
Development Guide
/ ForgeRock Access Management 5.1

Latest update: 5.1.1

ForgeRock AS
201 Mission St, Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2011-2017 ForgeRock AS.

Abstract

Guide to developing client applications and service providers. ForgeRock® Access
Management provides authentication, authorization, entitlement and federation software.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, http://fontawesome.io.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
http://fontawesome.io
https://opensource.org/licenses/OFL-1.1

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. iii

Table of Contents
Preface ... iv
1. Introducing APIs and Protocols ... 1

1.1. IPv4 and IPv6 ... 2
2. Developing with the REST API .. 3

2.1. Introducing REST ... 3
2.2. Introducing the API Explorer .. 3
2.3. About ForgeRock Common REST ... 7
2.4. REST API Versioning .. 24
2.5. Specifying Realms in REST API Calls ... 29
2.6. Authentication and Logout ... 30
2.7. Using the Session Token After Authentication .. 37
2.8. Server Information ... 38
2.9. Token Encoding .. 39
2.10. Logging .. 39
2.11. REST Goto URL Validation ... 41
2.12. Reference ... 41

3. Developing with the Java SDK ... 44
3.1. Installing Client SDK Samples .. 44
3.2. About the Java SDK .. 46
3.3. Authenticating Using Java SDK .. 47
3.4. Handling Single Sign-On Using the Java SDK ... 53
3.5. Requesting Policy Decisions Using the Java SDK .. 56
3.6. Requesting a XACML Policy Decision Using the Java SDK 59

4. Developing with the C SDK ... 67
5. Developing with Scripts .. 69

5.1. The Scripting Environment ... 69
5.2. Global Scripting API Functionality .. 72
5.3. Managing Scripts ... 74

6. Reference .. 87
6.1. Scripting ... 87

A. Getting Support .. 90
A.1. Accessing Documentation Online .. 90
A.2. Using the ForgeRock.org Site .. 90
A.3. Getting Support and Contacting ForgeRock ... 91

Glossary ... 92

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. iv

Preface
This guide provides an introduction to three ForgeRock Access Management APIs: the REST API, the
Java SDK, and the C SDK.

This guide is an introduction for developers who adapt client applications to use Access Management.

For more specific examples of the customizations you can write, see the list below:

• Custom OAuth 2.0 scopes plugins define how Access Management, when playing the role of
authorization server, handles scopes, including which token information to return for scopes set
when authorization was granted.

For more information, see "Customizing OAuth 2.0 Scope Handling" in the OAuth 2.0 Guide.

• Custom authentication plugins let Access Management authenticate users against a new
authentication service or an authentication service specific to your deployment

For more information, see "Creating a Custom Authentication Module" in the Authentication and
Single Sign-On Guide.

• Post authentication plugins perform additional processing at the end of the authentication process,
but before the subject is authenticated. Post authentication plugins can, for example, store
information about the authentication in the user's profile, or call another system for audit logging
purposes.

For more information, see "Creating a Post Authentication Plugin" in the Authentication and Single
Sign-On Guide.

• Policy evaluation plugins implement new policy conditions, send attributes from the user profile
as part of a policy response, extend the definition of the subjects to whom the policy applies, or
customize how policy management is delegated.

For more information, see "Customizing Policy Evaluation With a Plug-In" in the Authorization
Guide.

• Identity repository plugins let Access Management employ a new or custom user data store.

For more information, see "Customizing Identity Data Storage" in the Setup and Maintenance
Guide.

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. v

About ForgeRock Identity Platform™ Software
ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity
and Access Management solution. We help our customers deepen their relationships with their
customers, and improve the productivity and connectivity of their employees and partners. For more
information about ForgeRock and about the platform, see https://www.forgerock.com.

https://www.forgerock.com

Introducing APIs and Protocols

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 1

Chapter 1

Introducing APIs and Protocols
Although policy agents and standards support make it possible for applications to use AM for access
management without changing your code, some deployments require tighter integration, or direct
use of supported protocols and APIs.

AM supports a range of protocols and APIs that allow you not only to define specifically how access
is managed in your client applications, but also to extend AM capabilities to meet even those
deployment requirements not yet covered in AM.

This short chapter presents an overview of the APIs and protocols that AM supports.

AM provides client application programming interfaces for a variety of needs.

• AM exposes a RESTful API that can return JSON or XML over HTTP, allowing you to access
authentication, authorization, and identity services from your web applications using REST clients
in the language of your choice.

Introducing APIs and Protocols
IPv4 and IPv6

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 2

• The AM Java APIs provided through the ForgeRock Access Management Java SDK let your Java and
Java EE applications call on AM for authentication, and authorization in both AM and federated
environments.

Detailed reference information is provided in the ForgeRock Access Management Java SDK API
Specification.

• The AM C SDK also provides APIs for native applications, such as new web server policy agents.
The C SDK is delivered with AM for Linux, Solaris, and Windows platforms.

1.1. IPv4 and IPv6
AM provides functionality for IPv4, IPv6, and a hybrid of the two. While the majority of the interaction
is done on the backend, there are a few places where the GUI requires some inputs, such as setting
up policy conditions. These areas follow the same standard that applies to IPv4 and IPv6. IPv4 uses a
32-bit integer value, with a dot-decimal system. IPv6 uses a hexadecimal system, and the eight groups
of hexadecimal digits are separated by a colon.

https://backstage.forgerock.com/static/docs/am/5.1/apidocs
https://backstage.forgerock.com/static/docs/am/5.1/apidocs

Developing with the REST API
Introducing REST

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 3

Chapter 2

Developing with the REST API
This chapter shows how to use the AM RESTful interfaces for direct integration between web client
applications and AM.

2.1. Introducing REST
Representational State Transfer (REST) is an architectural style that sets certain constraints for
designing and building large-scale distributed hypermedia systems.

As an architectural style, REST has very broad applications. The designs of both HTTP 1.1 and
URIs follow RESTful principles. The World Wide Web is no doubt the largest and best known REST
application. Many other web services also follow the REST architectural style. Examples include
OAuth 2.0, OpenID Connect 1.0, and User-Managed Access (UMA).

The ForgeRock Common REST (CREST) API applies RESTful principles to define common verbs for
HTTP-based APIs that access web resources and collections of web resources.

Interface Stability: Evolving

Most native AM REST APIs use the CREST verbs. (In contrast, OAuth 2.0, OpenID Connect 1.0 and
UMA APIs follow their respective standards.)

2.2. Introducing the API Explorer
AM provides an online AM REST API reference that can be accessed through the AM console. The
API provides useful reference information for developers to create client applications to access AM's
services.

The API Explorer displays the REST API endpoints that allow client applications to access the AM's
services. The key features of the API Explorer are the following:

• API Versioning. The API Explorer displays the different API versions available depending on your
deployment.

http://en.wikipedia.org/wiki/Representational_state_transfer

Developing with the REST API
Introducing the API Explorer

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 4

API Explorer

• Detailed Information. The API Explorer provides an Expand Operations button for each available
CRUDPAQ method. When Expand Operations is pressed, you can view implementation notes,
successful response class, headers, parameters, and response messages with examples. For
example, the requestPayload field can be populated with an example value. Also, if you select Model,
you can view the schema for each parameter, as seen below:

Developing with the REST API
Introducing the API Explorer

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 5

API Explorer Request Payload

• Try It Out. The API Explorer also provides a Try It Out feature, which allows you to send a sample
request to the endpoint and view the possible responses.

Developing with the REST API
Introducing the API Explorer

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 6

API Explorer Detailed Information

To Access the API Explorer

1. Log into the AM console as an administrator.

2. You can access the API Explorer in one of two ways:

Point your browser to the following URL:
https://openam.example.com:8080/openam/XUI/#api/explorer/applications

Developing with the REST API
About ForgeRock Common REST

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 7

You can also click the help icon in the top-right corner, and then click API Explorer.

API Explorer

2.3. About ForgeRock Common REST
ForgeRock® Common REST is a common REST API framework. It works across the ForgeRock
platform to provide common ways to access web resources and collections of resources. Adapt the
examples in this section to your resources and deployment.

2.3.1. Common REST Resources

Servers generally return JSON-format resources, though resource formats can depend on the
implementation.

Resources in collections can be found by their unique identifiers (IDs). IDs are exposed in the
resource URIs. For example, if a server has a user collection under /users, then you can access a user
at /users/user-id. The ID is also the value of the _id field of the resource.

Resources are versioned using revision numbers. A revision is specified in the resource's _rev field.
Revisions make it possible to figure out whether to apply changes without resource locking and
without distributed transactions.

Developing with the REST API
Common REST Verbs

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 8

2.3.2. Common REST Verbs

The Common REST APIs use the following verbs, sometimes referred to collectively as CRUDPAQ.
For details and HTTP-based examples of each, follow the links to the sections for each verb.

Create

Add a new resource.

This verb maps to HTTP PUT or HTTP POST.

For details, see "Create".

Read

Retrieve a single resource.

This verb maps to HTTP GET.

For details, see "Read".

Update

Replace an existing resource.

This verb maps to HTTP PUT.

For details, see "Update".

Delete

Remove an existing resource.

This verb maps to HTTP DELETE.

For details, see "Delete".

Patch

Modify part of an existing resource.

This verb maps to HTTP PATCH.

For details, see "Patch".

Action

Perform a predefined action.

This verb maps to HTTP POST.

Developing with the REST API
Common REST Parameters

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 9

For details, see "Action".

Query

Search a collection of resources.

This verb maps to HTTP GET.

For details, see "Query".

2.3.3. Common REST Parameters

Common REST reserved query string parameter names start with an underscore, _.

Reserved query string parameters include, but are not limited to, the following names:

_action
_api
_crestapi
_fields
_mimeType
_pageSize
_pagedResultsCookie
_pagedResultsOffset
_prettyPrint
_queryExpression
_queryFilter
_queryId
_sortKeys
_totalPagedResultsPolicy

Note

Some parameter values are not safe for URLs, so URL-encode parameter values as necessary.

Continue reading for details about how to use each parameter.

2.3.4. Common REST Extension Points

The action verb is the main vehicle for extensions. For example, to create a new user with HTTP
POST rather than HTTP PUT, you might use /users?_action=create. A server can define additional
actions. For example, /tasks/1?_action=cancel.

A server can define stored queries to call by ID. For example, /groups?_queryId=hasDeletedMembers. Stored
queries can call for additional parameters. The parameters are also passed in the query string. Which
parameters are valid depends on the stored query.

Developing with the REST API
Common REST API Documentation

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 10

2.3.5. Common REST API Documentation

Common REST APIs often depend at least in part on runtime configuration. Many Common REST
endpoints therefore serve API descriptors at runtime. An API descriptor documents the actual API as
it is configured.

Use the following query string parameters to retrieve API descriptors:

_api

Serves an API descriptor that complies with the OpenAPI specification.

This API descriptor represents the API accessible over HTTP. It is suitable for use with popular
tools such as Swagger UI.

_crestapi

Serves a native Common REST API descriptor.

This API descriptor provides a compact representation that is not dependent on the transport
protocol. It requires a client that understands Common REST, as it omits many Common REST
defaults.

Note

Consider limiting access to API descriptors in production environments in order to avoid unnecessary traffic.

To provide documentation in production environments, see "To Publish OpenAPI Documentation" instead.

To Publish OpenAPI Documentation

In production systems, developers expect stable, well-documented APIs. Rather than retrieving API
descriptors at runtime through Common REST, prepare final versions, and publish them alongside
the software in production.

Use the OpenAPI-compliant descriptors to provide API reference documentation for your developers
as described in the following steps:

1. Configure the software to produce production-ready APIs.

In other words, the software should be configured as in production so that the APIs are identical
to what developers see in production.

2. Retrieve the OpenAPI-compliant descriptor.

The following command saves the descriptor to a file, myapi.json:

$ curl -o myapi.json endpoint?_api

https://github.com/OAI/OpenAPI-Specification
http://swagger.io/swagger-ui/

Developing with the REST API
Create

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 11

3. (Optional) If necessary, edit the descriptor.

For example, you might want to add security definitions to describe how the API is protected.

If you make any changes, then also consider using a source control system to manage your
versions of the API descriptor.

4. Publish the descriptor using a tool such as Swagger UI.

You can customize Swagger UI for your organization as described in the documentation for the
tool.

2.3.6. Create

There are two ways to create a resource, either with an HTTP POST or with an HTTP PUT.

To create a resource using POST, perform an HTTP POST with the query string parameter
_action=create and the JSON resource as a payload. Accept a JSON response. The server creates the
identifier if not specified:

POST /users?_action=create HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
{ JSON resource }

To create a resource using PUT, perform an HTTP PUT including the case-sensitive identifier for
the resource in the URL path, and the JSON resource as a payload. Use the If-None-Match: * header.
Accept a JSON response:

PUT /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-None-Match: *
{ JSON resource }

The _id and content of the resource depend on the server implementation. The server is not required
to use the _id that the client provides. The server response to the create request indicates the
resource location as the value of the Location header.

If you include the If-None-Match header, its value must be *. In this case, the request creates the object
if it does not exist, and fails if the object does exist. If you include the If-None-Match header with any
value other than *, the server returns an HTTP 400 Bad Request error. For example, creating an
object with If-None-Match: revision returns a bad request error. If you do not include If-None-Match: *,
the request creates the object if it does not exist, and updates the object if it does exist.

https://github.com/swagger-api/swagger-ui

Developing with the REST API
Read

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 12

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

2.3.7. Read

To retrieve a single resource, perform an HTTP GET on the resource by its case-sensitive identifier
(_id) and accept a JSON response:

GET /users/some-id HTTP/1.1
Host: example.com
Accept: application/json

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

_mimeType=mime-type

Some resources have fields whose values are multi-media resources such as a profile photo for
example.

By specifying both a single field and also the mime-type for the response content, you can read a
single field value that is a multi-media resource.

Developing with the REST API
Update

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 13

In this case, the content type of the field value returned matches the mime-type that you specify,
and the body of the response is the multi-media resource.

The Accept header is not used in this case. For example, Accept: image/png does not work. Use the
_mimeType query string parameter instead.

2.3.8. Update

To update a resource, perform an HTTP PUT including the case-sensitive identifier (_id) as the final
element of the path to the resource, and the JSON resource as the payload. Use the If-Match: _rev
header to check that you are actually updating the version you modified. Use If-Match: * if the version
does not matter. Accept a JSON response:

PUT /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-Match: _rev
{ JSON resource }

When updating a resource, include all the attributes to be retained. Omitting an attribute in the
resource amounts to deleting the attribute unless it is not under the control of your application.
Attributes not under the control of your application include private and read-only attributes. In
addition, virtual attributes and relationship references might not be under the control of your
application.

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

2.3.9. Delete

To delete a single resource, perform an HTTP DELETE by its case-sensitive identifier (_id) and accept
a JSON response:

Developing with the REST API
Patch

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 14

DELETE /users/some-id HTTP/1.1
Host: example.com
Accept: application/json

Parameters

You can use the following parameters:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

2.3.10. Patch

To patch a resource, send an HTTP PATCH request with the following parameters:

• operation

• field

• value

• from (optional with copy and move operations)

You can include these parameters in the payload for a PATCH request, or in a JSON PATCH file. If
successful, you'll see a JSON response similar to:

PATCH /users/some-id HTTP/1.1
Host: example.com
Accept: application/json
Content-Length: ...
Content-Type: application/json
If-Match: _rev
{ JSON array of patch operations }

PATCH operations apply to three types of targets:

• single-valued, such as an object, string, boolean, or number.

• list semantics array, where the elements are ordered, and duplicates are allowed.

Developing with the REST API
Patch

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 15

• set semantics array, where the elements are not ordered, and duplicates are not allowed.

ForgeRock PATCH supports several different operations. The following sections show each of these
operations, along with options for the field and value:

2.3.10.1. Patch Operation: Add

The add operation ensures that the target field contains the value provided, creating parent fields as
necessary.

If the target field is single-valued, then the value you include in the PATCH replaces the value of the
target. Examples of a single-valued field include: object, string, boolean, or number.

An add operation has different results on two standard types of arrays:

• List semantic arrays: you can run any of these add operations on that type of array:

• If you add an array of values, the PATCH operation appends it to the existing list of values.

• If you add a single value, specify an ordinal element in the target array, or use the {-} special
index to add that value to the end of the list.

• Set semantic arrays: The list of values included in a patch are merged with the existing set of
values. Any duplicates within the array are removed.

As an example, start with the following list semantic array resource:
{
 "fruits" : ["orange", "apple"]
}

The following add operation includes the pineapple to the end of the list of fruits, as indicated by the
- at the end of the fruits array.
{
 "operation" : "add",
 "field" : "/fruits/-",
 "value" : "pineapple"
}

The following is the resulting resource:
{
 "fruits" : ["orange", "apple", "pineapple"]
}

2.3.10.2. Patch Operation: Copy

The copy operation takes one or more existing values from the source field. It then adds those same
values on the target field. Once the values are known, it is equivalent to performing an add operation
on the target field.

Developing with the REST API
Patch

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 16

The following copy operation takes the value from a field named mail, and then runs a replace operation
on the target field, another_mail.
[
 {
 "operation":"copy",
 "from":"mail",
 "field":"another_mail"
 }
]

If the source field value and the target field value are configured as arrays, the result depends on
whether the array has list semantics or set semantics, as described in "Patch Operation: Add".

2.3.10.3. Patch Operation: Increment

The increment operation changes the value or values of the target field by the amount you specify. The
value that you include must be one number, and may be positive or negative. The value of the target
field must accept numbers. The following increment operation adds 1000 to the target value of /user/
payment.
[
 {
 "operation" : "increment",
 "field" : "/user/payment",
 "value" : "1000"
 }
]

Since the value of the increment is a single number, arrays do not apply.

2.3.10.4. Patch Operation: Move

The move operation removes existing values on the source field. It then adds those same values on
the target field. It is equivalent to performing a remove operation on the source, followed by an add
operation with the same values, on the target.

The following move operation is equivalent to a remove operation on the source field, surname, followed by
a replace operation on the target field value, lastName. If the target field does not exist, it is created.
[
 {
 "operation":"move",
 "from":"surname",
 "field":"lastName"
 }
]

To apply a move operation on an array, you need a compatible single-value, list semantic array, or set
semantic array on both the source and the target. For details, see the criteria described in "Patch
Operation: Add".

Developing with the REST API
Patch

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 17

2.3.10.5. Patch Operation: Remove
The remove operation ensures that the target field no longer contains the value provided. If the remove
operation does not include a value, the operation removes the field. The following remove deletes the
value of the phoneNumber, along with the field.
[
 {
 "operation" : "remove",
 "field" : "phoneNumber"
 }
]

If the object has more than one phoneNumber, those values are stored as an array.

A remove operation has different results on two standard types of arrays:

• List semantic arrays: A remove operation deletes the specified element in the array. For example, the
following operation removes the first phone number, based on its array index (zero-based):
[
 {
 "operation" : "remove",
 "field" : "/phoneNumber/0"
 }
]

• Set semantic arrays: The list of values included in a patch are removed from the existing array.

2.3.10.6. Patch Operation: Replace
The replace operation removes any existing value(s) of the targeted field, and replaces them with the
provided value(s). It is essentially equivalent to a remove followed by a add operation. If the arrays are
used, the criteria is based on "Patch Operation: Add". However, indexed updates are not allowed,
even when the target is an array.

The following replace operation removes the existing telephoneNumber value for the user, and then adds
the new value of +1 408 555 9999.
[
 {
 "operation" : "replace",
 "field" : "/telephoneNumber",
 "value" : "+1 408 555 9999"
 }
]

A PATCH replace operation on a list semantic array works in the same fashion as a PATCH remove
operation. The following example demonstrates how the effect of both operations. Start with the
following resource:
{
 "fruits" : ["apple", "orange", "kiwi", "lime"],
}

Developing with the REST API
Patch

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 18

Apply the following operations on that resource:
[
 {
 "operation" : "remove",
 "field" : "/fruits/0",
 "value" : ""
 },
 {
 "operation" : "replace",
 "field" : "/fruits/1",
 "value" : "pineapple"
 }
]

The PATCH operations are applied sequentially. The remove operation removes the first member of
that resource, based on its array index, (fruits/0), with the following result:
[
 {
 "fruits" : ["orange", "kiwi", "lime"],
 }
]

The second PATCH operation, a replace, is applied on the second member (fruits/1) of the
intermediate resource, with the following result:
[
 {
 "fruits" : ["orange", "pineapple", "lime"],
 }
]

2.3.10.7. Patch Operation: Transform

The transform operation changes the value of a field based on a script or some other data
transformation command. The following transform operation takes the value from the field named /
objects, and applies the something.js script as shown:
[
 {
 "operation" : "transform",
 "field" : "/objects",
 "value" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "something.js"
 }
 }
 }
]

Developing with the REST API
Action

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 19

2.3.10.8. Patch Operation Limitations

Some HTTP client libraries do not support the HTTP PATCH operation. Make sure that the library you
use supports HTTP PATCH before using this REST operation.

For example, the Java Development Kit HTTP client does not support PATCH as a valid HTTP method.
Instead, the method HttpURLConnection.setRequestMethod("PATCH") throws ProtocolException.

Parameters

You can use the following parameters. Other parameters might depend on the specific action
implementation:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

2.3.11. Action

Actions are a means of extending Common REST APIs and are defined by the resource provider, so
the actions you can use depend on the implementation.

The standard action indicated by _action=create is described in "Create".

Parameters

You can use the following parameters. Other parameters might depend on the specific action
implementation:

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in the body of the response.

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

Developing with the REST API
Query

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 20

2.3.12. Query

To query a resource collection (or resource container if you prefer to think of it that way), perform an
HTTP GET and accept a JSON response, including at least a _queryExpression, _queryFilter, or _queryId
parameter. These parameters cannot be used together:

GET /users?_queryFilter=true HTTP/1.1
Host: example.com
Accept: application/json

The server returns the result as a JSON object including a "results" array and other fields related to
the query string parameters that you specify.

Parameters

You can use the following parameters:

_queryFilter=filter-expression

Query filters request that the server return entries that match the filter expression. You must
URL-escape the filter expression.

The string representation is summarized as follows. Continue reading for additional explanation:

Expr = OrExpr
OrExpr = AndExpr ('or' AndExpr) *
AndExpr = NotExpr ('and' NotExpr) *
NotExpr = '!' PrimaryExpr | PrimaryExpr
PrimaryExpr = '(' Expr ')' | ComparisonExpr | PresenceExpr | LiteralExpr
ComparisonExpr = Pointer OpName JsonValue
PresenceExpr = Pointer 'pr'
LiteralExpr = 'true' | 'false'
Pointer = JSON pointer
OpName = 'eq' | # equal to
 'co' | # contains
 'sw' | # starts with
 'lt' | # less than
 'le' | # less than or equal to
 'gt' | # greater than
 'ge' | # greater than or equal to
 STRING # extended operator
JsonValue = NUMBER | BOOLEAN | '"' UTF8STRING '"'
STRING = ASCII string not containing white-space
UTF8STRING = UTF-8 string possibly containing white-space

JsonValue components of filter expressions follow RFC 7159: The JavaScript Object Notation
(JSON) Data Interchange Format. In particular, as described in section 7 of the RFC, the escape
character in strings is the backslash character. For example, to match the identifier test\, use _id
 eq 'test\\'. In the JSON resource, the \ is escaped the same way: "_id":"test\\".

https://tools.ietf.org/html/rfc7159
https://tools.ietf.org/html/rfc7159

Developing with the REST API
Query

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 21

When using a query filter in a URL, be aware that the filter expression is part of a query
string parameter. A query string parameter must be URL encoded as described in RFC 3986:
Uniform Resource Identifier (URI): Generic Syntax For example, white space, double quotes
("), parentheses, and exclamation characters need URL encoding in HTTP query strings. The
following rules apply to URL query components:

query = *(pchar / "/" / "?")
pchar = unreserved / pct-encoded / sub-delims / ":" / "@"
unreserved = ALPHA / DIGIT / "-" / "." / "_" / "~"
pct-encoded = "%" HEXDIG HEXDIG
sub-delims = "!" / "$" / "&" / "'" / "(" / ")"
 / "*" / "+" / "," / ";" / "="

ALPHA, DIGIT, and HEXDIG are core rules of RFC 5234: Augmented BNF for Syntax Specifications:

ALPHA = %x41-5A / %x61-7A ; A-Z / a-z
DIGIT = %x30-39 ; 0-9
HEXDIG = DIGIT / "A" / "B" / "C" / "D" / "E" / "F"

As a result, a backslash escape character in a JsonValue component is percent-encoded in the
URL query string parameter as %5C. To encode the query filter expression _id eq 'test\\', use _id
+eq+'test%5C%5C', for example.

A simple filter expression can represent a comparison, presence, or a literal value.

For comparison expressions use json-pointer comparator json-value, where the comparator is one
of the following:

eq (equals)
co (contains)
sw (starts with)
lt (less than)
le (less than or equal to)
gt (greater than)
ge (greater than or equal to)

For presence, use json-pointer pr to match resources where the JSON pointer is present.

Literal values include true (match anything) and false (match nothing).

Complex expressions employ and, or, and ! (not), with parentheses, (expression), to group
expressions.

_queryId=identifier

Specify a query by its identifier.

Specific queries can take their own query string parameter arguments, which depend on the
implementation.

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc5234

Developing with the REST API
Query

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 22

_pagedResultsCookie=string

The string is an opaque cookie used by the server to keep track of the position in the search
results. The server returns the cookie in the JSON response as the value of pagedResultsCookie.

In the request _pageSize must also be set and non-zero. You receive the cookie value from the
provider on the first request, and then supply the cookie value in subsequent requests until the
server returns a null cookie, meaning that the final page of results has been returned.

The _pagedResultsCookie parameter is supported when used with the _queryFilter parameter. The
_pagedResultsCookie parameter is not guaranteed to work when used with the _queryExpression and
_queryId parameters.

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually exclusive, and not to be
used together.

_pagedResultsOffset=integer

When _pageSize is non-zero, use this as an index in the result set indicating the first page to
return.

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually exclusive, and not to be
used together.

_pageSize=integer

Return query results in pages of this size. After the initial request, use _pagedResultsCookie or
_pageResultsOffset to page through the results.

_totalPagedResultsPolicy=string

When a _pageSize is specified, and non-zero, the server calculates the "totalPagedResults",
in accordance with the totalPagedResultsPolicy, and provides the value as part of the
response. The "totalPagedResults" is either an estimate of the total number of paged results
(_totalPagedResultsPolicy=ESTIMATE), or the exact total result count (_totalPagedResultsPolicy=EXACT).
If no count policy is specified in the query, or if _totalPagedResultsPolicy=NONE, result counting is
disabled, and the server returns value of -1 for "totalPagedResults".

_sortKeys=[+-]field[,[+-]field...]

Sort the resources returned based on the specified field(s), either in + (ascending, default) order,
or in - (descending) order.

The _sortKeys parameter is not supported for predefined queries (_queryId).

_prettyPrint=true

Format the body of the response.

_fields=field[,field...]

Return only the specified fields in each element of the "results" array in the response.

Developing with the REST API
HTTP Status Codes

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 23

The field values are JSON pointers. For example if the resource is {"parent":{"child":"value"}},
parent/child refers to the "child":"value".

2.3.13. HTTP Status Codes

When working with a Common REST API over HTTP, client applications should expect at least the
following HTTP status codes. Not all servers necessarily return all status codes identified here:

200 OK

The request was successful and a resource returned, depending on the request.

201 Created

The request succeeded and the resource was created.

204 No Content

The action request succeeded, and there was no content to return.

304 Not Modified

The read request included an If-None-Match header, and the value of the header matched the
revision value of the resource.

400 Bad Request

The request was malformed.

401 Unauthorized

The request requires user authentication.

403 Forbidden

Access was forbidden during an operation on a resource.

404 Not Found

The specified resource could not be found, perhaps because it does not exist.

405 Method Not Allowed

The HTTP method is not allowed for the requested resource.

406 Not Acceptable

The request contains parameters that are not acceptable, such as a resource or protocol version
that is not available.

Developing with the REST API
REST API Versioning

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 24

409 Conflict

The request would have resulted in a conflict with the current state of the resource.

410 Gone

The requested resource is no longer available, and will not become available again. This can
happen when resources expire for example.

412 Precondition Failed

The resource's current version does not match the version provided.

415 Unsupported Media Type

The request is in a format not supported by the requested resource for the requested method.

428 Precondition Required

The resource requires a version, but no version was supplied in the request.

500 Internal Server Error

The server encountered an unexpected condition that prevented it from fulfilling the request.

501 Not Implemented

The resource does not support the functionality required to fulfill the request.

503 Service Unavailable

The requested resource was temporarily unavailable. The service may have been disabled, for
example.

2.4. REST API Versioning
In OpenAM 12.0.0 and later, REST API features are assigned version numbers.

Providing version numbers in the REST API helps ensure compatibility between releases. The version
number of a feature increases when AM introduces a non-backwards-compatible change that affects
clients making use of the feature.

AM provides versions for the following aspects of the REST API.

resource

Any changes to the structure or syntax of a returned response will incur a resource version
change. For example changing errorMessage to message in a JSON response.

Developing with the REST API
Supported REST API Versions

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 25

protocol

Any changes to the methods used to make REST API calls will incur a protocol version change.
For example changing _action to $action in the required parameters of an API feature.

2.4.1. Supported REST API Versions

The REST API version numbers supported in AM 5.1 are as follows:

Supported protocol versions

The protocol versions supported in AM 5.1 are:

1.0

Supported resource versions

The resource versions supported in AM 5.1 are shown in the following table.

Supported resource Versions

Base End Point Supported Versions
/json /authenticate 1.1, 2.0

/users 1.1, 1.2, 2.0, 2.1, 3.0
/groups 1.1, 2.0, 2.1, 3.0
/agents 1.1, 2.0, 2.1, 3.0
/realms 1.0
/dashboard 1.0
/sessions 1.1
/serverinfo/* 1.1
/users/{user}/devices/trusted 1.0
/users/{user}/uma/policies 1.0
/applications 1.0, 2.0
/resourcetypes 1.0
/policies 1.0, 2.0
/applicationtypes 1.0
/conditiontypes 1.0
/subjecttypes 1.0
/subjectattributes 1.0
/decisioncombiners 1.0

Developing with the REST API
Specifying an Explicit REST API Version

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 26

Base End Point Supported Versions
/subjectattributes 1.0

/xacml /policies 1.0
/frrest /token 1.0

/client 1.0

The AM Release Notes section, "Changes and Deprecated Functionality" in the Release Notes
describes the differences between API versions.

2.4.2. Specifying an Explicit REST API Version

You can specify which version of the REST API to use by adding an Accept-API-Version header to the
request, as in the following example, which is requesting resource version 2.0 and protocol version
1.0:

$ curl \
 --request POST \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate

You can configure the default behavior AM will take when a REST call does not specify explicit
version information. For more information, see "Configuring the Default REST API Version for a
Deployment".

2.4.3. Configuring the Default REST API Version for a Deployment

You can configure the default behavior AM will take when a REST call does not specify explicit
version information using either of the following procedures:

• "Configure Versioning Behavior by using the AM Console"

• "Configure Versioning Behavior by using the ssoadm"

The available options for default behavior are as follows:

Latest

The latest available supported version of the API is used.

This is the preset default for new installations of AM.

Oldest

The oldest available supported version of the API is used.

Developing with the REST API
REST API Versioning Messages

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 27

This is the preset default for upgraded AM instances.

Note

The oldest supported version may not be the first that was released, as APIs versions become deprecated
or unsupported. See "Deprecated Functionality" in the Release Notes.

None

No version will be used. When a REST client application calls a REST API without specifying the
version, AM returns an error and the request fails.

Configure Versioning Behavior by using the AM Console

1. Log in as AM administrator, amadmin.

2. Click Configure > Global Services, and then click REST APIs.

3. In Default Version, select the required response to a REST API request that does not specify an
explicit version: Latest, Oldest, or None.

4. (Optional) Optionally, enable Warning Header to include warning messages in the headers of
responses to requests.

5. Save your work.

Configure Versioning Behavior by using the ssoadm

• Use the ssoadm set-attr-defs command with the openam-rest-apis-default-version attribute set to
either Latest, Oldest or None, as in the following example:
$ ssh openam.example.com
$ cd /path/to/openam-tools/admin/openam/bin
$./ssoadm \
 set-attr-defs \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename RestApisService \
 --schematype Global \
 --attributevalues openam-rest-apis-default-version=None

Schema attribute defaults were set.

2.4.4. REST API Versioning Messages

AM provides REST API version messages in the JSON response to a REST API call. You can also
configure AM to return version messages in the response headers.

Messages include:

Developing with the REST API
REST API Versioning Messages

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 28

• Details of the REST API versions used to service a REST API call.

• Warning messages if REST API version information is not specified or is incorrect in a REST API
call.

The resource and protocol version used to service a REST API call are returned in the Content-API-
Version header, as shown below:

$ curl \
 -i \
 --request POST \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate

HTTP/1.1 200 OK
Content-API-Version: protocol=1.0,resource=2.0
Server: Restlet-Framework/2.1.7
Content-Type: application/json;charset=UTF-8

{
 "tokenId":"AQIC5wM...TU3OQ*",
 "successUrl":"/openam/console"
}

If the default REST API version behavior is set to None, and a REST API call does not include the
Accept-API-Version header, or does not specify a resource version, then a 400 Bad Request status code is
returned, as shown below:

$ curl \
 --header "Content-Type: application/json" \
 --header "Accept-API-Version: protocol=1.0" \
 https://openam.example.com:8443/openam/json/realms/root/serverinfo/*

{
 "code":400,
 "reason":"Bad Request",
 "message":"No requested version specified and behavior set to NONE."
}

If a REST API call does include the Accept-API-Version header, but the specified resource or protocol
version does not exist in AM, then a 404 Not Found status code is returned, as shown below:

$ curl \
 --header "Content-Type: application/json" \
 --header "Accept-API-Version: protocol=1.0, resource=999.0" \
 https://openam.example.com:8443/openam/json/realms/root/serverinfo/*

{
 "code":404,
 "reason":"Not Found",
 "message":"Accept-API-Version: Requested version \"999.0\" does not match any routes."
}

Developing with the REST API
Specifying Realms in REST API Calls

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 29

Tip

For more information on setting the default REST API version behavior, see "Specifying an Explicit REST API
Version".

2.5. Specifying Realms in REST API Calls
This section describes how to work with realms when making REST API calls to AM.

Realms can be specified in the following ways when making a REST API call to AM:

DNS Alias

When making a REST API call, the DNS alias of a realm can be specified in the subdomain and
domain name components of the REST endpoint.

To list all users in the top-level realm use the DNS alias of the AM instance, for example the REST
endpoint would be:
https://openam.example.com:8443/openam/json/users?_queryId=*

To list all users in a realm with DNS alias suppliers.example.com the REST endpoint would be:
https://suppliers.example.com:8443/openam/json/users?_queryId=*

Path

When making a REST API call, specify the realm in the path component of the endpoint. You must
specify the entire hierarchy of the realm, starting at the top-level realm. Prefix each realm in the
hierarchy with the realms/ keyword. For example /realms/root/realms/customers/realms/europe.

To authenticate a user in the top-level realm, use the root keyword. For example:
https://openam.example.com:8443/openam/json/realms/root/authenticate

To authenticate a user in a subrealm named customers within the top-level realm, the REST
endpoint would be:
https://openam.example.com:8443/openam/json/realms/root/realms/customers/authenticate

If realms are specified using both the DNS alias and path methods, the path is used to determine the
realm.

For example, the following REST endpoint returns users in a subrealm of the top-level realm named
europe, not the realm with DNS alias suppliers.example.com:
https://suppliers.example.com:8443/openam/json/realms/root/realms/europe/users?_queryId=*

Developing with the REST API
Authentication and Logout

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 30

2.6. Authentication and Logout
You can use REST-like APIs under /json/authenticate and /json/sessions for authentication and for
logout.

The /json/authenticate endpoint does not support the CRUDPAQ verbs and therefore does not
technically satisfy REST architectural requirements. The term REST-like describes this endpoint
better than REST.

The simplest user name/password authentication returns a tokenId that applications can present as
a cookie value for other operations that require authentication. The type of tokenId returned varies
depending on whether stateless sessions are enabled in the realm to which the user authenticates:

• If stateless sessions are not enabled, the tokenId is an AM SSO token.

• If stateless sessions are enabled, the tokenId is an AM SSO token that includes an encoded AM
session.

Developers should be aware that the size of the tokenId for stateless sessions—2000 bytes or greater
—is considerably longer than for stateful sessions—approximately 100 bytes. For more information
about stateful and stateless session tokens, see "Session Cookies" in the Authentication and Single
Sign-On Guide.

When authenticating with a user name and password, use HTTP POST to prevent the web container
from logging the credentials. Pass the user name in an X-OpenAM-Username header, and the password in
an X-OpenAM-Password header:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 --data "{}" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate
{
 "tokenId": "AQIC5w...NTcy*",
 "successUrl": "/openam/console",
 "realm":"/"
}

To use UTF-8 user names and passwords in calls to the /json/authenticate endpoint, base64-encode the
string, and then wrap the string as described in RFC 2047:
encoded-word = "=?" charset "?" encoding "?" encoded-text "?="

For example, to authenticate using a UTF-8 username, such as ɗëɱø, perform the following steps:

1. Encode the string in base64 format: yZfDq8mxw7g=.

2. Wrap the base64-encoded string as per RFC 2047: =?UTF-8?B?yZfDq8mxw7g=?=.

https://tools.ietf.org/html/rfc2047

Developing with the REST API
Authentication and Logout

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 31

3. Use the result in the X-OpenAM-Username header passed to the authentication endpoint as follows:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "X-OpenAM-Username: =?UTF-8?B?yZfDq8mxw7g=?=" \
 --header "X-OpenAM-Password: changeit" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 --data "{}" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate
{
 "tokenId": "AQIC5w...NTcy*",
 "successUrl": "/openam/console",
 "realm":"/"
}

This zero page login mechanism works only for name/password authentication. If you include a POST
body with the request, it must be an empty JSON string as shown in the example. Alternatively, you
can leave the POST body empty. Otherwise, AM interprets the body as a continuation of an existing
authentication attempt, one that uses a supported callback mechanism.

The authentication service at /json/authenticate supports callback mechanisms that make it possible to
perform other types of authentication in addition to simple user name/password login.

Callbacks that are not completed based on the content of the client HTTP request are returned in
JSON as a response to the request. Each callback has an array of output suitable for displaying to the
end user, and input which is what the client must complete and send back to AM. The default is still
user name/password authentication:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate
{
 "authId": "...jwt-value...",
 "template": "",
 "stage": "DataStore1",
 "callbacks": [
 {
 "type": "NameCallback",
 "output": [
 {
 "name": "prompt",
 "value": " User Name: "
 }
],
 "input": [
 {
 "name": "IDToken1",
 "value": ""
 }
]
 },
 {
 "type": "PasswordCallback",

Developing with the REST API
Authentication and Logout

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 32

 "output": [
 {
 "name": "prompt",
 "value": " Password: "
 }
],
 "input": [
 {
 "name": "IDToken2",
 "value": ""
 }
]
 }
]
}

The authID value is a JSON Web Token (JWT) that uniquely identifies the authentication context to AM,
and so must also be sent back with the requests.

To respond to the callback, send back the JSON object with the missing values filled, as in this case
where the user name is demo and the password is changeit:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 --data '{ "authId": "...jwt-value...", "template": "", "stage": "DataStore1",
 "callbacks": [{ "type": "NameCallback", "output": [{ "name": "prompt",
 "value": " User Name: " }], "input": [{ "name": "IDToken1", "value": "demo" }] },
 { "type": "PasswordCallback", "output": [{ "name": "prompt", "value": " Password: " }],
 "input": [{ "name": "IDToken2", "value": "changeit" }] }] }' \
 https://openam.example.com:8443/openam/json/realms/root/authenticate

{ "tokenId": "AQIC5wM2...U3MTE4NA..*", "successUrl": "/openam/console", "realm":"/" }

The response is a token ID holding the SSO token value.

Alternatively, you can authenticate without requesting a session using the noSession query string
parameter:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 --data '{ "authId": "...jwt-value...", "template": "", "stage": "DataStore1",
 "callbacks": [{ "type": "NameCallback", "output": [{ "name": "prompt",
 "value": " User Name: " }], "input": [{ "name": "IDToken1", "value": "demo" }] },
 { "type": "PasswordCallback", "output": [{ "name": "prompt", "value": " Password: " }],
 "input": [{ "name": "IDToken2", "value": "changeit" }] }] }' \
 https://openam.example.com:8443/openam/json/realms/root/authenticate?noSession=true

{ "message": "Authentication Successful", "successUrl": "/openam/console", "realm":"/" }

AM can be configured to return a failure URL value when authentication fails. No failure URL is
configured by default. The Default Failure Login URL can be set per realm; see "Post Authentication

Developing with the REST API
Authentication and Logout

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 33

Processing" in the Authentication and Single Sign-On Guide for details. Alternatively, failure URLs
can be configured per authentication chain, which your client can specify using the service parameter
described below. On failure AM then returns HTTP status code 401 Unauthorized, and the JSON in
the reply indicates the failure URL:
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: badpassword" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate
{
 "code":401,
 "reason":"Unauthorized",
 "message":"Invalid Password!!",
 "failureUrl": "http://www.example.com/401.html"
}

When making a REST API call, specify the realm in the path component of the endpoint. You must
specify the entire hierarchy of the realm, starting at the top-level realm. Prefix each realm in the
hierarchy with the realms/ keyword. For example /realms/root/realms/customers/realms/europe.

For example, to authenticate to a subrealm customers within the top-level realm, then the
authentication endpoint URL is as follows: https://openam.example.com:8443/openam/json/realms/root/realms
/customers/authenticate

The following additional parameters are supported:

You can use the authIndexType and authIndexValue query string parameters as a pair to provide
additional information about how you are authenticating. The authIndexType can be one of the following
types:

composite

Set the value to a composite advice string.

level

Set the value to the authentication level.

module

Set the value to the name of an authentication module.

resource

Set the value to a URL protected by an AM policy.

role

Set the value to an AM role.

Developing with the REST API
Authentication and Logout

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 34

service

Set the value to the name of an authentication chain.

user

Set the value to an AM user ID.

For example, to log into AM using the built-in ldapService authentication chain, you could use the
following:
$ curl \
--request POST
 \
--header 'Accept-API-Version: resource=2.0, protocol=1.0'
 \
--header 'X-OpenAM-Username: demo'
 \
--header 'X-OpenAM-Password: changeit' \
'http://openam.example.com:8080/openam/json/authenticate?authIndexType=service&authIndexValue=ldapService'

You can use the query string parameter, sessionUpgradeSSOTokenId=tokenId, to request session upgrade.
Before the tokenId is searched for in the query string for session upgrade, the token is grabbed from
the cookie. For an explanation of session upgrade, see "Session Upgrade" in the Authentication and
Single Sign-On Guide.

AM uses the following callback types depending on the authentication module in use:

• ChoiceCallback: Used to display a list of choices and retrieve the selected choice.

• ConfirmationCallback: Used to ask for a confirmation such as Yes, No, or Cancel and retrieve the
selection.

• HiddenValueCallback: Used to return form values that are not visually rendered to the end user.

• HttpCallback: Used for HTTP handshake negotiations.

• LanguageCallback: Used to retrieve the locale for localizing text presented to the end user.

• NameCallback: Used to retrieve a name string.

• PasswordCallback: Used to retrieve a password value.

• RedirectCallback: Used to redirect the client user-agent.

• ScriptTextOutputCallback: Used to insert a script into the page presented to the end user. The script
can, for example, collect data about the user's environment.

• TextInputCallback: Used to retrieve text input from the end user.

• TextOutputCallback: Used to display a message to the end user.

Developing with the REST API
Logout

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 35

• X509CertificateCallback: Used to retrieve the content of an x.509 certificate.

2.6.1. Logout

Authenticated users can log out with the token cookie value and an HTTP POST to /json/sessions/?
_action=logout:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "Cache-Control: no-cache" \
 --header "iplanetDirectoryPro: AQIC5wM2...U3MTE4NA..*" \
 --header "Accept-API-Version: resource=1.1, protocol=1.0" \
 https://openam.example.com:8443/openam/json/realms/root/sessions/?_action=logout

 {"result":"Successfully logged out"}

2.6.2. logoutByHandle

To log out a session using a session handle, first perform an HTTP GET to the resource URL, /json/
sessions/, using the queryFilter action to get the session handle:

$ curl \
 --request GET \
 --header "Content-Type: application/json" \
 --header "Cache-Control: no-cache" \
 --header "iPlanetDirectoryPro: AQICS...NzEz*" \
 --header "Accept-API-Version: resource=1.1, protocol=1.0" \
 http://openam.example.com:8080/openam/json/realms/root/sessions?_queryFilter=username%20eq%20%22demo
%22%20and%20realm%20eq%20%22%2F%22
{
 "result": [
 {
 "username": "demo",
 "universalId": "id=demo,ou=user,dc=openam,dc=forgerock,dc=org",
 "realm": "\/",
 "sessionHandle": "shandle:AQIC5w...MTY3*",
 "latestAccessTime": "2016-11-09T14:14:11Z",
 "maxIdleExpirationTime": "2016-11-09T14:44:11Z",
 "maxSessionExpirationTime": "2016-11-09T16:14:11Z"
 }
],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

To log out a session using a session handle, perform an HTTP POST to the resource URL, /json/
sessions/, using the logoutByHandle action.

Developing with the REST API
Load Balancer and Proxy Layer Requirements

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 36

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "Cache-Control: no-cache" \
 --header "iplanetDirectoryPro: AQIC5w...NTcy*" \
 --header "Accept-API-Version: resource=1.1, protocol=1.0" \
 --data '{"sessionHandles": ["shandle:AQIC5w...MTY3*","shandle:AQIC5w...NDcx*"]}' \
http://openam.example.com:8080/openam/json/realms/root/sessions/?_action=logoutByHandle
{
 "result": {
 "shandle:AQIC5w...NDcx*": true,
 "shandle:AQIC5w...MTY3*": true
 }
}

2.6.3. Load Balancer and Proxy Layer Requirements

When authentication depends on the client IP address and AM lies behind a load balancer or proxy
layer, configure the load balancer or proxy to send the address by using the X-Forwarded-For header,
and configure AM to consume and forward the header as necessary. For details, see "Handling HTTP
Request Headers" in the Installation Guide.

2.6.4. Windows Desktop SSO Requirements

When authenticating with Windows Desktop SSO, add an Authorization header containing the
string Basic , followed by a base64-encoded string of the username, a colon character, and the
password. In the following example, the credentials demo:changeit are base64-encoded into the string
ZGVtbzpjaGFuZ2VpdA==:
$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "X-OpenAM-Username: demo"
 \
--header "X-OpenAM-Password: changeit"
 \
--header "Authorization: Basic ZGVtbzpjaGFuZ2VpdA=="
 \
--header "Accept-API-Version: resource=2.0, protocol=1.0"
 \
--data "{}" \
https://openam.example.com:8443/openam/json/realms/root/authenticate

{ "tokenId": "AQIC5w...NTcy*", "successUrl": "/openam/console", "realm":"/" }

Developing with the REST API
Using the Session Token After Authentication

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 37

2.7. Using the Session Token After Authentication
The following is a common scenario when accessing AM by using REST API calls:

• First, call the /json/authenticate endpoint to log a user in to AM. This REST API call returns a tokenID
value, which is used in subsequent REST API calls to identify the user:

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "X-OpenAM-Username: demo" \
 --header "X-OpenAM-Password: changeit" \
 --header "Accept-API-Version: resource=2.0, protocol=1.0" \
 --data "{}" \
 https://openam.example.com:8443/openam/json/realms/root/authenticate

{ "tokenId": "AQIC5w...NTcy*", "successUrl": "/openam/console" }

The returned tokenID is known as a session token (also referred to as an SSO token). REST API calls
made after successful authentication to AM must present the session token in the HTTP header as
proof of authentication.

• Next, call one or more additional REST APIs on behalf of the logged-in user. Each REST API call
passes the user's tokenID back to AM in the HTTP header as proof of previous authentication.

The following is a partial example of a curl command that inserts the token ID returned from a prior
successful AM authentication attempt into the HTTP header:

$ curl \
--request POST
 \
--header "Content-Type: application/json"
 \
--header "iPlanetDirectoryPro: AQIC5w...NTcy*"
 \
--header "Accept-API-Version: resource=2.0, protocol=1.0"
 \
--data '{
 ...

Observe that the session token is inserted into a header field named iPlanetDirectoryPro. This header
field name must correspond to the name of the AM session cookie—by default, iPlanetDirectoryPro.
You can find the cookie name in the AM console by navigating to Deployment > Servers > Server
Name > Security > Cookie, in the Cookie Name field of the AM console.

Once a user has authenticated, it is not necessary to insert login credentials in the HTTP header in
subsequent REST API calls. Note the absence of X-OpenAM-Username and X-OpenAM-Password headers in
the preceding example.

Users are required to have appropriate privileges in order to access AM functionality using the
REST API. For example, users who lack administrative privileges cannot create AM realms. For

Developing with the REST API
Server Information

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 38

more information on the AM privilege model, see "Delegating Realm Administration Privileges" in
the Setup and Maintenance Guide.

• Finally, call the REST API to log the user out of AM as described in "Authentication and Logout". As
with other REST API calls made after a user has authenticated, the REST API call to log out of AM
requires the user's tokenID in the HTTP header.

2.8. Server Information
You can retrieve AM server information by using HTTP GET on /json/serverinfo/* as follows:
$ curl \
 --request GET \
 --header "Content-Type: application/json" \
 --header "Accept-API-Version: resource=1.1, protocol=1.0" \
 https://openam.example.com:8443/openam/json/serverinfo/*
{
 "domains": [
 ".example.com"
],
 "protectedUserAttributes": [],
 "cookieName": "iPlanetDirectoryPro",
 "secureCookie": false,
 "forgotPassword": "false",
 "forgotUsername": "false",
 "kbaEnabled": "false",
 "selfRegistration": "false",
 "lang": "en-US",
 "successfulUserRegistrationDestination": "default",
 "socialImplementations": [
 {
 "iconPath": "XUI/images/logos/facebook.png",
 "authnChain": "FacebookSocialAuthenticationService",
 "displayName": "Facebook",
 "valid": true
 }
],
 "referralsEnabled": "false",
 "zeroPageLogin": {
 "enabled": false,
 "refererWhitelist": [
 ""
],
 "allowedWithoutReferer": true
 },
 "realm": "/",
 "xuiUserSessionValidationEnabled": true,
 "FQDN": "openam.example.com"
}

Developing with the REST API
Token Encoding

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 39

2.9. Token Encoding
Valid tokens in AM requires configuration either in percent encoding or in C66Encode format.
C66Encode format is encouraged. It is the default token format for AM, and is used in this section.
The following is an example token that has not been encoded:
AQIC5wM2LY4SfczntBbXvEAOuECbqMY3J4NW3byH6xwgkGE=@AAJTSQACMDE=#

This token includes reserved characters such as +, /, and = (The @, #, and * are not reserved characters
per se, but substitutions are still required). To c66encode this token, you would substitute certain
characters for others, as follows:

+ is replaced with -
/ is replaced with _
= is replaced with .
@ is replaced with *
is replaced with *
* (first instance) is replaced with @
* (subsequent instances) is replaced with #

In this case, the translated token would appear as shown here:
AQIC5wM2LY4SfczntBbXvEAOuECbqMY3J4NW3byH6xwgkGE.*AAJTSQACMDE.*

2.10. Logging
AM 5.1 supports two Audit Logging Services: a new common REST-based Audit Logging Service, and
the legacy Logging Service, which is based on a Java SDK and is available in AM versions prior to
OpenAM 13. The legacy Logging Service is deprecated.

Both audit facilities log AM REST API calls.

2.10.1. Common Audit Logging of REST API Calls

AM logs information about all REST API calls to the access topic. For more information about AM
audit topics, see "Audit Log Topics" in the Setup and Maintenance Guide.

Locate specific REST endpoints in the http.path log file property.

2.10.2. Legacy Logging of REST API Calls

AM logs information about REST API calls to two files:

• amRest.access. Records accesses to a CREST endpoint, regardless of whether the request
successfully reached the endpoint through policy authorization.

Developing with the REST API
Legacy Logging of REST API Calls

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 40

An amRest.access example is as follows:

$ cat openam/openam/log/amRest.access

#Version: 1.0
#Fields: time Data LoginID ContextID IPAddr LogLevel Domain LoggedBy MessageID ModuleName
NameID HostName
"2011-09-14 16:38:17" /home/user/openam/openam/log/ "cn=dsameuser,ou=DSAME Users,o=openam"
aa307b2dcb721d4201 "Not Available" INFO o=openam "cn=dsameuser,ou=DSAME Users,o=openam"
LOG-1 amRest.access "Not Available" 192.168.56.2
"2011-09-14 16:38:17" "Hello World" id=bjensen,ou=user,o=openam 8a4025a2b3af291d01 "Not Available"
INFO o=openam id=amadmin,ou=user,o=openam "Not Available" amRest.access "Not Available"
192.168.56.2

• amRest.authz. Records all CREST authorization results regardless of success. If a request has an
entry in the amRest.access log, but no corresponding entry in amRest.authz, then that endpoint was not
protected by an authorization filter and therefore the request was granted access to the resource.

The amRest.authz file contains the Data field, which specifies the authorization decision, resource, and
type of action performed on that resource. The Data field has the following syntax:

("GRANT"||"DENY") > "RESOURCE | ACTION"

where
 "GRANT > " is prepended to the entry if the request was allowed
 "DENY > " is prepended to the entry if the request was not allowed
 "RESOURCE" is "ResourceLocation | ResourceParameter"
 where
 "ResourceLocation" is the endpoint location (e.g., subrealm/applicationtypes)
 "ResourceParameter" is the ID of the resource being touched
 (e.g., myApplicationType) if applicable. Otherwise, this field is empty
 if touching the resource itself, such as in a query.

 "ACTION" is "ActionType | ActionParameter"
 where
 "ActionType" is "CREATE||READ||UPDATE||DELETE||PATCH||ACTION||QUERY"
 "ActionParameter" is one of the following depending on the ActionType:
 For CREATE: the new resource ID
 For READ: empty
 For UPDATE: the revision of the resource to update
 For DELETE: the revision of the resource to delete
 For PATCH: the revision of the resource to patch
 For ACTION: the actual action performed (e.g., "forgotPassword")
 For QUERY: the query ID if any

Developing with the REST API
REST Goto URL Validation

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 41

$ cat openam/openam/log/amRest.authz

#Version: 1.0
#Fields: time Data ContextID LoginID IPAddr LogLevel Domain MessageID LoggedBy NameID
ModuleName HostName
"2014-09-16 14:17:28" /var/root/openam/openam/log/ 7d3af9e799b6393301
"cn=dsameuser,ou=DSAME Users,dc=openam,dc=forgerock,dc=org" "Not Available" INFO
dc=openam,dc=forgerock,dc=org LOG-1 "cn=dsameuser,ou=DSAME Users,dc=openam,dc=forgerock,dc=org"
"Not Available" amRest.authz 10.0.1.5
"2014-09-16 15:56:12" "GRANT > sessions|ACTION|logout|AdminOnlyFilter" d3977a55a2ee18c201
id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org "Not Available" INFO dc=openam,dc=forgerock,dc=org
OAuth2Provider-2 "cn=dsameuser,ou=DSAME Users,dc=openam,dc=forgerock,dc=org" "Not Available"
amRest.authz 127.0.0.1
"2014-09-16 15:56:40" "GRANT > sessions|ACTION|logout|AdminOnlyFilter" eedbc205bf51780001
id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org "Not Available" INFO dc=openam,dc=forgerock,dc=org
OAuth2Provider-2 "cn=dsameuser,ou=DSAME Users,dc=openam,dc=forgerock,dc=org" "Not Available"
amRest.authz 127.0.0.1

AM also provides additional information in its debug notifications for accesses to any endpoint,
depending on the message type (error, warning or message) including realm, user, and result of the
operation.

2.11. REST Goto URL Validation
You can set valid goto URLs using the AM console by following the instructions in "Constraining Post-
Login Redirects" in the Authentication and Single Sign-On Guide.

To validate a goto URL over REST, use the endpoint: /json/user?_action=validateGoto.
$ curl --request POST --header "Content-Type: application/json"
 \
--header "iPlanetDirectoryPro: AQIC5...ACMDE.*"
 \
--data '{"goto":"http://www.example.com/"}' \
http://openam.example.com:8080/openam/json/users?_action=validateGoto
{"successURL":"http://www.example.com/"}

2.12. Reference
This reference section covers return codes and system settings relating to REST API support in AM.

2.12.1. REST APIs

amster type ID: rest

The following settings are available in this service:

Developing with the REST API
REST APIs

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 42

Default Resource Version

The API resource version to use when the REST request does not specify an explicit version.
Choose from:

• Latest. If an explicit version is not specified, the latest resource version of an API is used.

• Oldest. If an explicit version is not specified, the oldest supported resource version of an API
is used. Note that since APIs may be deprecated and fall out of support, the oldest supported
version may not be the first version.

• None. If an explicit version is not specified, the request will not be handled and an error status is
returned.

The possible values for this property are:

Latest
Oldest
None

Default value: Latest

amster data attribute: defaultVersion

Warning Header

Whether to include a warning header in the response to a request which fails to include the Accept
-API-Version header.

Default value: false

amster data attribute: warningHeader

API Descriptions

Whether API Explorer and API Docs are enabled in OpenAM and how the documentation
for them is generated. Dynamic generation includes descriptions from any custom services
and authentication modules you may have added. Static generation only includes services
and authentication modules that were present when OpenAM was built. Note that dynamic
documentation generation may not work in some application containers.

The possible values for this property are:

DYNAMIC
STATIC
DISABLED

Default value: STATIC

amster data attribute: descriptionsState

Developing with the REST API
REST APIs

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 43

Default Protocol Version

The API protocol version to use when a REST request does not specify an explicit version. Choose
from:

• Oldest. If an explicit version is not specified, the oldest protocol version is used.

• Latest. If an explicit version is not specified, the latest protocol version is used.

• None. If an explicit version is not specified, the request will not be handled and an error status is
returned.

The possible values for this property are:

Oldest
Latest
None

Default value: Latest

amster data attribute: defaultProtocolVersion

Developing with the Java SDK
Installing Client SDK Samples

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 44

Chapter 3

Developing with the Java SDK
This chapter introduces the Java SDK. the Java SDK is delivered with the full version of AM,
AM-5.1.1.zip.

3.1. Installing Client SDK Samples
The full AM download, AM-5.1.1.zip, contains the Java Client SDK library, ClientSDK-13.5.0-1.jar, as
well as samples for use on the command line in ExampleClientSDK-CLI-13.5.0-1.zip, and samples in a
web application, ExampleClientSDK-WAR-13.5.0-1.war. The ForgeRock Access Management Java SDK API
Specification provides a reference to the public APIs.

To Deploy the Sample Web Application

The sample web application deploys in your container to show you the client SDK samples in action.

1. Deploy the .war in your Java web application container such as Apache Tomcat or JBoss.

$ cp ExampleClientSDK-WAR-13.5.0-1.war /path/to/tomcat/webapps/client.war

2. If you have run this procedure before, make sure to deploy a fresh copy of the .war file to a
different location, such as /path/to/tomcat/webapps/client1.war

3. Browse to the location where you deployed the client, and configure the application to access AM
using the application user name, UrlAccessAgent, and password configured when you set up AM.

https://backstage.forgerock.com/static/docs/am/5.1/apidocs
https://backstage.forgerock.com/static/docs/am/5.1/apidocs

Developing with the Java SDK
Installing Client SDK Samples

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 45

Use the following hints to complete the configuration.

Server Protocol

Protocol to access AM (http or https)

Server Host

Fully qualified domain name for AM, such as openam.example.com

Server Port

AM port number such as 8080 or 8443

Server Deployment URI

URI entry point to AM such as /openam

Debug directory

Where to write the debug messages for the client samples

Application user name

An user agent configured to access AM, such as UrlAccessAgent set up when AM was installed

Application user password

The user agent password

The sample client writes configuration information under $HOME/OpenAMClient/, where $HOME is
that of the user running the web application container.

4. Verify that you have properly configured the sample web application.

a. In another browser tab page of the same browser instance, login to AM as the AM
Administrator, amadmin.

This signs you into AM, storing the cookie in your browser.

b. On the Samples tab page, click the link under Single Sign On Token Verification Servlet.

If the sample web application is properly configured, you should see something like the
following text in your browser.

Developing with the Java SDK
About the Java SDK

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 46

SSOToken host name: 127.0.0.1
SSOToken Principal name: id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org
Authentication type used: DataStore
IPAddress of the host: 127.0.0.1
SSO Token validation test succeeded
The token id is AQIC5...CMDEAAlNLABQtODY0Mjc5MDUwNDQzOTA2MzYxNg..*
...
User Attributes: {... givenName=[amAdmin], ...roles=[Top-level Admin Role], ...}

To Build the Command-Line Sample Applications

Follow these steps to set up the command-line examples.

1. Unpack the sample applications and related libraries.

$ mkdir sdk && cd sdk
$ unzip ~/Downloads/ExampleClientSDK-CLI-13.5.0-1.zip

2. Configure the samples to access AM.

$ sh scripts/setup.sh
Debug directory (make sure this directory exists): /Users/me/openam/openam/debug
Application user (e.g. URLAccessAgent) password: secret12
Protocol of the server: http
Host name of the server: openam.example.com
Port of the server: 8080
Server's deployment URI: openam
Naming URL (hit enter to accept default value,
 http://openam.example.com:8080/openam/namingservice):
$

3. Verify that you have properly configured the samples.

$ sh scripts/Login.sh
Realm (e.g. /): /
Login module name (e.g. DataStore or LDAP): DataStore
Login locale (e.g. en_US or fr_FR): fr_FR
DataStore: Obtained login context
Nom d'utilisateur :demo
Mot de passe :changeit
Login succeeded.
Logged Out!!

3.2. About the Java SDK
After installing the Java SDK command line samples, you see the following content.

• lib/: SDK and other libraries

• resources/: properties configuration files for the SDK and samples

Developing with the Java SDK
Authenticating Using Java SDK

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 47

• scripts/: scripts to run the samples

• source/: sample code

After deploying the Java SDK web application archive, you find the following content where the .war
file was unpacked.

• META-INF/: build information

• WEB-INF/: sample classes and libraries

• console/: images for sample UI

• index.html: sample home page

• keystore.jks: AM test certificate, alias: test, keystore password: changeit

• policy/: Policy Evaluator Client Sample page

• saml2/: Secure Attribute Exchange example

• sample.css: sample styles

• sm/: Service Configuration sample

• um/: User Profile sample

Registering Your Java SDK Client to Shut Down Gracefully

When writing a client using the AM Java SDK, make sure you register hooks to make sure the
application can be shut down gracefully. How you register for shutdown depends on the type of
application.

• For Java EE applications, make sure the AM client SDK shuts down successfully by including the
following context listener in your application's web.xml file.
<listener>
 <listener-class>
 com.sun.identity.common.ShutdownServletContextListener
 </listener-class>
</listener>

• For standalone applications, set the following JVM property.
-Dopenam.runtime.shutdown.hook.enabled=true

3.3. Authenticating Using Java SDK
This section looks at authentication with the AM Java SDK and at the sample client, Login.java, which
demonstrates authenticating to AM from a client application, provided a realm, user name, and
password. This is the sample you ran to test installation of the command-line SDK samples. The class
shown in this section is com.sun.identity.samples.authentication.Login.

Developing with the Java SDK
Authenticating Using Java SDK

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 48

Before you continue, make sure that the packages described in "Installing Client SDK Samples" are
installed.

With AM, your client application performs the following steps to handle authentication.

1. Sets up an AuthContext, based on the realm in which the user authenticates.

2. Starts the login process by calling the AuthContext login() method.

3. Handling authentication callbacks to retrieve credentials from the user who is authenticating.

Your application loops through the authentication callbacks by using the AuthContext
getRequirements() and hasMoreRequirements() methods. Each time it finishes populating a callback with
the credentials retrieved, your application calls submitRequirements() to send the credentials to AM's
Authentication Service.

4. After handling all authentication callbacks, your application calls the AuthContext getStatus()
method.

On login success, AM sets up an SSO token that holds information about the authentication, and
also about the user's environment and session.

5. When the user logs out, your application can end the session by calling the AuthContext logout()
method.

The AuthContext class is provided by the com.sun.identity.authentication package, part of the AM client
API. Callback classes are provided by the javax.security.auth.callback package, which provides
callbacks for choices, confirmations, locales, names, passwords, text input, and text output.

See the ForgeRock Access Management Public API JavaDoc for reference.

As the sample client gets the realm (called organization in the sample), locale, and authentication
module to set up the authentication context, there is not need for a language callback to get the local
afterwards. The Login.java example does, however, show simple ways of handling callbacks for the
command-line context. The implementation of the sample client follows.
package com.sun.identity.samples.authentication;
import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import javax.security.auth.callback.Callback;
import javax.security.auth.callback.ChoiceCallback;
import javax.security.auth.callback.NameCallback;
import javax.security.auth.callback.PasswordCallback;
import javax.security.auth.callback.TextInputCallback;
import javax.security.auth.callback.TextOutputCallback;
import javax.security.auth.callback.UnsupportedCallbackException;
import com.sun.identity.authentication.AuthContext;
import com.sun.identity.authentication.spi.AuthLoginException;
import com.sun.identity.shared.debug.Debug;

public class Login {
 private String loginIndexName;
 private String orgName;
 private String locale;

https://backstage.forgerock.com/static/docs/am/5.1/apidocs

Developing with the Java SDK
Authenticating Using Java SDK

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 49

 private Login(String loginIndexName, String orgName) {
 this.loginIndexName = loginIndexName;
 this.orgName = orgName;
 }

 private Login(String loginIndexName, String orgName, String locale) {
 this.loginIndexName = loginIndexName;
 this.orgName = orgName;
 this.locale = locale;
 }

 protected AuthContext getAuthContext()
 throws AuthLoginException {
 AuthContext lc = new AuthContext(orgName);
 AuthContext.IndexType indexType = AuthContext.IndexType.MODULE_INSTANCE;
 if (locale == null || locale.length() == 0) {
 lc.login(indexType, loginIndexName);
 } else {
 lc.login(indexType, loginIndexName, locale);
 }
 debugMessage(loginIndexName + ": Obtained login context");
 return lc;
 }

 private void addLoginCallbackMessage(Callback[] callbacks)
 throws UnsupportedCallbackException {
 int i = 0;
 try {
 for (i = 0; i < callbacks.length; i++) {
 if (callbacks[i] instanceof TextOutputCallback) {
 handleTextOutputCallback((TextOutputCallback)callbacks[i]);
 } else if (callbacks[i] instanceof NameCallback) {
 handleNameCallback((NameCallback)callbacks[i]);
 } else if (callbacks[i] instanceof PasswordCallback) {
 handlePasswordCallback((PasswordCallback)callbacks[i]);
 } else if (callbacks[i] instanceof TextInputCallback) {
 handleTextInputCallback((TextInputCallback)callbacks[i]);
 } else if (callbacks[i] instanceof ChoiceCallback) {
 handleChoiceCallback((ChoiceCallback)callbacks[i]);
 }
 }
 } catch (IOException e) {
 e.printStackTrace();
 throw new UnsupportedCallbackException(callbacks[i],e.getMessage());
 }
 }

 private void handleTextOutputCallback(TextOutputCallback toc) {
 debugMessage("Got TextOutputCallback");
 // display the message according to the specified type

 switch (toc.getMessageType()) {
 case TextOutputCallback.INFORMATION:
 debugMessage(toc.getMessage());
 break;
 case TextOutputCallback.ERROR:
 debugMessage("ERROR: " + toc.getMessage());
 break;

Developing with the Java SDK
Authenticating Using Java SDK

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 50

 case TextOutputCallback.WARNING:
 debugMessage("WARNING: " + toc.getMessage());
 break;
 default:
 debugMessage("Unsupported message type: " +
 toc.getMessageType());
 }
 }

 private void handleNameCallback(NameCallback nc)
 throws IOException {
 // prompt the user for a username
 System.out.print(nc.getPrompt());
 System.out.flush();
 nc.setName((new BufferedReader
 (new InputStreamReader(System.in))).readLine());
 }

 private void handleTextInputCallback(TextInputCallback tic)
 throws IOException {
 // prompt for text input
 System.out.print(tic.getPrompt());
 System.out.flush();
 tic.setText((new BufferedReader
 (new InputStreamReader(System.in))).readLine());
 }

 private void handlePasswordCallback(PasswordCallback pc)
 throws IOException {
 // prompt the user for sensitive information
 System.out.print(pc.getPrompt());
 System.out.flush();
 String passwd = (new BufferedReader(new InputStreamReader(System.in))).
 readLine();
 pc.setPassword(passwd.toCharArray());
 }

 private void handleChoiceCallback(ChoiceCallback cc)
 throws IOException {
 // ignore the provided defaultValue
 System.out.print(cc.getPrompt());

 String[] strChoices = cc.getChoices();
 for (int j = 0; j < strChoices.length; j++) {
 System.out.print("choice[" + j + "] : " + strChoices[j]);
 }
 System.out.flush();
 cc.setSelectedIndex(Integer.parseInt((new BufferedReader
 (new InputStreamReader(System.in))).readLine()));
 }

 protected boolean login(AuthContext lc)
 throws UnsupportedCallbackException {
 boolean succeed = false;
 Callback[] callbacks = null;

 // get information requested from module
 while (lc.hasMoreRequirements()) {
 callbacks = lc.getRequirements();

Developing with the Java SDK
Authenticating Using Java SDK

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 51

 if (callbacks != null) {
 addLoginCallbackMessage(callbacks);
 lc.submitRequirements(callbacks);
 }
 }

 if (lc.getStatus() == AuthContext.Status.SUCCESS) {
 System.out.println("Login succeeded.");
 succeed = true;
 } else if (lc.getStatus() == AuthContext.Status.FAILED) {
 System.out.println("Login failed.");
 } else {
 System.out.println("Unknown status: " + lc.getStatus());
 }

 return succeed;
 }

 protected void logout(AuthContext lc)
 throws AuthLoginException {
 lc.logout();
 System.out.println("Logged Out!!");
 }

 static void debugMessage(String msg) {
 System.out.println(msg);
 }

 public static void main(String[] args) {
 try {
 System.out.print("Realm (e.g. /): ");
 String orgName = (new BufferedReader(
 new InputStreamReader(System.in))).readLine();

 System.out.print("Login module name (e.g. DataStore or LDAP): ");
 String moduleName = (new BufferedReader(
 new InputStreamReader(System.in))).readLine();

 System.out.print("Login locale (e.g. en_US or fr_FR): ");
 String locale = (new BufferedReader(
 new InputStreamReader(System.in))).readLine();

 Login login = new Login(moduleName, orgName, locale);
 AuthContext lc = login.getAuthContext();
 if (login.login(lc)) {
 login.logout(lc);
 }
 } catch (IOException e) {
 e.printStackTrace();
 } catch (AuthLoginException e) {
 e.printStackTrace();
 } catch (UnsupportedCallbackException e) {
 e.printStackTrace();
 }
 System.exit(0);
 }
}

Developing with the Java SDK
Encoding Passwords and Password Reset Questions and Answers

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 52

3.3.1. Encoding Passwords and Password Reset Questions and Answers

AM uses symmetric encryption algorithms to encrypt and decrypt stored passwords, so that they
can be retrieved or modified at later date if necessary. The AM Java SDK provides the capability
to encode passwords using the EncodeAction class in standalone applications. For example, you can
encrypt and decrypt a password as follows:
String plainText = "helloworld";
String encrypted = AccessController.doPrivileged(new EncodeAction(plainText));
String decrypted = AccessController.doPrivileged(new DecodeAction(encrypted));
Assert plainText.equals(decrypted);

To use this class, you must ensure that the symmetric encryption key has the same value as
configured in the server instances. You can run ssoadm to retrieve the password encryption key as
follows:

ssoadm am.encryption.pwd

Next, in your application's AMConfig.properties file, replace the @ENCRYPTION_KEY@ with the value of the
password encryption key. The property ensures that AM can decrypt the password.

am.encryption.pwd=@ENCRYPTION_KEY@

AM's password reset question and answer also uses symmetric key encryption in its configuration.
You can use the encodeAction class to encrypt a password reset question and answer:

String encrypted = AccessController.doPrivileged(new EncodeAction(question + "\t" + \
 answer "+" "1"));

The last number in the previous example indicates whether the question/answer is enabled or
disabled:

• 0 = default question/answer that is disabled

• 1 = default question/answer that is enabled

• 2 = personal question/answer that is disabled

• 3 = personal question/answer that is enabled

To encrypt or decrypt the password reset question and answer, you must retrieve the password
encryption key using ssoadm am.encryption.key, and then set the am.encryption.key property with the
value of the password encryption key in the AMConfig.properties file.

For additional information, see EncodeAction.

https://backstage.forgerock.com/static/docs/am/5.1/apidocs/?com/sun/identity/security/EncodeAction.html

Developing with the Java SDK
Handling Single Sign-On Using the Java SDK

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 53

3.4. Handling Single Sign-On Using the Java SDK
This section looks at handling session tokens with the AM Java SDK. The class shown in this section is
com.sun.identity.samples.sso.SSOTokenSample.

When a user authenticates successfully, AM sets up a single sign-on (SSO) session for the user. The
session is associated with an SSO token that holds information about the authentication, and also
about the user's environment and session. AM deletes the session when the authentication context
logout() method is called, or when a session timeout is reached. At that point the SSO token is no
longer valid.

Before you continue, make sure that the packages described in the "Installing Client SDK Samples"
chapter are installed.

When your application has an AuthContext after successful authentication, you can retrieve the SSO
token from the context. You also can get the token as shown in the sample client by passing an SSO
token ID from AM to an SSOTokenManager.

If your application needs to be notified of changes, you can register an SSOTokenListener on the token
by using the token's addSSOTokenListener() method. AM then calls your SSOTokenListener ssoTokenChanged()
method when the session times out, is disposed of, or has a property that changes. Applications can
receive notifications about changes to stateful sessions only. Adding an SSOTokenListener for a stateless
session token does not generate notifications.

The sample client takes an SSO token ID to get the token from AM, and then displays some
information from the SSO token. The implementation of the sample client follows.
package com.sun.identity.samples.sso;

import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.IOException;
import java.net.InetAddress;
import com.iplanet.sso.SSOException;
import com.iplanet.sso.SSOToken;
import com.iplanet.sso.SSOTokenID;
import com.iplanet.sso.SSOTokenManager;

public class SSOTokenSample {
 private SSOTokenManager manager;
 private SSOToken token;

 private SSOTokenSample(String tokenID)
 throws SSOException
 {
 if (validateToken(tokenID)) {
 setGetProperties(token);
 }
 }

 private boolean validateToken(String tokenID)
 throws SSOException
 {
 boolean validated = false;

Developing with the Java SDK
Handling Single Sign-On Using the Java SDK

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 54

 manager = SSOTokenManager.getInstance();
 token = manager.createSSOToken(tokenID);

 // isValid method returns true for valid token.
 if (manager.isValidToken(token)) {
 // let us get all the values from the token
 String host = token.getHostName();
 java.security.Principal principal = token.getPrincipal();
 String authType = token.getAuthType();
 int level = token.getAuthLevel();
 InetAddress ipAddress = token.getIPAddress();
 long maxTime = token.getMaxSessionTime();
 long idleTime = token.getIdleTime();
 long maxIdleTime = token.getMaxIdleTime();

 System.out.println("SSOToken host name: " + host);
 System.out.println("SSOToken Principal name: " +
 principal.getName());
 System.out.println("Authentication type used: " + authType);
 System.out.println("IPAddress of the host: " +
 ipAddress.getHostAddress());
 validated = true;
 }

 return validated;
 }

 private void setGetProperties(SSOToken token)
 throws SSOException
 {
 /*
 * Validate the token again, with another method
 * if token is invalid, this method throws an exception
 */
 manager.validateToken(token);
 System.out.println("SSO Token validation test Succeeded.");

 // Get the SSOTokenID associated with the token and print it.
 SSOTokenID id = token.getTokenID();
 String tokenId = id.toString();
 System.out.println("Token ID: " + tokenId);

 // Set and get properties in the token.
 token.setProperty("TimeZone", "PST");
 token.setProperty("County", "SantaClara");
 String tZone = token.getProperty("TimeZone");
 String county = token.getProperty("County");

 System.out.println("Property: TimeZone: " + tZone);
 System.out.println("Property: County: " + county);
 }

 public static void main(String[] args) {
 try {
 System.out.print("Enter SSOToken ID: ");
 String ssoTokenID = (new BufferedReader(
 new InputStreamReader(System.in))).readLine();
 new SSOTokenSample(ssoTokenID.trim());
 } catch (SSOException e) {

Developing with the Java SDK
Receiving Notifications

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 55

 e.printStackTrace();
 } catch (IOException e) {
 e.printStackTrace();
 }
 System.exit(0);
 }

}

Before you run the script that calls the sample, authenticate to AM in order to have AM generate
the SSO token ID. To see the SSO token ID, use the RESTful authenticate command as shown in the
following example, or alternatively run the SSOTokenSampleServlet web-based sample.

$ curl \
 --request POST \
 --data "username=demo&password=changeit" \
 http://openam.example.com:8080/openam/identity/authenticate
token.id=AQIC5wM2LY4Sfcyy10grl...AlNLABQtNjI4OTkyNTUxNTc4MDQ3NzEzOQ..*
$ sh scripts/SSOTokenSample.sh
Enter SSOToken ID: AQIC5wM2LY4Sfcyy10grl...AlNLABQtNjI4OTkyNTUxNTc4MDQ3NzEzOQ..*
SSOToken host name: 172.16.203.239
SSOToken Principal name: id=demo,ou=user,dc=openam,dc=forgerock,dc=org
Authentication type used: DataStore
IPAddress of the host: 172.16.203.239
SSO Token validation test Succeeded.
Token ID: AQIC5wM2LY4Sfcyy10grl...AlNLABQtNjI4OTkyNTUxNTc4MDQ3NzEzOQ..*
Property: TimeZone: PST
Property: County: SantaClara

Notice both the properties populated by AM, and also the two properties, TimeZone and County, that are
set by the sample client.

3.4.1. Receiving Notifications
If your application implements a listener for change notification, such as a SessionListener to handle
notification when a stateful session is invalidated, then you must configure the following settings in
the AMConfig.properties configuration file for your application.

com.iplanet.am.notification.url

Set this parameter to http://host:port/context/notificationservice.

com.iplanet.am.sdk.caching.enabled

Set this parameter to true.

com.iplanet.am.serverMode

Set this parameter to false.

com.sun.identity.client.notification.url

Set this parameter to http://host:port/context/notificationservice.

Developing with the Java SDK
Requesting Policy Decisions Using the Java SDK

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 56

com.sun.identity.idm.cache.enabled

Set this parameter to true.

com.sun.identity.idm.remote.notification.enabled

Set this parameter to true.

com.sun.identity.sm.cache.enabled

Set this parameter to true.

com.sun.identity.sm.enableDataStoreNotification

Set this parameter to true.

The above configuration to access the notification service also applies for other types of listeners,
such as ServiceListener, and IdEventListener implementations. See the ForgeRock Access Management
Java SDK API Specification for details on the available listener interfaces.

3.5. Requesting Policy Decisions Using the Java SDK
This section shows how to request policy decision by using AM Java SDK. The chapter focuses on the
sample client, source/samples/policy/PolicyEvaluationSample.java, which demonstrates making a request
to AM for a policy decision about access to a web resource.

Before you continue, make sure that the packages described in "Installing Client SDK Samples" are
installed.

AM centralizes policy administration, policy evaluation, and policy decision making so that your
applications do not have to do so. In many deployments, AM policy agents and the Open Identity
gateway can handle policy enforcement independently from your application code.

If your application does need to request a policy decision from AM, then your application can
retrieve a PolicyEvaluator from a client-side PolicyEvaluatorFactory, and then call the PolicyEvaluator
getPolicyDecision() method. For boolean decisions such as allow or deny, your application can also call
the isAllowed() method.

To make a policy decision, AM needs an SSO token, the resource to access, the action the user wants
to perform on the resource such as HTTP GET or POST, and a Map of environment settings you can use to
specify conditions and attributes in the session or can pass back as an empty Map if your policy does
not include conditions and response attributes.

The PolicyEvaluationSample class takes as its configuration the user credentials, service name, resource,
and action that you provide in a Java properties file. It then authenticates the user to get an SSO
token using the TokenUtils.java helper methods. At that point it has sufficient information to request a
policy decision.

https://backstage.forgerock.com/static/docs/am/5.1/apidocs
https://backstage.forgerock.com/static/docs/am/5.1/apidocs

Developing with the Java SDK
Requesting Policy Decisions Using the Java SDK

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 57

The implementation of the sample client follows.
package samples.policy;

import com.iplanet.sso.SSOToken;
import com.iplanet.sso.SSOTokenManager;

import com.sun.identity.policy.PolicyDecision;
import com.sun.identity.policy.client.PolicyEvaluator;
import com.sun.identity.policy.client.PolicyEvaluatorFactory;

import samples.policy.TokenUtils;

import java.util.Enumeration;
import java.util.HashMap;
import java.util.Map;
import java.util.HashSet;
import java.util.Properties;
import java.util.MissingResourceException;
import java.util.ResourceBundle;
import java.util.Set;

public class PolicyEvaluationSample {

 public PolicyEvaluationSample() {
 }

 public static void main(String[] args) throws Exception {
 PolicyEvaluationSample clientSample = new PolicyEvaluationSample();
 clientSample.runSample(args);
 System.exit(0);
 }

 public void runSample(String[] args) throws Exception {
 if (args.length == 0 || args.length > 1) {
 System.out.println("Missing argument:"
 + "properties file name not specified");
 } else {
 System.out.println("Using properties file:" + args[0]);
 Properties sampleProperties = getProperties(args[0]);
 SSOToken ssoToken = getSSOToken(
 (String)sampleProperties.get("user.name"),
 (String)sampleProperties.get("user.password")
);
 getPolicyDecision(
 ssoToken,
 (String)sampleProperties.get("service.name"),
 (String)sampleProperties.get("resource.name"),
 (String)sampleProperties.get("action.name")
);
 }
 }

 private SSOToken getSSOToken(
 String userName, String password) throws Exception {
 System.out.println("Entering getSSOToken():"
 + "userName=" + userName + ","
 + "password=" + password);

Developing with the Java SDK
Requesting Policy Decisions Using the Java SDK

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 58

 SSOToken ssoToken = TokenUtils.getSessionToken("/",
 userName, password);
 System.out.println("TokenID:" + ssoToken.getTokenID().toString());
 System.out.println("returning from getSSOToken()");
 return ssoToken;
 }

 private void getPolicyDecision(
 SSOToken ssoToken,
 String serviceName,
 String resourceName,
 String actionName)
 throws Exception {

 System.out.println("Entering getPolicyDecision():"
 + "resourceName=" + resourceName + ","
 + "serviceName=" + serviceName + ","
 + "actionName=" + actionName);
 PolicyEvaluator pe = PolicyEvaluatorFactory.getInstance().
 getPolicyEvaluator(serviceName);

 Map env = new HashMap();
 Set attrSet = new HashSet();
 Set actions = new HashSet();
 actions.add(actionName);
 PolicyDecision pd = pe.getPolicyDecision(ssoToken, resourceName,
 actions, env);
 System.out.println("policyDecision:" + pd.toXML());

 System.out.println("returning from getPolicyDecision()");
 }

 private Properties getProperties(String file)
 throws MissingResourceException {
 Properties properties = new Properties();
 ResourceBundle bundle = ResourceBundle.getBundle(file);
 Enumeration e = bundle.getKeys();
 System.out.println("sample properties:");
 while (e.hasMoreElements()) {
 String key = (String) e.nextElement();
 String value = bundle.getString(key);
 properties.put(key, value);
 System.out.println(key + ":" + value);
 }
 return properties;
 }
}

Before you run the script that calls the sample, edit the properties file, resources/
policyEvaluationSample.properties, to indicate the user credentials, resource to access, and HTTP
method to use. You can use a resource that might not exist for the purposes of this example, but you
will need to set up a policy for that resource to get meaningful results.
user.name=demo
user.password=changeit
service.name=iPlanetAMWebAgentService
resource.name=http://www.example.com:80/banner.html
action.name=GET

Developing with the Java SDK
Requesting a XACML Policy Decision Using the Java SDK

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 59

Also, set up a policy in AM that corresponds to the resource in question. You can set up the policy in
the AM console under Realms > Realm Name > Authorization. Concerning the Realm Name, notice
that unless you change the code, the sample uses the top-level realm, / to authenticate the user.

With the properties configured and policy in place, get the decision from AM using the script, scripts/
run-policy-evaluation-sample.sh.

$ sh scripts/run-policy-evaluation-sample.sh
Using properties file:policyEvaluationSample
sample properties:
user.password:changeit
service.name:iPlanetAMWebAgentService
user.name:demo
resource.name:http://www.example.com:80/banner.html
action
.name:GET
--:
Entering getSSOToken():userName=demo,password=changeit
TokenID:AQIC5wM2LY4Sfcx3aQGFRKu5-r1a-Vfyjb...5ODM4NDY0MzE0ODYzODQ1*
returning from getSSOToken()
Entering getPolicyDecision():resourceName=http://www.example.com:80/banner.html,
 serviceName=iPlanetAMWebAgentService,actionName=GET
policyDecision:<PolicyDecision>
<ResponseAttributes>
</ResponseAttributes>
<ActionDecision timeToLive="9223372036854775807">
<AttributeValuePair>
<Attribute name="GET"/>
<Value>allow</Value>
</AttributeValuePair>
<Advices>
</Advices>
</ActionDecision>
</PolicyDecision>

returning from getPolicyDecision()

As you see, the policy decision response is formatted here as an XML document.1 Notice here the line
showing that AM has allowed access to the resource.
<Value>allow</Value>

3.6. Requesting a XACML Policy Decision Using the Java SDK
This section shows how to request a XACML policy decision with AM Java SDK, using the sample
client, source/samples/xacml/XACMLClientSample.java. The sample client relies on an AM server acting as a
policy decision point and another AM server acting as a policy enforcement point.

Before you continue, make sure that the packages described in the "Installing Client SDK Samples"
chapter are installed.
1The PolicyDecision element is defined in openam/WEB-INF/remoteInterface.dtd where openam is the location where the
AM web application is deployed.

Developing with the Java SDK
Requesting a XACML Policy Decision Using the Java SDK

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 60

The sample client uses the XACML ContextFactory to create the XACML request. It then uses the
XACMLRequestProcessor to get a decision as XACML Response from AM. Most of the work in the sample is
done setting up the request.

The implementation of the XACMLClientSample class follows.
package samples.xacml;

import com.sun.identity.saml2.common.SAML2Exception;
import com.sun.identity.xacml.client.XACMLRequestProcessor;
import com.sun.identity.xacml.common.XACMLConstants;
import com.sun.identity.xacml.common.XACMLException;
import com.sun.identity.xacml.context.ContextFactory;
import com.sun.identity.xacml.context.Action;
import com.sun.identity.xacml.context.Attribute;
import com.sun.identity.xacml.context.Environment;
import com.sun.identity.xacml.context.Request;
import com.sun.identity.xacml.context.Resource;
import com.sun.identity.xacml.context.Response;
import com.sun.identity.xacml.context.Subject;
import java.net.URI;
import java.net.URISyntaxException;
import java.io.PrintWriter;
import java.util.ArrayList;
import java.util.Enumeration;
import java.util.List;
import java.util.MissingResourceException;
import java.util.Properties;
import java.util.ResourceBundle;

public class XACMLClientSample {

 public XACMLClientSample() {
 }

 public static void main(String[] args) throws Exception {
 XACMLClientSample clientSample = new XACMLClientSample();
 clientSample.runSample(args);
 System.exit(0);
 }

 public void runSample(String[] args) throws Exception {
 if (args.length == 0 || args.length > 1) {
 System.out.println("Missing argument:"
 + "properties file name not specified");
 } else {
 System.out.println("Using properties file:" + args[0]);
 Properties sampleProperties = getProperties(args[0]);
 testProcessRequest(
 (String)sampleProperties.get("pdp.entityId"),
 (String)sampleProperties.get("pep.entityId"),
 (String)sampleProperties.get("subject.id"),
 (String)sampleProperties.get("subject.id.datatype"),
 (String)sampleProperties.get("subject.category"),
 (String)sampleProperties.get("resource.id"),
 (String)sampleProperties.get("resource.id.datatype"),
 (String)sampleProperties.get("resource.servicename"),
 (String)sampleProperties.get("resource.servicename.datatype"),

Developing with the Java SDK
Requesting a XACML Policy Decision Using the Java SDK

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 61

 (String)sampleProperties.get("action.id"),
 (String)sampleProperties.get("action.id.datatype")
);
 }
 }

 private void testProcessRequest(
 String pdpEntityId, String pepEntityId,
 String subjectId, String subjectIdType,
 String subjectCategory,
 String resourceId, String resourceIdType,
 String serviceName, String serviceNameType,
 String actionId, String actionIdType)
 throws XACMLException, SAML2Exception,
 URISyntaxException, Exception {

 Request xacmlRequest = createSampleXacmlRequest(
 subjectId, subjectIdType,
 subjectCategory,
 resourceId, resourceIdType,
 serviceName, serviceNameType,
 actionId, actionIdType);

 System.out.println("\ntestProcessRequest():xacmlRequest:\n"
 + xacmlRequest.toXMLString(true, true));

 Response xacmlResponse = XACMLRequestProcessor.getInstance()
 .processRequest(xacmlRequest, pdpEntityId, pepEntityId);

 System.out.println("testProcessRequest():xacmlResponse:\n"
 + xacmlResponse.toXMLString(true, true));
 }

 private Request createSampleXacmlRequest(
 String subjectId, String subjectIdType,
 String subjectCategory,
 String resourceId, String resourceIdType,
 String serviceName, String serviceNameType,
 String actionId, String actionIdType)
 throws XACMLException, URISyntaxException {

 Request request = ContextFactory.getInstance().createRequest();

 //Subject
 Subject subject = ContextFactory.getInstance().createSubject();
 subject.setSubjectCategory(new URI(subjectCategory));

 //set subject id
 Attribute attribute = ContextFactory.getInstance().createAttribute();
 attribute.setAttributeId(new URI(XACMLConstants.SUBJECT_ID));
 attribute.setDataType(new URI(subjectIdType));
 List valueList = new ArrayList();
 valueList.add(subjectId);
 attribute.setAttributeStringValues(valueList);
 List attributeList = new ArrayList();
 attributeList.add(attribute);
 subject.setAttributes(attributeList);

 //set Subject in Request

Developing with the Java SDK
Requesting a XACML Policy Decision Using the Java SDK

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 62

 List subjectList = new ArrayList();
 subjectList.add(subject);
 request.setSubjects(subjectList);

 //Resource
 Resource resource = ContextFactory.getInstance().createResource();

 //set resource id
 attribute = ContextFactory.getInstance().createAttribute();
 attribute.setAttributeId(new URI(XACMLConstants.RESOURCE_ID));
 attribute.setDataType(new URI(resourceIdType));
 valueList = new ArrayList();
 valueList.add(resourceId);
 attribute.setAttributeStringValues(valueList);
 attributeList = new ArrayList();
 attributeList.add(attribute);

 //set serviceName
 attribute = ContextFactory.getInstance().createAttribute();
 attribute.setAttributeId(new URI(XACMLConstants.TARGET_SERVICE));
 attribute.setDataType(new URI(serviceNameType));
 valueList = new ArrayList();
 valueList.add(serviceName);
 attribute.setAttributeStringValues(valueList);
 attributeList.add(attribute);
 resource.setAttributes(attributeList);

 //set Resource in Request
 List resourceList = new ArrayList();
 resourceList.add(resource);
 request.setResources(resourceList);

 //Action
 Action action = ContextFactory.getInstance().createAction();
 attribute = ContextFactory.getInstance().createAttribute();
 attribute.setAttributeId(new URI(XACMLConstants.ACTION_ID));
 attribute.setDataType(new URI(actionIdType));

 //set actionId
 valueList = new ArrayList();
 valueList.add(actionId);
 attribute.setAttributeStringValues(valueList);
 attributeList = new ArrayList();
 attributeList.add(attribute);
 action.setAttributes(attributeList);

 //set Action in Request
 request.setAction(action);

 //Environment, our PDP does not use environment now
 Environment environment = ContextFactory.getInstance()
 .createEnvironment();
 request.setEnvironment(environment);
 return request;
 }

 private Properties getProperties(String file)
 throws MissingResourceException {
 Properties properties = new Properties();

Developing with the Java SDK
Requesting a XACML Policy Decision Using the Java SDK

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 63

 ResourceBundle bundle = ResourceBundle.getBundle(file);
 Enumeration e = bundle.getKeys();
 System.out.println("sample properties:");
 while (e.hasMoreElements()) {
 String key = (String) e.nextElement();
 String value = bundle.getString(key);
 properties.put(key, value);
 System.out.println(key + ":" + value);
 }
 return properties;
 }
}

Before running the sample client, you must set up the configuration as described in the comments at
the outset of the scripts/run-xacml-client-sample.sh script.

• Check resources/AMConfig.properties to see which AM server the SDK is configured to use.

The relevant settings from resources/AMConfig.properties specify the server protocol, host, port and
deployment URI.
com.iplanet.am.server.protocol=http
com.iplanet.am.server.host=openam.example.com
com.iplanet.am.server.port=8080
com.iplanet.am.services.deploymentDescriptor=openam

For the purpose of this example, the XACML policy decision point (PDP) and the XACML policy
enforcement point (PEP) are configured on this server.

• Edit resources/xacmlClientSample.properties and resources/policyEvaluationSample.properties to set up the
configuration for the sample client.

The relevant settings from resources/xacmlClientSample.properties are the following.
pdp.entityId=xacmlPdpEntity
pep.entityId=xacmlPepEntity
subject.id=id=demo,ou=user,dc=openam,dc=forgerock,dc=org
subject.id.datatype=urn:oasis:names:tc:xacml:1.0:data-type:x500Name
subject.category=urn:oasis:names:tc:xacml:1.0:subject-category:access-subject
resource.id=http://www.example.com:80/banner.html
resource.id.datatype=http://www.w3.org/2001/XMLSchema#string
resource.servicename=iPlanetAMWebAgentService
resource.servicename.datatype=http://www.w3.org/2001/XMLSchema#string
action.id=GET
action.id.datatype=http://www.w3.org/2001/XMLSchema#string

The relevant settings from resources/policyEvaluationSample.properties are the following.
user.name=demo
user.password=changeit
service.name=iPlanetAMWebAgentService
resource.name=http://www.example.com:80/banner.html
action.name=GET

Developing with the Java SDK
Requesting a XACML Policy Decision Using the Java SDK

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 64

These settings use the default demo user as the subject, who has ID id=demo,ou=user,dc=openam
,dc=forgerock,dc=org, and password changeit. If you choose a different subject, then change the
subject.id value in resources/xacmlClientSample.properties, and the user.name and user.password values in
resources/policyEvaluationSample.properties.

• The client accesses an AM server acting as the policy enforcement point, configured in a circle of
trust with the AM server acting as the policy decision point. When you set up the sample clients,
you pointed them to an AM server. For this example, configure that server to function as a policy
enforcement point and also as a policy decision point.

1. In the AM console, browse to Configure > Global Services, click SAMLv2 SOAP Binding, and
then configure a new request handler with Key /xacmlPdpEntity and Class com.sun.identity.xacml
.plugins.XACMLAuthzDecisionQueryHandler.

2. Set up the circle of trust, and then create and import the metadata for the policy enforcement
point and the policy decision point. In the following simplified example, both the policy
enforcement point and policy decision point are hosted on the same AM server. You could also
set up the policy enforcement point and policy decision point on separate servers, as long as
the circles of trust on both servers each include both the policy enforcement point and the
policy decision point. You can set up the trust relationship between the two entities by using the
ssoadm command as shown below:

$ ssoadm \
 create-cot \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --cot cot

Circle of trust, cot was created.

$ ssoadm \
 create-metadata-templ \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --entityid xacmlPepEntity \
 --xacmlpep /xacmlPepEntity \
 --meta-data-file xacmlPep.xml \
 --extended-data-file xacmlPep-extended.xml

Hosted entity configuration was written to xacmlPep-extended.xml.
Hosted entity descriptor was written to xacmlPep.xml.

$ ssoadm \
 import-entity \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --cot cot \
 --meta-data-file xacmlPep.xml \
 --extended-data-file xacmlPep-extended.xml

Import file, xacmlPep.xml.
Import file, xacmlPep-extended.xml.

Developing with the Java SDK
Requesting a XACML Policy Decision Using the Java SDK

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 65

$ ssoadm \
 create-metadata-templ \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --entityid xacmlPdpEntity \
 --xacmlpdp /xacmlPdpEntity \
 --meta-data-file xacmlPdp.xml \
 --extended-data-file xacmlPdp-extended.xml

Hosted entity configuration was written to xacmlPdp-extended.xml.
Hosted entity descriptor was written to xacmlPdp.xml.

$ ssoadm \
 import-entity \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --cot cot \
 --meta-data-file xacmlPdp.xml \
 --extended-data-file xacmlPdp-extended.xml

Import file, xacmlPdp.xml.
Import file, xacmlPdp-extended.xml.

• Create a policy that allows authenticated users to perform an HTTP GET on the sample resource.id
URL you configured, such as http://www.example.com:80/banner.html.

See "Implementing Authorization Using the AM Console" in the Authorization Guide for details.

After you have configured AM and the properties files, run the sample client script, and observe the
XACML request and response.

$ sh scripts/run-xacml-client-sample.sh

Using properties file:xacmlClientSample
sample properties:
subject.id.datatype:urn:oasis:names:tc:xacml:1.0:data-type:x500Name
pdp.entityId:xacmlPdpEntity
resource.servicename.datatype:http://www.w3.org/2001/XMLSchema#string
resource.id:http://www.example.com:80/banner.html
resource.servicename:iPlanetAMWebAgentService
action.id.datatype:http://www.w3.org/2001/XMLSchema#string
resource.id.datatype:http://www.w3.org/2001/XMLSchema#string
action.id:GET
subject.category:urn:oasis:names:tc:xacml:1.0:subject-category:access-subject
pep.entityId:xacmlPepEntity
subject.id:id=demo,ou=user,dc=openam,dc=forgerock,dc=org

testProcessRequest():xacmlRequest:

<xacml-context:Request
 xmlns:xacml-context="urn:oasis:names:tc:xacml:2.0:context:schema:os"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="urn:oasis:names:tc:xacml:2.0:context:schema:os
 http://docs.oasis-open.org/xacml/access_control-xacml-2.0-context-schema-os.xsd">
<Subject SubjectCategory=
 "urn:oasis:names:tc:xacml:1.0:subject-category:access-subject">
<Attribute

Developing with the Java SDK
Requesting a XACML Policy Decision Using the Java SDK

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 66

 AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"
 DataType="urn:oasis:names:tc:xacml:1.0:data-type:x500Name" >
<AttributeValue
 >id=demo,ou=user,dc=openam,dc=forgerock,dc=org</AttributeValue>
</Attribute>
</Subject>
<xacml-context:Resource>
<Attribute
 AttributeId="ResourceId"
 DataType="http://www.w3.org/2001/XMLSchema#string" >
<AttributeValue>http://www.example.com:80/banner.html</AttributeValue>
</Attribute>
<Attribute
 AttributeId="urn:sun:names:xacml:2.0:resource:target-service"
 DataType="http://www.w3.org/2001/XMLSchema#string" >
<AttributeValue>iPlanetAMWebAgentService</AttributeValue>
</Attribute>
</xacml-context:Resource>
<xacml-context:Action>
<Attribute
 AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"
 DataType="http://www.w3.org/2001/XMLSchema#string" >
<AttributeValue>GET</AttributeValue>
</Attribute>
</xacml-context:Action>
<xacml-context:Environment></xacml-context:Environment>
</xacml-context:Request>

testProcessRequest():xacmlResponse:
<xacml-context:Response
 xmlns:xacml-context="urn:oasis:names:tc:xacml:2.0:context:schema:os" >
<xacml-context:Result ResourceId="http://www.example.com:80/banner.html">
<xacml-context:Decision>Permit</xacml-context:Decision>
<xacml-context:Status>
<xacml-context:StatusCode
 Value="urn:oasis:names:tc:xacml:1.0:status:ok">
</xacml-context:StatusCode>
<xacml-context:StatusMessage>ok</xacml-context:StatusMessage>
<xacml-context:StatusDetail
 xmlns:xacml-context="urn:oasis:names:tc:xacml:2.0:context:schema:cd:04">
<xacml-context:StatusDetail/></xacml-context:StatusDetail>
</xacml-context:Status>
</xacml-context:Result>
</xacml-context:Response>

Developing with the C SDK

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 67

Chapter 4

Developing with the C SDK
This chapter introduces the C SDK. To obtain the C SDK or request support, contact
info@forgerock.com.

To prepare to install C SDK, unpack the archive as in the following example.

$ mkdir -p /path/to/openam-client
$ cd /path/to/openam-client
$ unzip ~/Downloads/common_3_0_Linux_64bit.zip

All C SDK deliveries are .zip files, and the filenames are self-explanatory. The SunOS in some of the .zip
files refer to the Solaris OS.

• common_3_0_Linux.zip

• common_3_0_Linux_64bit.zip

• common_3_0_windows.zip

• common_3_0_windows_64bit.zip

• common_3_0_SunOS_x86.zip

• common_3_0_SunOS_64bit.zip

• common_3_0_SunOS_sparc.zip

• common_3_0_SunOS_sparc_64bit.zip

Once unpacked, you have several directories that include the SDK, and also sample client
applications.

bin/

The crypt_util or cryptit.exe command for encrypting passwords

config/

Configuration data for the SDK

include/

Header files for the SDK

mailto:info@forgerock.com

Developing with the C SDK

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 68

lib/

SDK and other required libraries

samples/

Sample code

To Build C SDK Samples

1. Review the samples/README.TXT file to complete any specific instructions required for your platform.
The two commands shown here confirm that the specified system is a 64-bit Linux OS. Make sure
it matches the C SDK package that you have downloaded.

$ uname -s
Linux
$ uname -m
x86_64

2. Set up OpenSSOAgentBootstrap.properties and OpenSSOAgentConfiguration.properties as appropriate for
your environment.

Base your work on the template files in the config/ directory. You can find the Password
Encryption Key in the AM console under Deployment > Servers > Server Name > Security.

3. Try one of the samples you built to test your build.

$ LD_LIBRARY_PATH=../lib \
 ./am_auth_test \
 -f ../config/OpenSSOAgentBootstrap.properties \
 -u demo \
 -p changeit \
 -o /
 Login 1 Succeeded!
 SSOToken = AQIC5wM2LY4SfcxZfk4EzC9Y46P9cXG9ogwf2ixnYOeZ0K0.*AAJTSQACMDE.*
 Organization = /
 Module Instance Name [0] = SAE
 Module Instance Name [1] = LDAP
 Module Instance Name [2] = WSSAuthModule
 Module Instance Name [3] = Federation
 Module Instance Name [4] = HOTP
 Module Instance Name [5] = DataStore
 Logout 1 Succeeded!

Developing with Scripts
The Scripting Environment

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 69

Chapter 5

Developing with Scripts
You can use scripts for client-side and server-side authentication, policy conditions, and handling
OpenID Connect claims.

5.1. The Scripting Environment
This section introduces how AM executes scripts, and covers thread pools and security configuration.

You can use scripts to modify default AM behavior in the following situations, also known as contexts:

Client-side Authentication

Scripts that are executed on the client during authentication. Client-side scripts must be in
JavaScript.

Server-side Authentication

Scripts are included in an authentication module and are executed on the server during
authentication.

Policy Condition

Scripts used as conditions within policies.

OIDC Claims

Scripts that gather and populate the claims in a request when issuing an ID token or making a
request to the userinfo endpoint.

AM implements a configurable scripting engine for each of the context types that are executed on the
server.

The scripting engines in AM have two main components: security settings, and the thread pool.

Developing with Scripts
Security

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 70

5.1.1. Security
AM scripting engines provide security features for ensuring that malicious Java classes are not
directly called. The engines validate scripts by checking all directly-called Java classes against
a configurable blacklist and whitelist, and, optionally, against the JVM SecurityManager, if it is
configured.

Whitelists and blacklists contain class names that are allowed or denied execution respectively.
Specify classes in whitelists and blacklists by name or by using regular expressions.

Classes called by the script are checked against the whitelist first, and must match at least one
pattern in the list. The blacklist is applied after the whitelist, and classes matching any pattern are
disallowed.

You can also configure the scripting engine to make an additional call to the JVM security manager
for each class that is accessed. The security manager throws an exception if a class being called is
not allowed to execute.

Developing with Scripts
Thread Pools

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 71

For more information on configuring script engine security, see "Scripting".

Important Points About Script Engine Security

The following points should be considered when configuring the security settings within each script
engine:

The scripting engine only validates directly accessible classes.

The security settings only apply to classes that the script directly accesses. If the script calls Foo
.a() and then that method calls Bar.b(), the scripting engine will be unable to prevent it. You must
consider the whole chain of accessible classes.

Note

Access includes actions such as:

• Importing or loading a class.

• Accessing any instance of that class. For example, passed as a parameter to the script.

• Calling a static method on that class.

• Calling a method on an instance of that class.

• Accessing a method or field that returns an instance of that class.

Potentially dangerous Java classes are blacklisted by default.

All Java reflection classes (java.lang.Class, java.lang.reflect.*) are blacklisted by default to avoid
bypassing the security settings.

The java.security.AccessController class is also blacklisted by default to prevent access to the
doPrivileged() methods.

Caution

You should not remove potentially dangerous Java classes from the blacklist.

The whitelists and blacklists match class or package names only.

The whitelist and blacklist patterns apply only to the exact class or package names involved. The
script engine does not know anything about inheritance, so it is best to whitelist known, specific
classes.

5.1.2. Thread Pools
Each script is executed in an individual thread. Each scripting engine starts with an initial number of
threads available for executing scripts. If no threads are available for execution, AM creates a new
thread to execute the script, until the configured maximum number of threads is reached.

Developing with Scripts
Global Scripting API Functionality

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 72

If the maximum number of threads is reached, pending script executions are queued in a number
of buffer threads, until a thread becomes available for execution. If a created thread has completed
script execution and has remained idle for a configured amount of time, AM terminates the thread,
shrinking the pool.

For more information on configuring script engine thread pools, see "Scripting".

5.2. Global Scripting API Functionality
This section covers functionality available to each of the server-side script types.

Global API functionality includes:

• Accessing HTTP Services

• Debug Logging

5.2.1. Accessing HTTP Services

AM passes an HTTP client object, httpClient, to server-side scripts. Server-side scripts can call HTTP
services with the httpClient.send method. The method returns an HttpClientResponse object.

Configure the parameters for the HTTP client object by using the org.forgerock.http.protocol package.
This package contains the Request class, which has methods for setting the URI and type of request.

The following example, taken from the default server-side Scripted authentication module script, uses
these methods to call an online API to determine the longitude and latitude of a user based on their
postal address:
function getLongitudeLatitudeFromUserPostalAddress() {

 var request = new org.forgerock.http.protocol.Request();

 request.setUri("http://maps.googleapis.com/maps/api/geocode/json?address=" +
 encodeURIComponent(userPostalAddress));
 request.setMethod("GET");

 var response = httpClient.send(request).get();
 logResponse(response);

 var geocode = JSON.parse(response.getEntity());
 var i;

 for (i = 0; i < geocode.results.length; i++) {
 var result = geocode.results[i];
 latitude = result.geometry.location.lat;
 longitude = result.geometry.location.lng;

 logger.message("latitude:" + latitude + " longitude:" + longitude);
 }
}

Developing with Scripts
Debug Logging

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 73

HTTP client requests are synchronous and blocking until they return. You can, however, set a global
timeout for server-side scripts. For details, see "Scripted Authentication Module Properties" in the
Authentication and Single Sign-On Guide.

Server-side scripts can access response data by using the methods listed in the table below.

HTTP Client Response Methods

Method Parameters Return Type Description
HttpClientResponse.getCookies Void Map<String, String> Get the cookies for the

returned response, if
any exist.

HttpClientResponse.getEntity Void String Get the entity of the
returned response.

HttpClientResponse.getHeaders Void Map<String, String> Get the headers for the
returned response, if
any exist.

HttpClientResponse
.getReasonPhrase

Void String Get the reason phrase
of the returned
response.

HttpClientResponse.getStatusCode Void Integer Get the status code of
the returned response.

HttpClientResponse.hasCookies Void Boolean Indicate whether the
returned response had
any cookies.

HttpClientResponse.hasHeaders Void Boolean Indicate whether the
returned response had
any headers.

5.2.2. Debug Logging

Server-side scripts can write messages to AM debug logs by using the logger object.

AM does not log debug messages from scripts by default. You can configure AM to log such messages
by setting the debug log level for the amScript service. For details, see "Debug Logging By Service" in
the Setup and Maintenance Guide.

The following table lists the logger methods.

Logger Methods

Method Parameters Return Type Description
logger.error Error Message (type:

String)
Void Write Error Message to AM debug

logs if ERROR level logging is
enabled.

Developing with Scripts
Managing Scripts

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 74

Method Parameters Return Type Description
logger.errorEnabled Void Boolean Return true when ERROR level

debug messages are enabled.
logger.message Message (type: String) Void Write Message to AM debug logs if

MESSAGE level logging is enabled.
logger.messageEnabled Void Boolean Return true when MESSAGE level

debug messages are enabled.
logger.warning Warning Message (type:

String)
Void Write Warning Message to AM

debug logs if WARNING level
logging is enabled.

logger.warningEnabled Void Boolean Return true when WARNING level
debug messages are enabled.

5.3. Managing Scripts
This section shows you how to manage scripts used for client-side and server-side scripted
authentication, custom policy conditions, and handling OpenID Connect claims using the AM console,
the ssoadm command, and the REST API.

5.3.1. Managing Scripts With the AM Console

The following procedures describe how to create, modify, and delete scripts using the AM console:

• "To Create Scripts by Using the AM Console"

• "To Modify Scripts by Using the AM Console"

• "To Delete Scripts by Using the AM Console"

To Create Scripts by Using the AM Console

1. Log in to the AM console as an AM administrator, for example, amadmin.

2. Navigate to Realms > Realm Name > Scripts.

3. Click New Script.

The New Script page appears:

Developing with Scripts
Managing Scripts With the AM Console

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 75

4. Specify a name for the script.

5. Select the type of script from the Script Type drop-down list.

6. Click Create.

The Script Name page appears:

Developing with Scripts
Managing Scripts With the AM Console

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 76

7. Enter values on the Script Name page as follows:

a. Enter a description of the script.

b. Choose the script language, either JavaScript or Groovy. Note that not every script type
supports both languages.

c. Enter the source code in the Script field.

On supported browsers, you can click Upload, navigate to the script file, and then click Open
to upload the contents to the Script field.

d. Click Validate to check for compilation errors in the script.

Developing with Scripts
Managing Scripts With the ssoadm Command

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 77

Correct any compilation errors, and revalidate the script until all errors have been fixed.

e. Save your changes.

To Modify Scripts by Using the AM Console

1. Log in to the AM console as an AM administrator, for example, amadmin.

2. Navigate to Realms > Realm Name > Scripts.

3. Select the script you want to modify from the list of scripts.

The Script Name page appears.

4. Modify values on the Script Name page as needed. Note that if you change the Script Type,
existing code in the script is replaced.

5. If you modified the code in the script, click Validate to check for compilation errors.

Correct any compilation errors, and revalidate the script until all errors have been fixed.

6. Save your changes.

To Delete Scripts by Using the AM Console

1. Log in to the AM console as an AM administrator, for example, amadmin.

2. Navigate to Realms > Realm Name > Scripts.

3. Choose one or more scripts to delete by activating the checkboxes in the relevant rows. Note that
you can only delete user-created scripts—you cannot delete the global sample scripts provided
with AM.

4. Click Delete.

5.3.2. Managing Scripts With the ssoadm Command

Use the ssoadm command's create-sub-cfg, get-sub-cfg, and delete-sub-cfg subcommands to manage
AM scripts.

Create an AM script as follows:

1. Create a script configuration file as follows:
script-file=/path/to/script-file
language=JAVASCRIPT|GROOVY
name=myScript
context=AUTHENTICATION_SERVER_SIDE|AUTHENTICATION_CLIENT_SIDE|POLICY_CONDITION|OIDC_CLAIMS

Developing with Scripts
Managing Scripts With the REST API

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 78

2. Run the ssoadm create-sub-cfg command. The --datafile argument references the script
configuration file you created in the previous step:
$ ssoadm \
 create-sub-cfg \
 --realm /myRealm \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename ScriptingService \
 --subconfigname scriptConfigurations/scriptConfiguration \
 --subconfigid myScript \
 --datafile /path/to/myScriptConfigurationFile
Sub Configuration scriptConfigurations/scriptConfiguration was added to realm /myRealm

To list the properties of a script, run the ssoadm get-sub-cfg command:
$ ssoadm \
 get-sub-cfg \
 --realm /myRealm \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename ScriptingService \
 --subconfigname scriptConfigurations/myScript
createdBy=
lastModifiedDate=
lastModifiedBy=
name=myScript
context=POLICY_CONDITION
description=
language=JAVASCRIPT
creationDate=
script=...Script output follows...

To delete a script, run the ssoadm delete-sub-cfg command:
$ ssoadm \
 delete-sub-cfg \
 --realm /myRealm \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename ScriptingService \
 --subconfigname scriptConfigurations/myScript
Sub Configuration scriptConfigurations/myScript was deleted from realm /myRealm

5.3.3. Managing Scripts With the REST API

This section shows you how to manage scripts used for client-side and server-side scripted
authentication, custom policy conditions, and handling OpenID Connect claims by using the REST
API.

AM provides the scripts REST endpoint for the following:

• "Querying Scripts"

• "Reading a Script"

Developing with Scripts
Managing Scripts With the REST API

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 79

• "Validating a Script"

• "Creating a Script"

• "Updating a Script"

• "Deleting a Script"

User-created scripts are realm-specific, hence the URI for the scripts' API can contain a realm
component, such as /json{/realm}/scripts. If the realm is not specified in the URI, the top level realm is
used.

Tip

AM includes some global example scripts that can be used in any realm.

Scripts are represented in JSON and take the following form. Scripts are built from standard JSON
objects and values (strings, numbers, objects, sets, arrays, true, false, and null). Each script has a
system-generated universally unique identifier (UUID), which must be used when modifying existing
scripts. Renaming a script will not affect the UUID:
{
 "_id": "7e3d7067-d50f-4674-8c76-a3e13a810c33",
 "name": "Scripted Module - Server Side",
 "description": "Default global script for server side Scripted Authentication Module",
 "script": "dmFyIFNUQVJUX1RJ...",
 "language": "JAVASCRIPT",
 "context": "AUTHENTICATION_SERVER_SIDE",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
}

The values for the fields shown in the example above are explained below:

_id

The UUID that AM generates for the script.

name

The name provided for the script.

description

An optional text string to help identify the script.

script

The source code of the script. The source code is in UTF-8 format and encoded into Base64.

Developing with Scripts
Managing Scripts With the REST API

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 80

For example, a script such as the following:
var a = 123;
var b = 456;

When encoded into Base64 becomes:
dmFyIGEgPSAxMjM7IA0KdmFyIGIgPSA0NTY7

language

The language the script is written in - JAVASCRIPT or GROOVY.

Language Support per Context

Script Context Supported Languages
POLICY_CONDITION JAVASCRIPT, GROOVY
AUTHENTICATION_SERVER_SIDE JAVASCRIPT, GROOVY
AUTHENTICATION_CLIENT_SIDE JAVASCRIPT

OIDC_CLAIMS JAVASCRIPT, GROOVY

context

The context type of the script.

Supported values are:

POLICY_CONDITION

Policy Condition

AUTHENTICATION_SERVER_SIDE

Server-side Authentication

AUTHENTICATION_CLIENT_SIDE

Client-side Authentication

Note

Client-side scripts must be written in JavaScript.

OIDC_CLAIMS

OIDC Claims

Developing with Scripts
Querying Scripts

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 81

createdBy

A string containing the universal identifier DN of the subject that created the script.

creationDate

An integer containing the creation date and time, in ISO 8601 format.

lastModifiedBy

A string containing the universal identifier DN of the subject that most recently updated the
resource type.

If the script has not been modified since it was created, this property will have the same value as
createdBy.

lastModifiedDate

A string containing the last modified date and time, in ISO 8601 format.

If the script has not been modified since it was created, this property will have the same value as
creationDate.

5.3.4. Querying Scripts

To list all the scripts in a realm, as well as any global scripts, perform an HTTP GET to the /json{/
realm}/scripts endpoint with a _queryFilter parameter set to true.

Note

If the realm is not specified in the URL, AM returns scripts in the top level realm, as well as any global scripts.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts?_queryFilter
 =true
{
 "result": [
 {
 "_id": "9de3eb62-f131-4fac-a294-7bd170fd4acb",
 "name": "Scripted Policy Condition",
 "description": "Default global script for Scripted Policy Conditions",
 "script": "LyoqCiAqIFRoaXMg...",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,

Developing with Scripts
Reading a Script

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 82

 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
 },
 {
 "_id": "7e3d7067-d50f-4674-8c76-a3e13a810c33",
 "name": "Scripted Module - Server Side",
 "description": "Default global script for server side Scripted Authentication Module",
 "script": "dmFyIFNUQVJUX1RJ...",
 "language": "JAVASCRIPT",
 "context": "AUTHENTICATION_SERVER_SIDE",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

Supported _queryFilter Fields and Operators

Field Supported Operators
_id Equals (eq), Contains (co), Starts with (sw)
name Equals (eq), Contains (co), Starts with (sw)
description Equals (eq), Contains (co), Starts with (sw)
script Equals (eq), Contains (co), Starts with (sw)
language Equals (eq), Contains (co), Starts with (sw)
context Equals (eq), Contains (co), Starts with (sw)

5.3.5. Reading a Script

To read an individual script in a realm, perform an HTTP GET using the /json{/realm}/scripts
endpoint, specifying the UUID in the URL.

Tip

To read a script in the top-level realm, or to read a built-in global script, do not specify a realm in the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Developing with Scripts
Validating a Script

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 83

$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/9de3eb62-f131-4fac-a294
-7bd170fd4acb
{
 "_id": "9de3eb62-f131-4fac-a294-7bd170fd4acb",
 "name": "Scripted Policy Condition",
 "description": "Default global script for Scripted Policy Conditions",
 "script": "LyoqCiAqIFRoaXMg...",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
}

5.3.6. Validating a Script

To validate a script, perform an HTTP POST using the /json{/realm}/scripts endpoint, with an _action
parameter set to validate. Include a JSON representation of the script and the script language,
JAVASCRIPT or GROOVY, in the POST data.

The value for script must be in UTF-8 format and then encoded into Base64.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data '{
 "script": "dmFyIGEgPSAxMjM7dmFyIGIgPSA0NTY7Cg==",
 "language": "JAVASCRIPT"
 }' \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/?_action=validate
{
 "success": true
}

If the script is valid the JSON response contains a success key with a value of true.

If the script is invalid the JSON response contains a success key with a value of false, and an indication
of the problem and where it occurs, as shown below:

Developing with Scripts
Creating a Script

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 84

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data '{
 "script": "dmFyIGEgPSAxMjM7dmFyIGIgPSA0NTY7ID1WQUxJREFUSU9OIFNIT1VMRCBGQUlMPQo=",
 "language": "JAVASCRIPT"
 }' \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/?_action=validate
{
 "success": false,
 "errors": [
 {
 "line": 1,
 "column": 27,
 "message": "syntax error"
 }
]
}

5.3.7. Creating a Script

To create a script in a realm, perform an HTTP POST using the /json{/realm}/scripts endpoint, with an
_action parameter set to create. Include a JSON representation of the script in the POST data.

The value for script must be in UTF-8 format and then encoded into Base64.

Note

If the realm is not specified in the URL, AM creates the script in the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Developing with Scripts
Updating a Script

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 85

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data '{
 "name": "MyJavaScript",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "description": "An example script"
 }' \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/?_action
 =create
{
 "_id": "0168d494-015a-420f-ae5a-6a2a5c1126af",
 "name": "MyJavaScript",
 "description": "An example script",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1436807766258,
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1436807766258
}

5.3.8. Updating a Script

To update an individual script in a realm, perform an HTTP PUT using the /json{/realm}/scripts
endpoint, specifying the UUID in both the URL and the PUT body. Include a JSON representation of
the updated script in the PUT data, alongside the UUID.

Note

If the realm is not specified in the URL, AM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

Developing with Scripts
Deleting a Script

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 86

$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --header "Content-Type: application/json" \
 --request PUT \
 --data '{
 "name": "MyUpdatedJavaScript",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "description": "An updated example script configuration"
 }' \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/0168d494-015a-420f-ae5a
-6a2a5c1126af
{
 "_id": "0168d494-015a-420f-ae5a-6a2a5c1126af",
 "name": "MyUpdatedJavaScript",
 "description": "An updated example script configuration",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1436807766258,
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1436808364681
}

5.3.9. Deleting a Script

To delete an individual script in a realm, perform an HTTP DELETE using the /json{/realm}/scripts
endpoint, specifying the UUID in the URL.

Note

If the realm is not specified in the URL, AM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --request DELETE \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/0168d494-015a-420f-ae5a
-6a2a5c1126af
{}

Reference
Scripting

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 87

Chapter 6

Reference
This reference section covers settings and other information relating to developing with AM.

6.1. Scripting
amster type ID: scripting

6.1.1. Configuration
The following settings appear on the Configuration tab:

Default Script Type

The default script context type when creating a new script.

The possible values for this property are:

POLICY_CONDITION
AUTHENTICATION_SERVER_SIDE
AUTHENTICATION_CLIENT_SIDE
OIDC_CLAIMS

Default value: POLICY_CONDITION

amster data attribute: defaultContext

6.1.2. Secondary Configurations
This service has the following Secondary Configurations.

6.1.2.1. Engine Configuration
The following properties are available for Scripting Service secondary configuration instances:

Engine Configuration

Configure script engine parameters for running a particular script type in OpenAM.

amster data attribute: engineConfiguration

Reference
Secondary Configurations

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 88

To access a secondary configuration instance using the ssoadm command, use: --subconfigname
 [primary configuration]/[secondary configuration] For example:
$ ssoadm set-sub-cfg \
 --adminid amAdmin \
 --password-file admin_pwd_file \
 --servicename ScriptingService \
 --subconfigname OIDC_CLAIMS/engineConfiguration \
 --operation set \
 --attributevalues maxThreads=300 queueSize=-1

Note

Supports server-side scripts only. OpenAM cannot configure engine settings for client-side scripts.

The configurable engine settings are as follows:

Server-side Script Timeout

The maximum execution time any individual script should take on the server (in seconds).
OpenAM terminates scripts which take longer to run than this value.

amster data attribute: serverTimeout

Core thread pool size

The initial number of threads in the thread pool from which scripts operate. OpenAM will
ensure the pool contains at least this many threads.

amster data attribute: coreThreads

Maximum thread pool size

The maximum number of threads in the thread pool from which scripts operate. If no free
thread is available in the pool, OpenAM creates new threads in the pool for script execution
up to the configured maximum.

amster data attribute: maxThreads

Thread pool queue size

The number of threads to use for buffering script execution requests when the maximum
thread pool size is reached.

amster data attribute: queueSize

Thread idle timeout (seconds)

Length of time (in seconds) for a thread to be idle before OpenAM terminates created
threads. If the current pool size contains the number of threads set in Core thread pool size
idle threads will not be terminated, to maintain the initial pool size.

Reference
Secondary Configurations

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 89

amster data attribute: idleTimeout

Java class whitelist

Specifies the list of class-name patterns allowed to be invoked by the script. Every class
accessed by the script must match at least one of these patterns.

You can specify the class name as-is or use a regular expression.

amster data attribute: whiteList

Java class blacklist

Specifies the list of class-name patterns that are NOT allowed to be invoked by the script. The
blacklist is applied AFTER the whitelist to exclude those classes - access to a class specified
in both the whitelist and the blacklist will be denied.

You can specify the class name to exclude as-is or use a regular expression.

amster data attribute: blackList

Use system SecurityManager

If enabled, OpenAM will make a call to System.getSecurityManager().checkPackageAccess(...) for
each class that is accessed. The method throws SecurityException if the calling thread is not
allowed to access the package.

Note

This feature only takes effect if the security manager is enabled for the JVM.

amster data attribute: useSecurityManager

Scripting languages

Select the languages available for scripts on the chosen type. Either GROOVY or JAVASCRIPT.

amster data attribute: languages

Default Script

The source code that is presented as the default when creating a new script of this type.

amster data attribute: defaultScript

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 90

Appendix A. Getting Support

For more information or resources about AM and ForgeRock Support, see the following sections:

A.1. Accessing Documentation Online
ForgeRock publishes comprehensive documentation online:

• The ForgeRock Knowledge Base offers a large and increasing number of up-to-date, practical
articles that help you deploy and manage ForgeRock software.

While many articles are visible to community members, ForgeRock customers have access to much
more, including advanced information for customers using ForgeRock software in a mission-critical
capacity.

• ForgeRock product documentation, such as this document, aims to be technically accurate and
complete with respect to the software documented. It is visible to everyone and covers all product
features and examples of how to use them.

A.2. Using the ForgeRock.org Site
The ForgeRock.org site has links to source code for ForgeRock open source software, as well as links
to the ForgeRock forums and technical blogs.

If you are a ForgeRock customer, raise a support ticket instead of using the forums. ForgeRock
support professionals will get in touch to help you.

https://backstage.forgerock.com/knowledge/kb
https://forgerock.org

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 91

A.3. Getting Support and Contacting ForgeRock
ForgeRock provides support services, professional services, training through ForgeRock University,
and partner services to assist you in setting up and maintaining your deployments. For a general
overview of these services, see https://www.forgerock.com.

ForgeRock has staff members around the globe who support our international customers and
partners. For details on ForgeRock's support offering, including support plans and service level
agreements (SLAs), visit https://www.forgerock.com/support.

https://www.forgerock.com
https://www.forgerock.com/support

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 92

Glossary

Access control Control to grant or to deny access to a resource.

Account lockout The act of making an account temporarily or permanently inactive
after successive authentication failures.

Actions Defined as part of policies, these verbs indicate what authorized
subjects can do to resources.

Advice In the context of a policy decision denying access, a hint to the policy
enforcement point about remedial action to take that could result in a
decision allowing access.

Agent administrator User having privileges only to read and write policy agent profile
configuration information, typically created to delegate policy agent
profile creation to the user installing a policy agent.

Agent authenticator Entity with read-only access to multiple agent profiles defined in the
same realm; allows an agent to read web service profiles.

Application In general terms, a service exposing protected resources.

In the context of AM policies, the application is a template that
constrains the policies that govern access to protected resources. An
application can have zero or more policies.

Application type Application types act as templates for creating policy applications.

Application types define a preset list of actions and functional logic,
such as policy lookup and resource comparator logic.

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 93

Application types also define the internal normalization, indexing
logic, and comparator logic for applications.

Attribute-based access
control (ABAC)

Access control that is based on attributes of a user, such as how old a
user is or whether the user is a paying customer.

Authentication The act of confirming the identity of a principal.

Authentication chaining A series of authentication modules configured together which a
principal must negotiate as configured in order to authenticate
successfully.

Authentication level Positive integer associated with an authentication module, usually
used to require success with more stringent authentication measures
when requesting resources requiring special protection.

Authentication module AM authentication unit that handles one way of obtaining and
verifying credentials.

Authorization The act of determining whether to grant or to deny a principal access
to a resource.

Authorization Server In OAuth 2.0, issues access tokens to the client after authenticating a
resource owner and confirming that the owner authorizes the client to
access the protected resource. AM can play this role in the OAuth 2.0
authorization framework.

Auto-federation Arrangement to federate a principal's identity automatically based
on a common attribute value shared across the principal's profiles at
different providers.

Bulk federation Batch job permanently federating user profiles between a service
provider and an identity provider based on a list of matched user
identifiers that exist on both providers.

Circle of trust Group of providers, including at least one identity provider, who have
agreed to trust each other to participate in a SAML v2.0 provider
federation.

Client In OAuth 2.0, requests protected web resources on behalf of the
resource owner given the owner's authorization. AM can play this role
in the OAuth 2.0 authorization framework.

Conditions Defined as part of policies, these determine the circumstances under
which which a policy applies.

Environmental conditions reflect circumstances like the client
IP address, time of day, how the subject authenticated, or the
authentication level achieved.

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 94

Subject conditions reflect characteristics of the subject like whether
the subject authenticated, the identity of the subject, or claims in the
subject's JWT.

Configuration datastore LDAP directory service holding AM configuration data.

Cross-domain single sign-
on (CDSSO)

AM capability allowing single sign-on across different DNS domains.

Delegation Granting users administrative privileges with AM.

Entitlement Decision that defines which resource names can and cannot be
accessed for a given subject in the context of a particular application,
which actions are allowed and which are denied, and any related
advice and attributes.

Extended metadata Federation configuration information specific to AM.

Extensible Access Control
Markup Language
(XACML)

Standard, XML-based access control policy language, including
a processing model for making authorization decisions based on
policies.

Federation Standardized means for aggregating identities, sharing authentication
and authorization data information between trusted providers, and
allowing principals to access services across different providers
without authenticating repeatedly.

Fedlet Service provider application capable of participating in a circle of
trust and allowing federation without installing all of AM on the
service provider side; AM lets you create Java Fedlets.

Hot swappable Refers to configuration properties for which changes can take effect
without restarting the container where AM runs.

Identity Set of data that uniquely describes a person or a thing such as a
device or an application.

Identity federation Linking of a principal's identity across multiple providers.

Identity provider (IdP) Entity that produces assertions about a principal (such as how and
when a principal authenticated, or that the principal's profile has a
specified attribute value).

Identity repository Data store holding user profiles and group information; different
identity repositories can be defined for different realms.

Java EE policy agent Java web application installed in a web container that acts as a policy
agent, filtering requests to other applications in the container with
policies based on application resource URLs.

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 95

Metadata Federation configuration information for a provider.

Policy Set of rules that define who is granted access to a protected resource
when, how, and under what conditions.

Policy Agent Agent that intercepts requests for resources, directs principals to AM
for authentication, and enforces policy decisions from AM.

Policy Administration Point
(PAP)

Entity that manages and stores policy definitions.

Policy Decision Point (PDP) Entity that evaluates access rights and then issues authorization
decisions.

Policy Enforcement Point
(PEP)

Entity that intercepts a request for a resource and then enforces
policy decisions from a PDP.

Policy Information Point
(PIP)

Entity that provides extra information, such as user profile attributes
that a PDP needs in order to make a decision.

Principal Represents an entity that has been authenticated (such as a user,
a device, or an application), and thus is distinguished from other
entities.

When a Subject successfully authenticates, AM associates the Subject
with the Principal.

Privilege In the context of delegated administration, a set of administrative
tasks that can be performed by specified subjects in a given realm.

Provider federation Agreement among providers to participate in a circle of trust.

Realm AM unit for organizing configuration and identity information.

Realms can be used for example when different parts of an
organization have different applications and user data stores, and
when different organizations use the same AM deployment.

Administrators can delegate realm administration. The administrator
assigns administrative privileges to users, allowing them to perform
administrative tasks within the realm.

Resource Something a user can access over the network such as a web page.

Defined as part of policies, these can include wildcards in order to
match multiple actual resources.

Resource owner In OAuth 2.0, entity who can authorize access to protected web
resources, such as an end user.

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 96

Resource server In OAuth 2.0, server hosting protected web resources, capable of
handling access tokens to respond to requests for such resources.

Response attributes Defined as part of policies, these allow AM to return additional
information in the form of "attributes" with the response to a policy
decision.

Role based access control
(RBAC)

Access control that is based on whether a user has been granted a set
of permissions (a role).

Security Assertion Markup
Language (SAML)

Standard, XML-based language for exchanging authentication and
authorization data between identity providers and service providers.

Service provider (SP) Entity that consumes assertions about a principal (and provides a
service that the principal is trying to access).

Session The interval that starts with the user authenticating through AM and
ends when the user logs out, or when their session is terminated. For
browser-based clients, AM manages user sessions across one or more
applications by setting a session cookie. See also Stateful session and
Stateless session.

Session high availability Capability that lets any AM server in a clustered deployment access
shared, persistent information about users' sessions from the CTS
token store. The user does not need to log in again unless the entire
deployment goes down.

Session token Unique identifier issued by AM after successful authentication. For
a Stateful session, the session token is used to track a principal's
session.

Single log out (SLO) Capability allowing a principal to end a session once, thereby ending
her session across multiple applications.

Single sign-on (SSO) Capability allowing a principal to authenticate once and gain access to
multiple applications without authenticating again.

Site Group of AM servers configured the same way, accessed through a
load balancer layer.

The load balancer handles failover to provide service-level availability.
Use sticky load balancing based on amlbcookie values to improve site
performance.

The load balancer can also be used to protect AM services.

Standard metadata Standard federation configuration information that you can share with
other access management software.

Stateful session An AM session that resides in the Core Token Service's token store.
Stateful sessions might also be cached in memory on one or more

Development Guide ForgeRock Access Management 5.1 (2019-10-02T13:58:40.612067)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 97

AM servers. AM tracks stateful sessions in order to handle events
like logout and timeout, to permit session constraints, and to notify
applications involved in SSO when a session ends.

Stateless session An AM session for which state information is encoded in AM and
stored on the client. The information from the session is not retained
in the CTS token store. For browser-based clients, AM sets a cookie in
the browser that contains the session information.

Subject Entity that requests access to a resource

When a subject successfully authenticates, AM associates the subject
with the Principal that distinguishes it from other subjects. A subject
can be associated with multiple principals.

User data store Data storage service holding principals' profiles; underlying storage
can be an LDAP directory service or a custom IdRepo implementation.

Web policy agent Native library installed in a web server that acts as a policy agent with
policies based on web page URLs.

	Development Guide
	Table of Contents
	Preface
	Chapter 1. Introducing APIs and Protocols
	1.1. IPv4 and IPv6

	Chapter 2. Developing with the REST API
	2.1. Introducing REST
	2.2. Introducing the API Explorer
	2.3. About ForgeRock Common REST
	2.3.1. Common REST Resources
	2.3.2. Common REST Verbs
	2.3.3. Common REST Parameters
	2.3.4. Common REST Extension Points
	2.3.5. Common REST API Documentation
	2.3.6. Create
	2.3.7. Read
	2.3.8. Update
	2.3.9. Delete
	2.3.10. Patch
	2.3.10.1. Patch Operation: Add
	2.3.10.2. Patch Operation: Copy
	2.3.10.3. Patch Operation: Increment
	2.3.10.4. Patch Operation: Move
	2.3.10.5. Patch Operation: Remove
	2.3.10.6. Patch Operation: Replace
	2.3.10.7. Patch Operation: Transform
	2.3.10.8. Patch Operation Limitations

	2.3.11. Action
	2.3.12. Query
	2.3.13. HTTP Status Codes

	2.4. REST API Versioning
	2.4.1. Supported REST API Versions
	2.4.2. Specifying an Explicit REST API Version
	2.4.3. Configuring the Default REST API Version for a Deployment
	2.4.4. REST API Versioning Messages

	2.5. Specifying Realms in REST API Calls
	2.6. Authentication and Logout
	2.6.1. Logout
	2.6.2. logoutByHandle
	2.6.3. Load Balancer and Proxy Layer Requirements
	2.6.4. Windows Desktop SSO Requirements

	2.7. Using the Session Token After Authentication
	2.8. Server Information
	2.9. Token Encoding
	2.10. Logging
	2.10.1. Common Audit Logging of REST API Calls
	2.10.2. Legacy Logging of REST API Calls

	2.11. REST Goto URL Validation
	2.12. Reference
	2.12.1. REST APIs

	Chapter 3. Developing with the Java SDK
	3.1. Installing Client SDK Samples
	3.2. About the Java SDK
	3.3. Authenticating Using Java SDK
	3.3.1. Encoding Passwords and Password Reset Questions and Answers

	3.4. Handling Single Sign-On Using the Java SDK
	3.4.1. Receiving Notifications

	3.5. Requesting Policy Decisions Using the Java SDK
	3.6. Requesting a XACML Policy Decision Using the Java SDK

	Chapter 4. Developing with the C SDK
	Chapter 5. Developing with Scripts
	5.1. The Scripting Environment
	5.1.1. Security
	5.1.2. Thread Pools

	5.2. Global Scripting API Functionality
	5.2.1. Accessing HTTP Services
	5.2.2. Debug Logging

	5.3. Managing Scripts
	5.3.1. Managing Scripts With the AM Console
	5.3.2. Managing Scripts With the ssoadm Command
	5.3.3. Managing Scripts With the REST API
	5.3.4. Querying Scripts
	5.3.5. Reading a Script
	5.3.6. Validating a Script
	5.3.7. Creating a Script
	5.3.8. Updating a Script
	5.3.9. Deleting a Script

	Chapter 6. Reference
	6.1. Scripting
	6.1.1. Configuration
	6.1.2. Secondary Configurations
	6.1.2.1. Engine Configuration

	Appendix A. Getting Support
	A.1. Accessing Documentation Online
	A.2. Using the ForgeRock.org Site
	A.3. Getting Support and Contacting ForgeRock

	Glossary

