduced in AM 6.5.4) During the introspection call, AM calculates the amount of seconds
the token is still valid for and returns it in the expires_in object. Therefore, repeated calls to the
endpoints return different values for the object.

However, the actual value of the expires_in object in the token does not change. Inspecting the
token without using AM will show the value set at token creation time.

AM only returns this object for client-based tokens issued to a client configured in the same realm
than that of the resource owner.

sub

Specifies the subject of the token.

iss

Specifies the issuer of the token.

cnf

Specifies the confirmation key claim containing one of the following key types:

• jwk, which contains the decoded JSON web key (JWK) associated with the access token. For
more information, see the "JWK-Based Proof-of-Possession" flow.

• x5t#S256, which contains the base64-encoded SHA-256 hash of the DER-encoding of a full
X.509 certificate associated with the access token. For more information, see the "Certificate-
Bound Proof-of-Possession" flow.

auth_level

(AM-specific extension property) Specifies the authentication level of the resource owner that
authenticated to authorize the token.

permissions

(UMA only). Specifies an array that contains the RPT token expiration time (exp), the resource
scopes of the token, and the resource ID.

Legacy OAuth 2.0 endpoints
AM exposes the following legacy endpoints:

OAuth 2.0 Endpoints
/frrest/oauth2/token (Legacy)

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 154

OAuth 2.0 Administration Endpoints

Endpoint Description
/frrest/oauth2/token (Legacy) Retrieve metadata about a token, revoke both access and refresh tokens

(AM-specific endpoint, legacy)
/oauth2/tokeninfo (Legacy) Validate tokens and retrieve token metadata, such as scopes, to

determine how to respond to requests for protected resources (AM-
specific endpoint, legacy)

/frrest/oauth2/token (Legacy)
The AM-specific OAuth 2.0 token administration endpoint /frrest/oauth2/token lets administrators
read, list, and delete (revoke) OAuth 2.0 tokens. OAuth 2.0 clients can also manage their own tokens.

Important

The /frrest/oauth2/token endpoint is labelled as legacy and it does not work with client-based OAuth 2.0
tokens.

Use the following endpoints instead:

• /oauth2/introspect. Use this endpoint to retrieve metadata from OAuth 2.0 tokens.

• /oauth2/token/revoke. Use this endpoint to delete (revoke) specific OAuth 2.0 tokens.

• /users/user/oauth2/applications. Use this endpoint to list clients holding tokens granted by specific resource
owners, and for deleting tokens for a combination of a resource owner and client.

To list the contents of a specific token, perform an HTTP GET on /frrest/oauth2/token/token-id as in the
following example:
$ curl --request POST \
--data "grant_type=password" \
--data "username=demo" \
--data "password=changeit" \
--data "scope=cn" \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"
{
 "scope": "cn",
 "expires_in": 60,
 "token_type": "Bearer",
 "access_token": "f5fb4833-ba3d-41c8-bba4-833b49c3fe2c"
}

$ curl \
--request GET \
--header "iplanetDirectoryPro: AQIC5wM2LY4Sfcxs...EwNDU2NjE0*" \
https://openam.example.com:8443/openam/frrest/oauth2/token/f5fb4833-ba3d-41c8-bba4-833b49c3fe2c

OAuth 2.0 Endpoints
/frrest/oauth2/token (Legacy)

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 155

{
 "expireTime": [
 "1418818601396"
],
 "tokenName": [
 "access_token"
],
 "scope": [
 "cn"
],
 "grant_type": [
 "password"
],
 "clientID": [
 "myClientID"
],
 "parent": [],
 "id": [
 "f5fb4833-ba3d-41c8-bba4-833b49c3fe2c"
],
 "tokenType": [
 "Bearer"
],
 "redirectURI": [],
 "nonce": [],
 "realm": [
 "/"
],
 "userName": [
 "demo"
]
}

To list the tokens for the current user, perform an HTTP GET on /frrest/oauth2/token/?_queryId=access_
token, including in the SSO token of the current user in a header. The following example shows a
search for the demo user's access tokens:
$ curl \
 --request GET \
 --header "iplanetDirectoryPro: AQIC5wM2LY4Sfcw..." \
 "https://openam.example.com:8443/openam/frrest/oauth2/token/?_queryId=access_token"
{
 "result": [
 {
 "_rev": "1753454107",
 "tokenName": [
 "access_token"
],
 "expireTime": "Indefinitely",
 "scope": [
 "openid"
],
 "grant_type": [
 "password"
],
 "clientID": [
 "myClientID"
],

OAuth 2.0 Endpoints
/frrest/oauth2/token (Legacy)

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 156

 "tokenType": [
 "Bearer"
],
 "redirectURI": [],
 "nonce": [],
 "realm": [
 "/test"
],
 "userName": [
 "user.4"
],
 "display_name": "",
 "scopes": "openid"
 },
 {
 "_rev": "1753454107",
 "tokenName": [
 "access_token"
],
 "expireTime": "Indefinitely",
 "scope": [
 "openid"
],
 "grant_type": [
 "password"
],
 "clientID": [
 "myClientID"
],
 "tokenType": [
 "Bearer"
],
 "redirectURI": [],
 "nonce": [],
 "realm": [
 "/test"
],
 "userName": [
 "user.4"
],
 "display_name": "",
 "scopes": "openid"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

To list a specific user's tokens, perform an HTTP GET on /frrest/oauth2/token/?_queryId=userName=string,
where string is the user, such as user.4. Include the SSO token of an administrative user, such as
amAdmin, in a header. For example:
$ curl \
 --request GET \
 --header "iplanetDirectoryPro: AQIC5wM2LY4Sfcxs...EwNDU2NjE0*" \

OAuth 2.0 Endpoints
/frrest/oauth2/token (Legacy)

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 157

 "https://openam.example.com:8443/openam/frrest/oauth2/token/?_queryId=userName=user.4"
{
 "result": [
 {
 "_id": "2aaddde8-586b-4cb7-b431-eb86af57aabc",
 "_rev": "-549186065",
 "tokenName": [
 "access_token"
],
 "expireTime": "Indefinitely",
 "scope": [
 "openid"
],
 "grant_type": [
 "password"
],
 "authGrantId": [
 "50e9f80b-d193-4aeb-93e9-e383ea2cabd3"
],
 "clientID": [
 "myClientID"
],
 "parent": [],
 "refreshToken": [
 "5e1423a2-d2cd-40d5-8f54-5b695836cd44"
],
 "id": [
 "2aaddde8-586b-4cb7-b431-eb86af57aabc"
],
 "tokenType": [
 "Bearer"
],
 "auditTrackingId": [
 "6ac90d13-9cac-444b-bfbc-c7aca16713de-777"
],
 "redirectURI": [],
 "nonce": [],
 "realm": [
 "/test"
],
 "userName": [
 "user.4"
],
 "display_name": "",
 "scopes": "openid"
 },
 {
 "_id": "5e1423a2-d2cd-40d5-8f54-5b695836cd44",
 "_rev": "1171292923",
 "tokenName": [
 "refresh_token"
],
 "expireTime": "Oct 18, 2016 10:51 AM",
 "scope": [
 "openid"
],
 "grant_type": [
 "password"
],

OAuth 2.0 Endpoints
/frrest/oauth2/token (Legacy)

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 158

 "authGrantId": [
 "50e9f80b-d193-4aeb-93e9-e383ea2cabd3"
],
 "clientID": [
 "myClientID"
],
 "authModules": [],
 "id": [
 "5e1423a2-d2cd-40d5-8f54-5b695836cd44"
],
 "tokenType": [
 "Bearer"
],
 "auditTrackingId": [
 "6ac90d13-9cac-444b-bfbc-c7aca16713de-776"
],
 "redirectURI": [],
 "realm": [
 "/test"
],
 "userName": [
 "user.4"
],
 "acr": [],
 "display_name": "",
 "scopes": "openid"
 },
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

To delete (revoke) a token, perform an HTTP DELETE on /frrest/oauth2/token/token-id, including the
SSO token of an administrative user, such as amAdmin, as in the following example:

OAuth 2.0 Endpoints
/oauth2/tokeninfo (Legacy)

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 159

$ curl --request POST \
--data "grant_type=password" \
--data "username=demo" \
--data "password=changeit" \
--data "scope=cn" \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"
{
 "scope": "cn",
 "expires_in": 60,
 "token_type": "Bearer",
 "access_token": "f5fb4833-ba3d-41c8-bba4-833b49c3fe2c"
}

$ curl \
 --request DELETE \
 --header "iplanetDirectoryPro: AQIC5wM2LY4Sfcxs...EwNDU2NjE0*" \
 "https://openam.example.com:8443/openam/frrest/oauth2/token/f5fb4833-ba3d-41c8-bba4-833b49c3fe2c"
{
 "success": "true"
}

/oauth2/tokeninfo (Legacy)

AM-specific endpoint used to validate tokens and to retrieve information out of them, such as scopes,
the grant type used when issuing the token, or the token expiration time.

Tip

The /frrest/oauth2/tokeninfo endpoint is labelled as legacy.

To validate tokens and retrieve information with a spec-based endpoint, see /oauth2/introspect.

Resource servers —or any party having the token ID— can obtain token information through this
endpoint without authenticating.

The token information endpoint supports the following query parameter:

access_token

Specifies the token ID.

Required: Yes.

The following example shows AM issuing an access token, and then returning token information:
$ curl --request POST \
--data "grant_type=password" \
--data "username=demo" \
--data "password=changeit" \

OAuth 2.0 Endpoints
/oauth2/tokeninfo (Legacy)

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 160

--data "scope=write" \
--data "client_id=myClient" \
--data "client_secret=forgerock" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"
{
 "access_token": "sbQZuveFumUDV5R1vVBl6QAGNB8",
 "scope": "write",
 "token_type": "Bearer",
 "expires_in": 3599
}

$ curl \
--request GET \
--header "Authorization: Bearer sbQZuveFumUDV5R1vVBl6QAGNB8" \
"https://openam.example.com:8443/openam/oauth2/tokeninfo"
{
 "access_token":"sbQZuveFumUDV5R1vVBl6QAGNB8",
 "grant_type":"password",
 "auth_level":0,
 "scope":[
 "write"
],
 "realm":"/",
 "token_type":"Bearer",
 "expires_in":2491,
 "write":"",
 "client_id":"myClient"
}

Note that AM returns a JSON object with the following properties:

access_token

Specifies the token ID.

grant_type

Specifies the OAuth 2.0 grant flow used to issue the token.

auth_level

Specifies the authentication level of the resource owner that authenticated to authorize the token.

scope

Specifies a JSON structure containing the scopes associated with the token.

realm

Specifies the realm from which the token was obtained.

token_type

Specifies the type of token.

OAuth 2.0 Endpoints
/oauth2/tokeninfo (Legacy)

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 161

expires_in

Specifies the time, in seconds, that the token is valid for. This value is set at token creation time,
and it depends on the configuration of the OAuth2 Provider Service.

(Introduced in AM 6.5.4) During the introspection call, AM calculates the amount of seconds
the token is still valid for and returns it in the expires_in object. Therefore, repeated calls to the
endpoints return different values for the object.

However, the actual value of the expires_in object in the token does not change. Inspecting the
token without using AM will show the value set at token creation time.

AM does not return this object for client-based tokens issued to a client configured in a different
realm that the resource owner's.

client_id

Specifies the client that requested the token.

OAuth 2.0 Administration and Supporting REST Endpoints
/oauth2/register

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 162

Chapter 9

OAuth 2.0 Administration and Supporting
REST Endpoints
AM exposes the following administration and supporting REST endpoints:

OAuth 2.0 Administration and Supporting Endpoints

Endpoint Description
/oauth2/register Register, read, and delete OAuth 2.0 clients (RFC7592 and >RFC7591)
/json/realm-config/agents/
OAuth2Client

Register, list, and delete OAuth 2.0 clients (AM specific-endpoint)

/users/user/oauth2/resources/sets Retrieve data for UMA resources registered to a particular user (AM-
specific endpoint)

/users/user/oauth2/applications List Oauth 2.0 clients holding active tokens granted by specific resource
owners, and delete tokens for a combination of resource owner and client
(AM-specific endpoint)

/oauth2/register
Endpoint that allows OAuth 2.0/OpenID Connect clients to dynamically register as per RFC7591 and
OpenID Connect Dynamic Client Registration 1.0 incorporating errata set 1. The endpoint also allows
clients to read and update their metadata, as well as deprovision themselves as per RFC7592.

You must compose the path to the register endpoint, addressing the specific realm where the client
is or should be registered/deprovisioned. For example, https://openam.example.com:8443/openam/oauth2/
realms/root/realms/subrealm1/register.

By default, AM requires clients to present an access token to register themselves. This behavior is
controlled by the Allow Open Dynamic Client Registration switch, under the Dynamic Registration tab
of the OAuth 2.0 provider.

Read, update, and delete operations require an authorization bearer header that includes the
registration_access_token, provided to the client during registration.

The endpoint supports the following methods:

• POST. Register clients

https://www.rfc-editor.org/info/rfc7592
https://www.rfc-editor.org/info/rfc7591
https://www.rfc-editor.org/info/rfc7591
https://openid.net/specs/openid-connect-registration-1_0.html
https://www.rfc-editor.org/info/rfc7592

OAuth 2.0 Administration and Supporting REST Endpoints
/json/realm-config/agents/OAuth2Client

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 163

• GET. Read client information

• PUT. Update client information

• DELETE. Deprovision a client

For usage information and examples, see the following links:

• "Dynamic Client Registration"

• "Dynamic Client Registration Management"

/json/realm-config/agents/OAuth2Client
AM-specific endpoint that allows AM and agent administrators to create, list, and delete OAuth 2.0
clients.

Tip

Use the AM API Explorer for detailed information about the parameters supported by this endpoint, and to test
it against your deployed AM instance.

In the AM console, select the Help icon, and then navigate to API Explorer > /realm-config > /agents > /
OAuth2Client.

The following example shows how to create a basic OAuth 2.0 client named myClient in a subrealm of
the top-level realm named subrealm1. Note that you must provide the SSO token of an administrative
user as a header, and that the name of the client is appended to the URL:
$ curl \
 --request PUT \
 --header "Accept-API-Version: resource=1.0" \
 --header "Content-Type: application/json" \
 --header "Accept: application/json" \
 --header "iplanetDirectoryPro: AQIC5wM...3MTYxOA..*" \
--data '{
 "coreOAuth2ClientConfig":{
 "agentgroup":"",
 "status":{
 "inherited":true,
 "value":"string"
 },
 "userpassword":"forgerock",
 "clientType":{
 "inherited":false,
 "value":"Confidential"
 },
 "redirectionUris":{
 "inherited":false,
 "value":[
 "https://www.example.com:443/callback"
]
 },
 "scopes":{

OAuth 2.0 Administration and Supporting REST Endpoints
/json/realm-config/agents/OAuth2Client

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 164

 "inherited":false,
 "value":[
 "write",
 "read"
]
 },
 "defaultScopes":{
 "inherited":true,
 "value":[
 "write"
]
 },
 "clientName":{
 "inherited":true,
 "value":[
 "My Test Client"
]
 }
 },
 "advancedOAuth2ClientConfig":{
 "name":{
 "inherited":false,
 "value":[
 null
]
 },
 "grantTypes":{
 "inherited":true,
 "value":[
 "authorization_code",
 "client_credentials"
]
 },
 "tokenEndpointAuthMethod":{
 "inherited":true,
 "value":"client_secret_basic"
 }
 }
}' \
"https://openam.example.com:8443/openam/json/realms/root/realms/subrealm1/realm-config/agents/
OAuth2Client/testClient"
{
 "_id":"testClient",
 "_rev":"-60716879",
 "advancedOAuth2ClientConfig":{
 "descriptions":{
 "inherited":false,
 "value":[

]
 },

...

 "clientType":{
 "inherited":false,
 "value":"Confidential"
 },
...

OAuth 2.0 Administration and Supporting REST Endpoints
/users/user/oauth2/resources/sets

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 165

 "_type":{
 "_id":"OAuth2Client",
 "name":"OAuth2 Clients",
 "collection":true
 }
}

The following example shows how to delete an OAuth 2.0 client named myClient in a subrealm of the
top-level realm named subrealm1. Note that you must provide the SSO token of an administrative user
as a header, and that the name of the client is appended to the URL:
$ curl \
 --request DELETE \
 --header "Accept-API-Version: resource=1.0" \
 --header "iplanetDirectoryPro: AQIC5wM...3MTYxOA..*" \
 "https://openam.example.com:8443/openam/json/realms/root/realm-config/agents/OAuth2Client/myClient"
{
 "_id":"testClient",
 "_rev":"-60716879",
 "advancedOAuth2ClientConfig":{
 "descriptions":{
 "inherited":false,
 "value":[

]
 },

...

 "clientType":{
 "inherited":false,
 "value":"Confidential"
 },
...
 "_type":{
 "_id":"OAuth2Client",
 "name":"OAuth2 Clients",
 "collection":true
 }
}

/users/user/oauth2/resources/sets
AM-specific endpoint for viewing and updating a resource registered to a particular user.

Tip

Use the AM API Explorer for detailed information about the parameters supported by this endpoint, and to test
it against your deployed AM instance.

OAuth 2.0 Administration and Supporting REST Endpoints
/users/user/oauth2/resources/sets

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 166

In the AM console, select the Help icon, and then navigate to API Explorer > /users > /{user} > /oauth2 > /
resources > /sets.

The following example shows how to read an OAuth 2.0 resource and related policy in the top-level
realm. Note that you must provide the SSO token of an administrative user or of the resource owner
as a header, and that the name of the resource owner (demo, in this example) is part of the URL:
$ curl \
--request GET \
--header "iPlanetDirectoryPro: AQIC5wM2LY4Sfcxs...EwNDU2NjE0*" \
"https://openam.example.com:8443/openam/json/realms/root/users/demo\
/oauth2/resources/sets/43225628-4c5b-4206-b7cc-5164da81decd0"
{
 "scopes": [
 "http://photoz.example.com/dev/scopes/view",
 "http://photoz.example.com/dev/scopes/comment"
],
 "_id": "43225628-4c5b-4206-b7cc-5164da81decd0",
 "resourceServer": "UMA-Resource-Server",
 "name": "My Videos",
 "icon_uri": "http://www.example.com/icons/cinema.png",
 "policy": {
 "permissions": [
 {
 "subject": "user.1",
 "scopes": [
 "http://photoz.example.com/dev/scopes/view"
]
 },
 {
 "subject": "user.2",
 "scopes": [
 "http://photoz.example.com/dev/scopes/comment",
 "http://photoz.example.com/dev/scopes/view"
]
 }
]
 },
 "type": "http://www.example.com/rsets/videos"
}

Tip

You can specify the fields that are returned with the _fields query string filter. For example ?_fields=scopes,
 resourceServer, name

You must compose the path to the resource sets endpoint addressing the specific realm where the
resource is registered. For example, https://openam.example.com:8443/openam/oauth2/realms/root/realms/
subrealm1/resources/sets.

On success, an HTTP 200 OK status code is returned, with a JSON body representing the resource. If
a policy relating to the resource exists, a representation of the policy is also returned in the JSON.

If the specified resource does not exist, an HTTP 404 Not Found status code is returned, as follows:

OAuth 2.0 Administration and Supporting REST Endpoints
/users/user/oauth2/applications

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 167

{
 "code": 404,
 "reason": "Not Found",
 "message": "No resource set with id, bad-id-3e28-4c19-8a2b-36fc24c899df0, found."
}

If the SSO token used is not that of the resource owner or an administrator, an HTTP 403 Forbidden
status code is returned, as follows:
{
 "code": 403,
 "reason": "Forbidden",
 "message": "User, user.1, not authorized."
}

/users/user/oauth2/applications
AM-specific endpoint for listing clients holding tokens granted by specific resource owners, and for
deleting tokens for a combination of a resource owner and client.

Tip

Use the AM API Explorer for detailed information about the parameters supported by this endpoint, and to test
it against your deployed AM instance.

In the AM console, select the Help icon, and then navigate to API Explorer > /users > /{user} > /oauth2 > /
applications.

To call the endpoint, you must compose the path to the realm where the client is registered. For
example, https://openam.example.com:8443/openam/oauth2/realms/root/realms/subrealm1/applications.

The following example shows how to list all the clients holding tokens granted in the top-level realm
by the demo user. Note that you must provide the SSO token of an administrative user or of the
resource owner as a header, and that the name of the resource owner (demo) is part of the URL:
$ curl --request GET \
--header "Accept-API-Version: resource=1.1" \
--header "iplanetDirectoryPro: Ua6fsH2vjgHqVY..." \
"https://openam.example.com:8443/openam/json/users/demo/oauth2/applications?_queryFilter=true"

On success, AM returns an HTTP 200 code and a JSON structure containing information about the
tokens, such as the client ID they belong to, the scopes they grants, and their expiration time:

OAuth 2.0 Administration and Supporting REST Endpoints
/users/user/oauth2/applications

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 168

{
 "result":[
 {
 "_id":"myClient",
 "_rev":"22274676",
 "name":null,
 "scopes":{
 "write":"write"
 },
 "expiryDateTime":"2018-11-14T10:48:55.395Z",
 "logoUri":null
 }
],
 "resultCount":1,
 "pagedResultsCookie":null,
 "totalPagedResultsPolicy":"NONE",
 "totalPagedResults":-1,
 "remainingPagedResults":-1

The following example shows how to delete all tokens held by the client myClient granted in the top-
level realm by the demo user. Note that you must provide the SSO token of an administrative user or of
the resource owner as a header, and that the name of the resource owner (demo) and the name of the
client (myClient) are part of the URL:
$ curl --request DELETE \
--header "Accept-API-Version: resource=1.1" \
--header "iplanetDirectoryPro: Ua6fsH2vjgHqVY..." \
"https://openam.example.com:8443/openam/json/users/demo/oauth2/applications/myClient"

On success, AM returns an HTTP 200 code and a JSON structure containing information about the
deleted tokens, such as the client ID they belonged to, the scopes they granted, and their expiration
time:
{
 "_id": "myClient",
 "_rev": "22274676",
 "name": null,
 "scopes": {
 "write": "write"
 },
 "expiryDateTime": "2018-11-14T10:48:55.395Z",
 "logoUri": null
}

Customizing OAuth 2.0
Customizing OAuth 2.0 Scope Handling

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 169

Chapter 10

Customizing OAuth 2.0
This chapter covers customizing AM's support for OAuth 2.0.

Customizing OAuth 2.0 Scope Handling
RFC 6749, The OAuth 2.0 Authorization Framework, describes access token scopes as a set of case-
sensitive strings defined by the authorization server. Clients can request scopes, and resource owners
can authorize them.

The default scopes implementation in AM treats scopes as per RFC 7662, while the legacy /oauth2/
tokeninfo endpoint populates the scopes with profile attribute values. For example, if one of the
scopes is mail, AM sets mail to the resource owner's email address in the token information returned.

You can change the scope implementation behavior by writing your own scope validator plugin.
This section shows how to write a custom OAuth 2.0 scope validator plugin for use in an OAuth 2.0
provider (authorization server) configuration.

Tip

The default scope validator calls the script that lets AM modify the key-pairs contained inside an access token
before issuing it. If you intend to use this functionality, you must incorporate this call into your custom scope
validator implementation.

Designing an OAuth 2.0 Scope Validator Plugin
A scope validator plugin implements the org.forgerock.oauth2.core.ScopeValidator interface. As
described in the API specification, the ScopeValidator interface has several methods that your plugin
overrides.

The following plugin, taken from the openam-scope-sample example, sets whether read and write
permissions were granted.
/*
 * The contents of this file are subject to the terms of the Common Development and
 * Distribution License (the License). You may not use this file except in compliance with the
 * License.
 *
 * You can obtain a copy of the License at legal/CDDLv1.0.txt. See the License for the
 * specific language governing permission and limitations under the License.
 *
 * When distributing Covered Software, include this CDDL Header Notice in each file and include

https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc7662
../apidocs?org/forgerock/oauth2/core/ScopeValidator.html

Customizing OAuth 2.0
Designing an OAuth 2.0 Scope Validator Plugin

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 170

 * the License file at legal/CDDLv1.0.txt. If applicable, add the following below the CDDL
 * Header, with the fields enclosed by brackets [] replaced by your own identifying
 * information: "Portions copyright [year] [name of copyright owner]".
 *
 * Copyright 2014-2019 ForgeRock AS. All Rights Reserved
 */
package org.forgerock.openam.examples;

import java.util.HashMap;
import java.util.HashSet;
import java.util.Map;
import java.util.Set;

import org.forgerock.oauth2.core.AccessToken;
import org.forgerock.oauth2.core.ClientRegistration;
import org.forgerock.oauth2.core.OAuth2Request;
import org.forgerock.oauth2.core.ScopeValidator;
import org.forgerock.oauth2.core.Token;
import org.forgerock.oauth2.core.UserInfoClaims;
import org.forgerock.oauth2.core.exceptions.InvalidClientException;
import org.forgerock.oauth2.core.exceptions.ServerException;
import org.forgerock.oauth2.core.exceptions.UnauthorizedClientException;

/**
 * Custom scope validators implement the
 * {@link org.forgerock.oauth2.core.ScopeValidator} interface.
 *
 * <p>
 * This example sets read and write permissions according to the scopes set.
 * </p>
 *
 *
 *
 *
 * The {@code validateAuthorizationScope} method
 * adds default scopes, or any allowed scopes provided.
 *
 *
 *
 * The {@code validateAccessTokenScope} method
 * adds default scopes, or any allowed scopes provided.
 *
 *
 *
 * The {@code validateRefreshTokenScope} method
 * adds the scopes from the access token,
 * or any requested scopes provided that are also in the access token scopes.
 *
 *
 *
 * The {@code getUserInfo} method
 * populates scope values and sets the resource owner ID to return.
 *
 *
 *
 * The {@code evaluateScope} method
 * populates scope values to return.
 *
 *

Customizing OAuth 2.0
Designing an OAuth 2.0 Scope Validator Plugin

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 171

 *
 * The {@code additionalDataToReturnFromAuthorizeEndpoint} method
 * returns no additional data (an empty Map).
 *
 *
 *
 * The {@code additionalDataToReturnFromTokenEndpoint} method
 * adds no additional data.
 *
 *
 *
 */
public class CustomScopeValidator implements ScopeValidator {
 @Override
 public Set<String> validateAuthorizationScope(
 ClientRegistration clientRegistration,
 Set<String> scope,
 OAuth2Request oAuth2Request) throws ServerException {
 if (scope == null || scope.isEmpty()) {
 return clientRegistration.getDefaultScopes();
 }

 Set<String> scopes = new HashSet<String>(
 clientRegistration.getAllowedScopes());
 scopes.retainAll(scope);
 return scopes;
 }

 @Override
 public Set<String> validateAccessTokenScope(
 ClientRegistration clientRegistration,
 Set<String> scope,
 OAuth2Request request) throws ServerException {
 if (scope == null || scope.isEmpty()) {
 return clientRegistration.getDefaultScopes();
 }

 Set<String> scopes = new HashSet<String>(
 clientRegistration.getAllowedScopes());
 scopes.retainAll(scope);
 return scopes;
 }

 @Override
 public Set<String> validateRefreshTokenScope(
 ClientRegistration clientRegistration,
 Set<String> requestedScope,
 Set<String> tokenScope,
 OAuth2Request request) {
 if (requestedScope == null || requestedScope.isEmpty()) {
 return tokenScope;
 }

 Set<String> scopes = new HashSet<String>(tokenScope);
 scopes.retainAll(requestedScope);
 return scopes;
 }

 @Override

Customizing OAuth 2.0
Designing an OAuth 2.0 Scope Validator Plugin

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 172

 public Set<String> validateBackChannelAuthorizationScope(
 ClientRegistration clientRegistration,
 Set<String> requestedScopes,
 OAuth2Request request) throws ServerException {

 if (requestedScopes == null || requestedScopes.isEmpty()) {
 return clientRegistration.getDefaultScopes();
 }

 Set<String> scopes = new HashSet<>(clientRegistration.getAllowedScopes());
 scopes.retainAll(requestedScopes);
 return scopes;
 }

 /**
 * Set read and write permissions according to scope.
 *
 * @param token The access token presented for validation.
 * @return The map of read and write permissions,
 * with permissions set to {@code true} or {@code false},
 * as appropriate.
 */
 private Map<String,Object> mapScopes(AccessToken token) {
 Set<String> scopes = token.getScope();
 Map<String, Object> map = new HashMap<String, Object>();
 final String[] permissions = {"read", "write"};

 for (String scope : permissions) {
 if (scopes.contains(scope)) {
 map.put(scope, true);
 } else {
 map.put(scope, false);
 }
 }
 return map;
 }

 @Override
 public UserInfoClaims getUserInfo(
 ClientRegistration clientRegistration,
 AccessToken token,
 OAuth2Request request)
 throws UnauthorizedClientException {
 Map<String, Object> response = mapScopes(token);
 response.put("sub", token.getResourceOwnerId());
 UserInfoClaims userInfoClaims = new UserInfoClaims(response, null);
 return userInfoClaims;
 }

 @Override
 public Map<String, Object> evaluateScope(AccessToken token) {
 return mapScopes(token);
 }

 @Override
 public Map<String, String> additionalDataToReturnFromAuthorizeEndpoint(
 Map<String, Token> tokens,
 OAuth2Request request) {

Customizing OAuth 2.0
Building the OAuth 2.0 Scope Validator Sample Plugin

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 173

 return new HashMap<String, String>(); // No special handling
 }

 @Override
 public void additionalDataToReturnFromTokenEndpoint(
 AccessToken token,
 OAuth2Request request)
 throws ServerException, InvalidClientException {
 // No special handling
 }

 @Override
 public void modifyAccessToken(AccessToken accessToken, OAuth2Request request) {
 }
}

Building the OAuth 2.0 Scope Validator Sample Plugin

For information on downloading and building AM sample source code, see How do I access and build
the sample code provided for OpenAM 12.x, 13.x and AM (All versions)? in the Knowledge Base.

Get a local clone so that you can try the sample on your system. In the sources, you find the following
files:

pom.xml

Apache Maven project file for the module

This file specifies how to build the sample scope validator plugin, and also specifies its
dependencies on AM components.

src/main/java/org/forgerock/openam/examples/CustomScopeValidator.java

Core class for the sample OAuth 2.0 scope validator plugin

See "Designing an OAuth 2.0 Scope Validator Plugin" for a listing.

After you successfully build the project, you find the openam-scope-sample-6.5.5.jar in the /path/to/
openam-samples-external/openam-scope-sample/target directory of the project.

Configuring an Instance to Use the Plugin

After building your plugin .jar file, copy the .jar file under WEB-INF/lib/ where you deployed AM.

Restart AM or the container in which it runs.

In the AM console, you can either configure a specific OAuth 2.0 provider to use your plugin, or
configure your plugin as the default for new OAuth 2.0 providers. In either case, you need the
class name of your plugin. The class name for the sample plugin is org.forgerock.openam.examples.
CustomScopeValidator.

https://backstage.forgerock.com/knowledge/kb/article/a47487197
https://backstage.forgerock.com/knowledge/kb/article/a47487197

Customizing OAuth 2.0
Trying the Sample Plugin

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 174

• To configure a specific OAuth 2.0 provider to use your plugin, navigate to Realms > Realm Name
> Services, click OAuth2 Provider, and enter the class name of your scopes plugin to the Scope
Implementation Class field.

• To configure your plugin as the default for new OAuth 2.0 providers, add the class name of your
scopes plugin. Navigate to Configure > Global Services, click OAuth2 Provider, and set Scope
Implementation Class.

Trying the Sample Plugin

In order to try the sample plugin, make sure you have configured an OAuth 2.0 provider to use the
sample plugin. Also, set up an OAuth 2.0 client of the provider that takes scopes read and write.

Next try the provider as shown in the following example:
$ curl \
--request POST \
--data "grant_type=client_credentials \
&client_id=myClientID&client_secret=password&scope=read" \
"https://openam.example.com:8443/openam/oauth2/realms/root/access_token"
{
 "scope": "read",
 "expires_in": 59,
 "token_type": "Bearer",
 "access_token": "c8860442-daba-4af0-a1d9-b607c03e5a0b"
}

$ curl https://openam.example.com:8443/openam/oauth2/realms/root/tokeninfo\
?access_token=0d492486-11a7-4175-b116-2fc1cbff6d78
{
 "scope": [
 "read"
],
 "grant_type": "client_credentials",
 "realm": "/",
 "write": false,
 "read": true,
 "token_type": "Bearer",
 "expires_in": 24,
 "access_token": "c8860442-daba-4af0-a1d9-b607c03e5a0b"
}

As seen in this example, the requested scope read is authorized, but the write scope has not been
authorized.

Modifying the Content of Access Tokens
You can modify the key-value pairs contained within an OAuth 2.0 access token by using a script. For
example, you could make a REST call to an external service, and add or change a key-value pair in
the access token based on the response, before issuing the token to the resource owner.

Customizing OAuth 2.0
Modifying the Content of Access Tokens

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 175

Modification works for both client-based and CTS-based access tokens, and are stored permanently in
either the issued JWT or in the CTS respectively.

Use access token modification scripts with the OAuth 2.0 default scope validator class.

AM includes an example script that demonstrates some of the functionality available. To examine the
contents of the example access token modification script, in the AM console navigate to Realms >
Top Level Realm > Scripts, and then select OAuth2 Access Token Modification Script.

For general information about scripting in AM, see "About Scripting".

The following properties are available to scripts:

clientProperties

A map of properties configured in the relevant client profile. Only present if the client was
correctly identified.

The keys in the map are as follows:

clientId

The URI of the client.

allowedGrantTypes

The list of the allowed grant types (org.forgerock.oauth2.core.GrantType) for the client.

allowedResponseTypes

The list of the allowed response types for the client.

allowedScopes

The list of the allowed scopes for the client.

customProperties

A map of any custom properties added to the client.

Lists or maps are included as sub-maps. For example, a custom property of
customMap[Key1]=Value1 is returned as customMap > Key1 > Value1.

To add custom properties to a client, go to OAuth 2.0 > Clients > Client ID > Advanced, and
then update the Custom Properties field.

requestProperties

A map of the properties present in the request. Always present.

Customizing OAuth 2.0
Modifying the Content of Access Tokens

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 176

The keys in the map are as follows:

requestUri

The URI of the request.

realm

The realm to which the request was made.

requestParams

The request parameters, and/or posted data. Each value in this map is a list of one, or more,
properties.

Important

To mitigate the risk of reflection type attacks, use OWASP best practices when handling these
properties. For example, see Unsafe use of Reflection.

scopes

Contains a set of the requested scopes. For example:
[
 "profile",
 "friends"
]

scriptName

The display name of the script. Always present.

The scripts also have access to the following APIs:

• "Global Scripting API Functionality"

• "AccessToken" interface in the AM 6.5.5 Public API Javadoc

• "AMIdentity" interface in the AM 6.5.5 Public API Javadoc

• "SSOToken" interface in the AM 6.5.5 Public API Javadoc

When issuing modified access tokens, consider the following important points:

• Removing or changing native properties may render the access token unreadable

AM requires that certain native properties are present in the access token in order to consider it
valid. Removing or modifying these properties may cause the OAuth 2.0 flows to break.

https://owasp.org/www-community/vulnerabilities/Unsafe_use_of_Reflection
../apidocs?org/forgerock/oauth2/core/AccessToken.html
../apidocs?com/sun/identity/idm/AMIdentity.html
../apidocs?com/iplanet/sso/SSOToken.html

Customizing OAuth 2.0
Preparing AM to Modify Access Tokens

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 177

Tip

Native properties are marked in the AM 6.5.5 Public API Javadoc with a warning about loss of functionality if
they are edited or removed.

• Modifying access tokens affects the size of the client-based token or CTS entry

Changes made to OAuth 2.0 access tokens directly impacts the size of the CTS tokens when using
CTS-based tokens, or the size of the JSON web tokens (JWT) if client-based is enabled.

You must ensure that the token size remains within your client or user-agent size limits.

For more information, see "About Token Storage Location".

Preparing AM to Modify Access Tokens

AM requires a small amount of configuration before trying the default access token modification
script. The script requires that the authenticated user of the access token has an email address and
telephone number in their profile. The script adds the values of these fields to the access token.

Perform the steps in the following procedures to prepare AM for testing scripted modification of
OAuth 2.0 access tokens:

• "To Add an Email Address and Telephone Number to the Demo User"

• "To Modify the Default Access Token Modification Script"

• "To Configure AM to Issue Access Tokens Using the Default Access Token Modification Script"

To Add an Email Address and Telephone Number to the Demo User

In this procedure, add an email address and telephone number value to the demo user's profile. The
access token modification script injects the values provided into the OAuth 2.0 access token before it
is issued to the resource owner.

1. Log in as an AM administrator. For example amAdmin.

2. Select Realms > Top Level Realm > Identities.

3. On the Identities tab, select the demo user.

a. In Email Address, enter a valid address. For example:
demo.user@example.com

b. In Telephone Number, enter a value. For example:

../apidocs?org/forgerock/oauth2/core/AccessToken.html

Customizing OAuth 2.0
Preparing AM to Modify Access Tokens

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 178

+44 117 496 0228

4. Select Save Changes.

To Modify the Default Access Token Modification Script

In this procedure, uncomment functionality in the default access token modification script in order to
demonstrate how to modify access tokens.

1. Log in as an AM administrator. For example amAdmin.

2. Navigate to Realms > Top Level Realm > Scripts, and then click OAuth2 Access Token
Modification Script.

3. In the Script field:

a. Uncomment line 34 of the script, by surrounding the line with a pair of */ and /* strings:
*/
accessToken.setField("hello", "world")
/*

b. Uncomment lines 59 to 61 of the script, by surrounding them with a pair of */ and /* strings:
*/
def attributes = identity.getAttributes(["mail", "telephoneNumber"].toSet())
accessToken.setField("mail", attributes["mail"])
accessToken.setField("phone", attributes["telephoneNumber"])
/*

4. Select Save Changes.

To Configure AM to Issue Access Tokens Using the Default Access Token Modification Script

In this procedure, create an OAuth 2.0 provider that uses the default access token modification
script, as well as an OAuth 2.0 client. Obtaining an access token as the demo user can then be
performed to test the script functionality.

1. Log in as an AM administrator. For example amAdmin.

2. Create an OAuth 2.0 provider by performing the following steps:

a. Navigate to Realms > Top Level Realm > Configure OAuth Provider, and then click Configure
OAuth 2.0.

b. Keep the suggested settings, click Create, and then click OK.

The default setting for a new OAuth 2.0 provider is to use the default access token
modification script.

For information on OAuth 2.0 provider properties, see "OAuth2 Provider".

Customizing OAuth 2.0
Trying the Default Access Token Modification Script

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 179

3. Create an OAuth 2.0 client by performing the following steps:

a. Navigate to Realms > Top Level Realm > Applications > OAuth 2.0 > Clients, and then click
Add Client.

b. Enter the following values:

• Client ID: myClient

• Client secret: forgerock

• Redirection URIs: https://www.example.com:443/callback

• Scope(s): access|Access to your data

c. Click Create.

AM is now configured to issue access tokens using the default access token modification
script.

Trying the Default Access Token Modification Script
This section demonstrates obtaining an OAuth 2.0 access token which has been modified by a script.

First, we will use the Authorization Code Grant flow to authenticate with AM as the resource owner,
allow the client to access our profile data, and receive the authorization code.

In the second procedure, we will exchange the authorization code for an access token, which will
have been altered by the default access token modification script to include:

• The resource owner's telephone number and email address, taken from their profile in AM, which is
acting as the authorization server.

• A hello:world key-value pair.

In the final procedure, we will introspect the access token to verify that it does include the modified
values.

To Obtain an Authorization Code to Test Access Token Modification

1. In a web browser, navigate to the /oauth2/authorize endpoint, including the parameters and
values configured for the OAuth 2.0 client in the previous section.

For example:
https://openam.example.com:8443/openam/oauth2/realms/root/authorize?
client_id=myClient&response_type=code&scope=access&state=abc123&redirect_uri=https://
www.example.com:443/callback

The AM sign in page is displayed.

Customizing OAuth 2.0
Trying the Default Access Token Modification Script

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 180

2. Log in as the demo user, with password changeit.

The AM OAuth 2.0 consent page is displayed.

3. Review the scopes being requested, and then click Allow.

AM redirects the browser to the location specified in the redirect_uri parameter, https://www.
example.com:443/callback in this example, and appends a number of query parameters. For example:

4. Record the value of the code query parameter.

This is the authorization code and is exchanged for an access token in the next procedure.

To Exchange an Authorization Code for an Access Token to Test Access Token Modification

1. Create a POST request to the /oauth2/access_token endpoint, including the authorization code
obtained in the previous procedure, and the parameters and values configured for the OAuth 2.0
client earlier.

For example:
$ curl --request POST \
 --data "grant_type=authorization_code" \
 --data "code=tH_s2obVRt2_yB6x4OxH1J3eMkU" \
 --data "client_id=myClient" \
 --data "client_secret=forgerock" \
 --data "redirect_uri=https://www.example.com:443/callback" \
 "https://openam.example.com:8443/openam/oauth2/realms/root/access_token"
{
 "access_token": "sbQZuveFumUDV5R1vVBl6QAGNB8",
 "scope": "access",
 "token_type": "Bearer",
 "expires_in": 3599
}

2. Record the value of the access_token property.

This is the access token, the properties of which have been modified by the access token
modification script. Follow the steps in the next procedure to introspect the token to verify the
properties have been modified.

To Introspect an Access Token to Verify Access Token Modification

• Create a POST request to the /oauth2/introspect endpoint, including the access token obtained in
the previous procedure, and the credentials of the OAuth 2.0 client earlier.

For example:

Customizing OAuth 2.0
Trying the Default Access Token Modification Script

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 181

$ curl \
 --request POST \
 --data "client_id=myClient" \
 --data "client_secret=forgerock" \
 --data "token=sbQZuveFumUDV5R1vVBl6QAGNB8" \
 "https://openam.example.com:8443/openam/oauth2/realms/root/introspect"
{
 "active": true,
 "scope": "access",
 "client_id": "myClient",
 "user_id": "demo",
 "username": "demo",
 "token_type": "Bearer",
 "exp": 1556289970,
 "sub": "demo",
 "iss": "https://openam.example.com:8443/openam/oauth2",
 "auth_level": 0,
 "auditTrackingId": "c6e22be7-6166-402b-9d72-a03134f08c22-8605",
 "hello": "world",
 "mail": [
 "demo.user@example.com"
],
 "phone": [
 "+44 117 496 0228"
]
}

Notice that the output includes a hello:world key-value pair, as well as mail and phone properties,
containing values taken from the user's profile data.

Reference
OAuth 2.0 Standards

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 182

Chapter 11

Reference
This reference section covers settings and other information relating to OAuth 2.0 support in AM.

OAuth 2.0 Standards
AM implements the following RFCs, Internet-Drafts, and standards relating to OAuth 2.0:

OAuth 2.0

RFC 6749: The OAuth 2.0 Authorization Framework

RFC 6750: The OAuth 2.0 Authorization Framework: Bearer Token Usage

RFC 7009: OAuth 2.0 Token Revocation

RFC 7515: JSON Web Signature (JWS)

RFC 7517: JSON Web Key (JWK)

RFC 7518: JSON Web Algorithms (JWA)

RFC 7519: JSON Web Token (JWT)

RFC 7522: Security Assertion Markup Language (SAML) 2.0 Profile for OAuth 2.0 Client
Authentication and Authorization Grants

RFC 7523: JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization
Grants

RFC 7591: OAuth 2.0 Dynamic Client Registration Protocol

RFC 7636: Proof Key for Code Exchange by OAuth Public Clients

RFC 7662: OAuth 2.0 Token Introspection

RFC 7800: Proof-of-Possession Key Semantics for JSON Web Tokens (JWTs)

Internet-Draft: OAuth 2.0 Device Flow for Browserless and Input Constrained Devices

Internet-Draft: OAuth 2.0 Mutual TLS Client Authentication and Certificate Bound Access Tokens

RFC 7592: OAuth 2.0 Dynamic Client Registration Management Protocol

https://oauth.net/2/
https://www.rfc-editor.org/info/rfc6749
https://www.rfc-editor.org/info/rfc6750
https://www.rfc-editor.org/info/rfc7009
https://www.rfc-editor.org/info/rfc7515
https://www.rfc-editor.org/info/rfc7517
https://www.rfc-editor.org/info/rfc7518
https://www.rfc-editor.org/info/rfc7519
https://www.rfc-editor.org/info/rfc7522
https://www.rfc-editor.org/info/rfc7522
https://www.rfc-editor.org/info/rfc7523
https://www.rfc-editor.org/info/rfc7523
https://www.rfc-editor.org/info/rfc7591
https://www.rfc-editor.org/info/rfc7636
https://www.rfc-editor.org/info/rfc7662
https://www.rfc-editor.org/info/rfc7800
https://tools.ietf.org/html/draft-ietf-oauth-device-flow-03
https://tools.ietf.org/html/draft-ietf-oauth-mtls-12
https://www.rfc-editor.org/info/rfc7592

Reference
OAuth 2.0 Sample Mobile Applications

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 183

OAuth 2.0 Sample Mobile Applications
Source code for sample mobile applications is available in sample repositories in the ForgeRock
commons project. Get local clones of one or more of the following repositories so that you can try
these sample applications on your system:

• AM OAuth2.0 Android sample app

• AM OAuth 2.0 iOS sample app

For example, if you have a Mac running OS X 10.8 or later with Xcode installed, try the AM OAuth 2.0
iOS Sample App.

OAuth 2.0 iOS Sample Application

OAuth2 Provider
amster service name: OAuth2Provider

https://stash.forgerock.org/projects/COMMONS
https://stash.forgerock.org/projects/COMMONS
https://stash.forgerock.org/projects/COMMONS/repos/mobile-samples-android-openam-apps/browse
https://stash.forgerock.org/projects/COMMONS/repos/mobile-samples-ios-openam-ios-oauth2-sample-app/browse
https://stash.forgerock.org/projects/COMMONS/repos/mobile-samples-ios-openam-ios-oauth2-sample-app/browse
https://stash.forgerock.org/projects/COMMONS/repos/mobile-samples-ios-openam-ios-oauth2-sample-app/browse
https://backstage.forgerock.com/docs/amster/6.5/entity-reference/#sec-amster-entity-oauth2provider

Reference
Global Attributes

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 184

Global Attributes

The following settings appear on the Global Attributes tab:

Token Blacklist Cache Size

Number of blacklisted tokens to cache in memory to speed up blacklist checks and reduce load on
the CTS.

Default value: 10000

amster attribute: blacklistCacheSize

Blacklist Poll Interval (seconds)

How frequently to poll for token blacklist changes from other servers, in seconds.

How often each server will poll the CTS for token blacklist changes from other servers. This
is used to maintain a highly compressed view of the overall current token blacklist improving
performance. A lower number will reduce the delay for blacklisted tokens to propagate to all
servers at the cost of increased CTS load. Set to 0 to disable this feature completely.

Default value: 60

amster attribute: blacklistPollInterval

Blacklist Purge Delay (minutes)

Length of time to blacklist tokens beyond their expiry time.

Allows additional time to account for clock skew to ensure that a token has expired before it is
removed from the blacklist.

Default value: 1

amster attribute: blacklistPurgeDelay

Client-Based Grant Token Upgrade Compatibility Mode

Enable AM to consume and create client-based OAuth 2.0 tokens in two different formats
simultaneously.

Enable this option when upgrading AM to allow the new instance to create and consume client-
based OAuth 2.0 tokens in both the previous format, and the new format. Disable this option once
all AM instances in the cluster have been upgraded.

Default value: false

amster attribute: statelessGrantTokenUpgradeCompatibilityMode

Reference
Global Attributes

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 185

CTS Storage Scheme

Storage scheme to be used when storing OAuth2 tokens to CTS.

In order to support rolling upgrades, this should be set to the latest storage scheme supported by
all AM instances within your cluster. Select the latest storage scheme once all AM instances in
the cluster have been upgraded.

One-to-One Storage Scheme

Under this storage scheme, each OAuth2 token maps to an individual CTS entry.

This storage scheme is deprecated.

Grant-Set Storage Scheme

Under this storage scheme, multiple authorization code, access token and refresh token for a
given OAuth2 client and resource owner can be stored within a single CTS entry.

The Grant-Set storage scheme is more efficient than the One-to-One storage scheme so should be
used once all servers have been upgraded to a version which supports this storage scheme

The possible values for this property are:

• CTS_ONE_TO_ONE_MODEL. One-to-One Storage Scheme

• CTS_GRANT_SET_MODEL. Grant-Set Storage Scheme

Default value: CTS_ONE_TO_ONE_MODEL

amster attribute: storageScheme

Enforce JWT Unreasonable Lifetime

Enable the enforcement of JWT token unreasonable lifetime during validation.

The JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants
specification (https://www.rfc-editor.org/rfc/rfc7523.html#section-3) states that an authorization
server may reject JWTs with an "exp" claim value that is unreasonably far in the future and an
"iat" claim value that is unreasonably far in the past. This enforcement may be disabled, but
should only be done if the security implications have been evaluated.

Default value: true

amster attribute: jwtTokenLifetimeValidationEnabled

JWT Unreasonable Lifetime (seconds)

Specify the lifetime (in seconds) of a JWT which should be considered unreasonable and rejected
by validation.

Reference
Core

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 186

The JSON Web Token (JWT) Profile for OAuth 2.0 Client Authentication and Authorization Grants
specification (https://www.rfc-editor.org/rfc/rfc7523.html#section-3) states that an authorization
server may reject JWTs with an "exp" claim value that is unreasonably far in the future and an
"iat" claim value that is unreasonably far in the past. During token validation AM enforces that
the token must expire within the specified duration and if the "iat" claim value is present, the
token must not be older than the specified duration.

Default value: 86400

amster attribute: jwtTokenUnreasonableLifetime

Core

The following settings appear on the Core tab:

Use Client-Based Access & Refresh Tokens

When enabled, AM issues access and refresh tokens that can be inspected by resource servers.

Default value: false

amster attribute: statelessTokensEnabled

Authorization Code Lifetime (seconds)

The time an authorization code is valid for, in seconds.

Default value: 120

amster attribute: codeLifetime

Refresh Token Lifetime (seconds)

The time in seconds a refresh token is valid for. If this field is set to -1, the refresh token will
never expire.

Default value: 604800

amster attribute: refreshTokenLifetime

Access Token Lifetime (seconds)

The time an access token is valid for, in seconds. Note that if you set the value to 0, the access
token will not be valid. A maximum lifetime of 600 seconds is recommended.

Default value: 3600

amster attribute: accessTokenLifetime

Reference
Advanced

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 187

Issue Refresh Tokens

Whether to issue a refresh token when returning an access token.

Default value: true

amster attribute: issueRefreshToken

Issue Refresh Tokens on Refreshing Access Tokens

Whether to issue a refresh token when refreshing an access token.

Default value: true

amster attribute: issueRefreshTokenOnRefreshedToken

Use Policy Engine for Scope decisions

With this setting enabled, the policy engine is consulted for each scope value that is requested.

If a policy returns an action of GRANT=true, the scope is consented automatically, and the
user is not consulted in a user-interaction flow. If a policy returns an action of GRANT=false,
the scope is not added to any resulting token, and the user will not see it in a user-interaction
flow. If no policy returns a value for the GRANT action, then if the grant type is user-facing (i.e.
authorization or device code flows), the user is asked for consent (or saved consent is used), and
if the grant type is not user-facing (password or client credentials), the scope is not added to any
resulting token.

Default value: false

amster attribute: usePolicyEngineForScope

OAuth2 Access Token Modification Script

The script that is executed when issuing an access token. The script can change the access
token's internal data structure to include or exclude particular fields.

The possible values for this property are:

• d22f9a0c-426a-4466-b95e-d0f125b0d5fa. OAuth2 Access Token Modification Script

• [Empty]. --- Select a script ---

Default value: d22f9a0c-426a-4466-b95e-d0f125b0d5fa

amster attribute: accessTokenModificationScript

Advanced

The following settings appear on the Advanced tab:

Reference
Advanced

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 188

Custom Login URL Template

Custom URL for handling login, to override the default AM login page.

Supports Freemarker syntax, with the following variables:

Variable Description
gotoUrl The URL to redirect to after login.
acrValues The Authentication Context Class Reference (acr)

values for the authorization request.
realm The AM realm the authorization request was made

on.
module The name of the AM authentication module

requested to perform resource owner
authentication.

service The name of the AM authentication chain requested
to perform resource owner authentication.

locale A space-separated list of locales, ordered by
preference.

The following example template redirects users to a non-AM front end to handle login, which will
then redirect back to the /oauth2/authorize endpoint with any required parameters:

http://mylogin.com/login?goto=${goto}<#if acrValues??>&acr_values=${acrValues}</#if><#if realm??
>&realm=${realm}</#if><#if module??>&module=${module}</#if><#if service??>&service=${service}</#if><#if
 locale??>&locale=${locale}</#if>

NOTE: Default AM login page is constructed using "Base URL Source" service.

amster attribute: customLoginUrlTemplate

Scope Implementation Class

The class that contains the required scope implementation, must implement the org.forgerock.
oauth2.core.ScopeValidator interface.

Default value: org.forgerock.openam.oauth2.OpenAMScopeValidator

amster attribute: scopeImplementationClass

Response Type Plugins

List of plugins that handle the valid response_type values.

OAuth 2.0 clients pass response types as parameters to the OAuth 2.0 Authorization endpoint (/
oauth2/authorize) to indicate which grant type is requested from the provider. For example, the
client passes code when requesting an authorization code, and token when requesting an access
token.

Reference
Advanced

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 189

Values in this list take the form response-type|plugin-class-name.

Default value:

code|org.forgerock.oauth2.core.AuthorizationCodeResponseTypeHandler
device_code|org.forgerock.oauth2.core.TokenResponseTypeHandler
token|org.forgerock.oauth2.core.TokenResponseTypeHandler

amster attribute: responseTypeClasses

User Profile Attribute(s) the Resource Owner is Authenticated On

Names of profile attributes that resource owners use to log in. You can add others to the default,
for example mail.

Default value: uid

amster attribute: authenticationAttributes

User Display Name attribute

The profile attribute that contains the name to be displayed for the user on the consent page.

Default value: cn

amster attribute: displayNameAttribute

Supported Scopes

The set of supported scopes, with translations.

Scopes may be entered as simple strings or pipe-separated strings representing the internal
scope name, locale, and localized description.

For example: read|en|Permission to view email messages in your account

Locale strings are in the format: language_country_variant, for example en, en_GB, or en_US_WIN.

If the locale and pipe is omitted, the description is displayed to all users that have undefined
locales.

If the description is also omitted, nothing is displayed on the consent page for the scope. For
example specifying read| would allow the scope read to be used by the client, but would not
display it to the user on the consent page when requested.

amster attribute: supportedScopes

Subject Types supported

List of subject types supported. Valid values are:

Reference
Advanced

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 190

• public - Each client receives the same subject (sub) value.

• pairwise - Each client receives a different subject (sub) value, to prevent correlation between
clients.

Default value: public

amster attribute: supportedSubjectTypes

Default Client Scopes

List of scopes a client will be granted if they request registration without specifying which scopes
they want. Default scopes are NOT auto-granted to clients created through the AM console.

amster attribute: defaultScopes

OAuth2 Token Signing Algorithm

Algorithm used to sign client-based OAuth 2.0 tokens in order to detect tampering.

AM supports signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm) Header
Parameter Values for JWS:

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

The possible values for this property are:

• HS256

• HS384

• HS512

• RS256

• RS384

• RS512

• ES256

https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1
https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1

Reference
Advanced

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 191

• ES384

• ES512

• PS256

• PS384

• PS512

Default value: HS256

amster attribute: tokenSigningAlgorithm

Client-Based Token Compression

Whether client-based access and refresh tokens should be compressed.

amster attribute: tokenCompressionEnabled

Encrypt Client-Based Tokens

Whether client-based access and refresh tokens should be encrypted.

Enabling token encryption will disable token signing as encryption is performed using direct
symmetric encryption.

Default value: false

amster attribute: tokenEncryptionEnabled

Subject Identifier Hash Salt

If pairwise subject types are supported, it is STRONGLY RECOMMENDED to change this value.
It is used in the salting of hashes for returning specific sub claims to individuals using the same
request_uri or sector_identifier_uri.

For example, you might set this property to: changeme

amster attribute: hashSalt

Code Verifier Parameter Required

If enabled, requests using the authorization code grant require a code_challenge attribute.

For more information, read the specification for this feature.

The possible values for this property are:

• true. All requests

• public. Requests from all public clients

https://www.rfc-editor.org/info/rfc7636

Reference
Advanced

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 192

• passwordless. Requests from all passwordless public clients

• false. No requests

Default value: false

amster attribute: codeVerifierEnforced

Modified Timestamp Attribute Name

The identity Data Store attribute used to return modified timestamp values.

This attribute is paired together with the Created Timestamp Attribute Name attribute
(createdTimestampAttribute). You can leave both attributes unset (default) or set them both. If you
set only one attribute and leave the other blank, the access token fails with a 500 error.

For example, when you configure AM as an OpenID Connect Provider in a Mobile Connect
application and use DS as an identity data store, the client accesses the userinfo endpoint to
obtain the updated_at claim value in the ID token. The updated_at claim obtains its value from the
modifiedTimestampAttribute attribute in the user profile. If the profile has never been modified the
updated_at claim uses the createdTimestampAttribute attribute.

amster attribute: modifiedTimestampAttribute

Created Timestamp Attribute Name

The identity Data Store attribute used to return created timestamp values.

amster attribute: createdTimestampAttribute

Password Grant Authentication Service

The authentication service (chain or tree) that will be used to authenticate the username and
password for the resource owner password credentials grant type.

The possible values for this property are:

• [Empty]

• ldapService

• amsterService

• Example

• Agent

• RetryLimit

• PersistentCookie

• HmacOneTimePassword

Reference
Advanced

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 193

• Facebook-ProvisionIDMAccount

• Google-AnonymousUser

• Google-DynamicAccountCreation

amster attribute: passwordGrantAuthService

Enable Auth Module Messages for Password Credentials Grant

If enabled, authentication module failure messages are used to create Resource Owner Password
Credentials Grant failure messages. If disabled, a standard authentication failed message is used.

The Password Grant Type requires the grant_type=password parameter.

Default value: false

amster attribute: moduleMessageEnabledInPasswordGrant

Grant Types

The set of Grant Types (OAuth2 Flows) that are permitted to be used by this client.

If no Grant Types (OAuth2 Flows) are configured nothing will be permitted.

Default value:

implicit
urn:ietf:params:oauth:grant-type:saml2-bearer
refresh_token
password
client_credentials
urn:ietf:params:oauth:grant-type:device_code
authorization_code
urn:openid:params:grant-type:ciba
urn:ietf:params:oauth:grant-type:uma-ticket
urn:ietf:params:oauth:grant-type:jwt-bearer

amster attribute: grantTypes

Trusted TLS Client Certificate Header

HTTP Header to receive TLS client certificates when TLS is terminated at a proxy.

Leave blank if not terminating TLS at a proxy. Ensure that the proxy is configured to strip this
headerfrom incoming requests. Best practice is to use a random string.

amster attribute: tlsClientCertificateTrustedHeader

Support TLS Certificate-Bound Access Tokens

Whether to bind access tokens to the client certificate when using TLS client certificate
authentication.

Reference
Client Dynamic Registration

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 194

Default value: true

amster attribute: tlsCertificateBoundAccessTokensEnabled

Client Dynamic Registration

The following settings appear on the Client Dynamic Registration tab:

Require Software Statement for Dynamic Client Registration

When enabled, a software statement JWT containing at least the iss (issuer) claim must be
provided when registering an OAuth 2.0 client dynamically.

Default value: false

amster attribute: dynamicClientRegistrationSoftwareStatementRequired

Required Software Statement Attested Attributes

The client attributes that are required to be present in the software statement JWT when
registering an OAuth 2.0 client dynamically. Only applies if Require Software Statements for
Dynamic Client Registration is enabled.

Leave blank to allow any attributes to be present.

Default value: redirect_uris

amster attribute: requiredSoftwareStatementAttestedAttributes

Allow Open Dynamic Client Registration

Allow clients to register without an access token. If enabled, you should consider adding some
form of rate limiting. For more information, see Client Registration in the OpenID Connect
specification.

Default value: false

amster attribute: allowDynamicRegistration

Generate Registration Access Tokens

Whether to generate Registration Access Tokens for clients that register by using open dynamic
client registration. Such tokens allow the client to access the Client Configuration Endpoint as
per the OpenID Connect specification. This setting has no effect if Allow Open Dynamic Client
Registration is disabled.

Default value: true

amster attribute: generateRegistrationAccessTokens

http://openid.net/specs/openid-connect-registration-1_0.html#ClientRegistration
http://openid.net/specs/openid-connect-registration-1_0.html#ClientConfigurationEndpoint

Reference
OpenID Connect

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 195

Scope to give access to dynamic client registration

Mandatory scope required when registering a new OAuth2 client.

Default value: dynamic_client_registration

amster attribute: dynamicClientRegistrationScope

OpenID Connect

The following settings appear on the OpenID Connect tab:

OIDC Claims Script

The script that is run when issuing an ID token or making a request to the userinfo endpoint
during OpenID requests.

The script gathers the scopes and populates claims, and has access to the access token, the user's
identity and, if available, the user's session.

The possible values for this property are:

• OIDC Claims Script

Default value: OIDC Claims Script

amster attribute: oidcClaimsScript

ID Token Signing Algorithms supported

Algorithms supported to sign OpenID Connect id_tokens.

AM supports signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm) Header
Parameter Values for JWS:

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

• RS384 - RSASSA-PKCS-v1_5 using SHA-384.

https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1
https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1

Reference
OpenID Connect

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 196

• RS512 - RSASSA-PKCS-v1_5 using SHA-512.

• PS256 - RSASSA-PSS using SHA-256.

• PS384 - RSASSA-PSS using SHA-384.

• PS512 - RSASSA-PSS using SHA-512.

Default value:

PS384
ES384
RS384
HS256
HS512
ES256
RS256
HS384
ES512
PS256
PS512
RS512

amster attribute: supportedIDTokenSigningAlgorithms

ID Token Encryption Algorithms supported

Encryption algorithms supported to encrypt OpenID Connect ID tokens in order to hide its
contents.

AM supports the following ID token encryption algorithms:

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• RSA1_5 - RSA with PKCS#1 v1.5 padding.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• dir - Direct encryption with AES using the hashed client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

Default value:

RSA-OAEP
RSA-OAEP-256
A128KW
A256KW

Reference
OpenID Connect

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 197

RSA1_5
dir
A192KW

amster attribute: supportedIDTokenEncryptionAlgorithms

ID Token Encryption Methods supported

Encryption methods supported to encrypt OpenID Connect ID tokens in order to hide its contents.

AM supports the following ID token encryption algorithms:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default value:

A256GCM
A192GCM
A128GCM
A128CBC-HS256
A192CBC-HS384
A256CBC-HS512

amster attribute: supportedIDTokenEncryptionMethods

Supported Claims

Set of claims supported by the OpenID Connect /oauth2/userinfo endpoint, with translations.

Claims may be entered as simple strings or pipe separated strings representing the internal claim
name, locale, and localized description.

For example: name|en|Your full name..

Locale strings are in the format: language + "_" + country + "_" + variant, for example en, en_GB,
or en_US_WIN. If the locale and pipe is omitted, the description is displayed to all users that have
undefined locales.

If the description is also omitted, nothing is displayed on the consent page for the claim. For
example specifying family_name| would allow the claim family_name to be used by the client, but
would not display it to the user on the consent page when requested.

amster attribute: supportedClaims

OpenID Connect JWT Token Lifetime (seconds)

The amount of time the JWT will be valid for, in seconds.

Reference
Advanced OpenID Connect

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 198

Default value: 3600

amster attribute: jwtTokenLifetime

Advanced OpenID Connect

The following settings appear on the Advanced OpenID Connect tab:

Remote JSON Web Key URL

The Remote URL where the providers JSON Web Key can be retrieved.

If this setting is not configured, then AM provides a local URL to access the public key of the
private key used to sign ID tokens.

amster attribute: jkwsURI

Idtokeninfo Endpoint Requires Client Authentication

When enabled, the /oauth2/idtokeninfo endpoint requires client authentication if the signing
algorithm is set to HS256, HS384, or HS512.

Default value: true

amster attribute: idTokenInfoClientAuthenticationEnabled

Enable "claims_parameter_supported"

If enabled, clients will be able to request individual claims using the claims request parameter, as
per section 5.5 of the OpenID Connect specification.

Default value: false

amster attribute: claimsParameterSupported

OpenID Connect acr_values to Auth Chain Mapping

Maps OpenID Connect ACR values to authentication chains. For more details, see the acr_values
parameter in the OpenID Connect authentication request specification.

amster attribute: loaMapping

Default ACR values

Default requested Authentication Context Class Reference values.

List of strings that specifies the default acr values that the OP is being requested to use for
processing requests from this Client, with the values appearing in order of preference. The
Authentication Context Class satisfied by the authentication performed is returned as the

http://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter
http://openid.net/specs/openid-connect-core-1_0.html#AuthRequest
http://openid.net/specs/openid-connect-core-1_0.html#AuthRequest

Reference
Advanced OpenID Connect

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 199

acr Claim Value in the issued ID Token. The acr Claim is requested as a Voluntary Claim by
this parameter. The acr_values_supported discovery element contains a list of the acr values
supported by this server. Values specified in the acr_values request parameter or an individual
acr Claim request override these default values.

amster attribute: defaultACR

OpenID Connect id_token amr Values to Auth Module Mappings

Specify amr values to be returned in the OpenID Connect id_token. Once authentication has
completed, the authentication modules that were used from the authentication service will be
mapped to the amr values. If you do not require amr values, or are not providing OpenID Connect
tokens, leave this field blank.

amster attribute: amrMappings

Always Return Claims in ID Tokens

If enabled, include scope-derived claims in the id_token, even if an access token is also returned
that could provide access to get the claims from the userinfo endpoint.

If not enabled, if an access token is requested the client must use it to access the userinfo
endpoint for scope-derived claims, as they will not be included in the ID token.

Default value: false

amster attribute: alwaysAddClaimsToToken

Store Ops Tokens

Whether AM will store the ops tokens corresponding to OpenID Connect sessions in the CTS
store. Note that session management related endpoints will not work when this setting is
disabled.

Default value: true

amster attribute: storeOpsTokens

Request Parameter Signing Algorithms Supported

Algorithms supported to verify signature of Request parameterAM supports signing algorithms
listed in JSON Web Algorithms (JWA): "alg" (Algorithm) Header Parameter Values for JWS:

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1

Reference
Advanced OpenID Connect

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 200

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

Default value:

PS384
ES384
RS384
HS256
HS512
ES256
RS256
HS384
ES512
PS256
PS512
RS512

amster attribute: supportedRequestParameterSigningAlgorithms

Request Parameter Encryption Algorithms Supported

Encryption algorithms supported to decrypt Request parameter.

AM supports the following ID token encryption algorithms:

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• RSA1_5 - RSA with PKCS#1 v1.5 padding.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• dir - Direct encryption with AES using the hashed client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

Default value:

RSA-OAEP
RSA-OAEP-256
A128KW
A256KW
RSA1_5
dir
A192KW

amster attribute: supportedRequestParameterEncryptionAlgorithms

Reference
Advanced OpenID Connect

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 201

Request Parameter Encryption Methods Supported

Encryption methods supported to decrypt Request parameter.

AM supports the following Request parameter encryption algorithms:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default value:

A256GCM
A192GCM
A128GCM
A128CBC-HS256
A192CBC-HS384
A256CBC-HS512

amster attribute: supportedRequestParameterEncryptionEnc

Supported Token Endpoint JWS Signing Algorithms.

Supported JWS Signing Algorithms for 'private_key_jwt' JWT based authentication method.

Default value:

PS384
ES384
RS384
HS256
HS512
ES256
RS256
HS384
ES512
PS256
PS512
RS512

amster attribute: supportedTokenEndpointAuthenticationSigningAlgorithms

Authorized OIDC SSO Clients

Clients authorized to use OpenID Connect ID tokens as SSO Tokens.

Allows clients to act with the full authority of the user. Grant this permission only to trusted
clients.

amster attribute: authorisedOpenIdConnectSSOClients

Reference
Advanced OpenID Connect

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 202

UserInfo Signing Algorithms Supported

Algorithms supported to verify signature of the UserInfo endpoint. AM supports signing
algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm) Header Parameter Values for
JWS:

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

Default value:

ES384
HS256
HS512
ES256
RS256
HS384
ES512

amster attribute: supportedUserInfoSigningAlgorithms

UserInfo Encryption Algorithms Supported

Encryption algorithms supported by the UserInfo endpoint.

AM supports the following UserInfo endpoint encryption algorithms:

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• RSA1_5 - RSA with PKCS#1 v1.5 padding.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• dir - Direct encryption with AES using the hashed client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1
https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1

Reference
Device Flow

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 203

Default value:

RSA-OAEP
RSA-OAEP-256
A128KW
A256KW
RSA1_5
dir
A192KW

amster attribute: supportedUserInfoEncryptionAlgorithms

UserInfo Encryption Methods Supported

Encryption methods supported by the UserInfo endpoint.

AM supports the following UserInfo endpoint encryption methods:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default value:

A256GCM
A192GCM
A128GCM
A128CBC-HS256
A192CBC-HS384
A256CBC-HS512

amster attribute: supportedUserInfoEncryptionEnc

Use Force Authentication for prompt=login

This setting is applied only when you've implemented modules or chains, and you've specified the
prompt=login parameter. The default value is false.

When set to false, AM forces the end user to authenticate even if they already have a valid
session. After re-authentication, AM creates a new session.

When set to true, AM forces the end user to authenticate even if they already have a valid session.
But, after re-authentication, AM returns the same session ID. Setting this to false, to create new a
session, is recommended to increase the level of security.

Device Flow

The following settings appear on the Device Flow tab:

Reference
Consent

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 204

Verification URL

The URL that the user will be instructed to visit to complete their OAuth 2.0 login and consent
when using the device code flow.

amster attribute: verificationUrl

Device Completion URL

The URL that the user will be sent to on completion of their OAuth 2.0 login and consent when
using the device code flow.

amster attribute: completionUrl

Device Code Lifetime (seconds)

The lifetime of the device code, in seconds.

Default value: 300

amster attribute: deviceCodeLifetime

Device Polling Interval

The polling frequency for devices waiting for tokens when using the device code flow.

Default value: 5

amster attribute: devicePollInterval

Consent

The following settings appear on the Consent tab:

Saved Consent Attribute Name

Name of a multi-valued attribute on resource owner profiles where AM can save authorization
consent decisions.

When the resource owner chooses to save the decision to authorize access for a client
application, then AM updates the resource owner's profile to avoid having to prompt the resource
owner to grant authorization when the client issues subsequent authorization requests.

amster attribute: savedConsentAttribute

Allow Clients to Skip Consent

If enabled, clients may be configured so that the resource owner will not be asked for consent
during authorization flows.

Reference
Consent

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 205

Default value: false

amster attribute: clientsCanSkipConsent

Enable Remote Consent

Default value: false

amster attribute: enableRemoteConsent

Remote Consent Service ID

The ID of an existing remote consent service agent.

The possible values for this property are:

• [Empty]

amster attribute: remoteConsentServiceId

Remote Consent Service Request Signing Algorithms Supported

Algorithms supported to sign consent_request JWTs for Remote Consent Services.

AM supports signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm) Header
Parameter Values for JWS:

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

Default value:

PS384
ES384
RS384
HS256
HS512
ES256
RS256
HS384
ES512
PS256

https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1
https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1

Reference
Consent

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 206

PS512
RS512

amster attribute: supportedRcsRequestSigningAlgorithms

Remote Consent Service Request Encryption Algorithms Supported

Encryption algorithms supported to encrypt Remote Consent Service requests.

AM supports the following encryption algorithms:

• RSA1_5 - RSA with PKCS#1 v1.5 padding.

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• dir - Direct encryption with AES using the hashed client secret.

Default value:

RSA-OAEP
RSA-OAEP-256
A128KW
RSA1_5
A256KW
dir
A192KW

amster attribute: supportedRcsRequestEncryptionAlgorithms

Remote Consent Service Request Encryption Methods Supported

Encryption methods supported to encrypt Remote Consent Service requests.

AM supports the following encryption methods:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default value:

A256GCM

Reference
Consent

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 207

A192GCM
A128GCM
A128CBC-HS256
A192CBC-HS384
A256CBC-HS512

amster attribute: supportedRcsRequestEncryptionMethods

Remote Consent Service Response Signing Algorithms Supported

Algorithms supported to verify signed consent_response JWT from Remote Consent Services.

AM supports signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm) Header
Parameter Values for JWS:

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

Default value:

PS384
ES384
RS384
HS256
HS512
ES256
RS256
HS384
ES512
PS256
PS512
RS512

amster attribute: supportedRcsResponseSigningAlgorithms

Remote Consent Service Response Encryption Algorithms Supported

Encryption algorithms supported to decrypt Remote Consent Service responses.

AM supports the following encryption algorithms:

• RSA1_5 - RSA with PKCS#1 v1.5 padding.

https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1
https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1

Reference
CIBA

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 208

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• dir - Direct encryption with AES using the hashed client secret.

Default value:

RSA-OAEP
RSA-OAEP-256
A128KW
A256KW
RSA1_5
dir
A192KW

amster attribute: supportedRcsResponseEncryptionAlgorithms

Remote Consent Service Response Encryption Methods Supported

Encryption methods supported to decrypt Remote Consent Service responses.

AM supports the following encryption methods:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default value:

A256GCM
A192GCM
A128GCM
A128CBC-HS256
A192CBC-HS384
A256CBC-HS512

amster attribute: supportedRcsResponseEncryptionMethods

CIBA

The following settings appear on the CIBA tab:

Reference
Remote Consent Service

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 209

Back Channel Authentication ID Lifetime (seconds)

The time back channel authentication request id is valid for, in seconds.

Default value: 600

amster attribute: cibaAuthReqIdLifetime

Polling Wait Interval (seconds)

The minimum amount of time in seconds that the Client should wait between polling requests to
the token endpoint

Default value: 2

amster attribute: cibaMinimumPollingInterval

Signing Algorithms Supported

Algorithms supported to sign the CIBA request parameter.

AM supports signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm) Header
Parameter Values for JWS:

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• PS256 - RSASSA-PSS using SHA-256.

Default value:

ES256
PS256

amster attribute: supportedCibaSigningAlgorithms

Remote Consent Service
amster service name: RemoteConsentService

Realm Defaults

The following settings appear on the Realm Defaults tab:

Client Name

The name used to identify this OAuth 2.0 remote consent service when referencedin other
services.

https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1
https://www.rfc-editor.org/rfc/rfc7518.html#section-3.1
https://backstage.forgerock.com/docs/amster/6.5/entity-reference/#sec-amster-entity-remoteconsentservice

Reference
OAuth 2.0 and OpenID Connect 1.0 Client Settings

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 210

amster attribute: clientId

Signing Key Alias

The alias of the key in the default keystore to use for signing.

amster attribute: signingKeyAlias

Encryption Key Alias

The alias of the key in the default keystore to use for encryption.

amster attribute: encryptionKeyAlias

Authorization Server jwk_uri

The jwk_uri for retrieving the authorization server signing and encryption keys.

amster attribute: jwksUriAS

JWK Store Cache Timeout (in minutes)

The cache timeout for the JWK store of the authorization server, in minutes.

Default value: 60

amster attribute: jwkStoreCacheTimeout

JWK Store Cache Miss Cache Time (in minutes)

The length of time a cache miss is cached, in minutes.

Default value: 1

amster attribute: jwkStoreCacheMissCacheTime

Consent Response Time Limit (in minutes)

The time limit set on the consent response JWT before it expires, in minutes.

Default value: 2

amster attribute: consentResponseTimeLimit

OAuth 2.0 and OpenID Connect 1.0 Client Settings
To register an OAuth 2.0 client with AM as the OAuth 2.0 authorization server, or register an OpenID
Connect 1.0 client through the AM console, then create an OAuth 2.0 client profile. After creating the

Reference
Core

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 211

client profile, you can further configure the properties in the AM console by navigating to Realms >
Realm Name > Applications > OAuth 2.0 > Client Name.

Core

The following properties appear on the Core tab:

Group

Set this field if you have configured an OAuth 2.0 client group.

Status

Specify whether the client profile is active for use or inactive.

Client secret

Specify the client secret as described by RFC 6749 in the section, Client Password.

For OAuth 2.0/OpenID Connect 1.0 clients, AM uses the client password as the client shared
secret key when signing the contents of the request parameter with HMAC-based algorithms, such
as HS256.

Client type

Specify the client type.

Confidential clients can maintain the confidentiality of their credentials, such as a web
application running on a server where its credentials are protected. Public clients run the risk
of exposing their passwords to a host or user agent, such as a JavaScript client running in a
browser.

Redirection URIs

Specify client redirection endpoint URIs as described by RFC 6749 in the section, Redirection
Endpoint. AM's OAuth 2.0 authorization service redirects the resource owner's user-agent back
to this endpoint during the authorization code grant process. If your client has more than one
redirection URI, then it must specify the redirection URI to use in the authorization request. The
redirection URI must NOT contain a fragment (#).

OpenID Connect clients require redirection URIs.

Scope(s)

Specify scopes that are to be presented to the resource owner when the resource owner is asked
to authorize client access to protected resources.

The openid scope is required. It indicates that the client is making an OpenID Connect request to
the authorization server.

https://www.rfc-editor.org/rfc/rfc6749.html#section-2.3.1
https://www.rfc-editor.org/rfc/rfc6749.html#section-3.1.2
https://www.rfc-editor.org/rfc/rfc6749.html#section-3.1.2

Reference
Core

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 212

Scopes can be entered as simple strings, such as openid, read, email, profile, or as a pipe-separated
string in the format: scope|locale|localized description. For example, read|en|Permission to view email
 messages.

Locale strings have the format: language_country_variant. For example, en, en_GB, or en_US_WIN. If
the locale and pipe is omitted, the localized description is displayed to all users having undefined
locales. If the localized description is omitted, nothing is displayed to all users. For example, a
scope of read| would allow the client to use the read scope but would not display it to the user
when requested.

AM reserves a special scope, am-introspect-all-tokens. As administrator, add this scope to the
OAuth 2.0 client profile to allow the client to introspect access tokens issued to other clients in
the same realm. This scope cannot be added during dynamic client registration.

Default Scope(s)

Specify scopes in scope or scope|locale|localized description format. These scopes are set
automatically when tokens are issued.

The openid scope is required. It indicates that the client is making an OpenID Connect request to
the authorization server.

Scopes can be entered as simple strings, such as openid, read, email, profile, or as a pipe-separated
string in the format: scope|locale|localized description. For example, read|en|Permission to view email
 messages.

Locale strings have the format:language_ country_variant. For example, en, en_GB, or en_US_WIN. If
the locale and pipe is omitted, thelocalized description is displayed to all users having undefined
locales. If the localized description is omitted, nothing is displayed to all users. For example, a
scope of read| would allow the client to use the read scope but would not display it to the user
when requested.

Client Name

Specify a human-readable name for the client.

Authorization Code Lifetime (seconds)

Specify the time in seconds for an authorization code to be valid. If this field is set to zero, the
authorization code lifetime of the OAuth2 provider is used.

Default: 0

Refresh Token Lifetime (seconds)

Specify the time in seconds for a refresh token to be valid. If this field is set to zero, the refresh
token lifetime of the OAuth2 provider is used. If the field is set to -1, the token will never expire.

Default: 0

Reference
Advanced

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 213

Access Token Lifetime (seconds)

Specify the time in seconds for an access token to be valid. If this field is set to zero, the access
token lifetime of the OAuth2 provider is used.

Default: 0

Advanced

The following properties appear on the Advanced tab:

Display name

Specify a client name to display to the resource owner when the resource owner is asked to
authorize client access to protected resources. Valid formats include name or locale|localized name .

The Display name can be entered as a single string or as a pipe-separated string for locale and
localized name, for example, en|My Example Company.

Locale strings have the format:language_ country_ variant. For example, en, en_GB, or en_US_WIN. If
the locale is omitted, the name is displayed to all users having undefined locales.

Display description

Specify a client description to display to the resource owner when the resource owner is asked to
authorize client access to protected resources. Valid formats include description or locale|localized
 description .

The Display description can be entered as a single string or as a pipe-separated string for
locale and localized name, for example, en|The company intranet is requesting the following access
 permission.

Locale strings have the format:language_ country_ variant. For example, en, en_GB, or en_US_WIN. If
the locale is omitted, the name is displayed to all users having undefined locales.

Request uris

Specify request_uri values that a dynamic client would pre-register.

URIs must be pre-registered in this field before the client can request them in the request_uri
parameter.

Grant Types

Specify the set of OAuth 2.0 grant flows allowed for this client. The following flows are available:

• Authorization Code

• Back Channel Request

Reference
Advanced

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 214

• Implicit

• Resource Owner Password Credentials

• Client Credentials

• Refresh Token

• UMA

• Device Code

• SAML2

When registering clients dynamically, if no grant types are specified in the registration request,
then the default Authorization Code grant type is assumed, and configured in the client.

Any grant types selected in a client must also be enabled in the OAuth 2.0 provider service. See
"OAuth2 Provider".

Default: Authorization Code

Response Types

Specify the response types that the client uses. The response type value specifies the flow that
determine how the ID token and access token are returned to the client. For more information,
see OAuth 2.0 Multiple Response Type Encoding Practices.

By default, the following response types are available:

• code. Specifies that the client application requests an authorization code grant.

• token. Specifies that the client application requests an implicit grant type and requests a token
from the API.

• id_token. Specifies that the client application requests an ID token.

• code token. Specifies that the client application requests an access token, access token type, and
an authorization code.

• token id_token. Specifies that the client application requests an access token, access token type,
and an ID token.

• code id_token. Specifies that the client application requests an authorization code and an ID
token.

• code token id_token. Specifies that the client application requests an authorization code, access
token, access token type, and an ID token.

Contacts

Specify the email addresses of users who administer the client.

https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html

Reference
Advanced

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 215

Token Endpoint Authentication Method

Specify the authentication method with which a client authenticates to AM (as an authorization
server) at the token endpoint. The authentication method applies to OIDC requests with scope
openid.

• client_secret_basic. Clients authenticate with AM (as an authorization server) using the HTTP
Basic authentication scheme after receiving a client_secret value.

• client_secret_post. Clients authenticate with AM (as an authorization server) by including the
client credentials in the request body after receiving a client_secret value.

• private_key_jwt. Clients sign a JSON web token (JWT) with a registered public key.

• tls_client_auth. Clients use a CA-signed certificate for mutual TLS authentication.

• self_signed_tls_client_auth. Clients use a self-signed certificate for mutual TLS authentication.

For more information, see "Authenticating OAuth 2.0 Clients", and Client Authentication in the
OpenID Connect Core 1.0 incorporating errata set 1 specification.

Sector Identifier URI

Specify the host component of this URI, which is used in the computation of pairwise subject
identifiers.

Subject Type

Specify the subject identifier type, which is a locally unique identifier that will be consumed by
the client. Select one of two options:

• public. Provides the same sub (subject) value to all clients.

• pairwise. Provides a different sub (subject) value to each client.

Access Token

Specify the registration_access_token value that you provide when registering the client, and then
subsequently when reading or updating the client profile.

Client URI

Specify the URI containing further information about this client. The URI is displayed as a link in
user-facing pages, such as consent pages.

The URI can be made locale-specific by specifying a pipe-separated string in the format:
URI|locale. For example, https://www.example.es:8443/aplicacion/informacion.html|es

Logo URI

Specify the URI of a logo for the client. The logo is displayed in user-facing pages, such as
consent pages.

https://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication

Reference
OpenID Connect

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 216

The logo can be made locale-specific by specifying a pipe-separated string in the format:
URI|locale. For example, https://www.example.es:8443/aplicacion/imagen.png|es

Privacy Policy URI

Specify the URI containing the client's privacy policy documentation. The URI is displayed as a
link in user-facing pages, such as consent pages.

The URI can be made locale-specific by specifying a pipe-separated string in the format:
URI|locale. For example, https://www.example.es:8443/aplicacion/legal.html|es

Implied Consent

Enable the implied consent feature. When enabled, the resource owner will not be asked for
consent during authorization flows. The OAuth2 Provider must also be configured to allow clients
to skip consent.

OAuth 2.0 Mix-Up Mitigation enabled

Enable OAuth 2.0 mix-up mitigation on the authorization server side.

Enable this setting only if this OAuth 2.0 client supports the OAuth 2.0 Mix-Up Mitigation draft,
otherwise AM will fail to validate access token requests received from this client.

OpenID Connect
The following properties appear on the OpenID Connect tab:

Claim(s)

Specify one or more claim name translations that will override those specified for the
authentication session. Claims are values that are presented to the user to inform them what data
is being made available to the client.

Claims can be in entered as simple strings, such as name, email, profile, or sub, or as a pipe-
separated string in the format: scope|locale|localized description. For example, name|en|Full name of
 user.

Locale strings have the format:language_ country_ variant. For example, en, en_GB, or en_US_WIN. If
the locale and pipe is omitted, thelocalized description is displayed to all users having undefined
locales. If the localized description is omitted, nothing is displayed to all users. For example,
a claim of name| would allow the client to use the name claim but would not display it to the user
when requested.

If a value is not given, the value is computed from the OAuth2 provider.

Post Logout Redirect URIs

Specify one or more allowable URIs to which the user-agent can be redirected to after the client
logout process.

https://tools.ietf.org/html/draft-ietf-oauth-mix-up-mitigation-01

Reference
Signing and Encryption

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 217

Client Session URI

Specify the relying party (client) URI to which the OpenID Connect Provider sends session
changed notification messages using the HTML 5 postMessage API.

Default Max Age

Specify the maximum time in seconds that a user can be authenticated. If the user last
authenticated earlier than this value, then the user must be authenticated again. If specified, the
request parameter max_age overrides this setting.

Minimum value: 1.

Default: 600

Default Max Age Enabled

Enable the default max age feature.

Default ACR values

Default Authentication Context Class Reference values.

Specify strings that will be requested as Voluntary Claims by default in all incoming requests.

Values specified in the acr_values request parameter or an individual acr claim request override
these default values.

OpenID Connect JWT Token Lifetime (seconds)

Specify the time in seconds for a JWT to be valid. If this field is set to zero, the JWT token lifetime
of the OAuth2 provider is used.

Default: 0

Signing and Encryption

Note

AM returns an error if the administrator tries to save a client profile configuration containing an unsupported
signing or encryption algorithm on a client.

For example, upon saving the configuration, AM will return an error if there is a typo on an algorithm, or a
symmetric signing or encryption algorithm is configured on a public client: these algorithms are derived from
the client's secret, which public clients do not have.

Clients registering dynamically must also send supported algorithms as part of their configuration, or AM will
reject the registration request.

Different features support different algorithms. Refer to the documentation or the UI for more information.

The following properties appear on the Signing and Encryption tab:

Reference
Signing and Encryption

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 218

Json Web Key URI

Specify the URI that contains the client's public keys in JSON web key format.

JWKs URI content cache timeout in ms

Specify the amount of time, in milliseconds, that the content of the JWKs' URI is cached for before
being refreshed. Caching the content avoids fetching it for every token encryption or validation.

Default: 3600000

JWKs URI content cache miss cache time

Specify the amount of time, in milliseconds, that AM waits before fetching the URI's content
again when a key ID (kid) is not in the JWKs that are already cached.

For example, if a request comes in with a kid that is not in the cached JWKs, AM checks the value
of JWKs' URI content cache miss cache time. If the amount of time specified in this property has
already passed since the last time AM fetched the JWKs, AM fetches them again. Otherwise, the
request is rejected.

Use this property as a rate limit to prevent denial-of-service attacks against the URI.

Default: 60000

Token Endpoint Authentication Signing Algorithm

Specify the JWS algorithm that must be used for signing JWTs used to authenticate the client at
the Token Endpoint.

JWTs that are not signed with the selected algorithm in token requests from the client using the
private_key_jwt authentication method will be rejected.

Default: RS256

Json Web Key

Raw JSON web key value containing the client's public keys.

ID Token Signing Algorithm

Specify the signing algorithm that the ID token must be signed with.

Enable ID Token Encryption

Enable ID token encryption using the specified ID token encryption algorithm.

ID Token Encryption Algorithm

Specify the algorithm that the ID token must be encrypted with.

Default value: RSA1_5 (RSAES-PKCS1-V1_5).

Reference
Signing and Encryption

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 219

ID Token Encryption Method

Specify the method that the ID token must be encrypted with.

Default value: A128CBC-HS256.

Client ID Token Public Encryption Key

Specify the Base64-encoded public key for encrypting ID tokens.

Client JWT Bearer Public Key Certificate

Specify the base64-encoded X509 certificate in PEM format. The certificate is never used during
the signing process, but is used to obtain the client's JWT bearer public key. The client uses the
private key to sign client authentication and access token request JWTs, while AM uses the public
key for verification.

The following is an example of the certificate:

-----BEGIN CERTIFICATE-----
MIIDETCCAfmgAwIBA...
-----END CERTIFICATE-----

You can generate a new key pair alias by using the Java keytool command. Follow the steps in "To
Create Key Aliases in an Existing Keystore" in the Setup and Maintenance Guide.

To export the certificate from the new key pair in PEM format, run a command similar to the
following:
$ keytool \
 -list \
 -alias myAlias \
 -rfc \
 -storetype JCEKS \
 -keystore myKeystore.jceks \
 -keypass myKeypass \
 -storepass myStorepass

Alias name: myAlias
Creation date: Oct 27, 2014
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
-----BEGIN CERTIFICATE-----
 MIIDETCCAfmgAwIBA...
-----END CERTIFICATE-----

For more information, see "Authenticating Clients Using JWT Profiles".

mTLS Self-Signed Certificate

Specify the base64-encoded X.509 certificate in PEM format that clients can use to authenticate
to the access_token endpoint during mutual TLS authentication.

Reference
Signing and Encryption

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 220

Only applies when clients use self-signed certificates to authenticate.

For more information, see "Mutual TLS Using Self-Signed X.509 Certificates"

mTLS Subject DN

Specify the distinguished name that must exactly match the subject field in the client certificate
used for mutual TLS authentication, for example CN=myOauth2Client.

Only applies when clients use CA-signed certificates to authenticate.

For more information, see "Mutual TLS Using Public Key Infrastructure"

Use Certificate-Bound Access Tokens

Specify that access tokens issued to this client should be bound to the X.509 certificate it uses to
authenticate to the access_token endpoint.

If enabled, AM adds a confirmation key labelled x5t#S256 to all access tokens. The confirmation
key contains the SHA-256 hash of the client's certificate.

For more information, see "Certificate-Bound Proof-of-Possession"

Public key selector

Select the format of the public keys for JWT profile client authentication, ID token encryption, and
mTLS self-signed certificate authentication. Valid formats are:

• JWKs_URI

Configure a URI that exposes the client public keys in the Json Web Key URI field, and ensure
the following related properties have sensible values for your environment:

• JWKs URI content cache timeout in ms

• JWKs URI content cache miss cache time

• JWKs

Enter a JWK Set containing one or more keys in the Json Web Key field. For example:
{
 "keys": [
 {
 "kty": "RSA",
 "n": ...
 },
 ...
]
}

• X509

Reference
Signing and Encryption

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 221

Enter a key object or a single certificate in one of the following fields, depending on the feature
you are configuring:

• (ID token encryption) Client ID Token Public Encryption Key. Requires an RSA public key
object in X.509 PEM format. For example:
-----BEGIN PUBLIC KEY-----
......
-----END PUBLIC KEY-----

• (JWT client authentication) Client JWT Bearer Public Key. Requires a X.509 certificate in PEM
format. For example:
-----BEGIN CERTIFICATE-----
.....
-----END CERTIFICATE-----

• (mTLS client authentication) mTLS Self-Signed Certificate. Requires a X.509 certificate in
PEM format. For example:
-----BEGIN CERTIFICATE-----
.....
-----END CERTIFICATE-----

Default: JWKs_URI

User info response format.

Specify the output format from the UserInfo endpoint.

The supported output formats are as follows:

• User info JSON response format.

• User info encrypted JWT response format.

• User info signed JWT response format.

• User info signed then encrypted response format.

For more information on the output format of the UserInfo Response, see Successful UserInfo
Response in the OpenID Connect Core 1.0 incorporating errata set 1 specification.

Default: User info JSON response format.

User info signed response algorithm

Specify the JSON Web Signature (JWS) algorithm for signing UserInfo Responses. If specified, the
response will be JSON Web Token (JWT) serialized, and signed using JWS.

The default, if omitted, is for the UserInfo Response to return the claims as a UTF-8-encoded
JSON object using the application/json content type.

https://openid.net/specs/openid-connect-core-1_0.html#UserInfoResponse
https://openid.net/specs/openid-connect-core-1_0.html#UserInfoResponse

Reference
UMA

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 222

User info encrypted response algorithm

Specify the JSON Web Encryption (JWE) algorithm for encrypting UserInfo Responses.

If both signing and encryption are requested, the response will be signed then encrypted, with
the result being a nested JWT.

The default, if omitted, is that no encryption is performed.

User info encrypted response encryption algorithm

Specify the JWE encryption method for encrypting UserInfo Responses. If specified, you must also
specify an encryption algorithm in the User info encrypted response algorithm property.

AM supports the following encryption methods:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default: A128CBC-HS256

Request parameter signing algorithm

Specify the JWS algorithm for signing the request parameter.

Must match one of the values configured in the Request parameter Signing Algorithms supported
property of the OAuth2 Provider service. See "Advanced OpenID Connect".

Request parameter encryption algorithm

Specify the algorithm for encrypting the request parameter.

Must match one of the values configured in the Request parameter Encryption Algorithms
supported property of the OAuth2 Provider service. See "Advanced OpenID Connect".

Request parameter encryption method

Specify the method for encrypting the request parameter.

Must match one of the values configured in the Request parameter Encryption Methods
supported property of the OAuth2 Provider service. See "Advanced OpenID Connect".

Default: A128CBC-HS256

UMA

The following properties appear on the UMA tab:

Reference
OAuth 2.0 Remote Consent Agent Settings

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 223

Client Redirection URIs

Note

This property is for future use, and not currently active.

Specify one or more allowable URIs to which the client can be redirected after the UMA claims
collection process. The URIs must not contain a fragment (#).

If multiple URIs are registered, the client MUST specify the redirection URI to be redirected to
following approval.

OAuth 2.0 Remote Consent Agent Settings
To register an OAuth 2.0 remote consent service with AM as the OAuth 2.0 authorization server,
create a Remote Consent Agent profile. After creating the profile, you can further configure the
properties in the AM console by navigating to Realms > Realm Name > Applications > Remote
Consent > Agent Name.

The following properties appear on the agent profile page:

Note

The properties value examples below are applicable to the example remote consent service provided with AM.
Alter the values as required by your remote consent service.

Group

Configure several remote consent agent profiles by assigning them to a group.

Default value: none

amster attribute: agentgroup

Remote Consent Service secret

If the remote consent agent needs to authenticate to AM, enter the password it will use. Reenter
the password in the Remote Consent Service secret (confirm) property.

amster attribute: userpassword

Redirect URL

Specify the URL to which the user should be redirected during the OAuth 2.0 flow to obtain their
consent.

The AM example remote consent service provides an /oauth2/consent path to obtain consent from
the user.

Reference
OAuth 2.0 Remote Consent Agent Settings

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 224

Example: https://rcs.example.com:8443/openam/oauth2/consent

amster attribute: remoteConsentRedirectUrl

Consent Request Signing Algorithm

Specify the algorithm used to sign the consent request JWT sent to the Remote Consent Service.

The signing key used depends on the algorithm chosen. The relevant secret IDs and the default
signing key aliases are shown in the table below:

Secret ID Mappings for Signing Remote Consent Requests

The following table shows the default secret ID mappings used to sign remote consent requests:

Secret ID Default Alias Algorithms a

am.applications.agents.remote.consent.request.signing.ES256es256test ES256
am.applications.agents.remote.consent.request.signing.ES384es384test ES384
am.applications.agents.remote.consent.request.signing.ES512es512test ES512
am.applications.agents.remote.consent.request.signing.RSArsajwtsigningkey RS256

RS384
RS512
PS256
PS384
PS512

a If you select an HMAC algorithm for signing consent requests (HS256, HS384, or HS512), the value of the Remote Consent
Service secret property is used, instead of an entry from the secret stores.

Since the HMAC secret is shared between AM and the remote consent client, a malicious user compromising the client
could potentially create tokens that AM would trust. Therefore, to protect against misuse, AM also signs the token using a
non-shared signing key configured in the am.services.oauth2.jwt.authenticity.signing secret ID.

By default, secret IDs are mapped to demo keys contained in the default keystore provided
with AM and mapped to the default-keystore keystore secret store. Use these keys for demo and
test purposes only. For production environments, replace the secrets as required and create
mappings for them in a secret store configured in AM.

For more information about managing secret stores and mapping secret IDs to aliases, see
"Configuring Secrets, Certificates, and Keys" in the Setup and Maintenance Guide.

Default value: RS256

amster attribute: remoteConsentRequestSigningAlgorithm

Enable consent request Encryption

Specify whether to encrypt the consent request JWT sent to the Remote Consent Service.

Default: true

Reference
OAuth 2.0 Remote Consent Agent Settings

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 225

amster attribute: remoteConsentRequestEncryptionEnabled

Consent request Encryption Algorithm

Specify the encryption algorithm used to encrypt the consent request JWT sent to the Remote
Consent Service.

AM supports the following encryption algorithms:

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• RSA1_5 - RSA with PKCS#1 v1.5 padding.

• dir - Direct encryption with AES using the hashed client secret.

Default value: RSA-OAEP-256

amster attribute: remoteConsentRequestEncryptionAlgorithm

Consent request Encryption Method

Specify the encryption method used to encrypt the consent request JWT sent to the Remote
Consent Service.

AM supports the following encryption methods:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default value: A128GCM

amster attribute: remoteConsentRequestEncryptionMethod

Consent response signing algorithm

Specify the algorithm used to verify a signed consent response JWT received from the Remote
Consent Service.

AM supports signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm) Header
Parameter Values for JWS:

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms#section-3.1
https://datatracker.ietf.org/doc/html/draft-ietf-jose-json-web-algorithms#section-3.1

Reference
OAuth 2.0 Remote Consent Agent Settings

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 226

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

Default value: RS256

amster attribute: remoteConsentResponseSigningAlg

Consent response encryption algorithm

Specify the encryption algorithm used to decrypt the consent response JWT received from the
Remote Consent Service.

AM supports the following encryption algorithms:

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

• dir - Direct encryption with AES using the hashed client secret.

The decryption key used depends on the algorithm chosen. The relevant secret IDs and the
default decryption key aliases are shown in the table below:

Secret ID Mappings for Decrypting Remote Consent Responses

The following table shows the default secret ID mapping used to decrypt remote consent
responses:

Secret ID Default Alias Algorithmsa

am.services.oauth2.remote.consent.response.decryptiontest RSA-OAEP-256
a If you select an algorithm other than RSA-OAEP-256 for decrypting consent responses, the value of the Remote Consent
Service secret property is used, instead of an entry from the secret stores.

By default, secret IDs are mapped to demo keys contained in the default keystore provided
with AM and mapped to the default-keystore keystore secret store. Use these keys for demo and
test purposes only. For production environments, replace the secrets as required and create
mappings for them in a secret store configured in AM.

Reference
OAuth 2.0 Remote Consent Agent Settings

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 227

For more information about managing secret stores and mapping secret IDs to aliases, see
"Configuring Secrets, Certificates, and Keys" in the Setup and Maintenance Guide.

Default value: RSA-OAEP-256

amster attribute: remoteConsentResponseEncryptionAlgorithm

Consent response encryption method

Specify the encryption method used to decrypt the consent response JWT received from the
Remote Consent Service.

AM supports the following encryption methods:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default value: A128GCM

amster attribute: remoteConsentResponseEncryptionMethod

Public key selector

Specify whether the remote consent service provides its public keys using a JWKs_URI, or manually
in JWKs format.

If JWKs is selected, you must enter the keys in the Json Web Key property. Otherwise complete the
JWKs URI-related properties.

Default: JWKs_URI

amster attribute: remoteConsentRedirectUrl

Json Web Key URI

Specify the URI from which AM can obtain the Remote Consent Service's public keys.

The AM example remote consent service provides an /oauth2/consent/jwk_uri path to provide the
public keys.

Example: http://rcs.example.com:8080/openam/oauth2/consent/jwk_uri

amster attribute: jwksUri

JWKs URI content cache timeout in ms

Specify the amount of time, in milliseconds, that the content of the JWKs' URI is cached for before
being refreshed. Caching the content avoids fetching it for every token encryption or validation.

Reference
OAuth 2.0 Remote Consent Agent Settings

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 228

Default: 3600000

amster attribute: com.forgerock.openam.oauth2provider.jwksCacheTimeout

JWKs URI content cache miss cache time

Specify the amount of time, in milliseconds, that AM waits before fetching the URI's content
again when a key ID (kid) is not in the JWKs that are already cached.

For example, if a request comes in with a kid that is not in the cached JWKs, AM checks the value
of JWKs' URI content cache miss cache time. If the amount of time specified in this property has
already passed since the last time AM fetched the JWKs, AM fetches them again. Otherwise, the
request is rejected.

Use this property as a rate limit to prevent denial-of-service attacks against the URI.

Default: 60000

amster attribute: com.forgerock.openam.oauth2provider.jwkStoreCacheMissCacheTime

Json Web Key

If the Public key selector: property is set to JWKs, specify the Remote Consent Service's public
keys, in JSON Web Key format.

Example:
{
 "keys": [
 {
 "kty": "RSA",
 "kid": "RemA6Gw0...LzsJ5zG3E=",
 "use": "enc",
 "alg": "RSA-OAEP-256",
 "n": "AL4kjz74rDo3VQ3Wx...nhch4qJRGt2QnCF7M0",
 "e": "AQAB"
 },
 {
 "kty": "RSA",
 "kid": "wUy3ifIIaL...eM1rP1QM=",
 "use": "sig",
 "alg": "RS256",
 "n": "ANdIhkOZeSHagT9Ze...ciOACVuGUoNTzztlCUk",
 "e": "AQAB"
 }
]
}

amster attribute: jwkSet

Consent Request Time Limit

Specify the amount of time, in seconds, for which the consent request JWT sent to the Remote
Consent Service should be considered valid.

Reference
OAuth 2.0 Remote Consent Agent Settings

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 229

Default: 180

amster attribute: requestTimeLimit

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 230

Appendix A. About the REST API

This appendix shows how to use the RESTful interfaces for direct integration between web client
applications and ForgeRock Access Management.

Introducing REST
Representational State Transfer (REST) is an architectural style that sets certain constraints for
designing and building large-scale distributed hypermedia systems.

As an architectural style, REST has very broad applications. The designs of both HTTP 1.1 and
URIs follow RESTful principles. The World Wide Web is no doubt the largest and best known REST
application. Many other web services also follow the REST architectural style. Examples include
OAuth 2.0, OpenID Connect 1.0, and User-Managed Access (UMA).

The ForgeRock Common REST (CREST) API applies RESTful principles to define common verbs for
HTTP-based APIs that access web resources and collections of web resources.

Interface Stability: Evolving

Most native AM REST APIs use the CREST verbs. (In contrast, OAuth 2.0, OpenID Connect 1.0 and
UMA APIs follow their respective standards.)

About ForgeRock Common REST
ForgeRock® Common REST is a common REST API framework. It works across the ForgeRock
platform to provide common ways to access web resources and collections of resources. Adapt the
examples in this section to your resources and deployment.

http://en.wikipedia.org/wiki/Representational_state_transfer

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 231

Note

This section describes the full Common REST framework. Some platform component products do not implement
all Common REST behaviors exactly as described in this section. For details, refer to the product-specific
examples and reference information in other sections of this documentation set.

Common REST Resources

Servers generally return JSON-format resources, though resource formats can depend on the
implementation.

Resources in collections can be found by their unique identifiers (IDs). IDs are exposed in the
resource URIs. For example, if a server has a user collection under /users, then you can access a user
at /users/user-id. The ID is also the value of the _id field of the resource.

Resources are versioned using revision numbers. A revision is specified in the resource's _rev field.
Revisions make it possible to figure out whether to apply changes without resource locking and
without distributed transactions.

Common REST Verbs

The Common REST APIs use the following verbs, sometimes referred to collectively as CRUDPAQ.
For details and HTTP-based examples of each, follow the links to the sections for each verb.

Create

Add a new resource.

This verb maps to HTTP PUT or HTTP POST.

For details, see "Create".

Read

Retrieve a single resource.

This verb maps to HTTP GET.

For details, see "Read".

Update

Replace an existing resource.

This verb maps to HTTP PUT.

For details, see "Update".

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 232

Delete

Remove an existing resource.

This verb maps to HTTP DELETE.

For details, see "Delete".

Patch

Modify part of an existing resource.

This verb maps to HTTP PATCH.

For details, see "Patch".

Action

Perform a predefined action.

This verb maps to HTTP POST.

For details, see "Action".

Query

Search a collection of resources.

This verb maps to HTTP GET.

For details, see "Query".

Common REST Parameters

Common REST reserved query string parameter names start with an underscore, _.

Reserved query string parameters include, but are not limited to, the following names:

_action
_api
_crestapi
_fields
_mimeType
_pageSize
_pagedResultsCookie
_pagedResultsOffset
_prettyPrint
_queryExpression

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 233

_queryFilter
_queryId
_sortKeys
_totalPagedResultsPolicy

Note

Some parameter values are not safe for URLs, so URL-encode parameter values as necessary.

Continue reading for details about how to use each parameter.

Common REST Extension Points

The action verb is the main vehicle for extensions. For example, to create a new user with HTTP
POST rather than HTTP PUT, you might use /users?_action=create. A server can define additional
actions. For example, /tasks/1?_action=cancel.

A server can define stored queries to call by ID. For example, /groups?_queryId=hasDeletedMembers. Stored
queries can call for additional parameters. The parameters are also passed in the query string. Which
parameters are valid depends on the stored query.

Common REST API Documentation

Common REST APIs often depend at least in part on runtime configuration. Many Common REST
endpoints therefore serve API descriptors at runtime. An API descriptor documents the actual API as
it is configured.

Use the following query string parameters to retrieve API descriptors:

_api

Serves an API descriptor that complies with the OpenAPI specification.

This API descriptor represents the API accessible over HTTP. It is suitable for use with popular
tools such as Swagger UI.

_crestapi

Serves a native Common REST API descriptor.

This API descriptor provides a compact representation that is not dependent on the transport
protocol. It requires a client that understands Common REST, as it omits many Common REST
defaults.

Note

Consider limiting access to API descriptors in production environments in order to avoid unnecessary traffic.

https://github.com/OAI/OpenAPI-Specification
http://swagger.io/swagger-ui/

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 234

To provide documentation in production environments, see "To Publish OpenAPI Documentation" instead.

To Publish OpenAPI Documentation

In production systems, developers expect stable, well-documented APIs. Rather than retrieving API
descriptors at runtime through Common REST, prepare final versions, and publish them alongside
the software in production.

Use the OpenAPI-compliant descriptors to provide API reference documentation for your developers
as described in the following steps:

1. Configure the software to produce production-ready APIs.

In other words, the software should be configured as in production so that the APIs are identical
to what developers see in production.

2. Retrieve the OpenAPI-compliant descriptor.

The following command saves the descriptor to a file, myapi.json:

$ curl -o myapi.json endpoint?_api

3. (Optional) If necessary, edit the descriptor.

For example, you might want to add security definitions to describe how the API is protected.

If you make any changes, then also consider using a source control system to manage your
versions of the API descriptor.

4. Publish the descriptor using a tool such as Swagger UI.

You can customize Swagger UI for your organization as described in the documentation for the
tool.

Create

There are two ways to create a resource, either with an HTTP POST or with an HTTP PUT.

To create a resource using POST, perform an HTTP POST with the query string parameter _
action=create and the JSON resource as a payload. Accept a JSON response. The server creates the
identifier if not specified:

https://github.com/swagger-api/swagger-ui

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 235

POST /users?_action=create HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
{ JSON resource }

To create a resource using PUT, perform an HTTP PUT including the case-sensitive identifier for
the resource in the URL path, and the JSON resource as a payload. Use the If-None-Match: * header.
Accept a JSON response:

PUT /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-None-Match: *
{ JSON resource }

The _id and content of the resource depend on the server implementation. The server is not required
to use the _id that the client provides. The server response to the create request indicates the
resource location as the value of the Location header.

If you include the If-None-Match header, its value must be *. In this case, the request creates the object
if it does not exist, and fails if the object does exist. If you include the If-None-Match header with any
value other than *, the server returns an HTTP 400 Bad Request error. For example, creating an
object with If-None-Match: revision returns a bad request error. If you do not include If-None-Match: *,
the request creates the object if it does not exist, and updates the object if it does exist.

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

If the field is left blank, the server returns all default values.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 236

Read

To retrieve a single resource, perform an HTTP GET on the resource by its case-sensitive identifier (_
id) and accept a JSON response:

GET /users/some-id HTTP/1.1
Host: example.com
Accept: application/json

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

If the field is left blank, the server returns all default values.

_mimeType=mime-type

Some resources have fields whose values are multi-media resources such as a profile photo for
example.

By specifying both a single field and also the mime-type for the response content, you can read a
single field value that is a multi-media resource.

In this case, the content type of the field value returned matches the mime-type that you specify,
and the body of the response is the multi-media resource.

The Accept header is not used in this case. For example, Accept: image/png does not work. Use the _
mimeType query string parameter instead.

Update

To update a resource, perform an HTTP PUT including the case-sensitive identifier (_id) as the final
element of the path to the resource, and the JSON resource as the payload. Use the If-Match: _rev
header to check that you are actually updating the version you modified. Use If-Match: * if the version
does not matter. Accept a JSON response:

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 237

PUT /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-Match: _rev
{ JSON resource }

When updating a resource, include all the attributes to be retained. Omitting an attribute in the
resource amounts to deleting the attribute unless it is not under the control of your application.
Attributes not under the control of your application include private and read-only attributes. In
addition, virtual attributes and relationship references might not be under the control of your
application.

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

If the field is left blank, the server returns all default values.

Delete
To delete a single resource, perform an HTTP DELETE by its case-sensitive identifier (_id) and accept
a JSON response:

DELETE /users/some-id HTTP/1.1
Host: example.com
Accept: application/json

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 238

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

If the field is left blank, the server returns all default values.

Patch
To patch a resource, send an HTTP PATCH request with the following parameters:

• operation

• field

• value

• from (optional with copy and move operations)

You can include these parameters in the payload for a PATCH request, or in a JSON PATCH file. If
successful, you'll see a JSON response similar to:

PATCH /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-Match: _rev
{ JSON array of patch operations }

PATCH operations apply to three types of targets:

• single-valued, such as an object, string, boolean, or number.

• list semantics array, where the elements are ordered, and duplicates are allowed.

• set semantics array, where the elements are not ordered, and duplicates are not allowed.

ForgeRock PATCH supports several different operations. The following sections show each of these
operations, along with options for the field and value:

Patch Operation: Add
The add operation ensures that the target field contains the value provided, creating parent fields as
necessary.

If the target field is single-valued, then the value you include in the PATCH replaces the value of the
target. Examples of a single-valued field include: object, string, boolean, or number.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 239

An add operation has different results on two standard types of arrays:

• List semantic arrays: you can run any of these add operations on that type of array:

• If you add an array of values, the PATCH operation appends it to the existing list of values.

• If you add a single value, specify an ordinal element in the target array, or use the {-} special
index to add that value to the end of the list.

• Set semantic arrays: The value included in the patch is merged with the existing set of values. Any
duplicates within the array are removed.

As an example, start with the following list semantic array resource:
{
 "fruits" : ["orange", "apple"]
}

The following add operation includes the pineapple to the end of the list of fruits, as indicated by the
- at the end of the fruits array.
{
 "operation" : "add",
 "field" : "/fruits/-",
 "value" : "pineapple"
}

The following is the resulting resource:
{
 "fruits" : ["orange", "apple", "pineapple"]
}

Note that you can add only one array element one at a time, as per the corresponding JSON Patch
specification. If you add an array of elements, for example:
{
 "operation" : "add",
 "field" : "/fruits/-",
 "value" : ["pineapple", "mango"]
}

The resulting resource would have the following invalid JSON structure:
{
 "fruits" : ["orange", "apple", ["pineapple", "mango"]]
}

Patch Operation: Copy

The copy operation takes one or more existing values from the source field. It then adds those same
values on the target field. Once the values are known, it is equivalent to performing an add operation
on the target field.

https://tools.ietf.org/html/rfc6902#appendix-A.16
https://tools.ietf.org/html/rfc6902#appendix-A.16

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 240

The following copy operation takes the value from a field named mail, and then runs a replace operation
on the target field, another_mail.
[
 {
 "operation":"copy",
 "from":"mail",
 "field":"another_mail"
 }
]

If the source field value and the target field value are configured as arrays, the result depends on
whether the array has list semantics or set semantics, as described in "Patch Operation: Add".

Patch Operation: Increment

The increment operation changes the value or values of the target field by the amount you specify. The
value that you include must be one number, and may be positive or negative. The value of the target
field must accept numbers. The following increment operation adds 1000 to the target value of /user/
payment.
[
 {
 "operation" : "increment",
 "field" : "/user/payment",
 "value" : "1000"
 }
]

Since the value of the increment is a single number, arrays do not apply.

Patch Operation: Move

The move operation removes existing values on the source field. It then adds those same values on
the target field. It is equivalent to performing a remove operation on the source, followed by an add
operation with the same values, on the target.

The following move operation is equivalent to a remove operation on the source field, surname, followed by
a replace operation on the target field value, lastName. If the target field does not exist, it is created.
[
 {
 "operation":"move",
 "from":"surname",
 "field":"lastName"
 }
]

To apply a move operation on an array, you need a compatible single-value, list semantic array, or set
semantic array on both the source and the target. For details, see the criteria described in "Patch
Operation: Add".

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 241

Patch Operation: Remove
The remove operation ensures that the target field no longer contains the value provided. If the remove
operation does not include a value, the operation removes the field. The following remove deletes the
value of the phoneNumber, along with the field.
[
 {
 "operation" : "remove",
 "field" : "phoneNumber"
 }
]

If the object has more than one phoneNumber, those values are stored as an array.

A remove operation has different results on two standard types of arrays:

• List semantic arrays: A remove operation deletes the specified element in the array. For example, the
following operation removes the first phone number, based on its array index (zero-based):
[
 {
 "operation" : "remove",
 "field" : "/phoneNumber/0"
 }
]

• Set semantic arrays: The list of values included in a patch are removed from the existing array.

Patch Operation: Replace
The replace operation removes any existing value(s) of the targeted field, and replaces them with the
provided value(s). It is essentially equivalent to a remove followed by a add operation. If the arrays are
used, the criteria is based on "Patch Operation: Add". However, indexed updates are not allowed,
even when the target is an array.

The following replace operation removes the existing telephoneNumber value for the user, and then adds
the new value of +1 408 555 9999.
[
 {
 "operation" : "replace",
 "field" : "/telephoneNumber",
 "value" : "+1 408 555 9999"
 }
]

A PATCH replace operation on a list semantic array works in the same fashion as a PATCH remove
operation. The following example demonstrates how the effect of both operations. Start with the
following resource:
{
 "fruits" : ["apple", "orange", "kiwi", "lime"],
}

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 242

Apply the following operations on that resource:
[
 {
 "operation" : "remove",
 "field" : "/fruits/0",
 "value" : ""
 },
 {
 "operation" : "replace",
 "field" : "/fruits/1",
 "value" : "pineapple"
 }
]

The PATCH operations are applied sequentially. The remove operation removes the first member of
that resource, based on its array index, (fruits/0), with the following result:
[
 {
 "fruits" : ["orange", "kiwi", "lime"],
 }
]

The second PATCH operation, a replace, is applied on the second member (fruits/1) of the
intermediate resource, with the following result:
[
 {
 "fruits" : ["orange", "pineapple", "lime"],
 }
]

Patch Operation: Transform

The transform operation changes the value of a field based on a script or some other data
transformation command. The following transform operation takes the value from the field named /
objects, and applies the something.js script as shown:
[
 {
 "operation" : "transform",
 "field" : "/objects",
 "value" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "something.js"
 }
 }
 }
]

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 243

Patch Operation Limitations
Some HTTP client libraries do not support the HTTP PATCH operation. Make sure that the library you
use supports HTTP PATCH before using this REST operation.

For example, the Java Development Kit HTTP client does not support PATCH as a valid HTTP method.
Instead, the method HttpURLConnection.setRequestMethod("PATCH") throws ProtocolException.

Parameters

You can use the following parameters. Other parameters might depend on the specific action
implementation:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

If the field is left blank, the server returns all default values.

Action
Actions are a means of extending Common REST APIs and are defined by the resource provider, so
the actions you can use depend on the implementation.

The standard action indicated by _action=create is described in "Create".

Parameters

You can use the following parameters. Other parameters might depend on the specific action
implementation:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

If the field is left blank, the server returns all default values.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 244

Query

To query a resource collection (or resource container if you prefer to think of it that way), perform an
HTTP GET and accept a JSON response, including at least a _queryExpression, _queryFilter, or _queryId
parameter. These parameters cannot be used together:

GET /users?_queryFilter=true HTTP/1.1
Host: example.com
Accept: application/json

The server returns the result as a JSON object including a "results" array and other fields related to
the query string parameters that you specify.

Parameters

You can use the following parameters:

_queryFilter=filter-expression

Query filters request that the server return entries that match the filter expression. You must
URL-escape the filter expression.

The string representation is summarized as follows. Continue reading for additional explanation:

Expr = OrExpr
OrExpr = AndExpr ('or' AndExpr) *
AndExpr = NotExpr ('and' NotExpr) *
NotExpr = '!' PrimaryExpr | PrimaryExpr
PrimaryExpr = '(' Expr ')' | ComparisonExpr | PresenceExpr | LiteralExpr
ComparisonExpr = Pointer OpName JsonValue
PresenceExpr = Pointer 'pr'
LiteralExpr = 'true' | 'false'
Pointer = JSON pointer
OpName = 'eq' | # equal to
 'co' | # contains
 'sw' | # starts with
 'lt' | # less than
 'le' | # less than or equal to
 'gt' | # greater than
 'ge' | # greater than or equal to
 STRING # extended operator
JsonValue = NUMBER | BOOLEAN | '"' UTF8STRING '"'
STRING = ASCII string not containing white-space
UTF8STRING = UTF-8 string possibly containing white-space

JsonValue components of filter expressions follow RFC 7159: The JavaScript Object Notation
(JSON) Data Interchange Format. In particular, as described in section 7 of the RFC, the escape
character in strings is the backslash character. For example, to match the identifier test\, use _id
 eq 'test\\'. In the JSON resource, the \ is escaped the same way: "_id":"test\\".

https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7159

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 245

When using a query filter in a URL, be aware that the filter expression is part of a query
string parameter. A query string parameter must be URL encoded as described in RFC 3986:
Uniform Resource Identifier (URI): Generic Syntax For example, white space, double quotes
("), parentheses, and exclamation characters need URL encoding in HTTP query strings. The
following rules apply to URL query components:

query = *(pchar / "/" / "?")
pchar = unreserved / pct-encoded / sub-delims / ":" / "@"
unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
pct-encoded = "%" HEXDIG HEXDIG
sub-delims = "!" / "$" / "&" / "'" / "(" / ")"
 / "*" / "+" / "," / ";" / "="

ALPHA, DIGIT, and HEXDIG are core rules of RFC 5234: Augmented BNF for Syntax Specifications:

ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
DIGIT = %x30-39 ; 0-9
HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"

As a result, a backslash escape character in a JsonValue component is percent-encoded in the
URL query string parameter as %5C. To encode the query filter expression _id eq 'test\\', use _id
+eq+'test%5C%5C', for example.

A simple filter expression can represent a comparison, presence, or a literal value.

For comparison expressions use json-pointer comparator json-value, where the comparator is one
of the following:

eq (equals)
co (contains)
sw (starts with)
lt (less than)
le (less than or equal to)
gt (greater than)
ge (greater than or equal to)

For presence, use json-pointer pr to match resources where:

• The JSON pointer is present.

• The value it points to is not null.

Literal values include true (match anything) and false (match nothing).

Complex expressions employ and, or, and ! (not), with parentheses, (expression), to group
expressions.

_queryId=identifier

Specify a query by its identifier.

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc5234

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 246

Specific queries can take their own query string parameter arguments, which depend on the
implementation.

_pagedResultsCookie=string

The string is an opaque cookie used by the server to keep track of the position in the search
results. The server returns the cookie in the JSON response as the value of pagedResultsCookie.

In the request _pageSize must also be set and non-zero. You receive the cookie value from the
provider on the first request, and then supply the cookie value in subsequent requests until the
server returns a null cookie, meaning that the final page of results has been returned.

The _pagedResultsCookie parameter is supported when used with the _queryFilter parameter. The _
pagedResultsCookie parameter is not guaranteed to work when used with the _queryExpression and _
queryId parameters.

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually exclusive, and not to be
used together.

_pagedResultsOffset=integer

When _pageSize is non-zero, use this as an index in the result set indicating the first page to
return.

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually exclusive, and not to be
used together.

_pageSize=integer

Return query results in pages of this size. After the initial request, use _pagedResultsCookie or _
pageResultsOffset to page through the results.

_totalPagedResultsPolicy=string

When a _pageSize is specified, and non-zero, the server calculates the "totalPagedResults", in
accordance with the totalPagedResultsPolicy, and provides the value as part of the response.
The "totalPagedResults" is either an estimate of the total number of paged results (_
totalPagedResultsPolicy=ESTIMATE), or the exact total result count (_totalPagedResultsPolicy=EXACT).
If no count policy is specified in the query, or if _totalPagedResultsPolicy=NONE, result counting is
disabled, and the server returns value of -1 for "totalPagedResults".

_sortKeys=[+-]field[,[+-]field...]

Sort the resources returned based on the specified field(s), either in + (ascending, default) order,
or in - (descending) order.

Because ascending order is the default, including the + character in the query is unnecessary. If
you do include the +, it must be URL-encoded as %2B, for example:
http://localhost:8080/api/users?_prettyPrint=true&_queryFilter=true&_sortKeys=%2Bname/givenName

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 247

The _sortKeys parameter is not supported for predefined queries (_queryId).

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in each element of the "results" array in the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

If the field is left blank, the server returns all default values.

HTTP Status Codes
When working with a Common REST API over HTTP, client applications should expect at least the
following HTTP status codes. Not all servers necessarily return all status codes identified here:

200 OK

The request was successful and a resource returned, depending on the request.

201 Created

The request succeeded and the resource was created.

204 No Content

The action request succeeded, and there was no content to return.

304 Not Modified

The read request included an If-None-Match header, and the value of the header matched the
revision value of the resource.

400 Bad Request

The request was malformed.

401 Unauthorized

The request requires user authentication.

403 Forbidden

Access was forbidden during an operation on a resource.

404 Not Found

The specified resource could not be found, perhaps because it does not exist.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 248

405 Method Not Allowed

The HTTP method is not allowed for the requested resource.

406 Not Acceptable

The request contains parameters that are not acceptable, such as a resource or protocol version
that is not available.

409 Conflict

The request would have resulted in a conflict with the current state of the resource.

410 Gone

The requested resource is no longer available, and will not become available again. This can
happen when resources expire for example.

412 Precondition Failed

The resource's current version does not match the version provided.

415 Unsupported Media Type

The request is in a format not supported by the requested resource for the requested method.

428 Precondition Required

The resource requires a version, but no version was supplied in the request.

500 Internal Server Error

The server encountered an unexpected condition that prevented it from fulfilling the request.

501 Not Implemented

The resource does not support the functionality required to fulfill the request.

503 Service Unavailable

The requested resource was temporarily unavailable. The service may have been disabled, for
example.

Cross-Site Request Forgery (CSRF) Protection
AM includes a global filter to harden AM's protection against CSRF attacks. The filter applies to
all REST endpoints under json/ and requires that all requests other than GET, HEAD, or OPTIONS
include, at least, one of the following headers:

• X-Requested-With

This header is often sent by Javascript frameworks, and the XUI already sends it on all requests.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 249

• Accept-API-Version

This header specifies which version of the REST API to use. Use this header in your requests to
ensure future changes to the API do not affect your clients.

For more information about API versioning, see "REST API Versioning".

Failure to include at least one of the headers would cause the REST call to fail with a 403 Forbidden
error, even if the SSO token is valid.

To disable the filter, navigate to Configure > Global Services > REST APIs > and turn off Enable
CSRF Protection.

The json/ endpoint is not vulnerable to CSRF attacks when the filter is disabled, since it requires the
"Content-Type: application/json" header, which currently triggers the same protection in browsers. This
may change in the future, so it is recommended to enable the CSRF filter.

REST API Versioning
In OpenAM 12.0.0 and later, REST API features are assigned version numbers.

Providing version numbers in the REST API helps ensure compatibility between releases. The version
number of a feature increases when AM introduces a non-backwards-compatible change that affects
clients making use of the feature.

AM provides versions for the following aspects of the REST API.

resource

Any changes to the structure or syntax of a returned response will incur a resource version
change. For example changing errorMessage to message in a JSON response.

protocol

Any changes to the methods used to make REST API calls will incur a protocol version change.
For example changing _action to $action in the required parameters of an API feature.

To ensure your clients are always compatible with a newer version of AM, you should always include
resource versions in your REST calls.

Supported REST API Versions

For information about the supported protocol and resource versions available in AM, see the API
Explorer in the Development Guide available in the AM console.

The AM Release Notes section, "Changes and Deprecated Functionality" in the Release Notes
describes the differences between API versions.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 250

Specifying an Explicit REST API Version

You can specify which version of the REST API to use by adding an Accept-API-Version header to the
request. The following example requests resource version 2.0 and protocol version 1.0:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: changeit" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'

You can configure the default behavior AM will take when a REST call does not specify explicit
version information. For more information, see "Configuring the Default REST API Version for a
Deployment".

Configuring the Default REST API Version for a Deployment

You can configure the default behavior AM will take when a REST call does not specify explicit
version information using either of the following procedures:

• "Configure Versioning Behavior by using the AM Console"

• "Configure Versioning Behavior by Using the ssoadm Command"

The available options for default behavior are as follows:

Latest

The latest available supported version of the API is used.

This is the preset default for new installations of AM.

Oldest

The oldest available supported version of the API is used.

This is the preset default for upgraded AM instances.

Note

The oldest supported version may not be the first that was released, as APIs versions become deprecated
or unsupported. See "Deprecated Functionality" in the Release Notes.

None

No version will be used. When a REST client application calls a REST API without specifying the
version, AM returns an error and the request fails.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 251

Configure Versioning Behavior by using the AM Console

1. Log in as AM administrator, amadmin.

2. Click Configure > Global Services, and then click REST APIs.

3. In Default Version, select the required response to a REST API request that does not specify an
explicit version: Latest, Oldest, or None.

4. (Optional) Optionally, enable Warning Header to include warning messages in the headers of
responses to requests.

5. Save your work.

Configure Versioning Behavior by Using the ssoadm Command

• Use the ssoadm set-attr-defs command with the openam-rest-apis-default-version attribute set to
either Latest, Oldest or None, as in the following example:
$ ssh openam.example.com
$ cd /path/to/openam-tools/admin/openam/bin
$./ssoadm \
 set-attr-defs \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename RestApisService \
 --schematype Global \
 --attributevalues openam-rest-apis-default-version=None
Schema attribute defaults were set.

REST API Versioning Messages

AM provides REST API version messages in the JSON response to a REST API call. You can also
configure AM to return version messages in the response headers.

Messages include:

• Details of the REST API versions used to service a REST API call.

• Warning messages if REST API version information is not specified or is incorrect in a REST API
call.

The resource and protocol version used to service a REST API call are returned in the Content-API-
Version header, as shown below:

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 252

$ curl \
-i \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: changeit" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'
HTTP/1.1 200 OK
Content-API-Version: protocol=1.0,resource=2.0
Server: Restlet-Framework/2.1.7
Content-Type: application/json;charset=UTF-8

{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console"
}

If the default REST API version behavior is set to None, and a REST API call does not include the
Accept-API-Version header, or does not specify a resource version, then a 400 Bad Request status code is
returned, as shown below:
$ curl \
--header "Content-Type: application/json" \
--header "Accept-API-Version: protocol=1.0" \
https://openam.example.com:8443/openam/json/realms/root/serverinfo/*
{
 "code":400,
 "reason":"Bad Request",
 "message":"No requested version specified and behavior set to NONE."
}

If a REST API call does include the Accept-API-Version header, but the specified resource or protocol
version does not exist in AM, then a 404 Not Found status code is returned, as shown below:
$ curl \
--header "Content-Type: application/json" \
--header "Accept-API-Version: protocol=1.0, resource=999.0" \
https://openam.example.com:8443/openam/json/realms/root/serverinfo/*
{
 "code":404,
 "reason":"Not Found",
 "message":"Accept-API-Version: Requested version \"999.0\" does not match any routes."
}

Tip

For more information on setting the default REST API version behavior, see "Specifying an Explicit REST API
Version".

Specifying Realms in REST API Calls
This section describes how to work with realms when making REST API calls to AM.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 253

Realms can be specified in the following ways when making a REST API call to AM:

DNS Alias

When making a REST API call, the DNS alias of a realm can be specified in the subdomain and
domain name components of the REST endpoint.

To list all users in the top-level realm use the DNS alias of the AM instance, for example, the
REST endpoint would be:
https://openam.example.com:8443/openam/json/users?_queryId=*

To list all users in a realm with DNS alias suppliers.example.com the REST endpoint would be:
https://suppliers.example.com:8443/openam/json/users?_queryId=*

Path

When making a REST API call, specify the realm in the path component of the endpoint. You must
specify the entire hierarchy of the realm, starting at the top-level realm. Prefix each realm in the
hierarchy with the realms/ keyword. For example /realms/root/realms/customers/realms/europe.

To authenticate a user in the top-level realm, use the root keyword. For example:
https://openam.example.com:8443/openam/json/realms/root/authenticate

To authenticate a user in a subrealm named customers within the top-level realm, the REST
endpoint would be:
https://openam.example.com:8443/openam/json/realms/root/realms/customers/authenticate

If realms are specified using both the DNS alias and path methods, the path is used to determine the
realm.

For example, the following REST endpoint returns users in a subrealm of the top-level realm named
europe, not the realm with DNS alias suppliers.example.com:
https://suppliers.example.com:8443/openam/json/realms/root/realms/europe/users?_queryId=*

Authentication and Logout using REST
You can use REST-like APIs under /json/authenticate and /json/sessions for authentication and for
logout.

The /json/authenticate endpoint does not support the CRUDPAQ verbs and therefore does not
technically satisfy REST architectural requirements. The term REST-like describes this endpoint
better than REST.

After a successful authentication, AM returns a tokenId object that applications can present as
a cookie value for other operations that require authentication. This object is a session in the
Authentication and Single Sign-On Guide token—a representation of the exchange of information and
credentials between AM and the user or identity.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 254

The type of tokenId returned varies depending on where AM stores the sessions for the realm to which
the user authenticates:

• If CTS-based sessions are enabled, the tokenId object is a reference to the session state stored in the
CTS token store.

• If client-based sessions are enabled, the tokenId object is the session state for that particular user or
identity.

Developers should be aware that the size of the tokenId for client-based sessions—2000 bytes or
greater—is considerably longer than for CTS-based sessions—approximately 100 bytes. For more
information about session tokens, see "Session Cookies" in the Authentication and Single Sign-On
Guide.

Authenticating to AM using REST

To log in to AM using REST, make an HTTP POST request to the json/authenticate endpoint. You must
specify the entire hierarchy of the realm, starting at the Top Level Realm. Prefix each realm in the
hierarchy with the realms/ keyword. For example, /realms/root/realms/customers/realms/europe.

AM uses the default authentication service configured for the realm. You can override the default by
specifying authentication services and other options in the REST request.

AM provides both simple authentication methods, such as providing user name and password, and
complex authentication journeys that may involve a tree with inner tree evaluation and/or multi-factor
authentication.

For authentication journeys where providing a user name and password is enough, you can log in to
AM using a curl command similar to the following:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: changeit" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'
{
 "tokenId": "AQIC5w...NTcy*",
 "successUrl": "/openam/console",
 "realm":"/"
}

The user name and password are sent in headers. This zero page login mechanism works only for
name/password authentication.

Note that the POST body is empty; otherwise, AM interprets the body as a continuation of an existing
authentication attempt, one that uses a supported callback mechanism. AM implements callback
mechanisms to support complex authentication journeys, such as those where the user needs to be
redirected to a third party or interact with a device as part of multi-factor authentication.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 255

When a client makes a call to the /json/authenticate endpoint appending a valid SSO token, AM
returns the tokenId field empty when HttpOnly cookies are enabled. For example:
{
 "tokenId":"",
 "successUrl":"/openam/console",
 "realm":"/"
}

Tip

About Success and Failure URLs

On authentication success, AM returns an SSO token and a success URL. By default, users are redirected to
/openam/console.

No failure URL is configured by default. When configured, on authentication failure, AM returns HTTP status
code 401 Unauthorized and the failure URL:
{
 "code":401,
 "reason":"Unauthorized",
 "message":"Login failure",
 "failureUrl": "http://www.example.com/401.html"
}

For more information about configuring successful or failed authentication, see "Configuring Success and
Failure Redirection URLs" in the Authentication and Single Sign-On Guide.

Using UTF-8 User Names

To use UTF-8 user names and passwords in calls to the /json/authenticate endpoint, base64-encode the
string, and then wrap the string as described in RFC 2047:
encoded-word = "=?" charset "?" encoding "?" encoded-text "?="

For example, to authenticate using a UTF-8 username, such as ɗëɱø, perform the following steps:

1. Encode the string in base64 format: yZfDq8mxw7g=.

2. Wrap the base64-encoded string as per RFC 2047: =?UTF-8?B?yZfDq8mxw7g=?=.

3. Use the result in the X-OpenAM-Username header passed to the authentication endpoint as follows:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: =?UTF-8?B?yZfDq8mxw7g=?=" \
--header "X-OpenAM-Password: changeit" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'
 {
 "tokenId": "AQIC5w...NTcy*",
 "successUrl": "/openam/console",
 "realm":"/"
}

https://www.rfc-editor.org/info/rfc2047

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 256

Authenticating to Specific Authentication Services

You can provide AM with additional information about how you are authenticating. For example, you
can specify the authentication tree you want to use, or request from AM a list of the authentication
services that would satisfy a particular authentication condition.

The following example shows how to specify the ldapService chain by using the authIndexType and
authIndexValue query string parameters:
$ curl \
--request POST \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: changeit" \
--header 'Accept-API-Version: resource=2.0, protocol=1.0' \
'https://openam.example.com:8443/openam/json/realms/root/authenticate?
authIndexType=service&authIndexValue=ldapService'

You can exchange the ldapService chain with any other chain or tree.

For more information about using the authIndexType parameter to authenticate to specific services, see
"Authenticate Endpoint Parameters".

Authenticate Endpoint Parameters

To authenticate to AM using REST, make an HTTP POST request to the /json/authenticate endpoint.
You must specify the entire hierarchy of the realm, starting at the Top Level Realm. Prefix each realm
in the hierarchy with the realms/ keyword. For example, /realms/root/realms/customers/realms/europe.

The following list describes the /json/authenticate endpoint supported parameters:

authIndexType

Specifies the type of authentication the user will perform. Always use in conjunction with
the authIndexValue parameter to provide additional information about the way the user is
authenticating.

If not specified, AM authenticates the user against the default authentication service configured
for the realm.

The authIndexType parameter supports the following types:

• composite_advice

Specifies that the value of the authIndexValue parameter is a URL-encoded composite advice
string.

Use composite_advice when you want to give AM hints of which authentication services to
use when logging in a user. For example, use an authentication service that provides an
authentication level of 10 or higher:

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 257

$ curl -get \
--request POST \
--header "Content-Type: application/json" \
--header 'Accept-API-Version: resource=2.0, protocol=1.0' \
--data-urlencode 'authIndexType=composite_advice' \
--data-urlencode 'authIndexValue=<Advices>
 <AttributeValuePair>
 <Attribute name="AuthLevelConditionAdvice"/>
 <Value>10</Value>
 </AttributeValuePair>
</Advices>' \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'

Note that the previous curl command URL-encodes the XML values, and the -G parameter
appends them as query string parameters to the URL.

Possible options for advices are:

• TransactionConditionAdvice. Requires the unique ID of a transaction token. For example:
<Advices>
 <AttributeValuePair>
 <Attribute name="TransactionConditionAdvice"/>
 <Value>9dae2c80-fe7a-4a36-b57b-4fb1271b0687</Value>
 </AttributeValuePair>
</Advices>

For more information, see "Implementing Transactional Authorization" in the Authorization
Guide.

• AuthenticateToServiceConditionAdvice. Requires the name of an authentication chain or tree. For
example:
<Advices>
 <AttributeValuePair>
 <Attribute name="AuthenticateToServiceConditionAdvice"/>
 <Value>myExampleTree</Value>
 </AttributeValuePair>
</Advices>

• AuthSchemeConditionAdvice. Requires the name of an authentication module. For example:
<Advices>
 <AttributeValuePair>
 <Attribute name="AuthSchemeConditionAdvice"/>
 <Value>DataStoreModule</Value>
 </AttributeValuePair>
</Advices>

• AuthenticateToRealmConditionAdvice. Requires the name of a realm. For example:

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 258

<Advices>
 <AttributeValuePair>
 <Attribute name="AuthenticateToRealmConditionAdvice"/>
 <Value>myRealm</Value>
 </AttributeValuePair>
</Advices>

• AuthLevelConditionAdvice. Requires an authentication level. For example:
<Advices>
 <AttributeValuePair>
 <Attribute name="AuthLevelConditionAdvice"/>
 <Value>10</Value>
 </AttributeValuePair>
</Advices>

• AuthenticateToTreeConditionAdvice. Requires the name of an authentication tree. For example:
<Advices>
 <AttributeValuePair>
 <Attribute name="AuthenticateToTreeConditionAdvice"/>
 <Value>PersistentCookieTree</Value>
 </AttributeValuePair>
</Advices>

You can specify multiple advice conditions and combine them. For example:
<Advices>
 <AttributeValuePair>
 <Attribute name="AuthenticateToServiceConditionAdvice"/>
 <Value>ldapService</Value>
 </AttributeValuePair>
 <AttributeValuePair>
 <Attribute name="AuthenticateToServiceConditionAdvice"/>
 <Value>Example</Value>
 </AttributeValuePair>
 <AttributeValuePair>
 <Attribute name="AuthLevelConditionAdvice"/>
 <Value>10</Value>
 </AttributeValuePair>
</Advices>

• level

Specifies that the value of the authIndexValue parameter is the minimum authentication level an
authentication service must satisfy to log in the user.

For example, to log into AM using an authentication service that provides a minimum
authentication level of 10, you could use the following:
$ curl \
--request POST \
--header 'Accept-API-Version: resource=2.0, protocol=1.0' \
'https://openam.example.com:8443/openam/json/realms/root/authenticate?
authIndexType=level&authIndexValue=10'

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 259

• module

Specifies that the value of the authIndexValue parameter is the name of the authentication
module AM must use to log in the user.

For example, to log into AM using the built-in DataStore authentication module, you could use
the following:
$ curl \
--request POST \
--header 'Accept-API-Version: resource=2.0, protocol=1.0' \
'https://openam.example.com:8443/openam/json/realms/root/authenticate?
authIndexType=module&authIndexValue=DataStore'

• resource

Specifies that the value of the authIndexValue parameter is a URL protected by an AM policy.

For example, to log into AM using a policy matching the http://www.example.com resource, you
could use the following:
$ curl \
--request POST \
--header 'Accept-API-Version: resource=2.0, protocol=1.0' \
'https://openam.example.com:8443/openam/json/realms/root/authenticate?
authIndexType=resource&authIndexValue=http%3A%2F%2Fwww.example.com'

Note that the resource must be URL-encoded. Authentication will fail if no policy matches the
resource.

• service

Specifies that the value of the authIndexValue parameter is the name of an authentication tree or
authentication chain AM must use to log in the user.

For example, to log in to AM using the built-in ldapService authentication chain, you could use
the following:
$ curl \
--request POST \
--header 'Accept-API-Version: resource=2.0, protocol=1.0' \
'https://openam.example.com:8443/openam/json/realms/root/authenticate?
authIndexType=service&authIndexValue=ldapService'

• user

Specifies that the value of the authIndexValue parameter is a valid user ID. AM will then
authenticate the user against the chain configured in the User Authentication Configuration
field of that user's profile.

For example, for the user demo to log into AM using the chain specified in their user profile, you
could use the following:

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 260

$ curl \
--request POST \
--header 'Accept-API-Version: resource=2.0, protocol=1.0' \
'https://openam.example.com:8443/openam/json/realms/root/authenticate?
authIndexType=user&authIndexValue=demo'

Authentication will fail if the User Authentication Configuration field is empty for the user.

If several authentication services that satisfy the authentication requirements are available,
AM presents them as a choice callback to the user. Return the required callbacks to AM to
authenticate.

Required: No.

authIndexValue

Specifies the value of the authIndexType parameter.

Required: Yes, when using the authIndexType parameter.

noSession

When set to true, specifies that AM should not return a session when authenticating a user. For
example:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: changeit" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate?noSession=true'
{
 "message":"Authentication Successful",
 "successUrl":"/openam/console",
 "realm":"/"
}

Required: No.

Returning Callback Information to AM

The /json/authenticate endpoint supports callback mechanisms to perform complex authentication
journeys. Whenever AM needs to return or request information, it will return a JSON object with the
authentication step, the authentication identifier, and the related callbacks.

The following types of callbacks are available:

• Read-only callbacks. AM uses read-only callbacks to provide information to the user, such as text
messages or the amount of time that the user needs to wait before continuing their authentication
journey.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 261

• Interactive callbacks. AM uses interactive callbacks ask the user for information. For example,
to request their user name and password, or to request that the user chooses between different
options.

• Backchannel callbacks. AM uses backchannel callbacks when it needs to access additional
information from the user's request. For example, when it requires a particular header or a
certificate.

Read-only and interactive callbacks have an array of output elements suitable for displaying to the end
user. The JSON returned in interactive callbacks also contains an array of input elements, which must
be completed and returned to AM. For example:
"output": [
 {
 "name": "prompt",
 "value": " User Name: "
 }
],
"input": [
 {
 "name": "IDToken1",
 "value": ""
 }
]

The value of some interactive callbacks can be returned as headers, such as the X-OpenAM-Username and
X-OpenAM-Password headers, but most of them must be returned in JSON as a response to the request.

Depending on how complex the authentication journey is, AM may return several callbacks
sequentially. Each must be completed and returned to AM until authentication is successful.

The following example shows a request for authentication, and AM's response of the NameCallback and
PasswordCallback callbacks:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'

{
 "authId": "eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJvdGsiOiJ...",
 "template": "",
 "stage": "DataStore1",
 "callbacks": [
 {
 "type": "NameCallback",
 "output": [
 {
 "name": "prompt",
 "value": " User Name: "
 }
],
 "input": [
 {
 "name": "IDToken1",

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 262

 "value": ""
 }
]
 },
 {
 "type": "PasswordCallback",
 "output": [
 {
 "name": "prompt",
 "value": " Password: "
 }
],
 "input": [
 {
 "name": "IDToken2",
 "value": ""
 }
]
 }
]
}

Key:

The JWT that uniquely identifies the authentication context to AM.
A template to customize the look of the authentication module, if exists. For more information,
see How do I customize the Login page? in the ForgeRock Knowledge Base.
The authentication module stage where the authentication journey is at the moment.
The type of callback. It must be one the "Supported Callbacks".
The information AM offers about this callback. Usually, this information would be displayed to
the user in the UI.
The information AM is requesting. The user must fill the "value": "" object with the required
information.

To respond to a callback, send back the whole JSON object with the missing values filled. The
following example shows how to respond to theNameCallback and PasswordCallback callbacks, with the
demo and changeit values filled:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
--data '{
 "authId":""eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJvdGsiOiJ...",
 "template":"",
 "stage":"DataStore1",
 "callbacks":[
 {
 "type":"NameCallback",
 "output":[
 {
 "name":"prompt",
 "value":" User Name: "
 }

https://backstage.forgerock.com/knowledge/kb/article/a62049134#customizelogin

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 263

],
 "input":[
 {
 "name":"IDToken1",
 "value":"demo"
 }
]
 },
 {
 "type":"PasswordCallback",
 "output":[
 {
 "name":"prompt",
 "value":" Password: "
 }
],
 "input":[
 {
 "name":"IDToken2",
 "value":"changeit"
 }
]
 }
]
}' \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'
{
 "tokenId":"AQIC5wM2...U3MTE4NA..*",
 "successUrl": "/openam/console",
 "realm":"/"
}

On complex authentication journeys, AM may send several callbacks sequentially. Each must be
completed and returned to AM until authentication is successful.

Supported Callbacks

The following types of callbacks are available:

• Interactive Callbacks

• Read-only Callbacks

• Backchannel Callbacks

Interactive Callbacks

AM returns the following callbacks to request information from the user:

ChoiceCallback

Used to display a list of choices and retrieve the selected choice. To indicate that the user
selected the first choice, return a value of 0 to AM. For the second choice, return a value of 1, and
so forth. For example:

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 264

"callbacks":[
 {
 "type":"ChoiceCallback",
 "output":[
 {
 "name":"prompt",
 "value":"Choose one"
 },
 {
 "name":"choices",
 "value":[
 "Choice A",
 "Choice B",
 "Choice C"
]
 },
 {
 "name":"defaultChoice",
 "value":2
 }
],
 "input":[
 {
 "name":"IDToken1",
 "value":0
 }
]
 }
]

Class to import: javax.security.auth.callback.ChoiceCallback

ConfirmationCallback

Used to ask for a boolean-style confirmation, such as yes/no or true/false, and retrieve the
response. Also can present a "Cancel" option. To indicate that the user selected the first choice,
return a value of 0 to AM. For the second choice, return a value of 1, and so forth. For example:
"callbacks":[
 {
 "type":"ConfirmationCallback",
 "output":[
 {
 "name":"prompt",
 "value":""
 },
 {
 "name":"messageType",
 "value":0
 },
 {
 "name":"options",
 "value":[
 "Submit",
 "Start Over",
 "Cancel"
]

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 265

 },
 {
 "name":"optionType",
 "value":-1
 },
 {
 "name":"defaultOption",
 "value":1
 }
],
 "input":[
 {
 "name":"IDToken2",
 "value":0
 }
]
 }
]

Class to import: javax.security.auth.callback.ConfirmationCallback

NameCallback

Used to retrieve a data string which can be entered by the user. Usually used for collecting user
names. For example:
"callbacks":[
 {
 "type":"NameCallback",
 "output":[
 {
 "name":"prompt",
 "value":"User Name"
 }
],
 "input":[
 {
 "name":"IDToken1",
 "value":""
 }
]
 }
]

Class to import: javax.security.auth.callback.NameCallback

PasswordCallback

Used to retrieve a password value. For example:

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 266

 "callbacks":[
 {
 "type":"PasswordCallback",
 "output":[
 {
 "name":"prompt",
 "value":"Password"
 }
],
 "input":[
 {
 "name":"IDToken1",
 "value":""
 }
]
 }
]

Class to import: javax.security.auth.callback.PasswordCallback

TextInputCallback

Used to retrieve text input from the end user. For example
"callbacks":[
 {
 "type":"TextInputCallback",
 "output":[
 {
 "name":"prompt",
 "value":"User Name"
 }
],
 "input":[
 {
 "name":"IDToken1",
 "value":""
 }
]
 }
]

Class to import: javax.security.auth.callback.TextInputCallback

Read-only Callbacks

HiddenValueCallback

Used to return form values that are not visually rendered to the end user. For example:

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 267

"callbacks":[
 {
 "type":"HiddenValueCallback",
 "output":[
 {
 "name":"value",
 "value":"6186c911-b3be-4dbc-8192-bdf251392072"
 },
 {
 "name":"id",
 "value":"jwt"
 }
],
 "input":[
 {
 "name":"IDToken1",
 "value":"jwt"
 }
]
 }
]

Class to import: com.sun.identity.authentication.callbacks.HiddenValueCallback

MetadataCallback

Used to inject key-value meta data into the authentication process. For example:

"callbacks":[
 {
 "type":"MetadataCallback",
 "output":[
 {
 "name":"data",
 "value":{
 "myParameter": "MyValue"
 }
 }
]
 }
]

Class to import: com.sun.identity.authentication.spi.MetadataCallback

PollingWaitCallback

Tells the user the amount of time to wait before responding to the callback.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 268

"callbacks":[
 {
 "type":"PollingWaitCallback",
 "output":[
 {
 "name":"waitTime",
 "value":"8000"
 },
 {
 "name":"message",
 "value":"Waiting for response..."
 }
]
 }
]

Class to import: org.forgerock.openam.authentication.callbacks.PollingWaitCallback

RedirectCallback

Used to redirect the user's browser or user-agent.
"callbacks":[
 {
 "type":"RedirectCallback",
 "output":[
 {
 "name":"redirectUrl",
 "value":"https://accounts.google.com/o/oauth2/v2/auth?nonce..."
 },
 {
 "name":"redirectMethod",
 "value":"GET"
 },
 {
 "name":"trackingCookie",
 "value":true
 }
]
 }
]

Class to import: com.sun.identity.authentication.spi.RedirectCallback

TextOutputCallback

Used to display a message to the end user.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 269

"callbacks":[
 {
 "type":"TextOutputCallback",
 "output":[
 {
 "name":"message",
 "value":"Default message"
 },
 {
 "name":"messageType",
 "value":"0"
 }
]
 }
]

Class to import: javax.security.auth.callback.TextOutputCallback

Backchannel Callbacks

AM uses backchannel callbacks when it needs to recover additional information from the user's
request. For example, when it requires a particular header or a certificate.

HttpCallback

Used to access user credentials sent in the Authorization header. For example:
Authorization: Basic bXlDbGllbnQ6Zm9yZ2Vyb2Nr

Class to import: com.sun.identity.authentication.spi.HttpCallback

LanguageCallback

Used to retrieve the locale for localizing text presented to the end user. The locale is sent in the
request as a header.

Class to import: javax.security.auth.callback.LanguageCallback

ScriptTextOutputCallback

Used to insert a script into the page presented to the end user. The script can, for example,
collect data about the user's environment.

Class to import: com.sun.identity.authentication.callbacks.ScriptTextOutputCallback

X509CertificateCallback

Used to retrieve the content of an x.509 certificate, for example, from a header.

Class to import: com.sun.identity.authentication.spi.X509CertificateCallback

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 270

Logging out of AM Using REST

Authenticated users can log out with the token cookie value and an HTTP POST to /json/sessions/?_
action=logout:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "Cache-Control: no-cache" \
--header "iplanetDirectoryPro: AQIC5wM2...U3MTE4NA..*" \
--header "Accept-API-Version: resource=3.1, protocol=1.0" \
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=logout
{
 "result":"Successfully logged out"
}

Invalidating All Sessions for a Given User

To log out all sessions for a given user, first obtain a list of session handles of their active sessions,
by performing an HTTP GET to the /json/sessions/ endpoint, using the SSO token of an administrative
user, such as amAdmin as the value of the iPlanetDirectoryPro header. You must also specify a queryFilter
parameter.

The queryFilter parameter requires the name of the user, and the realm to search. For example, to
obtain a list of session handles for a user named demo in the top-level realm, the query filter value
would be:
username eq "demo" and realm eq "/"

Note

The query filter value must be URL encoded when sent over HTTP.

For more information on query filter parameters, see "Query" in the Authentication and Single Sign-On Guide.

In the following example, there are two active sessions:
$ curl \
--request GET \
--header "Content-Type: application/json" \
--header "Cache-Control: no-cache" \
--header "iPlanetDirectoryPro: AQICS...NzEz*" \
--header "Accept-API-Version: resource=3.1, protocol=1.0" \
https://openam.example.com:8443/openam/json/realms/root/sessions?_queryFilter=username%20eq%20%22demo
%22%20and%20realm%20eq%20%22%2F%22
{
 "result": [
 {
 "username": "demo",
 "universalId": "id=demo,ou=user,dc=openam,dc=forgerock,dc=org",
 "realm":"/",
 "sessionHandle":"shandle:SJ80.*AA....JT.*",

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 271

 "latestAccessTime":"2018-10-23T09:37:54.387Z",
 "maxIdleExpirationTime":"2018-10-23T10:07:54Z",
 "maxSessionExpirationTime":"2018-10-23T11:37:54Z"
 },
 {
 "username": "demo",
 "universalId": "id=demo,ou=user,dc=openam,dc=forgerock,dc=org",
 "realm":"/",
 "sessionHandle":"shandle:H4CV.*DV....FM.*",
 "latestAccessTime":"2018-10-23T09:37:43.780Z",
 "maxIdleExpirationTime":"2018-10-23T10:07:43Z",
 "maxSessionExpirationTime":"2018-10-23T11:37:43Z"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

To log out all sessions for the specific user, perform an HTTP POST to the /json/sessions/ endpoint,
using the SSO token of an administrative user, such as amAdmin as the value of the iPlanetDirectoryPro
header. You must also specify the logoutByHandle action, and include an array of the session handles to
invalidate in the POST body, in a property named sessionHandles, as shown below:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "Cache-Control: no-cache" \
--header "iplanetDirectoryPro: AQIC5w...NTcy*" \
--header "Accept-API-Version: resource=3.1, protocol=1.0" \
--data '{
 "sessionHandles": [
 "shandle:SJ80.*AA....JT.*",
 "shandle:H4CV.*DV....FM.*"
]
}' \
https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=logoutByHandle
{
 "result": {
 "shandle:SJ80.*AA....JT.*": true,
 "shandle:H4CV.*DV....FM.*": true
 }
}

Load Balancer and Proxy Layer Requirements

When authentication depends on the client IP address and AM lies behind a load balancer or proxy
layer, configure the load balancer or proxy to send the address by using the X-Forwarded-For header,
and configure AM to consume and forward the header as necessary. For details, see "Handling HTTP
Request Headers" in the Installation Guide.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 272

Windows Desktop SSO Requirements

When authenticating with Windows Desktop SSO, add an Authorization header containing the
string Basic , followed by a base64-encoded string of the username, a colon character, and the
password. In the following example, the credentials demo:changeit are base64-encoded into the string
ZGVtbzpjaGFuZ2VpdA==:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: changeit" \
--header "Authorization: Basic ZGVtbzpjaGFuZ2VpdA==" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'
{
 "tokenId":"AQIC5w...NTcy*",
 "successUrl":"/openam/console",
 "realm":"/"
}

Using the Session Token After Authentication
The following is a common scenario when accessing AM by using REST API calls:

• First, call the /json/authenticate endpoint to log a user in to AM. This REST API call returns a tokenID
value, which is used in subsequent REST API calls to identify the user:
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "X-OpenAM-Username: demo" \
--header "X-OpenAM-Password: changeit" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
'https://openam.example.com:8443/openam/json/realms/root/authenticate'
{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console",
 "realm":"/"
}

The returned tokenID is known as a session token (also referred to as an SSO token). REST API calls
made after successful authentication to AM must present the session token in the HTTP header as
proof of authentication.

• Next, call one or more additional REST APIs on behalf of the logged-in user. Each REST API call
passes the user's tokenID back to AM in the HTTP header as proof of previous authentication.

The following is a partial example of a curl command that inserts the token ID returned from a prior
successful AM authentication attempt into the HTTP header:

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 273

$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "iPlanetDirectoryPro: AQIC5w...NTcy*" \
--header "Accept-API-Version: resource=2.0, protocol=1.0" \
--data '{
 ...

Observe that the session token is inserted into a header field named iPlanetDirectoryPro. This header
field name must correspond to the name of the AM session cookie—by default, iPlanetDirectoryPro.
You can find the cookie name in the AM console by navigating to Deployment > Servers > Server
Name > Security > Cookie, in the Cookie Name field of the AM console.

Once a user has authenticated, it is not necessary to insert login credentials in the HTTP header in
subsequent REST API calls. Note the absence of X-OpenAM-Username and X-OpenAM-Password headers in
the preceding example.

Users are required to have appropriate privileges in order to access AM functionality using the
REST API. For example, users who lack administrative privileges cannot create AM realms. For
more information on the AM privilege model, see "Delegating Realm Administration Privileges" in
the Setup and Maintenance Guide.

• Finally, call the REST API to log the user out of AM as described in "Authentication and Logout
using REST". As with other REST API calls made after a user has authenticated, the REST API call
to log out of AM requires the user's tokenID in the HTTP header.

Server Information
You can retrieve AM server information by using HTTP GET on /json/serverinfo/* as follows:
$ curl \
--request GET \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=1.1, protocol=1.0" \
https://openam.example.com:8443/openam/json/serverinfo/*
{
 "domains": [
 ".example.com"
],
 "protectedUserAttributes": [],
 "cookieName": "iPlanetDirectoryPro",
 "secureCookie": false,
 "forgotPassword": "false",
 "forgotUsername": "false",
 "kbaEnabled": "false",
 "selfRegistration": "false",
 "lang": "en-US",
 "successfulUserRegistrationDestination": "default",
 "socialImplementations": [
 {
 "iconPath": "XUI/images/logos/facebook.png",
 "authnChain": "FacebookSocialAuthenticationService",

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 274

 "displayName": "Facebook",
 "valid": true
 }
],
 "referralsEnabled": "false",
 "zeroPageLogin": {
 "enabled": false,
 "refererWhitelist": [
 ""
],
 "allowedWithoutReferer": true
 },
 "realm": "/",
 "xuiUserSessionValidationEnabled": true,
 "FQDN": "openam.example.com"
}

Token Encoding
Valid tokens in AM require configuration either in percent encoding or in C66Encode format.
C66Encode format is encouraged. It is the default token format for AM, and is used in this section.
The following is an example token that has not been encoded:
AQIC5wM2LY4SfczntBbXvEAOuECbqMY3J4NW3byH6xwgkGE=@AAJTSQACMDE=#

This token includes reserved characters such as +, /, and = (The @, #, and * are not reserved characters
per se, but substitutions are still required). To c66encode this token, you would substitute certain
characters for others, as follows:

+ is replaced with -
/ is replaced with _
= is replaced with .
@ is replaced with *
is replaced with *
* (first instance) is replaced with @
* (subsequent instances) is replaced with #

In this case, the translated token would appear as shown here:
AQIC5wM2LY4SfczntBbXvEAOuECbqMY3J4NW3byH6xwgkGE.*AAJTSQACMDE.*

Logging
AM supports two Audit Logging Services: a new common REST-based Audit Logging Service, and
the legacy Logging Service, which is based on a Java SDK and is available in AM versions prior to
OpenAM 13. The legacy Logging Service is deprecated.

Both audit facilities log AM REST API calls.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 275

Common Audit Logging of REST API Calls

AM logs information about all REST API calls to the access topic. For more information about AM
audit topics, see "Audit Log Topics" in the Setup and Maintenance Guide.

Locate specific REST endpoints in the http.path log file property.

Legacy Logging of REST API Calls

AM logs information about REST API calls to two files:

• amRest.access. Records accesses to a CREST endpoint, regardless of whether the request
successfully reached the endpoint through policy authorization.

An amRest.access example is as follows:
$ cat openam/openam/log/amRest.access
#Version: 1.0
#Fields: time Data LoginID ContextID IPAddr LogLevel Domain LoggedBy MessageID ModuleName
NameID HostName
"2011-09-14 16:38:17" /home/user/openam/openam/log/ "cn=dsameuser,ou=DSAME Users,o=openam"
aa307b2dcb721d4201 "Not Available" INFO o=openam "cn=dsameuser,ou=DSAME Users,o=openam"
LOG-1 amRest.access "Not Available" 192.168.56.2
"2011-09-14 16:38:17" "Hello World" id=bjensen,ou=user,o=openam 8a4025a2b3af291d01 "Not Available"
INFO o=openam id=amadmin,ou=user,o=openam "Not Available" amRest.access "Not Available"
192.168.56.2

• amRest.authz. Records all CREST authorization results regardless of success. If a request has an
entry in the amRest.access log, but no corresponding entry in amRest.authz, then that endpoint was not
protected by an authorization filter and therefore the request was granted access to the resource.

The amRest.authz file contains the Data field, which specifies the authorization decision, resource, and
type of action performed on that resource. The Data field has the following syntax:

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 276

("GRANT"||"DENY") > "RESOURCE | ACTION"

where
 "GRANT > " is prepended to the entry if the request was allowed
 "DENY > " is prepended to the entry if the request was not allowed
 "RESOURCE" is "ResourceLocation | ResourceParameter"
 where
 "ResourceLocation" is the endpoint location (e.g., subrealm/applicationtypes)
 "ResourceParameter" is the ID of the resource being touched
 (e.g., myApplicationType) if applicable. Otherwise, this field is empty
 if touching the resource itself, such as in a query.

 "ACTION" is "ActionType | ActionParameter"
 where
 "ActionType" is "CREATE||READ||UPDATE||DELETE||PATCH||ACTION||QUERY"
 "ActionParameter" is one of the following depending on the ActionType:
 For CREATE: the new resource ID
 For READ: empty
 For UPDATE: the revision of the resource to update
 For DELETE: the revision of the resource to delete
 For PATCH: the revision of the resource to patch
 For ACTION: the actual action performed (e.g., "forgotPassword")
 For QUERY: the query ID if any

$ cat openam/openam/log/amRest.authz
#Version: 1.0
#Fields: time Data ContextID LoginID IPAddr LogLevel Domain MessageID LoggedBy NameID
ModuleName HostName
"2014-09-16 14:17:28" /var/root/openam/openam/log/ 7d3af9e799b6393301
"cn=dsameuser,ou=DSAME Users,dc=openam,dc=forgerock,dc=org" "Not Available" INFO
dc=openam,dc=forgerock,dc=org LOG-1 "cn=dsameuser,ou=DSAME Users,dc=openam,dc=forgerock,dc=org"
"Not Available" amRest.authz 10.0.1.5
"2014-09-16 15:56:12" "GRANT > sessions|ACTION|logout|AdminOnlyFilter" d3977a55a2ee18c201
id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org "Not Available" INFO dc=openam,dc=forgerock,dc=org
OAuth2Provider-2 "cn=dsameuser,ou=DSAME Users,dc=openam,dc=forgerock,dc=org" "Not Available"
amRest.authz 127.0.0.1
"2014-09-16 15:56:40" "GRANT > sessions|ACTION|logout|AdminOnlyFilter" eedbc205bf51780001
id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org "Not Available" INFO dc=openam,dc=forgerock,dc=org
OAuth2Provider-2 "cn=dsameuser,ou=DSAME Users,dc=openam,dc=forgerock,dc=org" "Not Available"
amRest.authz 127.0.0.1

AM also provides additional information in its debug notifications for accesses to any endpoint,
depending on the message type (error, warning or message) including realm, user, and result of the
operation.

Reference
This reference section covers return codes and system settings relating to REST API support in AM.

REST APIs
amster service name: RestApis

https://backstage.forgerock.com/docs/amster/6.5/entity-reference/#sec-amster-entity-restapis

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 277

The following settings are available in this service:

Default Resource Version

The API resource version to use when the REST request does not specify an explicit version.
Choose from:

• Latest. If an explicit version is not specified, the latest resource version of an API is used.

• Oldest. If an explicit version is not specified, the oldest supported resource version of an API
is used. Note that since APIs may be deprecated and fall out of support, the oldest supported
version may not be the first version.

• None. If an explicit version is not specified, the request will not be handled and an error status is
returned.

The possible values for this property are:

• Latest

• Oldest

• None

Default value: Latest

amster attribute: defaultVersion

Warning Header

Whether to include a warning header in the response to a request which fails to include the
Accept-API-Version header.

Default value: false

amster attribute: warningHeader

API Descriptions

Whether API Explorer and API Docs are enabled in AM and how the documentation for
them is generated. Dynamic generation includes descriptions from any custom services and
authentication modules you may have added. Static generation only includes services and
authentication modules that were present when AM was built. Note that dynamic documentation
generation may not work in some application containers.

The possible values for this property are:

• DYNAMIC. Enabled with Dynamic Documentation

• STATIC. Enabled with Static Documentation

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 278

• DISABLED

Default value: STATIC

amster attribute: descriptionsState

Default Protocol Version

The API protocol version to use when a REST request does not specify an explicit version. Choose
from:

• Oldest. If an explicit version is not specified, the oldest protocol version is used.

• Latest. If an explicit version is not specified, the latest protocol version is used.

• None. If an explicit version is not specified, the request will not be handled and an error status is
returned.

The possible values for this property are:

• Oldest

• Latest

• None

Default value: Latest

amster attribute: defaultProtocolVersion

Enable CSRF Protection

If enabled, all non-read/query requests will require the X-Requested-With header to be present.

Requiring a non-standard header ensures requests can only be made via methods (XHR) that
have stricter same-origin policy protections in Web browsers, preventing Cross-Site Request
Forgery (CSRF) attacks. Without this filter, cross-origin requests are prevented by the use of the
application/json Content-Type header, which is less robust.

Default value: true

amster attribute: csrfFilterEnabled

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 279

Appendix B. About Scripting

You can use scripts for client-side and server-side authentication, policy conditions, and handling
OpenID Connect claims.

The Scripting Environment
AM supports scripts written in either JavaScript, or Groovy 1, and the same variables and bindings
are delivered to scripts of either language.

+ How to determine the JavaScript Engine Version?

You can use a script to check the version of the JavaScript engine AM is using. You could
temporarily add the following script to a Scripted Decision node, for example, to output the
engine version to the debug log:
var rhino = JavaImporter(
 org.mozilla.javascript.Context
)

var currentContext = rhino.Context.getCurrentContext()
var rhinoVersion = currentContext.getImplementationVersion()

logger.error("JS Script Engine: " + rhinoVersion)

outcome = "true"

1Scripts used for client-side authentication must be in written in JavaScript.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 280

Note

Ensure the following are listed in the Java class whitelist property of the scripting engine.

• org.mozilla.javascript.Context

• org.forgerock.openam.scripting.timeouts.*

To view the Java class whitelist, go to Configure > Global Services > Scripting > Secondary Configurations.
Select the script type, and on the Secondary Configurations tab, click engineConfiguration.

For information on the capabilities of the JavaScript engine AM uses, see Mozilla Rhino.

+ How to determine the Groovy Engine Version?

You can use a script to check the version of the Groovy scripting engine AM is using. You could
temporarily add the following script to a Scripted Decision node, for example, to output the
engine version to the debug log:
logger.error("Groovy Script Engine: " + GroovySystem.version)

outcome = "true"

Note

Ensure the following are listed in the Java class whitelist property of the scripting engine.

• groovy.lang.GroovySystem

To view the Java class whitelist, go to Configure > Global Services > Scripting > Secondary Configurations.
Select the script type, and on the Secondary Configurations tab, click engineConfiguration.

For information on the capabilities of the Groovy engine AM uses, see Apache Groovy.

To access the functionality AM provides, import the required Java class or package, as follows:

JavaScript

var fr = JavaImporter(
 org.forgerock.openam.auth.node.api,
 javax.security.auth.callback.NameCallback
);
with (fr) {
 ...
}

Groovy

import org.forgerock.openam.auth.node.api.*;
import javax.security.auth.callback.NameCallback;

https://github.com/mozilla/rhino/blob/master/README.md
https://groovy-lang.org/index.html

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 281

You may need to whitelist the classes you use in scripts. See "Security".

You can use scripts to modify default AM behavior in the following situations, also known as contexts:

Client-side Authentication

Scripts that are executed on the client during authentication. Client-side scripts must be in
JavaScript.

Server-side Authentication

Scripts are included in an authentication module within a chain and are executed on the server
during authentication.

Authentication Trees

Scripts are included in an authentication node within a tree and are executed on the server
during authentication.

Policy Condition

Scripts used as conditions within policies.

OIDC Claims

Scripts that gather and populate the claims in a request when issuing an ID token or making a
request to the userinfo endpoint.

For information on the global API, available to all script types, see "Global Scripting API
Functionality".

AM implements a configurable scripting engine for each of the context types that are executed on the
server.

The scripting engines in AM have two main components: security settings, and the thread pool.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 282

Security
AM scripting engines provide security features for ensuring that malicious Java classes are not
directly called. The engines validate scripts by checking all directly-called Java classes against
a configurable blacklist and whitelist, and, optionally, against the JVM SecurityManager, if it is
configured.

Whitelists and blacklists contain class names that are allowed or denied execution respectively.
Specify classes in whitelists and blacklists by name or by using regular expressions.

Classes called by the script are checked against the whitelist first, and must match at least one
pattern in the list. The blacklist is applied after the whitelist, and classes matching any pattern are
disallowed.

You can also configure the scripting engine to make an additional call to the JVM security manager
for each class that is accessed. The security manager throws an exception if a class being called is
not allowed to execute.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 283

For more information on configuring script engine security, see "Scripting".

Important Points About Script Engine Security

The following points should be considered when configuring the security settings within each script
engine:

The scripting engine only validates directly accessible classes.

The security settings only apply to classes that the script directly accesses. If the script calls Foo.
a() and then that method calls Bar.b(), the scripting engine will be unable to prevent it. You must
consider the whole chain of accessible classes.

Note

Access includes actions such as:

• Importing or loading a class.

• Accessing any instance of that class. For example, passed as a parameter to the script.

• Calling a static method on that class.

• Calling a method on an instance of that class.

• Accessing a method or field that returns an instance of that class.

Potentially dangerous Java classes are blacklisted by default.

All Java reflection classes (java.lang.Class, java.lang.reflect.*) are blacklisted by default to avoid
bypassing the security settings.

The java.security.AccessController class is also blacklisted by default to prevent access to the
doPrivileged() methods.

Caution

You should not remove potentially dangerous Java classes from the blacklist.

The whitelists and blacklists match class or package names only.

The whitelist and blacklist patterns apply only to the exact class or package names involved. The
script engine does not know anything about inheritance, so it is best to whitelist known, specific
classes.

Thread Pools
Each script is executed in an individual thread. Each scripting engine starts with an initial number of
threads available for executing scripts. If no threads are available for execution, AM creates a new
thread to execute the script, until the configured maximum number of threads is reached.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 284

If the maximum number of threads is reached, pending script executions are queued in a number
of buffer threads, until a thread becomes available for execution. If a created thread has completed
script execution and has remained idle for a configured amount of time, AM terminates the thread,
shrinking the pool.

For more information on configuring script engine thread pools, see "Scripting".

Global Scripting API Functionality
This section covers functionality available to each of the server-side script types.

Global API functionality includes:

• Accessing HTTP Services

• Debug Logging

Accessing HTTP Services

AM passes an HTTP client object, httpClient, to server-side scripts. Server-side scripts can call HTTP
services with the httpClient.send method. The method returns an HttpClientResponse object.

Configure the parameters for the HTTP client object by using the org.forgerock.http.protocol package.
This package contains the Request class, which has methods for setting the URI and type of request.

The following example, taken from the default server-side Scripted authentication module script, uses
these methods to call an online API to determine the longitude and latitude of a user based on their
postal address:
function getLongitudeLatitudeFromUserPostalAddress() {

 var request = new org.forgerock.http.protocol.Request();

 request.setUri("http://maps.googleapis.com/maps/api/geocode/json?address=" +
 encodeURIComponent(userPostalAddress));
 request.setMethod("GET");

 var response = httpClient.send(request).get();
 logResponse(response);

 var geocode = JSON.parse(response.getEntity());
 var i;

 for (i = 0; i < geocode.results.length; i++) {
 var result = geocode.results[i];
 latitude = result.geometry.location.lat;
 longitude = result.geometry.location.lng;

 logger.message("latitude:" + latitude + " longitude:" + longitude);
 }
}

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 285

HTTP client requests are synchronous and blocking until they return. You can, however, set a global
timeout for server-side scripts. For details, see "Scripted Authentication Module Properties" in the
Authentication and Single Sign-On Guide.

Server-side scripts can access response data by using the methods listed in the table below.

HTTP Client Response Methods

Method Parameters Return Type Description
HttpClientResponse.getCookies Void Map<String, String> Get the cookies for the

returned response, if
any exist.

HttpClientResponse.getEntity Void String Get the entity of the
returned response.

HttpClientResponse.getHeaders Void Map<String, String> Get the headers for the
returned response, if
any exist.

HttpClientResponse.
getReasonPhrase

Void String Get the reason phrase
of the returned
response.

HttpClientResponse.getStatusCode Void Integer Get the status code of
the returned response.

HttpClientResponse.hasCookies Void Boolean Indicate whether the
returned response had
any cookies.

HttpClientResponse.hasHeaders Void Boolean Indicate whether the
returned response had
any headers.

Debug Logging

Server-side scripts can write messages to AM debug logs by using the logger object.

AM does not log debug messages from scripts by default. You can configure AM to log such messages
by setting the debug log level for the amScript service. For details, see "Debug Logging By Service" in
the Setup and Maintenance Guide.

The following table lists the logger methods.

Logger Methods

Method Parameters Return Type Description
logger.error Error Message (type:

String)
Void Write Error Message to AM debug

logs if ERROR level logging is
enabled.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 286

Method Parameters Return Type Description
logger.errorEnabled Void Boolean Return true when ERROR level

debug messages are enabled.
logger.message Message (type: String) Void Write Message to AM debug logs if

MESSAGE level logging is enabled.
logger.messageEnabled Void Boolean Return true when MESSAGE level

debug messages are enabled.
logger.warning Warning Message (type:

String)
Void Write Warning Message to AM

debug logs if WARNING level
logging is enabled.

logger.warningEnabled Void Boolean Return true when WARNING level
debug messages are enabled.

Managing Scripts
This section shows you how to manage scripts used for client-side and server-side scripted
authentication, custom policy conditions, and handling OpenID Connect claims using the AM console,
the ssoadm command, and the REST API.

Managing Scripts With the AM Console

The following procedures describe how to create, modify, and delete scripts using the AM console:

• "To Create Scripts by Using the AM Console"

• "To Modify Scripts by Using the AM Console"

• "To Delete Scripts by Using the AM Console"

To Create Scripts by Using the AM Console

1. Log in to the AM console as an AM administrator, for example, amadmin.

2. Navigate to Realms > Realm Name > Scripts.

3. Click New Script.

The New Script page appears:

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 287

4. Specify a name for the script.

5. Select the type of script from the Script Type drop-down list.

6. Click Create.

The Script Name page appears:

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 288

7. Enter values on the Script Name page as follows:

a. Enter a description of the script.

b. Choose the script language, either JavaScript or Groovy. Note that not every script type
supports both languages.

c. Enter the source code in the Script field.

On supported browsers, you can click Upload, navigate to the script file, and then click Open
to upload the contents to the Script field.

d. Click Validate to check for compilation errors in the script.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 289

Correct any compilation errors, and revalidate the script until all errors have been fixed.

e. Save your changes.

To Modify Scripts by Using the AM Console

1. Log in to the AM console as an AM administrator, for example, amadmin.

2. Navigate to Realms > Realm Name > Scripts.

3. Select the script you want to modify from the list of scripts.

The Script Name page appears.

4. Modify values on the Script Name page as needed. Note that if you change the Script Type,
existing code in the script is replaced.

5. If you modified the code in the script, click Validate to check for compilation errors.

Correct any compilation errors, and revalidate the script until all errors have been fixed.

6. Save your changes.

To Delete Scripts by Using the AM Console

1. Log in to the AM console as an AM administrator, for example, amadmin.

2. Navigate to Realms > Realm Name > Scripts.

3. Choose one or more scripts to delete by activating the checkboxes in the relevant rows. Note that
you can only delete user-created scripts—you cannot delete the global sample scripts provided
with AM.

4. Click Delete.

Managing Scripts With the REST API

This section shows you how to manage scripts used for client-side and server-side scripted
authentication, custom policy conditions, and handling OpenID Connect claims by using the REST
API.

AM provides the scripts REST endpoint for the following:

• "Querying Scripts"

• "Reading a Script"

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 290

• "Validating a Script"

• "Creating a Script"

• "Updating a Script"

• "Deleting a Script"

User-created scripts are realm-specific, hence the URI for the scripts' API can contain a realm
component, such as /json{/realm}/scripts. If the realm is not specified in the URI, the top level realm is
used.

Tip

AM includes some global example scripts that can be used in any realm.

Scripts are represented in JSON and take the following form. Scripts are built from standard JSON
objects and values (strings, numbers, objects, sets, arrays, true, false, and null). Each script has a
system-generated universally unique identifier (UUID), which must be used when modifying existing
scripts. Renaming a script will not affect the UUID:
{
 "_id": "7e3d7067-d50f-4674-8c76-a3e13a810c33",
 "name": "Scripted Module - Server Side",
 "description": "Default global script for server side Scripted Authentication Module",
 "script": "dmFyIFNUQVJUX1RJ...",
 "language": "JAVASCRIPT",
 "context": "AUTHENTICATION_SERVER_SIDE",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
}

The values for the fields shown in the example above are explained below:

_id

The UUID that AM generates for the script.

name

The name provided for the script.

description

An optional text string to help identify the script.

script

The source code of the script. The source code is in UTF-8 format and encoded into Base64.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 291

For example, a script such as the following:
var a = 123;
var b = 456;

When encoded into Base64 becomes:
dmFyIGEgPSAxMjM7IA0KdmFyIGIgPSA0NTY7

language

The language the script is written in - JAVASCRIPT or GROOVY.

Language Support per Context

Script Context Supported Languages
POLICY_CONDITION JAVASCRIPT, GROOVY
AUTHENTICATION_SERVER_SIDE JAVASCRIPT, GROOVY
AUTHENTICATION_CLIENT_SIDE JAVASCRIPT

OIDC_CLAIMS JAVASCRIPT, GROOVY
AUTHENTICATION_TREE_DECISION_NODE JAVASCRIPT, GROOVY

context

The context type of the script.

Supported values are:

POLICY_CONDITION

Policy Condition

AUTHENTICATION_SERVER_SIDE

Server-side Authentication

AUTHENTICATION_CLIENT_SIDE

Client-side Authentication

Note

Client-side scripts must be written in JavaScript.

OIDC_CLAIMS

OIDC Claims

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 292

AUTHENTICATION_TREE_DECISION_NODE

Authentication scripts used by Scripted Tree Decision authentication nodes.

createdBy

A string containing the universal identifier DN of the subject that created the script.

creationDate

An integer containing the creation date and time, in ISO 8601 format.

lastModifiedBy

A string containing the universal identifier DN of the subject that most recently updated the
resource type.

If the script has not been modified since it was created, this property will have the same value as
createdBy.

lastModifiedDate

A string containing the last modified date and time, in ISO 8601 format.

If the script has not been modified since it was created, this property will have the same value as
creationDate.

Querying Scripts

To list all the scripts in a realm, as well as any global scripts, perform an HTTP GET to the /json{/
realm}/scripts endpoint with a _queryFilter parameter set to true.

Note

If the realm is not specified in the URL, AM returns scripts in the top level realm, as well as any global scripts.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
--header "iPlanetDirectoryPro: AQIC5..." \
--header "Accept-API-Version: resource=1.1" \
https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts?_queryFilter=true
{
 "result": [
 {
 "_id": "9de3eb62-f131-4fac-a294-7bd170fd4acb",
 "name": "Scripted Policy Condition",
 "description": "Default global script for Scripted Policy Conditions",

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 293

 "script": "LyoqCiAqIFRoaXMg...",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
 },
 {
 "_id": "7e3d7067-d50f-4674-8c76-a3e13a810c33",
 "name": "Scripted Module - Server Side",
 "description": "Default global script for server side Scripted Authentication Module",
 "script": "dmFyIFNUQVJUX1RJ...",
 "language": "JAVASCRIPT",
 "context": "AUTHENTICATION_SERVER_SIDE",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

Supported _queryFilter Fields and Operators

Field Supported Operators
_id Equals (eq), Contains (co), Starts with (sw)
name Equals (eq), Contains (co), Starts with (sw)
description Equals (eq), Contains (co), Starts with (sw)
script Equals (eq), Contains (co), Starts with (sw)
language Equals (eq), Contains (co), Starts with (sw)
context Equals (eq), Contains (co), Starts with (sw)

Reading a Script

To read an individual script in a realm, perform an HTTP GET using the /json{/realm}/scripts
endpoint, specifying the UUID in the URL.

Tip

To read a script in the top-level realm, or to read a built-in global script, do not specify a realm in the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 294

$ curl \
--header "iPlanetDirectoryPro: AQIC5..." \
--header "Accept-API-Version: resource=1.1" \
https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/9de3eb62-f131-4fac-
a294-7bd170fd4acb
{
 "_id": "9de3eb62-f131-4fac-a294-7bd170fd4acb",
 "name": "Scripted Policy Condition",
 "description": "Default global script for Scripted Policy Conditions",
 "script": "LyoqCiAqIFRoaXMg...",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
}

Validating a Script

To validate a script, perform an HTTP POST using the /json{/realm}/scripts endpoint, with an _action
parameter set to validate. Include a JSON representation of the script and the script language,
JAVASCRIPT or GROOVY, in the POST data.

The value for script must be in UTF-8 format and then encoded into Base64.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "iPlanetDirectoryPro: AQIC5..." \
--header "Accept-API-Version: resource=1.1" \
--data '{
 "script": "dmFyIGEgPSAxMjM7dmFyIGIgPSA0NTY7Cg==",
 "language": "JAVASCRIPT"
}' \
https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/?_action=validate
{
 "success": true
}

If the script is valid the JSON response contains a success key with a value of true.

If the script is invalid the JSON response contains a success key with a value of false, and an indication
of the problem and where it occurs, as shown below:

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 295

$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "iPlanetDirectoryPro: AQIC5..." \
--header "Accept-API-Version: resource=1.1" \
--data '{
 "script": "dmFyIGEgPSAxMjM7dmFyIGIgPSA0NTY7ID1WQUxJREFUSU9OIFNIT1VMRCBGQUlMPQo=",
 "language": "JAVASCRIPT"
}' \
https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/?_action=validate
{
 "success": false,
 "errors": [
 {
 "line": 1,
 "column": 27,
 "message": "syntax error"
 }
]
}

Creating a Script

To create a script in a realm, perform an HTTP POST using the /json{/realm}/scripts endpoint, with an
_action parameter set to create. Include a JSON representation of the script in the POST data.

The value for script must be in UTF-8 format and then encoded into Base64.

Note

If the realm is not specified in the URL, AM creates the script in the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 296

$ curl \
--request POST \
--header "Content-Type: application/json" \
--header "iPlanetDirectoryPro: AQIC5..." \
--header "Accept-API-Version: resource=1.1" \
--data '{
 "name": "MyJavaScript",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "description": "An example script"
}' \
https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/?_action=create
{
 "_id": "0168d494-015a-420f-ae5a-6a2a5c1126af",
 "name": "MyJavaScript",
 "description": "An example script",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1436807766258,
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1436807766258
}

Updating a Script

To update an individual script in a realm, perform an HTTP PUT using the /json{/realm}/scripts
endpoint, specifying the UUID in both the URL and the PUT body. Include a JSON representation of
the updated script in the PUT data, alongside the UUID.

Note

If the realm is not specified in the URL, AM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 297

$ curl \
--header "iPlanetDirectoryPro: AQIC5..." \
--header "Content-Type: application/json" \
--header "Accept-API-Version: resource=1.1" \
--request PUT \
--data '{
 "name": "MyUpdatedJavaScript",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "description": "An updated example script configuration"
}' \
https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/0168d494-015a-420f-
ae5a-6a2a5c1126af
{
 "_id": "0168d494-015a-420f-ae5a-6a2a5c1126af",
 "name": "MyUpdatedJavaScript",
 "description": "An updated example script configuration",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1436807766258,
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1436808364681
}

Deleting a Script
To delete an individual script in a realm, perform an HTTP DELETE using the /json{/realm}/scripts
endpoint, specifying the UUID in the URL.

Note

If the realm is not specified in the URL, AM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
--request DELETE \
--header "iPlanetDirectoryPro: AQIC5..." \
--header "Accept-API-Version: resource=1.1" \
https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/0168d494-015a-420f-
ae5a-6a2a5c1126af
{}

Managing Scripts With the ssoadm Command
Use the ssoadm command's create-sub-cfg, get-sub-cfg, and delete-sub-cfg subcommands to manage
AM scripts.

Create an AM script as follows:

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 298

1. Create a script configuration file, for example /path/to/myScriptConfigurationFile.txt, containing the
following:
script-file=/path/to/myScriptFile.js
language=JAVASCRIPT
name=My New Script
context=AUTHENTICATION_SERVER_SIDE

Possible values for the language property are:

• JAVASCRIPT

• GROOVY
Possible values for the context property are:

• POLICY_CONDITION

• AUTHENTICATION_SERVER_SIDE

• AUTHENTICATION_CLIENT_SIDE

• OIDC_CLAIMS

• AUTHENTICATION_TREE_DECISION_NODE

2. Run the ssoadm create-sub-cfg command. The --datafile argument references the script
configuration file you created in the previous step:
$ ssoadm \
 create-sub-cfg \
 --realm /myRealm \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename ScriptingService \
 --subconfigname scriptConfigurations/scriptConfiguration \
 --subconfigid myScriptID \
 --datafile /path/to/myScriptConfigurationFile.txt
Sub Configuration scriptConfigurations/scriptConfiguration was added to realm /myRealm

To list the properties of a script, run the ssoadm get-sub-cfg command:

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 299

$ ssoadm \
 get-sub-cfg \
 --realm /myRealm \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename ScriptingService \
 --subconfigname scriptConfigurations/myScriptID
createdBy=
lastModifiedDate=
lastModifiedBy=
name=My New Script
context=AUTHENTICATION_SERVER_SIDE
description=
language=JAVASCRIPT
creationDate=
script=...Script output follows...

To delete a script, run the ssoadm delete-sub-cfg command:
$ ssoadm \
 delete-sub-cfg \
 --realm /myRealm \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename ScriptingService \
 --subconfigname scriptConfigurations/myScriptID
Sub Configuration scriptConfigurations/myScriptID was deleted from realm /myRealm

Scripting
amster service name: Scripting

Configuration

The following settings appear on the Configuration tab:

Default Script Type

The default script context type when creating a new script.

The possible values for this property are:

• POLICY_CONDITION. Policy Condition

• AUTHENTICATION_SERVER_SIDE. Server-side Authentication

• AUTHENTICATION_CLIENT_SIDE. Client-side Authentication

• OIDC_CLAIMS. OIDC Claims

• AUTHENTICATION_TREE_DECISION_NODE. Decision node script for authentication trees

https://backstage.forgerock.com/docs/amster/6.5/entity-reference/#sec-amster-entity-scripting

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 300

• OAUTH2_ACCESS_TOKEN_MODIFICATION. OAuth2 Access Token Modification

Default value: POLICY_CONDITION

amster attribute: defaultContext

Secondary Configurations

This service has the following Secondary Configurations.

Engine Configuration

The following properties are available for Scripting Service secondary configuration instances:

Engine Configuration

Configure script engine parameters for running a particular script type in AM.

ssoadm attribute: engineConfiguration

To access a secondary configuration instance using the ssoadm command, use: --subconfigname
 [primary configuration]/[secondary configuration] For example:
$ ssoadm set-sub-cfg \
 --adminid amAdmin \
 --password-file admin_pwd_file \
 --servicename ScriptingService \
 --subconfigname OIDC_CLAIMS/engineConfiguration \
 --operation set \
 --attributevalues maxThreads=300 queueSize=-1

Note

Supports server-side scripts only. AM cannot configure engine settings for client-side scripts.

The configurable engine settings are as follows:

Server-side Script Timeout

The maximum execution time any individual script should take on the server (in seconds). AM
terminates scripts which take longer to run than this value.

ssoadm attribute: serverTimeout

Core thread pool size

The initial number of threads in the thread pool from which scripts operate. AM will ensure
the pool contains at least this many threads.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 301

ssoadm attribute: coreThreads

Maximum thread pool size

The maximum number of threads in the thread pool from which scripts operate. If no free
thread is available in the pool, AM creates new threads in the pool for script execution up to
the configured maximum. It is recommended to set the maximum number of threads to 300.

ssoadm attribute: maxThreads

Thread pool queue size

Specifies the number of threads to use for buffering script execution requests when the
maximum thread pool size is reached.

For short, CPU-bound scripts, consider a small pool size and larger queue length. For I/O-
bound scripts, for example, REST calls, consider a larger maximum pool size and a smaller
queue.

Not hot-swappable: restart server for changes to take effect.

ssoadm attribute: queueSize

Thread idle timeout (seconds)

Length of time (in seconds) for a thread to be idle before AM terminates created threads. If
the current pool size contains the number of threads set in Core thread pool size idle threads
will not be terminated, to maintain the initial pool size.

ssoadm attribute: idleTimeout

Java class whitelist

Specifies the list of class-name patterns allowed to be invoked by the script. Every class
accessed by the script must match at least one of these patterns.

You can specify the class name as-is or use a regular expression.

ssoadm attribute: whiteList

Java class blacklist

Specifies the list of class-name patterns that are NOT allowed to be invoked by the script. The
blacklist is applied AFTER the whitelist to exclude those classes - access to a class specified
in both the whitelist and the blacklist will be denied.

You can specify the class name to exclude as-is or use a regular expression.

ssoadm attribute: blackList

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 302

Use system SecurityManager

If enabled, AM will make a call to System.getSecurityManager().checkPackageAccess(...) for each
class that is accessed. The method throws SecurityException if the calling thread is not allowed
to access the package.

Note

This feature only takes effect if the security manager is enabled for the JVM.

ssoadm attribute: useSecurityManager

Scripting languages

Select the languages available for scripts on the chosen type. Either GROOVY or JAVASCRIPT.

ssoadm attribute: languages

Default Script

The source code that is presented as the default when creating a new script of this type.

ssoadm attribute: defaultScript

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 303

Appendix C. Getting Support

ForgeRock provides support services, professional services, training through ForgeRock University,
and partner services to assist you in setting up and maintaining your deployments. For a general
overview of these services, see https://www.forgerock.com.

ForgeRock has staff members around the globe who support our international customers and
partners. For details on ForgeRock's support offering, including support plans and service level
agreements (SLAs), visit https://www.forgerock.com/support.

ForgeRock publishes comprehensive documentation online:

• The ForgeRock Knowledge Base offers a large and increasing number of up-to-date, practical
articles that help you deploy and manage ForgeRock software.

While many articles are visible to community members, ForgeRock customers have access to much
more, including advanced information for customers using ForgeRock software in a mission-critical
capacity.

• ForgeRock product documentation, such as this document, aims to be technically accurate and
complete with respect to the software documented. It is visible to everyone and covers all product
features and examples of how to use them.

https://www.forgerock.com
https://www.forgerock.com/support
https://backstage.forgerock.com/knowledge/kb

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 304

Glossary

Access control Control to grant or to deny access to a resource.

Account lockout The act of making an account temporarily or permanently inactive
after successive authentication failures.

Actions Defined as part of policies, these verbs indicate what authorized
identities can do to resources.

Advice In the context of a policy decision denying access, a hint to the policy
enforcement point about remedial action to take that could result in a
decision allowing access.

Agent administrator User having privileges only to read and write agent profile
configuration information, typically created to delegate agent profile
creation to the user installing a web or Java agent.

Agent authenticator Entity with read-only access to multiple agent profiles defined in the
same realm; allows an agent to read web service profiles.

Application In general terms, a service exposing protected resources.

In the context of AM policies, the application is a template that
constrains the policies that govern access to protected resources. An
application can have zero or more policies.

Application type Application types act as templates for creating policy applications.

Application types define a preset list of actions and functional logic,
such as policy lookup and resource comparator logic.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 305

Application types also define the internal normalization, indexing
logic, and comparator logic for applications.

Attribute-based access
control (ABAC)

Access control that is based on attributes of a user, such as how old a
user is or whether the user is a paying customer.

Authentication The act of confirming the identity of a principal.

Authentication chaining A series of authentication modules configured together which a
principal must negotiate as configured in order to authenticate
successfully.

Authentication level Positive integer associated with an authentication module, usually
used to require success with more stringent authentication measures
when requesting resources requiring special protection.

Authentication module AM authentication unit that handles one way of obtaining and
verifying credentials.

Authorization The act of determining whether to grant or to deny a principal access
to a resource.

Authorization Server In OAuth 2.0, issues access tokens to the client after authenticating a
resource owner and confirming that the owner authorizes the client to
access the protected resource. AM can play this role in the OAuth 2.0
authorization framework.

Auto-federation Arrangement to federate a principal's identity automatically based
on a common attribute value shared across the principal's profiles at
different providers.

Bulk federation Batch job permanently federating user profiles between a service
provider and an identity provider based on a list of matched user
identifiers that exist on both providers.

Circle of trust Group of providers, including at least one identity provider, who have
agreed to trust each other to participate in a SAML v2.0 provider
federation.

Client In OAuth 2.0, requests protected web resources on behalf of the
resource owner given the owner's authorization. AM can play this role
in the OAuth 2.0 authorization framework.

Client-based OAuth 2.0
tokens

After a successful OAuth 2.0 grant flow, AM returns a token to the
client. This differs from CTS-based OAuth 2.0 tokens, where AM
returns a reference to token to the client.

Client-based sessions AM sessions for which AM returns session state to the client after
each request, and require it to be passed in with the subsequent

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 306

request. For browser-based clients, AM sets a cookie in the browser
that contains the session information.

For browser-based clients, AM sets a cookie in the browser that
contains the session state. When the browser transmits the cookie
back to AM, AM decodes the session state from the cookie.

Conditions Defined as part of policies, these determine the circumstances under
which which a policy applies.

Environmental conditions reflect circumstances like the client
IP address, time of day, how the subject authenticated, or the
authentication level achieved.

Subject conditions reflect characteristics of the subject like whether
the subject authenticated, the identity of the subject, or claims in the
subject's JWT.

Configuration datastore LDAP directory service holding AM configuration data.

Cross-domain single sign-
on (CDSSO)

AM capability allowing single sign-on across different DNS domains.

CTS-based OAuth 2.0
tokens

After a successful OAuth 2.0 grant flow, AM returns a reference to
the token to the client, rather than the token itself. This differs from
client-based OAuth 2.0 tokens, where AM returns the entire token to
the client.

CTS-based sessions AM sessions that reside in the Core Token Service's token store. CTS-
based sessions might also be cached in memory on one or more AM
servers. AM tracks these sessions in order to handle events like logout
and timeout, to permit session constraints, and to notify applications
involved in SSO when a session ends.

Delegation Granting users administrative privileges with AM.

Entitlement Decision that defines which resource names can and cannot be
accessed for a given identity in the context of a particular application,
which actions are allowed and which are denied, and any related
advice and attributes.

Extended metadata Federation configuration information specific to AM.

Extensible Access Control
Markup Language
(XACML)

Standard, XML-based access control policy language, including
a processing model for making authorization decisions based on
policies.

Federation Standardized means for aggregating identities, sharing authentication
and authorization data information between trusted providers, and

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 307

allowing principals to access services across different providers
without authenticating repeatedly.

Fedlet Service provider application capable of participating in a circle of
trust and allowing federation without installing all of AM on the
service provider side; AM lets you create Java Fedlets.

Hot swappable Refers to configuration properties for which changes can take effect
without restarting the container where AM runs.

Identity Set of data that uniquely describes a person or a thing such as a
device or an application.

Identity federation Linking of a principal's identity across multiple providers.

Identity provider (IdP) Entity that produces assertions about a principal (such as how and
when a principal authenticated, or that the principal's profile has a
specified attribute value).

Identity repository Data store holding user profiles and group information; different
identity repositories can be defined for different realms.

Java agent Java web application installed in a web container that acts as a policy
enforcement point, filtering requests to other applications in the
container with policies based on application resource URLs.

Metadata Federation configuration information for a provider.

Policy Set of rules that define who is granted access to a protected resource
when, how, and under what conditions.

Policy agent Java, web, or custom agent that intercepts requests for resources,
directs principals to AM for authentication, and enforces policy
decisions from AM.

Policy Administration Point
(PAP)

Entity that manages and stores policy definitions.

Policy Decision Point (PDP) Entity that evaluates access rights and then issues authorization
decisions.

Policy Enforcement Point
(PEP)

Entity that intercepts a request for a resource and then enforces
policy decisions from a PDP.

Policy Information Point
(PIP)

Entity that provides extra information, such as user profile attributes
that a PDP needs in order to make a decision.

Principal Represents an entity that has been authenticated (such as a user,
a device, or an application), and thus is distinguished from other
entities.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 308

When a Subject successfully authenticates, AM associates the Subject
with the Principal.

Privilege In the context of delegated administration, a set of administrative
tasks that can be performed by specified identities in a given realm.

Provider federation Agreement among providers to participate in a circle of trust.

Realm AM unit for organizing configuration and identity information.

Realms can be used for example when different parts of an
organization have different applications and identity stores, and when
different organizations use the same AM deployment.

Administrators can delegate realm administration. The administrator
assigns administrative privileges to users, allowing them to perform
administrative tasks within the realm.

Resource Something a user can access over the network such as a web page.

Defined as part of policies, these can include wildcards in order to
match multiple actual resources.

Resource owner In OAuth 2.0, entity who can authorize access to protected web
resources, such as an end user.

Resource server In OAuth 2.0, server hosting protected web resources, capable of
handling access tokens to respond to requests for such resources.

Response attributes Defined as part of policies, these allow AM to return additional
information in the form of "attributes" with the response to a policy
decision.

Role based access control
(RBAC)

Access control that is based on whether a user has been granted a set
of permissions (a role).

Security Assertion Markup
Language (SAML)

Standard, XML-based language for exchanging authentication and
authorization data between identity providers and service providers.

Service provider (SP) Entity that consumes assertions about a principal (and provides a
service that the principal is trying to access).

Authentication Session The interval while the user or entity is authenticating to AM.

Session The interval that starts after the user has authenticated and ends
when the user logs out, or when their session is terminated. For
browser-based clients, AM manages user sessions across one or more
applications by setting a session cookie. See also CTS-based sessions
and Client-based sessions.

OAuth 2.0 Guide ForgeRock Access Management 6.5 (2022-10-11)
Copyright © 2011-2022 ForgeRock AS. All rights reserved. 309

Session high availability Capability that lets any AM server in a clustered deployment access
shared, persistent information about users' sessions from the CTS
token store. The user does not need to log in again unless the entire
deployment goes down.

Session token Unique identifier issued by AM after successful authentication. For
a CTS-based sessions, the session token is used to track a principal's
session.

Single log out (SLO) Capability allowing a principal to end a session once, thereby ending
her session across multiple applications.

Single sign-on (SSO) Capability allowing a principal to authenticate once and gain access to
multiple applications without authenticating again.

Site Group of AM servers configured the same way, accessed through a
load balancer layer. The load balancer handles failover to provide
service-level availability.

The load balancer can also be used to protect AM services.

Standard metadata Standard federation configuration information that you can share with
other access management software.

Stateless Service Stateless services do not store any data locally to the service. When
the service requires data to perform any action, it requests it from
a data store. For example, a stateless authentication service stores
session state for logged-in users in a database. This way, any server in
the deployment can recover the session from the database and service
requests for any user.

All AM services are stateless unless otherwise specified. See also
Client-based sessions and CTS-based sessions.

Subject Entity that requests access to a resource

When an identity successfully authenticates, AM associates the
identity with the Principal that distinguishes it from other identities.
An identity can be associated with multiple principals.

Identity store Data storage service holding principals' profiles; underlying storage
can be an LDAP directory service or a custom IdRepo implementation.

Web Agent Native library installed in a web server that acts as a policy
enforcement point with policies based on web page URLs.

	OAuth 2.0 Guide
	Table of Contents
	Preface
	Chapter 1. Introducing OAuth 2.0
	AM as the OAuth 2.0 Authorization Server
	AM and OAuth 2.0 Scopes
	AM as an OAuth 2.0 Client and Resource Server
	Using Your Own Client and Resource Server
	Security Considerations
	About Token Storage Location

	Chapter 2. Configuring AM for OAuth 2.0
	Configuring the OAuth 2.0 Provider Service
	Registering OAuth 2.0 Clients With the OAuth 2.0 Provider Service
	Dynamic Client Registration
	Dynamic Client Registration Management

	Configuring AM as an Authorization Server and Client
	Web Site Protected With OAuth 2.0

	Configuring AM for Client-Based OAuth 2.0 Tokens
	Enabling Client-Based OAuth 2.0 Tokens
	Configuring Client-Based OAuth 2.0 Token Blacklisting
	Configuring Client-Based OAuth 2.0 Token Encryption
	Configuring Client-Based OAuth 2.0 Token Digital Signatures

	Chapter 3. Authenticating OAuth 2.0 Clients
	Authenticating Clients Using Form Parameters
	Authenticating Clients Using Authorization Headers
	Authenticating Clients Using JWT Profiles
	Authenticating Clients Using Mutual TLS
	Mutual TLS Using Public Key Infrastructure
	Mutual TLS Using Self-Signed X.509 Certificates
	Providing Client Certificates to AM

	Authenticating Clients when Using OpenID Connect 1.0

	Chapter 4. Implementing OAuth 2.0 Grant Flows
	Authorization Code Grant
	Authorization Code Grant with PKCE
	Implicit Grant
	Resource Owner Password Credentials Grant
	Client Credentials Grant
	Device Flow
	SAML v2.0 Profile for Authorization Grant
	JWT Profile for OAuth 2.0 Authorization Grant

	Chapter 5. Managing OAuth 2.0 Refresh Tokens
	Chapter 6. Implementing OAuth 2.0 Proof-of-Possession
	JWK-Based Proof-of-Possession
	Certificate-Bound Proof-of-Possession
	Obtaining Certificate-Bound Tokens When Mutual TLS Authentication is Configured
	Obtaining Certificate-Bound Tokens Without Configuring Mutual TLS Authentication

	Chapter 7. Managing OAuth 2.0 Consent
	Allowing Clients To Skip Consent
	Allowing the OAuth 2.0 Provider to Save Consent
	Allowing Users to Revoke Consent
	OAuth 2.0 Remote Consent Service
	Configuring Remote Consent Services

	Chapter 8. OAuth 2.0 Endpoints
	/oauth2/authorize
	/oauth2/bc-authorize
	/oauth2/access_token
	/oauth2/device/code
	/oauth2/device/user
	/oauth2/token/revoke
	/oauth2/introspect
	Legacy OAuth 2.0 endpoints
	/frrest/oauth2/token (Legacy)
	/oauth2/tokeninfo (Legacy)

	Chapter 9. OAuth 2.0 Administration and Supporting REST Endpoints
	/oauth2/register
	/json/realm-config/agents/OAuth2Client
	/users/user/oauth2/resources/sets
	/users/user/oauth2/applications

	Chapter 10. Customizing OAuth 2.0
	Customizing OAuth 2.0 Scope Handling
	Designing an OAuth 2.0 Scope Validator Plugin
	Building the OAuth 2.0 Scope Validator Sample Plugin
	Configuring an Instance to Use the Plugin
	Trying the Sample Plugin

	Modifying the Content of Access Tokens
	Preparing AM to Modify Access Tokens
	Trying the Default Access Token Modification Script

	Chapter 11. Reference
	OAuth 2.0 Standards
	OAuth 2.0 Sample Mobile Applications
	OAuth2 Provider
	Global Attributes
	Core
	Advanced
	Client Dynamic Registration
	OpenID Connect
	Advanced OpenID Connect
	Device Flow
	Consent
	CIBA

	Remote Consent Service
	Realm Defaults

	OAuth 2.0 and OpenID Connect 1.0 Client Settings
	Core
	Advanced
	OpenID Connect
	Signing and Encryption
	UMA

	OAuth 2.0 Remote Consent Agent Settings

	Appendix A. About the REST API
	Introducing REST
	About ForgeRock Common REST
	Common REST Resources
	Common REST Verbs
	Common REST Parameters
	Common REST Extension Points
	Common REST API Documentation
	Create
	Read
	Update
	Delete
	Patch
	Patch Operation: Add
	Patch Operation: Copy
	Patch Operation: Increment
	Patch Operation: Move
	Patch Operation: Remove
	Patch Operation: Replace
	Patch Operation: Transform
	Patch Operation Limitations

	Action
	Query
	HTTP Status Codes

	Cross-Site Request Forgery (CSRF) Protection
	REST API Versioning
	Supported REST API Versions
	Specifying an Explicit REST API Version
	Configuring the Default REST API Version for a Deployment
	REST API Versioning Messages

	Specifying Realms in REST API Calls
	Authentication and Logout using REST
	Authenticating to AM using REST
	Authenticating to Specific Authentication Services
	Authenticate Endpoint Parameters
	Returning Callback Information to AM
	Supported Callbacks

	Logging out of AM Using REST
	Invalidating All Sessions for a Given User
	Load Balancer and Proxy Layer Requirements
	Windows Desktop SSO Requirements

	Using the Session Token After Authentication
	Server Information
	Token Encoding
	Logging
	Common Audit Logging of REST API Calls
	Legacy Logging of REST API Calls

	Reference
	REST APIs

	Appendix B. About Scripting
	The Scripting Environment
	Security
	Thread Pools

	Global Scripting API Functionality
	Accessing HTTP Services
	Debug Logging

	Managing Scripts
	Managing Scripts With the AM Console
	Managing Scripts With the REST API
	Querying Scripts
	Reading a Script
	Validating a Script
	Creating a Script
	Updating a Script
	Deleting a Script

	Managing Scripts With the ssoadm Command

	Scripting
	Configuration
	Secondary Configurations
	Engine Configuration

	Appendix C. Getting Support
	Glossary

